1
|
Fernandes N, Simões L, Dias DR. Exploring the genetic expression of Wickerhamomyces anomalus during biosurfactant production from waste cooking oil. J Appl Microbiol 2024; 135:lxae300. [PMID: 39694710 DOI: 10.1093/jambio/lxae300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/09/2024] [Accepted: 12/16/2024] [Indexed: 12/20/2024]
Abstract
AIMS Biosurfactants are valuable eco-friendly compounds with broad industrial applications, particularly when produced sustainably using yeast and renewable carbon sources. Despite the potential of yeast in biosurfactant synthesis, little is known about the specific gene expression changes underlying this process. This study investigates the genetic response of Wickerhamomyces anomalus CCMA 0358 to biosurfactant production using waste cooking oil (WCO) as a low-cost carbon source. METHODS AND RESULTS During a 0-12 h fermentation period, RNA (ribonucleic acid) sequencing revealed 829 differentially expressed genes in W. anomalus grown with WCO, suggesting targeted metabolic adaptations. Pathway analysis showed WCO's significant impact on glycolysis, gluconeogenesis, and lipid biosynthesis. Gene ontology annotations further indicated adaptive responses in ribosome biogenesis and lipid metabolism, which are crucial for the efficient utilization of WCO. Notably, WCO induced the upregulation of very-long-chain fatty acid precursors and adjustments in glycolytic enzyme expression, both essential for biosurfactant production. CONCLUSIONS This study reveals, for the first time, the specific genetic pathways and metabolic adjustments that W. anomalus employs to produce biosurfactants from WCO. The increased expression of lipid metabolism enzymes and cell membrane components highlights a tailored adaptive mechanism for lipid-rich waste substrates, positioning W. anomalus as a promising candidate for sustainable biosurfactant production.
Collapse
Affiliation(s)
- Natalia Fernandes
- Department of Chemical Engineering, University of California, University Drive, Berkeley, CA 94720, United States
- Biology Department, UFLA-Federal University of Lavras, Campus Universitário, Caixa Postal 3037, Lavras, Minas Gerais 37200-900, Brazil
| | - Luara Simões
- Biology Department, UFLA-Federal University of Lavras, Campus Universitário, Caixa Postal 3037, Lavras, Minas Gerais 37200-900, Brazil
- Interdisciplinary Centre of Marine and Environmental Research of the University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, 4450-208 Matosinhos, Portugal
| | - Disney Ribeiro Dias
- Food Science Department, UFLA-Federal University of Lavras Campus Universitário, Caixa Postal 3037, Lavras, Minas Gerais 37200-900, Brazil
| |
Collapse
|
2
|
Gouda M, Lv JM, Huang Z, Chen JC, He Y, Li X. Bioprobe-RNA-seq-microRaman system for deep tracking of the live single-cell metabolic pathway chemometrics. Biosens Bioelectron 2024; 261:116504. [PMID: 38896978 DOI: 10.1016/j.bios.2024.116504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/04/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
The integration between RNA-sequencing and micro-spectroscopic techniques has recently profiled the advanced transcriptomic discoveries on the cellular level. In the current study, by combining the sensation approach (including bio-molecules structural evaluation, high throughput next-generation sequencing (HT-NGS), and confocal Raman microscopy) the functionality on the single live cancer cells' ferroptosis and apoptosis signaling pathways is visualized. Our study reveals a hydrophobic tunnel by phycocyanin-isoprene molecule (PC-SIM) electrostatic charge within hepatoma cells (HepG2) that activates the ferritin light chain (FTL) and caspase-8 associate protein (CASP8AP2) ferroptosis responsible genes. Moreover, this research proves that PC-vanillin (VAN) stimulation induces the actin-binding factor profilin-1 (PFN1), subsequently in situ tracking its expression at 1139.75 cm-1 microRaman wavenumber. While PC-thymol (THY) induces the lysophospholipase-2 (LYPLA2) (p-value = 0.009) and acetylneuraminate-9-O-acetyltransferase (CASD1) (p-value = 0.022) at 1143.19 cm-1. Our findings establish a new concept to promote the cross-disciplinary use of instant cellular-based detection technology for intermediary evaluating the signaling cellular transcriptome.
Collapse
Affiliation(s)
- Mostafa Gouda
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China; Department of Nutrition & Food Science, National Research Centre, Dokki, 12622, Giza, Egypt.
| | - Ji-Min Lv
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | - Zhenxiong Huang
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Jian-Chu Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Yong He
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China.
| | - Xiaoli Li
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China.
| |
Collapse
|
3
|
Briand-Mésange F, Gennero I, Salles J, Trudel S, Dahan L, Ausseil J, Payrastre B, Salles JP, Chap H. From Classical to Alternative Pathways of 2-Arachidonoylglycerol Synthesis: AlterAGs at the Crossroad of Endocannabinoid and Lysophospholipid Signaling. Molecules 2024; 29:3694. [PMID: 39125098 PMCID: PMC11314389 DOI: 10.3390/molecules29153694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/27/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
2-arachidonoylglycerol (2-AG) is the most abundant endocannabinoid (EC), acting as a full agonist at both CB1 and CB2 cannabinoid receptors. It is synthesized on demand in postsynaptic membranes through the sequential action of phosphoinositide-specific phospholipase Cβ1 (PLCβ1) and diacylglycerol lipase α (DAGLα), contributing to retrograde signaling upon interaction with presynaptic CB1. However, 2-AG production might also involve various combinations of PLC and DAGL isoforms, as well as additional intracellular pathways implying other enzymes and substrates. Three other alternative pathways of 2-AG synthesis rest on the extracellular cleavage of 2-arachidonoyl-lysophospholipids by three different hydrolases: glycerophosphodiesterase 3 (GDE3), lipid phosphate phosphatases (LPPs), and two members of ecto-nucleotide pyrophosphatase/phosphodiesterases (ENPP6-7). We propose the names of AlterAG-1, -2, and -3 for three pathways sharing an ectocellular localization, allowing them to convert extracellular lysophospholipid mediators into 2-AG, thus inducing typical signaling switches between various G-protein-coupled receptors (GPCRs). This implies the critical importance of the regioisomerism of both lysophospholipid (LPLs) and 2-AG, which is the object of deep analysis within this review. The precise functional roles of AlterAGs are still poorly understood and will require gene invalidation approaches, knowing that both 2-AG and its related lysophospholipids are involved in numerous aspects of physiology and pathology, including cancer, inflammation, immune defenses, obesity, bone development, neurodegeneration, or psychiatric disorders.
Collapse
Affiliation(s)
- Fabienne Briand-Mésange
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
| | - Isabelle Gennero
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
- Centre Hospitalier Universitaire de Toulouse, Service de Biochimie, Institut Fédératif de Biologie, 31059 Toulouse, France
| | - Juliette Salles
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
- Centre Hospitalier Universitaire de Toulouse, Service de Psychiatrie D’urgences, de Crise et de Liaison, Institut des Handicaps Neurologiques, Psychiatriques et Sensoriels, 31059 Toulouse, France
| | - Stéphanie Trudel
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
- Centre Hospitalier Universitaire de Toulouse, Service de Biochimie, Institut Fédératif de Biologie, 31059 Toulouse, France
| | - Lionel Dahan
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France;
| | - Jérôme Ausseil
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
- Centre Hospitalier Universitaire de Toulouse, Service de Biochimie, Institut Fédératif de Biologie, 31059 Toulouse, France
| | - Bernard Payrastre
- I2MC-Institute of Metabolic and Cardiovascular Diseases, INSERM UMR1297 and University of Toulouse III, 31400 Toulouse, France;
- Centre Hospitalier Universitaire de Toulouse, Laboratoire d’Hématologie, 31400 Toulouse, France
| | - Jean-Pierre Salles
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
- Centre Hospitalier Universitaire de Toulouse, Unité d’Endocrinologie et Maladies Osseuses, Hôpital des Enfants, 31059 Toulouse, France
| | - Hugues Chap
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
- Académie des Sciences, Inscriptions et Belles Lettres de Toulouse, Hôtel d’Assézat, 31000 Toulouse, France
| |
Collapse
|
4
|
Yousefnia S. A comprehensive review on lncRNA LOXL1-AS1: molecular mechanistic pathways of lncRNA LOXL1-AS1 in tumorigenicity of cancer cells. Front Oncol 2024; 14:1384342. [PMID: 39136001 PMCID: PMC11317273 DOI: 10.3389/fonc.2024.1384342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) are versatile RNAs that regulate various cellular processes, such as gene regulation, by acting as signals, decoys, guides, and scaffolds. A novel recognized lncRNA, LOXL1-antisense RNA 1 (LOXL1-AS1), is dysregulated in some diseases, including cancer, and acts as an oncogenic lncRNA in many types of cancer cells. Upregulation of LOXL1-AS1 has been involved in proliferation, migration, metastasis, and EMT, as well as inhibiting apoptosis in cancer cells. Most importantly, the malignant promoting activity of LOXL1-AS1 can be mostly mediated by sequestering specific miRNAs and inhibiting their binding to the 3´UTR of their target mRNAs, thereby indirectly regulating gene expression. Additionally, LOXL1-AS1 can decoy transcription factors and proteins and prevent their binding to their regulatory regions, inhibiting their mechanistic activity on the regulation of gene expression and signaling pathways. This review presents the mechanistic pathways of the oncogenic role of LOXL1-AS1 by modulating its target miRNAs and proteins in various cancer cells. Having information about the molecular mechanisms regulated by LOXL1-AS1 in cancer cells can open ways to find out particular prognostic biomarkers, as well as discover novel therapeutic approaches for different types of cancer.
Collapse
Affiliation(s)
- Saghar Yousefnia
- Department of Cell and Molecular Biology, Semnan University, Semnan, Iran
| |
Collapse
|
5
|
Rubenzucker S, Manke MC, Lehmann R, Assinger A, Borst O, Ahrends R. A Targeted, Bioinert LC-MS/MS Method for Sensitive, Comprehensive Analysis of Signaling Lipids. Anal Chem 2024; 96:9643-9652. [PMID: 38795073 PMCID: PMC11170558 DOI: 10.1021/acs.analchem.4c01388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 05/27/2024]
Abstract
Signaling lipids are key players in cellular processes. Despite their importance, no method currently allows their comprehensive monitoring in one analytical run. Challenges include a wide dynamic range, isomeric and isobaric species, and unwanted interaction along the separation path. Herein, we present a sensitive and robust targeted liquid chromatography-mass spectrometry (LC-MS/MS) approach to overcome these challenges, covering a broad panel of 17 different signaling lipid classes. It involves a simple one-phase sample extraction and lipid analysis using bioinert reversed-phase liquid chromatography coupled to targeted mass spectrometry. The workflow shows excellent sensitivity and repeatability in different biological matrices, enabling the sensitive and robust monitoring of 388 lipids in a single run of only 20 min. To benchmark our workflow, we characterized the human plasma signaling lipidome, quantifying 307 endogenous molecular lipid species. Furthermore, we investigated the signaling lipidome during platelet activation, identifying numerous regulations along important lipid signaling pathways. This highlights the potential of the presented method to investigate signaling lipids in complex biological systems, enabling unprecedentedly comprehensive analysis and direct insight into signaling pathways.
Collapse
Affiliation(s)
- Stefanie Rubenzucker
- Department
of Analytical Chemistry, University of Vienna, 1090 Vienna, Austria
- Vienna
Doctoral School in Chemistry, University
of Vienna, 1090 Vienna, Austria
| | - Mailin-Christin Manke
- DFG
Heisenberg Group Cardiovascular Thromboinflammation and Translational
Thrombocardiology, University of Tübingen, 72076 Tübingen, Germany
- Department
of Cardiology and Angiology, University
of Tübingen, 72076 Tübingen, Germany
| | - Rainer Lehmann
- Institute
for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic
Laboratory Medicine, University Hospital
Tübingen, 72076 Tübingen, Germany
| | - Alice Assinger
- Department
of Vascular Biology and Thrombosis Research, Centre of Physiology
and Pharmacology, Medical University of
Vienna, 1090 Vienna, Austria
| | - Oliver Borst
- DFG
Heisenberg Group Cardiovascular Thromboinflammation and Translational
Thrombocardiology, University of Tübingen, 72076 Tübingen, Germany
- Department
of Cardiology and Angiology, University
of Tübingen, 72076 Tübingen, Germany
| | - Robert Ahrends
- Department
of Analytical Chemistry, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
6
|
S Mesquita F, Abrami L, Linder ME, Bamji SX, Dickinson BC, van der Goot FG. Mechanisms and functions of protein S-acylation. Nat Rev Mol Cell Biol 2024; 25:488-509. [PMID: 38355760 DOI: 10.1038/s41580-024-00700-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2024] [Indexed: 02/16/2024]
Abstract
Over the past two decades, protein S-acylation (often referred to as S-palmitoylation) has emerged as an important regulator of vital signalling pathways. S-Acylation is a reversible post-translational modification that involves the attachment of a fatty acid to a protein. Maintenance of the equilibrium between protein S-acylation and deacylation has demonstrated profound effects on various cellular processes, including innate immunity, inflammation, glucose metabolism and fat metabolism, as well as on brain and heart function. This Review provides an overview of current understanding of S-acylation and deacylation enzymes, their spatiotemporal regulation by sophisticated multilayered mechanisms, and their influence on protein function, cellular processes and physiological pathways. Furthermore, we examine how disruptions in protein S-acylation are associated with a broad spectrum of diseases from cancer to autoinflammatory disorders and neurological conditions.
Collapse
Affiliation(s)
- Francisco S Mesquita
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Laurence Abrami
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Maurine E Linder
- Department of Molecular Medicine, Cornell University, Ithaca, NY, USA
| | - Shernaz X Bamji
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - F Gisou van der Goot
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
7
|
Wang S, Xing X, Ma J, Zheng S, Song Q, Zhang P. Deacylases-structure, function, and relationship to diseases. FEBS Lett 2024; 598:959-977. [PMID: 38644468 DOI: 10.1002/1873-3468.14885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/28/2024] [Accepted: 03/20/2024] [Indexed: 04/23/2024]
Abstract
Reversible S-acylation plays a pivotal role in various biological processes, modulating protein functions such as subcellular localization, protein stability/activity, and protein-protein interactions. These modifications are mediated by acyltransferases and deacylases, among which the most abundant modification is S-palmitoylation. Growing evidence has shown that this rivalrous pair of modifications, occurring in a reversible cycle, is essential for various biological functions. Aberrations in this process have been associated with various diseases, including cancer, neurological disorders, and immune diseases. This underscores the importance of studying enzymes involved in acylation and deacylation to gain further insights into disease pathogenesis and provide novel strategies for disease treatment. In this Review, we summarize our current understanding of the structure and physiological function of deacylases, highlighting their pivotal roles in pathology. Our aim is to provide insights for further clinical applications.
Collapse
Affiliation(s)
- Shuxian Wang
- Cancer Center, Renmin Hospital of Wuhan University, China
| | - Xiaoke Xing
- Cancer Center, Renmin Hospital of Wuhan University, China
| | - Jialin Ma
- Cancer Center, Renmin Hospital of Wuhan University, China
| | - Sihao Zheng
- Cancer Center, Renmin Hospital of Wuhan University, China
| | - Qibin Song
- Cancer Center, Renmin Hospital of Wuhan University, China
| | - Pingfeng Zhang
- Cancer Center, Renmin Hospital of Wuhan University, China
| |
Collapse
|
8
|
Speck SL, Wei X, Semenkovich CF. Depalmitoylation and cell physiology: APT1 as a mediator of metabolic signals. Am J Physiol Cell Physiol 2024; 326:C1034-C1041. [PMID: 38344800 PMCID: PMC11193526 DOI: 10.1152/ajpcell.00542.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 03/13/2024]
Abstract
More than half of the global population is obese or overweight, especially in Western countries, and this excess adiposity disrupts normal physiology to cause chronic diseases. Diabetes, an adiposity-associated epidemic disease, affects >500 million people, and cases are projected to exceed 1 billion before 2050. Lipid excess can impact physiology through the posttranslational modification of proteins, including the reversible process of S-palmitoylation. Dynamic palmitoylation cycling requires the S-acylation of proteins by acyltransferases and the depalmitoylation of these proteins mediated in part by acyl-protein thioesterases (APTs) such as APT1. Emerging evidence points to tissue-specific roles for the depalmitoylase APT1 in maintaining homeostasis in the vasculature, pancreatic islets, and liver. These recent findings raise the possibility that APT1 substrates can be therapeutically targeted to treat the complications of metabolic diseases.
Collapse
Affiliation(s)
- Sarah L Speck
- Division of Endocrinology, Metabolism and Lipid Research, Washington University in St. Louis, St. Louis, Missouri, United States
| | - Xiaochao Wei
- Division of Endocrinology, Metabolism and Lipid Research, Washington University in St. Louis, St. Louis, Missouri, United States
| | - Clay F Semenkovich
- Division of Endocrinology, Metabolism and Lipid Research, Washington University in St. Louis, St. Louis, Missouri, United States
| |
Collapse
|
9
|
Liu J, Fike KR, Dapper C, Klemba M. Metabolism of host lysophosphatidylcholine in Plasmodium falciparum-infected erythrocytes. Proc Natl Acad Sci U S A 2024; 121:e2320262121. [PMID: 38349879 PMCID: PMC10895272 DOI: 10.1073/pnas.2320262121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/09/2024] [Indexed: 02/15/2024] Open
Abstract
The human malaria parasite Plasmodium falciparum requires exogenous fatty acids to support its growth during the pathogenic, asexual erythrocytic stage. Host serum lysophosphatidylcholine (LPC) is a significant fatty acid source, yet the metabolic processes responsible for the liberation of free fatty acids from exogenous LPC are unknown. Using an assay for LPC hydrolysis in P. falciparum-infected erythrocytes, we have identified small-molecule inhibitors of key in situ lysophospholipase activities. Competitive activity-based profiling and generation of a panel of single-to-quadruple knockout parasite lines revealed that two enzymes of the serine hydrolase superfamily, termed exported lipase (XL) 2 and exported lipase homolog (XLH) 4, constitute the dominant lysophospholipase activities in parasite-infected erythrocytes. The parasite ensures efficient exogenous LPC hydrolysis by directing these two enzymes to distinct locations: XL2 is exported to the erythrocyte, while XLH4 is retained within the parasite. While XL2 and XLH4 were individually dispensable with little effect on LPC hydrolysis in situ, loss of both enzymes resulted in a strong reduction in fatty acid scavenging from LPC, hyperproduction of phosphatidylcholine, and an enhanced sensitivity to LPC toxicity. Notably, growth of XL/XLH-deficient parasites was severely impaired when cultured in media containing LPC as the sole exogenous fatty acid source. Furthermore, when XL2 and XLH4 activities were ablated by genetic or pharmacologic means, parasites were unable to proliferate in human serum, a physiologically relevant fatty acid source, revealing the essentiality of LPC hydrolysis in the host environment and its potential as a target for anti-malarial therapy.
Collapse
Affiliation(s)
- Jiapeng Liu
- Department of Biochemistry, Virginia Tech, Blacksburg, VA24061
| | | | - Christie Dapper
- Department of Biochemistry, Virginia Tech, Blacksburg, VA24061
| | - Michael Klemba
- Department of Biochemistry, Virginia Tech, Blacksburg, VA24061
| |
Collapse
|
10
|
Speck SL, Bhatt DP, Zhang Q, Adak S, Yin L, Dong G, Feng C, Zhang W, Ben Major M, Wei X, Semenkovich CF. Hepatic palmitoyl-proteomes and acyl-protein thioesterase protein proximity networks link lipid modification and mitochondria. Cell Rep 2023; 42:113389. [PMID: 37925639 PMCID: PMC10872372 DOI: 10.1016/j.celrep.2023.113389] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/24/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023] Open
Abstract
Acyl-protein thioesterases 1 and 2 (APT1 and APT2) reverse S-acylation, a potential regulator of systemic glucose metabolism in mammals. Palmitoylation proteomics in liver-specific knockout mice shows that APT1 predominates over APT2, primarily depalmitoylating mitochondrial proteins, including proteins linked to glutamine metabolism. miniTurbo-facilitated determination of the protein-protein proximity network of APT1 and APT2 in HepG2 cells reveals APT proximity networks encompassing mitochondrial proteins including the major translocases Tomm20 and Timm44. APT1 also interacts with Slc1a5 (ASCT2), the only glutamine transporter known to localize to mitochondria. High-fat-diet-fed male mice with dual (but not single) hepatic deletion of APT1 and APT2 have insulin resistance, fasting hyperglycemia, increased glutamine-driven gluconeogenesis, and decreased liver mass. These data suggest that APT1 and APT2 regulation of hepatic glucose metabolism and insulin signaling is functionally redundant. Identification of substrates and protein-protein proximity networks for APT1 and APT2 establishes a framework for defining mechanisms underlying metabolic disease.
Collapse
Affiliation(s)
- Sarah L Speck
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St. Louis, MO 63110, USA
| | - Dhaval P Bhatt
- Department of Cell Biology & Physiology, Washington University, St. Louis, MO 63110, USA
| | - Qiang Zhang
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St. Louis, MO 63110, USA
| | - Sangeeta Adak
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St. Louis, MO 63110, USA
| | - Li Yin
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St. Louis, MO 63110, USA
| | - Guifang Dong
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St. Louis, MO 63110, USA; Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Chu Feng
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St. Louis, MO 63110, USA
| | - Wei Zhang
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St. Louis, MO 63110, USA
| | - M Ben Major
- Department of Cell Biology & Physiology, Washington University, St. Louis, MO 63110, USA; Department of Otolaryngology, Washington University, St. Louis, MO 63110, USA
| | - Xiaochao Wei
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St. Louis, MO 63110, USA.
| | - Clay F Semenkovich
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St. Louis, MO 63110, USA; Department of Cell Biology & Physiology, Washington University, St. Louis, MO 63110, USA.
| |
Collapse
|
11
|
Anwar MU, van der Goot FG. Refining S-acylation: Structure, regulation, dynamics, and therapeutic implications. J Cell Biol 2023; 222:e202307103. [PMID: 37756661 PMCID: PMC10533364 DOI: 10.1083/jcb.202307103] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
With a limited number of genes, cells achieve remarkable diversity. This is to a large extent achieved by chemical posttranslational modifications of proteins. Amongst these are the lipid modifications that have the unique ability to confer hydrophobicity. The last decade has revealed that lipid modifications of proteins are extremely frequent and affect a great variety of cellular pathways and physiological processes. This is particularly true for S-acylation, the only reversible lipid modification. The enzymes involved in S-acylation and deacylation are only starting to be understood, and the list of proteins that undergo this modification is ever-increasing. We will describe the state of knowledge on the enzymes that regulate S-acylation, from their structure to their regulation, how S-acylation influences target proteins, and finally will offer a perspective on how alterations in the balance between S-acylation and deacylation may contribute to disease.
Collapse
Affiliation(s)
- Muhammad U. Anwar
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - F. Gisou van der Goot
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
12
|
Mohammad I, Liebmann KL, Miller SC. Firefly luciferin methyl ester illuminates the activity of multiple serine hydrolases. Chem Commun (Camb) 2023; 59:8552-8555. [PMID: 37337906 PMCID: PMC10347678 DOI: 10.1039/d3cc02540c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Firefly luciferin methyl ester is hydrolyzed by monoacylglycerol lipase MAGL, amidase FAAH, poorly-characterized hydrolase ABHD11, and hydrolases known for S-depalmitoylation (LYPLA1/2), not just esterase CES1. This enables activity-based bioluminescent assays for serine hydrolases and suggests that the 'esterase activity' responsible for hydrolyzing ester prodrugs is more diverse than previously supposed.
Collapse
Affiliation(s)
- Innus Mohammad
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, 364 Plantation St., Worcester, MA 01605, USA.
| | - Kate L Liebmann
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, 364 Plantation St., Worcester, MA 01605, USA.
| | - Stephen C Miller
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, 364 Plantation St., Worcester, MA 01605, USA.
| |
Collapse
|
13
|
Thieringer PH, Boyd ES, Templeton AS, Spear JR. Metapangenomic investigation provides insight into niche differentiation of methanogenic populations from the subsurface serpentinizing environment, Samail Ophiolite, Oman. Front Microbiol 2023; 14:1205558. [PMID: 37465028 PMCID: PMC10350532 DOI: 10.3389/fmicb.2023.1205558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/13/2023] [Indexed: 07/20/2023] Open
Abstract
Serpentinization reactions produce highly reduced waters that have hyperalkaline pH and that can have high concentrations of H2 and CH4. Putatively autotrophic methanogenic archaea have been identified in the subsurface waters of the Samail Ophiolite, Sultanate of Oman, though the strategies to overcome hyperalkaline pH and dissolved inorganic carbon limitation remain to be fully understood. Here, we recovered metagenome assembled genomes (MAGs) and applied a metapangenomic approach to three different Methanobacterium populations to assess habitat-specific functional gene distribution. A Type I population was identified in the fluids with neutral pH, while a Type II and "Mixed" population were identified in the most hyperalkaline fluids (pH 11.63). The core genome of all Methanobacterium populations highlighted potential DNA scavenging techniques to overcome phosphate or nitrogen limitation induced by environmental conditions. With particular emphasis on the Mixed and Type II population found in the most hyperalkaline fluids, the accessory genomes unique to each population reflected adaptation mechanisms suggesting lifestyles that minimize niche overlap. In addition to previously reported metabolic capability to utilize formate as an electron donor and generate intracellular CO2, the Type II population possessed genes relevant to defense against antimicrobials and assimilating potential osmoprotectants to provide cellular stability. The accessory genome of the Mixed population was enriched in genes for multiple glycosyltransferases suggesting reduced energetic costs by adhering to mineral surfaces or to other microorganisms, and fostering a non-motile lifestyle. These results highlight the niche differentiation of distinct Methanobacterium populations to circumvent the challenges of serpentinization impacted fluids through coexistence strategies, supporting our ability to understand controls on methanogenic lifestyles and adaptations within the serpentinizing subsurface fluids of the Samail Ophiolite.
Collapse
Affiliation(s)
- Patrick H. Thieringer
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, United States
| | - Eric S. Boyd
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States
| | - Alexis S. Templeton
- Department of Geological Sciences, University of Colorado, Boulder, CO, United States
| | - John R. Spear
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, United States
| |
Collapse
|
14
|
Ibarz A, Sanahuja I, Nuez-Ortín WG, Martínez-Rubio L, Fernández-Alacid L. Physiological Benefits of Dietary Lysophospholipid Supplementation in a Marine Fish Model: Deep Analyses of Modes of Action. Animals (Basel) 2023; 13:ani13081381. [PMID: 37106944 PMCID: PMC10135010 DOI: 10.3390/ani13081381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/03/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Given the hydrophilic structure of lysophospholipids (LPLs), their dietary inclusion translates into a better emulsifying capacity of the dietary components. The present study aimed to understand the mechanisms underlying the growth-promoting effect of LPL supplementation by undertaking deep analyses of the proximal intestine and liver interactomes. The Atlantic salmon (Salmo salar) was selected as the main aquaculture species model. The animals were divided into two groups: one was fed a control diet (C-diet) and the other a feed (LPL-diet) supplemented with an LPL-based digestive enhancer (0.1% AQUALYSO®, Adisseo). The LPL-diet had a positive effect on the fish by increasing the final weight by 5% and reducing total serum lipids, mainly due to a decrease in the plasma phospholipid (p < 0.05). In the intestine, the upregulated interactome suggests a more robust digestive capacity, improving vesicle-trafficking-related proteins, complex sugar hydrolysis, and lipid metabolism. In the liver, the LPL-diet promotes better nutrients, increasing several metabolic pathways. The downregulation of the responses to stress and stimuli could be related to a reduced proinflammatory state. This study on the benefits and modes of action of dietary LPLs opens a new window into fish nutrition and could be extended to other productive species.
Collapse
Affiliation(s)
- Antoni Ibarz
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain
| | - Ignasi Sanahuja
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain
- IRTA, Centre de La Ràpita, Aquaculture Program, 43540 La Ràpita, Spain
| | - Waldo G Nuez-Ortín
- Adisseo, Polígono Industrial, Valle del Cinca, 8A, 22300 Barbastro, Spain
| | | | - Laura Fernández-Alacid
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain
| |
Collapse
|
15
|
Feng T, Tao Y, Yan Y, Lu S, Li Y, Zhang X, Qiang J. Transcriptional Inhibition of AGPAT2 Induces Abnormal Lipid Metabolism and Oxidative Stress in the Liver of Nile Tilapia Oreochromis niloticus. Antioxidants (Basel) 2023; 12:antiox12030700. [PMID: 36978948 PMCID: PMC10045202 DOI: 10.3390/antiox12030700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/01/2023] [Accepted: 03/01/2023] [Indexed: 03/15/2023] Open
Abstract
The enzyme 1-acylglycerol-3-phosphate O-acyltransferase 2 (AGPAT2) is an intermediate enzyme in triglyceride synthesis. The aim was to study the regulatory mechanism of AGPAT2 on Nile tilapia, Oreochromis niloticus. In this study, antisense RNA technology was used to knock-down AGPAT2 in Nile tilapia. Compared with the control groups (transfected with ultrapure water or the blank expression vector), the AGPAT2 knock-down group showed a significantly higher weight gain rate, special growth rate, visceral somatic index, and hepatopancreas somatic index; and significantly increased the total cholesterol, triglycerides, glucose, low-density lipoprotein cholesterol, and insulin levels in serum. In addition, the contents of total cholesterol and triglycerides and the abundance of superoxide dismutase, catalase, and glutathione peroxidase in the liver significantly increased, while the malondialdehyde content significantly decreased. The liver cells became severely vacuolated and accumulated lipids in the AGPAT2 knock-down group. Comparative transcriptome analyses (AGPAT2 knock-down vs. control group) revealed 1789 differentially expressed genes (DEGs), including 472 upregulated genes and 1313 downregulated genes in the AGPAT2 knock-down group. Functional analysis showed that the main pathway of differentially expressed genes enrichment was lipid metabolism and oxidative stress, such as steroid biosynthesis, unsaturated fatty acid biosynthesis, the PPAR signaling pathway, and the P53 pathway. We used qRT-PCR to verify the mRNA expression changes of 13 downstream differential genes in related signaling pathways. These findings demonstrate that knock-down of AGPAT2 in tilapia leads to abnormal lipid metabolism and oxidative stress.
Collapse
Affiliation(s)
- Tiantian Feng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Yifan Tao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center, Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yue Yan
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Siqi Lu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center, Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yan Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center, Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Xing Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Jun Qiang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center, Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Sciences, Wuxi 214081, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
- Correspondence:
| |
Collapse
|
16
|
Ghaffari MH, Sadri H, Sauerwein H. Invited review: Assessment of body condition score and body fat reserves in relation to insulin sensitivity and metabolic phenotyping in dairy cows. J Dairy Sci 2023; 106:807-821. [PMID: 36460514 DOI: 10.3168/jds.2022-22549] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/01/2022] [Indexed: 11/30/2022]
Abstract
The purpose of this article is to review body condition scoring and the role of body fat reserves in relation to insulin sensitivity and metabolic phenotyping. This article summarizes body condition scoring assessment methods and the differences between subcutaneous and visceral fat depots in dairy cows. The mass of subcutaneous and visceral adipose tissue (AT) changes significantly during the transition period; however, metabolism and intensity of lipolysis differ between subcutaneous and visceral AT depots of dairy cows. The majority of studies on AT have focused on subcutaneous AT, and few have explored visceral AT using noninvasive methods. In this systematic review, we summarize the relationship between body fat reserves and insulin sensitivity and integrate omics research (e.g., metabolomics, proteomics, lipidomics) for metabolic phenotyping of cows, particularly overconditioned cows. Several studies have shown that AT insulin resistance develops during the prepartum period, especially in overconditioned cows. We discuss the role of AT lipolysis, fatty acid oxidation, mitochondrial function, acylcarnitines, and lipid insulin antagonists, including ceramide and glycerophospholipids, in cows with different body condition scoring. Nonoptimal body conditions (under- or overconditioned cows) exhibit marked abnormalities in metabolic and endocrine function. Overall, reducing the number of cows with nonoptimal body conditions in herds seems to be the most practical solution to improve profitability, and dairy farmers should adjust their management practices accordingly.
Collapse
Affiliation(s)
- M H Ghaffari
- Institute of Animal Science, Physiology Unit, University of Bonn, 53111 Bonn, Germany.
| | - H Sadri
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, 5166616471 Tabriz, Iran
| | - H Sauerwein
- Institute of Animal Science, Physiology Unit, University of Bonn, 53111 Bonn, Germany
| |
Collapse
|
17
|
Luyet C, Elvati P, Vinh J, Violi A. Low-THz Vibrations of Biological Membranes. MEMBRANES 2023; 13:membranes13020139. [PMID: 36837641 PMCID: PMC9965665 DOI: 10.3390/membranes13020139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/04/2023] [Accepted: 01/17/2023] [Indexed: 05/12/2023]
Abstract
A growing body of work has linked key biological activities to the mechanical properties of cellular membranes, and as a means of identification. Here, we present a computational approach to simulate and compare the vibrational spectra in the low-THz region for mammalian and bacterial membranes, investigating the effect of membrane asymmetry and composition, as well as the conserved frequencies of a specific cell. We find that asymmetry does not impact the vibrational spectra, and the impact of sterols depends on the mobility of the components of the membrane. We demonstrate that vibrational spectra can be used to distinguish between membranes and, therefore, could be used in identification of different organisms. The method presented, here, can be immediately extended to other biological structures (e.g., amyloid fibers, polysaccharides, and protein-ligand structures) in order to fingerprint and understand vibrations of numerous biologically-relevant nanoscale structures.
Collapse
Affiliation(s)
- Chloe Luyet
- Chemical Engineering, University of Michigan, Ann Arbor, MI 48109-2125, USA
| | - Paolo Elvati
- Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109-2125, USA
| | - Jordan Vinh
- Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109-2125, USA
| | - Angela Violi
- Chemical Engineering, University of Michigan, Ann Arbor, MI 48109-2125, USA
- Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109-2125, USA
- Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109-2125, USA
- Correspondence:
| |
Collapse
|
18
|
Penco F, Petretto A, Lavarello C, Papa R, Bertoni A, Omenetti A, Gueli I, Finetti M, Caorsi R, Volpi S, Gattorno M. Proteomic Signatures of Monocytes in Hereditary Recurrent Fevers. Front Immunol 2022; 13:921253. [PMID: 35812440 PMCID: PMC9260596 DOI: 10.3389/fimmu.2022.921253] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Hereditary periodic recurrent fevers (HRF) are monogenic autoinflammatory associated to mutations of some genes, such as diseases caused by mutations of including MEFV, TNFRSF1A and MVK genes. Despite the identification of the causative genes, the intracellular implications related to each gene variant are still largely unknown. A large –scale proteomic analysis on monocytes of these patients is aimed to identify with an unbiased approach the mean proteins and molecular interaction networks involved in the pathogenesis of these conditions. Monocytes from HRF 15 patients (5 with MFV, 5 TNFRSF1A and 5with MVK gene mutation) and 15 healthy donors (HDs) were analyzed by liquid chromatography and tandem mass spectrometry before and after lipopolysaccharide (LPS) stimulation. Significant proteins were analyzed through a Cytoscape analysis using the ClueGo app to identify molecular interaction networks. Protein networks for each HRF were performed through a STRING database analysis integrated with a DISEAE database query. About 5000 proteins for each HRF were identified. LPS treatment maximizes differences between up-regulated proteins in monocytes of HRF patients and HDs, independently from the disease’s activity and ongoing treatments. Proteins significantly modulated in monocytes of the different HRF allowed creating a disease-specific proteomic signatures and interactive protein network. Proteomic analysis is able to dissect the different intracellular pathways involved in the inflammatory response of circulating monocytes in HRF patients. The present data may help to identify a “monocyte proteomic signature” for each condition and unravel new possible unexplored intracellular pathways possibly involved in their pathogenesis. These data will be also useful to identify possible differences and similarities between the different HRFs and some multifactorial recurrent fevers.
Collapse
Affiliation(s)
- Federica Penco
- Centro Malattie Autoinfiammatorie ed Immunodeficienze, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
- *Correspondence: Federica Penco, ; Marco Gattorno,
| | - Andrea Petretto
- Core Facilities - Clinical Proteomics and Metabolomics, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Chiara Lavarello
- Core Facilities - Clinical Proteomics and Metabolomics, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Riccardo Papa
- Centro Malattie Autoinfiammatorie ed Immunodeficienze, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
| | - Arinna Bertoni
- Centro Malattie Autoinfiammatorie ed Immunodeficienze, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
| | - Alessia Omenetti
- Pediatric Unit, Department of Mother and Child Health, Salesi Children’s Hospital, Ancona, Italy
| | - Ilaria Gueli
- Clinica Pediatrica e Reumatologica, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
| | - Martina Finetti
- Clinica Pediatrica e Reumatologica, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
| | - Roberta Caorsi
- Centro Malattie Autoinfiammatorie ed Immunodeficienze, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
| | - Stefano Volpi
- Centro Malattie Autoinfiammatorie ed Immunodeficienze, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
| | - Marco Gattorno
- Centro Malattie Autoinfiammatorie ed Immunodeficienze, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
- *Correspondence: Federica Penco, ; Marco Gattorno,
| |
Collapse
|
19
|
Vanhoutte R, Verhelst SHL. Combinatorial Optimization of Activity-Based Probes for Acyl Protein Thioesterases 1 and 2. ACS Med Chem Lett 2022; 13:1144-1150. [DOI: 10.1021/acsmedchemlett.2c00174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Roeland Vanhoutte
- Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven − University of Leuven, Herestraat 49,
Box 802, 3000 Leuven, Belgium
| | - Steven H. L. Verhelst
- Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven − University of Leuven, Herestraat 49,
Box 802, 3000 Leuven, Belgium
- AG Chemical Proteomics, Leibniz Institute for Analytical Sciences − ISAS, Otto-Hahn-Straße 6b, 44227 Dortmund, Germany
| |
Collapse
|
20
|
Hong F, He G, Zhang M, Yu B, Chai C. The Establishment of a Mouse Model of Recurrent Primary Dysmenorrhea. Int J Mol Sci 2022; 23:ijms23116128. [PMID: 35682815 PMCID: PMC9181441 DOI: 10.3390/ijms23116128] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/28/2022] [Accepted: 05/28/2022] [Indexed: 01/31/2023] Open
Abstract
Primary dysmenorrhea is one of the most common reasons for gynecologic visits, but due to the lack of suitable animal models, the pathologic mechanisms and related drug development are limited. Herein, we establish a new mouse model which can mimic the periodic occurrence of primary dysmenorrhea to solve this problem. Non-pregnant female mice were pretreated with estradiol benzoate for 3 consecutive days. After that, mice were injected with oxytocin to simulate menstrual pain on the 4th, 8th, 12th, and 16th days (four estrus cycles). Assessment of the cumulative writhing score, uterine tissue morphology, and uterine artery blood flow and biochemical analysis were performed at each time point. Oxytocin injection induced an equally severe writhing reaction and increased PGF2α accompanied with upregulated expression of COX-2 on the 4th and 8th days. In addition, decreased uterine artery blood flow but increased resistive index (RI) and pulsatility index (PI) were also observed. Furthermore, the metabolomics analysis results indicated that arachidonic acid metabolism; linoleic acid metabolism; glycerophospholipid metabolism; valine, leucine, and isoleucine biosynthesis; alpha-linolenic acid metabolism; and biosynthesis of unsaturated fatty acids might play important roles in the recurrence of primary dysmenorrhea. This new mouse model is able to mimic the clinical characteristics of primary dysmenorrhea for up to two estrous cycles.
Collapse
Affiliation(s)
- Fang Hong
- Jiangsu Provincial Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (F.H.); (G.H.)
| | - Guiyan He
- Jiangsu Provincial Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (F.H.); (G.H.)
| | - Manqi Zhang
- Department of Medicine, Duke University, Durham, NC 27708, USA;
| | - Boyang Yu
- Jiangsu Provincial Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (F.H.); (G.H.)
- Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Correspondence: (B.Y.); (C.C.)
| | - Chengzhi Chai
- Jiangsu Provincial Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (F.H.); (G.H.)
- Correspondence: (B.Y.); (C.C.)
| |
Collapse
|
21
|
Krivoruchko AY, Yatsyk OA, Skokova AV, Kanibolotskaya AA. Genetic Markers of Karachaevsky Sheep Identified by Genome-Wide Association Study. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422020090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Caswell BT, de Carvalho CC, Nguyen H, Roy M, Nguyen T, Cantu DC. Thioesterase enzyme families: Functions, structures, and mechanisms. Protein Sci 2022; 31:652-676. [PMID: 34921469 PMCID: PMC8862431 DOI: 10.1002/pro.4263] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/11/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022]
Abstract
Thioesterases are enzymes that hydrolyze thioester bonds in numerous biochemical pathways, for example in fatty acid synthesis. This work reports known functions, structures, and mechanisms of updated thioesterase enzyme families, which are classified into 35 families based on sequence similarity. Each thioesterase family is based on at least one experimentally characterized enzyme, and most families have enzymes that have been crystallized and their tertiary structure resolved. Classifying thioesterases into families allows to predict tertiary structures and infer catalytic residues and mechanisms of all sequences in a family, which is particularly useful because the majority of known protein sequence have no experimental characterization. Phylogenetic analysis of experimentally characterized thioesterases that have structures with the two main structural folds reveal convergent and divergent evolution. Based on tertiary structure superimposition, catalytic residues are predicted.
Collapse
Affiliation(s)
- Benjamin T. Caswell
- Department of Chemical and Materials EngineeringUniversity of Nevada, RenoRenoNevadaUSA
| | - Caio C. de Carvalho
- Department of Chemical and Materials EngineeringUniversity of Nevada, RenoRenoNevadaUSA
| | - Hung Nguyen
- Department of Computer Science and EngineeringUniversity of Nevada, RenoRenoNevadaUSA
| | - Monikrishna Roy
- Department of Computer Science and EngineeringUniversity of Nevada, RenoRenoNevadaUSA
| | - Tin Nguyen
- Department of Computer Science and EngineeringUniversity of Nevada, RenoRenoNevadaUSA
| | - David C. Cantu
- Department of Chemical and Materials EngineeringUniversity of Nevada, RenoRenoNevadaUSA
| |
Collapse
|
23
|
O'Donnell VB. New appreciation for an old pathway: the Lands Cycle moves into new arenas in health and disease. Biochem Soc Trans 2022; 50:1-11. [PMID: 35225335 PMCID: PMC9022965 DOI: 10.1042/bst20210579] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/15/2022] [Accepted: 02/15/2022] [Indexed: 02/08/2023]
Abstract
The Lands Pathway is a fundamental biochemical process named for its discovery by William EM Lands and revealed in a series of seminal papers published in the Journal of Biological Chemistry between 1958-65. It describes the selective placement in phospholipids of acyl chains, by phospholipid acyltransferases. This pathway has formed a core component of our knowledge of phospholipid and also diglyceride metabolism in mammalian tissues for over 60 years now. Our understanding of how the Lands pathways are enzymatically mediated via large families of related gene products that display both substrate and tissue specificity has grown exponentially since. Recent studies building on this are starting to reveal key roles for the Lands pathway in specific scenarios, in particular inflammation, immunity and inflammation. This review will cover the Lands cycle from historical perspectives first, then present new information on how this important cycle forms a central regulatory node connecting fatty acyl and phospholipid metabolism and how its altered regulation may present new opportunities for therapeutic intervention in human disease.
Collapse
Affiliation(s)
- Valerie B. O'Donnell
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4SN, U.K
| |
Collapse
|
24
|
Wang F, Shao J, He S, Guo Y, Pan X, Wang Y, Nanaei HA, Chen L, Li R, Xu H, Yang Z, Liu M, Jiang Y. Allele-specific expression and splicing provides insight into the phenotypic differences between thin- and fat-tailed sheep breeds. J Genet Genomics 2022; 49:583-586. [PMID: 34998977 DOI: 10.1016/j.jgg.2021.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/20/2021] [Accepted: 12/11/2021] [Indexed: 11/19/2022]
Affiliation(s)
- Fei Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Junjie Shao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Sangang He
- Key Laboratory of Ruminant Genetics, Breeding & Reproduction, Ministry of Agriculture, China; Key Laboratory of Animal Biotechnology of Xinjiang, Institute of Biotechnology, Xinjiang Academy of Animal Science, Urumqi, Xinjiang 830026, China
| | - Yingwei Guo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiangyu Pan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yu Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hojjat Asadollahpour Nanaei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lei Chen
- Key Laboratory of Ruminant Genetics, Breeding & Reproduction, Ministry of Agriculture, China; Key Laboratory of Animal Biotechnology of Xinjiang, Institute of Biotechnology, Xinjiang Academy of Animal Science, Urumqi, Xinjiang 830026, China
| | - Ran Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Han Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhirui Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mingjun Liu
- Key Laboratory of Ruminant Genetics, Breeding & Reproduction, Ministry of Agriculture, China; Key Laboratory of Animal Biotechnology of Xinjiang, Institute of Biotechnology, Xinjiang Academy of Animal Science, Urumqi, Xinjiang 830026, China.
| | - Yu Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
25
|
Abrami L, Audagnotto M, Ho S, Marcaida MJ, Mesquita FS, Anwar MU, Sandoz PA, Fonti G, Pojer F, Peraro MD, van der Goot FG. Palmitoylated acyl protein thioesterase APT2 deforms membranes to extract substrate acyl chains. Nat Chem Biol 2021; 17:438-447. [PMID: 33707782 PMCID: PMC7610442 DOI: 10.1038/s41589-021-00753-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 12/27/2020] [Accepted: 01/26/2021] [Indexed: 01/31/2023]
Abstract
Many biochemical reactions require controlled recruitment of proteins to membranes. This is largely regulated by posttranslational modifications. A frequent one is S-acylation, which consists of the addition of acyl chains and can be reversed by poorly understood acyl protein thioesterases (APTs). Using a panel of computational and experimental approaches, we dissect the mode of action of the major cellular thioesterase APT2 (LYPLA2). We show that soluble APT2 is vulnerable to proteasomal degradation, from which membrane binding protects it. Interaction with membranes requires three consecutive steps: electrostatic attraction, insertion of a hydrophobic loop and S-acylation by the palmitoyltransferases ZDHHC3 or ZDHHC7. Once bound, APT2 is predicted to deform the lipid bilayer to extract the acyl chain bound to its substrate and capture it in a hydrophobic pocket to allow hydrolysis. This molecular understanding of APT2 paves the way to understand the dynamics of APT2-mediated deacylation of substrates throughout the endomembrane system.
Collapse
Affiliation(s)
- Laurence Abrami
- Global Health Institute, School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Martina Audagnotto
- Institute of Bioengineering, School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Sylvia Ho
- Global Health Institute, School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Maria Jose Marcaida
- Institute of Bioengineering, School of Life Sciences, EPFL, Lausanne, Switzerland
| | | | - Muhammad U. Anwar
- Global Health Institute, School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Patrick A. Sandoz
- Global Health Institute, School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Giulia Fonti
- Institute of Bioengineering, School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Florence Pojer
- Protein Production and Structure Core Facility, School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Matteo Dal Peraro
- Institute of Bioengineering, School of Life Sciences, EPFL, Lausanne, Switzerland,Corresponding Authors: F. Gisou van der Goot () and Matteo Dal Peraro ()
| | - F. Gisou van der Goot
- Global Health Institute, School of Life Sciences, EPFL, Lausanne, Switzerland,Corresponding Authors: F. Gisou van der Goot () and Matteo Dal Peraro ()
| |
Collapse
|
26
|
Nagarajan SR, Butler LM, Hoy AJ. The diversity and breadth of cancer cell fatty acid metabolism. Cancer Metab 2021; 9:2. [PMID: 33413672 PMCID: PMC7791669 DOI: 10.1186/s40170-020-00237-2] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
Tumor cellular metabolism exhibits distinguishing features that collectively enhance biomass synthesis while maintaining redox balance and cellular homeostasis. These attributes reflect the complex interactions between cell-intrinsic factors such as genomic-transcriptomic regulation and cell-extrinsic influences, including growth factor and nutrient availability. Alongside glucose and amino acid metabolism, fatty acid metabolism supports tumorigenesis and disease progression through a range of processes including membrane biosynthesis, energy storage and production, and generation of signaling intermediates. Here, we highlight the complexity of cellular fatty acid metabolism in cancer, the various inputs and outputs of the intracellular free fatty acid pool, and the numerous ways that these pathways influence disease behavior.
Collapse
Affiliation(s)
- Shilpa R Nagarajan
- Discipline of Physiology, School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford, UK
| | - Lisa M Butler
- Adelaide Medical School and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide, SA, Australia.,South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Andrew J Hoy
- Discipline of Physiology, School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
27
|
Therapeutic Potential of Porcine Liver Decomposition Product: New Insights and Perspectives for Microglia-Mediated Neuroinflammation in Neurodegenerative Diseases. Biomedicines 2020; 8:biomedicines8110446. [PMID: 33105637 PMCID: PMC7690401 DOI: 10.3390/biomedicines8110446] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/16/2020] [Accepted: 10/21/2020] [Indexed: 12/23/2022] Open
Abstract
It is widely accepted that microglia-mediated inflammation contributes to the progression of neurodegenerative diseases; however, the precise mechanisms through which these cells contribute remain to be elucidated. Microglia, as the primary immune effector cells of the brain, play key roles in maintaining central nervous system (CNS) homeostasis. Microglia are located throughout the brain and spinal cord and may account for up to 15% of all cells in the brain. Activated microglia express pro-inflammatory cytokines that act on the surrounding brain and spinal cord. Microglia may also play a detrimental effect on nerve cells when they gain a chronic inflammatory function and promote neuropathologies. A key feature of microglia is its rapid morphological change upon activation, characterized by the retraction of numerous fine processes and the gradual acquisition of amoeba-like shapes. These morphological changes are also accompanied by the expression and secretion of inflammatory molecules, including cytokines, chemokines, and lipid mediators that promote systemic inflammation during neurodegeneration. This may be considered a protective response intended to limit further injury and initiate repair processes. We previously reported that porcine liver decomposition product (PLDP) induces a significant increase in the Hasegawa’s Dementia Scale-Revised (HDS-R) score and the Wechsler Memory Scale (WMS) in a randomized, double-blind, placebo-controlled study in healthy humans. In addition, the oral administration of porcine liver decomposition product enhanced visual memory and delayed recall in healthy adults. We believe that PLDP is a functional food that aids cognitive function. In this review, we provide a critical assessment of recent reports of lysophospholipids derived from PLDP, a rich source of phospholipids. We also highlight some recent findings regarding bidirectional interactions between lysophospholipids and microglia and age-related neurodegenerative diseases such as dementia and Alzheimer’s disease.
Collapse
|
28
|
Boyce GR, Shoeb M, Kodali V, Meighan TG, Roach KA, McKinney W, Stone S, Powell MJ, Roberts JR, Zeidler-Erdely PC, Erdely A, Antonini JM. Welding fume inhalation exposure and high-fat diet change lipid homeostasis in rat liver. Toxicol Rep 2020; 7:1350-1355. [PMID: 33102138 PMCID: PMC7569188 DOI: 10.1016/j.toxrep.2020.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/25/2020] [Accepted: 10/06/2020] [Indexed: 01/21/2023] Open
Abstract
It is estimated that greater than 1 million workers are exposed to welding fume (WF) by inhalation daily. The potentially toxic metals found in WF are known to cause multiple adverse pulmonary and systemic effects, including cardiovascular disease, and these metals have also been shown to translocate to the liver. This occupational exposure combined with a high fat (HF) Western diet, which has been shown to cause hyperlipidemia and non-alcoholic fatty liver disease (NAFLD), has the potential to cause significant mixed exposure metabolic changes in the liver. The goal of this study was to use matrix assisted laser desorption ionization imaging mass spectrometry (MALDI-IMS) to analyze the spatial distribution and abundance changes of lipid species in Sprague Dawley rat liver maintained on a HF diet combined with WF inhalation. The results of the MALDI-IMS analysis revealed unique hepatic lipid profiles for each treatment group. The HF diet group had significantly increased abundance of triglycerides and phosphatidylinositol lipids, as well as decreased lysophosphatidic lipids and cardiolipin. Ceramide-1-phosphate was found at higher abundance in the regular (REG) diet WF-exposed group which has been shown to regulate the eicosanoid pathway involved in pro-inflammatory response. The results of this study showed that the combined effects of WF inhalation and a HF diet significantly altered the hepatic lipidome. Additionally, pulmonary exposure to WF alone increased lipid markers of inflammation.
Collapse
Affiliation(s)
- Greg R. Boyce
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
- Corresponding author.
| | - Mohammad Shoeb
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Vamsi Kodali
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Terence G. Meighan
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Katherine A. Roach
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Walter McKinney
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Samuel Stone
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | | | - Jenny R. Roberts
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | | | - Aaron Erdely
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - James M. Antonini
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| |
Collapse
|
29
|
Wang J, Zhang C, Zhao Q, Li C, Jin S, Gu X. Metabolic Profiling of Plasma in Different Calving Body Condition Score Cows Using an Untargeted Liquid Chromatography-Mass Spectrometry Metabolomics Approach. Animals (Basel) 2020; 10:E1709. [PMID: 32967218 PMCID: PMC7552654 DOI: 10.3390/ani10091709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/10/2020] [Accepted: 09/15/2020] [Indexed: 12/03/2022] Open
Abstract
This study was undertaken to identify metabolite differences in plasma of dairy cows with a normal or high calving body condition score (CBCS), using untargeted liquid chromatography-mass spectrometry (LC-MS) metabolomics. Sixteen multiparous dairy cows were assigned to one of two groups based on CBCS (0 to 5 scale): Normal group (NBCS, 3.25 ≤ BCS ≤ 3.5, n = 8), and high BCS group (HBCS, BCS ≥ 4, n = 8). Plasma samples were collected for metabolomics analysis and evaluation of biomarkers of lipid metabolism (nonesterified fatty acid (NEFA) and β-hydroxybutyrate (BHB)), and cytokines (leptin, adiponectin, tumor necrosis factor-α (TNF-α) and interleukin 6 (IL-6)). A total of 23 differential metabolites were identified, and functional analyses were performed using the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Among these metabolites, the concentrations of six lysophosphatidylcholines and one phosphatidylethanolamine, were lower in the HBCS group than in the NBCS group (p < 0.01). Furthermore, these metabolites were involved in these four pathways, among others: glycerophospholipid metabolism, retrograde endocannabinoid signaling, autophagy, and glycosylphosphatidylinositol (GPI)-anchor biosynthesis (p < 0.05). In addition, plasma concentrations of leptin (p = 0.06) and TNF-α (p = 0.08) tended to be greater while adiponectin (p = 0.09) lower in HBCS cows than in NBCS cows. The concentrations of NEFA, BHB, or IL-6 did not differ between NBCS and HBCS groups. More importantly, based on the results of the Spearman's correlation analysis, the seven important metabolites were negatively correlated with indices of lipid metabolisms, proinflammatory cytokines, and leptin, but positively correlated with adiponectin. These results demonstrate that CBCS has a measurable impact on the plasma metabolic profile, even when NEFA and BHB are not different. In addition, the identified differential metabolites were significantly correlated to lipid metabolism and inflammation in the over-conditioned fresh cows, which are expected to render a metabolic basis for the diseases associated with over-conditioned dry cows.
Collapse
Affiliation(s)
| | | | | | | | | | - Xianhong Gu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.W.); (C.Z.); (Q.Z.); (C.L.); (S.J.)
| |
Collapse
|
30
|
Martyniuk CJ, Mehinto AC, Denslow ND. Organochlorine pesticides: Agrochemicals with potent endocrine-disrupting properties in fish. Mol Cell Endocrinol 2020; 507:110764. [PMID: 32112812 PMCID: PMC10603819 DOI: 10.1016/j.mce.2020.110764] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 02/01/2020] [Accepted: 02/18/2020] [Indexed: 12/24/2022]
Abstract
Organochlorine pesticides (OCPs) are persistent environmental contaminants that act as endocrine disruptors and organ system toxicants. These pesticides (e.g. dichlorodiphenyltrichloroethane (DDT), dieldrin, toxaphene, among others) are ranked as some of the most concerning chemicals for human health. These pesticides (1) act as teratogens, (2) are neuroendocrine disruptors, (3) suppress the immune and reproductive systems, and (4) dysregulate lipids and metabolism. Using a computational approach, we revealed enriched endocrine-related pathways in the Comparative Toxicogenomics Database sensitive to this chemical class, and these included reproduction (gonadotropins, estradiol, androgen, steroid biosynthesis, oxytocin), thyroid hormone, and insulin. Insight from the Tox21 and ToxCast programs confirm that these agrochemicals activate estrogen receptors, androgen receptors, and retinoic acid receptors with relatively high affinity, although differences exist in their potency. We propose an adverse outcome pathway for OCPs toxicity in the fish testis as a novel contribution to further understanding of OCP-induced toxicity. Organochlorine pesticides, due to their persistence and high toxicity to aquatic and terrestrial wildlife as well as humans, remain significant agrochemicals of concern.
Collapse
Affiliation(s)
- Christopher J Martyniuk
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, UF, USA; Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Alvine C Mehinto
- Southern California Coastal Water Research Project Authority, Costa Mesa, CA, 92626, CA, USA
| | - Nancy D Denslow
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, UF, USA; Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|