1
|
Roos J, Manolikakes G, Schlomann U, Klinke A, Schopfer FJ, Neumann CA, Maier TJ. Nitro-fatty acids: promising agents for the development of new cancer therapeutics. Trends Pharmacol Sci 2024; 45:1061-1080. [PMID: 39490362 DOI: 10.1016/j.tips.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 11/05/2024]
Abstract
Nitro-fatty acids (NO2-FAs) are endogenous pleiotropic lipid mediators regarded as promising drug candidates for treating inflammatory and fibrotic diseases. Over the past two decades, the anti-inflammatory and cytoprotective actions of NO2-FAs and several molecular targets have been identified. More recently, preclinical studies have demonstrated their potential as prospective cancer therapeutics with favorable safety and tumor-selective profiles. In this review, we describe the mechanisms of action, with a focus on NO2-FA antineoplastic and chemosensitizing effects. We also address the potential therapeutic applications of endogenous and structurally modified NO2-FAs species in cancer treatment.
Collapse
Affiliation(s)
- Jessica Roos
- Division of Immunology, Paul-Ehrlich-Institute, Federal Institute for Vaccines and Biomedicines, Langen, 63225, Hesse, Germany.
| | - Georg Manolikakes
- Department of Chemistry, RPTU Kaiserslautern-Landau, Kaiserslautern, 67663, Rhineland-Palatinate, Germany
| | - Uwe Schlomann
- Clinic for General and Interventional Cardiology/Angiology, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany
| | - Anna Klinke
- Clinic for General and Interventional Cardiology/Angiology, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany
| | - Francisco J Schopfer
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute (VMI), University of Pittsburgh, Pittsburgh, PA, USA; Pittsburgh Liver Research Center (PLRC), University of Pittsburgh, Pittsburgh, PA, USA; Center for Metabolism and Mitochondrial Medicine (C3M) University of Pittsburgh, Pittsburgh, PA, USA
| | - Carola A Neumann
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Women's Cancer Research Center, UPMC Hillman Cancer Center, Magee-Women's Research Institute, Pittsburgh, PA, USA
| | - Thorsten J Maier
- Division of Immunology, Paul-Ehrlich-Institute, Federal Institute for Vaccines and Biomedicines, Langen, 63225, Hesse, Germany
| |
Collapse
|
2
|
Kumar S, Patnaik S, Joshi MB, Sharma N, Kaur T, Jalali S, Kekunnaya R, Mahajan A, Chakrabarti S, Kaur I. Arachidonic acid metabolism regulates the development of retinopathy of prematurity among preterm infants. J Neurochem 2024; 168:3171-3187. [PMID: 39073120 DOI: 10.1111/jnc.16190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
Extremely preterm infants are at risk of developing retinopathy of prematurity (ROP), characterized by neovascularization and neuroinflammation leading to blindness. Polyunsaturated fatty acid (PUFA) supplementation is recommended in preterm infants to lower the risk of ROP, however, with no significant improvement in visual acuity. Reasonably, this could be as a result of the non-consideration of PUFA metabolizing enzymes. We hypothesize that abnormal metabolism of the arachidonic acid (AA) pathway may contribute to severe stages of ROP. The present study investigated the AA-metabolizing enzymes in ROP pathogenesis by a targeted gene expression analysis of blood (severe ROP = 70, No/Mild = 56), placenta (preterm placenta = 6, full term placenta = 3), and human primary retinal cell cultures and further confirmed at the protein level by performing IHC in sections of ROP retina. The lipid metabolites were identified by LC-MS in the vitreous humor (VH; severe ROP = 15, control = 15). Prostaglandins D2 (p = 0.02), leukotrienes B5 (p = 0.0001), 11,12-epoxyeicosatrienoic acid (p = 0.01), and lipid-metabolizing enzymes of the AA pathway such as CYP1B1, CYP2C8, COX2, and ALOX15 were significantly upregulated while EPHX2 was significantly (0.04) downregulated in ROP cases. Genes involved in hypoxic stress, angiogenesis, and apoptosis showed increased expression in ROP. An increase in the metabolic intermediates generated from the AA metabolism pathway further confirmed the role of these enzymes in ROP, while metabolites for EPHX2 activity were low in abundance. Inflammatory lipid intermediates were higher compared to anti-inflammatory lipids in VH and showed an association with enzyme activity. Both the placenta of preterm infants who developed ROP and hypoxic retinal cultures showed a reduced expression of EPHX2. These findings suggested a strong involvement of EPHX2 in regulating retinal neovascularization and inflammation. The study results underscore the role of arachidonic acid metabolism in the development of ROP and as a potential target for preventing vision loss among preterm-born infants.
Collapse
Affiliation(s)
- Saurabh Kumar
- Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, India
- Manipal Academy of Higher Education, Manipal, India
| | - Satish Patnaik
- Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, India
| | - Manjunath B Joshi
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Neha Sharma
- Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, India
- Manipal Academy of Higher Education, Manipal, India
| | - Tarandeep Kaur
- Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, India
| | - Subhadra Jalali
- Smt. Kannuri Santhamma Centre for Vitreo Retinal Diseases, LV Prasad Eye Institute, Hyderabad, India
| | - Ramesh Kekunnaya
- Jasti V Ramanamma Children's Eye Care Centre, LV Prasad Eye Institute, Hyderabad, India
| | - Aatish Mahajan
- Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, India
| | | | - Inderjeet Kaur
- Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, India
| |
Collapse
|
3
|
Meng YW, Liu JY. Pathological and pharmacological functions of the metabolites of polyunsaturated fatty acids mediated by cyclooxygenases, lipoxygenases, and cytochrome P450s in cancers. Pharmacol Ther 2024; 256:108612. [PMID: 38369063 DOI: 10.1016/j.pharmthera.2024.108612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/19/2024] [Accepted: 02/05/2024] [Indexed: 02/20/2024]
Abstract
Oxylipins have garnered increasing attention because they were consistently shown to play pathological and/or pharmacological roles in the development of multiple cancers. Oxylipins are the metabolites of polyunsaturated fatty acids via both enzymatic and nonenzymatic pathways. The enzymes mediating the metabolism of PUFAs include but not limited to lipoxygenases (LOXs), cyclooxygenases (COXs), and cytochrome P450s (CYPs) pathways, as well as the down-stream enzymes. Here, we systematically summarized the pleiotropic effects of oxylipins in different cancers through pathological and pharmacological aspects, with specific reference to the enzyme-mediated oxylipins. We discussed the specific roles of oxylipins on cancer onset, growth, invasion, and metastasis, as well as the expression changes in the associated metabolic enzymes and the associated underlying mechanisms. In addition, we also discussed the clinical application and potential of oxylipins and related metabolic enzymes as the targets for cancer prevention and treatment. We found the specific function of most oxylipins in cancers, especially the underlying mechanisms and clinic applications, deserves and needs further investigation. We believe that research on oxylipins will provide not only more therapeutic targets for various cancers but also dietary guidance for both cancer patients and healthy humans.
Collapse
Affiliation(s)
- Yi-Wen Meng
- CNTTI of the Institute of Life Sciences & Department of Anesthesia of the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China; Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Chongqing 400016, China
| | - Jun-Yan Liu
- CNTTI of the Institute of Life Sciences & Department of Anesthesia of the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China; Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Chongqing 400016, China; College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
4
|
Tauber Z, Burianova A, Koubova K, Mrstik M, Jirkovska M, Cizkova K. The interplay of inflammation and placenta in maternal diabetes: insights into Hofbauer cell expression patterns. Front Immunol 2024; 15:1386528. [PMID: 38590527 PMCID: PMC10999664 DOI: 10.3389/fimmu.2024.1386528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/14/2024] [Indexed: 04/10/2024] Open
Abstract
Introduction Inflammation of the placenta is harmful to both the fetus and the mother. Inflammation is strongly associated with diabetes, a common complication of pregnancy. Hofbauer cells (HBCs), unique immune system cells of fetal origin in the placenta, play complex roles, including growth of placental villi and their branching, stromal remodelling, and angiogenesis. Methods Our study investigated the expression of IL-1β, IL-10, CYP2C8, CYP2C9, CYP2J2 and sEH in HBCs from patients with type 1 diabetes mellitus (T1DM) and gestational diabetes mellitus (GDM) compared to healthy controls using immunohistochemistry. We also assessed the structure of the villus stroma using Masson´s trichrome. Results In T1DM, HBCs showed inflammatory activation characterised by increased IL-1β and decreased CYP epoxygenase expression compared to normal placentas. Conversely, significant inflammation in HBCs appeared less likely in GDM, as levels of IL-1β and CYP epoxygenases remained stable compared to normal placentas. However, GDM showed a significant increase in sEH expression. Both types of diabetes showed delayed placental villous maturation and hypovascularisation, with GDM showing a more pronounced effect. Conclusion The expression profiles of IL-1β, CYP epoxygenases and sEH significantlly differ between controls and diabetic placentas and between T1DM and GDM. These facts suggest an association of the CYP epoxygenase-EETs-sEH axis with IL-1β expression as well as villous stromal hypovascularisation. Given the stable high expression of IL-10 in both controls and both types of diabetes, it appears that immune tolerance is maintained in HBCs.
Collapse
Affiliation(s)
- Zdenek Tauber
- Department of Histology and Embryology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia
| | - Adela Burianova
- Department of Histology and Embryology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia
| | - Katerina Koubova
- Department of Histology and Embryology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia
| | - Max Mrstik
- Department of Histology and Embryology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia
| | - Marie Jirkovska
- Institute of Histology and Embryology, First Faculty of Medicine, Charles University in Prague, Prague, Czechia
| | - Katerina Cizkova
- Department of Histology and Embryology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia
| |
Collapse
|
5
|
Zhang F, Zhu G, Li Y, Qi Y, Wang Z, Li W. Dual-target inhibitors based on COX-2: a review from medicinal chemistry perspectives. Future Med Chem 2023; 15:2209-2233. [PMID: 38095081 DOI: 10.4155/fmc-2023-0192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 11/08/2023] [Indexed: 12/20/2023] Open
Abstract
Inhibitors of COX-2 constitute a class of anti-inflammatory analgesics, showing potential against certain types of cancer. However, such inhibitors are associated with cardiovascular toxicity. Moreover, although single-target molecules possess specificity for particular targets, they often lead to poor safety, low efficacy and drug resistance due to compensatory mechanisms. A new generation of dual-target drugs that simultaneously inhibit COX-2 and another target is showing strong potential to treat cancer or reduce adverse cardiac effects. The present perspective focuses on the structure and functions of COX-2, and its role as a therapeutic target. It also explores the current state and future possibilities for dual-target strategies from a medicinal chemistry perspective.
Collapse
Affiliation(s)
- Fengmei Zhang
- Department of Pulmonary & Critical Care Medicine, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- State Key Laboratory of Respiratory Health & Multimorbidity, West China Hospital, Chengdu, 610041, Sichuan, China
| | - Guonian Zhu
- Department of Pulmonary & Critical Care Medicine, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- State Key Laboratory of Respiratory Health & Multimorbidity, West China Hospital, Chengdu, 610041, Sichuan, China
| | - Yangqian Li
- Department of Pulmonary & Critical Care Medicine, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- State Key Laboratory of Respiratory Health & Multimorbidity, West China Hospital, Chengdu, 610041, Sichuan, China
| | - Yawen Qi
- Department of Pulmonary & Critical Care Medicine, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- State Key Laboratory of Respiratory Health & Multimorbidity, West China Hospital, Chengdu, 610041, Sichuan, China
| | - Zhoufeng Wang
- Department of Pulmonary & Critical Care Medicine, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- State Key Laboratory of Respiratory Health & Multimorbidity, West China Hospital, Chengdu, 610041, Sichuan, China
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- The Research Units of West China, Chinese Academy of Medical Sciences, West China Hospital, Chengdu, 610041, Sichuan, China
| | - Weimin Li
- Department of Pulmonary & Critical Care Medicine, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- State Key Laboratory of Respiratory Health & Multimorbidity, West China Hospital, Chengdu, 610041, Sichuan, China
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- The Research Units of West China, Chinese Academy of Medical Sciences, West China Hospital, Chengdu, 610041, Sichuan, China
| |
Collapse
|
6
|
Gerges SH, Alammari AH, El-Ghiaty MA, Isse FA, El-Kadi AOS. Sex- and enantiospecific differences in the formation rate of hydroxyeicosatetraenoic acids in rat organs. Can J Physiol Pharmacol 2023; 101:425-436. [PMID: 37220651 DOI: 10.1139/cjpp-2023-0014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Hydroxyeicosatetraenoic acids (HETEs) are hydroxylated arachidonic acid (AA) metabolites that are classified into midchain, subterminal, and terminal HETEs. Hydroxylation results in the formation of R and S enantiomers for each HETE, except for 20-HETE. HETEs have multiple physiological and pathological effects. Several studies have demonstrated sex-specific differences in AA metabolism in different organs. In this study, microsomes from the heart, liver, kidney, lung, intestine, and brain of adult male and female Sprague-Dawley rats were isolated and incubated with AA. Thereafter, the enantiomers of all HETEs were analyzed by liquid chromatography-tandem mass spectrometry. We found significant sex- and enantiospecific differences in the formation levels of different HETEs in all organs. The majority of HETEs, especially midchain HETEs and 20-HETE, showed significantly higher formation rates in male organs. In the liver, the R enantiomer of several HETEs showed a higher formation rate than the corresponding S enantiomer (e.g., 8-, 9-, and 16-HETE). On the other hand, the brain and small intestine demonstrated a higher abundance of the S enantiomer. 19(S)-HETE was more abundant than 19(R)-HETE in all organs except the kidney. Elucidating sex-specific differences in HETE levels provides interesting insights into their physiological and pathophysiological roles and their possible implications for different diseases.
Collapse
Affiliation(s)
- Samar H Gerges
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Ahmad H Alammari
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Mahmoud A El-Ghiaty
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Fadumo A Isse
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
7
|
Yang H, Rothenberger E, Zhao T, Fan W, Kelly A, Attaya A, Fan D, Panigrahy D, Deng J. Regulation of inflammation in cancer by dietary eicosanoids. Pharmacol Ther 2023:108455. [PMID: 37257760 DOI: 10.1016/j.pharmthera.2023.108455] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Cancer is a major burden of disease worldwide and increasing evidence shows that inflammation contributes to cancer development and progression. Eicosanoids are derived from dietary polyunsaturated fatty acids, such as arachidonic acid (AA), and are mainly produced by a series of enzymatic pathways that include cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P-450 epoxygenase (CYP). Eicosanoids consist of at least several hundred individual molecules and play important roles in the inflammatory response and inflammation-related cancers. SCOPE AND APPROACH Dietary sources of AA and biosynthesis of eicosanoids from AA through different metabolic pathways are summarized. The bioactivities of eicosanoids and their potential molecular mechanisms on inflammation and cancer are revealed. Additionally, current challenges and limitations in eicosanoid research on inflammation-related cancer are discussed. KEY FINDINGS AND CONCLUSIONS Dietary AA generates a large variety of eicosanoids, including prostaglandins, thromboxane A2, leukotrienes, cysteinyl leukotrienes, lipoxins, hydroxyeicosatetraenoic acids (HETEs), and epoxyeicosatrienoic acids (EETs). Eicosanoids exert different bioactivities and mechanisms involved in the inflammation and related cancer developments. A deeper understanding of eicosanoid biology may be advantageous in cancer treatment and help to define cellular targets for further therapeutic development.
Collapse
Affiliation(s)
- Haixia Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Eva Rothenberger
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Tong Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Wendong Fan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Abigail Kelly
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Ahmed Attaya
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, China
| | - Dipak Panigrahy
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Jianjun Deng
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, China; State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
8
|
Sommer K, Jakob H, Lettenmeier T, Henrich D, Sterz J, Marzi I, Frank J. Various effects of 11,12 EET rescue wound healing in a combined model of diabetes and ischemia. Sci Rep 2023; 13:6519. [PMID: 37085527 PMCID: PMC10121596 DOI: 10.1038/s41598-023-33400-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/12/2023] [Indexed: 04/23/2023] Open
Abstract
Chronic non healing wounds in diabetic patients still impose a major problem in modern medicine. Especially additional peripheral vascular disease complicates treatment success in these patients. Thus, we analyzed the effects of 11,12 epoxyeicosatrienoic acid (EET) in a combined model of hyperglycemia and ischemia in mice. Hyperglycemia was induced by Streptozotozin 2 weeks prior to wounding. 3 days before wound creation 2 of the 3 suppling vessels of the moue ear were cautherized for ischemia. Either 11,12 EET or solvent for control was applied. Wound closure as well as TNF-α, TGF-β, SDF-1α, VEGF, CD31, and Ki67 were measured. The wounds closed on day 14.4 ± 0.4 standard deviation (SD). 11,12 EET treatment enhanced healing to 9.8 ± 0.6 SD. TNF-α level was augmented on day 9 compared to control and receded on day 18. TGF-β seemed to be elevated all days observed after 11,12 EET treatment. SDF-1α was enhanced on day 6 and 9 by 11,12 EET, and VEGF on day 6 and 18 as well as CD13 on day 3, 6, and 18. 11,12 EET did not alter Ki67. 11,12 EET are able to rescue deteriorated wound healing in a combined model of hyperglycamia and ischemia by resolution of inflammation, augmentation of neovascularization and increasing expression of TGF-β as well as SDF-1α.
Collapse
Affiliation(s)
- Katharina Sommer
- Department of Trauma, Hand and Reconstructive Surgery, Hospital of the Johann Wolfgang Goethe-University, Frankfurt am Main, Germany.
| | - Heike Jakob
- Department of Trauma, Hand and Reconstructive Surgery, Marienhausklinik St. Josef Kohlhof, Neunkirchen, Germany
| | - Theresa Lettenmeier
- Department of Trauma, Hand and Reconstructive Surgery, Hospital of the Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Dirk Henrich
- Department of Trauma, Hand and Reconstructive Surgery, Hospital of the Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Jasmina Sterz
- Department of Trauma, Hand and Reconstructive Surgery, Hospital of the Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Ingo Marzi
- Department of Trauma, Hand and Reconstructive Surgery, Hospital of the Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Johannes Frank
- Department of Trauma, Hand and Reconstructive Surgery, Hospital of the Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| |
Collapse
|
9
|
Nakashima F, Giménez-Bastida JA, Luis PB, Presley SH, Boer RE, Chiusa M, Shibata T, Sulikowski GA, Pozzi A, Schneider C. The 5-lipoxygenase/cyclooxygenase-2 cross-over metabolite, hemiketal E 2, enhances VEGFR2 activation and promotes angiogenesis. J Biol Chem 2023; 299:103050. [PMID: 36813233 PMCID: PMC10040730 DOI: 10.1016/j.jbc.2023.103050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/23/2023] Open
Abstract
Consecutive oxygenation of arachidonic acid by 5-lipoxygenase and cyclooxygenase-2 yields the hemiketal eicosanoids, HKE2 and HKD2. Hemiketals stimulate angiogenesis by inducing endothelial cell tubulogenesis in culture; however, how this process is regulated has not been determined. Here, we identify vascular endothelial growth factor receptor 2 (VEGFR2) as a mediator of HKE2-induced angiogenesis in vitro and in vivo. We found that HKE2 treatment of human umbilical vein endothelial cells dose-dependently increased the phosphorylation of VEGFR2 and the downstream kinases ERK and Akt that mediated endothelial cell tubulogenesis. In vivo, HKE2 induced the growth of blood vessels into polyacetal sponges implanted in mice. HKE2-mediated effects in vitro and in vivo were blocked by the VEGFR2 inhibitor vatalanib, indicating that the pro-angiogenic effect of HKE2 was mediated by VEGFR2. HKE2 covalently bound and inhibited PTP1B, a protein tyrosine phosphatase that dephosphorylates VEGFR2, thereby providing a possible molecular mechanism for how HKE2 induced pro-angiogenic signaling. In summary, our studies indicate that biosynthetic cross-over of the 5-lipoxygenase and cyclooxygenase-2 pathways gives rise to a potent lipid autacoid that regulates endothelial cell function in vitro and in vivo. These findings suggest that common drugs targeting the arachidonic acid pathway could prove useful in antiangiogenic therapy.
Collapse
Affiliation(s)
- Fumie Nakashima
- Division of Clinical Pharmacology, Department of Pharmacology, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Juan A Giménez-Bastida
- Division of Clinical Pharmacology, Department of Pharmacology, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Paula B Luis
- Division of Clinical Pharmacology, Department of Pharmacology, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Sai H Presley
- Division of Clinical Pharmacology, Department of Pharmacology, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Robert E Boer
- Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Manuel Chiusa
- Division of Nephrology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Takahiro Shibata
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Gary A Sulikowski
- Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Ambra Pozzi
- Division of Nephrology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; Veterans Affairs Hospital, Nashville, Tennessee, USA.
| | - Claus Schneider
- Division of Clinical Pharmacology, Department of Pharmacology, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA.
| |
Collapse
|
10
|
Korbecki J, Rębacz-Maron E, Kupnicka P, Chlubek D, Baranowska-Bosiacka I. Synthesis and Significance of Arachidonic Acid, a Substrate for Cyclooxygenases, Lipoxygenases, and Cytochrome P450 Pathways in the Tumorigenesis of Glioblastoma Multiforme, Including a Pan-Cancer Comparative Analysis. Cancers (Basel) 2023; 15:cancers15030946. [PMID: 36765904 PMCID: PMC9913267 DOI: 10.3390/cancers15030946] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most aggressive gliomas. New and more effective therapeutic approaches are being sought based on studies of the various mechanisms of GBM tumorigenesis, including the synthesis and metabolism of arachidonic acid (ARA), an omega-6 polyunsaturated fatty acid (PUFA). PubMed, GEPIA, and the transcriptomics analysis carried out by Seifert et al. were used in writing this paper. In this paper, we discuss in detail the biosynthesis of this acid in GBM tumors, with a special focus on certain enzymes: fatty acid desaturase (FADS)1, FADS2, and elongation of long-chain fatty acids family member 5 (ELOVL5). We also discuss ARA metabolism, particularly its release from cell membrane phospholipids by phospholipase A2 (cPLA2, iPLA2, and sPLA2) and its processing by cyclooxygenases (COX-1 and COX-2), lipoxygenases (5-LOX, 12-LOX, 15-LOX-1, and 15-LOX-2), and cytochrome P450. Next, we discuss the significance of lipid mediators synthesized from ARA in GBM cancer processes, including prostaglandins (PGE2, PGD2, and 15-deoxy-Δ12,14-PGJ2 (15d-PGJ2)), thromboxane A2 (TxA2), oxo-eicosatetraenoic acids, leukotrienes (LTB4, LTC4, LTD4, and LTE4), lipoxins, and many others. These lipid mediators can increase the proliferation of GBM cancer cells, cause angiogenesis, inhibit the anti-tumor response of the immune system, and be responsible for resistance to treatment.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Ewa Rębacz-Maron
- Department of Ecology and Anthropology, Institute of Biology, University of Szczecin, Wąska 13, 71-415 Szczecin, Poland
| | - Patrycja Kupnicka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
- Correspondence: ; Tel.: +48-914-661-515
| |
Collapse
|
11
|
Gao L, Chen W, Li L, Li J, Kongling W, Zhang Y, Yang X, Zhao Y, Bai J, Wang F. Targeting soluble epoxide hydrolase promotes osteogenic-angiogenic coupling via activating SLIT3/HIF-1α signalling pathway. Cell Prolif 2023:e13403. [PMID: 36636821 DOI: 10.1111/cpr.13403] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/14/2023] Open
Abstract
Type H vessels have recently been identified to modulate osteogenesis. Epoxyeicostrioleic acids (EETs) have an essential contribution to vascular homeostasis. However, whether increased EETs with soluble epoxide hydrolase (sEH) inhibitor TPPU enhance the coupling of angiogenesis and osteogenesis remains largely unknown. The effects of TPPU on cross-talk between co-cultured human umbilical vein endothelial cells (HUVECs) and human dental pulp stem cells (hDPSCs), and on long bone growth and calvarial defect repair in mice were investigated in vitro and in vivo. TPPU enhanced osteogenic differentiation of co-cultured HUVECs and hDPSCs in vitro and increased type H vessels, and long bone growth and bone repair of calvarial defect. Mechanistically, TPPU promoted cell proliferation and angiogenesis, reclined cell apoptosis, and significantly increased CD31hi EMCNhi endothelial cells (ECs) and SLIT3 and HIF-1α expression levels in co-cultured HUVECs and hDPSCs. Knockdown of Slit3 in hDPSCs or Hif-1α in HUVECs impaired the formation of CD31hi EMCNhi ECs and reversed TPPU-induced osteogenesis. We defined a previously unidentified effect of TPPU coupling angiogenesis and osteogenesis. TPPU induced type H vessels by upregulating the expression of hDPSCs-derived SLIT3, which resulted in the activation of ROBO1/YAP1/HIF-1α signalling pathway in ECs. Targeting metabolic pathways of EETs represents a new strategy to couple osteogenesis and angiogenesis, sEH is a promising therapeutic target for bone regeneration and repair.
Collapse
Affiliation(s)
- Lu Gao
- School of Stomatology, Dalian Medical University, Dalian, China.,Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, China.,The Affiliated Stomatological Hospital of Dalian Medical University School of Stomatology, Dalian, China
| | - Weixian Chen
- School of Stomatology, Dalian Medical University, Dalian, China.,Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, China
| | - Lijun Li
- School of Stomatology, Dalian Medical University, Dalian, China.,Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, China
| | - Juanjuan Li
- School of Stomatology, Dalian Medical University, Dalian, China.,Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, China
| | - Wenyao Kongling
- School of Stomatology, Dalian Medical University, Dalian, China.,Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, China
| | - Yaoyang Zhang
- School of Stomatology, Dalian Medical University, Dalian, China.,The Affiliated Stomatological Hospital of Dalian Medical University School of Stomatology, Dalian, China
| | - Xueping Yang
- School of Stomatology, Dalian Medical University, Dalian, China.,Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, China
| | - Yanrong Zhao
- School of Stomatology, Dalian Medical University, Dalian, China.,Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, China
| | - Jie Bai
- School of Stomatology, Dalian Medical University, Dalian, China.,Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, China
| | - Fu Wang
- School of Stomatology, Dalian Medical University, Dalian, China.,Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, China.,The Affiliated Stomatological Hospital of Dalian Medical University School of Stomatology, Dalian, China
| |
Collapse
|
12
|
Zhang Y, Gao L, Yao B, Huang S, Zhang Y, Liu J, Liu Z, Wang X. Role of epoxyeicosatrienoic acids in cardiovascular diseases and cardiotoxicity of drugs. Life Sci 2022; 310:121122. [DOI: 10.1016/j.lfs.2022.121122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/09/2022]
|
13
|
Matsumoto N, Singh N, Lee KS, Barnych B, Morisseau C, Hammock BD. The epoxy fatty acid pathway enhances cAMP in mammalian cells through multiple mechanisms. Prostaglandins Other Lipid Mediat 2022; 162:106662. [PMID: 35779854 PMCID: PMC9530012 DOI: 10.1016/j.prostaglandins.2022.106662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 10/17/2022]
Abstract
The cellular mechanism by which epoxy fatty acids (EpFA) improves disease status is not well characterized. Previous studies suggest the involvement of cellular receptors and cyclic AMP (cAMP). Herein, the action of EpFAs derived from linoleic acid (LA), arachidonic acid (ARA), and docosahexaenoic acid on cAMP levels was studied in multiple cell types to elucidate relationships between EpFAs, receptors and cells' origin. cAMP levels were enhanced in HEK293 and LLC-PK1 cells by EpFAs from LA and ARA. Using selective antagonists, the EpFA effects on cAMP levels appear dependent on the prostaglandin E2 receptor 2 (EP2) but not 4 (EP4). Human coronary artery smooth muscle cells responded similarly to the EpFAs. However, we were not able to show the involvement of any of the receptors tested in this cell type. The results pinpointed distinct cell lines and receptor subtypes that natively respond to EpFA.
Collapse
Affiliation(s)
- Naoki Matsumoto
- Department of Entomology and Nematology, and Comprehensive Cancer Center, University of California, Davis CA, USA
| | - Nalin Singh
- Department of Entomology and Nematology, and Comprehensive Cancer Center, University of California, Davis CA, USA
| | - Kin Sing Lee
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing MI, USA
| | - Bogdan Barnych
- Department of Entomology and Nematology, and Comprehensive Cancer Center, University of California, Davis CA, USA
| | - Christophe Morisseau
- Department of Entomology and Nematology, and Comprehensive Cancer Center, University of California, Davis CA, USA
| | - Bruce D Hammock
- Department of Entomology and Nematology, and Comprehensive Cancer Center, University of California, Davis CA, USA.
| |
Collapse
|
14
|
Zhang C, Li W, Li X, Wan D, Mack S, Zhang J, Wagner K, Wang C, Tan B, Chen J, Wu CW, Tsuji K, Takeuchi M, Chen Z, Hammock BD, Pinkerton KE, Yang J. Novel aerosol treatment of airway hyper-reactivity and inflammation in a murine model of asthma with a soluble epoxide hydrolase inhibitor. PLoS One 2022; 17:e0266608. [PMID: 35443010 PMCID: PMC9020733 DOI: 10.1371/journal.pone.0266608] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/23/2022] [Indexed: 02/01/2023] Open
Abstract
Asthma currently affects more than 339 million people worldwide. In the present preliminary study, we examined the efficacy of a new, inhalable soluble epoxide hydrolase inhibitor (sEHI), 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU), to attenuate airway inflammation, mucin secretion, and hyper-responsiveness (AHR) in an ovalbumin (OVA)-sensitized murine model. Male BALB/c mice were divided into phosphate-buffered saline (PBS), OVA, and OVA+TPPU (2- or 6-h) exposure groups. On days 0 and 14, the mice were administered PBS or sensitized to OVA in PBS. From days 26-38, seven challenge exposures were performed with 30 min inhalation of filtered air or OVA alone. In the OVA+TPPU groups, a 2- or 6-h TPPU inhalation preceded each 30-min OVA exposure. On day 39, pulmonary function tests (PFTs) were performed, and biological samples were collected. Lung tissues were used to semi-quantitatively evaluate the severity of inflammation and airway constriction and the volume of stored intracellular mucosubstances. Bronchoalveolar lavage (BAL) and blood samples were used to analyze regulatory lipid mediator profiles. Significantly (p < 0.05) attenuated alveolar, bronchiolar, and pleural inflammation; airway resistance and constriction; mucosubstance volume; and inflammatory lipid mediator levels were observed with OVA+TPPU relative to OVA alone. Cumulative findings indicated TPPU inhalation effectively inhibited inflammation, suppressed AHR, and prevented mucosubstance accumulation in the murine asthmatic model. Future studies should determine the pharmacokinetics (i.e., absorption, distribution, metabolism, and excretion) and pharmacodynamics (i.e., concentration/dose responses) of inhaled TPPU to explore its potential as an asthma-preventative or -rescue treatment.
Collapse
Affiliation(s)
- Chuanzhen Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Center for Health and the Environment, University of California, Davis, California, United States of America
| | - Wei Li
- School of Control Science and Engineering, Shandong University, Jinan, Shandong, China
| | - Xiyuan Li
- Center for Health and the Environment, University of California, Davis, California, United States of America
- School of Control Science and Engineering, Shandong University, Jinan, Shandong, China
| | - Debin Wan
- Department of Entomology and Nematology and Comprehensive Cancer Center, University of California, Davis, California, United States of America
| | - Savannah Mack
- Center for Health and the Environment, University of California, Davis, California, United States of America
| | - Jingjing Zhang
- Center for Health and the Environment, University of California, Davis, California, United States of America
| | - Karen Wagner
- Department of Entomology and Nematology and Comprehensive Cancer Center, University of California, Davis, California, United States of America
| | - Chang Wang
- Department of Entomology and Nematology and Comprehensive Cancer Center, University of California, Davis, California, United States of America
| | - Bowen Tan
- Department of Entomology and Nematology and Comprehensive Cancer Center, University of California, Davis, California, United States of America
| | - Jason Chen
- Center for Health and the Environment, University of California, Davis, California, United States of America
| | - Ching-Wen Wu
- Center for Health and the Environment, University of California, Davis, California, United States of America
| | - Kaori Tsuji
- Department of Animal Medical Science, Kyoto Sangyo University, Kyoto, Japan
| | - Minoru Takeuchi
- Department of Animal Medical Science, Kyoto Sangyo University, Kyoto, Japan
| | - Ziping Chen
- Department of Gastroenterology, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Bruce D. Hammock
- Department of Entomology and Nematology and Comprehensive Cancer Center, University of California, Davis, California, United States of America
| | - Kent E. Pinkerton
- Center for Health and the Environment, University of California, Davis, California, United States of America
| | - Jun Yang
- Department of Entomology and Nematology and Comprehensive Cancer Center, University of California, Davis, California, United States of America
| |
Collapse
|
15
|
Sharma M, Singh V, Sharma R, Koul A, McCarthy ET, Savin VJ, Joshi T, Srivastava T. Glomerular Biomechanical Stress and Lipid Mediators during Cellular Changes Leading to Chronic Kidney Disease. Biomedicines 2022; 10:407. [PMID: 35203616 PMCID: PMC8962328 DOI: 10.3390/biomedicines10020407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 02/04/2023] Open
Abstract
Hyperfiltration is an important underlying cause of glomerular dysfunction associated with several systemic and intrinsic glomerular conditions leading to chronic kidney disease (CKD). These include obesity, diabetes, hypertension, focal segmental glomerulosclerosis (FSGS), congenital abnormalities and reduced renal mass (low nephron number). Hyperfiltration-associated biomechanical forces directly impact the cell membrane, generating tensile and fluid flow shear stresses in multiple segments of the nephron. Ongoing research suggests these biomechanical forces as the initial mediators of hyperfiltration-induced deterioration of podocyte structure and function leading to their detachment and irreplaceable loss from the glomerular filtration barrier. Membrane lipid-derived polyunsaturated fatty acids (PUFA) and their metabolites are potent transducers of biomechanical stress from the cell surface to intracellular compartments. Omega-6 and ω-3 long-chain PUFA from membrane phospholipids generate many versatile and autacoid oxylipins that modulate pro-inflammatory as well as anti-inflammatory autocrine and paracrine signaling. We advance the idea that lipid signaling molecules, related enzymes, metabolites and receptors are not just mediators of cellular stress but also potential targets for developing novel interventions. With the growing emphasis on lifestyle changes for wellness, dietary fatty acids are potential adjunct-therapeutics to minimize/treat hyperfiltration-induced progressive glomerular damage and CKD.
Collapse
Affiliation(s)
- Mukut Sharma
- Research and Development Service, Kansas City VA Medical Center, Kansas City, MO 64128, USA;
- Midwest Veterans’ Biomedical Research Foundation, Kansas City, MO 64128, USA; (A.K.); (V.J.S.); (T.S.)
- Department of Internal Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, MO 66160, USA;
| | - Vikas Singh
- Neurology, Kansas City VA Medical Center, Kansas City, MO 64128, USA;
| | - Ram Sharma
- Research and Development Service, Kansas City VA Medical Center, Kansas City, MO 64128, USA;
| | - Arnav Koul
- Midwest Veterans’ Biomedical Research Foundation, Kansas City, MO 64128, USA; (A.K.); (V.J.S.); (T.S.)
| | - Ellen T. McCarthy
- Department of Internal Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, MO 66160, USA;
| | - Virginia J. Savin
- Midwest Veterans’ Biomedical Research Foundation, Kansas City, MO 64128, USA; (A.K.); (V.J.S.); (T.S.)
| | - Trupti Joshi
- Department of Health Management and Informatics, University of Missouri, Columbia, MO 65201, USA;
| | - Tarak Srivastava
- Midwest Veterans’ Biomedical Research Foundation, Kansas City, MO 64128, USA; (A.K.); (V.J.S.); (T.S.)
- Section of Nephrology, Children’s Mercy Hospital and University of Missouri, Kansas City, MO 64108, USA
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, MO 64108, USA
| |
Collapse
|
16
|
Kotlyarov S, Kotlyarova A. Involvement of Fatty Acids and Their Metabolites in the Development of Inflammation in Atherosclerosis. Int J Mol Sci 2022; 23:ijms23031308. [PMID: 35163232 PMCID: PMC8835729 DOI: 10.3390/ijms23031308] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/14/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
Despite all the advances of modern medicine, atherosclerosis continues to be one of the most important medical and social problems. Atherosclerosis is the cause of several cardiovascular diseases, which are associated with high rates of disability and mortality. The development of atherosclerosis is associated with the accumulation of lipids in the arterial intima and the disruption of mechanisms that maintain the balance between the development and resolution of inflammation. Fatty acids are involved in many mechanisms of inflammation development and maintenance. Endothelial cells demonstrate multiple cross-linkages between lipid metabolism and innate immunity. In addition, these processes are linked to hemodynamics and the function of other cells in the vascular wall, highlighting the central role of the endothelium in vascular biology.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
- Correspondence:
| | - Anna Kotlyarova
- Department of Pharmacology and Pharmacy, Ryazan State Medical University, 390026 Ryazan, Russia;
| |
Collapse
|
17
|
The Consequences of Soluble Epoxide Hydrolase Deletion on Tumorigenesis and Metastasis in a Mouse Model of Breast Cancer. Int J Mol Sci 2021; 22:ijms22137120. [PMID: 34281173 PMCID: PMC8269362 DOI: 10.3390/ijms22137120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 12/30/2022] Open
Abstract
Epoxides and diols of polyunsaturated fatty acids (PUFAs) are bioactive and can influence processes such as tumor cell proliferation and angiogenesis. Studies with inhibitors of the soluble epoxide hydrolase (sEH) in animals overexpressing cytochrome P450 enzymes or following the systemic administration of specific epoxides revealed a markedly increased incidence of tumor metastases. To determine whether PUFA epoxides increased metastases in a model of spontaneous breast cancer, sEH-/- mice were crossed onto the polyoma middle T oncogene (PyMT) background. We found that the deletion of the sEH accelerated the growth of primary tumors and increased both the tumor macrophage count and angiogenesis. There were small differences in the epoxide/diol content of tumors, particularly in epoxyoctadecamonoenic acid versus dihydroxyoctadecenoic acid, and marked changes in the expression of proteins linked with cell proliferation and metabolism. However, there was no consequence of sEH inhibition on the formation of metastases in the lymph node or lung. Taken together, our results confirm previous reports of increased tumor growth in animals lacking sEH but fail to substantiate reports of enhanced lymph node or pulmonary metastases.
Collapse
|
18
|
Activity of sEH and Oxidant Status during Systemic Bovine Coliform Mastitis. Antioxidants (Basel) 2021; 10:antiox10050812. [PMID: 34065244 PMCID: PMC8161397 DOI: 10.3390/antiox10050812] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 12/31/2022] Open
Abstract
Bovine coliform mastitis presents treatment challenges because of systemic inflammation and oxidative stress. Soluble epoxide hydrolase (sEH) is a promising therapeutic target in conditions characterized by inflammation and oxidative stress but has not been evaluated in cattle. We compared sEH activity and oxidant status in healthy Holstein dairy cows to those with systemic coliform mastitis (n = 5/group) using complementary approaches. First, the activity of sEH on [3H]-trans-diphenyl-propene oxide (tDPPO) was assessed ex vivo using tissue homogenates (mammary, liver, and kidney). Second, the concentrations of sEH substrates and metabolites in plasma, milk, and urine were determined as an index of in vivo sEH activity. Oxidant status was assessed in serum and milk. Data were analyzed by non-parametric methods. Metabolism of tDPPO was greater in mammary tissues from cows with coliform mastitis compared to controls. In contrast, ratios of sEH substrates and metabolites predicted lower sEH activity in cows with coliform mastitis than controls. Milk oxidant status showed greater prooxidant levels in coliform mastitis cows. Cows with coliform mastitis exhibit increased sEH activity in mammary tissue; at the same time, milk oxidant status is increased. Future studies should characterize sEH activity and oxidant status patterns and explore therapies targeting sEH during coliform mastitis.
Collapse
|
19
|
Lai J, Chen C. The Role of Epoxyeicosatrienoic Acids in Cardiac Remodeling. Front Physiol 2021; 12:642470. [PMID: 33716791 PMCID: PMC7943617 DOI: 10.3389/fphys.2021.642470] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
Epoxyeicosatrienoic acids (EETs) are metabolites of arachidonic acid by cytochrome P450 (CYP) epoxygenases, which include four regioisomers: 5,6-EET, 8,9-EET, 11,12-EET, and 14,15-EET. Each of them possesses beneficial effects against inflammation, fibrosis, and apoptosis, which could combat cardiovascular diseases. Numerous studies have demonstrated that elevation of EETs by overexpression of CYP2J2, inhibition of sEH, or treatment with EET analogs showed protective effects in various cardiovascular diseases, including hypertension, myocardial infarction, and heart failure. As is known to all, cardiac remodeling is the major pathogenesis of cardiovascular diseases. This review will begin with the introduction of EETs and their protective effects in cardiovascular diseases. In the following, the roles of EETs in cardiac remodeling, with a particular emphasis on myocardial hypertrophy, apoptosis, fibrosis, inflammation, and angiogenesis, will be summarized. Finally, it is suggested that upregulation of EETs is a potential therapeutic strategy for cardiovascular diseases. The EET-related drug development against cardiac remodeling is also discussed, including the overexpression of CYP2J2, inhibition of sEH, and the analogs of EET.
Collapse
Affiliation(s)
- Jinsheng Lai
- Division of Cardiology, Tongji Hospital, Tongji Medical College and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Chen
- Division of Cardiology, Tongji Hospital, Tongji Medical College and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
20
|
Wang B, Wu L, Chen J, Dong L, Chen C, Wen Z, Hu J, Fleming I, Wang DW. Metabolism pathways of arachidonic acids: mechanisms and potential therapeutic targets. Signal Transduct Target Ther 2021; 6:94. [PMID: 33637672 PMCID: PMC7910446 DOI: 10.1038/s41392-020-00443-w] [Citation(s) in RCA: 447] [Impact Index Per Article: 149.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/04/2020] [Accepted: 10/15/2020] [Indexed: 01/31/2023] Open
Abstract
The arachidonic acid (AA) pathway plays a key role in cardiovascular biology, carcinogenesis, and many inflammatory diseases, such as asthma, arthritis, etc. Esterified AA on the inner surface of the cell membrane is hydrolyzed to its free form by phospholipase A2 (PLA2), which is in turn further metabolized by cyclooxygenases (COXs) and lipoxygenases (LOXs) and cytochrome P450 (CYP) enzymes to a spectrum of bioactive mediators that includes prostanoids, leukotrienes (LTs), epoxyeicosatrienoic acids (EETs), dihydroxyeicosatetraenoic acid (diHETEs), eicosatetraenoic acids (ETEs), and lipoxins (LXs). Many of the latter mediators are considered to be novel preventive and therapeutic targets for cardiovascular diseases (CVD), cancers, and inflammatory diseases. This review sets out to summarize the physiological and pathophysiological importance of the AA metabolizing pathways and outline the molecular mechanisms underlying the actions of AA related to its three main metabolic pathways in CVD and cancer progression will provide valuable insight for developing new therapeutic drugs for CVD and anti-cancer agents such as inhibitors of EETs or 2J2. Thus, we herein present a synopsis of AA metabolism in human health, cardiovascular and cancer biology, and the signaling pathways involved in these processes. To explore the role of the AA metabolism and potential therapies, we also introduce the current newly clinical studies targeting AA metabolisms in the different disease conditions.
Collapse
Affiliation(s)
- Bei Wang
- Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Hubei Province, Wuhan, China
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, Wuhan, China
| | - Lujin Wu
- Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Hubei Province, Wuhan, China
| | - Jing Chen
- Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Hubei Province, Wuhan, China
| | - Lingli Dong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, Wuhan, China
| | - Chen Chen
- Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Hubei Province, Wuhan, China
| | - Zheng Wen
- Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Hubei Province, Wuhan, China
| | - Jiong Hu
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Hubei Province, Wuhan, China.
| |
Collapse
|
21
|
Fishbein A, Hammock BD, Serhan CN, Panigrahy D. Carcinogenesis: Failure of resolution of inflammation? Pharmacol Ther 2021; 218:107670. [PMID: 32891711 PMCID: PMC7470770 DOI: 10.1016/j.pharmthera.2020.107670] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2020] [Indexed: 02/06/2023]
Abstract
Inflammation in the tumor microenvironment is a hallmark of cancer and is recognized as a key characteristic of carcinogens. However, the failure of resolution of inflammation in cancer is only recently being understood. Products of arachidonic acid and related fatty acid metabolism called eicosanoids, including prostaglandins, leukotrienes, lipoxins, and epoxyeicosanoids, critically regulate inflammation, as well as its resolution. The resolution of inflammation is now appreciated to be an active biochemical process regulated by endogenous specialized pro-resolving lipid autacoid mediators which combat infections and stimulate tissue repair/regeneration. Environmental and chemical human carcinogens, including aflatoxins, asbestos, nitrosamines, alcohol, and tobacco, induce tumor-promoting inflammation and can disrupt the resolution of inflammation contributing to a devastating global cancer burden. While mechanisms of carcinogenesis have focused on genotoxic activity to induce mutations, nongenotoxic mechanisms such as inflammation and oxidative stress promote genotoxicity, proliferation, and mutations. Moreover, carcinogens initiate oxidative stress to synergize with inflammation and DNA damage to fuel a vicious feedback loop of cell death, tissue damage, and carcinogenesis. In contrast, stimulation of resolution of inflammation may prevent carcinogenesis by clearance of cellular debris via macrophage phagocytosis and inhibition of an eicosanoid/cytokine storm of pro-inflammatory mediators. Controlling the host inflammatory response and its resolution in carcinogen-induced cancers will be critical to reducing carcinogen-induced morbidity and mortality. Here we review the recent evidence that stimulation of resolution of inflammation, including pro-resolution lipid mediators and soluble epoxide hydrolase inhibitors, may be a new chemopreventive approach to prevent carcinogen-induced cancer that should be evaluated in humans.
Collapse
Affiliation(s)
- Anna Fishbein
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Bruce D. Hammock
- Department of Entomology and Nematology, and UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Charles N. Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Dipak Panigrahy
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
22
|
Shochat C, Wang Z, Mo C, Nelson S, Donaka R, Huang J, Karasik D, Brotto M. Deletion of SREBF1, a Functional Bone-Muscle Pleiotropic Gene, Alters Bone Density and Lipid Signaling in Zebrafish. Endocrinology 2021; 162:5929645. [PMID: 33068391 PMCID: PMC7745669 DOI: 10.1210/endocr/bqaa189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Indexed: 12/30/2022]
Abstract
Through a genome-wide analysis of bone mineral density (BMD) and muscle mass, identification of a signaling pattern on 17p11.2 recognized the presence of sterol regulatory element-binding factor 1 (SREBF1), a gene responsible for the regulation of lipid homeostasis. In conjunction with lipid-based metabolic functions, SREBF1 also codes for the protein, SREBP-1, a transcription factor known for its role in adipocyte differentiation. We conducted a quantitative correlational study. We established a zebrafish (ZF) SREBF1 knockout (KO) model and used a targeted customized lipidomics approach to analyze the extent of SREBF1 capabilities. For lipidomics profiling, we isolated the dorsal muscles of wild type (WT) and KO fishes, and we performed liquid chromatography-tandem mass spectrometry screening assays of these samples. In our analysis, we profiled 48 lipid mediators (LMs) derived from various essential polyunsaturated fatty acids to determine potential targets regulated by SREBF1, and we found that the levels of 11,12 epoxyeicosatrienoic acid (11,12-EET) were negatively associated with the number of SREBF1 alleles (P = 0.006 for a linear model). We also compared gene expression between KO and WT ZF by genome-wide RNA-sequencing. Significantly enriched pathways included fatty acid elongation, linoleic acid metabolism, arachidonic acid metabolism, adipocytokine signaling, and DNA replication. We discovered trends indicating that BMD in adult fish was significantly lower in the KO than in the WT population (P < 0.03). These studies reinforce the importance of lipidomics investigation by detailing how the KO of SREBF1 affects both BMD and lipid-signaling mediators, thus confirming the importance of SREBF1 for musculoskeletal homeostasis.
Collapse
Affiliation(s)
- Chen Shochat
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Zhiying Wang
- Bone-Muscle Research Center, College of Nursing & Health Innovation, University of Texas at Arlington-UTA, Arlington, Texas
| | - Chenglin Mo
- Bone-Muscle Research Center, College of Nursing & Health Innovation, University of Texas at Arlington-UTA, Arlington, Texas
| | - Sarah Nelson
- Bone-Muscle Research Center, College of Nursing & Health Innovation, University of Texas at Arlington-UTA, Arlington, Texas
| | | | - Jian Huang
- Bone-Muscle Research Center, College of Nursing & Health Innovation, University of Texas at Arlington-UTA, Arlington, Texas
| | - David Karasik
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
- Correspondence: David Karasik, Azrieli Faculty of Medicine, Bar-Ilan university, Safed, 1311502, Israel. E-mail:
| | - Marco Brotto
- Bone-Muscle Research Center, College of Nursing & Health Innovation, University of Texas at Arlington-UTA, Arlington, Texas
| |
Collapse
|
23
|
Zhang Y, Bai Y, Bai J, Li L, Gao L, Wang F. Targeting Soluble Epoxide Hydrolase with TPPU Alleviates Irradiation‐Induced Hyposalivation in Mice via Preventing Apoptosis and Microcirculation Disturbance. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yaoyang Zhang
- School of Stomatology Dalian Medical University No.9 West Section Lvshun South Road Dalian Liaoning Province 116044 P. R. China
| | - Yuwen Bai
- School of Stomatology Dalian Medical University No.9 West Section Lvshun South Road Dalian Liaoning Province 116044 P. R. China
| | - Jie Bai
- School of Stomatology Dalian Medical University No.9 West Section Lvshun South Road Dalian Liaoning Province 116044 P. R. China
| | - Lijun Li
- School of Stomatology Dalian Medical University No.9 West Section Lvshun South Road Dalian Liaoning Province 116044 P. R. China
| | - Lu Gao
- School of Stomatology Dalian Medical University No.9 West Section Lvshun South Road Dalian Liaoning Province 116044 P. R. China
| | - Fu Wang
- School of Stomatology Dalian Medical University No.9 West Section Lvshun South Road Dalian Liaoning Province 116044 P. R. China
| |
Collapse
|
24
|
Smith PG, Roque D, Ching MM, Fulton A, Rao G, Reader JC. The Role of Eicosanoids in Gynecological Malignancies. Front Pharmacol 2020; 11:1233. [PMID: 32982722 PMCID: PMC7479818 DOI: 10.3389/fphar.2020.01233] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/28/2020] [Indexed: 12/20/2022] Open
Abstract
Eicosanoids, bio-active lipid molecules, evoke a multitude of biological effects that directly affect cancer cells and indirectly affect tumor microenvironment. An emerging role has been shown for eicosanoids in the pathogenesis of gynecological malignancies which include cancers of the vulva, vagina, cervix, uterine, and ovary. Eicosanoid biosynthesis pathways start at the metabolism of phospholipids by phospholipase A2 then proceeding to one of three pathways: the cyclooxygenase (COX), lipoxygenase (LOX), or P450 epoxygenase pathways. The most studied eicosanoid pathways include COX and LOX; however, more evidence is appearing to support further study of the P450 epoxygenase pathway in gynecologic cancers. In this review, we present the current knowledge of the role of COX, LOX and P450 pathways in the pathogenesis of gynecologic malignancies. Vulvar and vaginal cancer, the rarest subtypes, there is association of COX-2 expression with poor disease specific survival in vulvar cancer and, in vaginal cancer, COX-2 expression has been found to play a role in mucosal inflammation leading to disease susceptibility and transmission. Cervical cancer is associated with COX-2 levels 7.4 times higher than in healthy tissues. Additionally, HPV elevates COX-2 levels through the EGFR pathway and HIV promotes elevated COX-2 levels in cervical tissue as well as increases PGE2 levels eliciting inflammation and progression of cancer. Evidence supports significant roles for both the LOX and COX pathways in uterine cancer. In endometrial cancer, there is increased expression of 5-LOX which is associated with adverse outcomes. Prostanoids in the COX pathway PGE2 and PGF2α have been shown to play a significant role in uterine cancer including alteration of proliferation, adhesion, migration, invasion, angiogenesis, and the inflammatory microenvironment. The most studied gynecological malignancy in regard to the potential role of eicosanoids in tumorigenesis is ovarian cancer in which all three pathways have shown to be associated or play a role in ovarian tumorigenesis directly on the tumor cell or through modulation of the tumor microenvironment. By identifying the gaps in knowledge, additional pathways and targets could be identified in order to obtain a better understanding of eicosanoid signaling in gynecological malignancies and identify potential new therapeutic approaches.
Collapse
Affiliation(s)
- Paige G. Smith
- Department of Obstetrics, Gynecology and Reproductive Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Dana Roque
- Department of Obstetrics, Gynecology and Reproductive Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| | - Mc Millan Ching
- Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Amy Fulton
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, United States
- Baltimore Veterans Administration Medical Center, Baltimore, MD, United States
| | - Gautam Rao
- Department of Obstetrics, Gynecology and Reproductive Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| | - Jocelyn C. Reader
- Department of Obstetrics, Gynecology and Reproductive Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| |
Collapse
|
25
|
Wasserman AH, Venkatesan M, Aguirre A. Bioactive Lipid Signaling in Cardiovascular Disease, Development, and Regeneration. Cells 2020; 9:E1391. [PMID: 32503253 PMCID: PMC7349721 DOI: 10.3390/cells9061391] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/23/2020] [Accepted: 06/01/2020] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular disease (CVD) remains a leading cause of death globally. Understanding and characterizing the biochemical context of the cardiovascular system in health and disease is a necessary preliminary step for developing novel therapeutic strategies aimed at restoring cardiovascular function. Bioactive lipids are a class of dietary-dependent, chemically heterogeneous lipids with potent biological signaling functions. They have been intensively studied for their roles in immunity, inflammation, and reproduction, among others. Recent advances in liquid chromatography-mass spectrometry techniques have revealed a staggering number of novel bioactive lipids, most of them unknown or very poorly characterized in a biological context. Some of these new bioactive lipids play important roles in cardiovascular biology, including development, inflammation, regeneration, stem cell differentiation, and regulation of cell proliferation. Identifying the lipid signaling pathways underlying these effects and uncovering their novel biological functions could pave the way for new therapeutic strategies aimed at CVD and cardiovascular regeneration.
Collapse
Affiliation(s)
- Aaron H. Wasserman
- Regenerative Biology and Cell Reprogramming Laboratory, Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI 48824, USA; (A.H.W.); (M.V.)
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Manigandan Venkatesan
- Regenerative Biology and Cell Reprogramming Laboratory, Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI 48824, USA; (A.H.W.); (M.V.)
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Aitor Aguirre
- Regenerative Biology and Cell Reprogramming Laboratory, Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI 48824, USA; (A.H.W.); (M.V.)
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
26
|
McReynolds C, Morisseau C, Wagner K, Hammock B. Epoxy Fatty Acids Are Promising Targets for Treatment of Pain, Cardiovascular Disease and Other Indications Characterized by Mitochondrial Dysfunction, Endoplasmic Stress and Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1274:71-99. [PMID: 32894508 PMCID: PMC7737916 DOI: 10.1007/978-3-030-50621-6_5] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bioactive lipid mediators resulting from the metabolism of polyunsaturated fatty acids (PUFA) are controlled by many pathways that regulate the levels of these mediators and maintain homeostasis to prevent disease. PUFA metabolism is driven primarily through three pathways. Two pathways, the cyclooxygenase (COX) and lipoxygenase (LO) enzymatic pathways, form metabolites that are mostly inflammatory, while the third route of metabolism results from the oxidation by the cytochrome P450 enzymes to form hydroxylated PUFA and epoxide metabolites. These epoxygenated fatty acids (EpFA) demonstrate largely anti-inflammatory and beneficial properties, in contrast to the other metabolites formed from the degradation of PUFA. Dysregulation of these systems often leads to chronic disease. Pharmaceutical targets of disease focus on preventing the formation of inflammatory metabolites from the COX and LO pathways, while maintaining the EpFA and increasing their concentration in the body is seen as beneficial to treating and preventing disease. The soluble epoxide hydrolase (sEH) is the major route of metabolism of EpFA. Inhibiting its activity increases concentrations of beneficial EpFA, and often disease states correlate to mutations in the sEH enzyme that increase its activity and decrease the concentrations of EpFA in the body. Recent approaches to increasing EpFA include synthetic mimics that replicate biological activity of EpFA while preventing their metabolism, while other approaches focus on developing small molecule inhibitors to the sEH. Increasing EpFA concentrations in the body has demonstrated multiple beneficial effects in treating many diseases, including inflammatory and painful conditions, cardiovascular disease, neurological and disease of the central nervous system. Demonstration of efficacy in so many disease states can be explained by the fundamental mechanism that EpFA have of maintaining healthy microvasculature and preventing mitochondrial and endoplasmic reticulum stress. While there are no FDA approved methods that target the sEH or other enzymes responsible for metabolizing EpFA, current clinical efforts to test for efficacy by increasing EpFA that include inhibiting the sEH or administration of EpFA mimics that block metabolism are in progress.
Collapse
Affiliation(s)
- Cindy McReynolds
- Department of Entomology and Nematology, and U.C. Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, USA
- EicOsis, Davis, CA, USA
| | - Christophe Morisseau
- Department of Entomology and Nematology, and U.C. Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, USA
| | - Karen Wagner
- Department of Entomology and Nematology, and U.C. Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, USA
- EicOsis, Davis, CA, USA
| | - Bruce Hammock
- Department of Entomology and Nematology, and U.C. Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, USA.
| |
Collapse
|