1
|
Gruppen EG, Kersten S, Dullaart RPF. Plasma angiopoietin-like 4 is related to phospholipid transfer protein activity in diabetic and non-diabetic subjects: role of enhanced low grade inflammation. Lipids Health Dis 2018; 17:60. [PMID: 29587751 PMCID: PMC5870514 DOI: 10.1186/s12944-018-0717-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/21/2018] [Indexed: 01/22/2023] Open
Abstract
Background Angiopoietin-like 4 (ANGPTL4) inhibits lipoprotein lipase, whereas phospholipid transfer protein (PLTP) enhances hepatic triglyceride secretion. Both factors may be upregulated by inflammatory pathways. Since the extent to which these circulating factors are interrelated is unknown, we determined the relationship between plasma ANGPTL4 and PLTP activity, and assessed whether such a relationship could be explained by high sensitivity C-reactive protein (hsCRP) levels as a marker of low-grade chronic inflammation. Methods Fasting plasma ANGPTL4, PLTP activity (liposome-vesicle high density lipoprotein system) and hsCRP were measured in 41 type 2 diabetic (T2DM) subjects and 36 non-diabetic subjects. Results Plasma ANGPTL4 and PLTP activity were increased in T2DM (p < 0.001 for each), coinciding with elevated hsCRP, triglycerides and non-esterified fatty acids (NEFA) (p = 0.031 to 0.001). In univariate analysis, ANGTLP4 was correlated with PLTP activity (Rs = 0.309, p = 0.006), whereas both factors were related to hsCRP and NEFA levels (Rs = 0.304 to 0.411, p < 0.01 to < 0.001). In multivariable linear regression analysis adjusting for age, sex, glucose, total cholesterol, triglycerides and NEFA, ANGPTL4 and PLTP activity each remained positively associated with hsCRP (β = 0.315, p = 0.003 and β = 0.299, p = 0.034, respectively). Plasma ANGPTL4 remained positively associated with PLTP activity when taking account of age, sex, glucose, total cholesterol, triglycerides and NEFA (β = 0.315, p = 0.003). Notably, this association disappeared after further adjustment for hsCRP (β = 0.131, p = 0.25). Conclusions In conclusion, plasma ANGPTL4 and PLTP activity are interrelated, which may at least in part be explained by low-grade chronic inflammation. A pro-inflammatory state could affect triglyceride metabolism via concerted effects on ANGPTL4 and PLTP.
Collapse
Affiliation(s)
- Eke G Gruppen
- Department of Endocrinology, University of Groningen and University Medical Center, P.O. Box 301, 9700 RB, Groningen, The Netherlands
| | - Sander Kersten
- Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Robin P F Dullaart
- Department of Endocrinology, University of Groningen and University Medical Center, P.O. Box 301, 9700 RB, Groningen, The Netherlands.
| |
Collapse
|
2
|
Metabolic Syndrome Modulates Association between Endothelial Lipase and Lipid/Lipoprotein Plasma Levels in Acute Heart Failure Patients. Sci Rep 2017; 7:1165. [PMID: 28446761 PMCID: PMC5430647 DOI: 10.1038/s41598-017-01367-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 03/29/2017] [Indexed: 01/04/2023] Open
Abstract
We hypothesised that the established association of endothelial lipase (EL) plasma levels with atherogenic lipid profile is altered in acute heart failure (AHF) and additionally affected by overlapping metabolic syndrome (MetS). We examined the association of EL plasma levels and lipid/lipoprotein plasma levels in AHF patients without and with overlapping MetS. The study was performed as a single-centre, observational study on 152 AHF patients, out of which 85 had overlapping MetS. In the no-MetS group, EL plasma levels were significantly positively correlated with plasma levels of atherogenic lipids/lipoproteins, including total cholesterol, low-density lipoprotein (LDL)-cholesterol, total LDL particles and triglycerides, but also with plasma levels of antiatherogenic high-density lipoprotein (HDL)-cholesterol, total HDL particles and small HDL particles. In the MetS group, EL plasma levels were positively correlated with triglyceride and small LDL-particle levels, and significantly negatively correlated with plasma levels of large HDL particles as well as with LDL- and HDL-particle size, respectively. EL- and lipid/lipoprotein- plasma levels were different in the no-MetS patients, compared to MetS patients. The association of EL with atherogenic lipid profile is altered in AHF and additionally modified by MetS, which strongly modulates EL- and lipid/lipoprotein-plasma levels in AHF.
Collapse
|
3
|
Ly K, Essalmani R, Desjardins R, Seidah NG, Day R. An Unbiased Mass Spectrometry Approach Identifies Glypican-3 as an Interactor of Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) and Low Density Lipoprotein Receptor (LDLR) in Hepatocellular Carcinoma Cells. J Biol Chem 2016; 291:24676-24687. [PMID: 27758865 DOI: 10.1074/jbc.m116.746883] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/07/2016] [Indexed: 12/24/2022] Open
Abstract
The mechanism of LDL receptor (LDLR) degradation mediated by the proprotein convertase subtilisin/kexin type 9 (PCSK9) has been extensively studied; however, many steps within this process remain unclear and still require characterization. Recent studies have shown that PCSK9 lacking its Cys/His-rich domain can still promote LDLR internalization, but the complex does not reach the lysosome suggesting the presence of an additional interaction partner(s). In this study we carried out an unbiased screening approach to identify PCSK9-interacting proteins in the HepG2 cells' secretome using co-immunoprecipitation combined with mass spectrometry analyses. Several interacting proteins were identified, including glypican-3 (GPC3), phospholipid transfer protein, matrilin-3, tissue factor pathway inhibitor, fibrinogen-like 1, and plasminogen activator inhibitor-1. We then validated these interactions by co-immunoprecipitation and Western blotting. Furthermore, functional validation was examined by silencing each candidate protein in HepG2 cells using short hairpin RNAs to determine their effect on LDL uptake and LDLR levels. Only GPC3 and phospholipid transfer protein silencing in HepG2 cells significantly increased LDL uptake in these cells and displayed higher total LDLR protein levels compared with control cells. Moreover, our study provides the first evidence that GPC3 can modulate the PCSK9 extracellular activity as a competitive binding partner to the LDLR in HepG2 cells.
Collapse
Affiliation(s)
- Kévin Ly
- From the Institut de Pharmacologie de Sherbrooke, Department of Surgery/Urology Division, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec J1H5N4 and
| | - Rachid Essalmani
- the Institut de Recherches Cliniques de Montréal, Affiliated with Université de Montréal, Montréal, Quebec H2W 1R7, Canada
| | - Roxane Desjardins
- From the Institut de Pharmacologie de Sherbrooke, Department of Surgery/Urology Division, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec J1H5N4 and
| | - Nabil G Seidah
- the Institut de Recherches Cliniques de Montréal, Affiliated with Université de Montréal, Montréal, Quebec H2W 1R7, Canada
| | - Robert Day
- From the Institut de Pharmacologie de Sherbrooke, Department of Surgery/Urology Division, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec J1H5N4 and.
| |
Collapse
|
4
|
Rosenthal EA, Ronald J, Rothstein J, Rajagopalan R, Ranchalis J, Wolfbauer G, Albers JJ, Brunzell JD, Motulsky AG, Rieder MJ, Nickerson DA, Wijsman EM, Jarvik GP. Linkage and association of phospholipid transfer protein activity to LASS4. J Lipid Res 2011; 52:1837-46. [PMID: 21757428 DOI: 10.1194/jlr.p016576] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phospholipid transfer protein activity (PLTPa) is associated with insulin levels and has been implicated in atherosclerotic disease in both mice and humans. Variation at the PLTP structural locus on chromosome 20 explains some, but not all, heritable variation in PLTPa. In order to detect quantitative trait loci (QTLs) elsewhere in the genome that affect PLTPa, we performed both oligogenic and single QTL linkage analysis on four large families (n = 227 with phenotype, n = 330 with genotype, n = 462 total), ascertained for familial combined hyperlipidemia. We detected evidence of linkage between PLTPa and chromosome 19p (lod = 3.2) for a single family and chromosome 2q (lod = 2.8) for all families. Inclusion of additional marker and exome sequence data in the analysis refined the linkage signal on chromosome 19 and implicated coding variation in LASS4, a gene regulated by leptin that is involved in ceramide synthesis. Association between PLTPa and LASS4 variation was replicated in the other three families (P = 0.02), adjusting for pedigree structure. To our knowledge, this is the first example for which exome data was used in families to identify a complex QTL that is not the structural locus.
Collapse
Affiliation(s)
- Elisabeth A Rosenthal
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Kataria Arora M, Seth S, Dayal S. The relationship of lipid profile and menstrual cycle with acne vulgaris. Clin Biochem 2010; 43:1415-20. [DOI: 10.1016/j.clinbiochem.2010.09.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2010] [Revised: 09/16/2010] [Accepted: 09/16/2010] [Indexed: 12/19/2022]
|
6
|
Jarvik GP, Rajagopalan R, Rosenthal EA, Wolfbauer G, McKinstry L, Vaze A, Brunzell J, Motulsky AG, Nickerson DA, Heagerty PJ, Wijsman EM, Albers JJ. Genetic and nongenetic sources of variation in phospholipid transfer protein activity. J Lipid Res 2009; 51:983-90. [PMID: 19965587 DOI: 10.1194/jlr.m000125] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phospholipid transfer protein (PLTP) belongs to the lipid transfer/lipopolysaccharide-binding protein gene family. Expression of PLTP has been implicated in the development of atherosclerosis. We evaluated the effects of PLTP region tagging single nucleotide polymorphisms (SNPs) on the prediction of both carotid artery disease (CAAD) and PLTP activity. CAAD effects were evaluated in 442 Caucasian male subjects with severe CAAD and 497 vascular disease-free controls. SNP prediction of PLTP transfer activity was evaluated in both a subsample of 87 subjects enriched for an allele of interest and in a confirmation sample of 210 Caucasian males and females. Hemoglobin A1c or insulin level predicted 11-14% of age- and sex-adjusted PLTP activity. PLTP SNPs that predicted approximately 11-30% of adjusted PLTP activity variance were identified in the two cohorts. For rs6065904, the allele that was associated with CAAD was also associated with elevated PLTP activity in both cohorts. SNPs associated with PLTP activity also predicted variation in LDL-cholesterol and LDL-B level only in the replication cohort. These results demonstrate that PLTP activity is strongly influenced by PLTP region polymorphisms and metabolic factors.
Collapse
Affiliation(s)
- Gail P Jarvik
- Department of Medicine (Division of Medical Genetics), University of Washington, Seattle, WA, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Hartwich J, Malec MM, Partyka L, Pérez-Martinez P, Marin C, López-Miranda J, Tierney AC, Monagle JM, Roche HM, Defoort C, Wolkow P, Dembinska-Kieć A. The effect of the plasma n-3/n-6 polyunsaturated fatty acid ratio on the dietary LDL phenotype transformation – Insights from the LIPGENE study. Clin Nutr 2009; 28:510-5. [DOI: 10.1016/j.clnu.2009.04.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 03/26/2009] [Accepted: 04/14/2009] [Indexed: 10/20/2022]
|
8
|
Vergeer M, Dallinga-Thie GM, Dullaart RPF, van Tol A. Evaluation of phospholipid transfer protein as a therapeutic target. ACTA ACUST UNITED AC 2008. [DOI: 10.2217/17460875.3.3.327] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Julius U, Jauhiainen M, Ehnholm C, Pietzsch J. Lipid transfer protein activities in subjects with impaired glucose tolerance. Clin Chem Lab Med 2007; 45:237-43. [PMID: 17311515 DOI: 10.1515/cclm.2007.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Impaired glucose tolerance (IGT) is associated with an increased risk of atherosclerosis that may be due in part to dyslipidemia. The purpose of this study was to assess the regulatory role of lipid transfer proteins in the development of this dyslipidemia. METHODS Activities of cholesterol ester transfer protein (CETP) and phospholipid transfer protein (PLTP), as well as lipid and protein components of the major lipoprotein fractions, were evaluated in probands with IGT and were compared with those in subjects with normal glucose tolerance. The effect of a fat-rich meal on these variables was also investigated. RESULTS IGT probands had a higher triglyceride content in subfractions of low- (LDL) and high-density lipoprotein (HDL). IGT patients had higher fasting CETP activity. The latter was positively correlated with HDL2 triglycerides and negatively with HDL3 total cholesterol. PLTP activity and mass were not higher in IGT patients. However, PLTP activity correlated with components of VLDL and LDL and was influenced by the type of obesity. Neither CETP and PLTP activities nor PLTP mass were altered by a fat-rich meal. PLTP and CETP activities correlated in both fasting and postprandial conditions. CONCLUSIONS Increased fasting CETP activity may contribute to increased risk of atherosclerosis in subjects with IGT.
Collapse
Affiliation(s)
- Ulrich Julius
- Medical Clinics and Outpatient Department III, University Hospital, Dresden, Germany.
| | | | | | | |
Collapse
|
10
|
Yu D, Murdoch SJ, Parikh SJ, Marcovina SM, Cobitz A, Chen H, Brunzell JD. Rosiglitazone increases LDL particle size and buoyancy and decreases C-reactive protein in patients with type 2 diabetes on statin therapy. Diab Vasc Dis Res 2006; 3:189-96. [PMID: 17160915 DOI: 10.3132/dvdr.2006.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A substantial number of individuals with type 2 diabetes mellitus (T2DM) demonstrate a predominance of small dense low-density lipoprotein (sdLDL), which is associated with an increased risk of cardiovascular disease (CVD). In some cases, sdLDL persists after treatment with a statin to reduce levels of LDL. The effect of the addition of a thiazolidinedione, rosiglitazone (RSG) (4 mg/day or 8 mg/day) to statin therapy on LDL phenotype and C reactive protein (CRP) levels was investigated in a 12- week, placebo-controlled study of 72 T2DM patients who were well controlled and on a statin, but who had persistently predominant sdLDL. Addition of RSG 8 mg to statin therapy significantly increased LDL buoyancy (relative flotation +0.014, p = 0.003) and LDL particle size (+4.2A, p = 0.001) from baseline and relative to the change with placebo (+0.014 and +3.8A; p = 0.03 and p = 0.04, respectively), and was associated with a non-significant decrease in sdLDL. RSG 8 mg moderately, but significantly, increased total cholesterol (by 12.2%, p = 0.004), LDL-cholesterol (11.2%, p = 0.02) and intermediate-density lipoprotein (IDL)-cholesterol from baseline but did not increase total or LDL apolipoprotein B. RSG 4 mg and 8 mg significantly reduced CRP compared with placebo (-44.9% and -48.0%; p = 0.008 and p = 0.004, respectively), and significantly reduced insulin resistance and fasting plasma glucose from baseline. Addition of RSG to statin therapy may further reduce cardiovascular risk by improving the LDL phenotype, as well as reducing insulin resistance and CRP levels. However, the increase in IDL may be proatherogenic and must be considered when assessing the benefits of rosiglitazone.
Collapse
Affiliation(s)
- Dahong Yu
- GlaxoSmithKline, King of Prussia, PA 19406, USA.
| | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW Plasma cholesteryl ester transfer protein and phospholipid transfer protein are involved in lipoprotein metabolism. Conceivably, manipulation of either transfer protein could impact atherosclerosis and other lipid-driven diseases. RECENT FINDINGS Cholesteryl ester transfer protein mediates direct HDL cholesteryl ester delivery to the liver cells; adipose tissue-specific overexpression of cholesteryl ester transfer protein in mice reduces the plasma HDL cholesterol concentration and adipocyte size; cholesteryl ester transfer protein TaqIB polymorphism is associated with HDL cholesterol plasma levels and the risk of coronary heart disease. In apolipoprotein B transgenic mice, phospholipid transfer protein deficiency enhances reactive oxygen species-dependent degradation of newly synthesized apolipoprotein B via a post-endoplasmic reticulum process, as well as improving the antiinflammatory properties of HDL in mice. Activity of this transfer protein in cerebrospinal fluid of patients with Alzheimer's disease is profoundly decreased and exogenous phospholipid transfer protein induces apolipoprotein E secretion by primary human astrocytes in vitro. SUMMARY Understanding the relationship between lipid transfer proteins and lipoprotein metabolism is expected to be an important frontier in the search for a therapy for atherosclerosis.
Collapse
Affiliation(s)
- Xian-Cheng Jiang
- Department of Anatomy and Cell Biology, State University of New York, Downstate Medical Center, Brooklyn, New York, USA.
| | | |
Collapse
|
12
|
Patankar N, Wasan KM. Role of Phospholipid Transfer Protein on the Plasma Distribution of Amphotericin B Following the Incubation of Different Amphotericin B Formulations. Pharm Res 2006; 23:1020-4. [PMID: 16715392 DOI: 10.1007/s11095-006-9900-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Accepted: 01/06/2006] [Indexed: 10/24/2022]
Abstract
PURPOSE The purpose of this study was to investigate the role of phospholipid transfer protein (PLTP) on the plasma distribution of amphotericin B (AmpB) following incubation with different AmpB formulations in human plasmas with varying lipid profiles. METHODS In a first set of experiments, plasma distribution profiles of AmpB were determined following the incubation of Fungizone and lipid-based formulations (Abelcet and AmBisome) at a concentration of 20 microg AmpB/mL for 5-120 min at 37 degrees C in the plasma obtained from six different individuals (total cholesterol concentrations range between 62 and 332 mg/dL). In a second set of experiments, Abelcet, and AmBisome at a concentration of 20 microg AmpB/mL were incubated for 5 min at 37 degrees C in human plasma (total cholesterol = 163 mg/dL) that had been pretreated with an antibody raised up against PLTP (1:400 v/v dilution from stock solution) for 20 min at 37 degrees C. Following incubation, the human plasma was separated into its lipoprotein and lipoprotein-deficient fractions by density gradient ultracentrifugation and analyzed for AmpB content by high-performance liquid chromatography. RESULTS The majority of AmpB was covered in the lipoprotein-deficient plasma and high-density lipoprotein (HDL) fractions following incubation of Fungizone in human plasma. The majority of AmpB (48.7-87.2%) was recovered in the HDL fraction following incubation of Abelcet and AmBisome in human plasma. The presence of the PLTP antibody resulted in a 20% decrease in the percentage AmpB recovered in the HDL fraction following the incubation of Abelcet. However, the plasma distribution of AmpB remained unchanged following the incubation of AmBisome in plasma containing the PLTP antibody. CONCLUSIONS Taken together, these findings suggest indirect evidence that PLTP may play an important role in the plasma distribution profile of AmpB following the incubation of Abelcet and may be one of the factors responsible for the preferential association of AmpB with HDL when administered as Abelcet.
Collapse
Affiliation(s)
- Nilesh Patankar
- Division of Pharmaceutics and Biopharmaceutics, Faculty of Pharmaceutical Sciences, The University of British Columbia, 2146 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | | |
Collapse
|
13
|
Badellino KO, Wolfe ML, Reilly MP, Rader DJ. Endothelial lipase concentrations are increased in metabolic syndrome and associated with coronary atherosclerosis. PLoS Med 2006; 3:e22. [PMID: 16354105 PMCID: PMC1316064 DOI: 10.1371/journal.pmed.0030022] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2005] [Accepted: 10/26/2005] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Endothelial lipase (EL), a new member of the lipase family, has been shown to modulate high-density lipoprotein (HDL-C) metabolism and atherosclerosis in mouse models. We hypothesized that EL concentrations would be associated with decreased HDL-C and increased atherosclerosis in humans. METHODS AND FINDINGS Healthy individuals with a family history of premature coronary heart disease (n = 858) were recruited as part of the Study of the Inherited Risk of Atherosclerosis. Blood was drawn in the fasting state before and, in a subgroup (n = 510), after administration of a single dose of intravenous heparin. Plasma lipids were measured enzymatically, lipoprotein subclasses were assessed by nuclear magnetic resonance, and coronary artery calcification (CAC) was quantified by electron beam computed tomography. Plasma EL mass was measured using a newly developed enzyme-linked immunosorbent assay. Median EL mass in pre-heparin plasma was 442 (interquartile range = 324-617) ng/ml. Median post-heparin mass was approximately 3-fold higher, 1,313 (888-1,927) ng/ml. The correlation between pre-heparin EL mass and post-heparin EL mass was 0.46 (p < 0.001). EL mass concentrations in both pre- and post-heparin plasma significantly correlated with all NCEP ATPIII-defined metabolic syndrome factors: waist circumference (r = 0.28 and 0.22, respectively, p < 0.001 for each), blood pressure (r = 0.18 and 0.24, p < 0.001 for each), triglycerides (r = 0.22, p < 0.001; and 0.13, p = 0.004), HDL cholesterol (r = -0.11, p = 0.002; and -0.18, p < 0.001), and fasting glucose (r = 0.11 and 0.16, p = 0.001 for both). EL mass in both routine (odds ratio [OR] = 1.67, p = 0.01) and post-heparin (OR = 2.42, p = 0.003) plasma was associated with CAC as determined by ordinal regression after adjustment for age, gender, waist circumference, vasoactive medications, hormone replacement therapy (women), and established cardiovascular risk factors. CONCLUSIONS We report, to our knowledge for the first time, that human plasma EL concentrations, in both post-heparin and routine pre-heparin plasma, are significantly associated with metabolic syndrome features and with subclinical atherosclerosis. EL may be a pro-atherogenic factor in humans, especially in overweight individuals and those with metabolic syndrome.
Collapse
Affiliation(s)
- Karen O Badellino
- Institute for Translational Medicine and Therapeutics, School of Nursing, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | | | | | | |
Collapse
|
14
|
Bevilacqua M, Righini V, Barrella M, Vago T, Chebat E, Dominguez LJ. Effects of fluvastatin slow-release (XL 80 mg) versus simvastatin (20 mg) on the lipid triad in patients with type 2 diabetes. Adv Ther 2005; 22:527-42. [PMID: 16510370 DOI: 10.1007/bf02849947] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The lipid triad is the association of small, dense (sd) low-density lipoprotein (LDL), low high-density lipoprotein (HDL), and hypertriglyceridemia, all of which play a role in coronary artery disease in patients with type 2 diabetes. Although statins have demonstrated clear positive effects on cardiovascular morbidity/mortality in patients with diabetes and on single components of the lipid triad, it remains controversial whether they affect all components of the triad in these patients. Therefore, we performed a single-center, parallel-group, prospective, randomized, open-label, blinded-endpoint (PROBE)-type comparison of fluvastatin extended-release (XL) 80 mg (n=48) and simvastatin 20 mg (n=46), each given once daily for 2 months to patients with type 2 diabetes with the lipid triad, who were enrolled after a 1-month lifestyle modification and dietary intervention program. After fluvastatin therapy, LDL (-51%; P<.01), apolipoprotein B (ApoB; -33%; P<.01), intermediate-density LDL (idLDL) (-14.3%; P<.05), sdLDL (-45%; P<.01), and triglycerides (-38%; P<.01) were significantly decreased, and HDL (+14.3%; P<.05) and apolipoprotein A-I (ApoA-I; +7%; P<.05) were increased; large buoyant (lb) LDL did not change (P=NS). Simvastatin therapy decreased LDL (-55.1%; P<.01), ApoB (-46%; P<.01), lbLDL (-33.3%; P<.05), idLDL (-22.7%; P<.05), sdLDL (-33.3%; P<.05), and triglycerides (-47.9%; P<.01); HDL was not changed (P=NS) after simvastatin, but ApoA-I was increased (+11.3%; P<.01). HDL increases (P<.01) and sdLDL decreases (P<.01) were significantly greater after fluvastatin compared with simvastatin therapy; LDL, triglycerides, ApoB, and idLDL changes were similar after both therapies (P=NS), and lbLDL decreases were greater with simvastatin therapy (P<.05). With both treatments, classic mean LDL and ApoB target levels were achieved in most patients. We conclude that the lipid triad can be controlled with fluvastatin XL 80 mg in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Maurizio Bevilacqua
- Endocrinology and Diabetes Unit and LORENZ Research Center, Department of Medicine, Luigi Sacco Hospital (Vialba)-University of Milan, Milan, Italy
| | | | | | | | | | | |
Collapse
|
15
|
Vuletic S, Peskind ER, Marcovina SM, Quinn JF, Cheung MC, Kennedy H, Kaye JA, Jin LW, Albers JJ. Reduced CSF PLTP activity in Alzheimer's disease and other neurologic diseases; PLTP induces ApoE secretion in primary human astrocytes in vitro. J Neurosci Res 2005; 80:406-13. [PMID: 15795933 DOI: 10.1002/jnr.20458] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Phospholipid transfer protein (PLTP) plays a pivotal role in cellular lipid efflux and modulation of lipoprotein metabolism. PLTP is distributed widely in the central nervous system (CNS), is synthesized by glia and neurons, and is active in cerebrospinal fluid (CSF). The aims of this study were to test the hypothesis that patients with Alzheimer's disease (AD) have altered PLTP-mediated phospholipid transfer activity in CSF, and to examine the potential relationship between PLTP activity and apolipoprotein E (apoE) levels in CSF. We assessed PLTP activity and apoE concentration in CSF of patients with probable AD (n = 50), multiple sclerosis (MS; n = 9), other neurologic diseases (n = 21), and neurologically healthy controls (n = 40). PLTP activity in AD was reduced compared to that in controls (P < 0.001), with approximately half of the AD patients with PLTP activity values below all controls. Patients with MS had lower PLTP activity than AD patients (P < 0.001). PLTP activity was highly correlated with PLTP mass, as estimated by Western blot (r = 0.006; P < 0.01). CSF PLTP activity positively correlated with apoE concentration in AD (R = 0.435; P = 0.002) and controls (R = 0.456; P = 0.003). Anti-apoE immunoaffinity chromatography and Western blot analyses indicated that some CSF PLTP is associated with apoE-containing lipoproteins. Exogenous addition of recombinant PLTP to primary human astrocytes significantly increased apoE secretion to the conditioned medium. The findings of reduced PLTP activity in AD CSF, and the observation that PLTP can influence apoE secretion in astrocytes suggest a potential link between alterations in the brain lipid metabolism and AD pathogenesis.
Collapse
Affiliation(s)
- Simona Vuletic
- Department of Medicine, Northwest Lipid Metabolism and Diabetes Research Laboratories, University of Washington, Seattle, Washington 98109-4517, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Oomen PHN, van Tol A, Hattori H, Smit AJ, Scheek LM, Dullaart RPF. Human plasma phospholipid transfer protein activity is decreased by acute hyperglycaemia: studies without and with hyperinsulinaemia in Type 1 diabetes mellitus. Diabet Med 2005; 22:768-74. [PMID: 15910630 DOI: 10.1111/j.1464-5491.2005.01521.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS Little is known about the regulation of phospholipid transfer protein (PLTP), that plays a key role in lipoprotein metabolism. PLTP secretion may be up-regulated by glucose in vitro, whereas plasma PLTP activity is decreased by exogenous hyperinsulinaemia and glucose-induced hyperinsulinaemia in vivo. In the present study, we evaluated the separate effects of hyperglycaemia and hyperinsulinaemia in C-peptide-negative Type 1 diabetic patients. METHODS The protocol was carried out in 16 patients (eight females). In each individual, plasma PLTP mass and activity (measured by enzyme-linked immuno-sorbent assay and liposome-high density lipoprotein system, respectively) as well as plasma cholesteryl ester transfer protein (CETP) activity, lipids and apolipoprotein levels were determined at the end of four different glucose clamps, each lasting 210 min: standard insulin (30 mU/kg/h) and standard glucose (glucose 5.0 mmol/l) (SI-SG), standard insulin and high glucose (glucose 12 mmol/l) (SI-HG), high insulin (150 mU/kg/h) and standard glucose (HI-SG), and high insulin and high glucose (HI-HG). RESULTS Plasma lipids and (apo)lipoproteins, measured at the end of the SI-HG, HI-SG and HI-HG clamps, were not significantly different compared with the levels obtained at the end of the SI-SG clamp. Median plasma PLTP mass and activity at the end of the SI-SG clamp were 12.8 mg/l and 13.2 micromol/ml/h, respectively. Median plasma PLTP mass decreased by 9.1% at the end of the HI-HG clamp (P < 0.01), whereas the changes at the end of the SI-HG and HI-SG clamps were not significant. Median plasma PLTP activity decreased by 5.7, 4.6 and 8.6% at the end of the SI-HG, HI-SG and HI-HG clamps, respectively (all P < 0.05). Median plasma CETP activity was 177 nmol/ml/h at the end of the SI-SG clamp, and decreased by 4.9% (P < 0.05) and by 8.3% (P < 0.05) at the end of the HI-SG and the HI-HG clamps, respectively. Plasma CETP activity did not change significantly at the end of the SI-HG clamp. CONCLUSIONS The present study demonstrates that plasma PLTP activity is independently decreased by acute hyperglycaemia and hyperinsulinaemia in humans in vivo. These data do not support a direct role of short-term hyperglycaemia in up-regulating plasma PLTP levels.
Collapse
Affiliation(s)
- P H N Oomen
- Department of Endocrinology, University Hospital Groningen, Groningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
17
|
Dullaart RPF, De Vries R, Scheek L, Borggreve SE, Van Gent T, Dallinga-Thie GM, Ito M, Nagano M, Sluiter WJ, Hattori H, Van Tol A. Type 2 diabetes mellitus is associated with differential effects on plasma cholesteryl ester transfer protein and phospholipid transfer protein activities and concentrations. Scandinavian Journal of Clinical and Laboratory Investigation 2005; 64:205-15. [PMID: 15222630 DOI: 10.1080/00365510410005721] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND Human plasma contains two lipid transfer proteins, cholesteryl ester transfer protein (CETP) and phospholipid transfer protein (PLTP), which are crucial in reverse cholesterol transport. METHODS Plasma CETP and PLTP activity levels and concentrations in 16 type 2 diabetic patients and 16 matched healthy subjects were determined, and these data were correlated to clinical variables, including insulin sensitivity and lipid levels. RESULTS Plasma triglycerides were higher (p<0.02) and high-density lipoprotein (HDL) cholesterol (p<0.02) was lower in diabetic patients. Plasma CETP activity and concentrations were not significantly different between diabetic and healthy subjects, but CETP specific activity was lower in diabetic patients (p<0.001). Multiple regression analysis showed that plasma CETP activity was positively related to CETP concentration (p=0.0001) and negatively to the diabetic state (p<0.002) or to HbA1c (p<0.02). PLTP activity (p<0.05) and specific activity were higher (p<0.05), whereas there was no difference in PLTP concentration between the two groups. There was no significant bivariate correlation between PLTP concentration and activity, in either healthy or diabetic subjects. Multiple regression analysis did disclose positive relationships of PLTP activity with PLTP concentration (p=0.0001), plasma triglycerides (p=0.0001) and waist/hip ratio (p=0.0001), but not with the diabetic state or HbA1c. CONCLUSIONS Neither CETP nor PLTP activity was independently associated with insulin sensitivity. Specific CETP activity is decreased in type 2 diabetes mellitus. In contrast, specific PLTP activity is higher in diabetes, as a result of the association of plasma PLTP activity with plasma triglycerides and obesity. Measurement of both plasma lipid transfer protein activity and mass levels may thus provide extra information in diabetes mellitus.
Collapse
Affiliation(s)
- R P F Dullaart
- Department of Endocrinology, State University Hospital, Groningen, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Jänis MT, Siggins S, Tahvanainen E, Vikstedt R, Silander K, Metso J, Aromaa A, Taskinen MR, Olkkonen VM, Jauhiainen M, Ehnholm C. Active and low-active forms of serum phospholipid transfer protein in a normal Finnish population sample. J Lipid Res 2004; 45:2303-9. [PMID: 15342679 DOI: 10.1194/jlr.m400250-jlr200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human serum phospholipid transfer protein (PLTP) exists as a catalytically active (HA-PLTP) and a low-active (LA-PLTP) form. In this study, the association of PLTP activity and the concentrations of both forms with lipid and carbohydrate parameters were investigated. In a random Finnish population sample, serum PLTP concentration (n=250) was 6.56 +/- 1.45 mg/l, the mean lipoprotein-independent (PLTPexo) phospholipid transfer activity was 6.59 +/- 1.66 micromol/ml/h, and the mean lipoprotein-dependent (PLTPendo) activity was 1.37 +/- 0.29 micromol/ml/h. Of the serum PLTP concentration, approximately 46% was in a catalytically active form. HA-PLTP concentration correlated positively with serum PLTPexo activity (r=0.380, P <0.001), HDL cholesterol (r=0.291, P <0.001), and apolipoprotein A-I (r=0.187, P <0.01). Of the potential regulatory factors for PLTP, apolipoprotein E showed a weak positive correlation with serum PLTPexo (r=0.154, P <0.05) and PLTPendo (r=0.192, P <0.01) activity but not with PLTP concentration. Weak associations were also observed between PLTP parameters and determinants of glucose homeostasis (glucose, insulin, and homeostasis model assessment for insulin resistance). The present data on PLTP activity and concentration reveal novel connections of the two PLTP forms to lipid and carbohydrate metabolism.
Collapse
Affiliation(s)
- Minna T Jänis
- Department of Molecular Medicine, National Public Health Institute, Biomedicum, Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW This review highlights the recent key advances in our understanding of the role of phospholipid transfer protein in lipid and lipoprotein metabolism. RECENT FINDINGS The overexpression of human phospholipid transfer protein in mice is associated with an increase in atherosclerosis. This is consistent with earlier studies using mouse models suggesting that phospholipid transfer protein was pro-atherogenic. The presence of phospholipid transfer protein in macrophages and atherosclerotic lesions suggests that it could be either anti-atherogenic by facilitating lipid efflux or pro-atherogenic by facilitating lipid retention. Phospholipid transfer protein may also be a key player in reverse cholesterol transport, as it interacts with the adenosine triphosphate-binding cassette transporter A1 and facilitates lipid efflux from peripheral cells. Both the release of chymase, a neutral protease, from mast cells and the oxidation of HDL by hypochlorous acid can impair the function of phospholipid transfer protein in reverse cholesterol transport. Studies of phospholipid transfer protein-mediated phospholipid transfer activity in humans support a role for phospholipid transfer protein in hypertriglyceridemia, obesity, diabetes, inflammation and coronary artery disease, and in the modulation of LDL particle density and size. Furthermore, recent evidence suggests that phospholipid transfer protein may play a role in reproductive processes, in lipid and lipoprotein metabolism in the central nervous system, and in neurodegenerative disease. SUMMARY Phospholipid transfer protein is emerging as a multifaceted and multifunctional player in lipid and lipoprotein metabolism, but much additional work will be required to understand the significance of these recent findings for clinical practice.
Collapse
Affiliation(s)
- John J Albers
- Department of Medicine and Northwest Lipid Research Laboratories, University of Washington, 2121 North 35th Street, Seattle, WA 98103, USA.
| | | |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW A growing body of data suggests that in addition to LDL-cholesterol concentrations, compositional properties of LDL, including size and fatty acid composition, are important in determining the relative degree of atherogenicity. This review examines current research in this field to evaluate which properties of LDL may most directly influence the risk of coronary heart disease. RECENT FINDINGS The presence of small dense LDL has been correlated with an increased risk of coronary heart disease, but this has not been shown to be fully independent of related factors such as elevated plasma triacylglycerol concentrations. An increased susceptibility of small dense LDL to in-vitro oxidation has also been demonstrated, but its importance to coronary heart disease risk has not been established. Other studies have found that the presence of enlarged LDL, modified (oleate enriched) fatty acyl composition of LDL, and higher numbers of LDL particles in plasma also are endpoints associated with an increased risk of coronary heart disease. SUMMARY LDL size may indicate a metabolic condition associated with increased CHD risk as opposed to the direct promotion of atherosclerosis by specific particle types of LDL. In most claims of detrimental effects of small dense LDL, neither LDL particle concentrations nor the fatty acid composition of the particles were established, both factors being important in contributing to the atherogenic potential of LDL. The predisposition to premature coronary heart disease cannot currently be objectively assigned to any one type of LDL particle.
Collapse
Affiliation(s)
- Aaron T Lada
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | |
Collapse
|
21
|
Murdoch SJ, Kahn SE, Albers JJ, Brunzell JD, Purnell JQ. PLTP activity decreases with weight loss: changes in PLTP are associated with changes in subcutaneous fat and FFA but not IAF or insulin sensitivity. J Lipid Res 2003; 44:1705-12. [PMID: 12837855 DOI: 10.1194/jlr.m300073-jlr200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phospholipid transfer protein (PLTP) activity is elevated in obese and diabetic subjects. No prospective studies have examined the effect of weight loss on PLTP activity and assessed whether the resultant changes in activity are related to changes in body weight, insulin resistance, or both. PLTP activity was measured at baseline in 46 subjects (body mass index = 19-64 kg/m2) and after diet-induced weight loss in 19 of the obese subjects. Total body fat mass (FM) by dual-energy X-ray absorptiometry, intraabdominal fat (IAF), and abdominal subcutaneous fat (SQF) by CT scan, insulin sensitivity (SI) by frequently sampled intravenous glucose tolerance test, leptin, and lipids were determined. At baseline, PLTP activity correlated with FM (r = 0.36, P = 0.02) and SQF (r = 0.31, P = 0.045), but not with IAF (r = 0.16, P = 0.32) or SI (r = 0.10, P = 0.52). With diet-induced weight loss (16 +/- 7.3 kg), PLTP activity significantly decreased 9.1% (P = 0.002). The change in PLTP activity correlated with the change in SQF (r = 0.55, P = 0.014) (33.6% decrease), but not with IAF (r = 0.09, P = 0.73) or SI (r = 0.18, P = 0.44), and was highly correlated with the change in nonesterified fatty acid (NEFA) (r = 0.71, P < 0.001). In conclusion, elevated PLTP activity in obese subjects is likely a result of increased body fat, reflected by SQF, and is influenced by NEFAs but is not directly related to insulin resistance.
Collapse
Affiliation(s)
- Susan J Murdoch
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | |
Collapse
|