1
|
Mirheydari M, Putta P, Mann EK, Kooijman EE. Interaction of Two Amphipathic α-Helix Bundle Proteins, ApoLp-III and ApoE 3, with the Oil-Aqueous Interface. J Phys Chem B 2021; 125:4746-4756. [PMID: 33939404 DOI: 10.1021/acs.jpcb.1c00271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Protein-lipid interactions govern the structure and function of lipoprotein particles, which transport neutral lipids and other hydrophobic cargo through the blood stream. Apolipoproteins cover the surface of lipoprotein particles, including low-density (LDL) and high-density (HDL) lipoproteins, and determine their function. Previous work has focused on small peptides derived from these apolipoproteins or used such artificial lipid systems as Langmuir monolayers or the lipid disc assay to determine how apolipoproteins interact with the neutral lipid interface. Here, we focus on a recurring protein domain found in many neutral lipid-binding proteins, the amphipathic α-helix bundle. We use liquid droplet tensiometry to investigate protein-lipid interactions on an oil droplet, which mimics the real lipoprotein interface. The N-terminus of apoE 3 and full-length apoLp-III serve as model proteins. We find that each protein interacts with lipid monolayers at the oil-aqueous interface in unique ways. For the first time, we show that helix bundle unfolding is critical for proper protein insertion into the lipid monolayer at the oil-aqueous interface and that specific membrane lipids promote the rebinding of protein upon fluctuation in droplet size. These results shed new light on how amphipathic apolipoprotein α-helix bundles interact with neutral lipid particles.
Collapse
|
2
|
Latshaw DC, Randolph TW, Hall CK. Aggregation of amphipathic peptides at an aqueous–organic interface using coarse-grained simulations. MOLECULAR SIMULATION 2017. [DOI: 10.1080/08927022.2017.1319058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- David C. Latshaw
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Theodore W. Randolph
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Carol K. Hall
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
3
|
Gordon SM, Pourmousa M, Sampson M, Sviridov D, Islam R, Perrin BS, Kemeh G, Pastor RW, Remaley AT. Identification of a novel lipid binding motif in apolipoprotein B by the analysis of hydrophobic cluster domains. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1859:135-145. [PMID: 27814978 DOI: 10.1016/j.bbamem.2016.10.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/11/2016] [Accepted: 10/27/2016] [Indexed: 02/05/2023]
Abstract
Apolipoprotein B (apoB) is a large amphipathic protein that is the structural scaffold for the formation of several classes of lipoproteins involved in lipid transport throughout the body. The goal of the present study was to identify specific domains in the apoB sequence that contribute to its lipid binding properties. A sequence analysis algorithm was developed to identify stretches of hydrophobic amino acids devoid of charged amino acids, which are referred to as hydrophobic cluster domains (HCDs). This analysis identified 78 HCDs in apoB with hydrophobic stretches ranging from 6 to 26 residues. Each HCD was analyzed in silico for secondary structure and lipid binding properties, and a subset was synthesized for experimental evaluation. One HCD peptide, B38, showed high affinity binding to both isolated HDL and LDL, and could exchange between lipoproteins. All-atom molecular dynamics simulations indicate that B38 inserts 3.7Å below the phosphate plane of the bilayer. B38 forms an unusual α-helix with a broad hydrophobic face and polar serine and threonine residues on the opposite face. Based on this structure, we hypothesized that B38 could efflux cholesterol from cells. B38 showed a 12-fold greater activity than the 5A peptide, a bihelical Class A amphipathic helix (EC50 of 0.2658 vs. 3.188μM; p<0.0001), in promoting cholesterol efflux from ABCA1 expressing BHK-1 cells. In conclusion, we have identified novel domains within apoB that contribute to its lipid biding properties. Additionally, we have discovered a unique amphipathic helix design for efficient ABCA1-specific cholesterol efflux.
Collapse
Affiliation(s)
- Scott M Gordon
- Lipoprotein Metabolism Section, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Mohsen Pourmousa
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD, USA
| | - Maureen Sampson
- Lipoprotein Metabolism Section, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Denis Sviridov
- Lipoprotein Metabolism Section, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rafique Islam
- Lipoprotein Metabolism Section, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA; School of Systems Biology, George Mason University, Fairfax, VA, USA
| | - B Scott Perrin
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD, USA
| | - Georgina Kemeh
- Lipoprotein Metabolism Section, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Richard W Pastor
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD, USA
| | - Alan T Remaley
- Lipoprotein Metabolism Section, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
4
|
Morita SY. Metabolism and Modification of Apolipoprotein B-Containing Lipoproteins Involved in Dyslipidemia and Atherosclerosis. Biol Pharm Bull 2016; 39:1-24. [DOI: 10.1248/bpb.b15-00716] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Shin-ya Morita
- Department of Pharmacy, Shiga University of Medical Science Hospital
| |
Collapse
|
5
|
Mitsche MA, Packer LE, Brown JW, Jiang ZG, Small DM, McKnight CJ. Surface tensiometry of apolipoprotein B domains at lipid interfaces suggests a new model for the initial steps in triglyceride-rich lipoprotein assembly. J Biol Chem 2014; 289:9000-12. [PMID: 24515109 DOI: 10.1074/jbc.m113.540955] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apolipoprotein B (apoB) is the principal protein component of triacylglyceride (TAG)-rich lipoproteins, including chylomicrons and very low density lipoprotein, which is the precursor to LDL (the "bad cholesterol"). TAG-rich lipoprotein assembly is initiated by the N-terminal βα1 superdomain of apoB, which co-translationally binds and remodels the luminal leaflet of the rough endoplasmic reticulum. The βα1 superdomain contains four domains and is predicted to interact directly with lipids. Using drop tensiometry, we examined the interfacial properties of the α-helical and C-sheet domains and several subdomains to establish a detailed structure-function relationship at the lipid/water interface. The adsorption, stress response, exchangeability, and pressure (Π)-area relationship were studied at both triolein/water and triolein/1-palmitoyl, 2-oleoylphosphatidylcholine/water interfaces that mimic physiological environments. The α-helical domain spontaneously adsorbed to a triolein/water interface and formed a viscoelastic surface. It was anchored to the surface by helix 6, and the other helices were ejected and/or remodeled on the surface as a function of surface pressure. The C-sheet instead formed an elastic film on a triolein/water interface and was irreversibly anchored to the lipid surface, which is consistent with the behavior of amphipathic β-strands. When both domains were adsorbed together on the surface, the C-sheet shielded a portion of the α-helical domain from the surface, which retained its globular structure. Overall, the unique secondary and tertiary structures of the N-terminal domains of apoB support the intrinsic capability of co-translational lipid recruitment. The evidence presented here allows the construction of a detailed model of the initiation of TAG-rich lipoprotein assembly.
Collapse
Affiliation(s)
- Matthew A Mitsche
- From the Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts 02118
| | | | | | | | | | | |
Collapse
|
6
|
Wang L, Mei X, Atkinson D, Small DM. Surface behavior of apolipoprotein A-I and its deletion mutants at model lipoprotein interfaces. J Lipid Res 2013; 55:478-92. [PMID: 24308948 DOI: 10.1194/jlr.m044743] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Apolipoprotein A-I (apoA-I) has a great conformational flexibility to exist in lipid-free, lipid-poor, and lipid-bound states during lipid metabolism. To address the lipid binding and the dynamic desorption behavior of apoA-I at lipoprotein surfaces, apoA-I, Δ(185-243)apoA-I, and Δ(1-59)(185-243)apoA-I were studied at triolein/water and phosphatidylcholine/triolein/water interfaces with special attention to surface pressure. All three proteins are surface active to both interfaces lowering the interfacial tension and thus increasing the surface pressure to modify the interfaces. Δ(185-243)apoA-I adsorbs much more slowly and lowers the interfacial tension less than full-length apoA-I, confirming that the C-terminal domain (residues 185-243) initiates the lipid binding. Δ(1-59)(185-243)apoA-I binds more rapidly and lowers the interfacial tension more than Δ(185-243)apoA-I, suggesting that destabilizing the N-terminal α-helical bundle (residues 1-185) restores lipid binding. The three proteins desorb from both interfaces at different surface pressures revealing that different domains of apoA-I possess different lipid affinity. Δ(1-59)(185-243)apoA-I desorbs at lower pressures compared with apoA-I and Δ(185-243)apoA-I indicating that it is missing a strong lipid association motif. We propose that during lipoprotein remodeling, surface pressure mediates the adsorption and partial or full desorption of apoA-I allowing it to exchange among different lipoproteins and adopt various conformations to facilitate its multiple functions.
Collapse
Affiliation(s)
- Libo Wang
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118
| | | | | | | |
Collapse
|
7
|
López‐Montero I, López‐Navajas P, Mingorance J, Rivas G, Vélez M, Vicente M, Monroy F. Intrinsic disorder of the bacterial cell division protein ZipA: coil‐to‐brush conformational transition. FASEB J 2013; 27:3363-75. [DOI: 10.1096/fj.12-224337] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Pilar López‐Navajas
- Centro de Investigaciones Biológicas (CIB)Consejo Superior de Investigaciones Cientificas (CSIC)MadridSpain
| | | | - Germán Rivas
- Centro de Investigaciones Biológicas (CIB)Consejo Superior de Investigaciones Cientificas (CSIC)MadridSpain
| | - Marisela Vélez
- Instituto de Catálisis y PetroleoquímicaCSICCampus de CantoblancoMadridSpain
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA‐Nanociencia)Facultad de CienciasCampus de CantoblancoMadridSpain
| | - Miguel Vicente
- Centro Nacional de Biotecnología (CNB)CSICCampus de CantoblancoMadridSpain
| | - Francisco Monroy
- Departamento de Química Física IUniversidad ComplutenseMadridSpain
| |
Collapse
|
8
|
Meyers NL, Wang L, Small DM. Apolipoprotein C-I binds more strongly to phospholipid/triolein/water than triolein/water interfaces: a possible model for inhibiting cholesterol ester transfer protein activity and triacylglycerol-rich lipoprotein uptake. Biochemistry 2012; 51:1238-48. [PMID: 22264166 DOI: 10.1021/bi2015212] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Apolipoprotein C-I (apoC-I) is an important constituent of high-density lipoprotein (HDL) and is involved in the accumulation of cholesterol ester in nascent HDL via inhibition of cholesterol ester transfer protein and potential activation of lecithin:cholesterol acyltransferase (LCAT). As the smallest exchangeable apolipoprotein (57 residues), apoC-I transfers between lipoproteins via a lipid-binding motif of two amphipathic α-helices (AαHs), spanning residues 7-29 and 38-52. To understand apoC-I's behavior at hydrophobic lipoprotein surfaces, oil drop tensiometry was used to compare the binding to triolein/water (TO/W) and palmitoyloleoylphosphatidylcholine/triolein/water (POPC/TO/W) interfaces. When apoC-I binds to either interface, the surface tension (γ) decreases by ~16-18 mN/m. ApoC-I can be exchanged at both interfaces, desorbing upon compression and readsorbing on expansion. The maximal surface pressures at which apoC-I begins to desorb (Π(max)) were 16.8 and 20.7 mN/m at TO/W and POPC/TO/W interfaces, respectively. This suggests that apoC-I interacts with POPC to increase its affinity for the interface. ApoC-I is more elastic on POPC/TO/W than TO/W interfaces, marked by higher values of the elasticity modulus (ε) on oscillations. At POPC/TO/W interfaces containing an increasing POPC:TO ratio, the pressure at which apoC-I begins to be ejected increases as the phospholipid surface concentration increases. The observed increase in apoC-I interface affinity due to higher degrees of apoC-I-POPC interactions may explain how apoC-I can displace larger apolipoproteins, such as apoE, from lipoproteins. These interactions allow apoC-I to remain bound to the interface at higher Π values, offering insight into apoC-I's rearrangement on triacylglycerol-rich lipoproteins as they undergo Π changes during lipoprotein maturation by plasma factors such as lipoprotein lipase.
Collapse
Affiliation(s)
- Nathan L Meyers
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts 02118, United States
| | | | | |
Collapse
|
9
|
C-terminus of apolipoprotein A-I removes phospholipids from a triolein/phospholipids/water interface, but the N-terminus does not: a possible mechanism for nascent HDL assembly. Biophys J 2011; 101:353-61. [PMID: 21767487 DOI: 10.1016/j.bpj.2011.03.055] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 02/10/2011] [Accepted: 03/15/2011] [Indexed: 01/12/2023] Open
Abstract
Apolipoprotein A-I (ApoA-I) is the principle protein component of HDL, also known as "good cholesterol," which is an inverse marker for cardiovascular disease. The N-terminal 44 amino acids of ApoA-I (N44) are predicted to be responsible for stabilization of soluble ApoA-I, whereas the C-terminal 46 amino acids (C46) are predicted to initiate lipid binding and oligomerization. In this work, we apply what we believe to be a novel application of drop tensiometry to study the adsorption and desorption of N44 and C46 at a triolein/POPC/water (TO/POPC/W) interface. The amount of peptide that adsorbed to the surface was dependent on the surface concentration of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and pressure (Π) before adsorption. At a TO/POPC/W interface, the exclusion pressure (Π(EX)) of C46 was 25.8 mN/m, and was 19.3 mN/m for N44. Once adsorbed, both peptides formed a homogeneous surface with POPC but were progressively ejected from the surface by compression. During a compression, C46 removed POPC from the surface whereas N44 did not. Repeated compressions caused C46 to deplete entirely the surface of phospholipid. If full-length ApoA-I could also remove phospholipid, this could provide a mechanism for the transfer of surface components of chylomicrons and very low density lipoprotein to high density lipoprotein with the assistance of phospholipid transfer protein.
Collapse
|
10
|
Vaiser V, Rapaport H. Compressibility and Elasticity of Amphiphilic and Acidic β-Sheet Peptides at the Air−Water Interface. J Phys Chem B 2010; 115:50-6. [DOI: 10.1021/jp108496f] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Vladimir Vaiser
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and the Ilze Katz Institute for Nanoscale Technology, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Hanna Rapaport
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and the Ilze Katz Institute for Nanoscale Technology, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| |
Collapse
|
11
|
Wang L, Jiang ZG, McKnight CJ, Small DM. Interfacial properties of apolipoprotein B292-593 (B6.4-13) and B611-782 (B13-17). Insights into the structure of the lipovitellin homology region in apolipoprotein B. Biochemistry 2010; 49:3898-907. [PMID: 20353182 DOI: 10.1021/bi100056v] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The N-terminal sequence of apolipoprotein B (apoB) is critical in triacylglycerol-rich lipoprotein assembly. The first 17% of apoB (B17) is thought to consist of three domains: B5.9, a beta-barrel, B6.4-13, a series of 17 alpha-helices, and B13-17, a putative beta-sheet. B5.9 does not bind to lipid, while B6.4-13 and B13-17 contain hydrophobic interfaces that can interact with lipids. To understand how B6.4-13 and B13-17 might interact with triacylglycerol during lipoprotein assembly, the interfacial properties of both peptides were studied at the triolein/water interface. Both B6.4-13 and B13-17 are surface active. Once bound, the peptides can be neither exchanged nor pushed off the interface. Some residues of the peptides can be ejected from the interface upon compression but readsorb on expansion. B13-17 binds to the interface more strongly. The maximum pressure the peptide can withstand without being partially ejected (Pi(max)) is 19.2 mN/m for B13-17 compared to 16.7 mN/m for B6.4-13. B13-17 is purely elastic at the interface, while B6.4-13 forms a viscous-elastic film. When they are spread at an air/water interface, the limiting area and the collapse pressures are 16.6 A(2)/amino acid and 31 mN/m for B6.4-13 and 17.8 A(2)/amino acid and 35 mN/m for B13-17, respectively. The alpha-helical B6.4-13 contains some hydrophobic helices that stay bound and prevent the peptide from leaving the surface. The beta-sheets of B13-17 bind irreversibly to the surface. We suggest that during lipoprotein assembly, the N-terminal apoB starts recruiting lipid as early as B6.4, but additional sequences are essential for formation of a lipid pocket that can stabilize lipoprotein emulsion particles for secretion.
Collapse
Affiliation(s)
- Libo Wang
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | |
Collapse
|
12
|
Small DM, Wang L, Mitsche MA. The adsorption of biological peptides and proteins at the oil/water interface. A potentially important but largely unexplored field. J Lipid Res 2009; 50 Suppl:S329-34. [PMID: 19029067 PMCID: PMC3283257 DOI: 10.1194/jlr.r800083-jlr200] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 11/21/2008] [Indexed: 11/20/2022] Open
Abstract
This review focuses on some new techniques to study the behavior of peptides and proteins bound to oil droplets. We will show how model peptides e.g., amphipathic alpha helices (AalphaH) and amphipathic beta strand (AbetaS) and some apolipoproteins adsorb to triacylglycerol (TAG) droplets and how they behave once adsorbed to the interface. While most of the studies described involve peptides and proteins at an oil/water interface, studies can also be carried out when the surface has been partially covered with phospholipids. This work is important because it examines biophysical changes that take place at lipid droplet interfaces and how this may relate to the metabolism of lipoproteins and lipid droplets.
Collapse
Affiliation(s)
- Donald M Small
- Department of Physiology and Biophysics, Boston University School of Medicine, 700 Albany Street, W-302, Boston, MA 02118, USA.
| | | | | |
Collapse
|
13
|
Wang L, Martin DDO, Genter E, Wang J, McLeod RS, Small DM. Surface study of apoB1694-1880, a sequence that can anchor apoB to lipoproteins and make it nonexchangeable. J Lipid Res 2009; 50:1340-52. [PMID: 19251580 DOI: 10.1194/jlr.m900040-jlr200] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Apolipoprotein B (apoB) is a nonexchangeable apolipoprotein. During lipoprotein assembly, it recruits phospholipids and triacylglycerols (TAG) into TAG-rich lipoprotein particles. It remains bound to secreted lipoproteins during lipid metabolism in plasma. The beta1 region (residues 827-1880) of apoB has a high amphipathic beta strand (AbetaS) content and is proposed to be one region anchoring apoB to lipoproteins. The AbetaS-rich region between apoB37 and apoB41 (residues 1694-1880) was cloned, expressed, and purified. The interfacial properties were studied at the triolein/water (TO/W) and air/water (A/W) interfaces. ApoB[37-41] is surface-active and adsorbs to the TO/W interface. After adsorption the unbound apoB[37-41] was removed from the aqueous phase. Adsorbed apoB[37-41] did not desorb and could not be forced off by increasing the surface pressure up to 23 mN/m. ApoB[37-41] adsorbed on the TO/W interface was completely elastic when compressed and expanded by +/-13% of its area. On an A/W interface, the apoB[37-41] monolayer became solid when compressed to 4 mN/m pressure indicating extended beta-sheet formation. It could be reversibly compressed and expanded between low pressure and its collapse pressure (35 mN/m). Our studies confirm that the AbetaS structure of apoB[37-41] is a lipid-binding motif that can irreversibly anchor apoB to lipoproteins.
Collapse
Affiliation(s)
- Libo Wang
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118-2526, USA
| | | | | | | | | | | |
Collapse
|
14
|
Mitsche MA, Wang L, Jiang ZG, McKnight CJ, Small DM. Interfacial properties of a complex multi-domain 490 amino acid peptide derived from apolipoprotein B (residues 292-782). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:2322-2330. [PMID: 19146422 DOI: 10.1021/la802663g] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
ApolipoproteinB (ApoB) is a lipid binding protein that is a nonexchangeable component of chylomicrons, VLDL, and LDL. In the liver and intestinal cells ApoB recruits lipid to form nascent triacylglycerol rich particles cotranslationally in the endoplasmic reticulum membrane which are then processed and secreted to form plasma lipoproteins. The N-terminal domain, which comprises the first 22% of apoB, recruits lipid in a controlled manner. The first 6% (residues 1-291) of the N-terminus does not bind lipid. The first lipid binding domain, including residues 292-782 (B6-17), forms a lipid binding pocket which is predicted to consist of 17 alpha-helices and 6 beta-strands. A structural model based on the X-ray structure of the homologues protein lipovitellin suggests that the N-terminal 6-8 helices and the beta-sheet interact with lipid while the C-terminal helices form a structural unit stabilizing the beta-sheet. Using isothermal drop tensiometry we showed that ApoB6.4-17 is surface active and binds to a triolein/water interface and exerts 16-19 mN/m of pressure (Pi) on that surface. The protein initially adsorbs slowly from aqueous solution to the surface but following compression and re-expansion it reaches equilibrium much faster. When Pi exceeds 16.9 mN/m part of the protein is ejected from the surface, but when compressed to high Pi the protein is never completely ejected indicating that part of the peptide is irreversibly anchored to the interface. The surface dilation modulus (epsilon) varies between 25-38 mN/m, and is predominantly elastic with a small viscous component. When compressed at an air/water interface ApoB6.4-17 has a limiting area of approximately 11 A2 per amino acid at lift off and only approximately 7 A2 per amino acid at the collapse Pi (28 mN/m). These values are about half the anticipated values if all the residues are at the surface. This suggests that ApoB6.4-17 retains some globular structure at an interface and does not completely denature at the surface, as many other globular proteins do. We suggest that while bound to the surface ApoB6.4-17 exhibits properties of both alpha and beta structure giving it unique and versatile characteristics at a hydrophobic interface.
Collapse
Affiliation(s)
- Matthew A Mitsche
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | |
Collapse
|
15
|
Morita SY, Deharu Y, Takata E, Nakano M, Handa T. Cytotoxicity of lipid-free apolipoprotein B. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:2594-603. [DOI: 10.1016/j.bbamem.2008.08.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Revised: 08/19/2008] [Accepted: 08/19/2008] [Indexed: 11/17/2022]
|
16
|
Koivuniemi A, Kovanen PT, Hyvönen MT. Molecular dynamics simulations of a lipovitellin-derived amphiphilic beta-sheet homologous to apoB-100 beta-sheets at a hydrophobic decane-water interface. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:1668-75. [PMID: 18619564 DOI: 10.1016/j.bbapap.2008.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Revised: 05/19/2008] [Accepted: 06/04/2008] [Indexed: 12/12/2022]
Abstract
Lipovitellin, an egg-yolk lipoprotein, transports lipids in a pocket surrounded by amphiphilic beta-sheets. Its X-ray structure provides possibilities to study interactions between lipophilic beta-sheets and lipids at the atomic level. Here, we studied a 67-residue-long amphiphilic beta-sheet of lipovitellin previously suggested a suitable working model for studies of the lipid-binding behaviour of amphiphilic beta-sheet regions in apolipoprotein B-100 (apoB-100). We performed four molecular dynamics simulations with different starting configurations to define characteristics of the amphiphilic beta-sheet model at a decane-water interface. In each simulation the model beta-sheet bound keenly to the decane layer via its hydrophobic surface. The structural profiles showed unchanged secondary structure of the beta-sheet during the attachment. Also, aromatic side chains, especially tryptophans and tyrosines, mediated the attachment to the hydrophobic layer and influenced the orientation of the decane molecules that are in contact with the beta-sheet. In conclusion, the present simulations reveal high affinity of a lipovitellin-derived amphiphilic beta-sheet to a hydrophobic decane layer. They lay thereby the basis for further studies of the interaction between amphiphilic beta-sheets and lipids in complex molecular systems, like LDL particles, in which the large apoB-100 is the main protein component.
Collapse
|
17
|
Jiang ZG, Simon MN, Wall JS, McKnight CJ. Structural analysis of reconstituted lipoproteins containing the N-terminal domain of apolipoprotein B. Biophys J 2007; 92:4097-108. [PMID: 17369413 PMCID: PMC1868998 DOI: 10.1529/biophysj.106.101105] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Apolipoproteins play a central role in lipoprotein metabolism, and are directly implicated in cardiovascular diseases, but their structural characterization has been complicated by their structural flexibility and heterogeneity. Here we describe the structural characterization of the N-terminal region of apolipoprotein B (apoB), the major protein component of very low-density lipoprotein and low-density lipoprotein, in the presence of phospholipids. Specifically, we focus on the N-terminal 6.4-17% of apoB (B6.4-17) complexed with the phospholipid dimyristoylphosphatidylcholine in vitro. In addition to circular dichroism spectroscopy and limited proteolysis, our strategy incorporates nanogold-labeling of the protein in the reconstituted lipoprotein complex followed by visualization and molecular weight determination with scanning transmission electron microscopy imaging. Based on the scanning transmission electron microscopy imaging analysis of approximately 1300 individual particles where the B6.4-17 is labeled with nanogold through a six-His tag, most complexes contain either two or three B6.4-17 molecules. Circular dichroism spectroscopy and limited proteolysis of these reconstituted particles indicate that there are no large conformational changes in B6.4-17 upon lipoprotein complex formation. This is in contrast to the large structural changes that occur during apolipoprotein A-I-lipid interactions. The method described here allows a direct measurement of the stoichiometry and molecular weight of individual particles, rather than the average of the entire sample. Thus, it represents a useful strategy to characterize the structure of lipoproteins, which are not structurally uniform, but can still be defined by an ensemble of related patterns.
Collapse
Affiliation(s)
- Zhenghui Gordon Jiang
- Boston University School of Medicine, Department of Physiology & Biophysics, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
18
|
Wang L, Walsh MT, Small DM. Apolipoprotein B is conformationally flexible but anchored at a triolein/water interface: a possible model for lipoprotein surfaces. Proc Natl Acad Sci U S A 2006; 103:6871-6. [PMID: 16636271 PMCID: PMC1458986 DOI: 10.1073/pnas.0602213103] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Apolipoprotein B (apoB) is one of a unique group of proteins that form and bind to fat droplets, stabilize the emulsified fat, and direct their metabolism. ApoB, secreted on lipoproteins (emulsions), remains bound during lipid metabolism yet exhibits conformational flexibility. It has amphipathic beta-strand (AbetaS)-rich domains and amphipathic alpha-helix (AalphaH)-rich domains. We showed that two consensus AbetaS peptides of apoB bound strongly to hydrophobic interfaces [triolein/water (TO/W) and dodecane/water], were elastic, and were not pushed off the interface when the surface was compressed. In contrast, an AalphaH peptide modeling helical parts of apoB was forced off the TO/W interface by compression and readsorbed when the interface was expanded. In this report, the surface behavior of apoB-100 was studied at the TO/W interface. Solubilized apoB lowered the interfacial tension of TO/W in a concentration-dependent fashion. At equilibrium tension, if the surface was compressed, part of apoB was pushed off but quickly readsorbed when the surface was expanded. Even when the surface area was compressed by approximately 55%, part of the apoB molecule remained bound. The maximum surface pressure that apoB could withstand without being partially ejected was 13 mN/m. ApoB showed high elasticity at the TO/W interface. Based on studies of the consensus AbetaS and AalphaH peptides, we suggest that AbetaSs anchor apoB and are its nonexchangeable motif, whereas its conformational flexibility arises from both the elastic nature of the AbetaS and the ability of AalphaH domains of the molecule to desorb and readsorb rapidly in response to surface pressure changes.
Collapse
Affiliation(s)
- Libo Wang
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118
| | - Mary T. Walsh
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118
| | - Donald M. Small
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118
- To whom correspondence should be addressed at:
Department of Physiology and Biophysics, Boston University School of Medicine, 715 Albany Street, W-302, Boston, MA 02118. E-mail:
| |
Collapse
|
19
|
Ledford AS, Weinberg RB, Cook VR, Hantgan RR, Shelness GS. Self-association and lipid binding properties of the lipoprotein initiating domain of apolipoprotein B. J Biol Chem 2006; 281:8871-6. [PMID: 16407215 DOI: 10.1074/jbc.m507657200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The amino-terminal 20.1% of apolipoprotein B (apoB20.1; residues 1-912) is sufficient to initiate and direct the formation of nascent apoB-containing lipoprotein particles. To investigate the mechanism of initial lipid acquisition by apoB, we examined the lipid binding and interfacial properties of a carboxyl-terminal His6-tagged form of apoB20.1 (apoB20.1H). ApoB20.1H was expressed in Sf9 cells and purified by nickel affinity chromatography. ApoB20.1H was produced in a folded state as characterized by formation of intramolecular disulfide bonds and resistance to chemical reduction. Dynamic light scattering in physiological buffer indicated that purified apoB20.1H formed multimers, which were readily dissociable upon the addition of nonionic detergent (0.1% Triton X-100). ApoB20.1H was incapable of binding dimyristoylphosphatidylcholine multilamellar vesicles, unless its multimeric structure was first disrupted by guanidine hydrochloride. However, apoB20.1H multimers spontaneously dissociated and bound to the interface of naked and phospholipid-coated triolein droplets. These data reveal that the initiating domain of apoB contains solvent-accessible hydrophobic sequences, which, in the absence of a hydrophobic lipid interface or detergent, engage in self-association. The high affinity of apoB20.1H for neutral lipid is consistent with the membrane binding and desorption model of apoB-containing lipoprotein assembly.
Collapse
Affiliation(s)
- Aubrey S Ledford
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157-1040, USA
| | | | | | | | | |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW This review highlights recent advances in structural studies of exchangeable human apolipoproteins and the insights they provide into lipoprotein action in cardiovascular and amyloid diseases. RECENT FINDINGS The high-resolution X-ray crystal structure of free apoA-II reveals a parallel helical array that may represent other lipid-poor apolipoproteins, and the structure in complex with detergent substantiates the belt model for the protein arrangement on lipoproteins. Nuclear magnetic resonance structures of apolipoprotein-detergent complexes show a repertoire of curved helical conformations, suggesting multiple helical arrangements on the lipid. Low-resolution spectroscopic analyses, interface studies and molecular modeling provide new insights into the 'hinge-domain' mechanism of apolipoprotein adaptation at variable lipoprotein surfaces. A kinetic mechanism for lipoprotein stabilization is proposed. SUMMARY Cumulative evidence supports the belt model that provides a general structural basis for understanding the molecular mechanisms of functional apolipoprotein reactions, such as binding to lipoprotein receptors, lipid transporters, and the activation of lipophilic enzymes. However, the detailed protein and lipid conformations on lipoproteins and the underlying molecular interactions are unclear. New insights will hopefully emerge once the first detailed lipoprotein structure is solved.
Collapse
Affiliation(s)
- Olga Gursky
- Department of Physiology and Biophysics, Boston University School of Medicine, W329, Boston, Massachusetts 02118, USA.
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW Apolipoprotein B-containing lipoprotein assembly and secretion is critical for lipid absorption and triglyceride homeostasis, and plays a role in atherogenesis and the pathobiology of type 2 diabetes and obesity. This review highlights recent insights into the evolutionary, structural, and cell biology of hepatic and intestinal pathways for lipid mobilization, and the mechanisms and regulation of lipoprotein assembly and secretion. RECENT FINDINGS Until recently it was assumed that microsomal triglyceride transfer protein-dependent apolipoprotein B-containing lipoprotein assembly was a unique adaptation associated with vertebrate lipid homeostasis. However, it is now clear that microsomal triglyceride transfer protein (MTP) exists in species whose last common ancestor diverged over 550 million years ago. In its long evolutionary history, the MTP gene has given rise to a series of paralogous lipid transport proteins, all of which require MTP for their biogenesis. During its evolution, MTP has acquired new functions, enabling it to participate in a disparate array of lipid mobilization and transport pathways, ranging from primitive lipoprotein assembly to antigenic lipid presentation. In addition to the complex and multifunctional role of MTP in apolipoprotein B assembly, other factors responsible for the generation of secretion-coupled lipids and the modulation of apolipoprotein B production are emerging. SUMMARY The phylogenic dissection of MTP and apolipoprotein B function, coupled with ongoing structural and biochemical analyses, provide significant insights into the mechanisms of lipid mobilization and secretion. Some of these factors and processes may be targeted therapeutically to modulate the quantitative and qualitative aspects of apolipoprotein B production.
Collapse
Affiliation(s)
- Gregory S Shelness
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157-1040, USA
| | | |
Collapse
|
22
|
Wang L, Atkinson D, Small DM. The Interfacial Properties of ApoA-I and an Amphipathic α-Helix Consensus Peptide of Exchangeable Apolipoproteins at the Triolein/Water Interface. J Biol Chem 2005. [DOI: 10.1074/jbc.m411618200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|