1
|
Raval K, Jamshidi N, Seyran B, Salwinski L, Pillai R, Yang L, Ma F, Pellegrini M, Shin J, Yang X, Tudzarova S. Dysfunctional β-cell longevity in diabetes relies on energy conservation and positive epistasis. Life Sci Alliance 2024; 7:e202402743. [PMID: 39313296 PMCID: PMC11420665 DOI: 10.26508/lsa.202402743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/25/2024] Open
Abstract
Long-lived PFKFB3-expressing β-cells are dysfunctional partly because of prevailing glycolysis that compromises metabolic coupling of insulin secretion. Their accumulation in type 2 diabetes (T2D) appears to be related to the loss of apoptotic competency of cell fitness competition that maintains islet function by favoring constant selection of healthy "winner" cells. To investigate how PFKFB3 can disguise the competitive traits of dysfunctional "loser" β-cells, we analyzed the overlap between human β-cells with bona fide "loser signature" across diabetes pathologies using the HPAP scRNA-seq and spatial transcriptomics of PFKFB3-positive β-cells from nPOD T2D pancreata. The overlapping transcriptional profile of "loser" β-cells was represented by down-regulated ribosomal biosynthesis and genes encoding for mitochondrial respiration. PFKFB3-positive "loser" β-cells had the reduced expression of HLA class I and II genes. Gene-gene interaction analysis revealed that PFKFB3 rs1983890 can interact with the anti-apoptotic gene MAIP1 implicating positive epistasis as a mechanism for prolonged survival of "loser" β-cells in T2D. Inhibition of PFKFB3 resulted in the clearance of dysfunctional "loser" β-cells leading to restored glucose tolerance in the mouse model of T2D.
Collapse
Affiliation(s)
- Kavit Raval
- Hillblom Islet Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Neema Jamshidi
- Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Berfin Seyran
- Hillblom Islet Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Lukasz Salwinski
- Molecular Cell and Developmental Biology, College of Life Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Raju Pillai
- Department of Pathology, City-of-Hope, Duarte, CA, USA
| | - Lixin Yang
- Department of Pathology, City-of-Hope, Duarte, CA, USA
| | - Feiyang Ma
- Molecular Cell and Developmental Biology, College of Life Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Matteo Pellegrini
- Molecular Cell and Developmental Biology, College of Life Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Juliana Shin
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA
| | - Xia Yang
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA
| | - Slavica Tudzarova
- Hillblom Islet Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
2
|
Yadav SS, Roham PH, Roy S, Sharma S. Connecting islet-specific hub genes and pathways in type 2 diabetes mellitus through the bioinformatics lens. HUMAN GENE 2023; 37:201207. [DOI: 10.1016/j.humgen.2023.201207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
3
|
Yadav SS, Roham PH, Roy S, Sharma S. Connecting islet-specific hub genes and pathways in type 2 diabetes mellitus through the bioinformatics lens. HUMAN GENE 2023; 36:201177. [DOI: 10.1016/j.humgen.2023.201177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
4
|
Fetal Programming of the Endocrine Pancreas: Impact of a Maternal Low-Protein Diet on Gene Expression in the Perinatal Rat Pancreas. Int J Mol Sci 2022; 23:ijms231911057. [PMID: 36232358 PMCID: PMC9569808 DOI: 10.3390/ijms231911057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/08/2022] [Accepted: 09/10/2022] [Indexed: 11/26/2022] Open
Abstract
In rats, the time of birth is characterized by a transient rise in beta cell replication, as well as beta cell neogenesis and the functional maturation of the endocrine pancreas. However, the knowledge of the gene expression during this period of beta cell expansion is incomplete. The aim was to characterize the perinatal rat pancreas transcriptome and to identify regulatory pathways differentially regulated at the whole organ level in the offspring of mothers fed a regular control diet (CO) and of mothers fed a low-protein diet (LP). We performed mRNA expression profiling via the microarray analysis of total rat pancreas samples at embryonic day (E) 20 and postnatal days (P) 0 and 2. In the CO group, pancreas metabolic pathways related to sterol and lipid metabolism were highly enriched, whereas the LP diet induced changes in transcripts involved in RNA transcription and gene regulation, as well as cell migration and apoptosis. Moreover, a number of individual transcripts were markedly upregulated at P0 in the CO pancreas: growth arrest specific 6 (Gas6), legumain (Lgmn), Ets variant gene 5 (Etv5), alpha-fetoprotein (Afp), dual-specificity phosphatase 6 (Dusp6), and angiopoietin-like 4 (Angptl4). The LP diet induced the downregulation of a large number of transcripts, including neurogenin 3 (Neurog3), Etv5, Gas6, Dusp6, signaling transducer and activator of transcription 3 (Stat3), growth hormone receptor (Ghr), prolactin receptor (Prlr), and Gas6 receptor (AXL receptor tyrosine kinase; Axl), whereas upregulated transcripts were related to inflammatory responses and cell motility. We identified differentially regulated genes and transcriptional networks in the perinatal pancreas. These data revealed marked adaptations of exocrine and endocrine in the pancreas to the low-protein diet, and the data can contribute to identifying novel regulators of beta cell mass expansion and functional maturation and may provide a valuable tool in the generation of fully functional beta cells from stem cells to be used in replacement therapy.
Collapse
|
5
|
Berger C, Zdzieblo D. Glucose transporters in pancreatic islets. Pflugers Arch 2020; 472:1249-1272. [PMID: 32394191 PMCID: PMC7462922 DOI: 10.1007/s00424-020-02383-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 02/07/2023]
Abstract
The fine-tuning of glucose uptake mechanisms is rendered by various glucose transporters with distinct transport characteristics. In the pancreatic islet, facilitative diffusion glucose transporters (GLUTs), and sodium-glucose cotransporters (SGLTs) contribute to glucose uptake and represent important components in the glucose-stimulated hormone release from endocrine cells, therefore playing a crucial role in blood glucose homeostasis. This review summarizes the current knowledge about cell type-specific expression profiles as well as proven and putative functions of distinct GLUT and SGLT family members in the human and rodent pancreatic islet and further discusses their possible involvement in onset and progression of diabetes mellitus. In context of GLUTs, we focus on GLUT2, characterizing the main glucose transporter in insulin-secreting β-cells in rodents. In addition, we discuss recent data proposing that other GLUT family members, namely GLUT1 and GLUT3, render this task in humans. Finally, we summarize latest information about SGLT1 and SGLT2 as representatives of the SGLT family that have been reported to be expressed predominantly in the α-cell population with a suggested functional role in the regulation of glucagon release.
Collapse
Affiliation(s)
- Constantin Berger
- Tissue Engineering & Regenerative Medicine, University Hospital Würzburg, Röntgenring 11, 97070, Würzburg, Germany
| | - Daniela Zdzieblo
- Tissue Engineering & Regenerative Medicine, University Hospital Würzburg, Röntgenring 11, 97070, Würzburg, Germany.
- Fraunhofer Institute for Silicate Research (ISC), Translational Center Regenerative Therapies, Neunerplatz 2, 97082, Würzburg, Germany.
| |
Collapse
|
6
|
Cellular and Animal Models of Striated Muscle Laminopathies. Cells 2019; 8:cells8040291. [PMID: 30934932 PMCID: PMC6523539 DOI: 10.3390/cells8040291] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/18/2019] [Accepted: 03/25/2019] [Indexed: 01/12/2023] Open
Abstract
The lamin A/C (LMNA) gene codes for nuclear intermediate filaments constitutive of the nuclear lamina. LMNA has 12 exons and alternative splicing of exon 10 results in two major isoforms—lamins A and C. Mutations found throughout the LMNA gene cause a group of diseases collectively known as laminopathies, of which the type, diversity, penetrance and severity of phenotypes can vary from one individual to the other, even between individuals carrying the same mutation. The majority of the laminopathies affect cardiac and/or skeletal muscles. The underlying molecular mechanisms contributing to such tissue-specific phenotypes caused by mutations in a ubiquitously expressed gene are not yet well elucidated. This review will explore the different phenotypes observed in established models of striated muscle laminopathies and their respective contributions to advancing our understanding of cardiac and skeletal muscle-related laminopathies. Potential future directions for developing effective treatments for patients with lamin A/C mutation-associated cardiac and/or skeletal muscle conditions will be discussed.
Collapse
|
7
|
Engelking LJ, Cantoria MJ, Xu Y, Liang G. Developmental and extrahepatic physiological functions of SREBP pathway genes in mice. Semin Cell Dev Biol 2017; 81:98-109. [PMID: 28736205 DOI: 10.1016/j.semcdb.2017.07.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 07/07/2017] [Indexed: 12/17/2022]
Abstract
Sterol regulatory element-binding proteins (SREBPs), master transcriptional regulators of cholesterol and fatty acid synthesis, have been found to contribute to a diverse array of cellular processes. In this review, we focus on genetically engineered mice in which the activities of six components of the SREBP gene pathway, namely SREBP-1, SREBP-2, Scap, Insig-1, Insig-2, or Site-1 protease have been altered through gene knockout or transgenic approaches. In addition to the expected impacts on lipid metabolism, manipulation of these genes in mice is found to affect a wide array of developmental and physiologic processes ranging from interferon signaling in macrophages to synaptic transmission in the brain. The findings reviewed herein provide a blueprint to guide future studies defining the complex interactions between lipid biology and the physiologic processes of many distinct organ systems.
Collapse
Affiliation(s)
- Luke J Engelking
- Departments of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Mary Jo Cantoria
- Departments of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yanchao Xu
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Guosheng Liang
- Departments of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
8
|
Yoon J, Lee KJ, Oh GS, Kim GH, Kim SW. Regulation of Nampt expression by transcriptional coactivator NCOA6 in pancreatic β-cells. Biochem Biophys Res Commun 2017; 487:600-606. [PMID: 28435063 DOI: 10.1016/j.bbrc.2017.04.098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 04/18/2017] [Indexed: 11/26/2022]
Abstract
Nuclear receptor coactivator 6 (NCOA6) is a transcriptional coactivator and crucial for insulin secretion and glucose metabolism in pancreatic β-cells. However, the regulatory mechanism of β-cell function by NCOA6 is largely unknown. In this study, we found that the transcript levels of nicotinamide phosphoribosyltransferase (Nampt) were decreased in islets of NCOA6+/- mice compared with NCOA6+/+ mice. Moreover, NCOA6 overexpression increased the levels of Nampt transcripts in the mouse pancreatic β-cell line NIT-1. Promoter analyses showed that transcriptional activity of the Nampt promoter was stimulated by cooperation of sterol regulatory element binding protein-1c (SREBP-1c) and NCOA6. Additional studies using mutant promoters demonstrated that SREBP-1c activates Nampt promoter through the sterol regulatory element (SRE), but not through the E-box. Using chromatin immunoprecipitation assay, NCOA6 was also shown to be directly recruited to the SRE region of the Nampt promoter. Furthermore, treatment with nicotinamide mononucleotide (NMN), a product of the Nampt reaction and a key NAD+ intermediate, ameliorates glucose-stimulated insulin secretion from NCOA6+/- islets. These results suggest that NCOA6 stimulates insulin secretion, at least partially, by modulating Nampt expression in pancreatic β-cells.
Collapse
Affiliation(s)
- Jin Yoon
- Department of Pharmacology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; Bio-medical Institute of Technology, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Kyung Jin Lee
- Department of Pharmacology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Gyun-Sik Oh
- Department of Pharmacology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; Bio-medical Institute of Technology, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Geun Hyang Kim
- Department of Pharmacology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Seung-Whan Kim
- Department of Pharmacology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; Bio-medical Institute of Technology, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea.
| |
Collapse
|
9
|
Wortham M, Sander M. Mechanisms of β-cell functional adaptation to changes in workload. Diabetes Obes Metab 2016; 18 Suppl 1:78-86. [PMID: 27615135 PMCID: PMC5021190 DOI: 10.1111/dom.12729] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 05/09/2016] [Indexed: 11/28/2022]
Abstract
Insulin secretion must be tightly coupled to nutritional state to maintain blood glucose homeostasis. To this end, pancreatic β-cells sense and respond to changes in metabolic conditions, thereby anticipating insulin demands for a given physiological context. This is achieved in part through adjustments of nutrient metabolism, which is controlled at several levels including allosteric regulation, post-translational modifications, and altered expression of metabolic enzymes. In this review, we discuss mechanisms of β-cell metabolic and functional adaptation in the context of two physiological states that alter glucose-stimulated insulin secretion: fasting and insulin resistance. We review current knowledge of metabolic changes that occur in the β-cell during adaptation and specifically discuss transcriptional mechanisms that underlie β-cell adaptation. A more comprehensive understanding of how β-cells adapt to changes in nutrient state could identify mechanisms to be co-opted for therapeutically modulating insulin secretion in metabolic disease.
Collapse
Affiliation(s)
- M Wortham
- Departments of Pediatrics and Cellular and Molecular Medicine, Pediatric Diabetes Research Center, University of California San Diego, La Jolla
| | - M Sander
- Departments of Pediatrics and Cellular and Molecular Medicine, Pediatric Diabetes Research Center, University of California San Diego, La Jolla.
| |
Collapse
|
10
|
Kim C, Lee H, Kang H, Shin JJ, Tak H, Kim W, Gorospe M, Lee EK. RNA-binding protein HuD reduces triglyceride production in pancreatic β cells by enhancing the expression of insulin-induced gene 1. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:675-85. [PMID: 26945853 DOI: 10.1016/j.bbagrm.2016.02.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 02/26/2016] [Accepted: 02/29/2016] [Indexed: 01/12/2023]
Abstract
Although triglyceride (TG) accumulation in the pancreas leads to β-cell dysfunction and raises the chance to develop metabolic disorders such as type 2 diabetes (T2DM), the molecular mechanisms whereby intracellular TG levels are regulated in pancreatic β cells have not been fully elucidated. Here, we present evidence that the RNA-binding protein HuD regulates TG production in pancreatic β cells. Mouse insulinoma βTC6 cells stably expressing a small hairpin RNA targeting HuD (shHuD) (βTC6-shHuD) contained higher TG levels compared to control cells. Moreover, downregulation of HuD resulted in a decrease in insulin-induced gene 1 (INSIG1) levels but not in the levels of sterol regulatory element-binding protein 1c (SREBP1c), a key transcription factor for lipid production. We identified Insig1 mRNA as a direct target of HuD by using ribonucleoprotein immunoprecipitation (RIP) and biotin pulldown analyses. By associating with the 3'-untranslated region (3'UTR) of Insig1 mRNA, HuD promoted INSIG1 translation; accordingly, HuD downregulation reduced while ectopic HuD expression increased INSIG1 levels. We further observed that HuD downregulation facilitated the nuclear localization of SREBP1c, thereby increasing the transcriptional activity of SREBP1c and the expression of target genes involved in lipogenesis; likewise, we observed lower INSIG1 levels in the pancreatic islets of HuD-null mice. Taken together, our results indicate that HuD functions as a novel repressor of lipid synthesis in pancreatic β cells.
Collapse
Affiliation(s)
- Chongtae Kim
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 137-701, South Korea
| | - Heejin Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 137-701, South Korea
| | - Hoin Kang
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 137-701, South Korea
| | - Jung Jae Shin
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, South Korea
| | - Hyosun Tak
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 137-701, South Korea
| | - Wook Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, South Korea
| | - Myriam Gorospe
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH, Baltimore, MD 21224, USA
| | - Eun Kyung Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 137-701, South Korea; Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul 137-701, South Korea.
| |
Collapse
|
11
|
Li L, Yun JH, Ryoo JE, Lee KJ, Choi BC, Baek KH. 54G/C polymorphism of SREBF-1 gene is associated with polycystic ovary syndrome. Eur J Obstet Gynecol Reprod Biol 2015; 188:95-9. [PMID: 25801724 DOI: 10.1016/j.ejogrb.2015.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 02/03/2015] [Accepted: 03/02/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVE A sterol regulatory element-binding protein (SREBF-1) transcription factor is a major regulator of lipid metabolism, carbohydrate, and plays a key role in energy homeostasis. The 54(G/C) polymorphism of SREBF-1 gene was reported that it is related with metabolic diseases including obesity, type 2 diabetes, and dyslipidemia. Among these, polycystic ovary syndrome (PCOS) is known as a common metabolic-endocrine disorder of women in reproductive ages. STUDY DESIGN Here, we performed a comparative study of 54(G/C) polymorphism of SREBF-1 gene with PCOS. The 54(G/C) polymorphism of SREBF-1 gene was analyzed by polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) of total 286 PCOS patients and 149 matched controls of healthy women. Statistical analysis was performed using HapAnalyzer. A p-value under 0.05 was considered statistically significant. RESULTS There was a strong association between the 54(G/C) polymorphism of SREBF-1 gene and PCOS (OR: 0.65, 95% CI: 0.46-0.90, p: 0.0129). The genotype and allelic frequencies were in Hardy-Weinberg equilibrium (HWE). CONCLUSION This is the first study on the genetic variation of SREBF-1 gene and PCOS. We concluded that 54(G/C) polymorphism of SREBF-1 gene is associated with PCOS. Therefore, our results suggest that SREBF-1 gene may play a role in genetic predisposition to PCOS, which is helpful in understanding the etiology of PCOS.
Collapse
Affiliation(s)
- Lan Li
- Department of Biomedical Science, CHA University, Bundang CHA Hospital, Seongnam 463-840, Gyeonggi-Do, Republic of Korea
| | - Ji-Hyun Yun
- Department of Biomedical Science, CHA University, Bundang CHA Hospital, Seongnam 463-840, Gyeonggi-Do, Republic of Korea
| | - Ji Eun Ryoo
- Hankuk Academy of Foreign Studies, Yongin 449-854, Gyeonggi-Do, Republic of Korea
| | - Kyung-Ju Lee
- Department of Gynecology and Obstetrics, CHA University, CHA General Hospital, Seoul 135-081, Republic of Korea
| | - Bum-Chae Choi
- Department of Obstetrics and Gynecology, CL Women's Hospital, Gwangju 502-800, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biomedical Science, CHA University, Bundang CHA Hospital, Seongnam 463-840, Gyeonggi-Do, Republic of Korea.
| |
Collapse
|
12
|
Sun Y, Zhang Y, Li N, Zhang H, Zhou L, Shao L. Exposure to high levels of glucose increases the expression levels of genes involved in cholesterol biosynthesis in rat islets. Exp Ther Med 2014; 8:991-997. [PMID: 25120636 PMCID: PMC4113575 DOI: 10.3892/etm.2014.1812] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 06/05/2014] [Indexed: 02/01/2023] Open
Abstract
Cells continually adjust their gene expression profiles in order to adapt to the availability of nutrients. Glucose is a major regulator of pxancreatic β-cell function and cell growth. However, the mechanism of β-cell adaptation to high levels of glucose remains uncertain. To identify the specific targets responsible for adaptation to high levels of glucose, the differentially expressed genes from primary rat islets treated with 3.3 and 16.7 mmol/l glucose for 24 h were detected by DNA microarray. The results revealed that the expression levels of genes that encode enzymes required for de novo cholesterol biosynthesis [3-hydroxy-3-methylglutaryl-CoA synthase 1 (Hmgcs1), 3-hydroxy-3-methylglutaryl-CoA reductase (Hmgcr), mevalonate (diphospho) decarboxylase (Mvd), isopentenyl-diphosphate δ-isomerase 1 (Idi1), squalene epoxidase (Sqle) and 7-dehydrocholesterol reductase (Dhcr7)] were significantly increased in islets treated with high levels of glucose compared with those in the islets treated with lower glucose levels. Quantitative polymerase chain reaction further confirmed that glucose stimulated the expression levels of these genes in a dose- and time-dependent manner. A similar result was obtained in islets isolated from rats subjected to 12, 24, 48 and 72 h of continuous glucose infusion. It has previously been recognized that cholesterol homeostasis is important for β-cell function. The present study provides, to the best of our knowledge, the first evidence for the involvement of the de novo cholesterol biosynthesis pathway in the adaptation of rat islets to high levels of glucose in vitro and in vivo.
Collapse
Affiliation(s)
- Yixuan Sun
- Department of Geratology, East Hospital, Shanghai Tongji University, Shanghai 200120, P.R. China
| | - Yuqing Zhang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Na Li
- Department of Gastroenterology, Central Hospital of Zibo, Zibo, Shandong 255036, P.R. China
| | - Hua Zhang
- Department of Geratology, East Hospital, Shanghai Tongji University, Shanghai 200120, P.R. China
| | - Libin Zhou
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Li Shao
- Department of Geratology, East Hospital, Shanghai Tongji University, Shanghai 200120, P.R. China
| |
Collapse
|
13
|
Zhao S, Li R, Li Y, Chen W, Zhang Y, Chen G. Roles of vitamin A status and retinoids in glucose and fatty acid metabolism. Biochem Cell Biol 2012; 90:142-52. [PMID: 22292422 DOI: 10.1139/o11-079] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The rising prevalence of metabolic diseases, such as obesity and diabetes, has become a public health concern. Vitamin A (VA, retinol) is an essential micronutrient for a variety of physiological processes, such as tissue differentiation, immunity, and vision. However, its role in glucose and lipid metabolism has not been clearly defined. VA activities are mediated by the metabolite of retinol catabolism, retinoic acid, which activates the retinoic acid receptor and retinoid X receptor (RXR). Since RXR is an obligate heterodimeric partner for many nuclear receptors involved in metabolism, it is reasonable to assume that VA status and retinoids contribute to glucose and lipid homeostasis. To date, the impacts of VA and retinoids on energy metabolism in animals and humans have been demonstrated in some basic and clinical investigations. This review summarizes the effects of VA status and retinoid treatments on metabolism of the liver, adipocytes, pancreatic β-cells, and skeletal muscle. It proposes a mechanism by which the dietary and hormonal signals converge on the promoter of sterol regulatory element-binding protein 1c gene to induce its expression, and in turn, the expression of lipogenic genes in hepatocytes. Future research projects relevant to the VA's roles in metabolic diseases are also discussed.
Collapse
Affiliation(s)
- Shi Zhao
- The Diabetes Center, Wuhan Central Hospital, Wuhan, Hubei 430014, China
| | | | | | | | | | | |
Collapse
|
14
|
Bensellam M, Duvillié B, Rybachuk G, Laybutt DR, Magnan C, Guiot Y, Pouysségur J, Jonas JC. Glucose-induced O₂ consumption activates hypoxia inducible factors 1 and 2 in rat insulin-secreting pancreatic beta-cells. PLoS One 2012; 7:e29807. [PMID: 22235342 PMCID: PMC3250482 DOI: 10.1371/journal.pone.0029807] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 12/06/2011] [Indexed: 12/21/2022] Open
Abstract
Background Glucose increases the expression of glycolytic enzymes and other hypoxia-response genes in pancreatic beta-cells. Here, we tested whether this effect results from the activation of Hypoxia-Inducible-factors (HIF) 1 and 2 in a hypoxia-dependent manner. Methodology/Principal Findings Isolated rat islets and insulin-secreting INS-1E cells were stimulated with nutrients at various pO2 values or treated with the HIF activator CoCl2. HIF-target gene mRNA levels and HIF subunit protein levels were measured by real-time RT-PCR, Western Blot and immunohistochemistry. The formation of pimonidazole-protein adducts was used as an indicator of hypoxia. In INS-1E and islet beta-cells, glucose concentration-dependently stimulated formation of pimonidazole-protein adducts, HIF1 and HIF2 nuclear expression and HIF-target gene mRNA levels to a lesser extent than CoCl2 or a four-fold reduction in pO2. Islets also showed signs of HIF activation in diabetic Leprdb/db but not non-diabetic Leprdb/+ mice. In vitro, these glucose effects were reproduced by nutrient secretagogues that bypass glycolysis, and were inhibited by a three-fold increase in pO2 or by inhibitors of Ca2+ influx and insulin secretion. In INS-1E cells, small interfering RNA-mediated knockdown of Hif1α and Hif2α, alone or in combination, indicated that the stimulation of glycolytic enzyme mRNA levels depended on both HIF isoforms while the vasodilating peptide adrenomedullin was a HIF2-specific target gene. Conclusions/Significance Glucose-induced O2 consumption creates an intracellular hypoxia that activates HIF1 and HIF2 in rat beta-cells, and this glucose effect contributes, together with the activation of other transcription factors, to the glucose stimulation of expression of some glycolytic enzymes and other hypoxia response genes.
Collapse
Affiliation(s)
- Mohammed Bensellam
- Pôle d′Endocrinologie, Diabète et Nutrition, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Bertrand Duvillié
- INSERM U845, Faculté de Médecine, Research Center Growth and Signalling, Université Paris Descartes, Hôpital Necker, Paris, France
| | - Galyna Rybachuk
- Pôle d′Endocrinologie, Diabète et Nutrition, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - D. Ross Laybutt
- Diabetes and Obesity Research Program, Garvan Institute of Medical Research, St. Vincent's Hospital, Sydney, Australia
| | - Christophe Magnan
- Unité de Biologie Fonctionnelle et Adaptative, CNRS-Université Paris Diderot-Paris 7, Paris, France
| | - Yves Guiot
- Pôle de Morphologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Jacques Pouysségur
- Institute of Developmental Biology and Cancer Research, University of Nice, CNRS UMR 6543, Centre A. Lacassagne, Nice, France
| | - Jean-Christophe Jonas
- Pôle d′Endocrinologie, Diabète et Nutrition, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
- * E-mail:
| |
Collapse
|
15
|
Brozzi F, Diraison F, Lajus S, Rajatileka S, Philips T, Regazzi R, Fukuda M, Verkade P, Molnár E, Váradi A. Molecular mechanism of myosin Va recruitment to dense core secretory granules. Traffic 2011; 13:54-69. [PMID: 21985333 DOI: 10.1111/j.1600-0854.2011.01301.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The brain-spliced isoform of Myosin Va (BR-MyoVa) plays an important role in the transport of dense core secretory granules (SGs) to the plasma membrane in hormone and neuropeptide-producing cells. The molecular composition of the protein complex that recruits BR-MyoVa to SGs and regulates its function has not been identified to date. We have identified interaction between SG-associated proteins granuphilin-a/b (Gran-a/b), BR-MyoVa and Rab27a, a member of the Rab family of GTPases. Gran-a/b-BR-MyoVa interaction is direct, involves regions downstream of the Rab27-binding domain, and the C-terminal part of Gran-a determines exon specificity. MyoVa and Gran-a/b are partially colocalised on SGs and disruption of Gran-a/b-BR-MyoVa binding results in a perinuclear accumulation of SGs which augments nutrient-stimulated hormone secretion in pancreatic beta-cells. These results indicate the existence of at least another binding partner of BR-MyoVa that was identified as rabphilin-3A (Rph-3A). BR-MyoVa-Rph-3A interaction is also direct and enhanced when secretion is activated. The BR-MyoVa-Rph-3A and BR-MyoVa-Gran-a/b complexes are linked to a different subset of SGs, and simultaneous inhibition of these complexes nearly completely blocks stimulated hormone release. This study demonstrates that multiple binding partners of BR-MyoVa regulate SG transport, and this molecular mechanism is universally used by neuronal, endocrine and neuroendocrine cells.
Collapse
Affiliation(s)
- Flora Brozzi
- Centre for Research in Biomedicine, Faculty of Health and Life Sciences, University of the West of England, Bristol, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Chen K, jin P, He HH, Xie YH, Xie XY, Mo ZH. Overexpression of Insig-1 protects β cell against glucolipotoxicity via SREBP-1c. J Biomed Sci 2011; 18:57. [PMID: 21843373 PMCID: PMC3166905 DOI: 10.1186/1423-0127-18-57] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 08/16/2011] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND High glucose induced lipid synthesis leads to β cell glucolipotoxicity. Sterol regulatory element binding protein-1c (SREBP-1c) is reported to be partially involved in this process. Insulin induced gene-1 (Insig-1) is an important upstream regulator of Insig-1-SREBPs cleavage activating protein (SCAP)-SREBP-1c pathway. Insig-1 effectively blocks the transcription of SREBP-1c, preventing the activation of the genes for lipid biosynthesis. In this study, we aimed to investigate whether Insig-1 protects β cells against glucolipotoxicity. METHODS An Insig-1 stable cell line was generated by overexpression of Insig-1 in INS-1 cells. The expression of Insig-1 was evaluated by RT-PCR and Western blotting, then, cells were then treated with standard (11.2 mM) or high (25.0 mM) glucose for 0 h, 24 h and 72 h. Cell viability, apoptosis, glucose stimulated insulin secretion (GSIS), lipid metabolism and mRNA expression of insulin secretion relevant genes such as IRS-2, PDX-1, GLUT-2, Insulin and UCP-2 were evaluated. RESULTS We found that Insig-1 suppressed the high glucose induced SREBP-1c mRNA and protein expression. Our results also showed that Insig-1 overexpression protected β cells from ER stress-induced apoptosis by regulating the proteins expressed in the IRE1α pathway, such as p-IRE1α, p-JNK, CHOP and BCL-2. In addition, Insig-1 up-regulated the expression of IRS-2, PDX-1, GLUT-2 and Insulin, down-regulated the expression of UCP-2 and improved glucose stimulated insulin secretion (GSIS). Finally, we found that Insig-1 inhibited the lipid accumulation and free fatty acid (FFA) synthesis in a time-dependent manner. CONCLUSIONS There results suggest that Insig-1 may play a critical role in protecting β cells against glucolipotoxicity by regulating the expression of SREBP-1c.
Collapse
Affiliation(s)
- Ke Chen
- Department of Endocrinology, Third Xiangya Hospital of Central South University, Changsha, China
| | - ping jin
- Department of Endocrinology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Hong-hui He
- Department of Endocrinology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Yan-hong Xie
- Department of Endocrinology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Xiao-yun Xie
- Department of Endocrinology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Zhao-hui Mo
- Department of Endocrinology, Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
17
|
Transcriptional regulation of glucose sensors in pancreatic β-cells and liver: an update. SENSORS 2010; 10:5031-53. [PMID: 22399922 PMCID: PMC3292162 DOI: 10.3390/s100505031] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 05/07/2010] [Accepted: 05/13/2010] [Indexed: 01/17/2023]
Abstract
Pancreatic β-cells and the liver play a key role in glucose homeostasis. After a meal or in a state of hyperglycemia, glucose is transported into the β-cells or hepatocytes where it is metabolized. In the β-cells, glucose is metabolized to increase the ATP:ADP ratio, resulting in the secretion of insulin stored in the vesicle. In the hepatocytes, glucose is metabolized to CO(2), fatty acids or stored as glycogen. In these cells, solute carrier family 2 (SLC2A2) and glucokinase play a key role in sensing and uptaking glucose. Dysfunction of these proteins results in the hyperglycemia which is one of the characteristics of type 2 diabetes mellitus (T2DM). Thus, studies on the molecular mechanisms of their transcriptional regulations are important in understanding pathogenesis and combating T2DM. In this paper, we will review a recent update on the progress of gene regulation of glucose sensors in the liver and β-cells.
Collapse
|
18
|
Green CD, Ozguden-Akkoc CG, Wang Y, Jump DB, Olson LK. Role of fatty acid elongases in determination of de novo synthesized monounsaturated fatty acid species. J Lipid Res 2010; 51:1871-7. [PMID: 20228221 DOI: 10.1194/jlr.m004747] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enhanced production of monounsaturated fatty acids (FA) derived from carbohydrate-enriched diets has been implicated in the development of obesity and insulin resistance. The FA elongases Elovl-5 and Elovl-6 are regulated by nutrient and hormone status, and have been shown using intact yeast and mammalian microsome fractions to be involved in the synthesis of monounsaturated FAs (MUFA). Herein, targeted knockdown and overexpression of Elovl-5 or Elovl-6 was used to determine their roles in de novo synthesis of specific MUFA species in mammalian cells. Treatment of rat insulinoma (INS)-1 cells with elevated glucose increased de novo FA synthesis and the ratio of MUFAs to saturated FAs. Elovl-5 knockdown decreased elongation of 16:1,n-7. Elovl-5 overexpression increased synthesis of 18:1,n-7; however, this increase was dependent on stearoyl-CoA desaturase-driven 16:1,n-7 availability. Knockdown of Elovl-6 decreased elongation of 16:0 and 16:1,n-7, resulting in accumulation of 16:1,n-7. Elovl-6 overexpression preferentially drove synthesis of 16:0 elongation products 18:0 and 18:1,n-9 but not 18:1,n-7. These findings demonstrate that coordinated induction of FA elongase and desaturase activity is required for balanced synthesis of specific n-7 versus n-9 MUFA species. Given the relative abundance of 16:0 to 16:1,n-7 and the specificity of Elovl-6 for 16:0, Elovl-6 is a major elongase for 18:1,n-9 production.
Collapse
Affiliation(s)
- Christopher D Green
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | |
Collapse
|
19
|
Schisler JC, Charles PC, Parker JS, Hilliard EG, Mapara S, Meredith D, Lineberger RE, Wu SS, Alder BD, Stouffer GA, Patterson C. Stable patterns of gene expression regulating carbohydrate metabolism determined by geographic ancestry. PLoS One 2009; 4:e8183. [PMID: 20016837 PMCID: PMC2790609 DOI: 10.1371/journal.pone.0008183] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 11/09/2009] [Indexed: 12/02/2022] Open
Abstract
Background Individuals of African descent in the United States suffer disproportionately from diseases with a metabolic etiology (obesity, metabolic syndrome, and diabetes), and from the pathological consequences of these disorders (hypertension and cardiovascular disease). Methodology/Principal Findings Using a combination of genetic/genomic and bioinformatics approaches, we identified a large number of genes that were both differentially expressed between American subjects self-identified to be of either African or European ancestry and that also contained single nucleotide polymorphisms that distinguish distantly related ancestral populations. Several of these genes control the metabolism of simple carbohydrates and are direct targets for the SREBP1, a metabolic transcription factor also differentially expressed between our study populations. Conclusions/Significance These data support the concept of stable patterns of gene transcription unique to a geographic ancestral lineage. Differences in expression of several carbohydrate metabolism genes suggest both genetic and transcriptional mechanisms contribute to these patterns and may play a role in exacerbating the disproportionate levels of obesity, diabetes, and cardiovascular disease observed in Americans with African ancestry.
Collapse
Affiliation(s)
- Jonathan C. Schisler
- McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Peter C. Charles
- McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Division of Cardiology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Joel S. Parker
- Expression Analysis, Durham, North Carolina, United States of America
| | - Eleanor G. Hilliard
- McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Sabeen Mapara
- McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Dane Meredith
- Division of Cardiology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Robert E. Lineberger
- McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Samuel S. Wu
- Division of Cardiology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Brian D. Alder
- School of Medicine, Duke University, Durham, North Carolina, United States of America
| | - George A. Stouffer
- Division of Cardiology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Cam Patterson
- McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Division of Cardiology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
20
|
Medina-Gomez G, Yetukuri L, Velagapudi V, Campbell M, Blount M, Jimenez-Linan M, Ros M, Oresic M, Vidal-Puig A. Adaptation and failure of pancreatic beta cells in murine models with different degrees of metabolic syndrome. Dis Model Mech 2009; 2:582-92. [PMID: 19841237 DOI: 10.1242/dmm.003251] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The events that contribute to the expansion of beta-cell mass and enhanced beta-cell function in insulin-resistant states have not been elucidated fully. Recently, we showed that beta-cell adaptation failed dramatically in adult, insulin-resistant POKO mice, which contrasts with the appropriate expansion of beta cells in their ob/ob littermates. Thus, we hypothesised that characterisation of the islets in these mouse models at an early age should provide a unique opportunity to: (1) identify mechanisms involved in sensing insulin resistance at the level of the beta cells, (2) identify molecular effectors that contribute to increasing beta-cell mass and function, and (3) distinguish primary events from secondary events that are more likely to be present at more advanced stages of diabetes. Our results define the POKO mouse as a model of early lipotoxicity. At 4 weeks of age, it manifests with inappropriate beta-cell function and defects in proliferation markers. Other well-recognised pathogenic effectors that were observed previously in 16-week-old mice, such as increased reactive oxygen species (ROS), macrophage infiltration and endoplasmic reticulum (ER) stress, are also present in both young POKO and young ob/ob mice, indicating the lack of predictive power with regards to the severity of beta-cell failure. Of interest, the relatively preserved lipidomic profile in islets from young POKO mice contrasted with the large changes in lipid composition and the differences in the chain length of triacylglycerols in the serum, liver, muscle and adipose tissue in adult POKO mice. Later lipotoxic insults in adult beta cells contribute to the failure of the POKO beta cell. Our results indicate that the rapid development of insulin resistance and beta-cell failure in POKO mice makes this model a useful tool to study early molecular events leading to insulin resistance and beta-cell failure. Furthermore, comparisons with ob/ob mice might reveal important adaptive mechanisms in beta cells with either therapeutic or diagnostic potential.
Collapse
Affiliation(s)
- Gema Medina-Gomez
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Hellemans KH, Hannaert JC, Denys B, Steffensen KR, Raemdonck C, Martens GA, Van Veldhoven PP, Gustafsson JA, Pipeleers D. Susceptibility of pancreatic beta cells to fatty acids is regulated by LXR/PPARalpha-dependent stearoyl-coenzyme A desaturase. PLoS One 2009; 4:e7266. [PMID: 19787047 PMCID: PMC2746288 DOI: 10.1371/journal.pone.0007266] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2009] [Accepted: 09/02/2009] [Indexed: 01/22/2023] Open
Abstract
Chronically elevated levels of fatty acids-FA can cause beta cell death in vitro. Beta cells vary in their individual susceptibility to FA-toxicity. Rat beta cells were previously shown to better resist FA-toxicity in conditions that increased triglyceride formation or mitochondrial and peroxisomal FA-oxidation, possibly reducing cytoplasmic levels of toxic FA-moieties. We now show that stearoyl-CoA desaturase-SCD is involved in this cytoprotective mechanism through its ability to transfer saturated FA into monounsaturated FA that are incorporated in lipids. In purified beta cells, SCD expression was induced by LXR- and PPARalpha-agonists, which were found to protect rat, mouse and human beta cells against palmitate toxicity. When their SCD was inhibited or silenced, the agonist-induced protection was also suppressed. A correlation between beta cell-SCD expression and susceptibility to palmitate was also found in beta cell preparations isolated from different rodent models. In mice with LXR-deletion (LXRbeta(-/-) and LXRalphabeta(-/-)), beta cells presented a reduced SCD-expression as well as an increased susceptibility to palmitate-toxicity, which could not be counteracted by LXR or PPARalpha agonists. In Zucker fatty rats and in rats treated with the LXR-agonist TO1317, beta cells show an increased SCD-expression and lower palmitate-toxicity. In the normal rat beta cell population, the subpopulation with lower metabolic responsiveness to glucose exhibits a lower SCD1 expression and a higher susceptibility to palmitate toxicity. These data demonstrate that the beta cell susceptibility to saturated fatty acids can be reduced by stearoyl-coA desaturase, which upon stimulation by LXR and PPARalpha agonists favors their desaturation and subsequent incorporation in neutral lipids.
Collapse
Affiliation(s)
- Karine H Hellemans
- Diabetes Research Center, Brussels Free University-VUB, and JDRF Center for Beta Cell Therapy in Diabetes, Brussels, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Martens GA, Pipeleers D. Glucose, regulator of survival and phenotype of pancreatic beta cells. VITAMINS AND HORMONES 2009; 80:507-39. [PMID: 19251048 DOI: 10.1016/s0083-6729(08)00617-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The key role of glucose in regulating insulin release by the pancreatic beta cell population is not only dependent on acute stimulus-secretion coupling mechanisms but also on more long-term influences on beta cell survival and phenotype. Glucose serves as a major survival factor for beta cells via at least three actions: it prevents an oxidative redox state, it suppresses a mitochondrial apoptotic program that is triggered at reduced mitochondrial metabolic activity and it induces genes needed for the cellular responsiveness to glucose and to growth factors. Glucose-regulated pathways may link protein synthetic and proliferative activities, making glucose a permissive factor for beta cell proliferation, in check with metabolic needs. Conditions of inadequate glucose metabolism in beta cells are not only leading to deregulation of acute secretory responses but should also be considered as causes for increased apoptosis and reduced formation of beta cells, and loss of their normal differentiated state.
Collapse
|
23
|
Green CD, Jump DB, Olson LK. Elevated insulin secretion from liver X receptor-activated pancreatic beta-cells involves increased de novo lipid synthesis and triacylglyceride turnover. Endocrinology 2009; 150:2637-45. [PMID: 19228891 PMCID: PMC2689804 DOI: 10.1210/en.2008-1039] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Increased basal and loss of glucose-stimulated insulin secretion (GSIS) are hallmarks of beta-cell dysfunction associated with type 2 diabetes. It has been proposed that elevated glucose promotes insulin secretory defects by activating sterol regulatory element binding protein (SREBP)-1c, lipogenic gene expression, and neutral lipid storage. Activation of liver X receptors (LXRs) also activates SREBP-1c and increases lipogenic gene expression and neutral lipid storage but increases basal and GSIS. This study was designed to characterize the changes in de novo fatty acid and triacylglyceride (TAG) synthesis in LXR-activated beta-cells and determine how these changes contribute to elevated basal and GSIS. Treatment of INS-1 beta-cells with LXR agonist T0901317 and elevated glucose led to markedly increased nuclear localization of SREBP-1, lipogenic gene expression, de novo synthesis of monounsaturated fatty acids and TAG, and basal and GSIS. LXR-activated cells had increased fatty acid oxidation and expression of genes involved in mitochondrial beta-oxidation, particularly carnitine palmitoyltransferase-1. Increased basal insulin release from LXR-activated cells coincided with rapid turnover of newly synthesized TAG and required acyl-coenzyme A synthesis and mitochondrial beta-oxidation. GSIS from LXR-activated INS-1 cells required influx of extracellular calcium and lipolysis, suggesting production of lipid-signaling molecules from TAG. Inhibition of diacylglyceride (DAG)-binding proteins, but not classic isoforms of protein kinase C, attenuated GSIS from LXR-activated INS-1 cells. In conclusion, LXR activation in beta-cells exposed to elevated glucose concentrations increases de novo TAG synthesis; subsequent lipolysis produces free fatty acids and DAG, which are oxidized to increase basal insulin release and activate DAG-binding proteins to enhance GSIS, respectively.
Collapse
Affiliation(s)
- Christopher D Green
- Departments of Physiology, Michigan State University, East Lansing, Michigan 48824-3320, USA
| | | | | |
Collapse
|
24
|
Bensellam M, Van Lommel L, Overbergh L, Schuit FC, Jonas JC. Cluster analysis of rat pancreatic islet gene mRNA levels after culture in low-, intermediate- and high-glucose concentrations. Diabetologia 2009; 52:463-76. [PMID: 19165461 DOI: 10.1007/s00125-008-1245-z] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Accepted: 11/19/2008] [Indexed: 10/21/2022]
Abstract
AIMS/HYPOTHESIS Survival and function of insulin-secreting pancreatic beta cells are markedly altered by changes in nutrient availability. In vitro, culture in 10 rather than 2 mmol/l glucose improves rodent beta cell survival and function, whereas glucose concentrations above 10 mmol/l are deleterious. METHODS To identify the mechanisms of such beta cell plasticity, we tested the effects of 18 h culture at 2, 5, 10 and 30 mmol/l glucose on the transcriptome of rat islets pre-cultured for 1 week at 10 mmol/l glucose using Affymetrix Rat 230 2.0 arrays. RESULTS Culture in either 2-5 or 30 mmol/l instead of 10 mmol/l glucose markedly impaired beta cell function, while little affecting cell survival. Of about 16,000 probe-sets reliably detected in islets, some 5,000 were significantly up- or downregulated at least 1.4-fold by glucose. Analysis of these probe-sets with GeneCluster software identified ten mRNA profiles with unidirectional up- or downregulation between 2 and 10, 2 and 30, 5 and 10, 5 and 30 or 10 and 30 mmol/l glucose. It also identified eight complex V-shaped or inverse V-shaped profiles with a nadir or peak level of expression in 5 or 10 mmol/l glucose. Analysis of genes belonging to these various clusters using Onto-express and GenMAPP software revealed several signalling and metabolic pathways that may contribute to induction of beta cell dysfunction and apoptosis after culture in low- or high- vs intermediate-glucose concentration. CONCLUSIONS/INTERPRETATION We have identified 18 distinct mRNA profiles of glucose-induced changes in islet gene mRNA levels that should help understand the mechanisms by which glucose affects beta cell survival and function under states of chronic hypo- or hyperglycaemia.
Collapse
Affiliation(s)
- M Bensellam
- Unit of Endocrinology and Metabolism, Faculty of Medicine, Université catholique de Louvain, Avenue Hippocrate 55 (UCL5530), 1200, Brussels, Belgium
| | | | | | | | | |
Collapse
|
25
|
Torres N, Noriega L, Tovar AR. Nutrient modulation of insulin secretion. VITAMINS AND HORMONES 2009; 80:217-44. [PMID: 19251040 DOI: 10.1016/s0083-6729(08)00609-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The presence of different nutrients regulates the beta-cell response to secrete insulin to maintain glucose in the physiological range and appropriate levels of fuels in different organs and tissues. Glucose is the only nutrient secretagogue capable of promoting alone the release of insulin release. The mechanisms of Insulin secretion are dependent or independent of the closure of ATP-sensitive K(+) channels. In addition, insulin secretion in response to glucose and other nutrients is modulated by several hormones as incretins, glucagon, and leptin. Fatty acids (FAs), amino acids, and keto acids influence secretion as well. The exact mechanism for which nutrients induce insulin secretion is complicated because nutrient signaling shows one of the most complex transduction systems, which exists for the reason that nutrient have to be metabolized. FAs in the absence of glucose induce FA oxidation and insulin secretion in a lesser extent. However, FAs in the presence of glucose produce high concentration of malonyl-CoA that repress FA oxidation and increase the formation of LC-CoA amplifying the insulin release. Long-term exposure to fatty acids and glucose results in glucolipotoxicity and decreases in insulin release. The amino acid pattern produced after the consumption of a dietary protein regulates insulin secretion by generating anaplerotic substrates that stimulates ATP synthesis or by activating specific signal transduction mediated by mTOR, AMPK, and SIRT4 or modulating the expression of genes involved in insulin secretion. Finally, dietary bioactive compounds such as isoflavones play an important role in the regulation of insulin secretion.
Collapse
Affiliation(s)
- Nimbe Torres
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Vasco de Quiroga, Mexico DF 14000, Mexico
| | | | | |
Collapse
|
26
|
Role of nuclear receptors in the modulation of insulin secretion in lipid-induced insulin resistance. Biochem Soc Trans 2008; 36:891-900. [PMID: 18793157 DOI: 10.1042/bst0360891] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In healthy individuals, a hyperbolic relationship exists between whole-body insulin-sensitivity and insulin secretion. Thus, for any difference in insulin-sensitivity, a reciprocal proportionate change occurs in insulin secretion. Such a feedback loop is evident in healthy individuals ingesting diets high in saturated fat and in late pregnancy where, despite lipid-induced insulin resistance, glucose tolerance is maintained through augmented GSIS (glucose-stimulated insulin secretion). NRs (nuclear receptors) are members of a superfamily of ligand-regulated and orphan transcription factors. On activation by a cognate ligand, many ligand-activated NRs recruit the RXR (retinoid X receptor) for heterodimer formation. Such NRs include the PPARs (peroxisome-proliferator-activated receptors), which are involved in lipid sensing and liporegulation. PPARs exert important lipid-lowering effects in vivo, thereby opposing the development of lipid-induced insulin resistance by relieving the inhibition of insulin-stimulated glucose disposal by muscle and lowering the necessity for augmented GSIS to counter lipid-induced insulin resistance. Long-chain fatty acids are proposed as natural PPAR ligands and some specific endogenous pathways of lipid metabolism are believed to generate PPAR agonists. Other NRs, e.g. the LXR (liver X receptor), which senses expansion of the metabolically active pool of cholesterol, and the FXR (farnesoid X receptor; NR1H4), which, like the LXR, is involved in sterol metabolism, also modulate systemic lipid levels and insulin-sensitivity. In this review, we discuss how these NRs impact insulin secretion via effects on the insulin-sensitivity-insulin secretion feedback loop and, in some cases, via direct effects on the islet itself. In addition, we discuss interactions between these nutrient/metabolite-responsive NRs and NRs that are central to the action of metabolically important hormones, including (i) the glucocorticoid receptor, critical for maintaining glucose homoeostasis in stress, inflammation and during fasting, and (ii) the thyroid hormone receptors, vital for maintenance of oxidative functions. We present data indicating that the RXR occupies a key role in directly modulating islet function and that its heterodimerization with at least two of its partners modulates GSIS.
Collapse
|