1
|
Moran-Garrido M, Camunas-Alberca SM, Sáiz J, Gradillas A, Taha AY, Barbas C. Deeper insights into the stability of oxylipins in human plasma across multiple freeze-thaw cycles and storage conditions. J Pharm Biomed Anal 2024; 255:116587. [PMID: 39647243 DOI: 10.1016/j.jpba.2024.116587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/29/2024] [Accepted: 11/27/2024] [Indexed: 12/10/2024]
Abstract
Oxylipins are signaling lipids derived from the oxidation of polyunsaturated fatty acids (PUFAs). In lipidomic studies, human plasma may be subjected to various storage conditions and freeze-thaw cycles, which may impact the analysis of these compounds. In this study, we used liquid chromatography coupled with mass spectrometry (LC-MS) to examine the influence of up to five freeze-thaw cycles (FTCs) on free and total (mostly esterified) oxylipins in human plasma and the influence of temperature and storage duration (4 °C for up to 120 h and -20 °C and -80 °C for 1-98 days) in the presence or absence of butylated hydroxytoluene (BHT) on extracted oxylipins stored in LC-MS amber vials. In fresh plasma subjected to several FTCs, approximately 48 % of the detected free oxylipins were significantly altered by the third cycle, with increases in cytochrome P450 (CYP450) and lipoxygenase (LOX)-derived compounds and reductions in trihydroxylated oxylipins. In contrast, multiple FTCs did not significantly alter esterified oxylipins. At 4 °C, the extracted oxylipins did not change significantly for up to 120 h (5 days). Oxylipin levels remained stable for 98 days at -80 °C but decreased by 98 days at -20 °C. The antioxidant activity of butylated hydroxytoluene (BHT) did not influence oxylipin stability at 4 °C for 120 h or at -80 °C for 98 days, but it reduced oxylipin degradation at -20 °C at 98 days. Conversely, prostaglandin F2α (PGF2α) exhibited substantial increases at -20 °C and -80 °C, independent of BHT. This study demonstrates that (i) unlike free oxylipins, the esterified oxylipin pool remains stable following repeated FTCs, (ii) extracted oxylipins are stable at 4 °C for up to 120 h and at -80 °C for up to 98 days, but not at -20 °C for 98 days, and (iii) BHT may minimize oxylipin degradation of sample extracts stored at -20 °C. This study provides a framework for measuring oxylipins under various freeze-thaw and storage conditions.
Collapse
Affiliation(s)
- Maria Moran-Garrido
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid, Spain.
| | - Sandra M Camunas-Alberca
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid, Spain.
| | - Jorge Sáiz
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid, Spain.
| | - Ana Gradillas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid, Spain.
| | - Ameer Y Taha
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA 95616, USA; West Coast Metabolomics Center, Genome Center, University of California, Davis, CA 95616, USA; Center for Neuroscience, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA.
| | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid, Spain.
| |
Collapse
|
2
|
Das S, Finney AC, Anand SK, Rohilla S, Liu Y, Pandey N, Ghrayeb A, Kumar D, Nunez K, Liu Z, Arias F, Zhao Y, Pearson-Gallion BH, McKinney MP, Richard KSE, Gomez-Vidal JA, Abdullah CS, Cockerham ED, Eniafe J, Yurochko AD, Magdy T, Pattillo CB, Kevil CG, Razani B, Bhuiyan MS, Seeley EH, Galliano GE, Wei B, Tan L, Mahmud I, Surakka I, Garcia-Barrio MT, Lorenzi PL, Gottlieb E, Salido E, Zhang J, Orr AW, Liu W, Diaz-Gavilan M, Chen YE, Dhanesha N, Thevenot PT, Cohen AJ, Yurdagul A, Rom O. Inhibition of hepatic oxalate overproduction ameliorates metabolic dysfunction-associated steatohepatitis. Nat Metab 2024; 6:1939-1962. [PMID: 39333384 PMCID: PMC11495999 DOI: 10.1038/s42255-024-01134-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/28/2024] [Indexed: 09/29/2024]
Abstract
The incidence of metabolic dysfunction-associated steatohepatitis (MASH) is on the rise, and with limited pharmacological therapy available, identification of new metabolic targets is urgently needed. Oxalate is a terminal metabolite produced from glyoxylate by hepatic lactate dehydrogenase (LDHA). The liver-specific alanine-glyoxylate aminotransferase (AGXT) detoxifies glyoxylate, preventing oxalate accumulation. Here we show that AGXT is suppressed and LDHA is activated in livers from patients and mice with MASH, leading to oxalate overproduction. In turn, oxalate promotes steatosis in hepatocytes by inhibiting peroxisome proliferator-activated receptor-α (PPARα) transcription and fatty acid β-oxidation and induces monocyte chemotaxis via C-C motif chemokine ligand 2. In male mice with diet-induced MASH, targeting oxalate overproduction through hepatocyte-specific AGXT overexpression or pharmacological inhibition of LDHA potently lowers steatohepatitis and fibrosis by inducing PPARα-driven fatty acid β-oxidation and suppressing monocyte chemotaxis, nuclear factor-κB and transforming growth factor-β targets. These findings highlight hepatic oxalate overproduction as a target for the treatment of MASH.
Collapse
Grants
- R01 HL162294 NHLBI NIH HHS
- R00 HL150233 NHLBI NIH HHS
- R01 DK134011 NIDDK NIH HHS
- HL138139 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL145753 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL141155 NHLBI NIH HHS
- HL159871 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL134569 NHLBI NIH HHS
- R01 DK136685 NIDDK NIH HHS
- HL134569 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL153710 NHLBI NIH HHS
- HL139755 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL153710 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL159871 NHLBI NIH HHS
- P01 AI127335 NIAID NIH HHS
- DK136685 U.S. Department of Health & Human Services | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (National Institute of Diabetes & Digestive & Kidney Diseases)
- HL133497 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL138139 NHLBI NIH HHS
- 24POST1196650 American Heart Association (American Heart Association, Inc.)
- HL141155 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL109946 NHLBI NIH HHS
- P20 GM134974 NIGMS NIH HHS
- K99 HL150233 NHLBI NIH HHS
- HL109946 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- 19POST34380224 American Heart Association (American Heart Association, Inc.)
- 24POST1199805 American Heart Association (American Heart Association, Inc.)
- DK134011 U.S. Department of Health & Human Services | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (National Institute of Diabetes & Digestive & Kidney Diseases)
- R01 AI056077 NIAID NIH HHS
- 23POST1026505 American Heart Association (American Heart Association, Inc.)
- R01 HL158546 NHLBI NIH HHS
- HL145131 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- 20CDA3560123 American Heart Association (American Heart Association, Inc.)
- AI127335 U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
- R00 HL145131 NHLBI NIH HHS
- R01 HL145753 NHLBI NIH HHS
- R01 HL139755 NHLBI NIH HHS
- HL145753-01S1 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL162294 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL150233 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL167758 NHLBI NIH HHS
- K99 HL145131 NHLBI NIH HHS
- HL145753-03S1 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL167758 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL172970 NHLBI NIH HHS
- P20GM134974 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- R56 AI159672 NIAID NIH HHS
- R56-AI159672 U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
- DK131859 U.S. Department of Health & Human Services | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (National Institute of Diabetes & Digestive & Kidney Diseases)
- F31 DK131859 NIDDK NIH HHS
- R01 HL133497 NHLBI NIH HHS
- HL158546 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- RP190617 Cancer Prevention and Research Institute of Texas (Cancer Prevention Research Institute of Texas)
- U.S. Department of Health & Human Services | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (National Institute of Diabetes & Digestive & Kidney Diseases)
- U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
- U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
Collapse
Affiliation(s)
- Sandeep Das
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Alexandra C Finney
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Sumit Kumar Anand
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Sumati Rohilla
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Yuhao Liu
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, USA
| | - Nilesh Pandey
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Alia Ghrayeb
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dhananjay Kumar
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Kelley Nunez
- Institute of Translational Research, Ochsner Clinic Foundation, New Orleans, LA, USA
| | - Zhipeng Liu
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Fabio Arias
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
- Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Granada, Spain
| | - Ying Zhao
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, USA
| | - Brenna H Pearson-Gallion
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - M Peyton McKinney
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Koral S E Richard
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Jose A Gomez-Vidal
- Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Granada, Spain
| | - Chowdhury S Abdullah
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Elizabeth D Cockerham
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Joseph Eniafe
- Department of Microbiology and Immunology, Center of Applied Immunology and Pathological Processes, Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Andrew D Yurochko
- Department of Microbiology and Immunology, Center of Applied Immunology and Pathological Processes, Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Tarek Magdy
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Christopher B Pattillo
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Christopher G Kevil
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Babak Razani
- Division of Cardiology and Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Md Shenuarin Bhuiyan
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Erin H Seeley
- Department of Chemistry, University of Texas at Austin, Austin, TX, USA
| | | | - Bo Wei
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lin Tan
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Iqbal Mahmud
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ida Surakka
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, USA
| | - Minerva T Garcia-Barrio
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, USA
| | - Philip L Lorenzi
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eyal Gottlieb
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eduardo Salido
- Department of Pathology, Hospital Universitario de Canarias, Universidad de La Laguna, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Tenerife, Spain
| | - Jifeng Zhang
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, USA
| | - A Wayne Orr
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Wanqing Liu
- Department of Pharmaceutical Sciences and Department of Pharmacology, Wayne State University, Detroit, MI, USA
| | - Monica Diaz-Gavilan
- Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Granada, Spain
| | - Y Eugene Chen
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, USA
| | - Nirav Dhanesha
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Paul T Thevenot
- Institute of Translational Research, Ochsner Clinic Foundation, New Orleans, LA, USA
| | - Ari J Cohen
- Institute of Translational Research, Ochsner Clinic Foundation, New Orleans, LA, USA
- Multi-Organ Transplant Institute, Ochsner Clinic Foundation, New Orleans, LA, USA
| | - Arif Yurdagul
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Oren Rom
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA.
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA.
| |
Collapse
|
3
|
You H, Chang F, Chen H, Wang Y, Han W. Exploring the role of CBLB in acute myocardial infarction: transcriptomic, microbiomic, and metabolomic analyses. J Transl Med 2024; 22:654. [PMID: 39004726 PMCID: PMC11247792 DOI: 10.1186/s12967-024-05425-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024] Open
Abstract
BACKGROUND Specific alterations in gut microbiota and metabolites have been linked to AMI, with CBLB potentially playing an essential role. However, the precise interactions remain understudied, creating a significant gap in our understanding. This study aims to address this by exploring these interactions in CBLB-intervened AMI mice using transcriptome sequencing, 16 S rDNA, and non-targeted metabolite analysis. METHODS To probe the therapeutic potential and mechanistic underpinnings of CBLB overexpression in AMI, we utilized an integrative multi-omics strategy encompassing transcriptomics, metabolomics, and 16s rDNA sequencing. We selected these particular methods as they facilitate a holistic comprehension of the intricate interplay between the host and its microbiota, and the potential effects on the host's metabolic and gene expression profiles. The uniqueness of our investigation stems from utilizing a multi-omics approach to illuminate the role of CBLB in AMI, an approach yet unreported to the best of our knowledge. Our experimental protocol encompassed transfection of CBLB lentivirus-packaged vectors into 293T cells, followed by subsequent intervention in AMI mice. Subsequently, we conducted pathological staining, fecal 16s rDNA sequencing, and serum non-targeted metabolome sequencing. We applied differential expression analysis to discern differentially expressed genes (DEGs), differential metabolites, and differential microbiota. We performed protein-protein interaction analysis to identify core genes, and conducted correlation studies to clarify the relationships amongst these core genes, paramount metabolites, and key microbiota. RESULTS Following the intervention of CBLB in AMI, we observed a significant decrease in inflammatory cell infiltration and collagen fiber formation in the infarcted region of mice hearts. We identified key changes in microbiota, metabolites, and DEGs that were associated with this intervention. The findings revealed that CBLB has a significant correlation with DEGs, differential metabolites and microbiota, respectively. This suggests it could play a pivotal role in the regulation of AMI. CONCLUSION This study confirmed the potential of differentially expressed genes, metabolites, and microbiota in AMI regulation post-CBLB intervention. Our findings lay groundwork for future exploration of CBLB's role in AMI, suggesting potential therapeutic applications and novel research directions in AMI treatment strategies.
Collapse
Affiliation(s)
- Hongjun You
- Department of Cardiovascular Medicine, Shaanxi Provincial People's Hospital, No.256 Youyi West Road, Beilin District, Xi'an City, 710068, Shaanxi Province, China
| | - Fengjun Chang
- Department of Cardiovascular Medicine, Shaanxi Provincial People's Hospital, No.256 Youyi West Road, Beilin District, Xi'an City, 710068, Shaanxi Province, China
| | - Haichao Chen
- Department of Cardiovascular Medicine, Shaanxi Provincial People's Hospital, No.256 Youyi West Road, Beilin District, Xi'an City, 710068, Shaanxi Province, China
| | - Yi Wang
- Department of Cardiovascular Medicine, Shaanxi Provincial People's Hospital, No.256 Youyi West Road, Beilin District, Xi'an City, 710068, Shaanxi Province, China
| | - Wenqi Han
- Department of Cardiovascular Medicine, Shaanxi Provincial People's Hospital, No.256 Youyi West Road, Beilin District, Xi'an City, 710068, Shaanxi Province, China.
| |
Collapse
|
4
|
Leow JWH, Chan ECY. CYP2J2-mediated metabolism of arachidonic acid in heart: A review of its kinetics, inhibition and role in heart rhythm control. Pharmacol Ther 2024; 258:108637. [PMID: 38521247 DOI: 10.1016/j.pharmthera.2024.108637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 02/06/2024] [Accepted: 03/11/2024] [Indexed: 03/25/2024]
Abstract
Cytochrome P450 2 J2 (CYP2J2) is primarily expressed extrahepatically and is the predominant epoxygenase in human cardiac tissues. This highlights its key role in the metabolism of endogenous substrates. Significant scientific interest lies in cardiac CYP2J2 metabolism of arachidonic acid (AA), an omega-6 polyunsaturated fatty acid, to regioisomeric bioactive epoxyeicosatrienoic acid (EET) metabolites that show cardioprotective effects including regulation of cardiac electrophysiology. From an in vitro perspective, the accurate characterization of the kinetics of CYP2J2 metabolism of AA including its inhibition and inactivation by drugs could be useful in facilitating in vitro-in vivo extrapolations to predict drug-AA interactions in drug discovery and development. In this review, background information on the structure, regulation and expression of CYP2J2 in human heart is presented alongside AA and EETs as its endogenous substrate and metabolites. The in vitro and in vivo implications of the kinetics of this endogenous metabolic pathway as well as its perturbation via inhibition and inactivation by drugs are elaborated. Additionally, the role of CYP2J2-mediated metabolism of AA to EETs in cardiac electrophysiology will be expounded.
Collapse
Affiliation(s)
- Jacqueline Wen Hui Leow
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | - Eric Chun Yong Chan
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore.
| |
Collapse
|
5
|
Jin C, Wang S, Sui X, Meng Q, Wu G. Low expression of ELOVL6 may be involved in fat loss in white adipose tissue of cancer-associated cachexia. Lipids Health Dis 2024; 23:144. [PMID: 38760797 PMCID: PMC11100253 DOI: 10.1186/s12944-024-02126-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/29/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Cancer-associated cachexia (CAC) arises from malignant tumors and leads to a debilitating wasting syndrome. In the pathophysiology of CAC, the depletion of fat plays an important role. The mechanisms of CAC-induced fat loss include the enhancement of lipolysis, inhibition of lipogenesis, and browning of white adipose tissue (WAT). However, few lipid-metabolic enzymes have been reported to be involved in CAC. This study hypothesized that ELOVL6, a critical enzyme for the elongation of fatty acids, may be involved in fat loss in CAC. METHODS Transcriptome sequencing technology was used to identify CAC-related genes in the WAT of a CAC rodent model. Then, the expression level of ELOVL6 and the fatty acid composition were analyzed in a large clinical sample. Elovl6 was knocked down by siRNA in 3T3-L1 mouse preadipocytes to compare with wild-type 3T3-L1 cells treated with tumor cell conditioned medium. RESULTS In the WAT of patients with CAC, a significant decrease in the expression of ELOVL6 was found, which was linearly correlated with the extent of body mass reduction. Gas chromatographic analysis revealed an increase in palmitic acid (C16:0) and a decrease in linoleic acid (C18:2n-6) in these tissue samples. After treatment with tumor cell-conditioned medium, 3T3-L1 mouse preadipocytes showed a decrease in Elovl6 expression, and Elovl6-knockdown cells exhibited a reduction in preadipocyte differentiation and lipogenesis. Similarly, the knockdown of Elovl6 in 3T3-L1 cells resulted in a significant increase in palmitic acid (C16:0) and a marked decrease in oleic acid (C18:1n-9) content. CONCLUSION Overall, the expression of ELOVL6 was decreased in the WAT of CAC patients. Decreased expression of ELOVL6 might induce fat loss in CAC patients by potentially altering the fatty acid composition of adipocytes. These findings suggest that ELOVL6 may be used as a valuable biomarker for the early diagnosis of CAC and may hold promise as a target for future therapies.
Collapse
Affiliation(s)
- Chenyang Jin
- Department of General Surgery, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Shuangjie Wang
- Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Xiangyu Sui
- Department of General Surgery, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Qingyang Meng
- Department of General Surgery, Zhongshan Hospital of Fudan University, Shanghai, China.
- Shanghai Clinical Nutrition Research Centre, Shanghai, China.
| | - Guohao Wu
- Department of General Surgery, Zhongshan Hospital of Fudan University, Shanghai, China.
- Shanghai Clinical Nutrition Research Centre, Shanghai, China.
| |
Collapse
|
6
|
Zhou M, Li J, Xu J, Zheng L, Xu S. Exploring human CYP4 enzymes: physiological roles, function in diseases and focus on inhibitors. Drug Discov Today 2023; 28:103560. [PMID: 36958639 DOI: 10.1016/j.drudis.2023.103560] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/06/2023] [Accepted: 03/16/2023] [Indexed: 03/25/2023]
Abstract
The cytochrome P450 (CYP)4 family of enzymes are monooxygenases responsible for the ω-oxidation of endogenous fatty acids and eicosanoids and play a crucial part in regulating numerous eicosanoid signaling pathways. Recently, CYP4 gained attention as a potential therapeutic target for several human diseases, including cancer, cardiovascular diseases and inflammation. Small-molecule inhibitors of CYP4 could provide promising treatments for these diseases. The aim of the present review is to highlight the advances in the field of CYP4, discussing the physiology and pathology of the CYP4 family and compiling CYP4 inhibitors into groups based on their chemical classes to provide clues for the future discovery of drug candidates targeting CYP4. Teaser: This review provides an updated view of the physiology and pathology of CYP4 enzymes. CYP4 inhibitors are compiled based on their skeletons to provide clues for the future discovery of drug candidates targeting CYP4.
Collapse
Affiliation(s)
- Manzhen Zhou
- Department of Medicinal Chemistry, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Junda Li
- Department of Medicinal Chemistry, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Jinyi Xu
- Department of Medicinal Chemistry, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Lufeng Zheng
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Shengtao Xu
- Department of Medicinal Chemistry, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China; Department of Hepatobiliary Surgery, The First People's Hospital of Kunshan, Suzhou, 215300, China.
| |
Collapse
|
7
|
Korbecki J, Rębacz-Maron E, Kupnicka P, Chlubek D, Baranowska-Bosiacka I. Synthesis and Significance of Arachidonic Acid, a Substrate for Cyclooxygenases, Lipoxygenases, and Cytochrome P450 Pathways in the Tumorigenesis of Glioblastoma Multiforme, Including a Pan-Cancer Comparative Analysis. Cancers (Basel) 2023; 15:cancers15030946. [PMID: 36765904 PMCID: PMC9913267 DOI: 10.3390/cancers15030946] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most aggressive gliomas. New and more effective therapeutic approaches are being sought based on studies of the various mechanisms of GBM tumorigenesis, including the synthesis and metabolism of arachidonic acid (ARA), an omega-6 polyunsaturated fatty acid (PUFA). PubMed, GEPIA, and the transcriptomics analysis carried out by Seifert et al. were used in writing this paper. In this paper, we discuss in detail the biosynthesis of this acid in GBM tumors, with a special focus on certain enzymes: fatty acid desaturase (FADS)1, FADS2, and elongation of long-chain fatty acids family member 5 (ELOVL5). We also discuss ARA metabolism, particularly its release from cell membrane phospholipids by phospholipase A2 (cPLA2, iPLA2, and sPLA2) and its processing by cyclooxygenases (COX-1 and COX-2), lipoxygenases (5-LOX, 12-LOX, 15-LOX-1, and 15-LOX-2), and cytochrome P450. Next, we discuss the significance of lipid mediators synthesized from ARA in GBM cancer processes, including prostaglandins (PGE2, PGD2, and 15-deoxy-Δ12,14-PGJ2 (15d-PGJ2)), thromboxane A2 (TxA2), oxo-eicosatetraenoic acids, leukotrienes (LTB4, LTC4, LTD4, and LTE4), lipoxins, and many others. These lipid mediators can increase the proliferation of GBM cancer cells, cause angiogenesis, inhibit the anti-tumor response of the immune system, and be responsible for resistance to treatment.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Ewa Rębacz-Maron
- Department of Ecology and Anthropology, Institute of Biology, University of Szczecin, Wąska 13, 71-415 Szczecin, Poland
| | - Patrycja Kupnicka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
- Correspondence: ; Tel.: +48-914-661-515
| |
Collapse
|
8
|
Zhang Y, Fu Q, Wu T, Liu K, Xiao Y, Liao Q, Qi X, Li Y, Zhou L. 5-Methoxyflavone ameliorates non-alcoholic fatty liver disease through targeting the cytochrome P450 1A1. Free Radic Biol Med 2023; 195:178-191. [PMID: 36587922 DOI: 10.1016/j.freeradbiomed.2022.12.093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a highly prevalent liver disease that is closely related to obesity and metabolic disorders. 5-methoxyflavone (5-MF) is a flavonoid with DNA polymerase-β inhibitory properties. In this study, we explored the effects of 5-MF on NAFLD and its potential mechanisms using oleic acid/palmitic acid-treated HepG2 cells and high-fat diet-fed C57BL/6J mice. Our results showed that 5-MF not only alleviated fat deposition and hepatic steatosis, but also improved oxidative damage. In addition, 5-MF has the effect of alleviating disorders of glucose metabolism and enhancing energy expenditure in HFD-induced obese mice. Mechanistically, reverse screening methods and molecular docking analysis were used in combination, and revealed that cytochrome P450 1A1 (CYP1A1) is the target for 5-MF. Further experiments showed that 5-MF ameliorated triglycerides deposition by inhibiting the enzyme activity and protein expression of CYP1A1. In conclusion, 5-MF provides a novel strategy for the prevention and treatment of high-fat-induced NAFLD.
Collapse
Affiliation(s)
- Yurou Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Qinghua Fu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Tian Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Kang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Yang Xiao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Qichao Liao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Xinyi Qi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Yixing Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Lei Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
9
|
Alqahtani MA, El-Ghiaty MA, El-Kadi AOS. Mercury and methylmercury differentially modulate hepatic cytochrome P450 1A1 and 1A2 in vivo and in vitro. J Biochem Mol Toxicol 2023; 37:e23243. [PMID: 36245390 DOI: 10.1002/jbt.23243] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 08/16/2022] [Accepted: 10/06/2022] [Indexed: 11/08/2022]
Abstract
The cytochrome P450 1 A (CYP1A) subfamily enzymes are involved in the metabolic activation of several xenobiotics to toxic metabolites and reactive intermediates, resulting ultimately in carcinogenesis. Mercury and halogenated aromatic hydrocarbons (HAHs), typified by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), are persistent environmental pollutants involved in the modulation of aryl hydrocarbon receptor (AHR) gene battery, including cytochrome P450 (CYP) genes. We previously investigated the effect of coexposure to either inorganic or organic mercury (Hg+2 and MeHg) with TCDD on CYP1A1 in vitro. Thus, we examined the impact of coexposure to Hg+2 or MeHg and TCDD on AHR-regulated genes (Cyp1a1/1a2) in vivo and in vitro. Therefore, male C57BL/6 mice were injected intraperitoneally with MeHg or Hg+2 (2.5 mg/kg) in the absence and presence of TCDD (15 μg/kg) for 6 or 24 h. The concentration-dependent effect of MeHg was examined in murine hepatoma Hepa1c1c7 cells. In vivo, both MeHg and Hg2+ inhibited the TCDD-mediated induction of Cyp1a1/1a2 mRNA levels. However, Only Hg2+ was able to inhibit the TCDD-mediated induction at posttranscriptional levels of CYP1A1/1A2 protein and catalytic activity, suggesting differential modulation effects by Hg+2 and MeHg. In addition, the inhibitory role of HO-1 (Heme oxygenase-1) on CYP1A activity induced by TCDD was investigated using a HO-1 competitive inhibitor, tin-mesoporphyrin, that partially restored the MeHg-mediated decrease in CYP1A1 activity. This study demonstrates that MeHg, alongside Hg2+ , can differentially modulate the TCDD-induced AHR-regulated genes (Cyp1a1/1a2) at different expression levels in C57BL/6 mice liver and Hepa1c1c7 cells.
Collapse
Affiliation(s)
- Mohammed A Alqahtani
- Department of Pharmaceutical Sciences, 2142 J Katz Group-Rexall Centre for Pharmacy and Health Research Edmonton, University of Alberta Ringgold Standard Institution, Edmonton, Alberta, Canada
| | - Mahmoud A El-Ghiaty
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, 2142 J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
10
|
Wang J, Chu H, Wang Z, Wang X, Liu X, Song Z, Liu F. In vivo study revealed pro-tumorigenic effect of CMTM3 in hepatocellular carcinoma involving the regulation of peroxisome proliferator-activated receptor gamma (PPARγ). Cell Oncol (Dordr) 2023; 46:49-64. [PMID: 36284038 DOI: 10.1007/s13402-022-00733-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2022] [Indexed: 11/28/2022] Open
Abstract
PURPOSE To clarify the ambiguity of the function of CMTM3 in the development of hepatocellular carcinoma (HCC) and explore its molecular mechanism. METHODS The Cmtm3-KO C57BL/6 mouse strain was established using CRISPR-Cas9. Acute liver damage and HCC models were induced by peritoneal injection of 100 or 25 mg/kg.BW N-Nitrosodiethylamine (DEN) to male mice. Liver function and histology were evaluated by blood serum levels of AST and ALT, and HE staining. Gene and protein expression in liver tissues was investigated by RNA-seq, RT-qPCR, Western blotting, immunohistochemistry, and immunofluorescence. Protein-protein interactions were studied by STRING and topological measures. The mRNA expression of CMTM3 and PPARs and patient survival were analyzed using the UALCAN database. RESULTS Global knockout of Cmtm3 in KO mice was successfully confirmed. Cmtm3 knockout alleviated DEN-induced acute damage to liver histological integrity and liver function, reduced DNA damage and apoptosis, and also caused a significantly reduced number (WT: 8.7 ± 5.5 vs. KO: 2.7 ± 3.1, P = 0.0394) and total size of tumors (WT: 130.9 ± 181.8 mm2 vs. KO: 9.3 ± 11.5 mm2, P = 0.026) in the liver. Mechanistically, Cmtm3 knockout resulted in reduced expression and inactivation of Pparγ and its downstream lipid metabolism genes (e.g. Adipoq) upon DEN intoxication. CMTM3 and PPARγ were both overexpressed in HCC, and higher levels of both genes were associated with worse overall survival of HCC patients. CONCLUSION This study clarified the pro-tumorigenesis role of CMTM3 in HCC in vivo, possibly through the upregulation of PPARγ and activation of the PPAR pathway.
Collapse
Affiliation(s)
- Jiahui Wang
- Central Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, 20 Yuhuangding East Road, Yantai Yuhuangding Hospital, Zhifu, Yantai, 264000, Shandong, China
| | - Hongjin Chu
- Central Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, 20 Yuhuangding East Road, Yantai Yuhuangding Hospital, Zhifu, Yantai, 264000, Shandong, China
| | - Zhixin Wang
- Central Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, 20 Yuhuangding East Road, Yantai Yuhuangding Hospital, Zhifu, Yantai, 264000, Shandong, China
| | - Xuebo Wang
- Department of Clinical Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China
| | - Xuexia Liu
- Central Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, 20 Yuhuangding East Road, Yantai Yuhuangding Hospital, Zhifu, Yantai, 264000, Shandong, China
| | - Zhan Song
- Central Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, 20 Yuhuangding East Road, Yantai Yuhuangding Hospital, Zhifu, Yantai, 264000, Shandong, China
| | - Fujun Liu
- Central Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, 20 Yuhuangding East Road, Yantai Yuhuangding Hospital, Zhifu, Yantai, 264000, Shandong, China.
| |
Collapse
|
11
|
Ding L, Ning S, Hu W, Xue Y, Yu S. Distinctive Metabolism-Associated Gene Clusters That Are Also Prognostic in Intrahepatic Cholangiocarcinoma and Hepatocellular Carcinoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6595989. [PMID: 36199423 PMCID: PMC9527115 DOI: 10.1155/2022/6595989] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 11/29/2022]
Abstract
Objective To offer new prognostic evaluations by exploring potentially distinctive genetic features of hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC). Methods There were 12 samples for gene expression profiling processes in this study. These included three HCC lesion samples and their matched adjacent nontumor liver tissues obtained from patients with HCC, as well as three ICC samples and their controls collected similarly. In addition to the expression matrix generated on our own, profiles of other cohorts from The Cancer Genome Atlas (TCGA) program and the Gene Expression Omnibus (GEO) were also employed in later bioinformatical analyses. Differential analyses, functional analyses, protein interaction network analyses, and gene set variation analyses were used to identify key genes. To establish the prognostic models, univariate/multivariate Cox analyses and subsequent stepwise regression were applied, with the Akaike information criterion evaluating the goodness of fitness. Results The top three pathways enriched in HCC were all metabolism-related; they were fatty acid degradation, retinol metabolism, and arachidonic acid metabolism. In ICC, on the other hand, additional pathways related to fat digestion and absorption and cholesterol metabolism were identified. Consistent characteristics of such a metabolic landscape were observed across different cohorts. A prognostic risk score model for calculating HCC risk was constructed, consisting of ADH4, ADH6, CYP2C9, CYP4F2, and RDH16. This signature predicts the 3-year survival with an AUC area of 0.708 (95%CI = 0.644 to 0.772). For calculating the risk of ICC, a prognostic risk score model was built upon the expression levels of CYP26A1, NAT2, and UGT2B10. This signature predicts the 3-year survival with an AUC area of 0.806 (95% CI = 0.664 to 0.947). Conclusion HCC and ICC share commonly abrupted pathways associated with the metabolism of fatty acids, retinol, arachidonic acids, and drugs, indicating similarities in their pathogenesis as primary liver cancers. On the flip side, these two types of cancer possess distinctive promising biomarkers for predicting overall survival or potential targeted therapies.
Collapse
Affiliation(s)
- Linchao Ding
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Shilong Ning
- Department of Clinical Nutrition, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Weijian Hu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Yadong Xue
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Shi'an Yu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| |
Collapse
|
12
|
Wick KD, Fang X, Maishan M, Matsumoto S, Spottiswoode N, Sarma A, Simoneau C, Khakoo M, Langelier C, Calfee CS, Gotts JE, Matthay MA. Impact of e-cigarette aerosol on primary human alveolar epithelial type 2 cells. Am J Physiol Lung Cell Mol Physiol 2022; 323:L152-L164. [PMID: 35670478 PMCID: PMC9559034 DOI: 10.1152/ajplung.00503.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 05/03/2022] [Accepted: 06/01/2022] [Indexed: 11/22/2022] Open
Abstract
Electronic cigarettes (e-cigarettes) are designed to simulate combustible cigarette smoking and to aid in smoking cessation. Although the number of e-cigarette users has been increasing, the potential health impacts and biological effects of e-cigarettes are still not fully understood. Previous research has focused on the biological effects of e-cigarettes on lung cancer cell lines and distal airway epithelial cells; however, there have been few published studies on the effect of e-cigarettes on primary lung alveolar epithelial cells. The primary purpose of this study was to investigate the direct effect of e-cigarette aerosol on primary human lung alveolar epithelial type 2 (AT2) cells, both alone and in the presence of viral infection. The Melo-3 atomizer caused direct AT2 cell toxicity, whereas the more popular Juul pod's aerosol did not have a detectable cytotoxic effect on AT2 cells. Juul nicotine aerosol also did not increase short-term susceptibility to viral infection. However, 3 days of exposure upregulated genes central to the generation of reactive oxygen species, lipid peroxidation, and carcinogen metabolism and downregulated key innate immune system genes related to cytokine and chemokine signaling. These findings have implications for the potentially injurious impact of long-term use of popular low-power e-cigarette pods on the human alveolar epithelium. Gene expression data might be an important endpoint for evaluating the potential harmful effects of vaping devices that do not cause overt toxicity.
Collapse
Affiliation(s)
- Katherine D Wick
- Cardiovascular Research Institute, University of California, San Francisco, California
| | - Xiaohui Fang
- Cardiovascular Research Institute, University of California, San Francisco, California
| | - Mazharul Maishan
- Cardiovascular Research Institute, University of California, San Francisco, California
| | - Shotaro Matsumoto
- Cardiovascular Research Institute, University of California, San Francisco, California
| | - Natasha Spottiswoode
- Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, California
| | - Aartik Sarma
- Division of Pulmonary and Critical Care, Department of Medicine, University of California, San Francisco, California
| | - Camille Simoneau
- Gladstone Institutes, University of California, San Francisco, California
| | - Manisha Khakoo
- Cardiovascular Research Institute, University of California, San Francisco, California
| | - Chaz Langelier
- Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, California
- Chan Zuckerberg Biohub, San Francisco, California
| | - Carolyn S Calfee
- Cardiovascular Research Institute, University of California, San Francisco, California
- Division of Pulmonary and Critical Care, Department of Medicine, University of California, San Francisco, California
| | - Jeffrey E Gotts
- Cardiovascular Research Institute, University of California, San Francisco, California
| | - Michael A Matthay
- Cardiovascular Research Institute, University of California, San Francisco, California
- Department of Medicine, University of California, San Francisco, California
- Department of Anesthesia, University of California, San Francisco, California
| |
Collapse
|
13
|
Smeets E, Huang S, Lee XY, Van Nieuwenhove E, Helsen C, Handle F, Moris L, El Kharraz S, Eerlings R, Devlies W, Willemsen M, Bücken L, Prezzemolo T, Humblet-Baron S, Voet A, Rochtus A, Van Schepdael A, de Zegher F, Claessens F. A disease-associated missense mutation in CYP4F3 affects the metabolism of leukotriene B4 via disruption of electron transfer. J Cachexia Sarcopenia Muscle 2022; 13:2242-2253. [PMID: 35686338 PMCID: PMC9397552 DOI: 10.1002/jcsm.13022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/19/2022] [Accepted: 05/09/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Cytochrome P450 4F3 (CYP4F3) is an ω-hydroxylase that oxidizes leukotriene B4 (LTB4), prostaglandins, and fatty acid epoxides. LTB4 is synthesized by leukocytes and acts as a chemoattractant for neutrophils, making it an essential component of the innate immune system. Recently, involvement of the LTB4 pathway was reported in various immunological disorders such as asthma, arthritis, and inflammatory bowel disease. We report a 26-year-old female with a complex immune phenotype, mainly marked by exhaustion, muscle weakness, and inflammation-related conditions. The molecular cause is unknown, and symptoms have been aggravating over the years. METHODS Whole exome sequencing was performed and validated; flow cytometry and enzyme-linked immunosorbent assay were used to describe patient's phenotype. Function and impact of the mutation were investigated using molecular analysis: co-immunoprecipitation, western blot, and enzyme-linked immunosorbent assay. Capillary electrophoresis with ultraviolet detection was used to detect LTB4 and its metabolite and in silico modelling provided structural information. RESULTS We present the first report of a patient with a heterozygous de novo missense mutation c.C1123 > G;p.L375V in CYP4F3 that severely impairs its activity by 50% (P < 0.0001), leading to reduced metabolization of the pro-inflammatory LTB4. Systemic LTB4 levels (1034.0 ± 75.9 pg/mL) are significantly increased compared with healthy subjects (305.6 ± 57.0 pg/mL, P < 0.001), and immune phenotyping shows increased total CD19+ CD27- naive B cells (25%) and decreased total CD19+ CD27+ IgD- switched memory B cells (19%). The mutant CYP4F3 protein is stable and binding with its electron donors POR and Cytb5 is unaffected (P > 0.9 for both co-immunoprecipitation with POR and Cytb5). In silico modelling of CYP4F3 in complex with POR and Cytb5 suggests that the loss of catalytic activity of the mutant CYP4F3 is explained by a disruption of an α-helix that is crucial for the electron shuffling between the electron carriers and CYP4F3. Interestingly, zileuton still inhibits ex vivo LTB4 production in patient's whole blood to 2% of control (P < 0.0001), while montelukast and fluticasone do not (99% and 114% of control, respectively). CONCLUSIONS A point mutation in the catalytic domain of CYP4F3 is associated with high leukotriene B4 plasma levels and features of a more naive adaptive immune response. Our data provide evidence for the pathogenicity of the CYP4F3 variant as a cause for the observed clinical features in the patient. Inhibitors of the LTB4 pathway such as zileuton show promising effects in blocking LTB4 production and might be used as a future treatment strategy.
Collapse
Affiliation(s)
- Elien Smeets
- Department of Cellular and Molecular Medicine, Molecular Endocrinology Laboratory, KU Leuven, Leuven, Belgium
| | - Shengyun Huang
- Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis Laboratory, KU Leuven, Leuven, Belgium
| | - Xiao Yin Lee
- Department of Cellular and Molecular Medicine, Molecular Endocrinology Laboratory, KU Leuven, Leuven, Belgium
| | - Erika Van Nieuwenhove
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunity, KU Leuven, Leuven, Belgium.,Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Christine Helsen
- Department of Cellular and Molecular Medicine, Molecular Endocrinology Laboratory, KU Leuven, Leuven, Belgium
| | - Florian Handle
- Department of Cellular and Molecular Medicine, Molecular Endocrinology Laboratory, KU Leuven, Leuven, Belgium
| | - Lisa Moris
- Department of Cellular and Molecular Medicine, Molecular Endocrinology Laboratory, KU Leuven, Leuven, Belgium
| | - Sarah El Kharraz
- Department of Cellular and Molecular Medicine, Molecular Endocrinology Laboratory, KU Leuven, Leuven, Belgium
| | - Roy Eerlings
- Department of Cellular and Molecular Medicine, Molecular Endocrinology Laboratory, KU Leuven, Leuven, Belgium
| | - Wout Devlies
- Department of Cellular and Molecular Medicine, Molecular Endocrinology Laboratory, KU Leuven, Leuven, Belgium
| | - Mathijs Willemsen
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunity, KU Leuven, Leuven, Belgium
| | - Leoni Bücken
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunity, KU Leuven, Leuven, Belgium
| | - Teresa Prezzemolo
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunity, KU Leuven, Leuven, Belgium
| | - Stephanie Humblet-Baron
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunity, KU Leuven, Leuven, Belgium
| | - Arnout Voet
- Department of Chemistry, Biochemistry, Molecular and Structural Biology Section Laboratory, KU Leuven, Leuven, Belgium
| | - Anne Rochtus
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Ann Van Schepdael
- Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis Laboratory, KU Leuven, Leuven, Belgium
| | - Francis de Zegher
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Frank Claessens
- Department of Cellular and Molecular Medicine, Molecular Endocrinology Laboratory, KU Leuven, Leuven, Belgium
| |
Collapse
|
14
|
Liang N, Emami S, Patten KT, Valenzuela AE, Wallis CD, Wexler AS, Bein KJ, Lein PJ, Taha AY. Chronic exposure to traffic-related air pollution reduces lipid mediators of linoleic acid and soluble epoxide hydrolase in serum of female rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 93:103875. [PMID: 35550873 PMCID: PMC9353974 DOI: 10.1016/j.etap.2022.103875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Chronic exposure to traffic-related air pollution (TRAP) is known to promote systemic inflammation, which is thought to underlie respiratory, cardiovascular, metabolic and neurological disorders. It is not known whether chronic TRAP exposure dampens inflammation resolution, the homeostatic process for stopping inflammation and repairing damaged cells. In vivo, inflammation resolution is facilitated by bioactive lipid mediators known as oxylipins, which are derived from the oxidation of polyunsaturated fatty acids. To understand the effects of chronic TRAP exposure on lipid-mediated inflammation resolution pathways, we measured total (i.e. free+bound) pro-inflammatory and pro-resolving lipid mediators in serum of female rats exposed to TRAP or filtered air (FA) for 14 months. Compared to rats exposed to FA, TRAP-exposed rats showed a significant 36-48% reduction in fatty acid alcohols, specifically, 9-hydroxyoctadecadienoic acid (9-HODE), 11,12-dihydroxyeicosatetraenoic acid (11,12-DiHETE) and 16,17-dihydroxydocosapentaenoic acid (16, 17-DiHDPA). The decrease in fatty acid diols (11,12-DiHETE and 16, 17-DiHDPA) corresponded to a significant 34-39% reduction in the diol to epoxide ratio, a marker of soluble epoxide hydrolase activity; this enzyme is typically upregulated during inflammation. The findings demonstrate that 14 months exposure to TRAP reduced pro-inflammatory 9-HODE concentration and dampened soluble epoxide hydrolase activation, suggesting adaptive immune changes in lipid mediator pathways involved in inflammation resolution.
Collapse
Affiliation(s)
- Nuanyi Liang
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California Davis, Davis, CA, USA
| | - Shiva Emami
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California Davis, Davis, CA, USA
| | - Kelley T Patten
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Anthony E Valenzuela
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | | | - Anthony S Wexler
- Mechanical and Aerospace Engineering, University of California, Davis, CA 95616, USA; Air Quality Research Center, University of California, Davis, Davis, CA, USA
| | - Keith J Bein
- Air Quality Research Center, University of California, Davis, Davis, CA, USA; Center for Health and the Environment, University of California, Davis, Davis, CA, USA
| | - Pamela J Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Ameer Y Taha
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California Davis, Davis, CA, USA; West Coast Metabolomics Center, Genome Center, University of California Davis, Davis, CA, USA.
| |
Collapse
|
15
|
Ni KD, Liu JY. The Functions of Cytochrome P450 ω-hydroxylases and the Associated Eicosanoids in Inflammation-Related Diseases. Front Pharmacol 2021; 12:716801. [PMID: 34594219 PMCID: PMC8476763 DOI: 10.3389/fphar.2021.716801] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 09/01/2021] [Indexed: 12/17/2022] Open
Abstract
The cytochrome P450 (CYP) ω-hydroxylases are a subfamily of CYP enzymes. While CYPs are the main metabolic enzymes that mediate the oxidation reactions of many endogenous and exogenous compounds in the human body, CYP ω-hydroxylases mediate the metabolism of multiple fatty acids and their metabolites via the addition of a hydroxyl group to the ω- or (ω-1)-C atom of the substrates. The substrates of CYP ω-hydroxylases include but not limited to arachidonic acid, docosahexaenoic acid, eicosapentaenoic acid, epoxyeicosatrienoic acids, leukotrienes, and prostaglandins. The CYP ω-hydroxylases-mediated metabolites, such as 20-hyroxyleicosatrienoic acid (20-HETE), 19-HETE, 20-hydroxyl leukotriene B4 (20-OH-LTB4), and many ω-hydroxylated prostaglandins, have pleiotropic effects in inflammation and many inflammation-associated diseases. Here we reviewed the classification, tissue distribution of CYP ω-hydroxylases and the role of their hydroxylated metabolites in inflammation-associated diseases. We described up-regulation of CYP ω-hydroxylases may be a pathogenic mechanism of many inflammation-associated diseases and thus CYP ω-hydroxylases may be a therapeutic target for these diseases. CYP ω-hydroxylases-mediated eicosanods play important roles in inflammation as pro-inflammatory or anti-inflammatory mediators, participating in the process stimulated by cytokines and/or the process stimulating the production of multiple cytokines. However, most previous studies focused on 20-HETE,and further studies are needed for the function and mechanisms of other CYP ω-hydroxylases-mediated eicosanoids. We believe that our studies of CYP ω-hydroxylases and their associated eicosanoids will advance the translational and clinal use of CYP ω-hydroxylases inhibitors and activators in many diseases.
Collapse
Affiliation(s)
- Kai-Di Ni
- Center for Novel Target and Therapeutic Intervention, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Jun-Yan Liu
- Center for Novel Target and Therapeutic Intervention, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| |
Collapse
|
16
|
Contribution of DHA diols (19,20-DHDP) produced by cytochrome P450s and soluble epoxide hydrolase to the beneficial effects of DHA supplementation in the brains of rotenone-induced rat models of Parkinson's disease. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1866:158858. [PMID: 33279658 DOI: 10.1016/j.bbalip.2020.158858] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/17/2020] [Accepted: 11/27/2020] [Indexed: 01/13/2023]
Abstract
Docosahexaenoic acid (DHA) has been shown to have neuroprotective effects in Parkinson's disease, but the underlying mechanism has not been fully elucidated. DHA is metabolized to DHA epoxides (EDPs) and hydroxides by cytochrome P450s (P450s), and EDPs are further hydroxylated to the corresponding diols, dihydroxydocosapentaenoic acids (DHDPs) by soluble epoxide hydrolase (sEH). In the present study, we investigated the roles of these DHA metabolites in the beneficial effects of DHA supplementation on a rotenone-induced rat model of Parkinson's disease. Metabolite analysis by LC-MS revealed that CYP2A1, 2C11, 2C13, 2C23, and 2E1 contributed to the formation of EDPs, and these P450s and sEH were expressed in the rat brain. We found that DHA supplementation in rats improved the motor dysfunction induced by rotenone. In addition, DHA reversed the decrease in tyrosine hydroxylase and the increase in lipid peroxidation generated by rotenone in the striatum. DHA supplementation also induced mRNA expression of antioxidant genes, such as sod1 and catalase, and Nrf2 protein expression in the striatum. However, these effects of DHA supplementation were eliminated by cosupplementation with the sEH inhibitor TPPU. Supplementation with DHA increased the amount of 19,20-DHDP in the rat brain, while the amount of EDPs was not significantly increased. In addition, TPPU suppressed the increase in DHDPs and increased EDPs in the brain. In PC12 cells, 19,20-DHDP increased the mRNA levels of sod1 and catalase along with Nrf2 induction. This study suggests that DHA metabolites-DHDPs generated by P450s and sEH-have an important role in improving rotenone-induced Parkinson's disease.
Collapse
|
17
|
Sarparast M, Dattmore D, Alan J, Lee KSS. Cytochrome P450 Metabolism of Polyunsaturated Fatty Acids and Neurodegeneration. Nutrients 2020; 12:E3523. [PMID: 33207662 PMCID: PMC7696575 DOI: 10.3390/nu12113523] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022] Open
Abstract
Due to the aging population in the world, neurodegenerative diseases have become a serious public health issue that greatly impacts patients' quality of life and adds a huge economic burden. Even after decades of research, there is no effective curative treatment for neurodegenerative diseases. Polyunsaturated fatty acids (PUFAs) have become an emerging dietary medical intervention for health maintenance and treatment of diseases, including neurodegenerative diseases. Recent research demonstrated that the oxidized metabolites, particularly the cytochrome P450 (CYP) metabolites, of PUFAs are beneficial to several neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease; however, their mechanism(s) remains unclear. The endogenous levels of CYP metabolites are greatly affected by our diet, endogenous synthesis, and the downstream metabolism. While the activity of omega-3 (ω-3) CYP PUFA metabolites and omega-6 (ω-6) CYP PUFA metabolites largely overlap, the ω-3 CYP PUFA metabolites are more active in general. In this review, we will briefly summarize recent findings regarding the biosynthesis and metabolism of CYP PUFA metabolites. We will also discuss the potential mechanism(s) of CYP PUFA metabolites in neurodegeneration, which will ultimately improve our understanding of how PUFAs affect neurodegeneration and may identify potential drug targets for neurodegenerative diseases.
Collapse
Affiliation(s)
- Morteza Sarparast
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA;
| | - Devon Dattmore
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA;
| | - Jamie Alan
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA;
| | - Kin Sing Stephen Lee
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA;
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA;
| |
Collapse
|
18
|
Mao Y, Yang L, Chen Q, Li G, Sun Y, Wu J, Xiong Z, Liu Y, Li H, Liu J, Zhang Y. The influence of CYP1A1 and CYP1A2 polymorphisms on stroke risk in the Chinese population. Lipids Health Dis 2020; 19:221. [PMID: 33046100 PMCID: PMC7552501 DOI: 10.1186/s12944-020-01370-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/12/2020] [Indexed: 02/02/2023] Open
Abstract
Backgrounds Stroke is a sudden disorder of cerebral blood circulation. Many studies have illustrated that dyslipidemia, hypertension, diabetes, smoking and excessive drinking are the traditional risk factors for stroke. This study aimed to observe the relationship between CYP1A1 and CYP1A2 variants and stroke risk in the Chinese population. Methods Agena MassARRAY Assay was used to genotype four single nucleotide polymorphisms (SNPs) in 477 cases and 480 controls. The chi-square test and logistic-regression analysis were used to explore the relationship between CYP1A1 and CYP1A2 variants and stroke risk. Results Individuals with CYP1A2 rs762551 C was associated with a lower risk of stroke than that of allele A. Age stratification analysis showed that rs762551 was only observed to be associated with a lower risk of stroke in ≤64ys age group. After gender stratification analysis, a significant association between rs762551 and stroke risk was found in males, but not in females. The four SNPs were found to be correlated with stroke risk in patients with hypertension, coronary heart disease, cerebral infarction and lacunar infarction. Conclusion In this study, the results first showed that CYP1A1 and CYP1A2 variants were associated with stroke risk. Larger and well-designed studies are needed to confirm the results.
Collapse
Affiliation(s)
- Yan Mao
- Department of Geriatrics, Xi'an Hospital of Traditional Chinese Medicine, Xi'an, 710021, Shaanxi, China
| | - Lin Yang
- Department of Encephalopathy, Xi'an Hospital of Traditional Chinese Medicine, Xi'an, 710021, Shaanxi, China
| | - Qian Chen
- Department of Geriatrics, Xi'an Hospital of Traditional Chinese Medicine, Xi'an, 710021, Shaanxi, China
| | - Guoqing Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Yao Sun
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Jiamin Wu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Zichao Xiong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Yuanwei Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Haiyue Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Jianfeng Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Yong Zhang
- The Second Department of Encephalopathy, Baoji Hospital of Traditional Chinese Medicine, Baoji, 721001, Shaanxi, China.
| |
Collapse
|
19
|
Otoki Y, Metherel AH, Pedersen T, Yang J, Hammock BD, Bazinet RP, Newman JW, Taha AY. Acute Hypercapnia/Ischemia Alters the Esterification of Arachidonic Acid and Docosahexaenoic Acid Epoxide Metabolites in Rat Brain Neutral Lipids. Lipids 2020; 55:7-22. [PMID: 31691988 PMCID: PMC7220815 DOI: 10.1002/lipd.12197] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 12/15/2022]
Abstract
In the brain, approximately 90% of oxylipins are esterified to lipids. However, the significance of this esterification process is not known. In the present study, we (1) validated an aminopropyl solid phase extraction (SPE) method for separating esterified lipids using 100 and 500 mg columns and (2) applied the method to quantify the distribution of esterified oxylipins within phospholipids (PL) and neutral lipids (NL) (i.e. triacylglycerol and cholesteryl ester) in rats subjected to head-focused microwave fixation (controls) or CO2 -induced hypercapnia/ischemia. We hypothesized that oxylipin esterification into these lipid pools will be altered following CO2 -induced hypercapnia/ischemia. Lipids were extracted from control (n = 8) and CO2 -asphyxiated (n = 8) rat brains and separated on aminopropyl cartridges to yield PL and NL. The separated lipid fractions were hydrolyzed, purified with hydrophobic-lipophilic-balanced SPE columns, and analyzed with ultra-high-pressure liquid chromatography coupled to tandem mass spectrometry. Method validation showed that the 500 mg (vs 100 mg) aminopropyl columns yielded acceptable separation and recovery of esterified fatty acid epoxides but not other oxylipins. Two epoxides of arachidonic acid (ARA) were significantly increased, and three epoxides of docosahexaenoic acid (DHA) were significantly decreased in brain NL of CO2 -asphyxiated rats compared to controls subjected to head-focused microwave fixation. PL-bound fatty acid epoxides were highly variable and did not differ significantly between the groups. This study demonstrates that hypercapnia/ischemia alters the concentration of ARA and DHA epoxides within NL, reflecting an active turnover process regulating brain fatty acid epoxide concentrations.
Collapse
Affiliation(s)
- Yurika Otoki
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, One Shields Avenue, Davis, CA 95616, USA
- Food and Biodynamic Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Adam H. Metherel
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, ON, M5S 1A8, Canada
| | - Theresa Pedersen
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Jun Yang
- Department of Entomology and Nematology, College of Agriculture and Environmental Sciences, University of California, Davis, CA 95616, USA
- Comprehensive Cancer Center, Medical Center, University of California, Davis, CA 95616, USA
| | - Bruce D. Hammock
- Department of Entomology and Nematology, College of Agriculture and Environmental Sciences, University of California, Davis, CA 95616, USA
- Comprehensive Cancer Center, Medical Center, University of California, Davis, CA 95616, USA
- West Coast Metabolomics Center, Genome Center, University of California–Davis, Davis, CA 95616, USA
| | - Richard P. Bazinet
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, ON, M5S 1A8, Canada
| | - John W. Newman
- West Coast Metabolomics Center, Genome Center, University of California–Davis, Davis, CA 95616, USA
- Department of Nutrition, University of California–Davis, Davis, CA 95616, USA
- United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA 95616, USA
| | - Ameer Y. Taha
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, One Shields Avenue, Davis, CA 95616, USA
- West Coast Metabolomics Center, Genome Center, University of California–Davis, Davis, CA 95616, USA
| |
Collapse
|
20
|
Hajeyah AA, Griffiths WJ, Wang Y, Finch AJ, O’Donnell VB. The Biosynthesis of Enzymatically Oxidized Lipids. Front Endocrinol (Lausanne) 2020; 11:591819. [PMID: 33329396 PMCID: PMC7711093 DOI: 10.3389/fendo.2020.591819] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022] Open
Abstract
Enzymatically oxidized lipids are a specific group of biomolecules that function as key signaling mediators and hormones, regulating various cellular and physiological processes from metabolism and cell death to inflammation and the immune response. They are broadly categorized as either polyunsaturated fatty acid (PUFA) containing (free acid oxygenated PUFA "oxylipins", endocannabinoids, oxidized phospholipids) or cholesterol derivatives (oxysterols, steroid hormones, and bile acids). Their biosynthesis is accomplished by families of enzymes that include lipoxygenases (LOX), cyclooxygenases (COX), cytochrome P450s (CYP), and aldo-keto reductases (AKR). In contrast, non-enzymatically oxidized lipids are produced by uncontrolled oxidation and are broadly considered to be harmful. Here, we provide an overview of the biochemistry and enzymology of LOXs, COXs, CYPs, and AKRs in humans. Next, we present biosynthetic pathways for oxylipins, oxidized phospholipids, oxysterols, bile acids and steroid hormones. Last, we address gaps in knowledge and suggest directions for future work.
Collapse
Affiliation(s)
- Ali A. Hajeyah
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
- *Correspondence: Ali A. Hajeyah,
| | - William J. Griffiths
- Institute of Life Science, Swansea University Medical School, Swansea, United Kingdom
| | - Yuqin Wang
- Institute of Life Science, Swansea University Medical School, Swansea, United Kingdom
| | - Andrew J. Finch
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Valerie B. O’Donnell
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
21
|
The effect of ω-3 polyunsaturated fatty acids on the liver lipidome, proteome and bile acid profile: parenteral versus enteral administration. Sci Rep 2019; 9:19097. [PMID: 31836843 PMCID: PMC6910966 DOI: 10.1038/s41598-019-54225-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 11/10/2019] [Indexed: 12/19/2022] Open
Abstract
Parenteral nutrition (PN) is often associated with the deterioration of liver functions (PNALD). Omega-3 polyunsaturated fatty acids (PUFA) were reported to alleviate PNALD but the underlying mechanisms have not been fully unraveled yet. Using omics´ approach, we determined serum and liver lipidome, liver proteome, and liver bile acid profile as well as markers of inflammation and oxidative stress in rats administered either ω-6 PUFA based lipid emulsion (Intralipid) or ω-6/ω-3 PUFA blend (Intralipid/Omegaven) via the enteral or parenteral route. In general, we found that enteral administration of both lipid emulsions has less impact on the liver than the parenteral route. Compared with parenterally administered Intralipid, PN administration of ω-3 PUFA was associated with 1. increased content of eicosapentaenoic (EPA)- and docosahexaenoic (DHA) acids-containing lipid species; 2. higher abundance of CYP4A isoenzymes capable of bioactive lipid synthesis and the increased content of their potential products (oxidized EPA and DHA); 3. downregulation of enzymes involved CYP450 drug metabolism what may represent an adaptive mechanism counteracting the potential negative effects (enhanced ROS production) of PUFA metabolism; 4. normalized anti-oxidative capacity and 5. physiological BAs spectrum. All these findings may contribute to the explanation of ω-3 PUFA protective effects in the context of PN.
Collapse
|
22
|
Fekry MI, Xiao Y, Berg JZ, Guengerich FP. A Role for the Orphan Human Cytochrome P450 2S1 in Polyunsaturated Fatty Acid ω-1 Hydroxylation Using an Untargeted Metabolomic Approach. Drug Metab Dispos 2019; 47:1325-1332. [PMID: 31511258 PMCID: PMC6800448 DOI: 10.1124/dmd.119.089086] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 09/06/2019] [Indexed: 12/14/2022] Open
Abstract
Cytochrome P450 (P450) 2S1 is one of the orphan P450s, known to be expressed but not having a defined function with an endogenous substrate or in drug oxidations. Although it has been clearly demonstrated to catalyze reductive reactions, its role in NADPH-dependent oxidations has been ambiguous. In our efforts to characterize orphan human P450 enzymes, we used an untargeted liquid chromatography-mass spectromterymetabolomic approach with recombinant human P450 2S1 and extracts of rat stomach and intestine, sites of P450 2S1 localization in humans and animals. The search yielded several candidates, including the product 19-hydroxyarachidonic acid. Subsequent 18O analysis and in vitro studies with commercial arachidonic acid and 19-hydroxyarachidonic acid were used to validate ω-1 hydroxylation of the former molecule as a NADPH- and O2-dependent reaction. Steady-state kinetic assays were done for ω-1 hydroxylation reactions of P450 2S1 with several other long-chain fatty acids, including arachidonic, linoleic, α-linolenic, eicosapentaenoic, and docosapentaenoic acids. Rates of hydroxylation were slow, but no detectable activity was seen with either medium-chain length or saturated fatty acids. P450 2S1 is known to be expressed, at least at the mRNA level, to the extent of some other non-3A subfamily P450s in the human gastrointestinal tract, and the activity may be relevant. We conclude that P450 2S1 is a fatty acid ω-1 hydroxylase, although the physiologic relevance of these oxidations remains to be established. The metabolomic approaches we employed in this study are feasible for orphan P450s and other enzymes, in regard to annotation of function, in mammals and other organisms. SIGNIFICANCE STATEMENT: An untargeted mass spectrometry approach was utilized to identify ω-1 hydroxylation of arachidonic acid as an oxidative reaction catalyzed by human cytochrome P450 2S1. The enzyme also catalyzes the relatively slow ω-1 hydroxylation of several other unsaturated long-chain fatty acids.
Collapse
Affiliation(s)
- Mostafa I Fekry
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee (M.I.F., Y.X., J.Z.B., F.P.G.); and Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt (M.I.F.)
| | - Yi Xiao
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee (M.I.F., Y.X., J.Z.B., F.P.G.); and Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt (M.I.F.)
| | - Jeannette Zinggeler Berg
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee (M.I.F., Y.X., J.Z.B., F.P.G.); and Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt (M.I.F.)
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee (M.I.F., Y.X., J.Z.B., F.P.G.); and Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt (M.I.F.)
| |
Collapse
|
23
|
He Q, Bennett GN, San KY, Wu H. Biosynthesis of Medium-Chain ω-Hydroxy Fatty Acids by AlkBGT of Pseudomonas putida GPo1 With Native FadL in Engineered Escherichia coli. Front Bioeng Biotechnol 2019; 7:273. [PMID: 31681749 PMCID: PMC6812396 DOI: 10.3389/fbioe.2019.00273] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/01/2019] [Indexed: 12/19/2022] Open
Abstract
Hydroxy fatty acids (HFAs) are valuable compounds that are widely used in medical, cosmetic and food fields. Production of ω-HFAs via bioconversion by engineered Escherichia coli has received a lot of attention because this process is environmentally friendly. In this study, a whole-cell bio-catalysis strategy was established to synthesize medium-chain ω-HFAs based on the AlkBGT hydroxylation system from Pseudomonas putida GPo1. The effects of blocking the β-oxidation of fatty acids (FAs) and enhancing the transportation of FAs on ω-HFAs bio-production were also investigated. When fadE and fadD were deleted, the consumption of decanoic acid decreased, and the yield of ω-hydroxydecanoic acid was enhanced remarkably. Additionally, the co-expression of the FA transporter protein, FadL, played an important role in increasing the conversion rate of ω-hydroxydecanoic acid. As a result, the concentration and yield of ω-hydroxydecanoic acid in NH03(pBGT-fadL) increased to 309 mg/L and 0.86 mol/mol, respectively. This whole-cell bio-catalysis system was further applied to the biosynthesis of ω-hydroxyoctanoic acid and ω-hydroxydodecanoic acid using octanoic acid and dodecanoic acid as substrates, respectively. The concentrations of ω-hydroxyoctanoic acid and ω-hydroxydodecanoic acid reached 275.48 and 249.03 mg/L, with yields of 0.63 and 0.56 mol/mol, respectively. This study demonstrated that the overexpression of AlkBGT coupled with native FadL is an efficient strategy to synthesize medium-chain ω-HFAs from medium-chain FAs in fadE and fadD mutant E. coli strains.
Collapse
Affiliation(s)
- Qiaofei He
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - George N. Bennett
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, United States
| | - Ka-Yiu San
- Department of Bioengineering, Rice University, Houston, TX, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, United States
| | - Hui Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, Shanghai, China
- Key Laboratory of Bio-based Material Engineering of China National Light Industry Council, Shanghai, China
| |
Collapse
|
24
|
Tomic-Smiljanic M, Vasiljevic D, Lucic-Tomic A, Andjelkovic N, Jakovljevic V, Bolovich S, Veselinovic M. Influence of different supplementation on platelet aggregation in patients with rheumatoid arthritis. Clin Rheumatol 2019; 38:2443-2450. [PMID: 31076942 DOI: 10.1007/s10067-019-04569-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Long-chain n-3 polyunsaturated fatty acids (n-3 PUFAs; eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)) have been reported to reduce platelet aggregation. Our aim was to prospectively assess the potential influence of different supplementation omega-3 PUFA on the antiplatelet effects in rheumatoid arthritis (RA) patients. METHODS The study included 60 patients with RA at the Department of Rheumatology, Clinical Center Kragujevac. Patients were divided into three groups depending on who used concentrated fish oil only or concentrated fish oil in combination with evening primrose oil or control group without supplementation in a period of 3 months. Platelet aggregation was measured using the multiplate analyzer and expressed through the value of adenosine diphosphate (ADP) test, aranchidonic acid-induced aggregation (ASPI) test, thrombin receptor-activating peptide (TRAP) test (to assess baseline platelet aggregation), and the ratio of ADP/TRAP and ASPI/TRAP representing the degree of inhibition of platelet aggregation compared to the basal value. The platelet function analysis in whole blood was performed 18-24 h before starting supplementation and after 90 days. Considerations were taken in the representation of demographic, clinical characteristics, and laboratory parameters between the groups. RESULTS Patients who used concentrated fish oil only had a significantly lower value of the ratio of ADP/TRAP (0.68 ± 0.20) compared to patients without supplementation (0.83 ± 0.12; p = 0.008), while there was no statistically significant difference in values of other laboratory parameters of platelet function between other groups. CONCLUSIONS Co-administration of supplementation-concentrated fish oil may reduce platelet aggregation in adults with RA. KEY POINTS • Omega-3 PUFAs are essential for health and are known to possess anti-inflammatory properties, improving cardiovascular health as well as benefiting inflammatory diseases.. • In this paper, we report on anti-aggregation effects n-3 PUFAs and ɤ-linolenic acid in RA. • The risk of cardiovascular morbidity and mortality is increased in RA, and dietary supplementation of n-3 PUFA may have preventive potential for the cardiovascular management in rheumatoid arthritis.
Collapse
Affiliation(s)
| | - Dragan Vasiljevic
- Faculty of Medical Sciences, Department of Hygiene and Ecology, University of Kragujevac, 69 Svetozara Markovica, 34000, Kragujevac, Serbia
| | - Aleksandra Lucic-Tomic
- Faculty of Medical Sciences, Department of Internal medicine, University of Kragujevac, 69 Svetozara Markovica, 34000, Kragujevac, Serbia
| | - Nebojsa Andjelkovic
- Faculty of Medical Sciences, Department of Internal medicine, University of Kragujevac, 69 Svetozara Markovica, 34000, Kragujevac, Serbia
| | - Vladimir Jakovljevic
- Faculty of Medical Sciences, Department of Physiology, University of Kragujevac, 69 Svetozara Markovica, 34000, Kragujevac, Serbia.,Department of Human Pathology, 1st Moscow State Medical, University IM Sechenov, Trubetskaya Street 8, Str. 2, Moscow, Russia, 119991
| | - Sergey Bolovich
- Department of Human Pathology, 1st Moscow State Medical, University IM Sechenov, Trubetskaya Street 8, Str. 2, Moscow, Russia, 119991
| | - Mirjana Veselinovic
- Faculty of Medical Sciences, Department of Internal medicine, University of Kragujevac, 69 Svetozara Markovica, 34000, Kragujevac, Serbia.
| |
Collapse
|
25
|
Confirmation of Ath26 locus on chromosome 17 and identification of Cyp4f13 as an atherosclerosis modifying gene. Atherosclerosis 2019; 286:71-78. [PMID: 31102955 DOI: 10.1016/j.atherosclerosis.2019.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 03/28/2019] [Accepted: 05/08/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND AIMS We previously demonstrated that Apoe-/- mice on DBA/2 vs. AKR genetic background have >10-fold larger atherosclerotic lesions. Prior quantitative trait locus mapping via strain intercrossing identified a region on chromosome 17, Ath26, as the strongest atherosclerosis-modifying locus. We aimed to confirm Ath26, identify candidate genes, and validate the candidate gene effects on atherosclerosis. METHODS We bred chromosome 17 interval congenic mice to confirm that Ath26 locus contains atherosclerosis modifying gene(s). Bone marrow derived macrophage transcriptomics was performed to identify candidate genes at this locus whose expression was correlated with lesions in a strain intercross. The Cyp4f13 candidate gene was tested via a gene knockout approach and in vivo and ex vivo phenotype analyses. RESULTS A congenic mouse strain containing the DBA/2 interval on chromosome 17 on the AKR Apoe-/- background demonstrated that this interval conferred increased lesion area. Transcriptomic analysis of bone marrow macrophages identified that expression of the Cyp4f13 gene, mapping to this locus, was highly associated with lesion area in an F2 cohort. AKR vs. DBA/2 macrophages had less Cyp4f13 mRNA expression, and their livers had lower leukotriene B4 (LTB4) 20-hydroxylase enzymatic activity. A Cyp4f13 knockout allele was bred onto the DBA/2 Apoe-/- background and this conferred less enzymatic activity, decreased macrophage migration in response to LTB4, and smaller aortic root atherosclerotic lesions. CONCLUSIONS Allelic differences in the Cyp4f13 gene may in part be responsible for the Ath26 QTL conferring larger lesions in DBA/2 vs. AKR Apoe-/- mice.
Collapse
|
26
|
Hennebelle M, Metherel AH, Kitson AP, Otoki Y, Yang J, Lee KSS, Hammock BD, Bazinet RP, Taha AY. Brain oxylipin concentrations following hypercapnia/ischemia: effects of brain dissection and dissection time. J Lipid Res 2019; 60:671-682. [PMID: 30463986 PMCID: PMC6399504 DOI: 10.1194/jlr.d084228] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 10/12/2018] [Indexed: 01/12/2023] Open
Abstract
PUFAs are precursors to bioactive oxylipin metabolites that increase in the brain following CO2-induced hypercapnia/ischemia. It is not known whether the brain-dissection process and its duration also alter these metabolites. We applied CO2 with or without head-focused microwave fixation for 2 min to evaluate the effects of CO2-induced asphyxiation, dissection, and dissection time on brain oxylipin concentrations. Compared with head-focused microwave fixation (control), CO2 followed by microwave fixation prior to dissection increased oxylipins derived from lipoxygenase (LOX), 15-hydroxyprostaglandin dehydrogenase (PGDH), cytochrome P450 (CYP), and soluble epoxide hydrolase (sEH) enzymatic pathways. This effect was enhanced when the duration of postmortem ischemia was prolonged by 6.4 min prior to microwave fixation. Brains dissected from rats subjected to CO2 without microwave fixation showed greater increases in LOX, PGDH, CYP and sEH metabolites compared with all other groups, as well as increased cyclooxygenase metabolites. In nonmicrowave-irradiated brains, sEH metabolites and one CYP metabolite correlated positively and negatively with dissection time, respectively. This study presents new evidence that the dissection process and its duration increase brain oxylipin concentrations, and that this is preventable by microwave fixation. When microwave fixation is not available, lipidomic studies should account for dissection time to reduce these artifacts.
Collapse
Affiliation(s)
- Marie Hennebelle
- Departments of Food Science and Technology University of California, Davis, Davis, CA
| | - Adam H Metherel
- Department of Nutritional Sciences Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Alex P Kitson
- Department of Nutritional Sciences Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Yurika Otoki
- Departments of Food Science and Technology University of California, Davis, Davis, CA
- Food and Biodynamic Laboratory Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Jun Yang
- Entomology and Nematology, University of California, Davis, Davis, CA
- College of Agriculture and Environmental Sciences, and Comprehensive Cancer Center University of California, Davis, Davis, CA
| | - Kin Sing Stephen Lee
- Departments of Food Science and Technology University of California, Davis, Davis, CA
- College of Agriculture and Environmental Sciences, and Comprehensive Cancer Center University of California, Davis, Davis, CA
| | - Bruce D Hammock
- Entomology and Nematology, University of California, Davis, Davis, CA
- College of Agriculture and Environmental Sciences, and Comprehensive Cancer Center University of California, Davis, Davis, CA
| | - Richard P Bazinet
- Department of Nutritional Sciences Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Ameer Y Taha
- Departments of Food Science and Technology University of California, Davis, Davis, CA
| |
Collapse
|
27
|
Yang S, Hu J, Li Y, Zhao Z. CYP2J2 is the major enzyme in human liver microsomes responsible for hydroxylation of SYL-927, a novel and selective sphingosine 1-phosphate receptor 1 (S1P 1 ) agonist. Biopharm Drug Dispos 2018; 39:431-436. [PMID: 30362120 DOI: 10.1002/bdd.2161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/10/2018] [Accepted: 10/20/2018] [Indexed: 01/20/2023]
Abstract
SYL-927, a novel and selective S1P1 agonist, is transferred to its active phosphate for the regulation of lymphocyte recirculation. This in vitro metabolism study is to elucidate the P450-mediated oxidation pathway of SYL-927 in human liver microsomes (HLMs). The results demonstrated that the ω-1 hydroxylated metabolite SYL-927-M was formed after incubation of SYL-927 with HLMs. Recombinant human CYP1A1 and CYP2J2 can efficiently catalyse SYL-927-M formation, followed by markedly less substrate conversion with CYP1A2, CYP2C19 and CYP2D6. Inhibition studies with chemical inhibitors and antibodies suggested that arachidonic acid, the substrate of CYP2J2, and CYP2J2-specific antibody effectively inhibited the formation of SYL-927-M in HLMs whereas no significant inhibition was observed with the inhibitors for CYP1A1, CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP2E1 and CYP3A4, demonstrating that CYP2J2 was primarily responsible for the formation of SYL-927-M.
Collapse
Affiliation(s)
- Shu Yang
- Department of Drug Metabolism of Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, 6 TiantanXili, Dongcheng District, Beijing, China
| | - Jinping Hu
- Department of Drug Metabolism of Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yan Li
- Department of Drug Metabolism of Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhigang Zhao
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, 6 TiantanXili, Dongcheng District, Beijing, China
| |
Collapse
|
28
|
Pazderka CW, Oliver B, Murray M, Rawling T. Omega-3 Polyunsaturated Fatty Acid Derived Lipid Mediators and their Application in Drug Discovery. Curr Med Chem 2018; 27:1670-1689. [PMID: 30259807 DOI: 10.2174/0929867325666180927100120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/08/2018] [Accepted: 08/27/2018] [Indexed: 12/31/2022]
Abstract
Omega-3 (n-3) and omega-6 (n-6) polyunsaturated fatty acids (PUFAs) play crucial and often opposing regulatory roles in health and in pathological conditions. n-3 and n-6 PUFA undergo biotransformation to parallel series of lipid mediators that are potent modulators of many cellular processes. A wide range of biological actions have been attributed to lipid mediators derived from n-6 PUFA, and these mediators have served as lead compounds in the development of numerous clinically approved drugs, including latanoprost (Xalatan: Pfizer), which is listed on the WHO Model List of Essential Medicines. n-3 PUFA-derived mediators have received less attention, in part because early studies suggested that n-3 PUFA act simply as competitive substrates for biotransformation enzymes and decrease the formation of n-6 PUFA-derived lipid mediators. However, more recent studies suggest that n-3 PUFA-derived mediators are biologically important in their own right. It is now emerging that many n-3 PUFA-derived lipid mediators have potent and diverse activities that are distinct from their n-6 counterparts. These findings provide new opportunities for drug discovery. Herein, we review the biosynthesis of n-3 PUFA-derived lipid mediators and highlight their biological actions that may be exploited for drug development. Lastly, we provide examples of medicinal chemistry research that has utilized n-3 PUFA-derived lipid mediators as novel lead compounds in drug design.
Collapse
Affiliation(s)
- Curtis W Pazderka
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo NSW 2007, Australia
| | - Brian Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo NSW 2007, Australia
| | - Michael Murray
- Discipline of Pharmacology, School of Medical Sciences, Sydney Medical School, The University of Sydney, Sydney NSW 2006, Australia
| | - Tristan Rawling
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo NSW 2007, Australia
| |
Collapse
|
29
|
Yamaori S, Araki N, Shionoiri M, Ikehata K, Kamijo S, Ohmori S, Watanabe K. A Specific Probe Substrate for Evaluation of CYP4A11 Activity in Human Tissue Microsomes and a Highly Selective CYP4A11 Inhibitor: Luciferin-4A and Epalrestat. J Pharmacol Exp Ther 2018; 366:446-457. [DOI: 10.1124/jpet.118.249557] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/29/2018] [Indexed: 02/06/2023] Open
|
30
|
Huang B, Bao J, Cao YR, Gao HF, Jin Y. Cytochrome P450 1A1 (CYP1A1) Catalyzes Lipid Peroxidation of Oleic Acid-Induced HepG2 Cells. BIOCHEMISTRY (MOSCOW) 2018; 83:595-602. [PMID: 29738693 DOI: 10.1134/s0006297918050127] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a chronic hepatic disease associated with excessive accumulation of lipids in hepatocytes. As the disease progresses, oxidative stress plays a pivotal role in the development of hepatic lipid peroxidation. Cytochrome P450 1A1 (CYP1A1), a subtype of the cytochrome P450 family, has been shown to be a vital modulator in production of reactive oxygen species. However, the exact role of CYP1A1 in NAFLD is still unclear. The aim of this study was to investigate the effects of CYP1A1 on lipid peroxidation in oleic acid (OA)-treated human hepatoma cells (HepG2). We found that the expression of CYP1A1 is elevated in OA-stimulated HepG2 cells. The results of siRNA transfection analysis indicated that CYP1A1-siRNA inhibited the lipid peroxidation in OA-treated HepG2 cells. Additionally, compared with siRNA-transfected and benzo[a]pyrene (BaP)-OA-induced HepG2 cells, overexpression of CYP1A1 by BaP further accelerated the lipid peroxidation in OA-treated HepG2 cells. These observations reveal a regulatory role of CYP1A1 in liver lipid peroxidation and imply CYP1A1 as a potential therapeutic target.
Collapse
Affiliation(s)
- B Huang
- Key Laboratory of Antiinflammatory and Immune Medicines, Ministry of Education, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - J Bao
- Key Laboratory of Antiinflammatory and Immune Medicines, Ministry of Education, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Y-R Cao
- Key Laboratory of Antiinflammatory and Immune Medicines, Ministry of Education, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - H-F Gao
- Key Laboratory of Antiinflammatory and Immune Medicines, Ministry of Education, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Y Jin
- Key Laboratory of Antiinflammatory and Immune Medicines, Ministry of Education, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
31
|
Comprehensive analysis of the mouse cytochrome P450 family responsible for omega-3 epoxidation of eicosapentaenoic acid. Sci Rep 2018; 8:7954. [PMID: 29784972 PMCID: PMC5962638 DOI: 10.1038/s41598-018-26325-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 05/10/2018] [Indexed: 12/15/2022] Open
Abstract
Metabolites generated via oxygenation of the omega-3 double bond (omega-3 oxygenation) in eicosapentaenoic acid (EPA) have recently been identified as novel anti-inflammatory lipid mediators. Therefore, oxygenase(s) responsible for this metabolic pathway are of particular interest. We performed genome-wide screening of mouse cytochrome P450 (CYP) isoforms to explore enzymes involved in omega-3 oxygenation of EPA. As a result, 5 CYP isoforms (mouse Cyp1a2, 2c50, 4a12a, 4a12b, and 4f18) were selected and identified to confer omega-3 epoxidation of EPA to yield 17,18-epoxyeicosatetraenoic acid (17,18-EpETE). Stereoselective production of 17,18-EpETE by each CYP isoform was confirmed, and molecular modeling indicated that chiral differences stem from different EPA binding conformations in the catalytic domains of respective CYP enzymes.
Collapse
|
32
|
Kriska T, Thomas MJ, Falck JR, Campbell WB. Deactivation of 12(S)-HETE through (ω-1)-hydroxylation and β-oxidation in alternatively activated macrophages. J Lipid Res 2018; 59:615-624. [PMID: 29472381 PMCID: PMC5880500 DOI: 10.1194/jlr.m081448] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 02/20/2018] [Indexed: 12/15/2022] Open
Abstract
Polarization of macrophages to proinflammatory M1 and to antiinflammatory alternatively activated M2 states has physiological implications in the development of experimental hypertension and other pathological conditions. 12/15-Lipoxygenase (12/15-LO) and its enzymatic products 12(S)- and 15(S)-hydroxyeicosatetraenoic acid (HETE) are essential in the process since disruption of the gene encoding 12/15-LO renders the mice unsusceptible to hypertension. The objective was to test the hypothesis that M2 macrophages catabolize 12(S)-HETE into products that are incapable of promoting vasoconstriction. Cultured M2 macrophages metabolized externally added [14C]12(S)-HETE into more polar metabolites, while M1 macrophages had little effect on the catabolism. The major metabolites were identified by mass spectrometry as (ω-1)-hydroxylation and β-oxidation products. The conversion was inhibited by both peroxisomal β-oxidation inhibitor, thioridazine, and cytochrome P450 inhibitors. Quantitative PCR analysis confirmed that several cytochrome P450 enzymes (CYP2E1 and CYP1B1) and peroxisomal β-oxidation markers were upregulated upon M2 polarization. The identified 12,19-dihydroxy-5,8,10,14-eicosatetraenoic acid and 8-hydroxy-6,10-hexadecadienoic acid metabolites were tested on abdominal aortic rings for biological activity. While 12(S)-HETE enhanced vasoconstrictions to angiotensin II from 15% to 25%, the metabolites did not. These results indicate that M2, but not M1, macrophages degrade 12(S)-HETE into products that no longer enhance the angiotensin II-induced vascular constriction, supporting a possible antihypertensive role of M2 macrophages.
Collapse
Affiliation(s)
- Tamas Kriska
- Department of Pharmacology and Toxicology,* Medical College of Wisconsin, Milwaukee, WI 53226.
| | - Michael J Thomas
- Department of Pharmacology and Toxicology,* Medical College of Wisconsin, Milwaukee, WI 53226
| | - John R Falck
- Department of Biochemistry,† University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - William B Campbell
- Department of Pharmacology and Toxicology,* Medical College of Wisconsin, Milwaukee, WI 53226
| |
Collapse
|
33
|
Kim WY, Lee SJ, Min J, Oh KS, Kim DH, Kim HS, Shin JG. Identification of novel CYP4F2 genetic variants exhibiting decreased catalytic activity in the conversion of arachidonic acid to 20-hydroxyeicosatetraenoic acid (20-HETE). Prostaglandins Leukot Essent Fatty Acids 2018; 131:6-13. [PMID: 29628049 DOI: 10.1016/j.plefa.2018.02.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 01/06/2018] [Accepted: 02/07/2018] [Indexed: 10/17/2022]
Abstract
CYP4F2 is an enzyme involved in the formation of 20-hydroxyeicosatetraenoic acid (20-HETE) from arachidonic acid and metabolizes vitamin K into an inactive form. Our objectives were to identify new CYP4F2 genetic variants and to characterize the functional consequences of the conversion of arachidonic acid into 20-HETE. We used direct DNA sequencing to identify a total of 20 single-nucleotide polymorphisms (SNPs) including four coding variants, A27V, R47C, P85A, and V433M, in 50 randomly selected subjects. Of these, A27V and P85A were new. Recombinant variant proteins were prepared using an Escherichia coli expression system, purified, and quantified via CO-difference spectral analysis. The conversion of arachidonic acid to 20-HETE by the coding variants was compared to that of the wild-type protein. Wild-type CYP4F2 exhibited the highest intrinsic clearance, followed by P85A, A27V, V433M, and R47C (40-65% of the wild-type value). The locations of the mutated residues in the three-dimensional protein structure were predicted by structural modeling, and the possible effects on 20-HETE synthesis discussed. In summary, we describe the allele frequency, haplotype distribution, and linkage disequilibrium of CYP4F2 and functionally analyze the CYP4F2 coding variants. Our findings suggest that individuals having the low-activity alleles of CYP4F2 may inefficiently convert arachidonic acid into 20-HETE. This may aid in our understanding of 20-HETE-related blood pressure problems and cardiovascular diseases when genotype-phenotype association studies are performed in the future.
Collapse
Affiliation(s)
- Woo-Young Kim
- Department of Pharmacology and Pharmacogenomics Research Center; Department of Clinical Pharmacology, Inje University College of Medicine, Inje University Busan Paik Hospital, 633-165 Gaegum-dong, Jin-gu, Busan 614-735, South Korea; Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, South Korea
| | - Su-Jun Lee
- Department of Pharmacology and Pharmacogenomics Research Center; Department of Clinical Pharmacology, Inje University College of Medicine, Inje University Busan Paik Hospital, 633-165 Gaegum-dong, Jin-gu, Busan 614-735, South Korea
| | - Jungki Min
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Kyung-Suk Oh
- Department of Pharmacology and Pharmacogenomics Research Center; Department of Clinical Pharmacology, Inje University College of Medicine, Inje University Busan Paik Hospital, 633-165 Gaegum-dong, Jin-gu, Busan 614-735, South Korea
| | - Dong-Hyun Kim
- Department of Pharmacology and Pharmacogenomics Research Center; Department of Clinical Pharmacology, Inje University College of Medicine, Inje University Busan Paik Hospital, 633-165 Gaegum-dong, Jin-gu, Busan 614-735, South Korea
| | - Heui-Soo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, South Korea
| | - Jae-Gook Shin
- Department of Pharmacology and Pharmacogenomics Research Center; Department of Clinical Pharmacology, Inje University College of Medicine, Inje University Busan Paik Hospital, 633-165 Gaegum-dong, Jin-gu, Busan 614-735, South Korea.
| |
Collapse
|
34
|
McDonald MG, Ray S, Amorosi CJ, Sitko KA, Kowalski JP, Paco L, Nath A, Gallis B, Totah RA, Dunham MJ, Fowler DM, Rettie AE. Expression and Functional Characterization of Breast Cancer-Associated Cytochrome P450 4Z1 in Saccharomyces cerevisiae. Drug Metab Dispos 2017; 45:1364-1371. [PMID: 29018033 PMCID: PMC5697098 DOI: 10.1124/dmd.117.078188] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 10/04/2017] [Indexed: 12/22/2022] Open
Abstract
CYP4Z1 is an "orphan" cytochrome P450 (P450) enzyme that has provoked interest because of its hypothesized role in breast cancer through formation of the signaling molecule 20-hydroxyeicosatetraenoic acid (20-HETE). We expressed human CYP4Z1 in Saccharomyces cerevisiae and evaluated its catalytic capabilities toward arachidonic and lauric acids (AA and LA). Specific and sensitive mass spectrometry assays enabled discrimination of the regioselectivity of hydroxylation of these two fatty acids. CYP4Z1 generated 7-, 8-, 9-, 10-, and 11-hydroxy LA, whereas the 12-hydroxy metabolite was not detected. HET0016, the prototypic CYP4 inhibitor, only weakly inhibited laurate metabolite formation (IC50 ∼15 μM). CYP4Z1 preferentially oxidized AA to the 14(S),15(R)-epoxide with high regioselectivity and stereoselectivity, a reaction that was also insensitive to HET0016, but neither 20-HETE nor 20-carboxy-AA were detectable metabolites. Docking of LA and AA into a CYP4Z1 homology model was consistent with this preference for internal fatty acid oxidation. Thus, human CYP4Z1 has an inhibitor profile and product regioselectivity distinct from most other CYP4 enzymes, consistent with CYP4Z1's lack of a covalently linked heme. These data suggest that, if CYP4Z1 modulates breast cancer progression, it does so by a mechanism other than direct production of 20-HETE.
Collapse
Affiliation(s)
- Matthew G McDonald
- Departments of Medicinal Chemistry (M.G.M., S.R., J.P.K., L.P., A.N., B.G., R.A.T., A.E.R.), Genome Sciences (K.A.S., C.J.A., M.J.D., D.M.F.), and Bioengineering (D.M.F.), University of Washington, Seattle, Washington
| | - Sutapa Ray
- Departments of Medicinal Chemistry (M.G.M., S.R., J.P.K., L.P., A.N., B.G., R.A.T., A.E.R.), Genome Sciences (K.A.S., C.J.A., M.J.D., D.M.F.), and Bioengineering (D.M.F.), University of Washington, Seattle, Washington
| | - Clara J Amorosi
- Departments of Medicinal Chemistry (M.G.M., S.R., J.P.K., L.P., A.N., B.G., R.A.T., A.E.R.), Genome Sciences (K.A.S., C.J.A., M.J.D., D.M.F.), and Bioengineering (D.M.F.), University of Washington, Seattle, Washington
| | - Katherine A Sitko
- Departments of Medicinal Chemistry (M.G.M., S.R., J.P.K., L.P., A.N., B.G., R.A.T., A.E.R.), Genome Sciences (K.A.S., C.J.A., M.J.D., D.M.F.), and Bioengineering (D.M.F.), University of Washington, Seattle, Washington
| | - John P Kowalski
- Departments of Medicinal Chemistry (M.G.M., S.R., J.P.K., L.P., A.N., B.G., R.A.T., A.E.R.), Genome Sciences (K.A.S., C.J.A., M.J.D., D.M.F.), and Bioengineering (D.M.F.), University of Washington, Seattle, Washington
| | - Lorela Paco
- Departments of Medicinal Chemistry (M.G.M., S.R., J.P.K., L.P., A.N., B.G., R.A.T., A.E.R.), Genome Sciences (K.A.S., C.J.A., M.J.D., D.M.F.), and Bioengineering (D.M.F.), University of Washington, Seattle, Washington
| | - Abhinav Nath
- Departments of Medicinal Chemistry (M.G.M., S.R., J.P.K., L.P., A.N., B.G., R.A.T., A.E.R.), Genome Sciences (K.A.S., C.J.A., M.J.D., D.M.F.), and Bioengineering (D.M.F.), University of Washington, Seattle, Washington
| | - Byron Gallis
- Departments of Medicinal Chemistry (M.G.M., S.R., J.P.K., L.P., A.N., B.G., R.A.T., A.E.R.), Genome Sciences (K.A.S., C.J.A., M.J.D., D.M.F.), and Bioengineering (D.M.F.), University of Washington, Seattle, Washington
| | - Rheem A Totah
- Departments of Medicinal Chemistry (M.G.M., S.R., J.P.K., L.P., A.N., B.G., R.A.T., A.E.R.), Genome Sciences (K.A.S., C.J.A., M.J.D., D.M.F.), and Bioengineering (D.M.F.), University of Washington, Seattle, Washington
| | - Maitreya J Dunham
- Departments of Medicinal Chemistry (M.G.M., S.R., J.P.K., L.P., A.N., B.G., R.A.T., A.E.R.), Genome Sciences (K.A.S., C.J.A., M.J.D., D.M.F.), and Bioengineering (D.M.F.), University of Washington, Seattle, Washington
| | - Douglas M Fowler
- Departments of Medicinal Chemistry (M.G.M., S.R., J.P.K., L.P., A.N., B.G., R.A.T., A.E.R.), Genome Sciences (K.A.S., C.J.A., M.J.D., D.M.F.), and Bioengineering (D.M.F.), University of Washington, Seattle, Washington
| | - Allan E Rettie
- Departments of Medicinal Chemistry (M.G.M., S.R., J.P.K., L.P., A.N., B.G., R.A.T., A.E.R.), Genome Sciences (K.A.S., C.J.A., M.J.D., D.M.F.), and Bioengineering (D.M.F.), University of Washington, Seattle, Washington
| |
Collapse
|
35
|
Hennebelle M, Zhang Z, Metherel AH, Kitson AP, Otoki Y, Richardson CE, Yang J, Lee KSS, Hammock BD, Zhang L, Bazinet RP, Taha AY. Linoleic acid participates in the response to ischemic brain injury through oxidized metabolites that regulate neurotransmission. Sci Rep 2017; 7:4342. [PMID: 28659576 PMCID: PMC5489485 DOI: 10.1038/s41598-017-02914-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 04/20/2017] [Indexed: 12/15/2022] Open
Abstract
Linoleic acid (LA; 18:2 n-6), the most abundant polyunsaturated fatty acid in the US diet, is a precursor to oxidized metabolites that have unknown roles in the brain. Here, we show that oxidized LA-derived metabolites accumulate in several rat brain regions during CO2-induced ischemia and that LA-derived 13-hydroxyoctadecadienoic acid, but not LA, increase somatic paired-pulse facilitation in rat hippocampus by 80%, suggesting bioactivity. This study provides new evidence that LA participates in the response to ischemia-induced brain injury through oxidized metabolites that regulate neurotransmission. Targeting this pathway may be therapeutically relevant for ischemia-related conditions such as stroke.
Collapse
Affiliation(s)
- Marie Hennebelle
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA
| | - Zhichao Zhang
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA
| | - Adam H Metherel
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, ON, Canada
| | - Alex P Kitson
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, ON, Canada
| | - Yurika Otoki
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA
- Food and Biodynamic Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Christine E Richardson
- Department of Nutrition, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA
| | - Jun Yang
- Department of Entomology and Nematology, College of Agriculture and Environmental Sciences and Comprehensive Cancer Center, Medical Center, University of California, Davis, CA, USA
| | - Kin Sing Stephen Lee
- Department of Entomology and Nematology, College of Agriculture and Environmental Sciences and Comprehensive Cancer Center, Medical Center, University of California, Davis, CA, USA
| | - Bruce D Hammock
- Department of Entomology and Nematology, College of Agriculture and Environmental Sciences and Comprehensive Cancer Center, Medical Center, University of California, Davis, CA, USA
| | - Liang Zhang
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Medicine (Neurology), University of Toronto, ON, Canada
| | - Richard P Bazinet
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, ON, Canada
| | - Ameer Y Taha
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA.
| |
Collapse
|
36
|
Hennebelle M, Otoki Y, Yang J, Hammock BD, Levitt AJ, Taha AY, Swardfager W. Altered soluble epoxide hydrolase-derived oxylipins in patients with seasonal major depression: An exploratory study. Psychiatry Res 2017; 252:94-101. [PMID: 28259037 PMCID: PMC5611448 DOI: 10.1016/j.psychres.2017.02.056] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 02/10/2017] [Accepted: 02/24/2017] [Indexed: 12/19/2022]
Abstract
Many cytochrome p450-derived lipids promote resolution of inflammation, in contrast to their soluble epoxide hydrolase(sEH)-derived oxylipin breakdown products. Here we compare plasma oxylipins and precursor fatty acids between seasons in participants with major depressive disorder with seasonal pattern (MDD-s). Euthymic participants with a history of MDD-s recruited in summer-fall were followed-up in winter. At both visits, a structured clinical interview (DSM-5 criteria) and the Beck Depression Inventory II (BDI-II) were administered. Unesterified and total oxylipin pools were assayed by liquid chromatography tandem mass-spectrometry (LC-MS/MS). Precursor fatty acids were measured by gas chromatography. In nine unmedicated participants euthymic at baseline who met depression criteria in winter, BDI-II scores increased from 4.9±4.4 to 19.9±7.7. Four sEH-derived oxylipins increased in winter compared to summer-fall with moderate to large effect sizes. An auto-oxidation product (unesterified epoxyketooctadecadienoic acid) and lipoxygenase-derived 13-hydroxyoctadecadienoic acid also increased in winter. The cytochrome p450-derived 20-COOH-leukotriene B4 (unesterified) and total 14(15)-epoxyeicosatetraenoic acid, and the sEH-derived 14,15-dihydroxyeicostrienoic acid (unesterified), decreased in winter. We conclude that winter depression was associated with changes in cytochrome p450- and sEH-derived oxylipins, suggesting that seasonal shifts in omega-6 and omega-3 fatty acid metabolism mediated by sEH may underlie inflammatory states in symptomatic MDD-s.
Collapse
Affiliation(s)
- Marie Hennebelle
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA.
| | - Yurika Otoki
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA; Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan.
| | - Jun Yang
- Department of Entomology and Nematology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA.
| | - Bruce D Hammock
- Department of Entomology and Nematology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA.
| | - Anthony J Levitt
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada.
| | - Ameer Y Taha
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA.
| | - Walter Swardfager
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON Canada.
| |
Collapse
|
37
|
Omega-3 fatty acids and cytochrome P450-derived eicosanoids in cardiovascular diseases: Which actions and interactions modulate hemodynamics? Prostaglandins Other Lipid Mediat 2017; 128-129:34-42. [DOI: 10.1016/j.prostaglandins.2017.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 01/05/2017] [Accepted: 01/18/2017] [Indexed: 12/24/2022]
|
38
|
Wagner K, Lee KSS, Yang J, Hammock BD. Epoxy fatty acids mediate analgesia in murine diabetic neuropathy. Eur J Pain 2016; 21:456-465. [PMID: 27634339 DOI: 10.1002/ejp.939] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND Neuropathic pain is a debilitating condition with no adequate therapy. The health benefits of omega-3 fatty acids are established, however, the role of docosahexaenoic acid (DHA) in limiting pain has only recently been described and the mechanisms of this action remain unknown. DHA is metabolized into epoxydocosapentanoic acids (EDPs) via cytochrome P450 (CYP450) enzymes which are substrates for the soluble epoxide hydrolase (sEH) enzyme. Here, we tested several hypotheses; first, that the antinociceptive action of DHA is mediated by the EDPs. Second, based on evidence that DHA and CYP450 metabolites elicit analgesia through opioid signalling, we investigated this as a possible mechanism of action. Third, we tested whether the analgesia mediated by epoxy fatty acids had similar rewarding effects as opioid analgesics. METHODS We tested diabetic neuropathic wild-type and sEH null mice in a conditioned place preference assay for their response to EDPs, sEHI and antagonism of these treatments with naloxone, a mu-opioid receptor antagonist. RESULTS The EDPs and sEH inhibitors were efficacious against chronic pain, and naloxone antagonized the action of both EDPs and sEH inhibitors. Despite this antagonism, the sEH inhibitors lacked reward side effects differing from opioids. CONCLUSIONS The EpFA are analgesic against chronic pain differing from opioids which have limited efficacy in chronic conditions. SIGNIFICANCE EDPs and sEHI mediate analgesia in modelled chronic pain and this analgesia is blocked by naloxone. However, unlike opioids, sEHI are highly effective in neuropathic pain models and importantly lack rewarding side effects.
Collapse
Affiliation(s)
- K Wagner
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California Davis, USA
| | - K S S Lee
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California Davis, USA
| | - J Yang
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California Davis, USA
| | - B D Hammock
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California Davis, USA
| |
Collapse
|
39
|
Abstract
Bietti crystalline dystrophy (BCD) is an inherited retinal degenerative disease characterized by crystalline deposits in the retina, followed by progressive atrophy of the retinal pigment epithelium (RPE), choriocapillaris, and photoreceptors. CYP4V2 has been identified as the causative gene for BCD. The CYP4V2 gene belongs to the cytochrome P450 superfamily and encodes for fatty acid ω-hydroxylase of both saturated and unsaturated fatty acids. The CYP4V2 protein is localized most abundantly within the endoplasmic reticulum in the RPE and is postulated to play a role in the physiological lipid recycling system between the RPE and photoreceptors to maintain visual function. Electroretinographic assessments have revealed progressive dysfunction of rod and cone photoreceptors in patients with BCD. Several genotypes have been associated with more severe phenotypes based on clinical and electrophysiological findings. With the advent of multimodal imaging with spectral domain optical coherence tomography, fundus autofluorescence, and adaptive optics scanning laser ophthalmoscopy, more precise delineation of BCD severity and progression is now possible, allowing for the potential future development of targets for gene therapy.
Collapse
Affiliation(s)
- Danny S C Ng
- From the *Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong; and †2010 Retina and Macula Centre, Kowloon, Hong Kong
| | | | | | | |
Collapse
|
40
|
Sanaki T, Inaba Y, Fujiwara T, Yoshioka T, Matsushima K, Minagawa K, Higashino K, Nakano T, Numata Y. A hybrid strategy using global analysis of oxidized fatty acids and bioconversion by Bacillus circulans. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30:751-762. [PMID: 26864527 DOI: 10.1002/rcm.7504] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 12/25/2015] [Accepted: 12/30/2015] [Indexed: 06/05/2023]
Abstract
RATIONALE Targeted oxidized fatty acid analysis has been widely used to understand the roles of fatty acids in the development of diseases. However, because of the extensive structural diversity of fatty acids, it is considered that unknown lipid metabolites will remain undetected. Here, to discover and identify unknown lipid metabolites in biological samples, a global analytical system and a method of synthesizing lipid standards were investigated. METHODS Oxidized fatty acids in mouse lung tissues were extracted using mixed-mode spin columns. Separation was achieved via ultra-high-performance liquid chromatography, mass spectrometric (MS) analysis was conducted in full scan mode using a Q Exactive Plus instrument equipped with an electrospray ionization probe, and structure analysis was carried out by high-resolution data-dependent tandem mass spectrometry (dd-MS(2)). In addition, lipid standards, which are not commercially available, were synthesized by bioconversion using Bacillus circulans. RESULTS Oxidized fatty acids in mouse lung tissues were analyzed by high-resolution accurate-mass analysis, and multiple unknown molecules were discovered and tentatively identified using high-resolution dd-MS(2). Among these molecules, 21-hydroxydocosahexaenoic acid (21-HDoHE) and 22-HDoHE, which are not commercially available, were synthesized by bioconversion. By comparing the exact masses, retention times, and characteristic fragment ions of the synthesized standards, 21-HDoHE and 22-HDoHE were definitively identified in the mouse lung tissue. CONCLUSIONS Our strategy of global analysis and bioconversion can be used for the discovery and identification of unknown lipid molecules.
Collapse
Affiliation(s)
- Takao Sanaki
- Shionogi Innovation Center for Drug Discovery, Shionogi & Co., Ltd., Sapporo, 001-0021, Japan
| | - Yoko Inaba
- Shionogi Pharmaceutical Research Center for Drug Discovery, Shionogi & Co., Ltd., Osaka, 561-0825, Japan
| | - Takuji Fujiwara
- Shionogi Pharmaceutical Research Center for Drug Discovery, Shionogi & Co., Ltd., Osaka, 561-0825, Japan
| | - Takeshi Yoshioka
- Shionogi Innovation Center for Drug Discovery, Shionogi & Co., Ltd., Sapporo, 001-0021, Japan
| | - Keisuke Matsushima
- Shionogi Pharmaceutical Research Center for Drug Discovery, Shionogi & Co., Ltd., Osaka, 561-0825, Japan
| | - Kazuyuki Minagawa
- Shionogi Pharmaceutical Research Center for Drug Discovery, Shionogi & Co., Ltd., Osaka, 561-0825, Japan
| | - Kenichi Higashino
- Shionogi Innovation Center for Drug Discovery, Shionogi & Co., Ltd., Sapporo, 001-0021, Japan
| | - Toru Nakano
- Shionogi Innovation Center for Drug Discovery, Shionogi & Co., Ltd., Sapporo, 001-0021, Japan
| | - Yoshito Numata
- Shionogi Innovation Center for Drug Discovery, Shionogi & Co., Ltd., Sapporo, 001-0021, Japan
| |
Collapse
|
41
|
n-3 fatty acids reduce plasma 20-hydroxyeicosatetraenoic acid and blood pressure in patients with chronic kidney disease. J Hypertens 2015; 33:1947-53. [DOI: 10.1097/hjh.0000000000000621] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
42
|
Johnson AL, Edson KZ, Totah RA, Rettie AE. Cytochrome P450 ω-Hydroxylases in Inflammation and Cancer. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2015; 74:223-62. [PMID: 26233909 DOI: 10.1016/bs.apha.2015.05.002] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cytochrome P450-dependent ω-hydroxylation is a prototypic metabolic reaction of CYP4 family members that is important for the elimination and bioactivation of not only therapeutic drugs, but also endogenous compounds, principally fatty acids. Eicosanoids, derived from arachidonic acid, are key substrates in the latter category. Human CYP4 enzymes, mainly CYP4A11, CYP4F2, and CYP4F3B, hydroxylate arachidonic acid at the omega position to form 20-HETE, which has important effects in tumor progression and on angiogenesis and blood pressure regulation in the vasculature and kidney. CYP4F3A in myeloid tissue catalyzes the ω-hydroxylation of leukotriene B4 to 20-hydroxy leukotriene B4, an inactivation process that is critical for the regulation of the inflammatory response. Here, we review the enzymology, tissue distribution, and substrate selectivity of human CYP4 ω-hydroxylases and their roles as catalysts for the formation and termination of the biological effects of key eicosanoid metabolites in inflammation and cancer progression.
Collapse
Affiliation(s)
- Amanda L Johnson
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, Washington, USA
| | - Katheryne Z Edson
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, Washington, USA; Amgen Inc., Thousand Oaks, California, USA
| | - Rheem A Totah
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, Washington, USA
| | - Allan E Rettie
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
43
|
Massaro M, Martinelli R, Gatta V, Scoditti E, Pellegrino M, Carluccio MA, Calabriso N, Buonomo T, Stuppia L, Storelli C, De Caterina R. Transcriptome-based identification of new anti-inflammatory and vasodilating properties of the n-3 fatty acid docosahexaenoic acid in vascular endothelial cell under proinflammatory conditions [corrected]. PLoS One 2015; 10:e0129652. [PMID: 26114549 PMCID: PMC4482638 DOI: 10.1371/journal.pone.0129652] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 05/12/2015] [Indexed: 01/01/2023] Open
Abstract
Scope High intakes of n-3 fatty acids exert anti-inflammatory effects and cardiovascular protection, but the underlying molecular basis is incompletely defined. By genome-wide analysis we searched for novel effects of docosahexaenoic acid (DHA) on gene expression and pathways in human vascular endothelium under pro-inflammatory conditions. Methods and Results Human umbilical vein endothelial cells were treated with DHA and then stimulated with interleukin(IL)-1β. Total RNA was extracted, and gene expression examined by DNA microarray. DHA alone altered the expression of 188 genes, decreasing 92 and increasing 96. IL-1β changed the expression of 2031 genes, decreasing 997 and increasing 1034. Treatment with DHA before stimulation significantly affected the expression of 116 IL-1β-deregulated genes, counter-regulating the expression of 55 genes among those decreased and of 61 among those increased. Functional and network analyses identified immunological, inflammatory and metabolic pathways as the most affected. Newly identified DHA-regulated genes are involved in stemness, cellular growth, cardiovascular system function and cancer, and included cytochrome p450 4F2(CYP4F2), transforming growth factor(TGF)-β2, Cluster of Differentiation (CD)47, caspase recruitment domain(CARD)11 and phosphodiesterase(PDE)5α. Conclusions Endothelial exposure to DHA regulates novel genes and related pathways. Such unbiased identification should increase our understanding of mechanisms by which n-3 fatty acids affect human diseases.
Collapse
Affiliation(s)
- Marika Massaro
- National Research Council (CNR), Institute of Clinical Physiology, Lecce, Italy
| | - Rosanna Martinelli
- CEINGE Biotecnologie Avanzate, Naples, Italy
- Department of Medicine and Surgery of Salerno University, Salerno, Italy
| | - Valentina Gatta
- “Gabriele d’Annunzio” University and Center of Excellence on Aging, Chieti, Italy
| | - Egeria Scoditti
- National Research Council (CNR), Institute of Clinical Physiology, Lecce, Italy
| | - Mariangela Pellegrino
- National Research Council (CNR), Institute of Clinical Physiology, Lecce, Italy
- Department of Biological and Environmental Science and Technology (Disteba), University of Salento, Lecce, Italy
| | | | - Nadia Calabriso
- National Research Council (CNR), Institute of Clinical Physiology, Lecce, Italy
| | | | - Liborio Stuppia
- “Gabriele d’Annunzio” University and Center of Excellence on Aging, Chieti, Italy
| | - Carlo Storelli
- Department of Biological and Environmental Science and Technology (Disteba), University of Salento, Lecce, Italy
| | - Raffaele De Caterina
- “Gabriele d’Annunzio” University and Center of Excellence on Aging, Chieti, Italy
- Fondazione Toscana “Gabriele Monasterio”, Pisa, Italy
- * E-mail:
| |
Collapse
|
44
|
Gender Differences in Impact of CYP2C19 Polymorphism on Development of Coronary Artery Disease. J Cardiovasc Pharmacol 2015; 65:148-52. [DOI: 10.1097/fjc.0000000000000171] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
45
|
Zelasko S, Arnold WR, Das A. Endocannabinoid metabolism by cytochrome P450 monooxygenases. Prostaglandins Other Lipid Mediat 2014; 116-117:112-23. [PMID: 25461979 DOI: 10.1016/j.prostaglandins.2014.11.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 11/11/2014] [Accepted: 11/13/2014] [Indexed: 01/01/2023]
Abstract
The endogenous cannabinoid system was first uncovered following studies of the recreational drug Cannabis sativa. It is now recognized as a vital network of signaling pathways that regulate several physiological processes. Following the initial discovery of the cannabinoid receptors 1 (CB1) and 2 (CB2), activated by Cannabis-derived analogs, many endogenous fatty acids termed "endocannabinoids" are now known to be partial agonists of the CB receptors. At present, the most thoroughly studied endocannabinoid signaling molecules are anandamide (AEA) and 2-arachidonylglycerol (2-AG), which are both derived from arachidonic acid. Both AEA and 2-AG are also substrates for the eicosanoid-synthesizing pathways, namely, certain cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P450 (CYP) enzymes. In the past, research in the endocannabinoid field focused on the interaction of AEA and 2-AG with the COX and LOX enzymes, but accumulating evidence also points to the involvement of CYPs in modulating endocannabinoid signaling. The focus of this review is to explore the current understanding of CYP-mediated metabolism of endocannabinoids.
Collapse
Affiliation(s)
- Susan Zelasko
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL 61802, United States
| | - William R Arnold
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61802, United States
| | - Aditi Das
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL 61802, United States; Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61802, United States; Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61802, United States; Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61802, United States.
| |
Collapse
|
46
|
Nakano M, Lockhart CM, Kelly EJ, Rettie AE. Ocular cytochrome P450s and transporters: roles in disease and endobiotic and xenobiotic disposition. Drug Metab Rev 2014; 46:247-60. [PMID: 24856391 PMCID: PMC4676416 DOI: 10.3109/03602532.2014.921190] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Drug metabolism and transport processes in the liver, intestine and kidney that affect the pharmacokinetics and pharmacodynamics of therapeutic agents have been studied extensively. In contrast, comparatively little research has been conducted on these topics as they pertain to the eye. Recently, however, catalytic functions of ocular cytochrome P450 enzymes have gained increasing attention, in large part due to the roles of CYP1B1 and CYP4V2 variants in primary congenital glaucoma and Bietti's corneoretinal crystalline dystrophy, respectively. In this review, we discuss challenges to ophthalmic drug delivery, including Phase I drug metabolism and transport in the eye, and the role of three specific P450s, CYP4B1, CYP1B1 and CYP4V2 in ocular inflammation and genetically determined ocular disease.
Collapse
Affiliation(s)
- Mariko Nakano
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - Catherine M. Lockhart
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - Edward J. Kelly
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - Allan E. Rettie
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, WA, USA
| |
Collapse
|
47
|
Yuan D, Zou Q, Yu T, Song C, Huang S, Chen S, Ren Z, Xu A. Ancestral genetic complexity of arachidonic acid metabolism in Metazoa. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:1272-84. [PMID: 24801744 DOI: 10.1016/j.bbalip.2014.04.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 04/23/2014] [Accepted: 04/28/2014] [Indexed: 01/09/2023]
Abstract
Eicosanoids play an important role in inducing complex and crucial physiological processes in animals. Eicosanoid biosynthesis in animals is widely reported; however, eicosanoid production in invertebrate tissue is remarkably different to vertebrates and in certain respects remains elusive. We, for the first time, compared the orthologs involved in arachidonic acid (AA) metabolism in 14 species of invertebrates and 3 species of vertebrates. Based on parsimony, a complex AA-metabolic system may have existed in the common ancestor of the Metazoa, and then expanded and diversified through invertebrate lineages. A primary vertebrate-like AA-metabolic system via cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P450 (CYP) pathways was further identified in the basal chordate, amphioxus. The expression profiling of AA-metabolic enzymes and lipidomic analysis of eicosanoid production in the tissues of amphioxus supported our supposition. Thus, we proposed that the ancestral complexity of AA-metabolic network diversified with the different lineages of invertebrates, adapting with the diversity of body plans and ecological opportunity, and arriving at the vertebrate-like pattern in the basal chordate, amphioxus.
Collapse
Affiliation(s)
- Dongjuan Yuan
- Department of Biochemistry, College of Life Sciences, State Key Laboratory of Biocontrol, National Engineering Research Center of South China Sea Marine Biotechnology, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Qiuqiong Zou
- Department of Biochemistry, College of Life Sciences, State Key Laboratory of Biocontrol, National Engineering Research Center of South China Sea Marine Biotechnology, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Ting Yu
- Department of Biochemistry, College of Life Sciences, State Key Laboratory of Biocontrol, National Engineering Research Center of South China Sea Marine Biotechnology, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Cuikai Song
- Department of Biochemistry, College of Life Sciences, State Key Laboratory of Biocontrol, National Engineering Research Center of South China Sea Marine Biotechnology, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Shengfeng Huang
- Department of Biochemistry, College of Life Sciences, State Key Laboratory of Biocontrol, National Engineering Research Center of South China Sea Marine Biotechnology, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Shangwu Chen
- Department of Biochemistry, College of Life Sciences, State Key Laboratory of Biocontrol, National Engineering Research Center of South China Sea Marine Biotechnology, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Zhenghua Ren
- Department of Biochemistry, College of Life Sciences, State Key Laboratory of Biocontrol, National Engineering Research Center of South China Sea Marine Biotechnology, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Anlong Xu
- Department of Biochemistry, College of Life Sciences, State Key Laboratory of Biocontrol, National Engineering Research Center of South China Sea Marine Biotechnology, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China; Beijing University of Chinese Medicine, 11 Bei San Huang Dong Road, Chao-yang District, Beijing, 100029, People's Republic of China.
| |
Collapse
|
48
|
Athinarayanan S, Wei R, Zhang M, Bai S, Traber MG, Yates K, Cummings OW, Molleston J, Liu W, Chalasani N. Genetic polymorphism of cytochrome P450 4F2, vitamin E level and histological response in adults and children with nonalcoholic fatty liver disease who participated in PIVENS and TONIC clinical trials. PLoS One 2014; 9:e95366. [PMID: 24759732 PMCID: PMC3997354 DOI: 10.1371/journal.pone.0095366] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 03/26/2014] [Indexed: 12/17/2022] Open
Abstract
Vitamin E improved liver histology in children and adults with NAFLD who participated in TONIC and PIVENS clinical trials, but with significant inter-individual variability in its efficacy. Cytochrome P450 4F2 (CYP4F2) is the major enzyme metabolizing Vit E, with two common genetic variants (V433M, rs2108622 and W12G, rs3093105) found to alter its activity. We investigated the relationship between CYP4F2 genotypes, α-tocopherol levels and histological improvement in these two trials. V433M and W12G variants were genotyped in TONIC (n = 155) and PIVENS (n = 213) DNA samples. The relationships between CYP4F2 genotypes, plasma α-tocopherol levels at baseline and weeks 48 (w48) and 96 (w96) and histological end points (overall improvement in liver histology and resolution of NASH) were investigated. As a result, the V433M genotype was significantly associated with baseline plasma α-tocopherol in the TONIC trial (p = 0.004), but not in PIVENS. Among those receiving Vit E treatment, CYP4F2 V433M genotype was associated with significantly decreased plasma α-tocopherol levels at w48 (p = 0.003 for PIVENS and p = 0.026 for TONIC) but not at w96. The w96 α-tocopherol level was significantly associated with resolution of NASH (p = 0.006) and overall histology improvement (p = 0.021)in the PIVENS, but not in the TONIC trial. There was no significant association between CYP4F2 genotypes and histological end points in either trial. Our study suggested the a moderate role of CYP4F2 polymorphisms in affecting the pharmacokinetics of Vit E as a therapeutic agent. In addition, there may be age-dependent relationship between CYP4F2 genetic variability and Vit E pharmacokinetics in NAFLD.
Collapse
Affiliation(s)
- Shaminie Athinarayanan
- Department of Medicinal Chemistry and Molecular Medicine, Purdue University, West Lafayette, Indiana, United States of America
| | - Rongrong Wei
- Department of Medicinal Chemistry and Molecular Medicine, Purdue University, West Lafayette, Indiana, United States of America
| | - Min Zhang
- Department of Statistics, Purdue University, West Lafayette, Indiana, United States of America
| | - Shaochun Bai
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Maret G. Traber
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon, United States of America
| | - Katherine Yates
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Massachusetts, United States of America
| | - Oscar W. Cummings
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Jean Molleston
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Wanqing Liu
- Department of Medicinal Chemistry and Molecular Medicine, Purdue University, West Lafayette, Indiana, United States of America
- Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Indiana Fatty Liver Disease Research Group, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail: (WL); (NC)
| | - Naga Chalasani
- Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Indiana Fatty Liver Disease Research Group, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail: (WL); (NC)
| |
Collapse
|
49
|
Fischer R, Konkel A, Mehling H, Blossey K, Gapelyuk A, Wessel N, von Schacky C, Dechend R, Muller DN, Rothe M, Luft FC, Weylandt K, Schunck WH. Dietary omega-3 fatty acids modulate the eicosanoid profile in man primarily via the CYP-epoxygenase pathway. J Lipid Res 2014; 55:1150-64. [PMID: 24634501 DOI: 10.1194/jlr.m047357] [Citation(s) in RCA: 181] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Indexed: 12/20/2022] Open
Abstract
Cytochrome P450 (CYP)-dependent metabolites of arachidonic acid (AA) contribute to the regulation of cardiovascular function. CYP enzymes also accept EPA and DHA to yield more potent vasodilatory and potentially anti-arrhythmic metabolites, suggesting that the endogenous CYP-eicosanoid profile can be favorably shifted by dietary omega-3 fatty acids. To test this hypothesis, 20 healthy volunteers were treated with an EPA/DHA supplement and analyzed for concomitant changes in the circulatory and urinary levels of AA-, EPA-, and DHA-derived metabolites produced by the cyclooxygenase-, lipoxygenase (LOX)-, and CYP-dependent pathways. Raising the Omega-3 Index from about four to eight primarily resulted in a large increase of EPA-derived CYP-dependent epoxy-metabolites followed by increases of EPA- and DHA-derived LOX-dependent monohydroxy-metabolites including the precursors of the resolvin E and D families; resolvins themselves were not detected. The metabolite/precursor fatty acid ratios indicated that CYP epoxygenases metabolized EPA with an 8.6-fold higher efficiency and DHA with a 2.2-fold higher efficiency than AA. Effects on leukotriene, prostaglandin E, prostacyclin, and thromboxane formation remained rather weak. We propose that CYP-dependent epoxy-metabolites of EPA and DHA may function as mediators of the vasodilatory and cardioprotective effects of omega-3 fatty acids and could serve as biomarkers in clinical studies investigating the cardiovascular effects of EPA/DHA supplementation.
Collapse
Affiliation(s)
- Robert Fischer
- Max Delbrueck Center for Molecular Medicine, Berlin, Germany Experimental and Clinical Research Center (ECRC), Berlin, Germany
| | - Anne Konkel
- Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Heidrun Mehling
- Experimental and Clinical Research Center (ECRC), Berlin, Germany
| | - Katrin Blossey
- Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | | | | | | | - Ralf Dechend
- Experimental and Clinical Research Center (ECRC), Berlin, Germany HELIOS Klinikum Berlin-Buch, Berlin, Germany
| | - Dominik N Muller
- Experimental and Clinical Research Center (ECRC), Berlin, Germany
| | | | - Friedrich C Luft
- Experimental and Clinical Research Center (ECRC), Berlin, Germany
| | - Karsten Weylandt
- Experimental and Clinical Research Center (ECRC), Berlin, Germany
| | | |
Collapse
|
50
|
Alexander SPH, Benson HE, Faccenda E, Pawson AJ, Sharman JL, Spedding M, Peters JA, Harmar AJ. The Concise Guide to PHARMACOLOGY 2013/14: enzymes. Br J Pharmacol 2013; 170:1797-867. [PMID: 24528243 PMCID: PMC3892293 DOI: 10.1111/bph.12451] [Citation(s) in RCA: 415] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full. Enzymes are one of the seven major pharmacological targets into which the Guide is divided, with the others being G protein-coupled receptors, ligand-gated ion channels, ion channels, nuclear hormone receptors, catalytic receptors and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets. It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors and Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and the Guide to Receptors and Channels, providing a permanent, citable, point-in-time record that will survive database updates.
Collapse
Affiliation(s)
- Stephen PH Alexander
- School of Life Sciences, University of Nottingham Medical SchoolNottingham, NG7 2UH, UK
| | - Helen E Benson
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Elena Faccenda
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Adam J Pawson
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Joanna L Sharman
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | | | - John A Peters
- Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of DundeeDundee, DD1 9SY, UK
| | - Anthony J Harmar
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| |
Collapse
|