1
|
Motipally SI, Kolandaivelu S. Absence of PRCD Leads to Dysregulation in Lipid Homeostasis Resulting in Disorganization of Photoreceptor Outer Segment Structure. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1415:389-394. [PMID: 37440062 DOI: 10.1007/978-3-031-27681-1_57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
The outer segments of photoreceptors are specialized sensory cilia crucial for light detection. Any disruption that alters outer segment morphology can impair photoreceptor function and therefore vision. Progressive rod-cone degeneration (PRCD) is an integral membrane protein exclusively present in the photoreceptor OS with an unknown function. Multiple mutations in PRCD are linked with retinitis pigmentosa. The most common PRCD mutation observed in both human and multiple dog breeds, PRCD-C2Y, lacks the lipid modification "palmitoylation," which is crucial for protein stability and trafficking to the OS. Previous studies including ours show impaired disc morphogenesis and rhodopsin distributions in the absence of PRCD, but the precise role of PRCD in maintaining OS structure and function remains unclear. In this chapter, we discuss the potential role of PRCD in the maintenance of photoreceptor OS structural and functional integrity.
Collapse
Affiliation(s)
- Sree I Motipally
- Departments of Neuroscience and Biochemistry, Robert C. Byrd Health Sciences Centre, WVU Eye Institute, Morgantown, WV, USA
| | - Saravanan Kolandaivelu
- Departments of Ophthalmology, Visual Sciences and Biochemistry, Robert C. Byrd Health Sciences Centre, WVU Eye Institute, Morgantown, WV, USA.
| |
Collapse
|
2
|
Widjaja-Adhi MAK, Kolesnikov AV, Vasudevan S, Park PSH, Kefalov VJ, Golczak M. Acyl-CoA:wax alcohol acyltransferase 2 modulates the cone visual cycle in mouse retina. FASEB J 2022; 36:e22390. [PMID: 35665537 DOI: 10.1096/fj.202101855rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 05/12/2022] [Accepted: 05/23/2022] [Indexed: 11/11/2022]
Abstract
The daylight and color vision of diurnal vertebrates depends on cone photoreceptors. The capability of cones to operate and respond to changes in light brightness even under high illumination is attributed to their fast rate of recovery to the ground photosensitive state. This process requires the rapid replenishing of photoisomerized visual chromophore (11-cis-retinal) to regenerate cone visual pigments. Recently, several gene candidates have been proposed to contribute to the cone-specific retinoid metabolism, including acyl-CoA wax alcohol acyltransferase 2 (AWAT2, aka MFAT). Here, we evaluated the role of AWAT2 in the regeneration of visual chromophore by the phenotypic characterization of Awat2-/- mice. The global absence of AWAT2 enzymatic activity did not affect gross retinal morphology or the rate of visual chromophore regeneration by the canonical RPE65-dependent visual cycle. Analysis of Awat2 expression indicated the presence of the enzyme throughout the murine retina, including the retinal pigment epithelium (RPE) and Müller cells. Electrophysiological recordings revealed reduced maximal rod and cone dark-adapted responses in AWAT2-deficient mice compared to control mice. While rod dark adaptation was not affected by the lack of AWAT2, M-cone dark adaptation both in isolated retina and in vivo was significantly suppressed. Altogether, these results indicate that while AWAT2 is not required for the normal operation of the canonical visual cycle, it is a functional component of the cone-specific visual chromophore regenerative pathway.
Collapse
Affiliation(s)
| | - Alexander V Kolesnikov
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, California, USA
| | - Sreelakshmi Vasudevan
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Paul S-H Park
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Vladimir J Kefalov
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, California, USA.,Department of Physiology and Biophysics, University of California, Irvine, California, USA
| | - Marcin Golczak
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, USA.,Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
3
|
Hamdan MF, Lung SC, Guo ZH, Chye ML. Roles of acyl-CoA-binding proteins in plant reproduction. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2918-2936. [PMID: 35560189 DOI: 10.1093/jxb/erab499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/11/2021] [Indexed: 06/15/2023]
Abstract
Acyl-CoA-binding proteins (ACBPs) constitute a well-conserved family of proteins in eukaryotes that are important in stress responses and development. Past studies have shown that ACBPs are involved in maintaining, transporting and protecting acyl-CoA esters during lipid biosynthesis in plants, mammals, and yeast. ACBPs show differential expression and various binding affinities for acyl-CoA esters. Hence, ACBPs can play a crucial part in maintaining lipid homeostasis. This review summarizes the functions of ACBPs during the stages of reproduction in plants and other organisms. A comprehensive understanding on the roles of ACBPs during plant reproduction may lead to opportunities in crop improvement in agriculture.
Collapse
Affiliation(s)
- Mohd Fadhli Hamdan
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Shiu-Cheung Lung
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Ze-Hua Guo
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
4
|
Chen Y, Coorey NJ, Zhang M, Zeng S, Madigan MC, Zhang X, Gillies MC, Zhu L, Zhang T. Metabolism Dysregulation in Retinal Diseases and Related Therapies. Antioxidants (Basel) 2022; 11:antiox11050942. [PMID: 35624805 PMCID: PMC9137684 DOI: 10.3390/antiox11050942] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 02/08/2023] Open
Abstract
The human retina, which is part of the central nervous system, has exceptionally high energy demands that requires an efficient metabolism of glucose, lipids, and amino acids. Dysregulation of retinal metabolism disrupts local energy supply and redox balance, contributing to the pathogenesis of diverse retinal diseases, including age-related macular degeneration, diabetic retinopathy, inherited retinal degenerations, and Macular Telangiectasia. A better understanding of the contribution of dysregulated metabolism to retinal diseases may provide better therapeutic targets than we currently have.
Collapse
Affiliation(s)
- Yingying Chen
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610017, China;
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2000, Australia; (S.Z.); (M.C.M.); (M.C.G.); (L.Z.)
| | | | - Meixia Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610017, China;
- Macular Disease Research Laboratory, Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610017, China
- Correspondence: (M.Z.); (T.Z.)
| | - Shaoxue Zeng
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2000, Australia; (S.Z.); (M.C.M.); (M.C.G.); (L.Z.)
| | - Michele C. Madigan
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2000, Australia; (S.Z.); (M.C.M.); (M.C.G.); (L.Z.)
- School of Optometry and Vision Science, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Xinyuan Zhang
- Department of Ocular Fundus Diseases, Beijing Tongren Eye Centre, Tongren Hospital, Capital Medical University, Beijing 100073, China;
- Beijing Retinal and Choroidal Vascular Study Group, Beijing 100073, China
| | - Mark C. Gillies
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2000, Australia; (S.Z.); (M.C.M.); (M.C.G.); (L.Z.)
| | - Ling Zhu
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2000, Australia; (S.Z.); (M.C.M.); (M.C.G.); (L.Z.)
| | - Ting Zhang
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2000, Australia; (S.Z.); (M.C.M.); (M.C.G.); (L.Z.)
- Correspondence: (M.Z.); (T.Z.)
| |
Collapse
|
5
|
Guido ME, Monjes NM, Wagner PM, Salvador GA. Circadian Regulation and Clock-Controlled Mechanisms of Glycerophospholipid Metabolism from Neuronal Cells and Tissues to Fibroblasts. Mol Neurobiol 2021; 59:326-353. [PMID: 34697790 DOI: 10.1007/s12035-021-02595-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/07/2021] [Indexed: 12/26/2022]
Abstract
Along evolution, living organisms developed a precise timekeeping system, circadian clocks, to adapt life to the 24-h light/dark cycle and temporally regulate physiology and behavior. The transcriptional molecular circadian clock and metabolic/redox oscillator conforming these clocks are present in organs, tissues, and even in individual cells, where they exert circadian control over cellular metabolism. Disruption of the molecular clock may cause metabolic disorders and higher cancer risk. The synthesis and degradation of glycerophospholipids (GPLs) is one of the most highly regulated metabolisms across the 24-h cycle in terms of total lipid content and enzyme expression and activity in the nervous system and individual cells. Lipids play a plethora of roles (membrane biogenesis, energy sourcing, signaling, and the regulation of protein-chromatin interaction, among others), making control of their metabolism a vital checkpoint in the cellular organization of physiology. An increasing body of evidence clearly demonstrates an orchestrated and sequential series of events occurring in GPL metabolism across the 24-h day in diverse retinal cell layers, immortalized fibroblasts, and glioma cells. Moreover, the clock gene Per1 and other circadian-related genes are tightly involved in the regulation of GPL synthesis in quiescent cells. However, under proliferation, the metabolic oscillator continues to control GPL metabolism of brain cancer cells even after molecular circadian clock disruption, reflecting the crucial role of the temporal metabolism organization in cell preservation. The aim of this review is to examine the control exerted by circadian clocks over GPL metabolism, their synthesizing enzyme expression and activities in normal and tumorous cells of the nervous system and in immortalized fibroblasts.
Collapse
Affiliation(s)
- Mario E Guido
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, 5000, Argentina.
- Departamento de Química Biológica "Ranwel Caputto", Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, 5000, Argentina.
| | - Natalia M Monjes
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, 5000, Argentina
- Departamento de Química Biológica "Ranwel Caputto", Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, 5000, Argentina
| | - Paula M Wagner
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, 5000, Argentina
- Departamento de Química Biológica "Ranwel Caputto", Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, 5000, Argentina
| | - Gabriela A Salvador
- INIBIBB-UNS-CONICET, Departamento de Biología, Bioquímica y Farmacia, UNS, Bahía Blanca, Argentina
| |
Collapse
|
6
|
Sander CL, Sears AE, Pinto AF, Choi EH, Kahremany S, Gao F, Salom D, Jin H, Pardon E, Suh S, Dong Z, Steyaert J, Saghatelian A, Skowronska-Krawczyk D, Kiser PD, Palczewski K. Nano-scale resolution of native retinal rod disk membranes reveals differences in lipid composition. J Cell Biol 2021; 220:e202101063. [PMID: 34132745 PMCID: PMC8240855 DOI: 10.1083/jcb.202101063] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/26/2021] [Accepted: 05/18/2021] [Indexed: 02/07/2023] Open
Abstract
Photoreceptors rely on distinct membrane compartments to support their specialized function. Unlike protein localization, identification of critical differences in membrane content has not yet been expanded to lipids, due to the difficulty of isolating domain-specific samples. We have overcome this by using SMA to coimmunopurify membrane proteins and their native lipids from two regions of photoreceptor ROS disks. Each sample's copurified lipids were subjected to untargeted lipidomic and fatty acid analysis. Extensive differences between center (rhodopsin) and rim (ABCA4 and PRPH2/ROM1) samples included a lower PC to PE ratio and increased LC- and VLC-PUFAs in the center relative to the rim region, which was enriched in shorter, saturated FAs. The comparatively few differences between the two rim samples likely reflect specific protein-lipid interactions. High-resolution profiling of the ROS disk lipid composition gives new insights into how intricate membrane structure and protein activity are balanced within the ROS, and provides a model for future studies of other complex cellular structures.
Collapse
Affiliation(s)
- Christopher L. Sander
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA
| | - Avery E. Sears
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA
| | - Antonio F.M. Pinto
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA
| | - Elliot H. Choi
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA
| | - Shirin Kahremany
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA
| | - Fangyuan Gao
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA
| | - David Salom
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA
| | - Hui Jin
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH
| | - Els Pardon
- Vlaams Instituut voor Biotechnologie–Vrije Universiteit Brussel Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Susie Suh
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA
| | - Zhiqian Dong
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA
| | - Jan Steyaert
- Vlaams Instituut voor Biotechnologie–Vrije Universiteit Brussel Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Alan Saghatelian
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA
| | - Dorota Skowronska-Krawczyk
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA
| | - Philip D. Kiser
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA
- Research Service, VA Long Beach Healthcare System, Long Beach, CA
| | - Krzysztof Palczewski
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA
- Department of Chemistry, University of California, Irvine, Irvine, CA
| |
Collapse
|
7
|
Abstract
The field of phosphoinositide signaling has expanded significantly in recent years. Phosphoinositides (also known as phosphatidylinositol phosphates or PIPs) are universal signaling molecules that directly interact with membrane proteins or with cytosolic proteins containing domains that directly bind phosphoinositides and are recruited to cell membranes. Through the activities of phosphoinositide kinases and phosphoinositide phosphatases, seven distinct phosphoinositide lipid molecules are formed from the parent molecule, phosphatidylinositol. PIP signals regulate a wide range of cellular functions, including cytoskeletal assembly, membrane budding and fusion, ciliogenesis, vesicular transport, and signal transduction. Given the many excellent reviews on phosphoinositide kinases, phosphoinositide phosphatases, and PIPs in general, in this review, we discuss recent studies and advances in PIP lipid signaling in the retina. We specifically focus on PIP lipids from vertebrate (e.g., bovine, rat, mouse, toad, and zebrafish) and invertebrate (e.g., Drosophila, horseshoe crab, and squid) retinas. We also discuss the importance of PIPs revealed from animal models and human diseases, and methods to study PIP levels both in vitro and in vivo. We propose that future studies should investigate the function and mechanism of activation of PIP-modifying enzymes/phosphatases and further unravel PIP regulation and function in the different cell types of the retina.
Collapse
Affiliation(s)
- Raju V S Rajala
- Departments of Ophthalmology, Physiology, and Cell Biology, and Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104.
| |
Collapse
|
8
|
Rajala A, McCauley A, Brush RS, Nguyen K, Rajala RV. Phosphoinositide Lipids in Ocular Tissues. BIOLOGY 2020; 9:biology9060125. [PMID: 32545642 PMCID: PMC7345453 DOI: 10.3390/biology9060125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/05/2020] [Accepted: 06/09/2020] [Indexed: 01/04/2023]
Abstract
Inositol phospholipids play an important role in cell physiology. The inositol head groups are reversibly phosphorylated to produce seven distinct phosphorylated inositides, commonly referred to as phosphoinositides (PIs). These seven PIs are dynamically interconverted from one PI to another by the action of PI kinases and PI phosphatases. The PI signals regulate a wide variety of cellular functions, including organelle distinction, vesicular transport, cytoskeletal organization, nuclear events, regulation of ion channels, cell signaling, and host–pathogen interactions. Most of the studies of PIs in ocular tissues are based on the PI enzymes and PI phosphatases. In this study, we examined the PI levels in the cornea, retinal pigment epithelium (RPE), and retina using PI-binding protein as probes. We have examined the lipids PI(3)P, PI(4)P, PI(3,4)P2, PI(4,5)P2, and PI(3,4,5)P3, and each is present in the cornea, RPE, and retina. Alterations in the levels of these PIs in mouse models of retinal disease and corneal infections have been reported, and the results of our study will help in the management of anomalous phosphoinositide metabolism in ocular tissues.
Collapse
Affiliation(s)
- Ammaji Rajala
- Departments of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (A.R.); (A.M.); (R.S.B.); (K.N.)
- Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Austin McCauley
- Departments of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (A.R.); (A.M.); (R.S.B.); (K.N.)
- Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Richard S. Brush
- Departments of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (A.R.); (A.M.); (R.S.B.); (K.N.)
- Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Khuong Nguyen
- Departments of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (A.R.); (A.M.); (R.S.B.); (K.N.)
- Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Raju V.S. Rajala
- Departments of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (A.R.); (A.M.); (R.S.B.); (K.N.)
- Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Departments of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Correspondence: ; Tel.: +1-(405)-271-8255; Fax: +1-(405)-271-8128
| |
Collapse
|
9
|
Collin GB, Gogna N, Chang B, Damkham N, Pinkney J, Hyde LF, Stone L, Naggert JK, Nishina PM, Krebs MP. Mouse Models of Inherited Retinal Degeneration with Photoreceptor Cell Loss. Cells 2020; 9:cells9040931. [PMID: 32290105 PMCID: PMC7227028 DOI: 10.3390/cells9040931] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 12/12/2022] Open
Abstract
Inherited retinal degeneration (RD) leads to the impairment or loss of vision in millions of individuals worldwide, most frequently due to the loss of photoreceptor (PR) cells. Animal models, particularly the laboratory mouse, have been used to understand the pathogenic mechanisms that underlie PR cell loss and to explore therapies that may prevent, delay, or reverse RD. Here, we reviewed entries in the Mouse Genome Informatics and PubMed databases to compile a comprehensive list of monogenic mouse models in which PR cell loss is demonstrated. The progression of PR cell loss with postnatal age was documented in mutant alleles of genes grouped by biological function. As anticipated, a wide range in the onset and rate of cell loss was observed among the reported models. The analysis underscored relationships between RD genes and ciliary function, transcription-coupled DNA damage repair, and cellular chloride homeostasis. Comparing the mouse gene list to human RD genes identified in the RetNet database revealed that mouse models are available for 40% of the known human diseases, suggesting opportunities for future research. This work may provide insight into the molecular players and pathways through which PR degenerative disease occurs and may be useful for planning translational studies.
Collapse
Affiliation(s)
- Gayle B. Collin
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Navdeep Gogna
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Bo Chang
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Nattaya Damkham
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Jai Pinkney
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Lillian F. Hyde
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Lisa Stone
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Jürgen K. Naggert
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Patsy M. Nishina
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
- Correspondence: (P.M.N.); (M.P.K.); Tel.: +1-207-2886-383 (P.M.N.); +1-207-2886-000 (M.P.K.)
| | - Mark P. Krebs
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
- Correspondence: (P.M.N.); (M.P.K.); Tel.: +1-207-2886-383 (P.M.N.); +1-207-2886-000 (M.P.K.)
| |
Collapse
|
10
|
Dang Q, Chen YA, Hsieh JT. The dysfunctional lipids in prostate cancer. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2019; 7:273-280. [PMID: 31511833 PMCID: PMC6734041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 08/02/2019] [Indexed: 06/10/2023]
Abstract
Prostate cancer (PCa) is well-recognized as a lipid-enriched tumor. Lipids represent a diverse array of molecules essential to the cellular structure, defense, energy, and communication. Lipid metabolism can often become dysregulated during tumor development. The increasing body of knowledge on the biological actions of steroid hormone-androgens in PCa has led to the development of several targeted therapies that still represent the standard of care for cancer patients to this day. Sequencing technologies for functional analyses of androgen receptors (ARs) have revealed that AR is also a master regulator of cellular energy metabolism such as fatty acid ß-oxidation, and de novo lipid synthesis. In addition, bioactive lipids are also used as physiological signaling molecules, which have been shown to be involved in PCa progression. This review discusses the potent player(s) in altered lipid metabolism of PCa and describes how lipids and their interactions with proteins can be used for therapeutic advantage. We also discuss the possibility that the altered bioactive lipid mediators affect intracellular signaling pathway and the related transcriptional regulation be of therapeutic interest.
Collapse
Affiliation(s)
- Qiang Dang
- Department of Urology, University of Texas Southwestern Medical CenterDallas, TX 75390, USA
- Department of Urology, Nanfang Hospital, Southern Medical UniversityGuangzhou 510515, China
| | - Yu-An Chen
- Department of Urology, University of Texas Southwestern Medical CenterDallas, TX 75390, USA
| | - Jer-Tsong Hsieh
- Department of Urology, University of Texas Southwestern Medical CenterDallas, TX 75390, USA
| |
Collapse
|
11
|
DiTirro D, Philbrook A, Rubino K, Sengupta P. The Caenorhabditis elegans Tubby homolog dynamically modulates olfactory cilia membrane morphogenesis and phospholipid composition. eLife 2019; 8:48789. [PMID: 31259686 PMCID: PMC6624019 DOI: 10.7554/elife.48789] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 06/21/2019] [Indexed: 12/13/2022] Open
Abstract
Plasticity in sensory signaling is partly mediated via regulated trafficking of signaling molecules to and from primary cilia. Tubby-related proteins regulate ciliary protein transport; however, their roles in remodeling cilia properties are not fully understood. We find that the C. elegans TUB-1 Tubby homolog regulates membrane morphogenesis and signaling protein transport in specialized sensory cilia. In particular, TUB-1 is essential for sensory signaling-dependent reshaping of olfactory cilia morphology. We show that compromised sensory signaling alters cilia membrane phosphoinositide composition via TUB-1-dependent trafficking of a PIP5 kinase. TUB-1 regulates localization of this lipid kinase at the cilia base in part via localization of the AP-2 adaptor complex subunit DPY-23. Our results describe new functions for Tubby proteins in the dynamic regulation of cilia membrane lipid composition, morphology, and signaling protein content, and suggest that this conserved family of proteins plays a critical role in mediating cilia structural and functional plasticity.
Collapse
Affiliation(s)
- Danielle DiTirro
- Department of Biology, Brandeis University, Waltham, United States
| | - Alison Philbrook
- Department of Biology, Brandeis University, Waltham, United States
| | - Kendrick Rubino
- Department of Biology, Brandeis University, Waltham, United States
| | - Piali Sengupta
- Department of Biology, Brandeis University, Waltham, United States
| |
Collapse
|
12
|
The Endocannabinoid System Is Present in Rod Outer Segments from Retina and Is Modulated by Light. Mol Neurobiol 2019; 56:7284-7295. [PMID: 31016476 DOI: 10.1007/s12035-019-1603-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 04/10/2019] [Indexed: 10/27/2022]
Abstract
The aim of the present research was to evaluate if the endocannabinoid system (enzymes and receptors) could be modulated by light in rod outer segment (ROS) from bovine retina. First, we analyzed endocannabinoid 2-arachidonoylglycerol (2-AG) metabolism in purified ROS obtained from dark-adapted (DROS) or light-adapted (LROS) retinas. To this end, diacylglycerol lipase (DAGL), monoacylglycerol lipase (MAGL), and lysophosphatidate phosphohydrolase (LPAP) enzymatic activities were analyzed using radioactive substrates. The protein content of these enzymes and of the receptors to which cannabinoids bind was determined by immunoblotting under light stimulus. Our results indicate that whereas DAGL and MAGL activities were stimulated in retinas exposed to light, no changes were observed in LPAP activity. Interestingly, the protein content of the main enzymes involved in 2-AG metabolism, phospholipase C β1 (PLCβ1), and DAGLα (synthesis), and MAGL (hydrolysis), was also modified by light. PLCβ1 content was increased, while that of lipases was decreased. On the other hand, light produced an increase in the cannabinoid receptors CB1 and CB2 and a decrease in GPR55 protein levels. Taken together, our results indicate that the endocannabinoid system (enzymes and receptors) depends on the illumination state of the retina, suggesting that proteins related to phototransduction phenomena could be involved in the effects observed.
Collapse
|
13
|
Collin J, Zerti D, Queen R, Santos-Ferreira T, Bauer R, Coxhead J, Hussain R, Steel D, Mellough C, Ader M, Sernagor E, Armstrong L, Lako M. CRX Expression in Pluripotent Stem Cell-Derived Photoreceptors Marks a Transplantable Subpopulation of Early Cones. Stem Cells 2019; 37:609-622. [PMID: 30681766 PMCID: PMC6519156 DOI: 10.1002/stem.2974] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 11/05/2018] [Accepted: 12/03/2018] [Indexed: 12/27/2022]
Abstract
Death of photoreceptors is a common cause of age-related and inherited retinal dystrophies, and thus their replenishment from renewable stem cell sources is a highly desirable therapeutic goal. Human pluripotent stem cells provide a useful cell source in view of their limitless self-renewal capacity and potential to not only differentiate into cells of the retina but also self-organize into tissue with structure akin to the human retina as part of three-dimensional retinal organoids. Photoreceptor precursors have been isolated from differentiating human pluripotent stem cells through application of cell surface markers or fluorescent reporter approaches and shown to have a similar transcriptome to fetal photoreceptors. In this study, we investigated the transcriptional profile of CRX-expressing photoreceptor precursors derived from human pluripotent stem cells and their engraftment capacity in an animal model of retinitis pigmentosa (Pde6brd1), which is characterized by rapid photoreceptor degeneration. Single cell RNA-Seq analysis revealed the presence of a dominant cell cluster comprising 72% of the cells, which displayed the hallmarks of early cone photoreceptor expression. When transplanted subretinally into the Pde6brd1 mice, the CRX+ cells settled next to the inner nuclear layer and made connections with the inner neurons of the host retina, and approximately one-third of them expressed the pan cone marker, Arrestin 3, indicating further maturation upon integration into the host retina. Together, our data provide valuable molecular insights into the transcriptional profile of human pluripotent stem cells-derived CRX+ photoreceptor precursors and indicate their usefulness as a source of transplantable cone photoreceptors. Stem Cells 2019;37:609-622.
Collapse
Affiliation(s)
- Joseph Collin
- Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom
| | - Darin Zerti
- Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom
| | - Rachel Queen
- Genomics Core Facility, Newcastle University, Newcastle, United Kingdom
| | - Tiago Santos-Ferreira
- CRTD/Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Roman Bauer
- Institute of Neuroscience, Newcastle University, Newcastle, United Kingdom
| | - Jonathan Coxhead
- Genomics Core Facility, Newcastle University, Newcastle, United Kingdom
| | - Rafiqul Hussain
- Genomics Core Facility, Newcastle University, Newcastle, United Kingdom
| | - David Steel
- Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom
| | - Carla Mellough
- Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom
| | - Marius Ader
- CRTD/Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Evelyne Sernagor
- Institute of Neuroscience, Newcastle University, Newcastle, United Kingdom
| | - Lyle Armstrong
- Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom
| | - Majlinda Lako
- Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom
| |
Collapse
|
14
|
Rajala RVS. Therapeutic Benefits from Nanoparticles: The Potential Significance of Nanoscience in Retinal Degenerative Diseases. JOURNAL OF MOLECULAR BIOLOGY & THERAPEUTICS 2019; 1:44-55. [PMID: 34528026 PMCID: PMC8439377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Several nanotechnology podiums have gained remarkable attention in the area of medical sciences, including diagnostics and treatment. In the past decade, engineered multifunctional nanoparticles have served as drug and gene carriers. The most important aspect of translating nanoparticles from the bench to bedside is safety. These nanoparticles should not elicit any immune response and should not be toxic to humans or the environment. Lipid-based nanoparticles have been shown to be the least toxic for in vivo applications, and significant progress has been made in gene and drug delivery employing lipid-based nanoassemblies. Several excellent reviews and reports discuss the general use and application of lipid-based nanoparticles; our review focuses on the application of lipid-based nanoparticles for the treatment of ocular diseases, and recent advances in and updates on their use.
Collapse
Affiliation(s)
- Raju V S Rajala
- Departments of Ophthalmology, Physiology and Cell Biology, University of Oklahoma Health Sciences Center, Dean McGee Eye Institute, Oklahoma City, OK 73104, USA
| |
Collapse
|
15
|
Kim HJ, Sparrow JR. Novel bisretinoids of human retina are lyso alkyl ether glycerophosphoethanolamine-bearing A2PE species. J Lipid Res 2018; 59:1620-1629. [PMID: 29986955 DOI: 10.1194/jlr.m084459] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/26/2018] [Indexed: 12/30/2022] Open
Abstract
Bisretinoids are a family of fluorophores that form in photoreceptor cells' outer segments by nonenzymatic reaction of two vitamin A aldehydes (A2) with phosphatidylethanolamine (PE). Bisretinoid fluorophores are the major constituents of the lipofuscin of retinal pigment epithelium (RPE) that accumulate with age and contribute to some retinal diseases. Here, we report the identification of a previously unknown fluorescent bisretinoid. By ultra-performance LC (UPLC) coupled to photodiode array detection, fluorescence (FLR), and ESI-MS, we determined that this novel bisretinoid is 1-octadecyl-2-lyso-sn-glycero A2PE (alkyl ether lysoA2PE). This structural assignment was based on molecular mass (m/z 998), UV-visible absorbance maxima (340 and 440 nm), and retention time (73 min) and was corroborated by biomimetic synthesis using all-trans-retinal and glycerophosphoethanolamine analogs as starting materials. UPLC profiles of ocular extracts acquired from human donor eyes revealed that alkyl ether lysoA2PE was detectable in RPE, but not neural retina. LysoA2PE FLR spectra exhibited a significant hyperchromic shift in hydrophobic environments. The propensity for lysoA2PE to undergo photooxidation/degradation was less pronounced than A2E. In mechanistic studies, A2PE was hydrolyzed by phospholipase A2 and plasmalogen lysoA2PE was cleaved under acidic conditions. The characterization of these additional members of the bisretinoid family advances our understanding of the mechanisms underlying bisretinoid biogenesis.
Collapse
Affiliation(s)
- Hye Jin Kim
- Departments of Ophthalmology Columbia University Medical Center, New York, NY 10032
| | - Janet R Sparrow
- Departments of Ophthalmology Columbia University Medical Center, New York, NY 10032; Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032.
| |
Collapse
|
16
|
Laíns I, Kelly RS, Miller JB, Silva R, Vavvas DG, Kim IK, Murta JN, Lasky-Su J, Miller JW, Husain D. Human Plasma Metabolomics Study across All Stages of Age-Related Macular Degeneration Identifies Potential Lipid Biomarkers. Ophthalmology 2018; 125:245-254. [PMID: 28916333 PMCID: PMC8077680 DOI: 10.1016/j.ophtha.2017.08.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/01/2017] [Accepted: 08/07/2017] [Indexed: 12/24/2022] Open
Abstract
PURPOSE To characterize the plasma metabolomic profile of patients with age-related macular degeneration (AMD) using mass spectrometry (MS). DESIGN Cross-sectional observational study. PARTICIPANTS We prospectively recruited participants with a diagnosis of AMD and a control group (>50 years of age) without any vitreoretinal disease. METHODS All participants underwent color fundus photography, used for AMD diagnosis and staging, according to the Age-Related Eye Disease Study classification scheme. Fasting blood samples were collected and plasma was analyzed by Metabolon, Inc. (Durham, NC), using ultrahigh-performance liquid chromatography (UPLC) and high-resolution MS. Metabolon's hardware and software were used to identify peaks and control quality. Principal component analysis and multivariate regression were performed to assess differences in the metabolomic profiles of AMD patients versus controls, while controlling for potential confounders. For biological interpretation, pathway enrichment analysis of significant metabolites was performed using MetaboAnalyst. MAIN OUTCOME MEASURES The primary outcome measures were levels of plasma metabolites in participants with AMD compared with controls and among different AMD severity stages. RESULTS We included 90 participants with AMD (30 with early AMD, 30 with intermediate AMD, and 30 with late AMD) and 30 controls. Using UPLC and MS, 878 biochemicals were identified. Multivariate logistic regression identified 87 metabolites with levels that differed significantly between AMD patients and controls. Most of these metabolites (82.8%; n = 72), including the most significant metabolites, belonged to the lipid pathways. Analysis of variance revealed that of the 87 metabolites, 48 (55.2%) also were significantly different across the different stages of AMD. A significant enrichment of the glycerophospholipids pathway was identified (P = 4.7 × 10-9) among these metabolites. CONCLUSIONS Participants with AMD have altered plasma metabolomic profiles compared with controls. Our data suggest that the most significant metabolites map to the glycerophospholipid pathway. These findings have the potential to improve our understanding of AMD pathogenesis, to support the development of plasma-based metabolomics biomarkers of AMD, and to identify novel targets for treatment of this blinding disease.
Collapse
Affiliation(s)
- Inês Laíns
- Retina Service, Massachusetts Eye and Ear, Harvard Ophthalmology AMD Center of Excellence, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts; Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Association for Innovation and Biomedical Research on Light, Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, Portugal; Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Rachel S Kelly
- Systems Genetics and Genomics Unit, Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - John B Miller
- Retina Service, Massachusetts Eye and Ear, Harvard Ophthalmology AMD Center of Excellence, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Rufino Silva
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Association for Innovation and Biomedical Research on Light, Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, Portugal; Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Demetrios G Vavvas
- Retina Service, Massachusetts Eye and Ear, Harvard Ophthalmology AMD Center of Excellence, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Ivana K Kim
- Retina Service, Massachusetts Eye and Ear, Harvard Ophthalmology AMD Center of Excellence, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Joaquim N Murta
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Association for Innovation and Biomedical Research on Light, Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, Portugal; Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Jessica Lasky-Su
- Systems Genetics and Genomics Unit, Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Joan W Miller
- Retina Service, Massachusetts Eye and Ear, Harvard Ophthalmology AMD Center of Excellence, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Deeba Husain
- Retina Service, Massachusetts Eye and Ear, Harvard Ophthalmology AMD Center of Excellence, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
17
|
Joyal JS, Gantner ML, Smith LEH. Retinal energy demands control vascular supply of the retina in development and disease: The role of neuronal lipid and glucose metabolism. Prog Retin Eye Res 2017; 64:131-156. [PMID: 29175509 DOI: 10.1016/j.preteyeres.2017.11.002] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/11/2017] [Accepted: 11/15/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Jean-Sébastien Joyal
- Department of Pediatrics, Pharmacology and Ophthalmology, CHU Sainte-Justine Research Center, Université de Montréal, Montreal, Qc, Canada; Department of Pharmacology and Therapeutics, McGill University, Montreal, Qc, Canada.
| | - Marin L Gantner
- The Lowy Medical Research Institute, La Jolla, United States
| | - Lois E H Smith
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, 300 Longwood Avenue, Boston MA 02115, United States.
| |
Collapse
|
18
|
Hufnagel RB, Arno G, Hein ND, Hersheson J, Prasad M, Anderson Y, Krueger LA, Gregory LC, Stoetzel C, Jaworek TJ, Hull S, Li A, Plagnol V, Willen CM, Morgan TM, Prows CA, Hegde RS, Riazuddin S, Grabowski GA, Richardson RJ, Dieterich K, Huang T, Revesz T, Martinez-Barbera JP, Sisk RA, Jefferies C, Houlden H, Dattani MT, Fink JK, Dollfus H, Moore AT, Ahmed ZM. Neuropathy target esterase impairments cause Oliver-McFarlane and Laurence-Moon syndromes. J Med Genet 2014; 52:85-94. [PMID: 25480986 DOI: 10.1136/jmedgenet-2014-102856] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Oliver-McFarlane syndrome is characterised by trichomegaly, congenital hypopituitarism and retinal degeneration with choroidal atrophy. Laurence-Moon syndrome presents similarly, though with progressive spinocerebellar ataxia and spastic paraplegia and without trichomegaly. Both recessively inherited disorders have no known genetic cause. METHODS Whole-exome sequencing was performed to identify the genetic causes of these disorders. Mutations were functionally validated in zebrafish pnpla6 morphants. Embryonic expression was evaluated via in situ hybridisation in human embryonic sections. Human neurohistopathology was performed to characterise cerebellar degeneration. Enzymatic activities were measured in patient-derived fibroblast cell lines. RESULTS Eight mutations in six families with Oliver-McFarlane or Laurence-Moon syndrome were identified in the PNPLA6 gene, which encodes neuropathy target esterase (NTE). PNPLA6 expression was found in the developing human eye, pituitary and brain. In zebrafish, the pnpla6 curly-tailed morphant phenotype was fully rescued by wild-type human PNPLA6 mRNA and not by mutation-harbouring mRNAs. NTE enzymatic activity was significantly reduced in fibroblast cells derived from individuals with Oliver-McFarlane syndrome. Intriguingly, adult brain histology from a patient with highly overlapping features of Oliver-McFarlane and Laurence-Moon syndromes revealed extensive cerebellar degeneration and atrophy. CONCLUSIONS Previously, PNPLA6 mutations have been associated with spastic paraplegia type 39, Gordon-Holmes syndrome and Boucher-Neuhäuser syndromes. Discovery of these additional PNPLA6-opathies further elucidates a spectrum of neurodevelopmental and neurodegenerative disorders associated with NTE impairment and suggests a unifying mechanism with diagnostic and prognostic importance.
Collapse
Affiliation(s)
- Robert B Hufnagel
- Division of Human Genetics, Cincinnati Children's Hospital, Cincinnati, Ohio, USA
| | - Gavin Arno
- UCL Institute of Ophthalmology and Moorfields Eye Hospital, London, UK
| | - Nichole D Hein
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Joshua Hersheson
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Megana Prasad
- Laboratoire de génétique Médicale, Université de Strasbourg, FMTS, Strasbourg, France
| | - Yvonne Anderson
- Department of Paediatrics, Taranaki Base Hospital, New Plymouth, New Zealand Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Laura A Krueger
- Division of Human Genetics, Cincinnati Children's Hospital, Cincinnati, Ohio, USA
| | - Louise C Gregory
- Developmental Endocrinology Research Group, Genetics and Epigenetics in Health and Disease Section, Genetics and Genomic Medicine Programme, University College London Institute of Child Health, London, UK
| | - Corinne Stoetzel
- Laboratoire de génétique Médicale, Université de Strasbourg, FMTS, Strasbourg, France
| | - Thomas J Jaworek
- Department of Otorhinolaryngology, University of Maryland, Baltimore, Maryland, USA
| | - Sarah Hull
- UCL Institute of Ophthalmology and Moorfields Eye Hospital, London, UK
| | - Abi Li
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Vincent Plagnol
- Department of Statistical Genetics, University College London, London, UK
| | - Christi M Willen
- Department of Pediatric Ophthalmology, University of Kentucky, Lexington, Kentucky, USA
| | - Thomas M Morgan
- Department of Pediatrics, Vanderbilt University, Nashville, Tennessee, USA
| | - Cynthia A Prows
- Division of Human Genetics, Cincinnati Children's Hospital, Cincinnati, Ohio, USA
| | - Rashmi S Hegde
- Developmental Biology, Cincinnati Children's Hospital, Cincinnati, Ohio, USA
| | - Saima Riazuddin
- Department of Otorhinolaryngology, University of Maryland, Baltimore, Maryland, USA
| | - Gregory A Grabowski
- Division of Human Genetics, Cincinnati Children's Hospital, Cincinnati, Ohio, USA
| | - Rudy J Richardson
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Klaus Dieterich
- Département de Génétique et Procréation, Hôpital Couple Enfant, CHU Grenoble and Grenoble Institut des Neurosciences, Equipe Muscle et Pathologie, Grenoble, France
| | - Taosheng Huang
- Division of Human Genetics, Cincinnati Children's Hospital, Cincinnati, Ohio, USA
| | - Tamas Revesz
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - J P Martinez-Barbera
- Developmental Endocrinology Research Group, Genetics and Epigenetics in Health and Disease Section, Genetics and Genomic Medicine Programme, University College London Institute of Child Health, London, UK
| | - Robert A Sisk
- Division of Pediatric Ophthalmology, Cincinnati Children's Hospital, Cincinnati, Ohio, USA Cincinnati Eye Institute, Cincinnati, Ohio, USA
| | - Craig Jefferies
- Department of Paediatric Endocrinology, Starship Children's Hospital, Auckland, New Zealand
| | - Henry Houlden
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Mehul T Dattani
- Developmental Endocrinology Research Group, Genetics and Epigenetics in Health and Disease Section, Genetics and Genomic Medicine Programme, University College London Institute of Child Health, London, UK
| | - John K Fink
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Helene Dollfus
- Laboratoire de génétique Médicale, Université de Strasbourg, FMTS, Strasbourg, France Centre de référence pour les Affections Rares Ophtalmologiques CARGO, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Anthony T Moore
- UCL Institute of Ophthalmology and Moorfields Eye Hospital, London, UK
| | - Zubair M Ahmed
- Department of Otorhinolaryngology, University of Maryland, Baltimore, Maryland, USA
| |
Collapse
|
19
|
Gorné LD, Acosta-Rodríguez VA, Pasquaré SJ, Salvador GA, Giusto NM, Guido ME. The mouse liver displays daily rhythms in the metabolism of phospholipids and in the activity of lipid synthesizing enzymes. Chronobiol Int 2014; 32:11-26. [PMID: 25140391 DOI: 10.3109/07420528.2014.949734] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The circadian system involves central and peripheral oscillators regulating temporally biochemical processes including lipid metabolism; their disruption leads to severe metabolic diseases (obesity, diabetes, etc). Here, we investigated the temporal regulation of glycerophospholipid (GPL) synthesis in mouse liver, a well-known peripheral oscillator. Mice were synchronized to a 12:12 h light-dark (LD) cycle and then released to constant darkness with food ad libitum. Livers collected at different times exhibited a daily rhythmicity in some individual GPL content with highest levels during the subjective day. The activity of GPL-synthesizing/remodeling enzymes: phosphatidate phosphohydrolase 1 (PAP-1/lipin) and lysophospholipid acyltransferases (LPLATs) also displayed significant variations, with higher levels during the subjective day and at dusk. We evaluated the temporal regulation of expression and activity of phosphatidylcholine (PC) synthesizing enzymes. PC is mainly synthesized through the Kennedy pathway with Choline Kinase (ChoK) as a key regulatory enzyme or through the phosphatidylethanolamine (PE) N-methyltransferase (PEMT) pathway. The PC/PE content ratio exhibited a daily variation with lowest levels at night, while ChoKα and PEMT mRNA expression displayed maximal levels at nocturnal phases. Our results demonstrate that mouse liver GPL metabolism oscillates rhythmically with a precise temporal control in the expression and/or activity of specific enzymes.
Collapse
Affiliation(s)
- Lucas D Gorné
- Departamento de Química Biológica, Facultad de Ciencias Químicas, CIQUIBIC-CONICET, Universidad Nacional de Córdoba , Córdoba , Argentina and
| | | | | | | | | | | |
Collapse
|
20
|
Cioffi DL, Rich TC. Feedback regulation of cone cyclic nucleotide channels by phosphoinositides. Focus on "CNGA3 achromatopsia-associated mutation potentiates the phosphoinositide sensitivity of cone photoreceptor CNG channels by altering intersubunit interactions". Am J Physiol Cell Physiol 2013; 305:C131-2. [PMID: 23677796 DOI: 10.1152/ajpcell.00136.2013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
21
|
Acosta-Rodríguez VA, Márquez S, Salvador GA, Pasquaré SJ, Gorné LD, Garbarino-Pico E, Giusto NM, Guido ME. Daily rhythms of glycerophospholipid synthesis in fibroblast cultures involve differential enzyme contributions. J Lipid Res 2013; 54:1798-811. [PMID: 23641021 DOI: 10.1194/jlr.m034264] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Circadian clocks regulate the temporal organization of several biochemical processes, including lipid metabolism, and their disruption leads to severe metabolic disorders. Immortalized cell lines acting as circadian clocks display daily variations in [(32)P]phospholipid labeling; however, the regulation of glycerophospholipid (GPL) synthesis by internal clocks remains unknown. Here we found that arrested NIH 3T3 cells synchronized with a 2 h-serum shock exhibited temporal oscillations in a) the labeling of total [(3)H] GPLs, with lowest levels around 28 and 56 h, and b) the activity of GPL-synthesizing and GPL-remodeling enzymes, such as phosphatidate phosphohydrolase 1 (PAP-1) and lysophospholipid acyltransferases (LPLAT), respectively, with antiphase profiles. In addition, we investigated the temporal regulation of phosphatidylcholine (PC) biosynthesis. PC is mainly synthesized through the Kennedy pathway with choline kinase (ChoK) and CTP:phosphocholine cytidylyltranferase (CCT) as key regulatory enzymes. We observed that the PC labeling exhibited daily changes, with the lowest levels every ~28 h, that were accompanied by brief increases in CCT activity and the oscillation in ChoK mRNA expression and activity. Results demonstrate that the metabolisms of GPLs and particularly of PC in synchronized fibroblasts are subject to a complex temporal control involving concerted changes in the expression and/or activities of specific synthesizing enzymes.
Collapse
Affiliation(s)
- Victoria A Acosta-Rodríguez
- CIQUIBIC-CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Shulga YV, Topham MK, Epand RM. Regulation and functions of diacylglycerol kinases. Chem Rev 2011; 111:6186-208. [PMID: 21800853 DOI: 10.1021/cr1004106] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yulia V Shulga
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | | | | |
Collapse
|
23
|
Light-induced tyrosine phosphorylation of rod outer segment membrane proteins regulate the translocation, membrane binding and activation of type II α phosphatidylinositol-5-phosphate 4-kinase. Neurochem Res 2010; 36:627-35. [PMID: 20204506 DOI: 10.1007/s11064-010-0146-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2010] [Indexed: 10/19/2022]
Abstract
Type II phosphatidylinositol 5-phosphate 4-kinase (PIPKIIα) catalyzes the synthesis of phosphatidylinositol-4,5-bisphosphate (PI-4,5-P(2)), an essential lipid second messenger that may be involved in the regulation of phototransduction, neuroprotection, and morphogenesis in the vertebrate retina. Here we report that in rodent and transgenic frogs, the light-mediated activity and membrane binding of PIPKIIα in rod outer segments (ROS) is dependent on tyrosine phosphorylation of ROS proteins. The greater type II α PIP kinase activity in the light-adapted ROS membrane results from light-driven translocation of PIPKIIα from the rod inner segment to ROS, and subsequent binding to the ROS membrane, thus improving access of the kinase to its lipid substrates. These results indicate a novel mechanism of light regulation of the PIPKIIα activity in photoreceptors, and suggest that the greater PIPKIIα activity in light-adapted animals and the resultant accumulation of PI-4,5-P(2) within the ROS membrane may be important for the function of photoreceptor cells.
Collapse
|