1
|
Ogbonna HN, Roberts Z, Godwin N, Muri P, Turbitt WJ, Swalley ZN, Dempsey FR, Stephens HR, Zhang J, Plaisance EP, Norian LA. An Exogenous Ketone Ester Slows Tumor Progression in Murine Breast and Renal Cancer Models. Cancers (Basel) 2024; 16:3390. [PMID: 39410010 PMCID: PMC11476193 DOI: 10.3390/cancers16193390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND/OBJECTIVES Ketone esters (KEs) exhibit promise as anti-cancer agents but their impact on spontaneous metastases remains poorly understood. Although consumption of a ketogenic diet (KD) that is low in carbohydrates and high in fats can lead to KE production in vivo, the restrictive composition of KDs may diminish adherence in cancer patients. METHODS We investigated the effects of an exogenous ketone ester-supplemented (eKET), carbohydrate-replete diet on tumor growth, metastasis, and underlying mechanisms in orthotopic models of metastatic breast (4T1-Luc) and renal (Renca-Luc) carcinomas. Mice were randomized to diet after tumor challenge. RESULTS Administration of KEs did not alter tumor cell growth in vitro. However, in mice, our eKET diet increased circulating β-hydroxybutyrate and inhibited primary tumor growth and lung metastasis in both models. Body composition analysis illustrated the overall safety of eKET diet use, although it was associated with a loss of fat mass in mice with renal tumors. Immunogenetic profiling revealed divergent intratumoral eKET-related changes by tumor type. In mammary tumors, Wnt and TGFβ pathways were downregulated, whereas in renal tumors, genes related to hypoxia and DNA damage repair were downregulated. CONCLUSIONS Thus, our eKET diet exerts potent antitumor and antimetastatic effects in both breast and renal cancer models, albeit with different modes of action and physiologic effects. Its potential as an adjuvant dietary approach for patients with diverse cancer types should be explored further.
Collapse
Affiliation(s)
- Henry Nnaemeka Ogbonna
- Graduate Biomedical Sciences, Pathobiology, Pharmacology, and Physiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - Zachary Roberts
- Undergraduate Science and Technology Honors Program, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | | | - Pia Muri
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (P.M.); (W.J.T.)
| | - William J. Turbitt
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (P.M.); (W.J.T.)
| | - Zoey N. Swalley
- Undergraduate Honors College, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - Francesca R. Dempsey
- Graduate Biomedical Sciences, Cancer Biology, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - Holly R. Stephens
- Graduate Biomedical Sciences, Immunology, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - Jianqing Zhang
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - Eric P. Plaisance
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (P.M.); (W.J.T.)
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Lyse A. Norian
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (P.M.); (W.J.T.)
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| |
Collapse
|
2
|
Waris A, Asim M, Ullah A, Alhumaydhi FA. Various pharmacological agents in the pipeline against intractable epilepsy. Arch Pharm (Weinheim) 2024; 357:e2400229. [PMID: 38767508 DOI: 10.1002/ardp.202400229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/22/2024]
Abstract
Epilepsy is a noncommunicable chronic neurological disorder affecting people of all ages, with the highest prevalence in low and middle-income countries. Despite the pharmacological armamentarium, the plethora of drugs in the market, and other treatment options, 30%-35% of individuals still show resistance to the current medication, termed intractable epilepsy/drug resistance epilepsy, which contributes to 50% of the mortalities due to epilepsy. Therefore, the development of new drugs and agents is needed to manage this devastating epilepsy. We reviewed the pipeline of drugs in "ClinicalTrials. gov," which is the federal registry of clinical trials to identify drugs and other treatment options in various phases against intractable epilepsy. A total of 31 clinical trials were found regarding intractable epilepsy. Among them, 48.4% (15) are about pharmacological agents, of which 26.6% are in Phase 1, 60% are in Phase 2, and 13.3% are in Phase 3. The mechanism of action or targets of the majority of these agents are different and are more diversified than those of the approved drugs. In this article, we summarized various pharmacological agents in clinical trials, their backgrounds, targets, and mechanisms of action for the treatment of intractable epilepsy. Treatment options other than pharmacological ones, such as devices for brain stimulation, ketogenic diets, gene therapy, and others, are also summarized.
Collapse
Affiliation(s)
- Abdul Waris
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Muhammad Asim
- Department of Neurosciences, City University of Hong Kong, Kowloon Tong, Hong Kong
- Centre for Regenerative Medicine and Health (CRMH), Hong Kong SAR
| | - Ata Ullah
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
3
|
Yu Q, Falkenhain K, Little JP, Wong KK, Nie J, Shi Q, Kong Z. Effects of ketone supplements on blood β-hydroxybutyrate, glucose and insulin: A systematic review and three-level meta-analysis. Complement Ther Clin Pract 2023; 52:101774. [PMID: 37327753 DOI: 10.1016/j.ctcp.2023.101774] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/08/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Effects of ketone supplements as well as relevant dose-response relationships and time effects on blood β-hydroxybutyrate (BHB), glucose and insulin are controversial. OBJECTIVE This study aimed to summarize the existing evidence and synthesize the results, and demonstrate underlying dose-response relationships as well as sustained time effects. METHODS Medline, Web of Science, Embase, and Cochrane Central Register of Controlled Trials were searched for relevant randomized crossover/parallel studies published until 25th November 2022. Three-level meta-analysis compared the acute effects of exogenous ketone supplementation and placebo in regulating blood parameters, with Hedge's g used as measure of effect size. Effects of potential moderators were explored through multilevel regression models. Dose-response and time-effect models were established via fractional polynomial regression. RESULTS The meta-analysis with 327 data points from 30 studies (408 participants) indicated that exogenous ketones led to a significant increase in blood BHB (Hedge's g = 1.4994, 95% CI [1.2648, 1.7340]), reduction in glucose (Hedge's g = -0.3796, 95% CI [-0.4550, -0.3041]), and elevation in insulin of non-athlete healthy population (Hedge's g = 0.1214, 95%CI [0.0582, 0.3011]), as well as insignificant change in insulin of obesity and prediabetes. Nonlinear dose-response relationship between ketone dosage and blood parameter change was observed in some time intervals for BHB (30-60 min; >120 min) and insulin (30-60 min; 90-120 min), with linear relationship observed for glucose (>120 min). Nonlinear associations between time and blood parameter change were found in BHB (>550 mg/kg) and glucose (450-550 mg/kg), with linear relationship observed in BHB (≤250 mg/kg) and insulin (350-550 mg/kg). CONCLUSION Dose-response relationships and sustained time effects were observed in BHB, glucose and insulin following ketone supplementation. Glucose-lowering effect without increasing insulin load among population of obesity and prediabetes was of remarkable clinical implication. REGISTRY AND REGISTRY NUMBER PROSPERO (CRD42022360620).
Collapse
Affiliation(s)
- Qian Yu
- Faculty of Education, University of Macau, Macao, China
| | - Kaja Falkenhain
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Jonathan P Little
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Ka Kit Wong
- Faculty of Education, University of Macau, Macao, China
| | - Jinlei Nie
- Faculty of Health Sciences and Sports, Macao Polytechnic University, Macao, China
| | - Qingde Shi
- Faculty of Health Sciences and Sports, Macao Polytechnic University, Macao, China
| | - Zhaowei Kong
- Faculty of Education, University of Macau, Macao, China.
| |
Collapse
|
4
|
Wang Z, Li T, Du M, Zhang L, Xu L, Song H, Zhang J. β-hydroxybutyrate improves cognitive impairment caused by chronic cerebral hypoperfusion via amelioration of neuroinflammation and blood-brain barrier damage. Brain Res Bull 2023; 193:117-130. [PMID: 36577190 DOI: 10.1016/j.brainresbull.2022.12.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Vascular cognitive impairment (VCI) is the second most common type of dementia after Alzheimer's disease (AD) in elderly people. Chronic cerebral hypoperfusion (CCH) is the early pathophysiological basis of VCI. β-Hydroxybutyrate (BHB) is one of the important components of ketone bodies, an intermediate product of endogenous energy metabolism, which can mitigate neuroinflammation in stroke and neurodegenerative diseases. The present study aimed to investigate whether BHB can improve cognitive impairment caused by CCH and the underlying mechanism. METHODS The CCH model was established by permanent bilateral common carotid artery occlusion (2VO). CCH rats were intraperitoneally injected with BHB (1.5 mmol/kg/d) every day for 8 consecutive weeks from 2 weeks before surgery. The hippocampal blood flow of rats was measured by using a laser Doppler velocimetry. Used the Morris water maze test (MWM) to assess spatial learning and memory of rats, and harvested brain tissues for molecular, biochemical, and pathological tests. RESULTS We found that BHB intervention for 8 weeks could effectively restore hippocampal blood flow and improve spatial learning and memory in CCH rats. BHB can protect the blood-brain barrier (BBB), as manifested by reducing the ultrastructural damage and leakage of the BBB, restoring the expression of tight junction-related proteins and reducing the expression of Matrix Metalloproteinases-9 (MMP-9). Additionally, after BHB intervention, microglia activation was reduced, oligodendrocyte motility was active, and the expression levels of pro-inflammatory factors such as tumor necrosis factor (TNF-α), interleukin-1β (IL-1β), nuclear factor-κB (NF-κB) and advanced glycation end-products (RAGE) were lower, which also indicated that BHB had a beneficial effect in mitigating neuroinflammation. CONCLUSION BHB can improve the cognitive impairment caused by CCH. The potential mechanisms of BHB may be through reducing neuroinflammation and protecting BBB.
Collapse
Affiliation(s)
- Zhitian Wang
- Department of Neurology, Zhongnan Hospital, Wuhan University, No.169, Donghu Road, Wuhan, Hubei 430071, China.
| | - Tian Li
- Department of Neurology, Zhongnan Hospital, Wuhan University, No.169, Donghu Road, Wuhan, Hubei 430071, China.
| | - Miaoyu Du
- Department of Neurology, Zhongnan Hospital, Wuhan University, No.169, Donghu Road, Wuhan, Hubei 430071, China.
| | - Lei Zhang
- Department of Neurology, Zhongnan Hospital, Wuhan University, No.169, Donghu Road, Wuhan, Hubei 430071, China.
| | - Linling Xu
- Department of Neurology, Zhongnan Hospital, Wuhan University, No.169, Donghu Road, Wuhan, Hubei 430071, China.
| | - Hao Song
- Department of Neurology, Zhongnan Hospital, Wuhan University, No.169, Donghu Road, Wuhan, Hubei 430071, China.
| | - Junjian Zhang
- Department of Neurology, Zhongnan Hospital, Wuhan University, No.169, Donghu Road, Wuhan, Hubei 430071, China.
| |
Collapse
|
5
|
Affiliation(s)
- Gerald A. Dienel
- Department of Neurology University of Arkansas for Medical Sciences Little Rock Arkansas USA
- Department of Cell Biology and Physiology University of New Mexico School of Medicine Albuquerque New Mexico USA
| | - Lisa Gillinder
- Mater Hospital South Brisbane Queensland Australia
- Faculty of Medicine Mater Research Institute, University of Queensland St Lucia Queensland Australia
| | - Aileen McGonigal
- Mater Hospital South Brisbane Queensland Australia
- Faculty of Medicine Mater Research Institute, University of Queensland St Lucia Queensland Australia
| | - Karin Borges
- Faculty of Medicine School of Biomedical Sciences, University of Queensland St Lucia Queensland Australia
| |
Collapse
|
6
|
Dienel GA, Gillinder L, McGonigal A, Borges K. Potential new roles for glycogen in epilepsy. Epilepsia 2023; 64:29-53. [PMID: 36117414 PMCID: PMC10952408 DOI: 10.1111/epi.17412] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 01/21/2023]
Abstract
Seizures often originate in epileptogenic foci. Between seizures (interictally), these foci and some of the surrounding tissue often show low signals with 18 fluorodeoxyglucose (FDG) positron emission tomography (PET) in many epileptic patients, even when there are no radiologically detectable structural abnormalities. Low FDG-PET signals are thought to reflect glucose hypometabolism. Here, we review knowledge about metabolism of glucose and glycogen and oxidative stress in people with epilepsy and in acute and chronic rodent seizure models. Interictal brain glucose levels are normal and do not cause apparent glucose hypometabolism, which remains unexplained. During seizures, high amounts of fuel are needed to satisfy increased energy demands. Astrocytes consume glycogen as an additional emergency fuel to supplement glucose during high metabolic demand, such as during brain stimulation, stress, and seizures. In rodents, brain glycogen levels drop during induced seizures and increase to higher levels thereafter. Interictally, in people with epilepsy and in chronic epilepsy models, normal glucose but high glycogen levels have been found in the presumed brain areas involved in seizure generation. We present our new hypothesis that as an adaptive response to repeated episodes of high metabolic demand, high interictal glycogen levels in epileptogenic brain areas are used to support energy metabolism and potentially interictal neuronal activity. Glycogenolysis, which can be triggered by stress or oxidative stress, leads to decreased utilization of plasma glucose in epileptogenic brain areas, resulting in low FDG signals that are related to functional changes underlying seizure onset and propagation. This is (partially) reversible after successful surgery. Last, we propose that potential interictal glycogen depletion in epileptogenic and surrounding areas may cause energy shortages in astrocytes, which may impair potassium buffering and contribute to seizure generation. Based on these hypotheses, auxiliary fuels or treatments that support glycogen metabolism may be useful to treat epilepsy.
Collapse
Affiliation(s)
- Gerald A. Dienel
- Department of NeurologyUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
- Department of Cell Biology and PhysiologyUniversity of New Mexico School of MedicineAlbuquerqueNew MexicoUSA
| | - Lisa Gillinder
- Mater HospitalSouth BrisbaneQueenslandAustralia
- Faculty of MedicineMater Research Institute, University of QueenslandSt LuciaQueenslandAustralia
| | - Aileen McGonigal
- Mater HospitalSouth BrisbaneQueenslandAustralia
- Faculty of MedicineMater Research Institute, University of QueenslandSt LuciaQueenslandAustralia
| | - Karin Borges
- Faculty of MedicineSchool of Biomedical Sciences, University of QueenslandSt LuciaQueenslandAustralia
| |
Collapse
|
7
|
Roberts BM, Deemer SE, Smith DL, Mobley JA, Musi N, Plaisance EP. Effects of an exogenous ketone ester using multi-omics in skeletal muscle of aging C57BL/6J male mice. Front Nutr 2022; 9:1041026. [PMID: 36458175 PMCID: PMC9707703 DOI: 10.3389/fnut.2022.1041026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 10/25/2022] [Indexed: 11/17/2022] Open
Abstract
Exogenous ketone ester supplementation provides a means to increase circulating ketone concentrations without the dietary challenges imposed by ketogenic diets. Our group has shown that oral R,S-1,3, butanediol diacetoacetate (BD-AcAc2) consumption results in body weight loss or maintenance with moderate increases in circulating ketones. We have previously shown a diet consisting of 25% BD-AcAc2 can maintain lean body mass (LBM) and induce fat mass (FM) loss in young, healthy male mice, but the underlying mechanisms are still unknown. Therefore, the purpose of this study was to determine if a diet consisting of 25% BD-AcAc2 (ketone ester, KE) would alter body composition, transcriptional regulation, the proteome, and the lipidome of skeletal muscle in aged mice. We hypothesized that the KE group would remain weight stable with improvements in body composition compared to controls, resulting in a healthy aging phenotype. Male C57BL/6J mice (n = 16) were purchased from Jackson Laboratories at 72 weeks of age. After 1 week of acclimation, mice were weighed and randomly assigned to one of two groups (n = 8 per group): control (CON) or KE. A significant group by time interaction was observed for body weight (P < 0.001), with KE fed mice weighing significantly less than CON. FM increased over time in the control group but was unchanged in the KE group. Furthermore, LBM was not different between CON and KE mice despite KE mice weighing less than CON mice. Transcriptional analysis of skeletal muscle identified 6 genes that were significantly higher and 21 genes that were significantly lower in the KE group compared to CON. Lipidomic analysis of skeletal muscle identified no differences between groups for any lipid species, except for fatty acyl chains in triacylglycerol which was 46% lower in the KE group. Proteomics analysis identified 44 proteins that were different between groups, of which 11 were lower and 33 were higher in the KE group compared to CON. In conclusion, 72-week-old male mice consuming the exogenous KE, BD-AcAc2, had lower age-related gains in body weight and FM compared to CON mice. Furthermore, transcriptional and proteomics data suggest a signature in skeletal muscle of KE-treated mice consistent with markers of improved skeletal muscle regeneration, improved electron transport chain utilization, and increased insulin sensitivity.
Collapse
Affiliation(s)
- Brandon M. Roberts
- Department of Human Studies, Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Sarah E. Deemer
- Department of Kinesiology, Health Promotion, and Recreation, University of North Texas, Denton, TX, United States
| | - Daniel L. Smith
- Department of Nutrition Sciences, Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - James A. Mobley
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Nicolas Musi
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center San Antonio, San Antonio, TX, United States
- San Antonio Geriatric Research, Education, and Clinical Center, San Antonio, TX, United States
| | - Eric P. Plaisance
- Department of Human Studies, Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL, United States
- *Correspondence: Eric P. Plaisance,
| |
Collapse
|
8
|
Mank MM, Reed LF, Fastiggi VA, Peña-García PE, Hoyt LR, Van Der Vliet KE, Ather JL, Poynter ME. Ketone body augmentation decreases methacholine hyperresponsiveness in mouse models of allergic asthma. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2022; 1:282-298. [PMID: 36466740 PMCID: PMC9718535 DOI: 10.1016/j.jacig.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Background Individuals with allergic asthma exhibit lung inflammation and remodeling accompanied by methacholine hyperresponsiveness manifesting in proximal airway narrowing and distal lung tissue collapsibility, and they can present with a range of mild-to-severe disease amenable or resistant to therapeutic intervention, respectively. There remains a need for alternatives or complements to existing treatments that could control the physiologic manifestations of allergic asthma. Objectives Our aim was to examine the hypothesis that because ketone bodies elicit anti-inflammatory activity and are effective in mitigating the methacholine hyperresponsiveness associated with obese asthma, increasing systemic concentrations of ketone bodies would diminish pathologic outcomes in asthma-relevant cell types and in mouse models of allergic asthma. Methods We explored the effects of ketone bodies on allergic asthma-relevant cell types (macrophages, airway epithelial cells, CD4 T cells, and bronchial smooth muscle cells) in vitro as well as in vivo by using preclinical models representative of several endotypes of allergic asthma to determine whether promotion of ketosis through feeding a ketogenic diet or providing a ketone precursor or a ketone ester dietary supplement could affect immune and inflammatory parameters as well as methacholine hyperresponsiveness. Results In a dose-dependent manner, the ketone bodies acetoacetate and β-hydroxybutyrate (BHB) decreased proinflammatory cytokine secretion from mouse macrophages and airway epithelial cells, decreased house dust mite (HDM) extract-induced IL-8 secretion from human airway epithelial cells, and decreased cytokine production from polyclonally and HDM-activated T cells. Feeding a ketogenic diet, providing a ketone body precursor, or supplementing the diet with a ketone ester increased serum BHB concentrations and decreased methacholine hyperresponsiveness in several acute HDM sensitization and challenge models of allergic asthma. A ketogenic diet or ketone ester supplementation decreased methacholine hyperresponsiveness in an HDM rechallenge model of chronic allergic asthma. Ketone ester supplementation synergized with corticosteroid treatment to decrease methacholine hyperresponsiveness in an HDM-driven model of mixed-granulocytic severe asthma. HDM-induced morphologic changes in bronchial smooth muscle cells were inhibited in a dose-dependent manner by BHB, as was HDM protease activity. Conclusions Increasing systemic BHB concentrations through dietary interventions could provide symptom relief for several endotypes of allergic asthmatic individuals through effects on multiple asthma-relevant cells.
Collapse
Affiliation(s)
- Madeleine M Mank
- Department of Medicine, Division of Pulmonary Disease and Critical Care, University of Vermont, and The Vermont Lung Center, Burlington
| | - Leah F Reed
- Department of Medicine, Division of Pulmonary Disease and Critical Care, University of Vermont, and The Vermont Lung Center, Burlington
| | - V Amanda Fastiggi
- Department of Medicine, Division of Pulmonary Disease and Critical Care, University of Vermont, and The Vermont Lung Center, Burlington
| | - Paola E Peña-García
- Department of Medicine, Division of Pulmonary Disease and Critical Care, University of Vermont, and The Vermont Lung Center, Burlington
| | - Laura R Hoyt
- Department of Medicine, Division of Pulmonary Disease and Critical Care, University of Vermont, and The Vermont Lung Center, Burlington
| | - Katherine E Van Der Vliet
- Department of Medicine, Division of Pulmonary Disease and Critical Care, University of Vermont, and The Vermont Lung Center, Burlington
| | - Jennifer L Ather
- Department of Medicine, Division of Pulmonary Disease and Critical Care, University of Vermont, and The Vermont Lung Center, Burlington
| | - Matthew E Poynter
- Department of Medicine, Division of Pulmonary Disease and Critical Care, University of Vermont, and The Vermont Lung Center, Burlington
| |
Collapse
|
9
|
The Evolution of Ketosis: Potential Impact on Clinical Conditions. Nutrients 2022; 14:nu14173613. [PMID: 36079870 PMCID: PMC9459968 DOI: 10.3390/nu14173613] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Ketone bodies are small compounds derived from fatty acids that behave as an alternative mitochondrial energy source when insulin levels are low, such as during fasting or strenuous exercise. In addition to the metabolic function of ketone bodies, they also have several signaling functions separate from energy production. In this perspective, we review the main current data referring to ketone bodies in correlation with nutrition and metabolic pathways as well as to the signaling functions and the potential impact on clinical conditions. Data were selected following eligibility criteria accordingly to the reviewed topic. We used a set of electronic databases (Medline/PubMed, Scopus, Web of Sciences (WOS), Cochrane Library) for a systematic search until July 2022 using MeSH keywords/terms (i.e., ketone bodies, BHB, acetoacetate, inflammation, antioxidant, etc.). The literature data reported in this review need confirmation with consistent clinical trials that might validate the results obtained in in vitro and in vivo in animal models. However, the data on exogenous ketone consumption and the effect on the ketone bodies’ brain uptake and metabolism might spur the research to define the acute and chronic effects of ketone bodies in humans and pursue the possible implication in the prevention and treatment of human diseases. Therefore, additional studies are required to examine the potential systemic and metabolic consequences of ketone bodies.
Collapse
|
10
|
Zuo Q, Park NH, Lee JK, Madak Erdogan Z. Liver Metastatic Breast Cancer: Epidemiology, Dietary Interventions, and Related Metabolism. Nutrients 2022; 14:2376. [PMID: 35745105 PMCID: PMC9228756 DOI: 10.3390/nu14122376] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/22/2022] [Accepted: 05/28/2022] [Indexed: 02/06/2023] Open
Abstract
The median overall survival of patients with metastatic breast cancer is only 2-3 years, and for patients with untreated liver metastasis, it is as short as 4-8 months. Improving the survival of women with breast cancer requires more effective anti-cancer strategies, especially for metastatic disease. Nutrients can influence tumor microenvironments, and cancer metabolism can be manipulated via a dietary modification to enhance anti-cancer strategies. Yet, there are no standard evidence-based recommendations for diet therapies before or during cancer treatment, and few studies provide definitive data that certain diets can mediate tumor progression or therapeutic effectiveness in human cancer. This review focuses on metastatic breast cancer, in particular liver metastatic forms, and recent studies on the impact of diets on disease progression and treatment.
Collapse
Affiliation(s)
- Qianying Zuo
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (Q.Z.); (N.H.P.)
| | - Nicole Hwajin Park
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (Q.Z.); (N.H.P.)
| | - Jenna Kathryn Lee
- Department of Neuroscience, Northwestern University, Evanston, IL 60208, USA;
| | - Zeynep Madak Erdogan
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (Q.Z.); (N.H.P.)
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute of Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Biomedical and Translational Sciences, Carle-Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
11
|
Mank MM, Reed LF, Walton CJ, Barup MLT, Ather JL, Poynter ME. Therapeutic ketosis decreases methacholine hyperresponsiveness in mouse models of inherent obese asthma. Am J Physiol Lung Cell Mol Physiol 2022; 322:L243-L257. [PMID: 34936508 PMCID: PMC8782644 DOI: 10.1152/ajplung.00309.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/13/2021] [Accepted: 12/17/2021] [Indexed: 02/03/2023] Open
Abstract
Obese asthmatics tend to have severe, poorly controlled disease and exhibit methacholine hyperresponsiveness manifesting in proximal airway narrowing and distal lung tissue collapsibility. Substantial weight loss in obese asthmatics or in mouse models of the condition decreases methacholine hyperresponsiveness. Ketone bodies are rapidly elevated during weight loss, coinciding with or preceding relief from asthma-related comorbidities. As ketone bodies may exert numerous potentially therapeutic effects, augmenting their systemic concentrations is being targeted for the treatment of several conditions. Circulating ketone body levels can be increased by feeding a ketogenic diet or by providing a ketone ester dietary supplement, which we hypothesized would exert protective effects in mouse models of inherent obese asthma. Weight loss induced by feeding a low-fat diet to mice previously fed a high-fat diet was preceded by increased urine and blood levels of the ketone body β-hydroxybutyrate (BHB). Feeding a ketogenic diet for 3 wk to high-fat diet-fed obese mice or genetically obese db/db mice increased BHB concentrations and decreased methacholine hyperresponsiveness without substantially decreasing body weight. Acute ketone ester administration decreased methacholine responsiveness of normal mice, and dietary ketone ester supplementation of high-fat diet-fed mice decreased methacholine hyperresponsiveness. Ketone ester supplementation also transiently induced an "antiobesogenic" gut microbiome with a decreased Fermicutes/Bacteroidetes ratio. Dietary interventions to increase systemic BHB concentrations could provide symptom relief for obese asthmatics without the need for the substantial weight loss required of patients to elicit benefits to their asthma through bariatric surgery or other diet or lifestyle alterations.
Collapse
Affiliation(s)
- Madeleine M Mank
- Division of Pulmonary Disease and Critical Care, Department of Medicine, University of Vermont, Burlington, Vermont
- The Vermont Lung Center, Burlington, Vermont
| | - Leah F Reed
- Division of Pulmonary Disease and Critical Care, Department of Medicine, University of Vermont, Burlington, Vermont
- The Vermont Lung Center, Burlington, Vermont
| | - Camille J Walton
- Division of Pulmonary Disease and Critical Care, Department of Medicine, University of Vermont, Burlington, Vermont
- The Vermont Lung Center, Burlington, Vermont
| | - Madison L T Barup
- Division of Pulmonary Disease and Critical Care, Department of Medicine, University of Vermont, Burlington, Vermont
- The Vermont Lung Center, Burlington, Vermont
| | - Jennifer L Ather
- Division of Pulmonary Disease and Critical Care, Department of Medicine, University of Vermont, Burlington, Vermont
- The Vermont Lung Center, Burlington, Vermont
| | - Matthew E Poynter
- Division of Pulmonary Disease and Critical Care, Department of Medicine, University of Vermont, Burlington, Vermont
- The Vermont Lung Center, Burlington, Vermont
| |
Collapse
|
12
|
Lewis LA, Urban CM, Hashim SA. A Non-Invasive Determination of Ketosis-Induced Elimination of Chronic Daytime Somnolence in a Patient with Late-Stage Dementia (Assessed with Type 3 Diabetes): A Potential Role of Neurogenesis. J Alzheimers Dis Rep 2022; 5:827-846. [PMID: 35088033 PMCID: PMC8764628 DOI: 10.3233/adr-210315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/20/2021] [Indexed: 11/15/2022] Open
Abstract
Background The study involved a female patient diagnosed with late-stage dementia, with chronic daytime somnolence (CDS) as a prominent symptom. Objective To explore whether her dementia resulted from Type 3 diabetes, and whether it could be reversed through ketosis therapy. Methods A ketogenic diet (KD) generating low-dose 100 μM Blood Ketone Levels (BKL) enhanced by a brief Ketone Mono Ester (KME) regimen with high-dose 2-4 mM BKLs was used. Results Three sets of data describe relief (assessed by % days awake) from CDS: 1) incremental, slow, time-dependent KD plus KME-induced sigmoid curve responses which resulted in partial wakefulness (0-40% in 255 days) and complete wakefulness (40-85% in 50 days); 2) both levels of wakefulness were shown to be permanent; 3) initial permanent relief from CDS with low-dose ketosis from 6.7% to 40% took 87 days. Subsequent low-dose recovery from illness-induced CDS (6.9% to 40%) took 10 days. We deduce that the first restoration involved permanent repair, and the second energized the repaired circuits. Conclusion The results suggest a role for ketosis in the elimination of CDS with the permanent functional restoration of the awake neural circuits of the Sleep-Wake cycle. We discuss whether available evidence supports ketosis-induced bioenergetics alone or whether other mechanisms of functional renewal were the basis for the elimination of CDS. Given evidence for permanent repair, two direct links between ketosis and neurogenesis in the adult mammalian brain are discussed: Ketosis-induced 1) brain-derived neurotrophic factor, resulting in neural progenitor/stem cell proliferation, and 2) mitochondrial bioenergetics-induced stem cell biogenesis.
Collapse
Affiliation(s)
- Leslie A Lewis
- York College of the City University of New York, Jamaica, NY, USA
| | - Carl M Urban
- Department of Medicine, The Dr. James J. Rahal, Jr. Division of Infectious Diseases, New York Presbyterian/Queens, Flushing, NY, USA
| | - Sami A Hashim
- Division of Endocrinology, Mt. Sinai Morningside, New York, NY, USA
| |
Collapse
|
13
|
Ruppert PM, Deng L, Hooiveld GJ, Hangelbroek RW, Zeigerer A, Kersten S. RNA sequencing reveals niche gene expression effects of beta-hydroxybutyrate in primary myotubes. Life Sci Alliance 2021; 4:4/10/e202101037. [PMID: 34407998 PMCID: PMC8380668 DOI: 10.26508/lsa.202101037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 11/24/2022] Open
Abstract
RNA sequencing reveals primary myocyte-specific gene-regulatory niche effects for β-hydroxybutyrate but do not support a general signaling of β-hydroxybutyrate role in other primary cells or during cellular differentiation in vitro. Various forms of fasting and ketogenic diet have shown promise in (pre-)clinical studies to normalize body weight, improve metabolic health, and protect against disease. Recent studies suggest that β-hydroxybutyrate (βOHB), a fasting-characteristic ketone body, potentially acts as a signaling molecule mediating its beneficial effects via histone deacetylase inhibition. Here, we have investigated whether βOHB, in comparison to the well-established histone deacetylase inhibitor butyrate, influences cellular differentiation and gene expression. In various cell lines and primary cell types, millimolar concentrations of βOHB did not alter differentiation in vitro, as determined by gene expression and histological assessment, whereas equimolar concentrations of butyrate consistently impaired differentiation. RNA sequencing revealed that unlike butyrate, βOHB minimally impacted gene expression in primary adipocytes, macrophages, and hepatocytes. However, in myocytes, βOHB up-regulated genes involved in the TCA cycle and oxidative phosphorylation, while down-regulating genes belonging to cytokine and chemokine signal transduction. Overall, our data do not support the notion that βOHB serves as a powerful signaling molecule regulating gene expression but suggest that βOHB may act as a niche signaling molecule in myocytes.
Collapse
Affiliation(s)
- Philip Mm Ruppert
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Lei Deng
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Guido Jej Hooiveld
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Roland Wj Hangelbroek
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands.,Euretos BV, Utrecht, The Netherlands
| | - Anja Zeigerer
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany and Joint Heidelberg-Institute for Diabetes and Cancer Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Sander Kersten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
14
|
Koronowski KB, Greco CM, Huang H, Kim JK, Fribourgh JL, Crosby P, Mathur L, Ren X, Partch CL, Jang C, Qiao F, Zhao Y, Sassone-Corsi P. Ketogenesis impact on liver metabolism revealed by proteomics of lysine β-hydroxybutyrylation. Cell Rep 2021; 36:109487. [PMID: 34348140 PMCID: PMC8372761 DOI: 10.1016/j.celrep.2021.109487] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/03/2021] [Accepted: 07/14/2021] [Indexed: 01/20/2023] Open
Abstract
Ketone bodies are bioactive metabolites that function as energy substrates, signaling molecules, and regulators of histone modifications. β-hydroxybutyrate (β-OHB) is utilized in lysine β-hydroxybutyrylation (Kbhb) of histones, and associates with starvation-responsive genes, effectively coupling ketogenic metabolism with gene expression. The emerging diversity of the lysine acylation landscape prompted us to investigate the full proteomic impact of Kbhb. Global protein Kbhb is induced in a tissue-specific manner by a variety of interventions that evoke β-OHB. Mass spectrometry analysis of the β-hydroxybutyrylome in mouse liver revealed 891 sites of Kbhb within 267 proteins enriched for fatty acid, amino acid, detoxification, and one-carbon metabolic pathways. Kbhb inhibits S-adenosyl-L-homocysteine hydrolase (AHCY), a rate-limiting enzyme of the methionine cycle, in parallel with altered metabolite levels. Our results illuminate the role of Kbhb in hepatic metabolism under ketogenic conditions and demonstrate a functional consequence of this modification on a central metabolic enzyme.
Collapse
Affiliation(s)
- Kevin B Koronowski
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA.
| | - Carolina M Greco
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA.
| | - He Huang
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jin-Kwang Kim
- Department of Biological Chemistry, University of California, Irvine School of Medicine, Irvine, CA 92697, USA
| | - Jennifer L Fribourgh
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA; Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Priya Crosby
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA; Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lavina Mathur
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Xuelian Ren
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Carrie L Partch
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA; Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Cholsoon Jang
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Feng Qiao
- Department of Biological Chemistry, University of California, Irvine School of Medicine, Irvine, CA 92697, USA
| | - Yingming Zhao
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Paolo Sassone-Corsi
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
15
|
Zhang S, Li Z, Zhang Y, Chen J, Li Y, Wu F, Wang W, Cui ZJ, Chen G. Ketone Body 3-Hydroxybutyrate Ameliorates Atherosclerosis via Receptor Gpr109a-Mediated Calcium Influx. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003410. [PMID: 33977048 PMCID: PMC8097358 DOI: 10.1002/advs.202003410] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 12/19/2020] [Indexed: 02/05/2023]
Abstract
Atherosclerosis is a chronic inflammatory disease that can cause acute cardiovascular events. Activation of the NOD-like receptor family, pyrin domain containing protein 3 (NLRP3) inflammasome enhances atherogenesis, which links lipid metabolism to sterile inflammation. This study examines the impact of an endogenous metabolite, namely ketone body 3-hydroxybutyrate (3-HB), on a mouse model of atherosclerosis. It is found that daily oral administration of 3-HB can significantly ameliorate atherosclerosis. Mechanistically, 3-HB is found to reduce the M1 macrophage proportion and promote cholesterol efflux by acting on macrophages through its receptor G-protein-coupled receptor 109a (Gpr109a). 3-HB-Gpr109a signaling promotes extracellular calcium (Ca2+) influx. The elevation of intracellular Ca2+ level reduces the release of Ca2+ from the endothelium reticulum (ER) to mitochondria, thus inhibits ER stress triggered by ER Ca2+ store depletion. As NLRP3 inflammasome can be activated by ER stress, 3-HB can inhibit the activation of NLRP3 inflammasome, which triggers the increase of M1 macrophage proportion and the inhibition of cholesterol efflux. It is concluded that daily nutritional supplementation of 3-HB attenuates atherosclerosis in mice.
Collapse
Affiliation(s)
- Shu‐jie Zhang
- School of Life SciencesTsinghua UniversityBeijing100084P. R. China
| | - Zi‐hua Li
- School of Life SciencesTsinghua UniversityBeijing100084P. R. China
| | - Yu‐dian Zhang
- School of Life SciencesTsinghua UniversityBeijing100084P. R. China
| | - Jin Chen
- School of Life SciencesTsinghua UniversityBeijing100084P. R. China
| | - Yuan Li
- Institute of Cell BiologyBeijing Normal UniversityBeijing100875P. R. China
| | - Fu‐qing Wu
- School of Life SciencesTsinghua UniversityBeijing100084P. R. China
| | - Wei Wang
- Innovative Institute of Animal Healthy BreedingCollege of Animal Sciences and TechnologyZhongkai University of Agriculture and EngineeringGuangzhou510025P. R. China
- Key Laboratory of Zoonosis ResearchMinistry of EducationCollege of Veterinary MedicineJilin UniversityChangchun130062P. R. China
| | - Zong Jie Cui
- Institute of Cell BiologyBeijing Normal UniversityBeijing100875P. R. China
| | - Guo‐Qiang Chen
- School of Life SciencesTsinghua UniversityBeijing100084P. R. China
- Tsinghua‐Peking Center for Life SciencesTsinghua UniversityBeijing100084P. R. China
- Center for Synthetic and Systems BiologyTsinghua UniversityBeijing100084P. R. China
- MOE Key Laboratory for Industrial BiocatalysisDept Chemical EngineeringTsinghua UniversityBeijing100084P. R. China
| |
Collapse
|
16
|
WHITFIELD JAMIE, BURKE LOUISEM, MCKAY ALANNAHKA, HEIKURA IDAA, HALL REBECCA, FENSHAM NIKITA, SHARMA AVISHP. Acute Ketogenic Diet and Ketone Ester Supplementation Impairs Race Walk Performance. Med Sci Sports Exerc 2021; 53:776-784. [PMID: 33027214 PMCID: PMC7969177 DOI: 10.1249/mss.0000000000002517] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
PURPOSE This study aimed to determine if LCHF and ketone ester (KE) supplementation can synergistically alter exercise metabolism and improve performance. METHODS Elite race walkers (n = 18, 15 males and 3 females; V˙O2peak, 62 ± 6 mL·min-1·kg-1) undertook a four-stage exercise economy test and real-life 10,000-m race before and after a 5-d isoenergetic high-CHO (HCHO, ~60%-65% fat; CHO, 20% fat; n = 9) or LCHF (75%-80% fat, <50 g·d-1 CHO, n = 9) diet. The LCHF group performed additional economy tests before and after diet after supplementation with 573 mg·kg-1 body mass KE (HVMN; HVMN Inc., San Francisco, CA), which was also consumed for race 2. RESULTS The oxygen cost of exercise (relative V˙O2, mL·min-1·kg-1) increased across all four stages after LCHF (P < 0.005). This occurred in association with increased fat oxidation rates, with a reciprocal decrease in CHO oxidation (P < 0.001). Substrate utilization in the HCHO group remained unaltered. The consumption of KE before the LCHF diet increased circulating KB (P < 0.05), peaking at 3.2 ± 0.6 mM, but did not alter V˙O2 or RER. LCHF diet elevated resting circulating KB (0.3 ± 0.1 vs 0.1 ± 0.1 mM), but concentrations after supplementation did not differ from the earlier ketone trial. Critically, race performance was impaired by ~6% (P < 0.0001) relative to baseline in the LCHF group but was unaltered in HCHO. CONCLUSION Despite elevating endogenous KB production, an LCHF diet does not augment the metabolic responses to KE supplementation and negatively affects race performance.
Collapse
Affiliation(s)
- JAMIE WHITFIELD
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, AUSTRALIA
| | - LOUISE M. BURKE
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, AUSTRALIA
- Australian Institute of Sport, Canberra, ACT, AUSTRALIA
| | - ALANNAH K. A. MCKAY
- Australian Institute of Sport, Canberra, ACT, AUSTRALIA
- School of Human Sciences (Exercise and Sport Science) University of Western Australia, Crawley, WA, AUSTRALIA
- Western Australian Institute of Sport, Mt Claremont, WA, AUSTRALIA
| | - IDA A. HEIKURA
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, AUSTRALIA
- Australian Institute of Sport, Canberra, ACT, AUSTRALIA
| | - REBECCA HALL
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, AUSTRALIA
| | - NIKITA FENSHAM
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, AUSTRALIA
| | - AVISH P. SHARMA
- Griffith Sports Physiology and Performance, Griffith University, Gold Coast, QLD, AUSTRALIA
| |
Collapse
|
17
|
Vijayam B, Malarvili MB, Md Shakhih MF, Omar N, Wahab AA. Effect of short-term ketogenic diet on end-tidal carbon dioxide. Clin Nutr ESPEN 2021; 42:124-131. [PMID: 33745565 DOI: 10.1016/j.clnesp.2021.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND & AIMS Previous studies have shown that end-tidal carbon dioxide (EtCO2) is lower with the presence of supraphysiological ketones as in the case of chronic ketogenic diet (KD) and diabetic ketoacidosis (DKA). This study aimed to determine changes in EtCO2 upon short term KD. METHODS Healthy subjects were screened not to have conditions that exerts abnormal EtCO2 nor contraindicated for KD. Subjects underwent seven days of KD while the EtCO2 and blood ketone (beta-hydroxybutyrate; β-OHB) parameters were sampled at day zero (t0) and seven (t7) of ketosis respectively. Statistically, the t-test and Pearson's coefficient were conducted to determine the changes and correlation of both parameters. RESULTS 12 subjects completed the study. The mean score ± standard deviation (SD) for EtCO2 were 35.08 ± 3.53 and 35.67 ± 3.31 mm Hg for t0 and t7 respectively. The mean score ±SD for β-OHB were 0.07 ± 0.08 and 0.87 ± 0.84 mmol/L for t0 and t7 respectively. There was no significant difference of EtCO2 between the period of study (p > 0.05) but the β-OHB increased during t7 (p < 0.05). There was also no correlation between the parameters. CONCLUSIONS These findings suggest that EtCO2 may not be utilized to determine short term nutritional ketosis.
Collapse
Affiliation(s)
- Bhuwaneswaran Vijayam
- School of Biomedical Engineering & Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia Skudai 81310, Johor, Malaysia
| | - M B Malarvili
- School of Biomedical Engineering & Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia Skudai 81310, Johor, Malaysia
| | - Muhammad Faiz Md Shakhih
- School of Biomedical Engineering & Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia Skudai 81310, Johor, Malaysia
| | - Nashuha Omar
- School of Biomedical Engineering & Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia Skudai 81310, Johor, Malaysia
| | - Asnida Abdul Wahab
- School of Biomedical Engineering & Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia Skudai 81310, Johor, Malaysia; Medical Devices and Technology Centre (MEDITEC), Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia.
| |
Collapse
|
18
|
Yurista SR, Chong CR, Badimon JJ, Kelly DP, de Boer RA, Westenbrink BD. Therapeutic Potential of Ketone Bodies for Patients With Cardiovascular Disease: JACC State-of-the-Art Review. J Am Coll Cardiol 2021; 77:1660-1669. [PMID: 33637354 DOI: 10.1016/j.jacc.2020.12.065] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/14/2020] [Indexed: 12/19/2022]
Abstract
Metabolic perturbations underlie a variety of cardiovascular disease states; yet, metabolic interventions to prevent or treat these disorders are sparse. Ketones carry a negative clinical stigma as they are involved in diabetic ketoacidosis. However, evidence from both experimental and clinical research has uncovered a protective role for ketones in cardiovascular disease. Although ketones may provide supplemental fuel for the energy-starved heart, their cardiovascular effects appear to extend far beyond cardiac energetics. Indeed, ketone bodies have been shown to influence a variety of cellular processes including gene transcription, inflammation and oxidative stress, endothelial function, cardiac remodeling, and cardiovascular risk factors. This paper reviews the bioenergetic and pleiotropic effects of ketone bodies that could potentially contribute to its cardiovascular benefits based on evidence from animal and human studies.
Collapse
Affiliation(s)
- Salva R Yurista
- University Medical Center Groningen, University of Groningen, Department of Cardiology, Groningen, the Netherlands. https://twitter.com/salvareverentia
| | - Cher-Rin Chong
- Basil Hetzel Institute for Translational Research, The Queen Elizabeth Hospital, Australia; Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Juan J Badimon
- AtheroThrombosis Research Unit, Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Daniel P Kelly
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rudolf A de Boer
- University Medical Center Groningen, University of Groningen, Department of Cardiology, Groningen, the Netherlands. https://twitter.com/Rudolf_deboer
| | - B Daan Westenbrink
- University Medical Center Groningen, University of Groningen, Department of Cardiology, Groningen, the Netherlands.
| |
Collapse
|
19
|
An Alternative Enzymatic Route to the Ergogenic Ketone Body Ester (R)-3-Hydroxybutyl (R)-3-Hydroxybutyrate. Catalysts 2021. [DOI: 10.3390/catal11010140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Recent studies have highlighted the therapeutic and ergogenic potential of the ketone body ester, (R)-3-hydroxybutyl-(R)-3-hydroxybutyrate. In the present work, the enzymatic synthesis of this biological active compound is reported. The (R)-3-hydroxybutyl-(R)-3-hydroxybutyrate has been produced through the transesterification of racemic ethyl 3-hydroxybutyrate with (R)-1,3-butanediol by exploiting the selectivity of Candida antarctica lipase B (CAL-B). The needed (R)-1,3-butanediol was in turn obtained from the kinetic resolution of the racemate achieved by acetylation with vinyl acetate, also in this case, thanks to the enantioselectivity of the CAL-B used as catalyst. Finally, the stereochemical inversion of the unreacted (S) enantiomers of the ethyl 3-hydroxybutyate and 1,3-butanediol accomplished by known procedure allowed to increase the overall yield of the synthetic pathway by incorporating up to 70% of the starting racemic reagents into the final product.
Collapse
|
20
|
Abstract
One of the characteristics of the failing human heart is a significant alteration in its energy metabolism. Recently, a ketone body, β-hydroxybutyrate (β-OHB) has been implicated in the failing heart’s energy metabolism as an alternative “fuel source.” Utilization of β-OHB in the failing heart increases, and this serves as a “fuel switch” that has been demonstrated to become an adaptive response to stress during the heart failure progression in both diabetic and non-diabetic patients. In addition to serving as an alternative “fuel,” β-OHB represents a signaling molecule that acts as an endogenous histone deacetylase (HDAC) inhibitor. It can increase histone acetylation or lysine acetylation of other signaling molecules. β-OHB has been shown to decrease the production of reactive oxygen species and activate autophagy. Moreover, β-OHB works as an NLR family pyrin domain-containing protein 3 (Nlrp3) inflammasome inhibitor and reduces Nlrp3-mediated inflammatory responses. It has also been reported that β-OHB plays a role in transcriptional or post-translational regulations of various genes’ expression. Increasing β-OHB levels prior to ischemia/reperfusion injury results in a reduced infarct size in rodents, likely due to the signaling function of β-OHB in addition to its role in providing energy. Sodium-glucose co-transporter-2 (SGLT2) inhibitors have been shown to exert strong beneficial effects on the cardiovascular system. They are also capable of increasing the production of β-OHB, which may partially explain their clinical efficacy. Despite all of the beneficial effects of β-OHB, some studies have shown detrimental effects of long-term exposure to β-OHB. Furthermore, not all means of increasing β-OHB levels in the heart are equally effective in treating heart failure. The best timing and therapeutic strategies for the delivery of β-OHB to treat heart disease are unknown and yet to be determined. In this review, we focus on the crucial role of ketone bodies, particularly β-OHB, as both an energy source and a signaling molecule in the stressed heart and the overall therapeutic potential of this compound for cardiovascular diseases.
Collapse
Affiliation(s)
- Yuxin Chu
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL, United States.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, the State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Cheng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, the State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Min Xie
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
21
|
Walsh JJ, Myette-Côté É, Neudorf H, Little JP. Potential Therapeutic Effects of Exogenous Ketone Supplementation for Type 2 Diabetes: A Review. Curr Pharm Des 2020; 26:958-969. [PMID: 32013822 DOI: 10.2174/1381612826666200203120540] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/25/2019] [Indexed: 12/17/2022]
Abstract
Type 2 diabetes (T2D) is among the most prevalent non-communicable lifestyle diseases. We propose that overnutrition and low levels of physical activity can contribute to a vicious cycle of hyperglycemia, inflammation and oxidative stress, insulin resistance, and pancreatic β-cell dysfunction. The pathophysiological manifestations of T2D have a particular impact on the vasculature and individuals with T2D are at high risk of cardiovascular disease. Targeting aspects of the vicious cycle represent therapeutic approaches for improving T2D and protecting against cardiovascular complications. The recent advent of exogenous oral ketone supplements represents a novel, non-pharmacological approach to improving T2D pathophysiology and potentially protecting against cardiovascular disease risk. Herein, we review the emerging literature regarding the effects of exogenous ketone supplementation on metabolic control, inflammation, oxidative stress, and cardiovascular function in humans and highlight the potential application for breaking the vicious cycle of T2D pathophysiology.
Collapse
Affiliation(s)
- Jeremy J Walsh
- Exercise, Metabolism and Inflammation Laboratory, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Étienne Myette-Côté
- Exercise, Metabolism and Inflammation Laboratory, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Helena Neudorf
- Exercise, Metabolism and Inflammation Laboratory, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Jonathan P Little
- Exercise, Metabolism and Inflammation Laboratory, University of British Columbia Okanagan, Kelowna, BC, Canada
| |
Collapse
|
22
|
Effects of a Ketogenic Diet Containing Medium-Chain Triglycerides and Endurance Training on Metabolic Enzyme Adaptations in Rat Skeletal Muscle. Nutrients 2020; 12:nu12051269. [PMID: 32365746 PMCID: PMC7284751 DOI: 10.3390/nu12051269] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 01/20/2023] Open
Abstract
Long-term intake of a ketogenic diet enhances utilization of ketone bodies, a particularly energy-efficient substrate, during exercise. However, physiological adaptation to an extremely low-carbohydrate diet has been shown to upregulate pyruvate dehydrogenase kinase 4 (PDK4, a negative regulator of glycolytic flux) content in skeletal muscle, resulting in impaired high-intensity exercise capacity. This study aimed to examine the effects of a long-term ketogenic diet containing medium-chain triglycerides (MCTs) on endurance training-induced adaptations in ketolytic and glycolytic enzymes of rat skeletal muscle. Male Sprague-Dawley rats were placed on either a standard diet (CON), a long-chain triglyceride-containing ketogenic diet (LKD), or an MCT-containing ketogenic diet (MKD). Half the rats in each group performed a 2-h swimming exercise, 5 days a week, for 8 weeks. Endurance training significantly increased 3-oxoacid CoA transferase (OXCT, a ketolytic enzyme) protein content in epitrochlearis muscle tissue, and MKD intake additively enhanced endurance training–induced increases in OXCT protein content. LKD consumption substantially increased muscle PDK4 protein level. However, such PDK4 increases were not observed in the MKD-fed rats. In conclusion, long-term intake of ketogenic diets containing MCTs may additively enhance endurance training–induced increases in ketolytic capacity in skeletal muscle without exerting inhibitory effects on carbohydrate metabolism.
Collapse
|
23
|
Spoke C, Malaeb S. A Case of Hypoglycemia Associated With the Ketogenic Diet and Alcohol Use. J Endocr Soc 2020; 4:bvaa045. [PMID: 32537539 PMCID: PMC7278276 DOI: 10.1210/jendso/bvaa045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/06/2020] [Indexed: 12/28/2022] Open
Abstract
The ketogenic diet, which has become an increasingly popular diet, severely restricts carbohydrate intake to shunt metabolism towards fatty acid oxidation and production of ketones as a fuel source. There have been many studies illustrating the positive effects of a ketogenic diet in weight loss and other benefits; however, the long-term effects and potential adverse events of a ketogenic diet have not been well studied or documented in literature. There are a few case reports of ketogenic diet resulting in hypoglycemia. We report a case of hypoglycemia with a blood glucose of 39 mg/dL and ketosis in a 69-year-old woman who strictly followed a ketogenic diet for nearly one year. She presented with malaise, sugar cravings, and mental fogginess, and after intake of alcoholic beverages, was admitted to the hospital with hypoglycemia. She had elevated beta-hydroxybutyrate, and low insulin and C-peptide, all consistent with a starvation ketosis. This case illustrates that adherence to a ketogenic diet for a prolonged period of time, in combination with alcohol intake, can disrupt normal glucose homeostatic mechanisms and result in a significant degree of hypoglycemia. This pattern of hypoglycemia may not present with classic symptoms, most likely partly due to effects of the ketogenic diet on brain function. This case provides insight that supports the need to counsel patients about alcohol intake while on the ketogenic diet. More information is needed on long-term complications of the ketogenic diet on glucose homeostasis in the body as well as in the brain.
Collapse
Affiliation(s)
- Christopher Spoke
- Department of Medical Education, Abbott Northwestern Hospital, Minneapolis, Minnesota
| | - Samar Malaeb
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
24
|
Morris G, Puri BK, Carvalho A, Maes M, Berk M, Ruusunen A, Olive L. Induced Ketosis as a Treatment for Neuroprogressive Disorders: Food for Thought? Int J Neuropsychopharmacol 2020; 23:366-384. [PMID: 32034911 PMCID: PMC7311648 DOI: 10.1093/ijnp/pyaa008] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 01/05/2020] [Accepted: 02/06/2020] [Indexed: 12/12/2022] Open
Abstract
Induced ketosis (or ketone body ingestion) can ameliorate several changes associated with neuroprogressive disorders, including schizophrenia, bipolar disorder, and major depressive disorder. Thus, the effects of glucose hypometabolism can be bypassed through the entry of beta-hydroxybutyrate, providing an alternative source of energy to glucose. The weight of evidence suggests that induced ketosis reduces levels of oxidative stress, mitochondrial dysfunction, and inflammation-core features of the above disorders. There are also data to suggest that induced ketosis may be able to target other molecules and signaling pathways whose levels and/or activity are also known to be abnormal in at least some patients suffering from these illnesses such as peroxisome proliferator-activated receptors, increased activity of the Kelch-like ECH-associated protein/nuclear factor erythroid 2-related factor 2, Sirtuin-1 nuclear factor-κB p65, and nicotinamide adenine dinucleotide (NAD). This review explains the mechanisms by which induced ketosis might reduce mitochondrial dysfunction, inflammation, and oxidative stress in neuropsychiatric disorders and ameliorate abnormal levels of molecules and signaling pathways that also appear to contribute to the pathophysiology of these illnesses. This review also examines safety data relating to induced ketosis over the long term and discusses the design of future studies.
Collapse
Affiliation(s)
- Gerwyn Morris
- The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Australia
| | - Basant K Puri
- C.A.R., Cambridge, United Kingdom,Hammersmith Hospital, London, United Kingdom
| | - Andre Carvalho
- Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Michael Maes
- Department of Psychiatry and Medical Psychology, Medical Faculty, Medical University of Plovdiv, Plovdiv, Bulgaria,Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Michael Berk
- The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Australia,Orygen, The National Centre of Excellence in Youth Mental Health, the Department of Psychiatry, and the Florey Institute for Neuroscience and Mental Health, University of Melbourne, Australia,Correspondence: Michael Berk, PO Box 281 Geelong, Victoria 3220 Australia ()
| | - Anu Ruusunen
- The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Australia
| | - Lisa Olive
- The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Australia
| |
Collapse
|
25
|
Caplliure‐Llopis J, Peralta‐Chamba T, Carrera‐Juliá S, Cuerda‐Ballester M, Drehmer‐Rieger E, López‐Rodriguez MM, de la Rubia Ortí JE. Therapeutic alternative of the ketogenic Mediterranean diet to improve mitochondrial activity in Amyotrophic Lateral Sclerosis (ALS): A Comprehensive Review. Food Sci Nutr 2020; 8:23-35. [PMID: 31993129 PMCID: PMC6977418 DOI: 10.1002/fsn3.1324] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 10/07/2019] [Accepted: 10/17/2019] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease which is pathogenically based on the mitochondrial alteration of motor neurons, causing progressive neuron death. While ALS is characterized by enormous oxidative stress, the Mediterranean diet has been seen to have high antioxidant power. Therefore, the aim of this study is to determine how the Mediterranean diet can improve mitochondrial activity, establishing the specific nutrients and, in addition, observing the pathogenic mechanisms related to the disease that would achieve this improvement. To this end, a comprehensive review of the literature was performed using PubMed. KBs have been observed to have a neuroprotective effect to improve energy balance, increasing survival and the number of motor neurons. This ketogenesis can be achieved after following a Mediterranean diet which is associated with great benefits in other neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and ALS. These benefits are due to the high antioxidant power especially based on polyphenols contained mainly in olive oil, wine, nuts, or berries. In short, KBs could be considered as a promising option to treat ALS, representing an alternative source to glucose in motor neurons by providing neuroprotection. In addition, treatment results can be improved as ketogenesis can be achieved (increase in KBs) by following a Mediterranean diet, thanks to the high antioxidant properties which, at the same time, would improve the high oxidative stress that characterizes the disease.
Collapse
Affiliation(s)
- Jordi Caplliure‐Llopis
- Doctoral Degree's SchoolCatholic University of ValenciaValenciaSpain
- University Hospital la RiberaAlziraSpain
| | | | - Sandra Carrera‐Juliá
- Doctoral Degree's SchoolCatholic University of ValenciaValenciaSpain
- Faculty of Medicine and OdontologyCatholic. University of ValenciaValenciaSpain
| | | | - Eraci Drehmer‐Rieger
- Department of Health and Functional ValorizationCatholic University of ValenciaValenciaSpain
| | | | | |
Collapse
|
26
|
Dietary Neuroketotherapeutics for Alzheimer's Disease: An Evidence Update and the Potential Role for Diet Quality. Nutrients 2019; 11:nu11081910. [PMID: 31443216 PMCID: PMC6722814 DOI: 10.3390/nu11081910] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 07/29/2019] [Accepted: 08/13/2019] [Indexed: 12/20/2022] Open
Abstract
Alzheimer’s disease (AD) is a devastating neurodegenerative disease with growing prevalence as the global population ages. Currently available treatments for AD have minimal efficacy and there are no proven treatments for its prodrome, mild cognitive impairment (MCI). AD etiology is not well understood and various hypotheses of disease pathogenesis are currently under investigation. A consistent hallmark in patients with AD is reduced brain glucose utilization; however, evidence suggests that brain ketone metabolism remains unimpaired, thus, there is a great deal of increased interest in the potential value of ketone-inducing therapies for the treatment of AD (neuroketotherapeutics; NKT). The goal of this review was to discuss dietary NKT approaches and mechanisms by which they exert a possible therapeutic benefit, update the evidence available on NKTs in AD and consider a potential role of diet quality in the clinical use of dietary NKTs. Whether NKTs affect AD symptoms through the restoration of bioenergetics, the direct and indirect modulation of antioxidant and inflammation pathways, or both, preliminary positive evidence suggests that further study of dietary NKTs as a disease-modifying treatment in AD is warranted.
Collapse
|
27
|
Yang H, Shan W, Zhu F, Wu J, Wang Q. Ketone Bodies in Neurological Diseases: Focus on Neuroprotection and Underlying Mechanisms. Front Neurol 2019; 10:585. [PMID: 31244753 PMCID: PMC6581710 DOI: 10.3389/fneur.2019.00585] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/17/2019] [Indexed: 12/14/2022] Open
Abstract
There is growing evidence that ketone bodies, which are derived from fatty acid oxidation and usually produced in fasting state or on high-fat diets have broad neuroprotective effects. Although the mechanisms underlying the neuroprotective effects of ketone bodies have not yet been fully elucidated, studies in recent years provided abundant shreds of evidence that ketone bodies exert neuroprotective effects through possible mechanisms of anti-oxidative stress, maintaining energy supply, modulating the activity of deacetylation and inflammatory responses. Based on the neuroprotective effects, the ketogenic diet has been used in the treatment of several neurological diseases such as refractory epilepsy, Parkinson's disease, Alzheimer's disease, and traumatic brain injury. The ketogenic diet has great potential clinically, which should be further explored in future studies. It is necessary to specify the roles of components in ketone bodies and their therapeutic targets and related pathways to optimize the strategy and efficacy of ketogenic diet therapy in the future.
Collapse
Affiliation(s)
- Huajun Yang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Center for Clinical Medicine of Neurological Diseases, Beijing, China
| | - Wei Shan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Center for Clinical Medicine of Neurological Diseases, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Fei Zhu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Center for Clinical Medicine of Neurological Diseases, Beijing, China
| | - Jianping Wu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Center for Clinical Medicine of Neurological Diseases, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Qun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Center for Clinical Medicine of Neurological Diseases, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| |
Collapse
|
28
|
de Groot S, Pijl H, van der Hoeven JJM, Kroep JR. Effects of short-term fasting on cancer treatment. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:209. [PMID: 31113478 PMCID: PMC6530042 DOI: 10.1186/s13046-019-1189-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/22/2019] [Indexed: 12/14/2022]
Abstract
Growing preclinical evidence shows that short-term fasting (STF) protects from toxicity while enhancing the efficacy of a variety of chemotherapeutic agents in the treatment of various tumour types. STF reinforces stress resistance of healthy cells, while tumor cells become even more sensitive to toxins, perhaps through shortage of nutrients to satisfy their needs in the context of high proliferation rates and/or loss of flexibility to respond to extreme circumstances. In humans, STF may be a feasible approach to enhance the efficacy and tolerability of chemotherapy. Clinical research evaluating the potential of STF is in its infancy. This review focuses on the molecular background, current knowledge and clinical trials evaluating the effects of STF in cancer treatment. Preliminary data show that STF is safe, but challenging in cancer patients receiving chemotherapy. Ongoing clinical trials need to unravel if STF can also diminish toxicity and increase efficacy of chemotherapeutic regimes in daily practice.
Collapse
Affiliation(s)
- Stefanie de Groot
- Department of Medical Oncology, Leiden University Medical Center, Albinusdreef 2, P.O. Box 9600, 2300RC, Leiden, The Netherlands
| | - Hanno Pijl
- Department of Endocrinology, Leiden University Medical Center, P.O. Box 9600, 2300RC, Leiden, The Netherlands
| | - Jacobus J M van der Hoeven
- Department of Medical Oncology, Leiden University Medical Center, Albinusdreef 2, P.O. Box 9600, 2300RC, Leiden, The Netherlands
| | - Judith R Kroep
- Department of Medical Oncology, Leiden University Medical Center, Albinusdreef 2, P.O. Box 9600, 2300RC, Leiden, The Netherlands.
| |
Collapse
|
29
|
St-Pierre V, Vandenberghe C, Lowry CM, Fortier M, Castellano CA, Wagner R, Cunnane SC. Plasma Ketone and Medium Chain Fatty Acid Response in Humans Consuming Different Medium Chain Triglycerides During a Metabolic Study Day. Front Nutr 2019; 6:46. [PMID: 31058159 PMCID: PMC6481320 DOI: 10.3389/fnut.2019.00046] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/27/2019] [Indexed: 12/22/2022] Open
Abstract
Background: Medium chain triglycerides (MCT) are ketogenic but the relationship between the change in plasma ketones and the change plasma medium chain fatty acids (MCFA)—octanoate, decanoate, or dodecanoate—after an oral dose of MCT is not well-known. An 8 h metabolic study day is a suitable model to assess the acute effects on plasma ketones and MCFA after a dose of tricaprylin (C8), tricaprin (C10), trilaurin (C12) or mixed MCT (C8C10). Objective: To assess in healthy humans the relationship between the change in plasma ketones, and octanoate, decanoate and dodecanoate in plasma total lipids during an 8 h metabolic study day in which a first 20 ml dose of the homogenized test oil is taken with breakfast and a second 20 ml dose is taken 4 h later without an accompanying meal. Results: The change in plasma acetoacetate, β-hydroxybutyrate and total ketones was highest after C8 (0.5 to 3 h post-dose) and was lower during tests in which octanoate was absent or was diluted by C10 in the test oil. The plasma ketone response was also about 2 fold higher without an accompanying meal (P = 0.012). However, except during the pure C10 test, the response of octanoate, decanoate or dodecanoate in plasma total lipids to the test oils was not affected by consuming an accompanying meal. Except with C12, the 4 h area-under-the-curve of plasma β-hydroxybutyrate/acetoacetate was 2–3 fold higher when no meal was consumed (P < 0.04). Conclusion: C8 was about three times more ketogenic than C10 and about six times more ketogenic than C12 under these acute metabolic test conditions, an effect related to the post-dose increase in octanoate in plasma total lipids.
Collapse
Affiliation(s)
| | | | - Carolyne-Mary Lowry
- Departments of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | | | - Richard Wagner
- Research Center on Aging, Sherbrooke, QC, Canada.,Departments of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, QC, Canada.,Departments of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Stephen C Cunnane
- Research Center on Aging, Sherbrooke, QC, Canada.,Departments of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada.,Departments of Pharmacology and Physiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
30
|
Abstract
Glucose is the long-established, obligatory fuel for brain that fulfills many critical functions, including ATP production, oxidative stress management, and synthesis of neurotransmitters, neuromodulators, and structural components. Neuronal glucose oxidation exceeds that in astrocytes, but both rates increase in direct proportion to excitatory neurotransmission; signaling and metabolism are closely coupled at the local level. Exact details of neuron-astrocyte glutamate-glutamine cycling remain to be established, and the specific roles of glucose and lactate in the cellular energetics of these processes are debated. Glycolysis is preferentially upregulated during brain activation even though oxygen availability is sufficient (aerobic glycolysis). Three major pathways, glycolysis, pentose phosphate shunt, and glycogen turnover, contribute to utilization of glucose in excess of oxygen, and adrenergic regulation of aerobic glycolysis draws attention to astrocytic metabolism, particularly glycogen turnover, which has a high impact on the oxygen-carbohydrate mismatch. Aerobic glycolysis is proposed to be predominant in young children and specific brain regions, but re-evaluation of data is necessary. Shuttling of glucose- and glycogen-derived lactate from astrocytes to neurons during activation, neurotransmission, and memory consolidation are controversial topics for which alternative mechanisms are proposed. Nutritional therapy and vagus nerve stimulation are translational bridges from metabolism to clinical treatment of diverse brain disorders.
Collapse
Affiliation(s)
- Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences , Little Rock, Arkansas ; and Department of Cell Biology and Physiology, University of New Mexico , Albuquerque, New Mexico
| |
Collapse
|
31
|
Titov VN, Ivanov GA, Antonov AM. [Laurine fatty acids, medium fatty acids and triglycerides, hyperlipidemia, resistance to insulin, prevention of atherosclerosis and ateromatosis.]. Klin Lab Diagn 2019; 64:68-77. [PMID: 30917246 DOI: 10.18821/0869-2084-2019-64-2-68-77] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 12/25/2018] [Indexed: 06/09/2023]
Abstract
Although the biochemistry of the positive effects of medium-chain fatty acids (FA) and triglycerides (TG) of the same name in vivo is not fully understood, food enriched with medium-chain LC and the same TG is effective in patients with type I diabetes, insulin resistance syndrome and in neurodegenerative pathology. Lauric C12 LC is half the FA in coconut oil. Residents of southeast Asia with constant use of coconut oil, have a low level of diseases of the cardiovascular system in the population. With a regulatory intake with food C12:0 laurin FA formed moderate ketosis and neuroprotective effect. Unlike long-chain LC, medium-chain TG cells are not deposited either in visceral fat cells, or in insulin-dependent adipocytes. Medium-chain fatty acids rapidly oxidize mitochondria; the formation of acetyl-CoA cells is used to form ketone bodies, activating thermogenesis in orange and brown adipocytes. Experiments with animals and observations in the clinic showed that taking medium-chain TG with food is more physiological than long-chain oils. This significantly increases the level of cholesterol in high-density lipoproteins. Food enriched with medium chain TG is optimal for increasing the ketone content in blood plasma, cerebrospinal fluid without limiting the carbohydrate content in food. The formation of excess ketone bodies by cells can be achieved by activating the metabolic transformations of medium-chain FAs, without fasting and preserving carbohydrates in food. Coconut oil has a positive effect on the cardiovascular system, preventing the formation of atherosclerosis and atheromatosis. Effective in the prevention of the pathology of the cardiovascular system is a decrease in food amounts of palmitic acid, an increase in oleic acid, polyene FA with a simultaneous increase in the proportion of medium-chain FA.
Collapse
Affiliation(s)
- V N Titov
- FGBU National Medical Research Center for Cardiology of the Ministry of Health of Russia, 121552, Moscow
| | - G A Ivanov
- OOO «Biolaboratory», Moscow, territory of the innovation center «Skolkovo»
| | - A M Antonov
- FGAOU VO "Northern (Arctic) Federal University, M.V. Lomonosov", Arkhangelsk
| |
Collapse
|
32
|
Da Costa D, Bangalee V, Subban K, Naidoo R. Ketone body supplement label claims: what supplement has been supplemented? SOUTH AFRICAN JOURNAL OF SPORTS MEDICINE 2019; 31:v31i1a6369. [PMID: 36818000 PMCID: PMC9924521 DOI: 10.17159/2078-516x/2019/v31i1a6369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Background There is a keen interest in performance-enhancing supplementation and the associated benefits, despite reports of incorrect label claims made by manufacturers and the questionable efficacy of the supplements. The use of ketone body supplements as a source of fuel during exercise and sporting performance, in particular, is of interest to sportspeople. By increasing blood ketone body levels, with an accompanying decrease in blood glucose, may indicate a state of nutritional ketosis, whereby the body no longer relies on glucose metabolism but rather the metabolism of ketone bodies. This could be beneficial for long, slow steady-state endurance exercise. Discussion There are numerous ketone body supplements on the market manufactured in South Africa and internationally. However, unlike medicines, the sports supplementation industry is poorly regulated. Furthermore, ketone body supplementation with regard to its effects on improving exercise and athletic performance is still unconvincing. Conclusion Within the ever-changing sports supplementation industry, ketone body supplements are being used despite controversies regarding the accuracy and scientific merit of label claims. The ingredients and their quantities, as well as the performance benefits, need to be objectively validated.
Collapse
Affiliation(s)
- D Da Costa
- Discipline of Biokinetics, Exercise and Leisure Sciences, University of KwaZulu-Natal, College of Health Sciences,
South Africa
| | - V Bangalee
- Discipline of Biokinetics, Exercise and Leisure Sciences, University of KwaZulu-Natal, College of Health Sciences,
South Africa
| | - K Subban
- Prime Human Performance Institute, 44 Isaiah Ntshangase Road, Durban,
South Africa
| | - R Naidoo
- Discipline of Biokinetics, Exercise and Leisure Sciences, University of KwaZulu-Natal, College of Health Sciences,
South Africa
| |
Collapse
|
33
|
Karczewska-Kupczewska M, Nikolajuk A, Filarski R, Majewski R, Tarasów E. Intralipid/Heparin Infusion Alters Brain Metabolites Assessed With 1H-MRS Spectroscopy in Young Healthy Men. J Clin Endocrinol Metab 2018; 103:2563-2570. [PMID: 29860500 DOI: 10.1210/jc.2018-00107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 04/17/2018] [Indexed: 12/26/2022]
Abstract
CONTEXT We previously demonstrated that insulin infusion altered metabolite concentrations in cerebral tissues assessed with proton magnetic resonance spectroscopy (1H-MRS) in young subjects with high insulin sensitivity, but not in those with low insulin sensitivity. Fat overload is an important factor leading to insulin resistance. OBJECTIVE The purpose of the current study was to examine the effect of elevated circulating free fatty acid (FFA) levels on metabolites in cerebral tissues assessed with 1H-MRS. DESIGN The study group comprised 10 young, healthy male subjects. 1H-MRS was performed at baseline and after 4-hour Intralipid (Fresenius Kabi)/heparin or saline infusions administered in random order. Voxels were positioned in the left frontal lobe, left temporal lobe, and hippocampus. The ratios of N-acetylaspartate (NAA), choline (Cho)-containing compounds, myo-inositol (mI), and glutamate/glutamine/γ-aminobutyric acid complex (Glx) to creatine (Cr) and nonsuppressed water signal were determined. RESULTS Intralipid/heparin infusion resulted in a significant increase in circulating FFAs (P < 0.0001). Significant changes in brain neurometabolite concentrations in response to Intralipid/heparin infusion were increases in frontal mI/Cr (P = 0.041) and mI/H2O (P = 0.037), decreases in frontal and hippocampal Glx/Cr (P = 0.018 and P = 0.015, respectively) and Glx/H2O (P = 0.03 and P = 0.067, respectively), and a decrease in hippocampal NAA/Cr (P = 0.007) and NAA/H2O (P = 0.019). No changes in neurometabolites were observed during the saline infusion. CONCLUSIONS Acute circulating FFA elevation influenced cerebral metabolites in healthy humans and lipid-induced insulin resistance could be partly responsible for these effects.
Collapse
Affiliation(s)
- Monika Karczewska-Kupczewska
- Department of Prophylaxis of Metabolic Diseases, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
- Department of Metabolic Diseases, Medical University of Bialystok, Bialystok, Poland
| | - Agnieszka Nikolajuk
- Department of Prophylaxis of Metabolic Diseases, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Remigiusz Filarski
- Department of Prophylaxis of Metabolic Diseases, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Radoslaw Majewski
- Department of Prophylaxis of Metabolic Diseases, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Eugeniusz Tarasów
- Department of Radiology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
34
|
Effect of a Sodium and Calcium DL- β-Hydroxybutyrate Salt in Healthy Adults. J Nutr Metab 2018; 2018:9812806. [PMID: 29850235 PMCID: PMC5925188 DOI: 10.1155/2018/9812806] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/01/2018] [Accepted: 02/12/2018] [Indexed: 11/23/2022] Open
Abstract
Background Ketone body therapy and supplementation are of high interest for several medical and nutritional fields. The intake of ketone bodies is often discussed in relation to rare metabolic diseases, such as multiple acyl-CoA dehydrogenase deficiency (MADD), that have no alternatives for treatment. Case reports showed positive results of therapy using ketone bodies. The number of ketone body salts offered on the wellness market is increasing steadily. More information on the kinetics of intake, safety, and tolerance of these products is needed. Methods In a one-dose kinetic study, six healthy subjects received an intervention (0.5 g/kg bw) using a commercially available ketone body supplement. The supplement contained a mixture of sodium and calcium D-/L-β-hydroxybutyrate (βHB) as well as food additives. The blood samples drawn in the study were tested for concentrations of D-βHB, glucose, and electrolytes, and blood gas analyses were done. Data on sensory evaluation and observed side effects of the supplement were collected. The product also went through chemical food analysis. Results The supplement led to a significant increase of D-βHB concentration in blood 2.5 and 3 h after oral intake (p=0.033; p=0.043). The first significant effect was measured after 2 h with a mean value of 0.598 ± 0.300 mmol/L at the peak, which was recorded at 2.5 h. Changes in serum electrolytes and BGA were largely unremarkable. Taking the supplement was not without side effects. One subject dropped out due to gastrointestinal symptoms and two others reported similar but milder problems. Conclusions Intake of a combination of calcium and sodium D-/L-βHB salt shows a slow resorption with a moderate increase of D-βHB in serum levels. An influence of βHB salts on acid-base balance could not be excluded by this one-dose study. Excessive regular consumption without medical observation is not free of adverse effects. The tested product can therefore not be recommended unconditionally.
Collapse
|
35
|
Harvey CJDC, Schofield GM, Williden M. The use of nutritional supplements to induce ketosis and reduce symptoms associated with keto-induction: a narrative review. PeerJ 2018; 6:e4488. [PMID: 29576959 PMCID: PMC5858534 DOI: 10.7717/peerj.4488] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 02/20/2018] [Indexed: 12/21/2022] Open
Abstract
Background Adaptation to a ketogenic diet (keto-induction) can cause unpleasant symptoms, and this can reduce tolerability of the diet. Several methods have been suggested as useful for encouraging entry into nutritional ketosis (NK) and reducing symptoms of keto-induction. This paper reviews the scientific literature on the effects of these methods on time-to-NK and on symptoms during the keto-induction phase. Methods PubMed, Science Direct, CINAHL, MEDLINE, Alt Health Watch, Food Science Source and EBSCO Psychology and Behavioural Sciences Collection electronic databases were searched online. Various purported ketogenic supplements were searched along with the terms “ketogenic diet”, “ketogenic”, “ketosis” and ketonaemia (/ ketonemia). Additionally, author names and reference lists were used for further search of the selected papers for related references. Results Evidence, from one mouse study, suggests that leucine doesn’t significantly increase beta-hydroxybutyrate (BOHB) but the addition of leucine to a ketogenic diet in humans, while increasing the protein-to-fat ratio of the diet, doesn’t reduce ketosis. Animal studies indicate that the short chain fatty acids acetic acid and butyric acid, increase ketone body concentrations. However, only one study has been performed in humans. This demonstrated that butyric acid is more ketogenic than either leucine or an 8-chain monoglyceride. Medium-chain triglycerides (MCTs) increase BOHB in a linear, dose-dependent manner, and promote both ketonaemia and ketogenesis. Exogenous ketones promote ketonaemia but may inhibit ketogenesis. Conclusions There is a clear ketogenic effect of supplemental MCTs; however, it is unclear whether they independently improve time to NK and reduce symptoms of keto-induction. There is limited research on the potential for other supplements to improve time to NK and reduce symptoms of keto-induction. Few studies have specifically evaluated symptoms and adverse effects of a ketogenic diet during the induction phase. Those that have typically were not designed to evaluate these variables as primary outcomes, and thus, more research is required to elucidate the role that supplementation might play in encouraging ketogenesis, improve time to NK, and reduce symptoms associated with keto-induction.
Collapse
Affiliation(s)
- Cliff J D C Harvey
- Human Potential Centre, Auckland University of Technology, Auckland, New Zealand
| | - Grant M Schofield
- Human Potential Centre, Auckland University of Technology, Auckland, New Zealand
| | - Micalla Williden
- Human Potential Centre, Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
36
|
Veyrat-Durebex C, Reynier P, Procaccio V, Hergesheimer R, Corcia P, Andres CR, Blasco H. How Can a Ketogenic Diet Improve Motor Function? Front Mol Neurosci 2018; 11:15. [PMID: 29434537 PMCID: PMC5790787 DOI: 10.3389/fnmol.2018.00015] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/10/2018] [Indexed: 12/12/2022] Open
Abstract
A ketogenic diet (KD) is a normocaloric diet composed by high fat (80-90%), low carbohydrate, and low protein consumption that induces fasting-like effects. KD increases ketone body (KBs) production and its concentration in the blood, providing the brain an alternative energy supply that enhances oxidative mitochondrial metabolism. In addition to its profound impact on neuro-metabolism and bioenergetics, the neuroprotective effect of specific polyunsaturated fatty acids and KBs involves pleiotropic mechanisms, such as the modulation of neuronal membrane excitability, inflammation, or reactive oxygen species production. KD is a therapy that has been used for almost a century to treat medically intractable epilepsy and has been increasingly explored in a number of neurological diseases. Motor function has also been shown to be improved by KD and/or medium-chain triglyceride diets in rodent models of Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and spinal cord injury. These studies have proposed that KD may induce a modification in synaptic morphology and function, involving ionic channels, glutamatergic transmission, or synaptic vesicular cycling machinery. However, little is understood about the molecular mechanisms underlying the impact of KD on motor function and the perspectives of its use to acquire the neuromuscular effects. The aim of this review is to explore the conditions through which KD might improve motor function. First, we will describe the main consequences of KD exposure in tissues involved in motor function. Second, we will report and discuss the relevance of KD in pre-clinical and clinical trials in the major diseases presenting motor dysfunction.
Collapse
Affiliation(s)
- Charlotte Veyrat-Durebex
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire, Angers, France
- INSERM 1083, CNRS, Equipe Mitolab, Institut MITOVASC, UMR 6015, Université d’Angers, Angers, France
| | - Pascal Reynier
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire, Angers, France
- INSERM 1083, CNRS, Equipe Mitolab, Institut MITOVASC, UMR 6015, Université d’Angers, Angers, France
| | - Vincent Procaccio
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire, Angers, France
- INSERM 1083, CNRS, Equipe Mitolab, Institut MITOVASC, UMR 6015, Université d’Angers, Angers, France
| | | | - Philippe Corcia
- INSERM U930, Université François Rabelais de Tours, Tours, France
- Service de Neurologie, Centre Hospitalier Universitaire de Tours, Tours, France
| | - Christian R. Andres
- INSERM U930, Université François Rabelais de Tours, Tours, France
- Laboratoire de Biochimie et Biologie Moléculaire, Centre Hospitalier Universitaire de Tours, Tours, France
| | - Hélène Blasco
- INSERM 1083, CNRS, Equipe Mitolab, Institut MITOVASC, UMR 6015, Université d’Angers, Angers, France
- INSERM U930, Université François Rabelais de Tours, Tours, France
- Laboratoire de Biochimie et Biologie Moléculaire, Centre Hospitalier Universitaire de Tours, Tours, France
| |
Collapse
|
37
|
Newman JC, Covarrubias AJ, Zhao M, Yu X, Gut P, Ng CP, Huang Y, Haldar S, Verdin E. Ketogenic Diet Reduces Midlife Mortality and Improves Memory in Aging Mice. Cell Metab 2017; 26:547-557.e8. [PMID: 28877458 PMCID: PMC5605815 DOI: 10.1016/j.cmet.2017.08.004] [Citation(s) in RCA: 332] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 06/16/2017] [Accepted: 08/07/2017] [Indexed: 12/16/2022]
Abstract
Ketogenic diets recapitulate certain metabolic aspects of dietary restriction such as reliance on fatty acid metabolism and production of ketone bodies. We investigated whether an isoprotein ketogenic diet (KD) might, like dietary restriction, affect longevity and healthspan in C57BL/6 male mice. We find that Cyclic KD, KD alternated weekly with the Control diet to prevent obesity, reduces midlife mortality but does not affect maximum lifespan. A non-ketogenic high-fat diet (HF) fed similarly may have an intermediate effect on mortality. Cyclic KD improves memory performance in old age, while modestly improving composite healthspan measures. Gene expression analysis identifies downregulation of insulin, protein synthesis, and fatty acid synthesis pathways as mechanisms common to KD and HF. However, upregulation of PPARα target genes is unique to KD, consistent across tissues, and preserved in old age. In all, we show that a non-obesogenic ketogenic diet improves survival, memory, and healthspan in aging mice.
Collapse
Affiliation(s)
- John C Newman
- Buck Institute for Research on Aging, Novato, CA 94945, USA; UCSF Division of Geriatrics, San Francisco, CA 94118, USA; Gladstone Institute of Virology and Immunology, San Francisco, CA 94158, USA
| | | | - Minghao Zhao
- UCSF Global Health Sciences, San Francisco, CA 94158, USA
| | - Xinxing Yu
- UCSF Division of Geriatrics, San Francisco, CA 94118, USA
| | - Philipp Gut
- Gladstone Institute of Virology and Immunology, San Francisco, CA 94158, USA
| | - Che-Ping Ng
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Yu Huang
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| | - Saptarsi Haldar
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| | - Eric Verdin
- Buck Institute for Research on Aging, Novato, CA 94945, USA; UCSF Division of Geriatrics, San Francisco, CA 94118, USA; Gladstone Institute of Virology and Immunology, San Francisco, CA 94158, USA.
| |
Collapse
|
38
|
Tognini P, Murakami M, Liu Y, Eckel-Mahan KL, Newman JC, Verdin E, Baldi P, Sassone-Corsi P. Distinct Circadian Signatures in Liver and Gut Clocks Revealed by Ketogenic Diet. Cell Metab 2017; 26:523-538.e5. [PMID: 28877456 DOI: 10.1016/j.cmet.2017.08.015] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 05/04/2017] [Accepted: 08/15/2017] [Indexed: 12/22/2022]
Abstract
The circadian clock orchestrates rhythms in physiology and behavior, allowing organismal adaptation to daily environmental changes. While food intake profoundly influences diurnal rhythms in the liver, how nutritional challenges are differentially interpreted by distinct tissue-specific clocks remains poorly explored. Ketogenic diet (KD) is considered to have metabolic and therapeutic value, though its impact on circadian homeostasis is virtually unknown. We show that KD has profound and differential effects on liver and intestine clocks. Specifically, the amplitude of clock-controlled genes and BMAL1 chromatin recruitment are drastically altered by KD in the liver, but not in the intestine. KD induces nuclear accumulation of PPARα in both tissues but with different circadian phase. Also, gut and liver clocks respond differently to carbohydrate supplementation to KD. Importantly, KD induces serum and intestinal β-hydroxyl-butyrate levels to robustly oscillate in a circadian manner, an event coupled to tissue-specific cyclic histone deacetylase (HDAC) activity and histone acetylation.
Collapse
Affiliation(s)
- Paola Tognini
- Center for Epigenetics and Metabolism, Department of Biological Chemistry, U1233 INSERM, University of California, Irvine, Irvine, CA, USA
| | - Mari Murakami
- Center for Epigenetics and Metabolism, Department of Biological Chemistry, U1233 INSERM, University of California, Irvine, Irvine, CA, USA
| | - Yu Liu
- Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California, Irvine, Irvine, CA, USA
| | - Kristin L Eckel-Mahan
- Center for Epigenetics and Metabolism, Department of Biological Chemistry, U1233 INSERM, University of California, Irvine, Irvine, CA, USA; Center for Metabolic and Degenerative Diseases, Institute of Molecular Medicine, University of Texas Health Sciences Center, Houston, TX, USA
| | - John C Newman
- Gladstone Institutes, University of California, San Francisco, 1650 Owens Street, San Francisco, CA 94158, USA
| | - Eric Verdin
- Gladstone Institutes, University of California, San Francisco, 1650 Owens Street, San Francisco, CA 94158, USA
| | - Pierre Baldi
- Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California, Irvine, Irvine, CA, USA
| | - Paolo Sassone-Corsi
- Center for Epigenetics and Metabolism, Department of Biological Chemistry, U1233 INSERM, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
39
|
The transcription factor carbohydrate-response element-binding protein (ChREBP): A possible link between metabolic disease and cancer. Biochim Biophys Acta Mol Basis Dis 2016; 1863:474-485. [PMID: 27919710 DOI: 10.1016/j.bbadis.2016.11.029] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 11/24/2016] [Accepted: 11/29/2016] [Indexed: 12/19/2022]
Abstract
Carbohydrate-response element-binding protein (ChREBP) has been identified as a transcription factor that binds to carbohydrate response element in the promoter of pyruvate kinase, liver and red blood cells. ChREBP is activated by metabolites derived from glucose and suppressed by adenosine monophosphate (AMP), ketone bodies and cyclic cAMP. ChREBP regulates gene transcription related to glucose and lipid metabolism. Findings from knockout mice and human subjects suggest that ChREBP helps to induce hepatic steatosis, dyslipidemia, and glucose intolerance. Moreover, in tumor cells, ChREBP promotes aerobic glycolysis through p53 inhibition, resulting in tumor cell proliferation. Anti-diabetic and anti-lipidemic drugs such as atorvastatin, metformin, bile acid sequestrants, docosahexaenoic acid and eicosapentaenoic acid may affect ChREBP transactivity. Secretory proteins such as fibroblast growth factor 21 and ANGPTL8 (Betatrophin) may be promising candidates for biologic markers reflecting ChREBP transactivity. Thus, ChREBP is associated with metabolic diseases and cancers, and may be a link between them.
Collapse
|
40
|
Murray AJ, Knight NS, Cole MA, Cochlin LE, Carter E, Tchabanenko K, Pichulik T, Gulston MK, Atherton HJ, Schroeder MA, Deacon RMJ, Kashiwaya Y, King MT, Pawlosky R, Rawlins JNP, Tyler DJ, Griffin JL, Robertson J, Veech RL, Clarke K. Novel ketone diet enhances physical and cognitive performance. FASEB J 2016; 30:4021-4032. [PMID: 27528626 PMCID: PMC5102124 DOI: 10.1096/fj.201600773r] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/08/2016] [Indexed: 12/22/2022]
Abstract
Ketone bodies are the most energy-efficient fuel and yield more ATP per mole of substrate than pyruvate and increase the free energy released from ATP hydrolysis. Elevation of circulating ketones via high-fat, low-carbohydrate diets has been used for the treatment of drug-refractory epilepsy and for neurodegenerative diseases, such as Parkinson's disease. Ketones may also be beneficial for muscle and brain in times of stress, such as endurance exercise. The challenge has been to raise circulating ketone levels by using a palatable diet without altering lipid levels. We found that blood ketone levels can be increased and cholesterol and triglycerides decreased by feeding rats a novel ketone ester diet: chow that is supplemented with (R)-3-hydroxybutyl (R)-3-hydroxybutyrate as 30% of calories. For 5 d, rats on the ketone diet ran 32% further on a treadmill than did control rats that ate an isocaloric diet that was supplemented with either corn starch or palm oil (P < 0.05). Ketone-fed rats completed an 8-arm radial maze test 38% faster than did those on the other diets, making more correct decisions before making a mistake (P < 0.05). Isolated, perfused hearts from rats that were fed the ketone diet had greater free energy available from ATP hydrolysis during increased work than did hearts from rats on the other diets as shown by using [31P]-NMR spectroscopy. The novel ketone diet, therefore, improved physical performance and cognitive function in rats, and its energy-sparing properties suggest that it may help to treat a range of human conditions with metabolic abnormalities.-Murray, A. J., Knight, N. S., Cole, M. A., Cochlin, L. E., Carter, E., Tchabanenko, K., Pichulik, T., Gulston, M. K., Atherton, H. J., Schroeder, M. A., Deacon, R. M. J., Kashiwaya, Y., King, M. T., Pawlosky, R., Rawlins, J. N. P., Tyler, D. J., Griffin, J. L., Robertson, J., Veech, R. L., Clarke, K. Novel ketone diet enhances physical and cognitive performance.
Collapse
Affiliation(s)
- Andrew J Murray
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom;
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Nicholas S Knight
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Mark A Cole
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Lowri E Cochlin
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Emma Carter
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | | | - Tica Pichulik
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Melanie K Gulston
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
| | - Helen J Atherton
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Marie A Schroeder
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Robert M J Deacon
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Yoshihiro Kashiwaya
- Laboratory of Metabolic Control, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Rockville, Maryland, USA
| | - M Todd King
- Laboratory of Metabolic Control, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Rockville, Maryland, USA
| | - Robert Pawlosky
- Laboratory of Metabolic Control, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Rockville, Maryland, USA
| | - J Nicholas P Rawlins
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Damian J Tyler
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Julian L Griffin
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
| | - Jeremy Robertson
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Richard L Veech
- Laboratory of Metabolic Control, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Rockville, Maryland, USA
| | - Kieran Clarke
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
41
|
Woolf EC, Syed N, Scheck AC. Tumor Metabolism, the Ketogenic Diet and β-Hydroxybutyrate: Novel Approaches to Adjuvant Brain Tumor Therapy. Front Mol Neurosci 2016; 9:122. [PMID: 27899882 PMCID: PMC5110522 DOI: 10.3389/fnmol.2016.00122] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 10/31/2016] [Indexed: 12/18/2022] Open
Abstract
Malignant brain tumors are devastating despite aggressive treatments such as surgical resection, chemotherapy and radiation therapy. The average life expectancy of patients with newly diagnosed glioblastoma is approximately ~18 months. It is clear that increased survival of brain tumor patients requires the design of new therapeutic modalities, especially those that enhance currently available treatments and/or limit tumor growth. One novel therapeutic arena is the metabolic dysregulation that results in an increased need for glucose in tumor cells. This phenomenon suggests that a reduction in tumor growth could be achieved by decreasing glucose availability, which can be accomplished through pharmacological means or through the use of a high-fat, low-carbohydrate ketogenic diet (KD). The KD, as the name implies, also provides increased blood ketones to support the energy needs of normal tissues. Preclinical work from a number of laboratories has shown that the KD does indeed reduce tumor growth in vivo. In addition, the KD has been shown to reduce angiogenesis, inflammation, peri-tumoral edema, migration and invasion. Furthermore, this diet can enhance the activity of radiation and chemotherapy in a mouse model of glioma, thus increasing survival. Additional studies in vitro have indicated that increasing ketones such as β-hydroxybutyrate (βHB) in the absence of glucose reduction can also inhibit cell growth and potentiate the effects of chemotherapy and radiation. Thus, while we are only beginning to understand the pluripotent mechanisms through which the KD affects tumor growth and response to conventional therapies, the emerging data provide strong support for the use of a KD in the treatment of malignant gliomas. This has led to a limited number of clinical trials investigating the use of a KD in patients with primary and recurrent glioma.
Collapse
Affiliation(s)
- Eric C Woolf
- Neuro-Oncology Research, Barrow Brain Tumor Research Center, Barrow Neurological Institute, St. Joseph's Hospital and Medical CenterPhoenix, AZ, USA; School of Life Sciences, Arizona State UniversityTempe, AZ, USA
| | - Nelofer Syed
- The John Fulcher Molecular Neuro-Oncology Laboratory, Division of Brain Sciences, Imperial College London London, UK
| | - Adrienne C Scheck
- Neuro-Oncology Research, Barrow Brain Tumor Research Center, Barrow Neurological Institute, St. Joseph's Hospital and Medical CenterPhoenix, AZ, USA; School of Life Sciences, Arizona State UniversityTempe, AZ, USA
| |
Collapse
|
42
|
McCarty MF, DiNicolantonio JJ. Lauric acid-rich medium-chain triglycerides can substitute for other oils in cooking applications and may have limited pathogenicity. Open Heart 2016; 3:e000467. [PMID: 27547436 PMCID: PMC4975867 DOI: 10.1136/openhrt-2016-000467] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/09/2016] [Accepted: 07/02/2016] [Indexed: 12/21/2022] Open
Abstract
Recently, medium-chain triglycerides (MCTs) containing a large fraction of lauric acid (LA) (C12)-about 30%-have been introduced commercially for use in salad oils and in cooking applications. As compared to the long-chain fatty acids found in other cooking oils, the medium-chain fats in MCTs are far less likely to be stored in adipose tissue, do not give rise to 'ectopic fat' metabolites that promote insulin resistance and inflammation, and may be less likely to activate macrophages. When ingested, medium-chain fatty acids are rapidly oxidised in hepatic mitochondria; the resulting glut of acetyl-coenzyme A drives ketone body production and also provokes a thermogenic response. Hence, studies in animals and humans indicate that MCT ingestion is less obesogenic than comparable intakes of longer chain oils. Although LA tends to raise serum cholesterol, it has a more substantial impact on high density lipoprotein (HDL) than low density lipoprotein (LDL) in this regard, such that the ratio of total cholesterol to HDL cholesterol decreases. LA constitutes about 50% of the fatty acid content of coconut oil; south Asian and Oceanic societies which use coconut oil as their primary source of dietary fat tend to be at low cardiovascular risk. Since ketone bodies can exert neuroprotective effects, the moderate ketosis induced by regular MCT ingestion may have neuroprotective potential. As compared to traditional MCTs featuring C6-C10, laurate-rich MCTs are more feasible for use in moderate-temperature frying and tend to produce a lower but more sustained pattern of blood ketone elevation owing to the more gradual hepatic oxidation of ingested laurate.
Collapse
|
43
|
Cox PJ, Clarke K. Acute nutritional ketosis: implications for exercise performance and metabolism. EXTREME PHYSIOLOGY & MEDICINE 2014; 3:17. [PMID: 25379174 PMCID: PMC4212585 DOI: 10.1186/2046-7648-3-17] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 09/29/2014] [Indexed: 01/13/2023]
Abstract
Ketone bodies acetoacetate (AcAc) and D-β-hydroxybutyrate (βHB) may provide an alternative carbon source to fuel exercise when delivered acutely in nutritional form. The metabolic actions of ketone bodies are based on sound evolutionary principles to prolong survival during caloric deprivation. By harnessing the potential of these metabolic actions during exercise, athletic performance could be influenced, providing a useful model for the application of ketosis in therapeutic conditions. This article examines the energetic implications of ketone body utilisation with particular reference to exercise metabolism and substrate energetics.
Collapse
Affiliation(s)
- Pete J Cox
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
- Department of Cardiovascular Medicine, University of Oxford, Oxford, UK
| | - Kieran Clarke
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| |
Collapse
|
44
|
Seyfried TN. Ketone strong: emerging evidence for a therapeutic role of ketone bodies in neurological and neurodegenerative diseases. J Lipid Res 2014; 55:1815-7. [PMID: 25015970 PMCID: PMC4617363 DOI: 10.1194/jlr.e052944] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
45
|
Dedkova EN, Blatter LA. Role of β-hydroxybutyrate, its polymer poly-β-hydroxybutyrate and inorganic polyphosphate in mammalian health and disease. Front Physiol 2014; 5:260. [PMID: 25101001 PMCID: PMC4102118 DOI: 10.3389/fphys.2014.00260] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 06/19/2014] [Indexed: 12/14/2022] Open
Abstract
We provide a comprehensive review of the role of β-hydroxybutyrate (β-OHB), its linear polymer poly-β-hydroxybutyrate (PHB), and inorganic polyphosphate (polyP) in mammalian health and disease. β-OHB is a metabolic intermediate that constitutes 70% of ketone bodies produced during ketosis. Although ketosis has been generally considered as an unfavorable pathological state (e.g., diabetic ketoacidosis in type-1 diabetes mellitus), it has been suggested that induction of mild hyperketonemia may have certain therapeutic benefits. β-OHB is synthesized in the liver from acetyl-CoA by β-OHB dehydrogenase and can be used as alternative energy source. Elevated levels of PHB are associated with pathological states. In humans, short-chain, complexed PHB (cPHB) is found in a wide variety of tissues and in atherosclerotic plaques. Plasma cPHB concentrations correlate strongly with atherogenic lipid profiles, and PHB tissue levels are elevated in type-1 diabetic animals. However, little is known about mechanisms of PHB action especially in the heart. In contrast to β-OHB, PHB is a water-insoluble, amphiphilic polymer that has high intrinsic viscosity and salt-solvating properties. cPHB can form non-specific ion channels in planar lipid bilayers and liposomes. PHB can form complexes with polyP and Ca(2+) which increases membrane permeability. The biological roles played by polyP, a ubiquitous phosphate polymer with ATP-like bonds, have been most extensively studied in prokaryotes, however polyP has recently been linked to a variety of functions in mammalian cells, including blood coagulation, regulation of enzyme activity in cancer cells, cell proliferation, apoptosis and mitochondrial ion transport and energy metabolism. Recent evidence suggests that polyP is a potent activator of the mitochondrial permeability transition pore in cardiomyocytes and may represent a hitherto unrecognized key structural and functional component of the mitochondrial membrane system.
Collapse
Affiliation(s)
- Elena N Dedkova
- Department of Molecular Biophysics and Physiology, Rush University Medical Center Chicago, IL, USA
| | - Lothar A Blatter
- Department of Molecular Biophysics and Physiology, Rush University Medical Center Chicago, IL, USA
| |
Collapse
|