1
|
Michell RHB. What was the scientific context in which I wrote my 1975 "Inositol phospholipids and cell surface receptor function" review? Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159601. [PMID: 39952430 DOI: 10.1016/j.bbalip.2025.159601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
50 years on from my BBA review, I was delighted to hear that many of the current leaders of research across "The Multiverse of Phosphoinositides" are contributing to an authoritative collection of articles on the current state of that cosmology of cell functions - and that three other inositidonauts who were launched from Birmingham are assembling it. When the phosphoinositidase C signalling pathway emerged into the cell regulation limelight during the early 1980s it drew attention to a family of metabolically atypical membrane phospholipids that most biologists had been comfortably ignoring. Looking back, it is remarkable how many important clues were already loitering in the literature, waiting for us to start to make sense of them in the 1970s.
Collapse
|
2
|
Wang Y, Liu H, Ye Y, Fang W, Lin A, Dai X, Ye Q, Chen X, Zhang J. ApoE2 affects insulin signaling in the hippocampus and spatial cognition of aged mice in a sex-dependent manner. Cell Commun Signal 2025; 23:112. [PMID: 40011916 DOI: 10.1186/s12964-025-02093-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/08/2025] [Indexed: 02/28/2025] Open
Abstract
Apolipoprotein E (APOE) has garnered significant attention as one of the most influential genetic risk factors for Alzheimer's disease (AD). While the pathogenic role of APOE4 in sporadic AD has been extensively studied, research on the protective effects of the APOE2 genotype and its underlying mechanisms remains limited. Additionally, the existence of sex differences in the protective effects of ApoE2 continues to be a topic of debate. In this study, we utilized humanized ApoE2- and ApoE3- target replacement mice to examine the sex-specific effects of ApoE2 on cognition. Compared with female ApoE3 mice, we found significantly lower spatial cognitive ability and impaired hippocampal synaptic ultrastructure in aged female ApoE2 mice, accompanied by reduced insulin signaling of the hippocampus. Further analyses by target metabolomics and transcriptomic analyses revealed that female ApoE2 mice exhibit an age-related decline in hippocampal inositol levels, and that alterations in inositol levels lower insulin signaling. Importantly, inositol supplementation was found to alleviate peripheral glucose intolerance, enhance insulin signaling, and ultimately improve cognitive function. Interestingly, these differences were not observed between male ApoE2 and ApoE3 mice. The research findings not only provide new insights into the impact of ApoE2 on cognition but also offer a new strategy for cognitive improvement through inositol supplementation in older women.
Collapse
Affiliation(s)
- Yu Wang
- Department of Neurology, Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, China
| | - Hanchen Liu
- Department of Neurology, Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, China
| | - Yijuan Ye
- Department of Neurology, Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, China
| | - Wenting Fang
- Department of Neurology, Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, China
| | - Anlan Lin
- Department of Neurology, Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, China
| | - Xiaoman Dai
- Department of Neurology, Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, China
| | - Qinyong Ye
- Department of Neurology, Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, China
| | - Xiaochun Chen
- Department of Neurology, Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, China.
| | - Jing Zhang
- Department of Neurology, Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
3
|
Kamp D. A physical perspective on lithium therapy. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 194:55-74. [PMID: 39547449 DOI: 10.1016/j.pbiomolbio.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/31/2024] [Accepted: 11/03/2024] [Indexed: 11/17/2024]
Abstract
Lithium salts have strong medical properties in neurological disorders such as bipolar disorder and lithium-responsive headaches. They have recently gathered attention due to their potential preventive effect in viral infections. Though the therapeutic effect of lithium was documented by Cade in the late 1940s, its underlying mechanism of action is still disputed. Acute lithium exposure has an activating effect on excitable organic tissue and organisms, and is highly toxic. Lithium exposure is associated with a strong metabolic response in the organism, with large changes in phospholipid and cholesterol expression. Opposite to acute exposure, this metabolic response alleviates excessive cellular activity. The presence of lithium ions strongly affects lipid conformation and membrane phase unlike other alkali ions, with consequences for membrane permeability, buffer property and excitability. This review investigates how lithium ions affect lipid membrane composition and function, and how lithium response might in fact be the body's attempt to counteract the physical presence of lithium ions at cell level. Ideas for further research in microbiology and drug development are discussed.
Collapse
Affiliation(s)
- Dana Kamp
- The Niels Bohr Institute, Copenhagen University, Copenhagen, Denmark.
| |
Collapse
|
4
|
Pathak A, Willis KG, Bankaitis VA, McDermott MI. Mammalian START-like phosphatidylinositol transfer proteins - Physiological perspectives and roles in cancer biology. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159529. [PMID: 38945251 PMCID: PMC11533902 DOI: 10.1016/j.bbalip.2024.159529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/09/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
PtdIns and its phosphorylated derivatives, the phosphoinositides, are the biochemical components of a major pathway of intracellular signaling in all eukaryotic cells. These lipids are few in terms of cohort of unique positional isomers, and are quantitatively minor species of the bulk cellular lipidome. Nevertheless, phosphoinositides regulate an impressively diverse set of biological processes. It is from that perspective that perturbations in phosphoinositide-dependent signaling pathways are increasingly being recognized as causal foundations of many human diseases - including cancer. Although phosphatidylinositol transfer proteins (PITPs) are not enzymes, these proteins are physiologically significant regulators of phosphoinositide signaling. As such, PITPs are conserved throughout the eukaryotic kingdom. Their biological importance notwithstanding, PITPs remain understudied. Herein, we review current information regarding PITP biology primarily focusing on how derangements in PITP function disrupt key signaling/developmental pathways and are associated with a growing list of pathologies in mammals.
Collapse
Affiliation(s)
- Adrija Pathak
- Department of Cell Biology and Genetics, Texas A&M Health Science Center, College Station, Texas, 77843, USA; Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Katelyn G Willis
- Department of Cell Biology and Genetics, Texas A&M Health Science Center, College Station, Texas, 77843, USA
| | - Vytas A Bankaitis
- Department of Cell Biology and Genetics, Texas A&M Health Science Center, College Station, Texas, 77843, USA; Department of Chemistry, Texas A&M University, College Station, Texas 77843 USA
| | - Mark I McDermott
- Department of Cell Biology and Genetics, Texas A&M Health Science Center, College Station, Texas, 77843, USA.
| |
Collapse
|
5
|
Xu W, Peng X, Li Y, Zeng X, Yan W, Wang C, Wang CR, Chen S, Xu C, Tang X. OsSNDP4, a Sec14-nodulin Domain Protein, is Required for Pollen Development in Rice. RICE (NEW YORK, N.Y.) 2024; 17:54. [PMID: 39207611 PMCID: PMC11362464 DOI: 10.1186/s12284-024-00730-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Pollen is encased in a robust wall that shields the male gametophyte from various stresses and aids in pollination. The pollen wall consists of gametophyte-derived intine and sporophyte-derived exine. The exine is mainly composed of sporopollenin, which is biopolymers of aliphatic lipids and phenolics. The process of exine formation has been the subject of extensive research, yet the underlying molecular mechanisms remain elusive. In this study, we identified a rice mutant of the OsSNDP4 gene that is impaired in pollen development. We demonstrated that OsSNDP4, a putative Sec14-nodulin domain protein, exhibits a preference for binding to phosphatidylinositol (3)-phosphate [PI(3)P], a lipid primarily found in endosomal and vacuolar membranes. The OsSNDP4 protein was detected in association with the endoplasmic reticulum (ER), vacuolar membranes, and the nucleus. OsSNDP4 expression was detected in all tested organs but was notably higher in anthers during exine development. Loss of OsSNDP4 function led to abnormal vacuole dynamics, inhibition in Ubisch body development, and premature degradation of cellular contents and organelles in the tapetal cells. Microspores from the ossndp4 mutant plant displayed abnormal exine formation, abnormal vacuole enlargement, and ultimately, pollen abortion. RNA-seq assay revealed that genes involved in the biosynthesis of fatty acid and secondary metabolites, the biosynthesis of lipid polymers, and exosome formation were enriched among the down-regulated genes in the mutant anthers, which correlated with the morphological defects observed in the mutant anthers. Base on these findings, we propose that OsSNDP4 regulates pollen development by binding to PI(3)P and influencing the dynamics of membrane systems. The involvement of membrane systems in the regulation of sporopollenin biosynthesis, Ubisch body formation, and exine formation provides a novel mechanism regulating pollen wall development.
Collapse
Affiliation(s)
- Weitao Xu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Xiaoqun Peng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yiqi Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Xinhuang Zeng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Wei Yan
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, China
| | - Changjian Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Cheng Rui Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Shunquan Chen
- Shenzhen Institute of Molecular Crop Design, Shenzhen, China
| | - Chunjue Xu
- Shenzhen Institute of Molecular Crop Design, Shenzhen, China.
| | - Xiaoyan Tang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.
- Shenzhen Institute of Molecular Crop Design, Shenzhen, China.
| |
Collapse
|
6
|
Pivazyan L, Krylova E, Obosyan L, Seregina V, Shapovalenko R, Ayryan E. Effectiveness of Myo-Inositol on Oocyte and Embryo Quality in Assisted Reproduction: Systematic Review and Meta-Analysis of Randomized Clinical Trials. Gynecol Obstet Invest 2024; 90:78-92. [PMID: 39084195 DOI: 10.1159/000540023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/11/2024] [Indexed: 08/02/2024]
Abstract
INTRODUCTION We sought to conduct a systematic review and meta-analysis of randomized clinical trials (RCTs) to evaluate the impact of myo-inositol on oocyte and embryo quality in women undergoing assisted reproduction. METHODS The systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 checklist (registration number: CRD42023433328). Studies were identified by searching PubMed, Cochrane Library, Google Scholar, Scopus, Embase, and ClinicalTrials databases. RESULTS Eight RCTs were included for qualitative analysis reporting on 820 participants. Four meta-analyses were performed. Numbers of retrieved oocytes in comparison of intervention and control group were higher in inositol group (mean difference [MD] = 0.41, 95% CI: 0.05-0.77, p = 0.02). Meta-analysis of two studies comparing numbers of oocytes among poor ovarian responder patients showed no significant difference between intervention and control group (MD = 0.50, 95% CI: 0.57-1.58, p = 0.36). Miscarriage rate has no statistically significant difference between the treatment and control groups (risk ratios [RRs] = 0.81, 95% CI: 0.20-3.32, p = 0.77). Inositol played no role in improving clinical pregnancy rates; there was no significant difference between the intervention group and the control group (RR = 1.41, 95% CI: 0.88-2.25, p = 0.15). CONCLUSION Thus, we did not find any benefits of using myo-inositol on oocyte and embryo quality in women undergoing reproductive technologies. Further studies are needed to assess efficacy, safety, and high compliance by female patients.
Collapse
Affiliation(s)
- Laura Pivazyan
- FSBI, National Medical Research Center for Obstetrics, Gynecology and Perinatology named after academician V.I. Kulakov, Ministry of Health of the Russian Federation, Moscow, Russian Federation
| | - Ekaterina Krylova
- FSBI, National Medical Research Center for Obstetrics, Gynecology and Perinatology named after academician V.I. Kulakov, Ministry of Health of the Russian Federation, Moscow, Russian Federation,
| | - Lilia Obosyan
- I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Valeriia Seregina
- I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Roman Shapovalenko
- I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Eduard Ayryan
- I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| |
Collapse
|
7
|
Armijos MJG, Bassani TF, Fernandez CC, Rodrigues MA, Gomes DA. Decoding how receptor tyrosine kinases (RTKs) mediate nuclear calcium signaling. Adv Biol Regul 2024; 92:101033. [PMID: 38739986 PMCID: PMC11156257 DOI: 10.1016/j.jbior.2024.101033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/18/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024]
Abstract
Calcium (Ca2+) is a highly versatile intracellular messenger that regulates several cellular processes. Although it is unclear how a single-second messenger coordinates various effects within a cell, there is growing evidence that spatial patterns of Ca2+ signals play an essential role in determining their specificity. Ca2+ signaling patterns can differ in various cell regions, and Ca2+ signals in the nuclear and cytoplasmic compartments have been observed to occur independently. The initiation and function of Ca2+ signaling within the nucleus are not yet fully understood. Receptor tyrosine kinases (RTKs) induce Ca2+ signaling resulting from phosphatidylinositol 4,5-bisphosphate (PIP2) hydrolysis and inositol 1,4,5-trisphosphate (InsP3) formation within the nucleus. This signaling mechanism may be responsible for the effects of specific growth factors on cell proliferation and gene transcription. This review highlights the recent advances in RTK trafficking to the nucleus and explains how these receptors initiate nuclear calcium signaling.
Collapse
Affiliation(s)
- María José González Armijos
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Thais Fernandes Bassani
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Clara Couto Fernandez
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Michele Angela Rodrigues
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Dawidson Assis Gomes
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
8
|
Kirkwood-Donelson KI, Chappel J, Tobin E, Dodds JN, Reif DM, DeWitt JC, Baker ES. Investigating mouse hepatic lipidome dysregulation following exposure to emerging per- and polyfluoroalkyl substances (PFAS). CHEMOSPHERE 2024; 354:141654. [PMID: 38462188 PMCID: PMC10995748 DOI: 10.1016/j.chemosphere.2024.141654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are environmental pollutants that have been associated with adverse health effects including liver damage, decreased vaccine responses, cancer, developmental toxicity, thyroid dysfunction, and elevated cholesterol. The specific molecular mechanisms impacted by PFAS exposure to cause these health effects remain poorly understood, however there is some evidence of lipid dysregulation. Thus, lipidomic studies that go beyond clinical triglyceride and cholesterol tests are greatly needed to investigate these perturbations. Here, we have utilized a platform coupling liquid chromatography, ion mobility spectrometry, and mass spectrometry (LC-IMS-MS) separations to simultaneously evaluate PFAS bioaccumulation and lipid metabolism disruptions. For the study, liver samples collected from C57BL/6 mice exposed to either of the emerging PFAS hexafluoropropylene oxide dimer acid (HFPO-DA or "GenX") or Nafion byproduct 2 (NBP2) were assessed. Sex-specific differences in PFAS accumulation and liver size were observed for both PFAS, in addition to disturbed hepatic liver lipidomic profiles. Interestingly, GenX resulted in less hepatic bioaccumulation than NBP2 yet gave a higher number of significantly altered lipids when compared to the control group, implying that the accumulation of substances in the liver may not be a reliable measure of the substance's capacity to disrupt the liver's natural metabolic processes. Specifically, phosphatidylglycerols, phosphatidylinositols, and various specific fatty acyls were greatly impacted, indicating alteration of inflammation, oxidative stress, and cellular signaling processes due to emerging PFAS exposure. Overall, these results provide valuable insight into the liver bioaccumulation and molecular mechanisms of GenX- and NBP2-induced hepatotoxicity.
Collapse
Affiliation(s)
- Kaylie I Kirkwood-Donelson
- Department of Chemistry, North Carolina State University, Raleigh, NC 27606, USA; Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Durham, NC 27709, USA
| | - Jessie Chappel
- Bioinformatics Research Center, Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA
| | - Emma Tobin
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA
| | - James N Dodds
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - David M Reif
- Predictive Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Durham, NC 27709, USA
| | - Jamie C DeWitt
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - Erin S Baker
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA.
| |
Collapse
|
9
|
Dinicola S, Unfer V, Soulage CO, Margarita Yap-Garcia MI, Bevilacqua A, Benvenga S, Barbaro D, Wdowiak A, Nordio M, Dewailly D, Appetecchia M, Aragona C, Bezerra Espinola MS, Bizzarri M, Cavalli P, Colao A, D’Anna R, Vazquez-Levin MH, Marin IH, Kamenov Z, Laganà AS, Monastra G, Oliva MM, Özay AC, Pintaudi B, Porcaro G, Pustotina O, Pkhaladze L, Prapas N, Roseff S, Salehpour S, Stringaro A, Tugushev M, Unfer V, Vucenik I, Facchinetti F. <sc>d</sc>-Chiro-Inositol in Clinical Practice: A Perspective from the Experts Group on Inositol in Basic and Clinical Research (EGOI). Gynecol Obstet Invest 2024; 89:284-294. [PMID: 38373412 PMCID: PMC11309080 DOI: 10.1159/000536081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/02/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND d-Chiro-inositol is a natural molecule that, in association with its well-studied isomer myo-inositol, may play a role in treating various metabolic and gynecological disorders. OBJECTIVES This perspective seeks to explore the mechanisms and functions of d-chiro-inositol, laying the foundations to discuss its use in clinical practice, across dysmetabolism, obesity, and hormonal dysregulation. METHODS A narrative review of all the relevant papers known to the authors was conducted. OUTCOME d-Chiro-inositol acts through a variety of mechanisms, acting as an insulin sensitizer, inhibiting the transcription of aromatase, in addition to modulating white adipose tissue/brown adipose tissue transdifferentiation. These different modes of action have potential applications in a variety of therapeutic fields, including PCOS, dysmetabolism, obesity, hypoestrogenic/hyperandrogenic disorders, and bone health. CONCLUSIONS d-Chiro-inositol mode of action has been studied in detail in recent years, resulting in a clear differentiation between d-chiro-inositol and its isomer myo-inositol. The insulin-sensitizing activities of d-chiro-inositol are well understood; however, its potential applications in other fields, in particular obesity and hyperestrogenic/hypoandrogenic disorders in men and women, represent promising avenues of research that require further clinical study.
Collapse
Affiliation(s)
- Simona Dinicola
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Systems Biology Group Lab, Rome, Italy
| | - Vittorio Unfer
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- UniCamillus – Saint Camillus International University of Health Sciences, Rome, Italy
| | - Christophe O. Soulage
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- INSERM U1060, INSA de Lyon, University of Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Maria Isidora Margarita Yap-Garcia
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- St. Luke’s Medical Center College of Medicine, William H. Quasha Memorial, Quezon, Philippines
| | - Arturo Bevilacqua
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Department of Dynamic, Clinical Psychology and Health, Sapienza University of Rome, Rome, Italy
| | - Salvatore Benvenga
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Daniele Barbaro
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Director of U.O. Endocrinology in Livorno Hospital, Livorno, Italy
| | - Artur Wdowiak
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Faculty of Medicine and Dentistry, Medical University of Lublin, Lublin, Poland
| | - Maurizio Nordio
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- A.S.L. RMF, Civitavecchia, Italy
| | - Didier Dewailly
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Faculty of Medicine Henri Warembourg, University of Lille, Lille Cedex, France
| | - Marialuisa Appetecchia
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Oncological Endocrinology Unit, Regina Elena National Cancer Institute, IRCCS, Rome, Italy
| | - Cesare Aragona
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Systems Biology Group Lab, Rome, Italy
| | - Maria Salomè Bezerra Espinola
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Systems Biology Group Lab, Rome, Italy
| | - Mariano Bizzarri
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Systems Biology Group Lab, Rome, Italy
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Pietro Cavalli
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Annamaria Colao
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Department of Clinical Medicine and Surgery, Endocrinology, Diabetology and Andrology Unit, Italian Society of Endocrinology, Federico II University of Naples, Naples, Italy
| | - Rosario D’Anna
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Department of Human Pathology, University of Messina, Messina, Italy
| | - Mónica Hebe Vazquez-Levin
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- National Council of Scientific and Technical Research, Instituto de Biología y Medicina Experimental (IBYME), Buenos Aires, Argentina
| | - Imelda Hernàndez Marin
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Human Reproduction Department, Hospital Juárez de México, and Universidad Nacional Autónoma de México (UNAM), México, Mexico
| | - Zdravko Kamenov
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Department of Internal Medicine, University Hospital “Alexandrovska”, Clinic of Endocrinology and Metabolism, Medical University, Sofia, Bulgaria
| | - Antonio Simone Laganà
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Unit of Obstetrics and Gynecology, “Paolo Giaccone” Hospital, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Giovanni Monastra
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
| | - Mario Montanino Oliva
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Department of Obstetrics and Gynecology, Santo Spirito Hospital, Rome, Italy
| | - Ali Cenk Özay
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Department of Obstetrics and Gynecology, Faculty of Medicine, Cyprus International University, Nicosia, Cyprus
| | - Basilio Pintaudi
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Giuseppina Porcaro
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Women's Health Centre, USL UMBRIA 2, Terni, Italy
| | - Olga Pustotina
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Department of Obstetrics and Gynecology with Reproductive Medicine, F.I. Inozemtsev Academy of Medical Education, Saint Petersburg, Russia
| | - Lali Pkhaladze
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Zhordania and Khomasuridze Institute of Reproductology, Tbilisi, Georgia
| | - Nikos Prapas
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Third Department of OB-GYNAE, Aristotle University of Thessaloniki, and IVF Laboratory, IAKENTRO Fertility Centre, Thessaloniki, Greece
| | - Scott Roseff
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Reproductive Endocrinology and Infertility, South Florida Institute for Reproductive Medicine (IVFMD), Jupiter, FL, USA
| | - Saghar Salehpour
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Preventative Gynecology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Annarita Stringaro
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- National Center for Drug Research and Evaluation, Italian National Institute of Health, Rome, Italy
| | - Marat Tugushev
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Department of Reproductive Medicine, Clinical Embryology and Genetics of Samara State Medical University, Samara, Russia
| | - Virginia Unfer
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- A.G.Un.Co. Obstetrics and Gynecology Center, Rome, Italy
| | - Ivana Vucenik
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- Department of Medical and Research Technology and Pathology, University of Maryland School of Medicine in Baltimore, Baltimore, MD, USA
| | - Fabio Facchinetti
- The Experts Group on Inositol in Basic and Clinical Research (EGOI) Rome, Italy
- University of Modena and Reggio Emilia, Modena, Italy
- President Italian Society of Perinatal Medicine (SIMP), Modena, Italy
| |
Collapse
|
10
|
Lourdes SR, Gurung R, Giri S, Mitchell CA, McGrath MJ. A new role for phosphoinositides in regulating mitochondrial dynamics. Adv Biol Regul 2024; 91:101001. [PMID: 38057188 DOI: 10.1016/j.jbior.2023.101001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
Phosphoinositides are a minor group of membrane-associated phospholipids that are transiently generated on the cytoplasmic leaflet of many organelle membranes and the plasma membrane. There are seven functionally distinct phosphoinositides, each derived via the reversible phosphorylation of phosphatidylinositol in various combinations on the inositol ring. Their generation and termination is tightly regulated by phosphatidylinositol-kinases and -phosphatases. These enzymes can function together in an integrated and coordinated manner, whereby the phosphoinositide product of one enzyme may subsequently serve as a substrate for another to generate a different phosphoinositide species. This regulatory mechanism not only enables the transient generation of phosphoinositides on membranes, but also more complex sequential or bidirectional conversion pathways, and phosphoinositides can also be transferred between organelles via membrane contacts. It is this capacity to fine-tune phosphoinositide signals that makes them ideal regulators of membrane organization and dynamics, through their recruitment of signalling, membrane altering and lipid transfer proteins. Research spanning several decades has provided extensive evidence that phosphoinositides are major gatekeepers of membrane organization, with roles in endocytosis, exocytosis, autophagy, lysosome dynamics, vesicular transport and secretion, cilia, inter-organelle membrane contact, endosome maturation and nuclear function. By contrast, there has been remarkably little known about the role of phosphoinositides at mitochondria - an enigmatic and major knowledge gap, with challenges in reliably detecting phosphoinositides at this site. Here we review recent significant breakthroughs in understanding the role of phosphoinositides in regulating mitochondrial dynamics and metabolic function.
Collapse
Affiliation(s)
- Sonia Raveena Lourdes
- Cancer Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Rajendra Gurung
- Cancer Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Saveen Giri
- Cancer Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Christina A Mitchell
- Cancer Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.
| | - Meagan J McGrath
- Cancer Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
11
|
Hu Y, Zhang RQ, Liu SL, Wang ZG. In-situ quantification of lipids in live cells through imaging approaches. Biosens Bioelectron 2023; 240:115649. [PMID: 37678059 DOI: 10.1016/j.bios.2023.115649] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/03/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023]
Abstract
Lipids are important molecules that are widely distributed within the cell, and they play a crucial role in several biological processes such as cell membrane formation, signaling, cell motility and division. Monitoring the spatiotemporal dynamics of cellular lipids in real-time and quantifying their concentrations in situ is crucial since the local concentration of lipids initiates various signaling pathways that regulate cellular processes. In this review, we first introduced the historical background of lipid quantification methods. We then delve into the current state of the art of in situ lipid quantification, including the establishment and utility of fluorescence imaging techniques based on sensors of lipid-binding domains labeled with organic dyes or fluorescent proteins, and Raman and magnetic resonance imaging (MRI) techniques that do not require lipid labeling. Next, we highlighted the biological applications of live-cell lipid quantification techniques in the study of in situ lipid distribution, lipid transformation, and lipid-mediated signaling pathways. Finally, we discussed the technical challenges and prospects for the development of lipid quantification in live cells, with the aim of promoting the development of in situ lipid quantification in live cells, which may have a profound impact on the biological and medical fields.
Collapse
Affiliation(s)
- Yusi Hu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry and School of Medicine, Nankai University, Tianjin, 300071, China
| | - Rui-Qiao Zhang
- Qingdao Academy of Agricultural Sciences, Qingdao, 266100, China
| | - Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry and School of Medicine, Nankai University, Tianjin, 300071, China.
| | - Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry and School of Medicine, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
12
|
Montag K, Ivanov R, Bauer P. Role of SEC14-like phosphatidylinositol transfer proteins in membrane identity and dynamics. FRONTIERS IN PLANT SCIENCE 2023; 14:1181031. [PMID: 37255567 PMCID: PMC10225987 DOI: 10.3389/fpls.2023.1181031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/05/2023] [Indexed: 06/01/2023]
Abstract
Membrane identity and dynamic processes, that act at membrane sites, provide important cues for regulating transport, signal transduction and communication across membranes. There are still numerous open questions as to how membrane identity changes and the dynamic processes acting at the surface of membranes are regulated in diverse eukaryotes in particular plants and which roles are being played by protein interaction complexes composed of peripheral and integral membrane proteins. One class of peripheral membrane proteins conserved across eukaryotes comprises the SEC14-like phosphatidylinositol transfer proteins (SEC14L-PITPs). These proteins share a SEC14 domain that contributes to membrane identity and fulfills regulatory functions in membrane trafficking by its ability to sense, bind, transport and exchange lipophilic substances between membranes, such as phosphoinositides and diverse other lipophilic substances. SEC14L-PITPs can occur as single-domain SEC14-only proteins in all investigated organisms or with a modular domain structure as multi-domain proteins in animals and streptophytes (comprising charales and land plants). Here, we present an overview on the functional roles of SEC14L-PITPs, with a special focus on the multi-domain SEC14L-PITPs of the SEC14-nodulin and SEC14-GOLD group (PATELLINs, PATLs in plants). This indicates that SEC14L-PITPs play diverse roles from membrane trafficking to organism fitness in plants. We concentrate on the structure of SEC14L-PITPs, their ability to not only bind phospholipids but also other lipophilic ligands, and their ability to regulate complex cellular responses through interacting with proteins at membrane sites.
Collapse
Affiliation(s)
- Karolin Montag
- Institute of Botany, Heinrich Heine University, Düsseldorf, Germany
| | - Rumen Ivanov
- Institute of Botany, Heinrich Heine University, Düsseldorf, Germany
| | - Petra Bauer
- Institute of Botany, Heinrich Heine University, Düsseldorf, Germany
- Center of Excellence on Plant Sciences (CEPLAS), Germany
| |
Collapse
|
13
|
Dickson EJ. Role of Lysosomal Cholesterol in Regulating PI(4,5)P 2-Dependent Ion Channel Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:193-215. [PMID: 36988882 DOI: 10.1007/978-3-031-21547-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Lysosomes are central regulators of cellular growth and signaling. Once considered the acidic garbage can of the cell, their ever-expanding repertoire of functions include the regulation of cell growth, gene regulation, metabolic signaling, cell migration, and cell death. In this chapter, we detail how another of the lysosome's crucial roles, cholesterol transport, plays a vital role in the control of ion channel function and neuronal excitability through its ability to influence the abundance of the plasma membrane signaling lipid phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). This chapter will introduce the biosynthetic pathways of cholesterol and PI(4,5)P2, discuss the molecular mechanisms through which each lipid distinctly regulates ion channels, and consider the interdependence of these lipids in the control of ion channel function.
Collapse
Affiliation(s)
- Eamonn J Dickson
- Department of Physiology and Membrane Biology, University of California, Davis, CA, USA.
| |
Collapse
|
14
|
Tu-Sekine B, Kim SF. The Inositol Phosphate System-A Coordinator of Metabolic Adaptability. Int J Mol Sci 2022; 23:6747. [PMID: 35743190 PMCID: PMC9223660 DOI: 10.3390/ijms23126747] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022] Open
Abstract
All cells rely on nutrients to supply energy and carbon building blocks to support cellular processes. Over time, eukaryotes have developed increasingly complex systems to integrate information about available nutrients with the internal state of energy stores to activate the necessary processes to meet the immediate and ongoing needs of the cell. One such system is the network of soluble and membrane-associated inositol phosphates that coordinate the cellular responses to nutrient uptake and utilization from growth factor signaling to energy homeostasis. In this review, we discuss the coordinated interactions of the inositol polyphosphates, inositol pyrophosphates, and phosphoinositides in major metabolic signaling pathways to illustrate the central importance of the inositol phosphate signaling network in nutrient responses.
Collapse
Affiliation(s)
- Becky Tu-Sekine
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University, Baltimore, MD 21224, USA;
| | - Sangwon F. Kim
- Department of Medicine and Neuroscience, Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| |
Collapse
|
15
|
Role of protons in calcium signaling. Biochem J 2021; 478:895-910. [PMID: 33635336 DOI: 10.1042/bcj20200971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 02/03/2023]
Abstract
Thirty-six years after the publication of the important article by Busa and Nuccitelli on the variability of intracellular pH (pHi) and the interdependence of pHi and intracellular Ca2+ concentration ([Ca2+]i), little research has been carried out on pHi and calcium signaling. Moreover, the results appear to be contradictory. Some authors claim that the increase in [Ca2+]i is due to a reduction in pHi, others that it is caused by an increase in pHi. The reasons for these conflicting results have not yet been discussed and clarified in an exhaustive manner. The idea that variations in pHi are insignificant, because cellular buffers quickly stabilize the pHi, may be a limiting and fundamentally wrong concept. In fact, it has been shown that protons can move and react in the cell before they are neutralized. Variations in pHi have a remarkable impact on [Ca2+]i and hence on some of the basic biochemical mechanisms of calcium signaling. This paper focuses on the possible triggering role of protons during their short cellular cycle and it suggests a new hypothesis for an IP3 proton dependent mechanism of action.
Collapse
|
16
|
Odenkirk MT, Stratton KG, Gritsenko MA, Bramer LM, Webb-Robertson BJM, Bloodsworth KJ, Weitz KK, Lipton AK, Monroe ME, Ash JR, Fourches D, Taylor BD, Burnum-Johnson KE, Baker ES. Unveiling molecular signatures of preeclampsia and gestational diabetes mellitus with multi-omics and innovative cheminformatics visualization tools. Mol Omics 2020; 16:521-532. [PMID: 32966491 PMCID: PMC7736332 DOI: 10.1039/d0mo00074d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
To fully enable the development of diagnostic tools and progressive pharmaceutical drugs, it is imperative to understand the molecular changes occurring before and during disease onset and progression. Systems biology assessments utilizing multi-omic analyses (e.g. the combination of proteomics, lipidomics, genomics, etc.) have shown enormous value in determining molecules prevalent in diseases and their associated mechanisms. Herein, we utilized multi-omic evaluations, multi-dimensional analysis methods, and new cheminformatics-based visualization tools to provide an in depth understanding of the molecular changes taking place in preeclampsia (PRE) and gestational diabetes mellitus (GDM) patients. Since PRE and GDM are two prevalent pregnancy complications that result in adverse health effects for both the mother and fetus during pregnancy and later in life, a better understanding of each is essential. The multi-omic evaluations performed here provide new insight into the end-stage molecular profiles of each disease, thereby supplying information potentially crucial for earlier diagnosis and treatments.
Collapse
Affiliation(s)
- Melanie T Odenkirk
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Role of Inositols and Inositol Phosphates in Energy Metabolism. Molecules 2020; 25:molecules25215079. [PMID: 33139672 PMCID: PMC7663797 DOI: 10.3390/molecules25215079] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022] Open
Abstract
Recently, inositols, especially myo-inositol and inositol hexakisphosphate, also known as phytic acid or IP6, with their biological activities received much attention for their role in multiple health beneficial effects. Although their roles in cancer treatment and prevention have been extensively reported, interestingly, they may also have distinctive properties in energy metabolism and metabolic disorders. We review inositols and inositol phosphate metabolism in mammalian cells to establish their biological activities and highlight their potential roles in energy metabolism. These molecules are known to decrease insulin resistance, increase insulin sensitivity, and have diverse properties with importance from cell signaling to metabolism. Evidence showed that inositol phosphates might enhance the browning of white adipocytes and directly improve insulin sensitivity through adipocytes. In addition, inositol pyrophosphates containing high-energy phosphate bonds are considered in increasing cellular energetics. Despite all recent advances, many aspects of the bioactivity of inositol phosphates are still not clear, especially their effects on insulin resistance and alteration of metabolism, so more research is needed.
Collapse
|
18
|
Maffucci T, Falasca M. Inositol Polyphosphate-Based Compounds as Inhibitors of Phosphoinositide 3-Kinase-Dependent Signaling. Int J Mol Sci 2020; 21:E7198. [PMID: 33003448 PMCID: PMC7582811 DOI: 10.3390/ijms21197198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/21/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023] Open
Abstract
Signaling pathways regulated by the phosphoinositide 3-kinase (PI3K) enzymes have a well-established role in cancer development and progression. Over the past 30 years, the therapeutic potential of targeting this pathway has been well recognized, and this has led to the development of a multitude of drugs, some of which have progressed into clinical trials, with few of them currently approved for use in specific cancer settings. While many inhibitors compete with ATP, hence preventing the catalytic activity of the kinases directly, a deep understanding of the mechanisms of PI3K-dependent activation of its downstream effectors led to the development of additional strategies to prevent the initiation of this signaling pathway. This review summarizes previously published studies that led to the identification of inositol polyphosphates as promising parent molecules to design novel inhibitors of PI3K-dependent signals. We focus our attention on the inhibition of protein-membrane interactions mediated by binding of pleckstrin homology domains and phosphoinositides that we proposed 20 years ago as a novel therapeutic strategy.
Collapse
Affiliation(s)
- Tania Maffucci
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Marco Falasca
- Metabolic Signalling Group, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
| |
Collapse
|
19
|
Shi D, Xia X, Cui A, Xiong Z, Yan Y, Luo J, Chen G, Zeng Y, Cai D, Hou L, McDermott J, Li Y, Zhang H, Han JDJ. The precursor of PI(3,4,5)P 3 alleviates aging by activating daf-18(Pten) and independent of daf-16. Nat Commun 2020; 11:4496. [PMID: 32901024 PMCID: PMC7479145 DOI: 10.1038/s41467-020-18280-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 08/04/2020] [Indexed: 01/31/2023] Open
Abstract
Aging is characterized by the loss of homeostasis and the general decline of physiological functions, accompanied by various degenerative diseases and increased rates of mortality. Aging targeting small molecule screens have been performed many times, however, few have focused on endogenous metabolic intermediates-metabolites. Here, using C. elegans lifespan assays, we conducted a worm metabolite screen and identified an eukaryotes conserved metabolite, myo-inositol (MI), to extend lifespan, increase mobility and reduce fat content. Genetic analysis of enzymes in MI metabolic pathway suggest that MI alleviates aging through its derivative PI(4,5)P2. MI and PI(4,5)P2 are precursors of PI(3,4,5)P3, which is negatively related to longevity. The longevity effect of MI is dependent on the tumor suppressor gene, daf-18 (homologous to mouse Pten), independent of its classical pathway downstream genes, akt or daf-16. Furthermore, we found MI effects on aging and lifespan act through mitophagy regulator PTEN induced kinase-1 (pink-1) and mitophagy. MI's anti-aging effect is also conserved in mouse, indicating a conserved mechanism in mammals.
Collapse
Affiliation(s)
- Dawei Shi
- Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology (PICB), Shanghai Institute of Nutrition and Health (SINH), Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, 200031, P.R. China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Xian Xia
- Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology (PICB), Shanghai Institute of Nutrition and Health (SINH), Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, 200031, P.R. China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Aoyuan Cui
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, SINH, SIBS, CAS, Shanghai, 200031, P.R. China
| | - Zhongxiang Xiong
- Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology (PICB), Shanghai Institute of Nutrition and Health (SINH), Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, 200031, P.R. China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, P.R. China
| | - Yizhen Yan
- Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology (PICB), Shanghai Institute of Nutrition and Health (SINH), Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, 200031, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Jing Luo
- Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology (PICB), Shanghai Institute of Nutrition and Health (SINH), Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, 200031, P.R. China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Guoyu Chen
- Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology (PICB), Shanghai Institute of Nutrition and Health (SINH), Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, 200031, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Yingying Zeng
- Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology (PICB), Shanghai Institute of Nutrition and Health (SINH), Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, 200031, P.R. China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, P.R. China
| | - Donghong Cai
- Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology (PICB), Shanghai Institute of Nutrition and Health (SINH), Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, 200031, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Lei Hou
- Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology (PICB), Shanghai Institute of Nutrition and Health (SINH), Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, 200031, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Joseph McDermott
- Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology (PICB), Shanghai Institute of Nutrition and Health (SINH), Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, 200031, P.R. China
| | - Yu Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, SINH, SIBS, CAS, Shanghai, 200031, P.R. China
| | - Hong Zhang
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, CAS, 100101, Beijing, P.R. China
| | - Jing-Dong J Han
- Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology (PICB), Shanghai Institute of Nutrition and Health (SINH), Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, 200031, P.R. China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, P.R. China.
| |
Collapse
|
20
|
Borges-Araújo L, Fernandes F. Structure and Lateral Organization of Phosphatidylinositol 4,5-bisphosphate. Molecules 2020; 25:molecules25173885. [PMID: 32858905 PMCID: PMC7503891 DOI: 10.3390/molecules25173885] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/22/2020] [Accepted: 08/23/2020] [Indexed: 02/07/2023] Open
Abstract
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is a minor but ubiquitous component of the inner leaflet of the plasma membrane of eukaryotic cells. However, due to its particular complex biophysical properties, it stands out from its neighboring lipids as one of the most important regulators of membrane-associated signaling events. Despite its very low steady-state concentration, PI(4,5)P2 is able to engage in a multitude of simultaneous cellular functions that are temporally and spatially regulated through the presence of localized transient pools of PI(4,5)P2 in the membrane. These pools are crucial for the recruitment, activation, and organization of signaling proteins and consequent regulation of downstream signaling. The present review showcases some of the most important PI(4,5)P2 molecular and biophysical properties as well as their impact on its membrane dynamics, lateral organization, and interactions with other biochemical partners.
Collapse
Affiliation(s)
- Luís Borges-Araújo
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal;
- Correspondence:
| | - Fabio Fernandes
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal;
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| |
Collapse
|
21
|
Abstract
The multitudinous inositol phosphate family elicits a wide range of molecular effects that regulate countless biological responses. In this review, I provide a methodological viewpoint of the manner in which key advances in the field of inositol phosphate research were made. I also note some of the considerable challenges that still lie ahead.
Collapse
Affiliation(s)
- Stephen B Shears
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA.
| |
Collapse
|
22
|
Rodríguez-Fdez S, Citterio C, Lorenzo-Martín LF, Baltanás-Copado J, Llorente-González C, Corbalán-García S, Vicente-Manzanares M, Bustelo XR. Phosphatidylinositol Monophosphates Regulate Optimal Vav1 Signaling Output. Cells 2019; 8:cells8121649. [PMID: 31888228 PMCID: PMC6952945 DOI: 10.3390/cells8121649] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 01/13/2023] Open
Abstract
Phosphatidylinositol–5 phosphate (PI5P) and other mono-phosphoinositides (mono-PIs) play second messenger roles in both physiological and pathological conditions. Despite this, their intracellular targets and mechanisms of action remain poorly characterized. Here, we show that Vav1, a protein that exhibits both Rac1 GDP/GTP exchange and adaptor activities, is positively modulated by PI5P and, possibly, other mono-PIs. Unlike other phospholipid–protein complexes, the affinity and specificity of the Vav1–lipid interaction entail a new structural solution that involves the synergistic action of the Vav1 C1 domain and an adjacent polybasic tail. This new regulatory layer, which is not conserved in the Vav family paralogs, favors the engagement of optimal Vav1 signaling outputs in lymphocytes.
Collapse
Affiliation(s)
- Sonia Rodríguez-Fdez
- Centro de Investigación del Cáncer, CSIC–University of Salamanca, 37007 Salamanca, Spain; (S.R.-F.); (C.C.); (L.F.L.-M.); (C.L.-G.); (M.V.-M.)
- Instituto de Biología Molecular y Celular del Cáncer, CSIC–University of Salamanca, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC–University of Salamanca, 37007 Salamanca, Spain
| | - Carmen Citterio
- Centro de Investigación del Cáncer, CSIC–University of Salamanca, 37007 Salamanca, Spain; (S.R.-F.); (C.C.); (L.F.L.-M.); (C.L.-G.); (M.V.-M.)
- Instituto de Biología Molecular y Celular del Cáncer, CSIC–University of Salamanca, 37007 Salamanca, Spain
| | - L. Francisco Lorenzo-Martín
- Centro de Investigación del Cáncer, CSIC–University of Salamanca, 37007 Salamanca, Spain; (S.R.-F.); (C.C.); (L.F.L.-M.); (C.L.-G.); (M.V.-M.)
- Instituto de Biología Molecular y Celular del Cáncer, CSIC–University of Salamanca, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC–University of Salamanca, 37007 Salamanca, Spain
| | - Jesús Baltanás-Copado
- Department of Biochemistry and Molecular Biology, University of Murcia, 30100 Murcia, Spain; (J.B.-C.); (S.C.-G.)
- Biomedical Research Institute of Murcia, University of Murcia, 30100 Murcia, Spain
| | - Clara Llorente-González
- Centro de Investigación del Cáncer, CSIC–University of Salamanca, 37007 Salamanca, Spain; (S.R.-F.); (C.C.); (L.F.L.-M.); (C.L.-G.); (M.V.-M.)
- Instituto de Biología Molecular y Celular del Cáncer, CSIC–University of Salamanca, 37007 Salamanca, Spain
| | - Senena Corbalán-García
- Department of Biochemistry and Molecular Biology, University of Murcia, 30100 Murcia, Spain; (J.B.-C.); (S.C.-G.)
- Biomedical Research Institute of Murcia, University of Murcia, 30100 Murcia, Spain
| | - Miguel Vicente-Manzanares
- Centro de Investigación del Cáncer, CSIC–University of Salamanca, 37007 Salamanca, Spain; (S.R.-F.); (C.C.); (L.F.L.-M.); (C.L.-G.); (M.V.-M.)
- Instituto de Biología Molecular y Celular del Cáncer, CSIC–University of Salamanca, 37007 Salamanca, Spain
| | - Xosé R. Bustelo
- Centro de Investigación del Cáncer, CSIC–University of Salamanca, 37007 Salamanca, Spain; (S.R.-F.); (C.C.); (L.F.L.-M.); (C.L.-G.); (M.V.-M.)
- Instituto de Biología Molecular y Celular del Cáncer, CSIC–University of Salamanca, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC–University of Salamanca, 37007 Salamanca, Spain
- Correspondence:
| |
Collapse
|
23
|
Clarke BP, Logeman BL, Hale AT, Luka Z, York JD. A synthetic biological approach to reconstitution of inositide signaling pathways in bacteria. Adv Biol Regul 2019; 73:100637. [PMID: 31378699 DOI: 10.1016/j.jbior.2019.100637] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/01/2019] [Accepted: 07/04/2019] [Indexed: 11/19/2022]
Abstract
Inositide lipid (PIP) and soluble (IP) signaling pathways produce essential cellular codes conserved in eukaryotes. In many cases, deconvoluting metabolic and functional aspects of individual pathways are confounded by promiscuity and multiplicity of PIP and IP kinases and phosphatases. We report a molecular genetic approach that reconstitutes eukaryotic inositide lipid and soluble pathways in a prokaryotic cell which inherently lack inositide kinases and phosphatases in their genome. By expressing synthetic cassettes of eukaryotic genes, we have reconstructed the heterologous formation of a range of inositide lipids, including PI(3)P, PI(4,5)P2 and PIP3. In addition, we report the reconstruction of lipid-dependent production of inositol hexakisphosphate (IP6). Our synthetic system is scalable, reduces confounding metabolic issues, for example it is devoid of inositide phosphatases and orthologous kinases, and enables accurate characterization gene product enzymatic activity and substrate selectivity. This genetically engineered tool is designed to help interpret metabolic pathways and may facilitate in vivo testing of regulators and small molecule inhibitors. In summary, heterologous expression of inositide pathways in bacteria provide a malleable experimental platform for aiding signaling biologists and offers new insights into metabolism of these essential pathways.
Collapse
Affiliation(s)
- Bradley P Clarke
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Brandon L Logeman
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Andrew T Hale
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Zigmund Luka
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - John D York
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA; Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA.
| |
Collapse
|
24
|
Sibomana I, Grobe N, DelRaso NJ, Reo NV. Influence of Myo-inositol Plus Ethanolamine on Plasmalogens and Cell Viability during Oxidative Stress. Chem Res Toxicol 2019; 32:265-284. [PMID: 30604967 DOI: 10.1021/acs.chemrestox.8b00280] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Previously, we demonstrated that treatment of rats with myo-inositol plus ethanolamine (ME) elevated brain ethanolamine plasmalogens (PE-Pls) and protected against phosphine-induced oxidative stress. Here we tested the hypothesis that ME treatment elevates PE-Pls in a neuro-2A (N2A) cell culture system and protects against hydrogen peroxide (H2O2)-induced oxidative stress, and we assessed the effects of treatments using myo-inositol with or without (+/-) ethanolamine on ethanolamine phospholipids (PLs) and cell viability following H2O2 exposure. Cells were treated with equimolar amounts (500 μM) of myo-inositol, ethanolamine (Etn), or their combination (ME) for 24 h, followed by an additional 24 h exposure to 650 μM H2O2. NMR analyses evaluated the treatment effects on Etn PLs, while LC-MS/MS analyses assessed the molecular species of Etn PLs preferentially affected by ME and H2O2 treatments, especially PE-Pls and their degradation byproducts-lysophosphatidylethanolamine (LPE) and glycerophosphoethanolamine (GPE). Only ME influenced the cellular levels of PLs. ME yielded a 3-fold increase in PE-Pls and phosphatidylethanolamine (PE) ( p < 0.001) and a preferential 60% increase in PE-Pls containing saturated and monounsaturated fatty acids (SFA+MUFA), while polyunsaturated fatty acid (PUFA) species increased by only 10%. Exposing cells to 650 μM H2O2 caused a significant cell death (56% viability), a 27% decrease in PE-Pls, a 201% increase in PUFA-rich LPE, and a ca. 3-fold increase in GPE. H2O2 had no impact on PE, suggesting that LPE and GPE were primarily the byproducts of PE-Pls (not PE) degradation. Surprisingly, ME pretreatment ameliorated H2O2 effects and significantly increased cell survival to 80% ( p < 0.05). Cellular PE-Pls levels prior to H2O2 treatment were highly correlated ( R2 = 0.95) with cell survival, suggesting a relationship between PE-Pls and cell protection. Data suggest that a preferential increase in PE-Pls containing SFA+MUFA species may protect cells from oxidative stress. Such studies aid in our understanding of the neuroprotective mechanisms that may be associated with plasmalogens and the relevance of these phospholipids to neurodegenerative diseases/disorders.
Collapse
Affiliation(s)
- Isaie Sibomana
- Department of Biochemistry and Molecular Biology, Magnetic Resonance Laboratory, Boonshoft School of Medicine, 162 Diggs Laboratory , Wright State University , Dayton , Ohio 45435 , United States.,Molecular Mechanisms Branch, Human-Centered ISR Division, Airman Systems Directorate, 711th Human Performance Wing , Air Force Research Laboratory , Wright-Patterson Air Force Base , Ohio 45433 , United States
| | - Nadja Grobe
- Molecular Mechanisms Branch, Human-Centered ISR Division, Airman Systems Directorate, 711th Human Performance Wing , Air Force Research Laboratory , Wright-Patterson Air Force Base , Ohio 45433 , United States
| | - Nicholas J DelRaso
- Molecular Mechanisms Branch, Human-Centered ISR Division, Airman Systems Directorate, 711th Human Performance Wing , Air Force Research Laboratory , Wright-Patterson Air Force Base , Ohio 45433 , United States
| | - Nicholas V Reo
- Department of Biochemistry and Molecular Biology, Magnetic Resonance Laboratory, Boonshoft School of Medicine, 162 Diggs Laboratory , Wright State University , Dayton , Ohio 45435 , United States
| |
Collapse
|
25
|
Ramanan R, Tran QG, Cho DH, Jung JE, Kim BH, Shin SY, Choi SH, Liu KH, Kim DS, Lee SJ, Crespo JL, Lee HG, Oh HM, Kim HS. The Ancient Phosphatidylinositol 3-Kinase Signaling System Is a Master Regulator of Energy and Carbon Metabolism in Algae. PLANT PHYSIOLOGY 2018; 177:1050-1065. [PMID: 29769325 PMCID: PMC6053016 DOI: 10.1104/pp.17.01780] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/02/2018] [Indexed: 05/08/2023]
Abstract
Algae undergo a complete metabolic transformation under stress by arresting cell growth, inducing autophagy and hyper-accumulating biofuel precursors such as triacylglycerols and starch. However, the regulatory mechanisms behind this stress-induced transformation are still unclear. Here, we use biochemical, mutational, and "omics" approaches to demonstrate that PI3K signaling mediates the homeostasis of energy molecules and influences carbon metabolism in algae. In Chlamydomonas reinhardtii, the inhibition and knockdown (KD) of algal class III PI3K led to significantly decreased cell growth, altered cell morphology, and higher lipid and starch contents. Lipid profiling of wild-type and PI3K KD lines showed significantly reduced membrane lipid breakdown under nitrogen starvation (-N) in the KD. RNA-seq and network analyses showed that under -N conditions, the KD line carried out lipogenesis rather than lipid hydrolysis by initiating de novo fatty acid biosynthesis, which was supported by tricarboxylic acid cycle down-regulation and via acetyl-CoA synthesis from glycolysis. Remarkably, autophagic responses did not have primacy over inositide signaling in algae, unlike in mammals and vascular plants. The mutant displayed a fundamental shift in intracellular energy flux, analogous to that in tumor cells. The high free fatty acid levels and reduced mitochondrial ATP generation led to decreased cell viability. These results indicate that the PI3K signal transduction pathway is the metabolic gatekeeper restraining biofuel yields, thus maintaining fitness and viability under stress in algae. This study demonstrates the existence of homeostasis between starch and lipid synthesis controlled by lipid signaling in algae and expands our understanding of such processes, with biotechnological and evolutionary implications.
Collapse
Affiliation(s)
- Rishiram Ramanan
- Department of Environmental Science, School of Earth Science Systems, Central University of Kerala, Tejaswini Hills, Periya, Kasaragod 671316, Kerala, India
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Quynh-Giao Tran
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Republic of Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, Korea University of Science and Technology, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Dae-Hyun Cho
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jae-Eun Jung
- Genome Research Center, KRIBB, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Byung-Hyuk Kim
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Sang-Yoon Shin
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Republic of Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, Korea University of Science and Technology, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Sae-Hae Choi
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Kwang-Hyeon Liu
- College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Dae-Soo Kim
- Genome Research Center, KRIBB, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Seon-Jin Lee
- Biomedical Genomics Research Center, KRIBB, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - José L Crespo
- Instituto de Bioquimica Vegetal y Fotosintesis, Consejo Superior de Investigaciones Cientificas, Universidad de Sevilla, Seville 41092, Spain
| | - Hee-Gu Lee
- Biomedical Genomics Research Center, KRIBB, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hee-Mock Oh
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Republic of Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, Korea University of Science and Technology, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hee-Sik Kim
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Republic of Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, Korea University of Science and Technology, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
26
|
Adipose tissue ATGL modifies the cardiac lipidome in pressure-overload-induced left ventricular failure. PLoS Genet 2018; 14:e1007171. [PMID: 29320510 PMCID: PMC5779697 DOI: 10.1371/journal.pgen.1007171] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 01/23/2018] [Accepted: 12/25/2017] [Indexed: 01/08/2023] Open
Abstract
Adipose tissue lipolysis occurs during the development of heart failure as a consequence of chronic adrenergic stimulation. However, the impact of enhanced adipose triacylglycerol hydrolysis mediated by adipose triglyceride lipase (ATGL) on cardiac function is unclear. To investigate the role of adipose tissue lipolysis during heart failure, we generated mice with tissue-specific deletion of ATGL (atATGL-KO). atATGL-KO mice were subjected to transverse aortic constriction (TAC) to induce pressure-mediated cardiac failure. The cardiac mouse lipidome and the human plasma lipidome from healthy controls (n = 10) and patients with systolic heart failure (HFrEF, n = 13) were analyzed by MS-based shotgun lipidomics. TAC-induced increases in left ventricular mass (LVM) and diastolic LV inner diameter were significantly attenuated in atATGL-KO mice compared to wild type (wt) -mice. More importantly, atATGL-KO mice were protected against TAC-induced systolic LV failure. Perturbation of lipolysis in the adipose tissue of atATGL-KO mice resulted in the prevention of the major cardiac lipidome changes observed after TAC in wt-mice. Profound changes occurred in the lipid class of phosphatidylethanolamines (PE) in which multiple PE-species were markedly induced in failing wt-hearts, which was attenuated in atATGL-KO hearts. Moreover, selected heart failure-induced PE species in mouse hearts were also induced in plasma samples from patients with chronic heart failure. TAC-induced cardiac PE induction resulted in decreased PC/ PE-species ratios associated with increased apoptotic marker expression in failing wt-hearts, a process absent in atATGL-KO hearts. Perturbation of adipose tissue lipolysis by ATGL-deficiency ameliorated pressure-induced heart failure and the potentially deleterious cardiac lipidome changes that accompany this pathological process, namely the induction of specific PE species. Non-cardiac ATGL-mediated modulation of the cardiac lipidome may play an important role in the pathogenesis of chronic heart failure.
Collapse
|
27
|
Kf de Campos M, Schaaf G. The regulation of cell polarity by lipid transfer proteins of the SEC14 family. CURRENT OPINION IN PLANT BIOLOGY 2017; 40:158-168. [PMID: 29017091 DOI: 10.1016/j.pbi.2017.09.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/07/2017] [Accepted: 09/11/2017] [Indexed: 06/07/2023]
Abstract
SEC14 lipid transfer proteins are important regulators of phospholipid metabolism. Structural, genetic and cell biological studies in yeast suggest that they help phosphatidylinositol (PtdIns)/phosphoinositide (PIP) kinases to overcome their intrinsic inefficiency to recognize membrane-embedded substrate, thereby playing a key role in PIP homeostasis. Genomes of higher plants encode a high number and diversity of SEC14 proteins, often in combination with other domains. The Arabidopsis SEC14-Nlj16 protein AtSFH1, an important regulator of root hair development, plays an important role in the establishment of PIP microdomains. Key to this mechanism is a highly specific interaction of the Nlj16 domain with PtdIns(4,5)P2 and an interaction-triggered oligomerization of the protein. Nlj16/PtdIns(4,5)P2 interaction depends on a polybasic motif similar to those identified in other regulatory proteins.
Collapse
Affiliation(s)
- Marília Kf de Campos
- Institute of Crop Science and Resource Conservation, Department of Plant Nutrition, University of Bonn, Karlrobert-Kreiten-Strasse 13, 53115 Bonn, Germany.
| | - Gabriel Schaaf
- Institute of Crop Science and Resource Conservation, Department of Plant Nutrition, University of Bonn, Karlrobert-Kreiten-Strasse 13, 53115 Bonn, Germany.
| |
Collapse
|