1
|
Fletcher JD, Olsson GE, Zhang YC, Burkhardt BR. Oral gavage delivery of Cornus officinalis extract delays type 1 diabetes onset and hyperglycemia in non-obese diabetic (NOD) mice. FEBS Open Bio 2024; 14:434-443. [PMID: 38129973 PMCID: PMC10909980 DOI: 10.1002/2211-5463.13758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 12/23/2023] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease initiated by genetic predisposition and environmental influences, which result in the specific destruction of insulin-producing pancreatic β-cells. Currently, there are over 1.6 million cases of T1D in the United States with a worldwide incidence rate that has been increasing since 1990. Here, we examined the effect of Cornus officinalis (CO), a well-known ethnopharmacological agent, on a T1D model of the non-obese diabetic (NOD) mouse. A measured dose of CO extract was delivered into 10-week-old NOD mice by oral gavage for 15 weeks. T1D incidence and hyperglycemia were significantly lower in the CO-treated group as compared to the water gavage (WT) and a no handling or treatment control group (NHT) following treatment. T1D onset per group was 30%, 60% and 86% for the CO, WT and NHT groups, respectively. Circulating C-peptide was higher, and pancreatic insulitis was decreased in non-T1D CO-treated mice. Our findings suggest that CO may have therapeutic potential as both a safe and effective interventional agent to slow early stage T1D progression.
Collapse
Affiliation(s)
- Justin D. Fletcher
- Department of Molecular BiosciencesUniversity of South FloridaTampaFLUSA
| | - Grace E. Olsson
- Department of Molecular BiosciencesUniversity of South FloridaTampaFLUSA
| | | | - Brant R. Burkhardt
- Department of Molecular BiosciencesUniversity of South FloridaTampaFLUSA
| |
Collapse
|
2
|
Jbrael YJ, Hamad BK. Ameliorating impact of coenzyme Q10 on the profile of adipokines, cardiomyopathy, and hematological markers correlated with the glucotoxicity sequelae in diabetic rats. PLoS One 2024; 19:e0296775. [PMID: 38227584 PMCID: PMC10790996 DOI: 10.1371/journal.pone.0296775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 12/18/2023] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND In diabetes, high blood glucose induces glucotoxicity, resulting in the further damage of pancreatic beta-cells and then precipitating diabetic complications. This study was aimed to investigate the relationship between glucotoxicity with the level of adipokines, diabetic cardiomyopathy, and hematological markers. Moreover, the study examined the potential modulatory effect of coenzyme Q10 (CoQ10) on the aforementioned markers associated with the sequelae of diabetes mellitus. MATERIAL AND METHODS Twenty-four male rats were randomly assigned to receive an injection of STZ to induce diabetes (n = 16) or to remain uninduced (n = 8). The hyperglycemic status was induced in fasting rats by single intraperitoneal injection of STZ (45 mg /kg b.w.) dissolved in citrate buffer (pH 4.5). Three days after STZ injection, rats were divided into three groups; Normal control group (A), Diabetic control group (B), and CoQ10- treated diabetic group (C). The group (C) was fed with the basal diet supplemented with 5 g of CoQ10 per kilogram of diet for three weeks after the diabetes induction. After 21 days, the blood and serum samples were taken to conduct biochemical analyses. Blood glucose was determined by Blood Glucose Monitoring System. Adipokines or cytokines were evaluated by ELISA from a serum sample. Cardiac myopathy biomarkers were estimated by UP-Converting Phosphor Immunoassay Analyzer, and hematological parameters were measured by automatic hematology analyzer. RESULTS In hyperglycemic rats, the level of fasting blood glucose, and serum level of resistin, omentin, TNF-α, and cardiomyopathy biomarkers significantly increased (P < 0.05). The treatment with CoQ10 significantly decreased the profile of adipokines and cardiomyopathy markers (cardiac enzymes and LPPLA2) in diabetic rats and also reduced glucose levels (P < 0.05). Lymphocyte percentages significantly decreased while significant increases were observed in granulocytes and MID percentages in hyperglycemic rats. CONCLUSION Diabetic rats had higher serum levels of adipokines and cardiomyopathy markers. Among the hematological markers, GRA% and MID% increased while LYM% decreased. The profile of adipokines and cardiomyopathy markers improved when CoQ10 was supplemented. The study suggests that CoQ10 may have a beneficial effect on improving diabetic complications.
Collapse
Affiliation(s)
- Yousif Jameel Jbrael
- Department of Pharmacology and Toxicology, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Badraldin Kareem Hamad
- Department of Pharmacology and Toxicology, College of Pharmacy, Hawler Medical University, Erbil, Iraq
- University of Kurdistan Hawler (UKH), School of Medicine, Erbil, Iraq
| |
Collapse
|
3
|
Thiruvengadam R, Venkidasamy B, Samynathan R, Govindasamy R, Thiruvengadam M, Kim JH. Association of nanoparticles and Nrf2 with various oxidative stress-mediated diseases. Chem Biol Interact 2023; 380:110535. [PMID: 37187268 DOI: 10.1016/j.cbi.2023.110535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/18/2023] [Accepted: 05/08/2023] [Indexed: 05/17/2023]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that regultes the cellular antioxidant defense system at the posttranscriptional level. During oxidative stress, Nrf2 is released from its negative regulator Kelch-like ECH-associated protein 1 (Keap1) and binds to antioxidant response element (ARE) to transcribe antioxidative metabolizing/detoxifying genes. Various transcription factors like aryl hydrocarbon receptor (AhR) and nuclear factor kappa light chain enhancer of activated B cells (NF-kB) and epigenetic modification including DNA methylation and histone methylation might also regulate the expression of Nrf2. Despite its protective role, Keap1/Nrf2/ARE signaling is considered as a pharmacological target due to its involvement in various pathophysiological conditions such as diabetes, cardiovascular disease, cancer, neurodegenerative diseases, hepatotoxicity and kidney disorders. Recently, nanomaterials have received a lot of attention due to their unique physiochemical properties and are also used in various biological applications, for example, biosensors, drug delivery systems, cancer therapy, etc. In this review, we will be discussing the functions of nanoparticles and Nrf2 as a combined therapy or sensitizing agent and their significance in various diseases such as diabetes, cancer and oxidative stress-mediated diseases.
Collapse
Affiliation(s)
- Rekha Thiruvengadam
- Department of Integrative Bioscience & Biotechnology, Sejong University, Seoul, 05006, Republic of Korea
| | - Baskar Venkidasamy
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077, India
| | - Ramkumar Samynathan
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077, India
| | - Rajakumar Govindasamy
- Department of Periodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077, India
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, College of Life and Environmental Sciences, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jin Hee Kim
- Department of Integrative Bioscience & Biotechnology, Sejong University, Seoul, 05006, Republic of Korea.
| |
Collapse
|
4
|
Zhang X, Guo F, Cao D, Yan Y, Zhang N, Zhang K, Li X, Kumar P, Zhang X. Neuroprotective Effect of Ponicidin Alleviating the Diabetic Cognitive Impairment: Regulation of Gut Microbiota. Appl Biochem Biotechnol 2023; 195:735-752. [PMID: 36155887 DOI: 10.1007/s12010-022-04113-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 01/24/2023]
Abstract
Cognitive impairment is a major complication of diabetes mellitus, which is caused by constitutive hyperglycaemia. Ponicidin is a diterpenoid isolated from a Chinese traditional herb (Rabdosia rubescens) and demonstrates the various pharmacological effects. The goal of this study was to scrutinise the neuroprotective effect of ponicidin against diabetic nephropathy (DN) induced by streptozotocin (STZ). Intraperitoneal administration of STZ (55 mg/kg) was used for the induction of diabetes and rats were received oral administration of ponicidin (5, 10 and 15 mg/kg) until 28 days. The body weight, food intake, water intake and blood glucose level were assessed at regular time interval. Plasma insulin level, antioxidant, inflammatory cytokines, apoptosis marker and faecal gut microbiota compositions were estimated. DN-induced group rats revealed the augmented glucose level, water intake, food intake and reduced body weight. Ponicidin significantly (P < 0.001) repressed the glucose level and water food intake and improved the body weight and plasma insulin. Ponicidin significantly (P < 0.001) repressed the malonaldehyde (MDA) level and boosted the level of glutathione (GSH), glutathione reductase (GR) and superoxide dismutase (SOD) in the brain and serum level. Ponicidin significantly (P < 0.001) repressed the level of interleukin-1β (IL-1β), tumour necrosis factor-α (TNF-α) and interleukin-6 (IL-6) and enhanced the level of interleukin-4 (IL-4), interleukin-10 (IL-10) in the brain and serum level. DN group rats exhibited the enhanced relative abundance of Firmicutes, along with enhancing the Firmicutes/Bacteroidetes ratio and repressing the Bacteroidetes relative abundance. Ponicidin effectually restored the relative abundance of Allobaculum, Lactobacillus and Ruminococcus genera. Our findings clearly demonstrated that ponicidin has a neuroprotective effect against diabetic cognitive impairment through modulating the gut microbiome.
Collapse
Affiliation(s)
- Xiaojuan Zhang
- Department of Neurology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.,Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Feng Guo
- People's Hospital of Lvliang, Shanxi, 033000, China
| | - Dujuan Cao
- Department of Neurology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.,Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yinan Yan
- Department of Neurology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.,Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ning Zhang
- Department of Neurology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.,Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Kaili Zhang
- Department of Neurology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.,Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xinyi Li
- Department of Neurology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China. .,Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | | | - Xiaojuan Zhang
- Department of Neurology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.,Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
5
|
Shu DY, Chaudhary S, Cho KS, Lennikov A, Miller WP, Thorn DC, Yang M, McKay TB. Role of Oxidative Stress in Ocular Diseases: A Balancing Act. Metabolites 2023; 13:187. [PMID: 36837806 PMCID: PMC9960073 DOI: 10.3390/metabo13020187] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Redox homeostasis is a delicate balancing act of maintaining appropriate levels of antioxidant defense mechanisms and reactive oxidizing oxygen and nitrogen species. Any disruption of this balance leads to oxidative stress, which is a key pathogenic factor in several ocular diseases. In this review, we present the current evidence for oxidative stress and mitochondrial dysfunction in conditions affecting both the anterior segment (e.g., dry eye disease, keratoconus, cataract) and posterior segment (age-related macular degeneration, proliferative vitreoretinopathy, diabetic retinopathy, glaucoma) of the human eye. We posit that further development of therapeutic interventions to promote pro-regenerative responses and maintenance of the redox balance may delay or prevent the progression of these major ocular pathologies. Continued efforts in this field will not only yield a better understanding of the molecular mechanisms underlying the pathogenesis of ocular diseases but also enable the identification of novel druggable redox targets and antioxidant therapies.
Collapse
Affiliation(s)
- Daisy Y. Shu
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Suman Chaudhary
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Kin-Sang Cho
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Anton Lennikov
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - William P. Miller
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - David C. Thorn
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Menglu Yang
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Tina B. McKay
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
6
|
Zeng X, Deng Y, Yuan M, He Q, Wu Y, Li S. Study on the Antioxidant Effect of Tanshinone IIA on Diabetic Retinopathy and Its Mechanism Based on Integrated Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:9990937. [PMID: 36437835 PMCID: PMC9691304 DOI: 10.1155/2022/9990937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 05/18/2022] [Indexed: 02/13/2024]
Abstract
AIM To explore the effect of tanshinone IIA on diabetic retinopathy (DR) and its mechanism. METHODS GeneCards and OMM databases were used to mine DR-related genes. The chemical structure of tanshinone IIA was searched by PubChem, and the potential target was predicted by PharmMapper. Cystape 3.8.2 was used to visualize and analyze the tanshinone IIA-DR protein interaction network. DAVID ver 6.8 data were used to perform enrichment analysis of the tanshinone IIA-DR protein interaction network. Then animal experiments were carried out to further explore the mechanism of tanshinone IIA in the treatment of DR. Male SD rats were intraperitoneally injected with streptozotocin to establish a diabetes model and were randomly divided into a model group, a low-dose tanshinone IIA group and a high-dose group. Normal rats served as the control group. Hematoxylin-eosin (HE) staining was used to observe the structural changes of the retina; the SOD, GSH-Px, and MDA levels in the retina were detected by the xanthine oxidase method; the expression of VEGF, IL-1β, IL-6, TNF-α, and caspase-3 mRNA were detected by qRT-PCR; and the Bcl-2, Bax, and VEGFA proteins were determined by the western blot. RESULTS A total of 213 tanshinone IIA potential targets and 223 DR-related genes were obtained. The enrichment analysis showed that tanshinone IIA may regulate hypoxia, oxidative stress, positive regulation of ERK1 and ERK2 cascade, steroid hormone-mediated signaling pathway, inflammatory response, angiogenesis, VEGF signaling pathway, apoptosis, PI3K-Akt signaling pathway, TNF signaling pathway, and biological processes and signaling pathways. The structure of the retina in the normal control group was clear, the retina in the model group was not clear, the nerve fiber layer was edema, the retinal cell layers of the tanshinone IIA low-dose group are arranged neatly, the inner and outer nuclear layers are slightly disordered, and the tanshinone IIA low-dose group was large. The structure of the mouse retina was further improved compared with the low-dose tanshinone IIA group. Compared with the model group, the retinal tissue SOD and GSH-PX of rats in the tanshinone IIA group increased, and the MDA level decreased (P < 0.05). Compared with the model group, the expression of VEGF, IL-1β, IL-6, TNF-α, and caspase-3 mRNA in the retina of tanshinone IIA groups was significantly reduced (P < 0.01). Compared with the model group, the Bcl-2 protein in the tanshinone IIA groups increased, while the Bax and VEGFA proteins decreased (P < 0.05). CONCLUSION Tanshinone IIA may improve the morphological performance of the retina of diabetic rats and inhibit DR, the mechanism of which may be anti-inflammatory, antiangiogenesis, etc.
Collapse
Affiliation(s)
- Xiaomei Zeng
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Ying Deng
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Mengxia Yuan
- Hunan University of Chinese Medicine, Changsha, China
| | - Qi He
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Yonghe Wu
- Hunan University of Chinese Medicine, Changsha, China
| | - Shibing Li
- Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
7
|
Kulkarni A, Muralidharan C, May SC, Tersey SA, Mirmira RG. Inside the β Cell: Molecular Stress Response Pathways in Diabetes Pathogenesis. Endocrinology 2022; 164:bqac184. [PMID: 36317483 PMCID: PMC9667558 DOI: 10.1210/endocr/bqac184] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Indexed: 11/05/2022]
Abstract
The pathogeneses of the 2 major forms of diabetes, type 1 and type 2, differ with respect to their major molecular insults (loss of immune tolerance and onset of tissue insulin resistance, respectively). However, evidence suggests that dysfunction and/or death of insulin-producing β-cells is common to virtually all forms of diabetes. Although the mechanisms underlying β-cell dysfunction remain incompletely characterized, recent years have witnessed major advances in our understanding of the molecular pathways that contribute to the demise of the β-cell. Cellular and environmental factors contribute to β-cell dysfunction/loss through the activation of molecular pathways that exacerbate endoplasmic reticulum stress, the integrated stress response, oxidative stress, and impaired autophagy. Whereas many of these stress responsive pathways are interconnected, their individual contributions to glucose homeostasis and β-cell health have been elucidated through the development and interrogation of animal models. In these studies, genetic models and pharmacological compounds have enabled the identification of genes and proteins specifically involved in β-cell dysfunction during diabetes pathogenesis. Here, we review the critical stress response pathways that are activated in β cells in the context of the animal models.
Collapse
Affiliation(s)
- Abhishek Kulkarni
- Kovler Diabetes Center and Department of Medicine, The University of Chicago, Chicago, Illinois 60637, USA
| | - Charanya Muralidharan
- Kovler Diabetes Center and Department of Medicine, The University of Chicago, Chicago, Illinois 60637, USA
| | - Sarah C May
- Kovler Diabetes Center and Department of Medicine, The University of Chicago, Chicago, Illinois 60637, USA
| | - Sarah A Tersey
- Kovler Diabetes Center and Department of Medicine, The University of Chicago, Chicago, Illinois 60637, USA
| | - Raghavendra G Mirmira
- Kovler Diabetes Center and Department of Medicine, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
8
|
ŞENER SÖ, BADEM M, ÖZGEN U, KORKMAZ N, KANBOLAT Ş, KERİMOĞLU G, ALİYAZICIOĞLU R, YENİLMEZ E, SEZEN KARAOĞLAN E. Antidiabetic and Antioxidant Effect of the Aerial Parts of <i>Lysimachia verticillaris</i> and its Isolated Phenolic Compounds on Streptozotocin-induced Diabetic Rats. BEZMIALEM SCIENCE 2022. [DOI: 10.14235/bas.galenos.2021.6123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
9
|
Afolabi OB, Oloyede OI, Aluko BT, Johnson JA. Cytoprotective Effect of Biogenic Magnesium Hydroxide Nanoparticles Using Monodora myristica Aqueous Extract Against Oxidative Damage in Streptozotocin-Induced Diabetic Rats. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-022-01025-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
10
|
Histopathological Changes In Lung Tissue Caused By Diabetes: A Review. JOURNAL OF BASIC AND CLINICAL HEALTH SCIENCES 2022. [DOI: 10.30621/jbachs.1070489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Diabetes mellitus associated with oxidative stress and inflammation can affect many organs. While the effects of diabetes on many organs are well known and documented, its mechanisms of action on the lung are known far less.
Hyperglycemia can lead to lung damage by increasing oxidative stresses and inflammation. Diabetes may be a trigger for pulmonary fibrosis, as studies suggest that there may be an important link between pulmonary fibrosis and diabetes.
In this review, the histopathological changes caused by diabetes in the lung tissue were summarized. In addition, changes in the lung due to inflammation, oxidative stress and pulmonary fibrosis mechanisms were evaluated.
Collapse
|
11
|
Li W, Zhang Y, Li R, Wang Y, Chen L, Dai S. A Novel Tolerogenic Antibody Targeting Disulfide-Modified Autoantigen Effectively Prevents Type 1 Diabetes in NOD Mice. Front Immunol 2022; 13:877022. [PMID: 36032077 PMCID: PMC9406144 DOI: 10.3389/fimmu.2022.877022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/06/2022] [Indexed: 11/15/2022] Open
Abstract
Increasing evidence suggested that the islet amyloid polypeptide (IAPP) is an essential autoantigen in the pathogenesis of type 1 diabetes (T1D) in humans and non-obese diabetic (NOD) mice. A unique disulfide containing IAPP-derived peptide KS20 is one of the highly diabetogenic peptides in NOD mice. The KS20-reactive T cells, including prototypic pathogenic BDC5.2.9, accumulate in the pancreas of prediabetic and diabetic mice and contribute to disease development. We generated a monoclonal antibody (LD96.24) that interacts with IAg7-KS20 complexes with high affinity and specificity. LD96.24 recognized the IAg7-KS20 disulfide loop and blocked the interaction between IAg7-KS20 tetramers and cognate T cells but not other autoantigen-reactive T cells. The in vivo LD96.24 studies, at either early or late stages, drastically induced tolerance and delayed the onset of T1D disease in NOD mice by reducing the infiltration of not only IAPP-specific T cells but also chromogranin A and insulin-specific T cells in the pancreas, together with B cells and dendritic cells. LD96.24 can also significantly increase the ratio of Foxp3+ regulatory T cells with Interferon-gamma-secreting effector T cells. Our data suggested the important role of disulfide-modified peptides in the development of T1D. Targeting the complexes of Major histocompatibility complex (MHC)/disulfide modified antigens would influence the thiol redox balance and could be a novel immunotherapy for T1D.
Collapse
Affiliation(s)
- Wei Li
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- National Health Commission (NHC) Key Laboratory of Pulmonary Immune-Related Diseases, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Yan Zhang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Ronghui Li
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- National Health Commission (NHC) Key Laboratory of Pulmonary Immune-Related Diseases, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Yang Wang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Lan Chen
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Shaodong Dai
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
- *Correspondence: Shaodong Dai,
| |
Collapse
|
12
|
Kim HH, Vaidya B, Cho SY, Kwon J, Kim D. Anti-hyperglycemic potential of alginate oligosaccharide in a high glucose-induced zebrafish model. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
13
|
Ng MY, Lin T, Chao SC, Chu PM, Yu CC. Potential Therapeutic Applications of Natural Compounds in Diabetes-Associated Periodontitis. J Clin Med 2022; 11:jcm11133614. [PMID: 35806899 PMCID: PMC9267692 DOI: 10.3390/jcm11133614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023] Open
Abstract
Diabetes mellitus (DM) is a major worldwide health burden. DM is a metabolic disease characterized by chronic hyperglycemia, and if left untreated, can lead to various complications. Individuals with uncontrolled DM are more susceptible to periodontitis due to both a hyper-inflammatory host response and an impaired immune response. Periodontitis, on the other hand, may exacerbate DM by increasing both local and systemic inflammatory components of DM-related complications. The current standard for periodontal treatment in diabetes-associated periodontitis (DP) focuses mostly on reducing bacterial load and less on controlling the excessive host response, and hence, may not be able to resolve DP completely. Over the past decade, natural compounds have emerged as an adjunct approach for modulating the host immune response with the hope of curing DP. The anti-oxidant, anti-inflammatory, and anti-diabetic characteristics of natural substances are well-known, and they can be found in regularly consumed foods and drinks, as well as plants. The pathophysiology of DP and the treatment benefits of various bioactive extracts for DP will be covered in this review.
Collapse
Affiliation(s)
- Min Yee Ng
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan; (M.Y.N.); (T.L.)
| | - Taichen Lin
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan; (M.Y.N.); (T.L.)
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Shih-Chi Chao
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 40201, Taiwan;
- Department of Medical Research and Education, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yi-lan, Luodong 265501, Taiwan
| | - Pei-Ming Chu
- Department of Anatomy, School of Medicine, China Medical University, Taichung 404333, Taiwan;
| | - Cheng-Chia Yu
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan; (M.Y.N.); (T.L.)
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 40201, Taiwan;
- Correspondence: ; Tel.: +886-4-2471-8668
| |
Collapse
|
14
|
Kwong-Han K, Zunaina E, Hanizasurana H, Che-Badariah AA, Che-Maraina CH. Comparison of catalase, glutathione peroxidase and malondialdehyde levels in tears among diabetic patients with and without diabetic retinopathy. J Diabetes Metab Disord 2022; 21:681-688. [PMID: 35673514 PMCID: PMC9167331 DOI: 10.1007/s40200-022-01030-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 03/12/2022] [Indexed: 10/18/2022]
Abstract
Background Various studies suggest that oxidative stress has a role in the etiology of diabetes mellitus (DM) and its complications. Detection of antioxidant enzymes and malondialdehyde (MDA) level in ocular fluid may provide the possible biomarkers for monitoring the progression of diabetic retinopathy (DR). The aim of this study was to compare catalase, glutathione peroxidase (GPx) and MDA levels in tears among diabetic patients with and without DR. Methods A cross-sectional study was conducted among type 2 DM patients. The patients were divided into three groups: no DR, non-proliferative DR (NPDR) and proliferative DR (PDR). Tears samples were collected using Schirmer strips for measurement of catalase, GPx and MDA. Results A total of 171 patients were recruited in this study (no DR, 58 patients; NPDR, 57 patients; PDR, 56 patients). There was significant difference in the mean level of GPx in tears between the three groups (no DR, 658.08 ± 115.70 U/L; NPDR, 653.78 ± 87.90 U/L; PDR, 605.31 ± 107.47 U/L, respectively) before and after adjustment for covariates (p = 0.013 and p = 0.001, respectively). Bonferroni post-hoc analysis showed PDR group had significantly lower mean GPx level than in no DR (p=0.001) and NPDR (p=0.037) after adjustment for covariates. There was no significant difference of mean catalase and MDA in the tears between the three groups before and after adjustment for covariates. Conclusion This study demonstrated that diabetic patient with DR is associated with low level of GPx in tears, suggesting that this antioxidant enzyme is a potential biomarker for predicting the presence of DR.
Collapse
Affiliation(s)
- Kiu Kwong-Han
- Department of Ophthalmology and Visual Science, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Embong Zunaina
- Department of Ophthalmology and Visual Science, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
- Hospital Universiti Sains Malaysia, Jalan Raja Perempuan Zainab II, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Hashim Hanizasurana
- Department of Ophthalmology, Hospital Selayang, 68100 Batu Caves, Selangor, Malaysia
| | - Abd Aziz Che-Badariah
- Department of Physiology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Che Hussin Che-Maraina
- Department of Immunology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
15
|
Optimized integration of metabolomics and lipidomics reveals brain region-specific changes of oxidative stress and neuroinflammation in type 1 diabetic mice with cognitive decline. J Adv Res 2022; 43:233-245. [PMID: 36585111 PMCID: PMC9811331 DOI: 10.1016/j.jare.2022.02.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/08/2022] [Accepted: 02/19/2022] [Indexed: 01/07/2023] Open
Abstract
INTRODUCTION Type 1 diabetes (T1D) causes cognitive decline and has been associated with brain metabolic disorders, but its potential molecular mechanisms remain unclear. OBJECTIVES The purpose of this study was to explore the molecular mechanisms underlying T1D-induced cognitive impairment using metabolomics and lipidomics. METHODS We developed an optimized integration approach of metabolomics and lipidomics for brain tissue based on UPLC-Q-TOF-MS and analyzed a comprehensive characterization of metabolite and lipid profiles in the hippocampus and frontal cortex of T1D male mice with cognitive decline (T1DCD) and age-matched control (CONT) mice. RESULTS The results show that T1DCD mice had brain metabolic disorders in a region-specific manner relative to CONT mice, and the frontal cortex exhibited a higher lipid peroxidation than the hippocampus in T1DCD mice. Based on metabolic changes, we found that microglia was activated under diabetic condition and thereby promoted oxidative stress and neuroinflammation, leading to neuronal injury, and this event was more pronounced in the frontal cortex than the hippocampus. CONCLUSION Our results suggest that brain region-specific shifts in oxidative stress and neuroinflammation may contribute to diabetic cognitive decline, and the frontal cortex could be the more vulnerable brain region than the hippocampus.
Collapse
|
16
|
|
17
|
Abo El-Magd NF, Ramadan NM, Eraky SM. The ameliorative effect of bromelain on STZ-induced type 1 diabetes in rats through Oxi-LDL/LPA/LPAR1 pathway. Life Sci 2021; 285:119982. [PMID: 34592232 DOI: 10.1016/j.lfs.2021.119982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/16/2021] [Accepted: 09/19/2021] [Indexed: 01/04/2023]
Abstract
AIMS Diabetes, a serious worldwide problem, is modulated via inflammation and oxidative stress. Bromelain, a natural compound, recently attracts interest due to its anti-inflammatory effects, while its mode of action remains not properly understood. Thus, investigating the antidiabetic effect of bromelain is promising. MATERIALS AND METHODS Rats were randomized into normal group, STZ group (were administrated single intraperitoneal (i.p) injection of 55 mg/kg streptozotocin (STZ)) and STZ + Bro group (were administrated single i.p injection of STZ, 72 h later were i.p administrated 10 mg/kg/day bromelain for 15 days). Wound healing ability was investigated for different groups. Spectrophotometry, ELISA, histopathological and immunohistochemical techniques were applied. KEY FINDINGS Bromelain significantly decreased fasting blood glucose, serum triglycerides and cholesterol and hepatic malondialdehyde levels compared with STZ group. Moreover, Bromelain significantly increased serum albumin and total protein levels and percentage of wound healing compared with STZ group. These results were confirmed through the histopathological examination of liver, pancreas, and skin tissues. Investigating the molecular mechanism underlying these effects, STZ injection caused significant increase in hepatic oxidized-LDL (Oxi-LDL) and lysophosphatidic acid (LPA) levels and hepatic lysophosphatidic acid receptor 1 (LPAR1), and beta secretase (BACE1) protein tissue expressions, while bromelain significantly aborted these effects. Thus, STZ caused upregulation of Oxi-LDL/LPA/LPAR1/BACE1 pathway, while bromelain significantly ameliorated these effects. SIGNIFICANCE To our best knowledge, this study represents the 1st study investigating Oxi-LDL/LPA/LPAR1/BACE1 pathway in STZ-induced diabetes in rats, in addition to the promising ameliorative effect of bromelain in STZ-induced diabetes in rats.
Collapse
Affiliation(s)
- Nada F Abo El-Magd
- Biochemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Nehal M Ramadan
- Clinical Pharmacology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Salma M Eraky
- Biochemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
18
|
Wieland FC, Sthijns MMJPE, Geuens T, van Blitterswijk CA, LaPointe VLS. The Role of Pancreatic Alpha Cells and Endothelial Cells in the Reduction of Oxidative Stress in Pseudoislets. Front Bioeng Biotechnol 2021; 9:729057. [PMID: 34568302 PMCID: PMC8458707 DOI: 10.3389/fbioe.2021.729057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/19/2021] [Indexed: 12/28/2022] Open
Abstract
Pancreatic beta cells have inadequate levels of antioxidant enzymes, and the damage induced by oxidative stress poses a challenge for their use in a therapy for patients with type 1 diabetes. It is known that the interaction of the pancreatic endocrine cells with support cells can improve their survival and lead to less vulnerability to oxidative stress. Here we investigated alpha (alpha TC-1), beta (INS1E) and endothelial (HUVEC) cells assembled into aggregates known as pseudoislets as a model of the pancreatic islets of Langerhans. We hypothesised that the coculture of alpha, beta and endothelial cells would be protective against oxidative stress. First, we showed that adding endothelial cells decreased the percentage of oxidative stress-positive cells. We then asked if the number of endothelial cells or the size (number of cells) of the pseudoislet could increase the protection against oxidative stress. However, no additional benefit was observed by those changes. On the other hand, we identified a potential supportive effect of the alpha cells in reducing oxidative stress in beta and endothelial cells. We were able to link this to the incretin glucagon-like peptide-1 (GLP-1) by showing that the absence of alpha cells in the pseudoislet caused increased oxidative stress, but the addition of GLP-1 could restore this. Together, these results provide important insights into the roles of alpha and endothelial cells in protecting against oxidative stress.
Collapse
Affiliation(s)
- Fredrik C Wieland
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - Mireille M J P E Sthijns
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands.,Centre for Healthy Eating and Food Innovation, Maastricht University, Maastricht, Netherlands
| | - Thomas Geuens
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - Clemens A van Blitterswijk
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - Vanessa L S LaPointe
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
19
|
Rodríguez ML, Millán I, Ortega ÁL. Cellular targets in diabetic retinopathy therapy. World J Diabetes 2021; 12:1442-1462. [PMID: 34630899 PMCID: PMC8472497 DOI: 10.4239/wjd.v12.i9.1442] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/08/2021] [Accepted: 08/03/2021] [Indexed: 02/06/2023] Open
Abstract
Despite the existence of treatment for diabetes, inadequate metabolic control triggers the appearance of chronic complications such as diabetic retinopathy. Diabetic retinopathy is considered a multifactorial disease of complex etiology in which oxidative stress and low chronic inflammation play essential roles. Chronic exposure to hyperglycemia triggers a loss of redox balance that is critical for the appearance of neuronal and vascular damage during the development and progression of the disease. Current therapies for the treatment of diabetic retinopathy are used in advanced stages of the disease and are unable to reverse the retinal damage induced by hyperglycemia. The lack of effective therapies without side effects means there is an urgent need to identify an early action capable of preventing the development of the disease and its pathophysiological consequences in order to avoid loss of vision associated with diabetic retinopathy. Therefore, in this review we propose different therapeutic targets related to the modulation of the redox and inflammatory status that, potentially, can prevent the development and progression of the disease.
Collapse
Affiliation(s)
- María Lucía Rodríguez
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjassot 46100, Valencia, Spain
| | - Iván Millán
- Neonatal Research Group, Health Research Institute La Fe, Valencia 46026, Valencia, Spain
| | - Ángel Luis Ortega
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjassot 46100, Valencia, Spain
| |
Collapse
|
20
|
Xuemei L, Qiu S, Chen G, Liu M. Myrtenol alleviates oxidative stress and inflammation in diabetic pregnant rats via TLR4/MyD88/NF-κB signaling pathway. J Biochem Mol Toxicol 2021; 35:e22904. [PMID: 34477272 DOI: 10.1002/jbt.22904] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/30/2021] [Accepted: 08/20/2021] [Indexed: 01/17/2023]
Abstract
Gestational diabetes mellitus (GDM) is a special kind of diabetes that arises only during pregnancy. A woman with GDM has a higher risk of developing type-2 diabetes and other metabolic diseases. In this exploration, we intended to scrutinize the therapeutic actions of Myrtenol against the streptozotocin (STZ)-provoked GDM in rats. GDM was provoked in the pregnant rats via injecting the 1% of STZ (25 mg/kg) and then treated with the 50 mg/kg of myrtenol. The glucose level and bodyweight of animals were noted. The lipid profile, that is, total cholesterol, triglycerides, low-density lipoprotein, and high-density lipoprotein (HDL) was determined by respective kits. The lipid peroxidation and antioxidants status were examined using assay kits. The status of proinflammatory markers was investigated by assay kits. The messenger RNA (mRNA) expressions of TLR4/MyD88/NF-κB signaling proteins were studied by reverse transcription polymerase chain reaction analysis. The hepatic and pancreatic tissues were examined microscopically. Myrtenol treatment notably decreased the status of blood glucose and lipid profile and improved the HDL in the GDM rats. The status of lipid peroxidation and inflammatory markers were substantially reduced by the myrtenol and it enhanced the antioxidants status of GDM animals. Myrtenol treatment remarkably downregulated the mRNA expressions of TLR4/MyD88/NF-κB signaling proteins. The histological findings also proved the therapeutic actions of myrtenol. Altogether, the findings of this investigation unveiled the therapeutic actions of the myrtenol against the STZ-provoked GDM in rats. Myrtenol could be a promising therapeutic agent to treat GDM in the future.
Collapse
Affiliation(s)
- Liu Xuemei
- Department of Gynaecology and Obstetrics, Jinan City People's Hospital, Jinan, China
| | - Shengjie Qiu
- Department of Clinical Laboratory, People's Hospital of Jiulongpo District, Chongqing, China
| | - Guiying Chen
- Department of Obstetrics and Gynecology, Tai'an Central Hospital, Tai'an, China
| | - Mingyuan Liu
- Department of Obstetrics, Jinan Maternal and Child Health Care Hospital, Jinan, China
| |
Collapse
|
21
|
Min J, Zeng T, Roux M, Lazar D, Chen L, Tudzarova S. The Role of HIF1α-PFKFB3 Pathway in Diabetic Retinopathy. J Clin Endocrinol Metab 2021; 106:2505-2519. [PMID: 34019671 PMCID: PMC8372643 DOI: 10.1210/clinem/dgab362] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Indexed: 12/13/2022]
Abstract
Diabetic retinopathy (DR) is the leading cause of blindness for adults in developed countries. Both microvasculopathy and neurodegeneration are implicated in mechanisms of DR development, with neuronal impairment preceding microvascular abnormalities, which is often underappreciated in the clinic. Most current therapeutic strategies, including anti-vascular endothelial growth factor (anti-VEGF)-antibodies, aim at treating the advanced stages (diabetic macular edema and proliferative diabetic retinopathy) and fail to target the neuronal deterioration. Hence, new therapeutic approach(es) intended to address both vascular and neuronal impairment are urgently needed. The hypoxia-inducible factor 1α (HIF1α)-6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) pathway is critically implicated in the islet pathology of diabetes. Recent evidence highlighted the pathway relevance for pathologic angiogenesis and neurodegeneration, two key aspects in DR. PFKFB3 is key to the sprouting angiogenesis, along with VEGF, by determining the endothelial tip-cell competition. Also, PFKFB3-driven glycolysis compromises the antioxidative capacity of neurons leading to neuronal loss and reactive gliosis. Therefore, the HIF1α-PFKFB3 signaling pathway is unique as being a pervasive pathological component across multiple cell types in the retina in the early as well as late stages of DR. A metabolic point-of-intervention based on HIF1α-PFKFB3 targeting thus deserves further consideration in DR.
Collapse
Affiliation(s)
- Jie Min
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Larry L. Hillblom Islet Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tianshu Zeng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Margaretha Roux
- Groote Schuur and Red Cross Children’s Hospital, University of Cape Town, South Africa
| | - David Lazar
- Lazar Retina Ophthalmology, Los Angeles, CA, USA
| | - Lulu Chen
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Lulu Chen, PhD, Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan, Hubei, 430022, China.
| | - Slavica Tudzarova
- Larry L. Hillblom Islet Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Correspondence: Slavica Tudzarova, PhD, Larry Hillblom Islet Research Center, University of California Los Angeles, 10833 Le Conte Ave, CHS 33-165, Los Angeles, CA 90095, USA.
| |
Collapse
|
22
|
Hydrogen Sulfide: Novel Endogenous and Exogenous Modulator of Oxidative Stress in Retinal Degeneration Diseases. Molecules 2021; 26:molecules26092411. [PMID: 33919146 PMCID: PMC8122398 DOI: 10.3390/molecules26092411] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 11/29/2022] Open
Abstract
Oxidative stress (OS) damage can cause significant injury to cells, which is related to the occurrence and development of many diseases. This pathological process is considered to be the first step to trigger the death of outer retinal neurons, which is related to the pathology of retinal degenerative diseases. Hydrogen sulfide (H2S) has recently received widespread attention as a physiological signal molecule and gas neuromodulator and plays an important role in regulating OS in eyes. In this article, we reviewed the OS responses and regulatory mechanisms of H2S and its donors as endogenous and exogenous regulators in retinal degenerative diseases. Understanding the relevant mechanisms will help to identify the therapeutic potential of H2S in retinal degenerative diseases.
Collapse
|
23
|
El-Mansi AA, Al-Kahtani MA, Rady AM, El-Bealy EA, Al-Asmari AM. Vitamin A and Daucus carota root extract mitigate STZ-induced diabetic retinal degeneration in Wistar albino rats by modulating neurotransmission and downregulation of apoptotic pathways. J Food Biochem 2021; 45:e13688. [PMID: 33687088 DOI: 10.1111/jfbc.13688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/14/2021] [Accepted: 02/21/2021] [Indexed: 12/17/2022]
Abstract
The objective of our study was to explore the deleterious effects of diabetes on the visual functions of the retina and to address whether the administration of vitamin A and carrot root extract (CE) confer retinal protection in hyperglycemic rats via modulation of oxidative stress, biochemical alternations, and retinal neurotransmission. Fifty male Wistar albino rats weighing 180 ± 12.41 g were randomized into five groups (n = 10): controls, diabetic group (injected with 40 mg/kg dissolved in 0.1 sodium citrate buffer), diabetic group treated with vitamin A (2,500 IU/kg, low dose), diabetic group treated with vitamin (5,000 IU/kg, high dose), and diabetic groups administered CE (200 mg/kg/every other day). Our findings showed that, compared to controls, diabetic rats showed a significant decrease in their retinal thickness, increased apoptotic ganglion cells, and a noticeable degeneration of their synaptic layers. The inner retina displayed increased activity of neovascularization; however, the outer retina exhibited vacuolar degeneration of the photoreceptor cell layer. Our biochemical assessments showed reduced levels of CAT, SOD, and GST along with increased lipid peroxidation. Concurrently, cellular angiogenic and stress markers were significantly elevated associated with increased apoptotic activities as evidenced by increased expressions of annexin-V and PARP. Furthermore, the neurotransmitter content of the retina was altered in diabetic rats compared to controls and diabetic-treated groups. Paradoxically, vitamin A and CE supplementation attenuate these retinal insults in diabetic animals and normalized aforementioned assayed parameters; evidencing that both treatments exerted ameliorative impacts and restored visual functions by diminishing oxidative stress and neuronal degeneration. PRACTICAL APPLICATIONS: Diabetes is a complex disease that involves various physiological perturbations especially visual functions. In our study, we showed that vitamin A and carrot root extract (CE) confer remarkable protection against retinal degeneration in STZ-induced diabetic rats. Our findings showed that the chemical and phytochemical ingredients of the vitamin A and CE substantially attenuated the histopathological changes, oxidative stress, inflammatory reactions, and cellular death in diabetic rats. These favorable changes are attributable to the high content of retinoic acid, carotenoids, and phenolic compounds that effectively regulates the production of visual pigments, increases the antioxidant defense system, and diminishes the pro-inflammatory and apoptotic pathways. Thus, the nutritional values of vitamin A and CE represent promising therapeutic choices to mitigate the retinal-induced diabetic insults.
Collapse
Affiliation(s)
- Ahmed A El-Mansi
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia.,Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - M A Al-Kahtani
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Ahmed M Rady
- Biology Department, Faculty of Science, King Saud University, Riyadh, Saudi Arabia
| | - Eman A El-Bealy
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - A M Al-Asmari
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
24
|
Miller WP, Sunilkumar S, Dennis MD. The stress response protein REDD1 as a causal factor for oxidative stress in diabetic retinopathy. Free Radic Biol Med 2021; 165:127-136. [PMID: 33524531 PMCID: PMC7956244 DOI: 10.1016/j.freeradbiomed.2021.01.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/12/2022]
Abstract
Diabetic Retinopathy (DR) is a major cause of visual dysfunction, yet much remains unknown regarding the specific molecular events that contribute to diabetes-induced retinal pathophysiology. Herein, we review the impact of oxidative stress on DR, and explore evidence that supports a key role for the stress response protein regulated in development and DNA damage (REDD1) in the development of diabetes-induced oxidative stress and functional defects in vision. It is well established that REDD1 mediates the cellular response to a number of diverse stressors through repression of the central metabolic regulator known as mechanistic target of rapamycin complex 1 (mTORC1). A growing body of evidence also supports that REDD1 acts independent of mTORC1 to promote oxidative stress by both enhancing the production of reactive oxygen species and suppressing the antioxidant response. Collectively, there is strong preclinical data to support a key role for REDD1 in the development and progression of retinal complications caused by diabetes. Furthermore, early proof-of-concept clinical trials have found a degree of success in combating ischemic retinal disease through intravitreal delivery of an siRNA targeting the REDD1 mRNA. Overall, REDD1-associated signaling represents an intriguing target for novel clinical therapies that go beyond addressing the symptoms of diabetes by targeting the underlying molecular mechanisms that contribute to DR.
Collapse
Affiliation(s)
- William P Miller
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Siddharth Sunilkumar
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Michael D Dennis
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, 17033, USA; Department of Ophthalmology, Penn State College of Medicine, Hershey, PA, 17033, USA.
| |
Collapse
|
25
|
Myint KZ, Chen JM, Zhou ZY, Xia YM, Lin J, Zhang J. Structural dependence of antidiabetic effect of steviol glycosides and their metabolites on streptozotocin-induced diabetic mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:3841-3849. [PMID: 32297310 DOI: 10.1002/jsfa.10421] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/09/2020] [Accepted: 04/16/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Stevia has been proposed as a potential antidiabetic sweetener, mainly based on inconsistent results from stevioside or the plant extract, yet lacking relative experimental evidence from individual steviol glycosides (SGs) and their metabolites. RESULTS The results systematically revealed that the typical SGs and their final metabolite (steviol) presented an antidiabetic effect on streptozotocin (STZ) diabetic mice in all assayed antidiabetic aspects. In general, the performance strength of the samples followed the sequence steviol > steviol glucosyl ester > steviolbioside > rubusoside > stevioside > rebaudioside A, which is opposite to their sweetness strength order, and generally in accordance with the glucosyl group numbers in their molecules. This may imply that the antidiabetic effect of the SGs might be achieved through steviol, which presented antidiabetic performance similar to that of metformin with a dose of 1/20 that of metformin. Moreover, the 18 F-fluorodeoxyglucose traced micro-PET experiment revealed that stevioside and steviol could increase the uptake of glucose in the myocardium and brain of the diabetic mice within 60 min, and decrease the accumulation of glucose in the liver and kidney. CONCLUSIONS The SGs and steviol presented an antidiabetic effect on STZ diabetic mice in all assayed aspects, with an induction time to start the effect of the SGs. Stevioside and steviol could increase uptake of glucose in the myocardium and brain of the diabetic mice, and decrease accumulation of glucose in the liver and kidney. The performance strength of the SGs is generally in accordance with glucosyl group numbers in their molecules.
Collapse
Affiliation(s)
- Khaing Zar Myint
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Materials Engineering, Jiangnan University, Wuxi, China
| | - Jun-Ming Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Zhuo-Yu Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Materials Engineering, Jiangnan University, Wuxi, China
| | - Yong-Mei Xia
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Materials Engineering, Jiangnan University, Wuxi, China
| | - Jianguo Lin
- Key Laboratory of Nuclear Medicine of Ministry of Health, Jiangsu Institute of Nuclear Medicine, Wuxi, China
| | - Jue Zhang
- Key Laboratory of Nuclear Medicine of Ministry of Health, Jiangsu Institute of Nuclear Medicine, Wuxi, China
| |
Collapse
|
26
|
Maheshwari RA, Parmar GR, Hinsu D, Seth AK, Balaraman R. Novel therapeutic intervention of coenzyme Q10 and its combination with pioglitazone on the mRNA expression level of adipocytokines in diabetic rats. Life Sci 2020; 258:118155. [PMID: 32735887 DOI: 10.1016/j.lfs.2020.118155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/15/2020] [Accepted: 07/23/2020] [Indexed: 01/11/2023]
Abstract
AIMS Aim of the present study was to investigate the effect of co-administration coenzyme Q10 and pioglitazone on the mRNA expression of adipocytokines in white adipose tissues of chemically induced type 2 diabetes mellitus in rats. MAIN METHODS Diabetes was induced by administration of streptozotocin (65 mg/kg, i.p.), followed by nicotinamide (110 mg/kg, i.p.) 15 min later. The diabetic rats were treated coenzyme Q10 (Q10, 10 mg/kg, p.o.) or pioglitazone (PIO, 20 mg/kg, p.o.) alone and their combination for four weeks. Biochemical parameters like FBS level, insulin and HbA1c along with tissue levels of MDA, SOD, CAT and GSH were estimated. The mRNA levels of ADIPOQ, RBP4, RETN, IL-6 and TNF-α in White Adipose Tissue (WAT) were measured. KEY FINDINGS Treatment with Q10 + PIO showed a significant reduction in the levels of FBS, HbA1c and a significant increase in insulin levels as compared to normal control group. Additionally, there was a significant change in the levels of biomarkers of oxidative stress after treatment with Q10 + PIO as compared to streptozotocin-nicotinamide group. Treatment with Q10 + PIO also significantly altered the mRNA expression of ADIPOQ, RETN, IL-6 and TNF-α when compared to monotherapy. However, mRNA expression of RBP4 did not alter in Q10 + PIO treated animal as compared to Q10 or PIO alone. SIGNIFICANCE It is concluded that co-administration of Q10 and PIO has been shown the better therapeutic effect on the mRNA expression of adipocytokines and oxidative stress parameters as compared to either Q10 or PIO.
Collapse
Affiliation(s)
- Rajesh A Maheshwari
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, At Post Piparia, Taluka: Waghodia, Dist: Vadodara, Vadodara-391760, Gujarat, India
| | - Ghanshyam R Parmar
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, At Post Piparia, Taluka: Waghodia, Dist: Vadodara, Vadodara-391760, Gujarat, India.
| | - Denish Hinsu
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, At Post Piparia, Taluka: Waghodia, Dist: Vadodara, Vadodara-391760, Gujarat, India
| | - Avinash K Seth
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, At Post Piparia, Taluka: Waghodia, Dist: Vadodara, Vadodara-391760, Gujarat, India
| | - Ramachandran Balaraman
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, At Post Piparia, Taluka: Waghodia, Dist: Vadodara, Vadodara-391760, Gujarat, India
| |
Collapse
|
27
|
Antidiabetic activity of watermelon ( Citrullus lanatus) juice in alloxan-induced diabetic rats. J Diabetes Metab Disord 2020; 19:343-352. [PMID: 32550185 DOI: 10.1007/s40200-020-00515-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/10/2020] [Indexed: 10/24/2022]
Abstract
Introduction Watermelon is one of the commonly eaten fruit in most homes in Nigeria and has been used in the management of diabetes mellitus traditionally. This study was carried out to explore the antidiabetic potential of watermelon (Citrullus lanatus) juice in alloxan-induced diabetic rats. Methods Watermelon juice was used for the determination of in vitro parameters such as 1,1-diphenyl-2-picryl-hydrazil (DPPH), nitric oxide and ferric reducing antioxidant potential (FRAP) as well as phytochemicals such as total phenol, total flavonoids. In vitro, α-glucosidase and α-amylase inhibitory activities were also accessed using standard procedures. Diabetes was induced in the rats by a single intraperitoneal (I.P) injection of freshly prepared alloxan (150 mg/kg body weight). The animals were randomly grouped into five groups of normal control, untreated diabetic control, diabetic rats administered 200 mg/kg body weight of metformin, diabetic rats administered 500 mg/kg body weight of watermelon (Citrullus lanatus) juice and diabetic rats administered 1000 mg/kg body weight of watermelon juice. The rats were sacrificed on the 14th day of the experiment and various in vivo biochemical parameters were also evaluated in the serum and tissue homogenates of diabetic rats. Results The watermelon juice exhibits anti-oxidant properties and inhibitory activities against α-glucosidase and α-amylase in a dose-dependent manner. Added to this, the administration of different doses of the watermelon juice significantly (p < 0.05) reduced the fasting blood glucose level, serum lipid profile, glucose-6-phosphatase, lipid peroxidation and anti-inflammatory activities in alloxan-induced diabetic rats. There was a significant (p < 0.05) increase in antioxidant enzyme activities, hexokinase activity as well as glucose transporters (GLUT 2 and GLUT 4) levels in diabetic rats administered different doses of Citrullus lanatus. Conclusion Taken together, this study demonstrates that watermelon (Citrullus lanatus) juice exhibits its antidiabetic potential in experimental diabetic animal model via multiple pathways involving modulation of glucose transporters, anti-inflammatory activities as well as antioxidant defense system and inhibition of α-glucosidase and α-amylase. This suggests that the watermelon (Citrullus lanatus) juice may have a useful clinical application in the management of diabetes mellitus and its metabolic complications if developed as adjuvant therapy.
Collapse
|
28
|
|
29
|
Papachristoforou E, Lambadiari V, Maratou E, Makrilakis K. Association of Glycemic Indices (Hyperglycemia, Glucose Variability, and Hypoglycemia) with Oxidative Stress and Diabetic Complications. J Diabetes Res 2020; 2020:7489795. [PMID: 33123598 PMCID: PMC7585656 DOI: 10.1155/2020/7489795] [Citation(s) in RCA: 179] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/16/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress (OS) is defined as a disturbance in the prooxidant-antioxidant balance of the cell, in favor of the former, which results in the antioxidant capacity of the cell to be overpowered. Excess reactive oxygen species (ROS) production is very harmful to cell constituents, especially proteins, lipids, and DNA, thus causing damage to the cell. Oxidative stress has been associated with a variety of pathologic conditions, including diabetes mellitus (DM), cancer, atherosclerosis, neurodegenerative diseases, rheumatoid arthritis, ischemia/reperfusion injury, obstructive sleep apnea, and accelerated aging. Regarding DM specifically, previous experimental and clinical studies have pointed to the fact that oxidative stress probably plays a major role in the pathogenesis and development of diabetic complications. It is postulated that hyperglycemia induces free radicals and impairs endogenous antioxidant defense systems through several different mechanisms. In particular, hyperglycemia promotes the creation of advanced glycation end-products (AGEs), the activation of protein kinase C (PKC), and the hyperactivity of hexosamine and sorbitol pathways, leading to the development of insulin resistance, impaired insulin secretion, and endothelial dysfunction, by inducing excessive ROS production and OS. Furthermore, glucose variability has been associated with OS as well, and recent evidence suggests that also hypoglycemia may be playing an important role in favoring diabetic vascular complications through OS, inflammation, prothrombotic events, and endothelial dysfunction. The association of these diabetic parameters (i.e., hyperglycemia, glucose variability, and hypoglycemia) with oxidative stress will be reviewed here.
Collapse
Affiliation(s)
- Eleftheria Papachristoforou
- First Department of Propaedeutic Internal Medicine, National and Kapodistrian University of Athens Medical School, Laiko General Hospital, Athens, Greece
| | - Vaia Lambadiari
- Second Department of Internal Medicine, Research Unit and Diabetes Centre, National and Kapodistrian University of Athens Medical School, Attikon Hospital, Athens, Greece
| | - Eirini Maratou
- Second Department of Internal Medicine, Research Unit and Diabetes Centre, National and Kapodistrian University of Athens Medical School, Attikon Hospital, Athens, Greece
| | - Konstantinos Makrilakis
- First Department of Propaedeutic Internal Medicine, National and Kapodistrian University of Athens Medical School, Laiko General Hospital, Athens, Greece
| |
Collapse
|
30
|
Jini D, Sharmila S. Green synthesis of silver nanoparticles from Allium cepa and its in vitro antidiabetic activity. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.matpr.2019.07.672] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
31
|
Mukund K, Subramaniam S. Skeletal muscle: A review of molecular structure and function, in health and disease. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2020; 12:e1462. [PMID: 31407867 PMCID: PMC6916202 DOI: 10.1002/wsbm.1462] [Citation(s) in RCA: 234] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/03/2019] [Accepted: 07/03/2019] [Indexed: 12/11/2022]
Abstract
Decades of research in skeletal muscle physiology have provided multiscale insights into the structural and functional complexity of this important anatomical tissue, designed to accomplish the task of generating contraction, force and movement. Skeletal muscle can be viewed as a biomechanical device with various interacting components including the autonomic nerves for impulse transmission, vasculature for efficient oxygenation, and embedded regulatory and metabolic machinery for maintaining cellular homeostasis. The "omics" revolution has propelled a new era in muscle research, allowing us to discern minute details of molecular cross-talk required for effective coordination between the myriad interacting components for efficient muscle function. The objective of this review is to provide a systems-level, comprehensive mapping the molecular mechanisms underlying skeletal muscle structure and function, in health and disease. We begin this review with a focus on molecular mechanisms underlying muscle tissue development (myogenesis), with an emphasis on satellite cells and muscle regeneration. We next review the molecular structure and mechanisms underlying the many structural components of the muscle: neuromuscular junction, sarcomere, cytoskeleton, extracellular matrix, and vasculature surrounding muscle. We highlight aberrant molecular mechanisms and their possible clinical or pathophysiological relevance. We particularly emphasize the impact of environmental stressors (inflammation and oxidative stress) in contributing to muscle pathophysiology including atrophy, hypertrophy, and fibrosis. This article is categorized under: Physiology > Mammalian Physiology in Health and Disease Developmental Biology > Developmental Processes in Health and Disease Models of Systems Properties and Processes > Cellular Models.
Collapse
Affiliation(s)
- Kavitha Mukund
- Department of BioengineeringUniversity of CaliforniaSan DiegoCalifornia
| | - Shankar Subramaniam
- Department of Bioengineering, Bioinformatics & Systems BiologyUniversity of CaliforniaSan DiegoCalifornia
- Department of Computer Science and EngineeringUniversity of CaliforniaSan DiegoCalifornia
- Department of Cellular and Molecular Medicine and NanoengineeringUniversity of CaliforniaSan DiegoCalifornia
| |
Collapse
|
32
|
Oxidative Stress and Microvascular Alterations in Diabetic Retinopathy: Future Therapies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4940825. [PMID: 31814880 PMCID: PMC6878793 DOI: 10.1155/2019/4940825] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/06/2019] [Accepted: 09/14/2019] [Indexed: 02/07/2023]
Abstract
Diabetes is a disease that can be treated with oral antidiabetic agents and/or insulin. However, patients' metabolic control is inadequate in a high percentage of them and a major cause of chronic diseases like diabetic retinopathy. Approximately 15% of patients have some degree of diabetic retinopathy when diabetes is first diagnosed, and most will have developed this microvascular complication after 20 years. Early diagnosis of the disease is the best tool to prevent or delay vision loss and reduce the involved costs. However, diabetic retinopathy is an asymptomatic disease and its development to advanced stages reduces the effectiveness of treatments. Today, the recommended treatment for severe nonproliferative and proliferative diabetic retinopathy is photocoagulation with an argon laser and intravitreal injections of anti-VEGF associated with, or not, focal laser for diabetic macular oedema. The use of these therapeutic approaches is severely limited, such as uncomfortable administration for patients, long-term side effects, the costs they incur, and the therapeutic effectiveness of the employed management protocols. Hence, diabetic retinopathy is the widespread diabetic eye disease and a leading cause of blindness in adults in developed countries. The growing interest in using polyphenols, e.g., resveratrol, in treatments related to oxidative stress diseases has spread to diabetic retinopathy. This review focuses on analysing the sources and effects of oxidative stress and inflammation on vascular alterations and diabetic retinopathy development. Furthermore, current and antioxidant therapies, together with new molecular targets, are postulated for diabetic retinopathy treatment.
Collapse
|
33
|
Protein Isolate from Parkia biglobosa Seeds Improves Dyslipidaemia and Cardiac Oxidative Stress in Streptozotocin-Induced Diabetic Rats. Antioxidants (Basel) 2019; 8:antiox8100481. [PMID: 31614841 PMCID: PMC6826478 DOI: 10.3390/antiox8100481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/05/2019] [Accepted: 09/17/2019] [Indexed: 02/07/2023] Open
Abstract
Reports from previous studies now provide evidence that dyslipidaemia and oxidative stress play crucial roles in the pathogenesis and progression of diabetes and its related complications. This research is aimed to investigate the potential effects of protein isolate from Parkia biglobosa seeds (PBPI) in streptozotocin (STZ)-induced diabetic rats by measuring blood glucose levels, changes in lipid metabolism and biomarkers of oxidative stress. Diabetic rats were treated orally with graded doses of PBPI, 200 mg/kg bw and 400 mg/kg bw, and 5 U/kg, intraperitoneal (i.p.) of insulin once daily for 28 days with the fasting blood glucose (FBG) monitored weekly. The effect of PBPI on the serum lipid profile was measured while the extent of lipid peroxidation (LPO), as well as antioxidant parameters (superoxide dismutase; SOD, catalase; CAT, glutathione-S-transferase; GST and total glutathione; total GSH), was determined in the cardiac homogenates of diabetic rats. At the tested doses, treatment with PBPI was significantly effective in lowering FBG, serum triglyceride, cholesterol, low-density lipoprotein cholesterol (LDL-c) and very low-density lipoprotein cholesterol (VLDL-c), while concurrently increasing high-density lipoprotein cholesterol (HDL-c). PBPI also significantly decreased the elevations witnessed in LPO levels and restored the biomarkers of oxidative stress in the cardiac homogenate of experimental rats. The results from this study demonstrate that PBPI could improve dyslipidaemia and cardiac oxidative stress in the experimental diabetic animal model possibly by reducing and effectively scavenging reactive oxygen species (ROS) production as well as by increasing antioxidant capacity in combating oxidative stress. Therefore, it can be concluded that PBPI could be explored in the development of a potent cardioprotective supplement or adjuvant therapy towards the management of diabetes and its related complications.
Collapse
|
34
|
Davargaon RS, Sambe AD, Muthangi V V S. Trolox prevents high glucose-induced apoptosis in rat myocardial H9c2 cells by regulating GLUT-4 and antioxidant defense mechanism. IUBMB Life 2019; 71:1876-1895. [PMID: 31359611 DOI: 10.1002/iub.2133] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 07/01/2019] [Indexed: 12/12/2022]
Abstract
Redox imbalance due to hyperglycemia is a causative factor for an increased generation of reactive oxygen species (ROS) that leads to mitochondrial dysfunction and the release of cytochrome-c. The aim of the present study is to elucidate the functional role of oxidative stress (OS) in the induction of apoptosis in H9c2 cells in the hyperglycemic state through glucose transporter-4 (GLUT-4) regulation and antioxidant status. H9c2 cells were incubated with 15, 24, and 33 mM glucose for 24, 48, and 72 hr to induce hyperglycemic stress. Hyperglycemic episodes have significantly influenced GLUT-4 mRNA regulation, depleted glutathione (GSH) and its associated enzymes, reduced cellular antioxidant enzymes (AOEs), caused nuclear condensation, and induced apoptosis by activating caspase-9 and 3 and annexin V binding in a concentration and duration-dependent manner. Trolox pretreatment significantly enhanced the GLUT-4 mRNA and antioxidant defense mechanism, suppressed nuclear condensation, and prevented cytochrome-c release, thereby reducing mitochondrial-dependent apoptosis. The present study shows that the toxic effect of high glucose is significantly regulated and that OS induction can be prevented through a water-soluble vitamin E analog "Trolox" treatment.
Collapse
Affiliation(s)
| | - Asha Devi Sambe
- Laboratory of Gerontology, Department of Zoology, J.B. Campus, Bangalore University, Bengaluru, Karnataka, India
| | | |
Collapse
|
35
|
Argaev Frenkel L, Rozenfeld H, Rozenberg K, Sampson SR, Rosenzweig T. N-Acetyl-l-Cysteine Supplement in Early Life or Adulthood Reduces Progression of Diabetes in Nonobese Diabetic Mice. Curr Dev Nutr 2019; 3:nzy097. [PMID: 30993256 PMCID: PMC6459986 DOI: 10.1093/cdn/nzy097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 11/26/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Oxidative stress contributes to the pathologic process leading to the development, progression, and complications of type 1 diabetes (T1D). OBJECTIVE The aim of this study was to investigate the effect of the antioxidant N-acetyl-l-cysteine (NAC), supplemented during early life or adulthood on the development of T1D. METHODS NAC was administered to nonobese diabetic (NOD) female mice during pregnancy and lactation, and the development of diabetes was followed in offspring. In an additional set of experiments, offspring of untreated mice were given NAC during adulthood, and the development of T1D was followed. Morbidity rate, insulitis and serum cytokines were measured in the 2 sets of experiments. In addition, markers of oxidative stress, glutathione, lipid peroxidation, total antioxidant capacity and activity of antioxidant enzymes, were followed. RESULTS Morbidity rate was reduced in both treatment protocols. A decrease in interferon γ, tumor necrosis factor α, interleukin 1α, and other type 1 diabetes-associated proinflammatory cytokines was found in mice supplemented with NAC in adulthood or during early life compared with control NOD mice. The severity of insulitis was higher in control NOD mice than in treated groups. NAC administration significantly reduced oxidative stress, as determined by reduced lipid peroxidation and increased total antioxidant capacity in serum and pancreas of mice treated in early life or in adulthood and increased pancreatic glutathione when administrated in adulthood. The activity of antioxidant enzymes was not affected in mice given NAC in adulthood, whereas an increase in the activity of superoxide dismutase and catalase was demonstrated in the pancreas of their offspring. CONCLUSION NAC decreased morbidity of NOD mice by attenuating the immune response, presumably by eliminating oxidative stress, and might be beneficial in reducing morbidity rates of T1D in high-risk individuals.
Collapse
Affiliation(s)
- Lital Argaev Frenkel
- Department of Molecular Biology, School of Health Sciences, Ariel University, Ariel, Israel
- Department of Nutrition Sciences, School of Health Sciences, Ariel University, Ariel, Israel
| | - Hava Rozenfeld
- Department of Molecular Biology, School of Health Sciences, Ariel University, Ariel, Israel
- Department of Nutrition Sciences, School of Health Sciences, Ariel University, Ariel, Israel
| | - Konstantin Rozenberg
- Department of Molecular Biology, School of Health Sciences, Ariel University, Ariel, Israel
- Department of Nutrition Sciences, School of Health Sciences, Ariel University, Ariel, Israel
| | - Sanford R Sampson
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Tovit Rosenzweig
- Department of Molecular Biology, School of Health Sciences, Ariel University, Ariel, Israel
- Department of Nutrition Sciences, School of Health Sciences, Ariel University, Ariel, Israel
| |
Collapse
|
36
|
Progesterone, Lipoic Acid, and Sulforaphane as Promising Antioxidants for Retinal Diseases: A Review. Antioxidants (Basel) 2019; 8:antiox8030053. [PMID: 30832304 PMCID: PMC6466531 DOI: 10.3390/antiox8030053] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/21/2019] [Accepted: 02/28/2019] [Indexed: 12/19/2022] Open
Abstract
Oxidative stress has been documented to be a key factor in the cause and progression of different retinal diseases. Oxidative cellular unbalance triggers a sequence of reactions which prompt cell degeneration and retinal dysfunction, both hallmarks of several retinal pathologies. There is no effective treatment, yet, for many retinal diseases. Antioxidant treatment have been pointed out to be an encouraging palliative treatment; the beneficial effects documented involve slowing the progression of the disease, a reduction of cell degeneration, and improvement of retinal functions. There is a vast information corpus on antioxidant candidates. In this review, we expose three of the main antioxidant treatments, selected for their promising results that has been reported to date. Recently, the sulforaphane, an isothiocyanate molecule, has been unveiled as a neuroprotective candidate, by its antioxidant properties. Progesterone, a neurosteroid has been proposed to be a solid and effective neuroprotective agent. Finally, the lipoic acid, an organosulfur compound, is a well-recognized antioxidant. All of them, have been tested and studied on different retinal disease models. In this review, we summarized the published results of these works, to offer a general view of the current antioxidant treatment advances, including the main effects and mechanisms described.
Collapse
|
37
|
Ji K, Wang Y, Du L, Xu C, Liu Y, He N, Wang J, Liu Q. Research Progress on the Biological Effects of Low-Dose Radiation in China. Dose Response 2019; 17:1559325819833488. [PMID: 30833876 PMCID: PMC6393828 DOI: 10.1177/1559325819833488] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 12/19/2018] [Accepted: 12/29/2018] [Indexed: 01/07/2023] Open
Abstract
Human are exposed to ionizing radiation from natural and artificial sources, which consequently poses a possible risk to human health. However, accumulating evidence indicates that the biological effects of low-dose radiation (LDR) are different from those of high-dose radiation (HDR). Low-dose radiation–induced hormesis has been extensively observed in different biological systems, including immunological and hematopoietic systems. Adaptive responses in response to LDR that can induce cellular resistance to genotoxic effects from subsequent exposure to HDR have also been described and researched. Bystander effects, another type of biological effect induced by LDR, have been shown to widely occur in many cell types. Furthermore, the influence of LDR-induced biological effects on certain diseases, such as cancer and diabetes, has also attracted the interest of researchers. Many studies have suggested that LDR has the potential antitumor and antidiabetic complications effects. In addition, the researches on whether LDR could induce stochastic effects were also debated. Studies on the biological effects of LDR in China started in 1970s and considerable progress has been made since. In the present article, we provide an overview of the research progress on the biological effects of LDR in China.
Collapse
Affiliation(s)
- Kaihua Ji
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Department of Radiobiology, Institute of Radiation Medicine of Chinese Academy of Medical Science & Pecking Union Medical College, Tianjin, PR China
| | - Yan Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Department of Radiobiology, Institute of Radiation Medicine of Chinese Academy of Medical Science & Pecking Union Medical College, Tianjin, PR China
| | - Liqing Du
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Department of Radiobiology, Institute of Radiation Medicine of Chinese Academy of Medical Science & Pecking Union Medical College, Tianjin, PR China
| | - Chang Xu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Department of Radiobiology, Institute of Radiation Medicine of Chinese Academy of Medical Science & Pecking Union Medical College, Tianjin, PR China
| | - Yang Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Department of Radiobiology, Institute of Radiation Medicine of Chinese Academy of Medical Science & Pecking Union Medical College, Tianjin, PR China
| | - Ningning He
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Department of Radiobiology, Institute of Radiation Medicine of Chinese Academy of Medical Science & Pecking Union Medical College, Tianjin, PR China
| | - Jinhan Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Department of Radiobiology, Institute of Radiation Medicine of Chinese Academy of Medical Science & Pecking Union Medical College, Tianjin, PR China
| | - Qiang Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Department of Radiobiology, Institute of Radiation Medicine of Chinese Academy of Medical Science & Pecking Union Medical College, Tianjin, PR China
| |
Collapse
|
38
|
Tej R, Hamdi A, Serairi Beji R, Aidi Wannes W, Bettaieb Rebey I, Oueslati S, Ksouri R, Saidani Tounsi M, Lachaal M, Karray Bouraoui N. Does Lycium europaeum leaf have antihyperglycemic, antihyperlipidemic and antioxidant effects. BRAZ J PHARM SCI 2019. [DOI: 10.1590/s2175-97902019000118064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Affiliation(s)
- Rabeb Tej
- Campus Universitaire Tunis El Manar, Tunisia
| | - Amel Hamdi
- Campus Universitaire Tunis El Manar, Tunisia
| | | | | | | | - Samia Oueslati
- Center of Biotechnology of the Technopole Borj-Cedria, Tunisia
| | - Riadh Ksouri
- Center of Biotechnology of the Technopole Borj-Cedria, Tunisia
| | | | | | | |
Collapse
|
39
|
Previte DM, Piganelli JD. Reactive Oxygen Species and Their Implications on CD4 + T Cells in Type 1 Diabetes. Antioxid Redox Signal 2018; 29:1399-1414. [PMID: 28990401 DOI: 10.1089/ars.2017.7357] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Previous work has indicated that type 1 diabetes (T1D) pathology is highly driven by reactive oxygen species (ROS). One way in which ROS shape the autoimmune response demonstrated in T1D is by promoting CD4+ T cell activation and differentiation. As CD4+ T cells are a significant contributor to pancreatic β cell destruction in T1D, understanding how ROS impact their development, activation, and differentiation is critical. Recent Advances: CD4+ T cells themselves generate ROS via nicotinamide adenine dinucleotide phosphate (NADPH) oxidase expression and electron transport chain activity. Moreover, T cells can also be exposed to exogenous ROS generated by other immune cells (e.g., macrophages and dendritic cells) and β cells. Genetically modified animals and ROS inhibitors have demonstrated that ROS blockade during activation results in CD4+ T cell hyporesponsiveness and reduced diabetes incidence. Critical Issues and Future Directions: Although the majority of studies with regard to T1D and CD4+ T cells have been done to examine the influence of redox on CD4+ T cell activation, this is not the only circumstance in which a T cell can be impacted by redox. ROS and redox have also been shown to play roles in CD4+ T cell-related tolerogenic mechanisms, including thymic selection and regulatory T cell-mediated suppression. However, the effect of these mechanisms with respect to T1D pathogenesis remains elusive. Therefore, pursuing these avenues may provide valuable insight into the global role of ROS and redox in autoreactive CD4+ T cell formation and function.
Collapse
Affiliation(s)
- Dana M Previte
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center , Pittsburgh, Pennsylvania
| | - Jon D Piganelli
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center , Pittsburgh, Pennsylvania
| |
Collapse
|
40
|
Sahajpal NS, Goel RK, Chaubey A, Aurora R, Jain SK. Pathological Perturbations in Diabetic Retinopathy: Hyperglycemia, AGEs, Oxidative Stress and Inflammatory Pathways. Curr Protein Pept Sci 2018; 20:92-110. [DOI: 10.2174/1389203719666180928123449] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/10/2018] [Accepted: 08/29/2017] [Indexed: 01/02/2023]
Abstract
Diabetic retinopathy (DR) remains the leading cause of blindness in working-aged adults
around the world. The proliferative diabetic retinopathy (PDR) and diabetic macular edema (DME) are
the severe vision threatening stages of the disorder. Although, a huge body of research exists in elaborating
the pathological mechanisms that lead to the development of DR, the certainty and the correlation
amongst these pathways remain ambiguous. The complexity of DR lies in the multifactorial pathological
perturbations that are instrumental in both the disease development and its progression. Therefore, a holistic
perspective with an understanding of these pathways and their correlation may explain the pathogenesis
of DR as a unifying mechanism. Hyperglycemia, oxidative stress and inflammatory pathways
are the crucial components that are implicated in the pathogenesis of DR. Of these, hyperglycemia appears
to be the initiating central component around which other pathological processes operate. Thus,
this review discusses the role of hyperglycemia, oxidative stress and inflammation in the pathogenesis of
DR, and highlights the cross-talk amongst these pathways in an attempt to understand the complex interplay
of these mechanisms. Further, an effort has been made to identify the knowledge gap and the key
players in each pathway that may serve as potential therapeutic drug targets.
Collapse
Affiliation(s)
- Nikhil Shri Sahajpal
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Rajesh Kumar Goel
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - Alka Chaubey
- Cytogenetics Laboratory, Greenwood Genetic Center, Greenwood, South Carolina, SC, United States
| | - Rohan Aurora
- The International School Bangalore, Karnataka, India
| | - Subheet Kumar Jain
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
41
|
Sharif K, Watad A, Coplan L, Amital H, Shoenfeld Y, Afek A. Psychological stress and type 1 diabetes mellitus: what is the link? Expert Rev Clin Immunol 2018; 14:1081-1088. [PMID: 30336709 DOI: 10.1080/1744666x.2018.1538787] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Type 1 diabetes mellitus (T1DM) is a chronic disease characterized by the destruction of insulin-producing β-cells of the pancreas. The current paradigm in this disease's etiopathogenesis points toward the interplay of genetic and environmental factors. Among the environmental variables, dietary factors, intestinal microbiota, toxins, and psychological stress have been implicated in disease onset. Areas covered: This review aims to investigate the relationship between psychological stress and T1DM by presenting evidence from epidemiological studies, animal models, and to provide the mechanism involved in this association. The literature search was conducted through PubMed to identify studies that investigate the connection between stress and T1DM. Experimental designs, such as case-control, and retrospective and prospective cohorts studies, were included. Expert commentary: A wide array of evidence, ranging from epidemiological to animal models, points toward the role of psychological stressors in T1DM pathogenesis. Various mechanisms have been proposed, including the hypothalamic-pituitary-adrenal (HPA) axis, influence of the nervous system on immune cells, and insulin resistance. Further research could investigate the gene-stress interactions to evaluate the risk of T1DM development.
Collapse
Affiliation(s)
- Kassem Sharif
- a Department of Medicine 'B' , Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center , Tel-Hashomer , Israel.,b Sackler Faculty of Medicine , Tel-Aviv University , Tel-Aviv , Israel
| | - Abdulla Watad
- a Department of Medicine 'B' , Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center , Tel-Hashomer , Israel.,b Sackler Faculty of Medicine , Tel-Aviv University , Tel-Aviv , Israel
| | - Louis Coplan
- b Sackler Faculty of Medicine , Tel-Aviv University , Tel-Aviv , Israel
| | - Howard Amital
- a Department of Medicine 'B' , Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center , Tel-Hashomer , Israel.,b Sackler Faculty of Medicine , Tel-Aviv University , Tel-Aviv , Israel
| | - Yehuda Shoenfeld
- b Sackler Faculty of Medicine , Tel-Aviv University , Tel-Aviv , Israel.,c Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center , Tel-Hashomer , Israel.,d Incumbent of the Laura Schwarz-Kipp Chair for Research of Autoimmune Diseases , Tel-Aviv University , Tel-Aviv , Israel.,e Head of The Mosaic of Autoimmunity Project , Saint Petersburg State University , Saint Petersburg , Russia
| | - Arnon Afek
- b Sackler Faculty of Medicine , Tel-Aviv University , Tel-Aviv , Israel.,c Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center , Tel-Hashomer , Israel
| |
Collapse
|
42
|
Feduska JM, Tse HM. The proinflammatory effects of macrophage-derived NADPH oxidase function in autoimmune diabetes. Free Radic Biol Med 2018; 125:81-89. [PMID: 29723665 DOI: 10.1016/j.freeradbiomed.2018.04.581] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/22/2018] [Accepted: 04/27/2018] [Indexed: 12/15/2022]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease culminating in the destruction of insulin-producing pancreatic β-cells. While ultimately a T cell-mediated disease, macrophages play an indispensable role in disease initiation and progression. Infiltrating macrophages generate an inflammatory environment by releasing NADPH oxidase-derived superoxide and proinflammatory cytokines. The synthesis of reactive oxygen species (ROS) is acknowledged as putative factors contributing to autoimmunity and β-cell damage in T1D. In addition to direct lysis, free radicals collectively participate in β-cell destruction by providing a redox-dependent third signal necessary for islet-reactive CD4 and CD8 T cell maturation and by inducing oxidative post-translational modifications of β-cell epitopes to further exacerbate autoimmune responses. This review will provide an overview of macrophage function and a synergistic cross-talk with redox biology that contributes to autoimmune dysregulation in T1D.
Collapse
Affiliation(s)
- Joseph M Feduska
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294-2182, United States
| | - Hubert M Tse
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294-2182, United States.
| |
Collapse
|
43
|
Bissinger R, Bhuyan AAM, Qadri SM, Lang F. Oxidative stress, eryptosis and anemia: a pivotal mechanistic nexus in systemic diseases. FEBS J 2018; 286:826-854. [PMID: 30028073 DOI: 10.1111/febs.14606] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/15/2018] [Accepted: 07/18/2018] [Indexed: 12/21/2022]
Abstract
The average lifespan of circulating erythrocytes usually exceeds hundred days. Prior to that, however, erythrocytes may be exposed to oxidative stress in the circulation which could cause injury and trigger their suicidal death or eryptosis. Oxidative stress activates Ca2+ -permeable nonselective cation channels in the cell membrane, thus, stimulating Ca2+ entry and subsequent cell membrane scrambling resulting in phosphatidylserine exposure and activation of Ca2+ -sensitive K+ channels leading to K+ exit, hyperpolarization, Cl- exit, and ultimately cell shrinkage due to loss of KCl and osmotically driven water. While the mechanistic link between oxidative stress and anemia remains ill-defined, several diseases such as diabetes, hepatic failure, malignancy, chronic kidney disease and inflammation have been identified to display both increased oxidative stress as well as eryptosis. Recent compelling evidence suggests that oxidative stress is an important perpetrator in accelerating erythrocyte loss in different systemic conditions and an underlying mechanism for anemia associated with these pathological states. In the present review, we discuss the role of oxidative stress in reducing erythrocyte survival and provide novel insights into the possible use of antioxidants as putative antieryptotic and antianemic agents in a variety of systemic diseases.
Collapse
Affiliation(s)
- Rosi Bissinger
- Department of Internal Medicine III, Eberhard-Karls-University Tübingen, Germany
| | - Abdulla Al Mamun Bhuyan
- Department of Vegetative & Clinical Physiology, Institute of Physiology, Eberhard-Karls-University Tübingen, Germany
| | - Syed M Qadri
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada.,Centre for Innovation, Canadian Blood Services, Hamilton, ON, Canada
| | - Florian Lang
- Department of Vegetative & Clinical Physiology, Institute of Physiology, Eberhard-Karls-University Tübingen, Germany.,Department of Molecular Medicine II, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
44
|
Giri B, Dey S, Das T, Sarkar M, Banerjee J, Dash SK. Chronic hyperglycemia mediated physiological alteration and metabolic distortion leads to organ dysfunction, infection, cancer progression and other pathophysiological consequences: An update on glucose toxicity. Biomed Pharmacother 2018; 107:306-328. [PMID: 30098549 DOI: 10.1016/j.biopha.2018.07.157] [Citation(s) in RCA: 210] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 07/15/2018] [Accepted: 07/31/2018] [Indexed: 02/09/2023] Open
Abstract
Chronic exposure of glucose rich environment creates several physiological and pathophysiological changes. There are several pathways by which hyperglycemia exacerbate its toxic effect on cells, tissues and organ systems. Hyperglycemia can induce oxidative stress, upsurge polyol pathway, activate protein kinase C (PKC), enhance hexosamine biosynthetic pathway (HBP), promote the formation of advanced glycation end-products (AGEs) and finally alters gene expressions. Prolonged hyperglycemic condition leads to severe diabetic condition by damaging the pancreatic β-cell and inducing insulin resistance. Numerous complications have been associated with diabetes, thus it has become a major health issue in the 21st century and has received serious attention. Dysregulation in the cardiovascular and reproductive systems along with nephropathy, retinopathy, neuropathy, diabetic foot ulcer may arise in the advanced stages of diabetes. High glucose level also encourages proliferation of cancer cells, development of osteoarthritis and potentiates a suitable environment for infections. This review culminates how elevated glucose level carries out its toxicity in cells, metabolic distortion along with organ dysfunction and elucidates the complications associated with chronic hyperglycemia.
Collapse
Affiliation(s)
- Biplab Giri
- Department of Physiology, University of Gour Banga, Mokdumpur, Malda 732103, India; Experimental Medicine and Stem Cell Research Laboratory, Department of Physiology, West Bengal State University, Barasat, Kolkata 700126, India.
| | - Sananda Dey
- Department of Physiology, University of Gour Banga, Mokdumpur, Malda 732103, India; Experimental Medicine and Stem Cell Research Laboratory, Department of Physiology, West Bengal State University, Barasat, Kolkata 700126, India
| | - Tanaya Das
- Experimental Medicine and Stem Cell Research Laboratory, Department of Physiology, West Bengal State University, Barasat, Kolkata 700126, India
| | - Mrinmoy Sarkar
- Experimental Medicine and Stem Cell Research Laboratory, Department of Physiology, West Bengal State University, Barasat, Kolkata 700126, India
| | - Jhimli Banerjee
- Department of Physiology, University of Gour Banga, Mokdumpur, Malda 732103, India
| | - Sandeep Kumar Dash
- Department of Physiology, University of Gour Banga, Mokdumpur, Malda 732103, India.
| |
Collapse
|
45
|
Belhadj S, Hentati O, Hamdaoui G, Fakhreddine K, Maillard E, Dal S, Sigrist S. Beneficial Effect of Jojoba Seed Extracts on Hyperglycemia-Induced Oxidative Stress in RINm5f Beta Cells. Nutrients 2018; 10:nu10030384. [PMID: 29558444 PMCID: PMC5872802 DOI: 10.3390/nu10030384] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/12/2018] [Accepted: 03/15/2018] [Indexed: 12/21/2022] Open
Abstract
Hyperglycemia occurs during diabetes and insulin resistance. It causes oxidative stress by increasing reactive oxygen species (ROS) levels, leading to cellular damage. Polyphenols play a central role in defense against oxidative stress. In our study, we investigated the antioxidant properties of simmondsin, a pure molecule present in jojoba seeds, and of the aqueous extract of jojoba seeds on fructose-induced oxidative stress in RINm5f beta cells. The exposure of RINm5f beta cells to fructose triggered the loss of cell viability (-48%, p < 0.001) and disruption of insulin secretion (p < 0.001) associated with of reactive oxygen species (ROS) production and a modulation of pro-oxidant and antioxidant signaling pathway. Cell pre-treatments with extracts considerably increased cell viability (+86% p < 0.001) for simmondsin and +74% (p < 0.001) for aqueous extract and insulin secretion. The extracts also markedly decreased ROS (-69% (p < 0.001) for simmondsin and -59% (p < 0.001) for aqueous extract) and caspase-3 activation and improved antioxidant defense, inhibiting p22phox and increasing nuclear factor (erythroid-derived 2)-like 2 (Nrf2) levels (+70%, p < 0.001) for aqueous extract. Simmondsin had no impact on Nrf2 levels. The richness and diversity of molecules present in jojoba seed extract makes jojoba a powerful agent to prevent the destruction of RINm5f beta cells induced by hyperglycemia.
Collapse
Affiliation(s)
- Sahla Belhadj
- UMR DIATHEC, EA 7294, Fédération de Médecine Translationnelle de Strasbourg (FMTS), University of Strasbourg, Boulevard René Leriche, 67200 Strasbourg, France.
| | - Olfa Hentati
- Institut Supérieur de Biotechnologie de Sfax (ISBS), Road of Soukra Km 4, PO Box, Sfax 1175, Tunisia.
| | - Ghaith Hamdaoui
- Laboratory of Bioactive Substances, Center of Biotechnology of Borj Cédria, BP 901, Hammam-lif 2050, Tunisia.
| | | | - Elisa Maillard
- UMR DIATHEC, EA 7294, Fédération de Médecine Translationnelle de Strasbourg (FMTS), University of Strasbourg, Boulevard René Leriche, 67200 Strasbourg, France.
| | - Stéphanie Dal
- UMR DIATHEC, EA 7294, Fédération de Médecine Translationnelle de Strasbourg (FMTS), University of Strasbourg, Boulevard René Leriche, 67200 Strasbourg, France.
| | - Séverine Sigrist
- UMR DIATHEC, EA 7294, Fédération de Médecine Translationnelle de Strasbourg (FMTS), University of Strasbourg, Boulevard René Leriche, 67200 Strasbourg, France.
| |
Collapse
|
46
|
Arif Z, Neelofar K, Arfat MY, Zaman A, Tarannum A, Parveen I, Ahmad S, Khan MA, Badar A, Islam SN. Hyperglycemia induced reactive species trigger structural changes in human serum albumin of type 1 diabetic subjects. Int J Biol Macromol 2018; 107:2141-2149. [DOI: 10.1016/j.ijbiomac.2017.10.091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/12/2017] [Accepted: 10/14/2017] [Indexed: 01/01/2023]
|
47
|
Dehdashtian E, Mehrzadi S, Yousefi B, Hosseinzadeh A, Reiter RJ, Safa M, Ghaznavi H, Naseripour M. Diabetic retinopathy pathogenesis and the ameliorating effects of melatonin; involvement of autophagy, inflammation and oxidative stress. Life Sci 2018; 193:20-33. [DOI: 10.1016/j.lfs.2017.12.001] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/19/2017] [Accepted: 12/01/2017] [Indexed: 12/12/2022]
|
48
|
Ischemic Retinopathies: Oxidative Stress and Inflammation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:3940241. [PMID: 29410732 PMCID: PMC5749295 DOI: 10.1155/2017/3940241] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 11/20/2017] [Indexed: 12/15/2022]
Abstract
Ischemic retinopathies (IRs), such as retinopathy of prematurity (ROP), diabetic retinopathy (DR), and (in many cases) age-related macular degeneration (AMD), are ocular disorders characterized by an initial phase of microvascular changes that results in ischemia, followed by a second phase of abnormal neovascularization that may culminate into retinal detachment and blindness. IRs are complex retinal conditions in which several factors play a key role during the development of the different pathological stages of the disease. Increasing evidence reveals that oxidative stress and inflammatory processes are important contributors to the pathogenesis of IRs. Despite the beneficial effects of the photocoagulation and anti-VEGF therapy during neovascularization phase, the need to identify novel targets to prevent initial phases of these ocular pathologies is still needed. In this review, we provide an update on the involvement of oxidative stress and inflammation in the progression of IRs and address some therapeutic interventions by using antioxidants and anti-inflammatory agents.
Collapse
|
49
|
Qiao Y, Fan CL, Tang MK. Astragaloside IV protects rat retinal capillary endothelial cells against high glucose-induced oxidative injury. Drug Des Devel Ther 2017; 11:3567-3577. [PMID: 29263652 PMCID: PMC5732560 DOI: 10.2147/dddt.s152489] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Aim Diabetic retinopathy is a microvascular complication of diabetes that leads to blindness. Hyperglycemia causes oxidative stress, which is an important cause in the pathogenesis of microangiopathy. The aim of this study was to investigate the potential protective effects of astragaloside IV (AS-IV) in retinal capillary endothelial cells (RCECs) incubated with high glucose conditions. Methods and results Based on rat RCECs cultured with high glucose (30 mM) in vitro, a significant increase in cell viability in rat RCECs incubated with both AS-IV and high glucose for 48 or 72 h by MTT assay. The increased viability was accompanied by decreased glucose transporter-1 expression using immunofluorescent assay. Meanwhile, AS-IV reduced intracellular hydrogen peroxide and superoxide, decreased mitochondrial reactive oxygen species in rat RCECs with high glucose by the fluorescent probes, and lowered malondialdehyde levels. In addition, AS-IV increased the activities of total superoxide dismutase, MnSOD, catalase, and glutathione peroxidase. The glutathione content also increased after AS-IV treatment. Furthermore, AS-IV reduced NADPH oxidase 4 expression by western blot method. Conclusion These results suggest that the main mechanism underlying the protective effects of AS-IV in high glucose-injured RCECs may be related to its antioxidative function.
Collapse
Affiliation(s)
- Yuan Qiao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Chaoyang District, Beijing, People's Republic of China
| | - Chun-Lan Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Chaoyang District, Beijing, People's Republic of China
| | - Min-Ke Tang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Chaoyang District, Beijing, People's Republic of China
| |
Collapse
|
50
|
Catanzaro OL, Capponi JA, Di Martino I, Labal ES, Sirois P. Oxidative stress in the optic nerve and cortical visual area of steptozotocin-induced diabetic Wistar rats: Blockade with a selective bradykinin B 1 receptor antagonist. Neuropeptides 2017; 66:97-102. [PMID: 29089149 DOI: 10.1016/j.npep.2017.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 08/07/2017] [Accepted: 10/19/2017] [Indexed: 01/13/2023]
Abstract
The role of bradykinin B1 receptors on the oxidative stress as measured by the levels of Na+/K+ ATPase activity, malondialdehyde (MDA) and glutathione (GSH) in male Wistar rat optic nerve and visual cortex area 1 and 4weeks after STZ treatment was studied. Rats were divided into 4 groups (n=6-7): 1. Controls (non-diabetics); 2. Diabetics (65mg/kg streptozotocin, STZ); 3. Diabetics injected with B1 antagonist R-954 (2mg/Kg) during the last 3days of a one week period; 4. Diabetics injected with B1 antagonist R-954 (2mg/Kg) during the last 3days of a 4week period. The results showed that plasma glucose levels increased by up to 4 fold in diabetic rats 1 or 4weeks following the STZ treatment. R-954 treatment did significantly decrease blood glucose levels. Levels of MDA was increased in the plasma of the 1 and 4week diabetic animals whereas the GSH levels were decreased. Both markers returned to normal following R-954 treatment. Na+/K+ ATPase activity significantly decreased in the optic nerve and visual cortex of diabetic rats at 1 and 4weeks but returned to normal following R-954 treatment. MDA levels increased markedly at 1 and 4weeks compared with control levels in the optic nerve but slightly in the visual cortex and returned to control levels in both tissues following R-954 treatment. GSH levels decreased in both tissues at 1 and 4weeks compared with control levels. Following administration of the selective BKB1R antagonist R-954, the levels of GSH returned to normal in both tissues of the 1 and 4week diabetic animals. These results showed that the inducible BKB1 receptors are associated with the oxidative stress in the optic nerve and cortical visual area of diabetic rats and suggested that BKB1-R antagonist R-954 could have a beneficial role in the treatment of diabetic retinopathy.
Collapse
Affiliation(s)
- Orlando L Catanzaro
- Departamento de Biología y Bioquímica, Laboratorio de Diabetes Experimental, Universidad Argentina John F Kennedy, Buenos Aires, Argentina; Escuela de Medicina y Odontologia -USAL, Buenos Aires, Argentina.
| | - Jorgelina Aira Capponi
- Departamento de Biología y Bioquímica, Laboratorio de Diabetes Experimental, Universidad Argentina John F Kennedy, Buenos Aires, Argentina
| | - Irene Di Martino
- Departamento de Biología y Bioquímica, Laboratorio de Diabetes Experimental, Universidad Argentina John F Kennedy, Buenos Aires, Argentina
| | - Emilio S Labal
- Departamento de Biología y Bioquímica, Laboratorio de Diabetes Experimental, Universidad Argentina John F Kennedy, Buenos Aires, Argentina
| | - Pierre Sirois
- CHUL Research Center, Laval University, Québec, Canada
| |
Collapse
|