1
|
Wang XX, Chen WZ, Li C, Xu RS. Current potential pathogenic mechanisms of copper-zinc superoxide dismutase 1 (SOD1) in amyotrophic lateral sclerosis. Rev Neurosci 2024; 35:549-563. [PMID: 38381656 DOI: 10.1515/revneuro-2024-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/27/2024] [Indexed: 02/23/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a rare neurodegenerative disease which damages upper and lower motor neurons (UMN and LMN) innervating the muscles of the trunk, extremities, head, neck and face in cerebrum, brain stem and spinal cord, which results in the progressive weakness, atrophy and fasciculation of muscle innervated by the related UMN and LMN, accompanying with the pathological signs leaded by the cortical spinal lateral tract lesion. The pathogenesis about ALS is not fully understood, and no specific drugs are available to cure and prevent the progression of this disease at present. In this review, we reviewed the structure and associated functions of copper-zinc superoxide dismutase 1 (SOD1), discuss why SOD1 is crucial to the pathogenesis of ALS, and outline the pathogenic mechanisms of SOD1 in ALS that have been identified at recent years, including glutamate-related excitotoxicity, mitochondrial dysfunction, endoplasmic reticulum stress, oxidative stress, axonal transport disruption, prion-like propagation, and the non-cytologic toxicity of glial cells. This review will help us to deeply understand the current progression in this field of SOD1 pathogenic mechanisms in ALS.
Collapse
Affiliation(s)
- Xin-Xin Wang
- Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, The Clinical College of Nanchang Medical College, National Regional Center for Neurological Diseases, Xiangya Hospital of Central South University, Jiangxi Hospital, Nanchang 330006, Jiangxi Province, China
- Medical College of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Wen-Zhi Chen
- Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, The Clinical College of Nanchang Medical College, National Regional Center for Neurological Diseases, Xiangya Hospital of Central South University, Jiangxi Hospital, Nanchang 330006, Jiangxi Province, China
| | - Cheng Li
- Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, The Clinical College of Nanchang Medical College, National Regional Center for Neurological Diseases, Xiangya Hospital of Central South University, Jiangxi Hospital, Nanchang 330006, Jiangxi Province, China
| | - Ren-Shi Xu
- Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, The Clinical College of Nanchang Medical College, National Regional Center for Neurological Diseases, Xiangya Hospital of Central South University, Jiangxi Hospital, Nanchang 330006, Jiangxi Province, China
- Medical College of Nanchang University, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|
2
|
Marzetti E, Calvani R, Landi F, Coelho-Júnior HJ, Picca A. Mitochondrial Quality Control Processes at the Crossroads of Cell Death and Survival: Mechanisms and Signaling Pathways. Int J Mol Sci 2024; 25:7305. [PMID: 39000412 PMCID: PMC11242688 DOI: 10.3390/ijms25137305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/20/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
Biological aging results from an accumulation of damage in the face of reduced resilience. One major driver of aging is cell senescence, a state in which cells remain viable but lose their proliferative capacity, undergo metabolic alterations, and become resistant to apoptosis. This is accompanied by complex cellular changes that enable the development of a senescence-associated secretory phenotype (SASP). Mitochondria, organelles involved in energy provision and activities essential for regulating cell survival and death, are negatively impacted by aging. The age-associated decline in mitochondrial function is also accompanied by the development of chronic low-grade sterile inflammation. The latter shares some features and mediators with the SASP. Indeed, the unloading of damage-associated molecular patterns (DAMPs) at the extracellular level can trigger sterile inflammatory responses and mitochondria can contribute to the generation of DAMPs with pro-inflammatory properties. The extrusion of mitochondrial DNA (mtDNA) via mitochondrial outer membrane permeabilization under an apoptotic stress triggers senescence programs. Additional pathways can contribute to sterile inflammation. For instance, pyroptosis is a caspase-dependent inducer of systemic inflammation, which is also elicited by mtDNA release and contributes to aging. Herein, we overview the molecular mechanisms that may link mitochondrial dyshomeostasis, pyroptosis, sterile inflammation, and senescence and discuss how these contribute to aging and could be exploited as molecular targets for alleviating the cell damage burden and achieving healthy longevity.
Collapse
Affiliation(s)
- Emanuele Marzetti
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00618 Rome, Italy
| | - Riccardo Calvani
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00618 Rome, Italy
| | - Francesco Landi
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00618 Rome, Italy
| | - Helio José Coelho-Júnior
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
| | - Anna Picca
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00618 Rome, Italy
- Department of Medicine and Surgery, LUM University, SS100 km 18, 70010 Casamassima, Italy
| |
Collapse
|
3
|
Golomb BA, Berg BK, Han JH. Susceptibility to radiation adverse effects in veterans with Gulf War illness and healthy civilians. Sci Rep 2024; 14:874. [PMID: 38195674 PMCID: PMC10776672 DOI: 10.1038/s41598-023-50083-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/15/2023] [Indexed: 01/11/2024] Open
Abstract
We evaluated whether veterans with Gulf War illness (VGWI) report greater ionizing radiation adverse effects (RadAEs) than controls; whether radiation-sensitivity is tied to reported chemical-sensitivity; and whether environmental exposures are apparent risk factors for reported RadAEs (rRadAEs). 81 participants (41 VGWI, 40 controls) rated exposure to, and rRadAEs from, four radiation types. The relations of RadAE-propensity (defined as the ratio of rRadAEs to summed radiation exposures) to Gulf War illness (GWI) presence and severity, and to reported chemical-sensitivity were assessed. Ordinal logistic regression evaluated exposure prediction of RadAE-propensity in the full sample, in VGWI, and stratified by age and chemical-sensitivity. RadAE-propensity was increased in VGWI (vs. controls) and related to GWI severity (p < 0.01) and chemical-sensitivity (p < 0.01). Past carbon monoxide (CO) exposure emerged as a strong, robust predictor of RadAE-propensity on univariable and multivariable analyses (p < 0.001 on multivariable assessment, without and with adjustment for VGWI case status), retaining significance in age-stratified and chemical-sensitivity-stratified replication analyses. Thus, RadAE-propensity, a newly-described GWI-feature, relates to chemical-sensitivity, and is predicted by CO exposure-both features reported for nonionizing radiation sensitivity, consistent with shared mitochondrial/oxidative toxicity across radiation frequencies. Greater RadAE vulnerability fits an emerging picture of heightened drug/chemical susceptibility in VGWI.
Collapse
Affiliation(s)
- Beatrice Alexandra Golomb
- Department of Medicine, UC San Diego School of Medicine, University of California, San Diego, 9500 Gilman Dr. #0995, La Jolla, CA, 92093-0995, USA.
| | - Brinton Keith Berg
- Department of Medicine, UC San Diego School of Medicine, University of California, San Diego, 9500 Gilman Dr. #0995, La Jolla, CA, 92093-0995, USA
| | - Jun Hee Han
- Department of Medicine, UC San Diego School of Medicine, University of California, San Diego, 9500 Gilman Dr. #0995, La Jolla, CA, 92093-0995, USA
| |
Collapse
|
4
|
Golomb BA, Han JH. Adverse effect propensity: A new feature of Gulf War illness predicted by environmental exposures. iScience 2023; 26:107363. [PMID: 37554469 PMCID: PMC10405325 DOI: 10.1016/j.isci.2023.107363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 05/26/2023] [Accepted: 07/10/2023] [Indexed: 08/10/2023] Open
Abstract
A third of 1990-1 Gulf-deployed personnel developed drug/chemical-induced multisymptom illness, "Gulf War illness" (GWI). Veterans with GWI (VGWI) report increased drug/exposure adverse effects (AEs). Using previously collected data from a case-control study, we evaluated whether the fraction of exposures that engendered AEs ("AE Propensity") is increased in VGWI (it was); whether AE Propensity is related to self-rated "chemical sensitivity" (it did); and whether specific exposures "predicted" AE Propensity (they did). Pesticides and radiation exposure were significant predictors, with copper significantly "protective"-in the total sample (adjusted for GWI-status) and separately in VGWI and controls, on multivariable regression. Mitochondrial impairment and oxidative stress (OS) underlie AEs from many exposures irrespective of nominal specific mechanism. We hypothesize that mitochondrial toxicity and interrelated OS from pesticides and radiation position people on the steep part of the curve of mitochondrial impairment and OS versus symptom/biological disruption, amplifying impact of new exposures. Copper, meanwhile, is involved in critical OS detoxification processes.
Collapse
Affiliation(s)
- Beatrice A. Golomb
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jun Hee Han
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
5
|
Zhao F, Wang Q, An X, Tan Q, Yun J, Zhang Y. Oxidative damage from repeated tissue isolation for subculturing causes degeneration in Volvariella volvacea. Front Microbiol 2023; 14:1210496. [PMID: 37547686 PMCID: PMC10397519 DOI: 10.3389/fmicb.2023.1210496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 07/05/2023] [Indexed: 08/08/2023] Open
Abstract
The fungal fruiting body is the organized mycelium. Tissue isolation and mycelium succession are common methods of fungal species purification and rejuvenation in the production of edible mushrooms. However, repeated succession increases strain degeneration. In this study, we examined the effect of repeated tissue isolation from Volvariella volvacea fruitbodies on the occurrence of degeneration. The results showed that less than four times in succession improved production capacity, however, after 12 successions, the traits indicating strain degeneration were apparent. For instance, the density of aerophytic hyphae, hyphal growth rate and hyphal biomass were gradually reduced, while the hyphae branching was increased. Also, other degenerative traits such as prolonged production cycles and decreased biological efficiency became evident. In particular, after 19 successions, the strain degeneration became so severe no fruiting bodies were produces anymore. Meanwhile, with the increase in successions, the antioxidant enzyme activity decreased, reactive oxygen species (ROS) increased, the number of nuclei decreased, and the mitochondrial membrane potential decreased along with morphological changes in the mitochondria. This study showed that repeated tissue isolation increased oxidative damage in the succession strain due to the accumulation of ROS, causing cellular senescence, in turn, degeneration in V. volvacea strain.
Collapse
Affiliation(s)
- Fengyun Zhao
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Qiaoli Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
- Kangle County Special Agricultural Development Center, Linxia, Gansu, China
| | - XueMing An
- Lanzhou Institute of Biological Products Limited Liability Company, Lanzhou, Gansu, China
| | - Qiangfei Tan
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Jianmin Yun
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Yubin Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
6
|
Zhao F, Liu X, Chen C, Cheng Z, Wang W, Yun J. Successive mycelial subculturing decreased lignocellulase activity and increased ROS accumulation in Volvariella volvacea. Front Microbiol 2022; 13:997485. [PMID: 36187940 PMCID: PMC9520666 DOI: 10.3389/fmicb.2022.997485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/25/2022] [Indexed: 11/23/2022] Open
Abstract
Strain degradation is a common problem in many artificially-cultivated edible mushrooms. As a fungus with poor tolerance to low-temperature, Volvariella volvacea cannot delay its degradation by long-term low temperature storage like other fungi, so its degradation is particularly severe, which hinders industrial applications. Periodic mycelial subculture is a common storage method for V. volvacea, but excessive subculturing can also lead to strain degeneration. After 20 months of continuous subculturing every 3 days, V. volvacea strains S1–S20 were obtained, and their characteristics throughout the subculture process were analyzed. With increasing number of subculture, the growth rate, mycelial biomass, the number of fruiting bodies and biological efficiency gradually decreased while the production cycle and the time to primordium formation was lengthened. Strains S13–S20, obtained after 13–20 months of mycelial subculturing, also lacked the ability to produce fruiting bodies during cultivation experiments. Determination of reactive oxygen species (ROS) content as well as enzyme activity showed that decreased lignocellulase activity, along with excessive accumulation of ROS, was concomitant with the subculture-associated degeneration of V. volvacea. Reverse transcription polymerase chain reaction (RT-PCR) was eventually used to analyze the gene expression for lignocellulase and antioxidant enzymes in subcultured V. volvacea strains, with the results found to be consistent with prior observations regarding enzyme activities. These findings could form the basis of further studies on the degeneration mechanism of V. volvacea and other fungi.
Collapse
Affiliation(s)
- Fengyun Zhao
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
- *Correspondence: Fengyun Zhao,
| | - Xiaoxia Liu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
- Higher Vocational College, Shaanxi institute of international trade and Commerce, Xi’an, China
| | - Chao Chen
- Sinograin Chengdu Storage Research Institute Co. Ltd, Chengdu, China
| | - Zhihong Cheng
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Wenpei Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Jianmin Yun
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
7
|
The antifungal mechanisms of plant volatile compound 1-octanol against Aspergillus flavus growth. Appl Microbiol Biotechnol 2022; 106:5179-5196. [PMID: 35779097 DOI: 10.1007/s00253-022-12049-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/15/2022] [Accepted: 06/19/2022] [Indexed: 12/16/2022]
Abstract
The exploitation of active ingredients from plant volatile organic compounds as natural gaseous fungicides shows remarkable potential for controlling fungal decay in postharvest agroproducts. Although 1-octanol is a common component of cereal volatiles, its antifungal potency against spoilage fungi in postharvest grains remains unclear. In this study, we studied the effectiveness of 1-octanol against Aspergillus flavus growth in postharvest grains and its mechanisms of action. 1-Octanol vapor and liquid contact dose-dependently inhibited A. flavus spore germination and mycelial growth at a low concentration. The simulated storage experiment demonstrated that 300 μL/L of 1-octanol vapor completely controlled A. flavus growth in wheat, corn, and paddy grains with 20% moisture content. 1-Octanol treatment irreversibly damaged the conidial and mycelial morphology of A. flavus and caused electrolyte leakage due to reduced plasma membrane integrity. It induced apoptosis along with morphological abnormalities, phosphatidylserine externalization, mitochondrial membrane potential depolarization, intracellular reactive oxygen species accumulation, and DNA fragmentation in A. flavus cells. Metabolomic analysis revealed that 1-octanol treatment disrupted the biosynthesis of unsaturated fatty acids, ATP-binding cassette transporters, amino acid metabolism, and glycerophospholipid metabolism. This study demonstrated the promising application potential of 1-octanol as a biofumigant for preventing fungal spoilage of postharvest cereal grains. KEY POINTS: • (1) 1-Octanol inhibits Aspergillus flavus growth in the vapor phase and liquid contact; • (2) 1-Octanol damages membrane integrity and induces apoptosis of A. flavus; • (3) Metabolomic changes in A. flavus mycelia were analyzed after 1-octanol treatment.
Collapse
|
8
|
Shibuya K, Otani R, Suzuki YI, Kuwabara S, Kiernan MC. Neuronal Hyperexcitability and Free Radical Toxicity in Amyotrophic Lateral Sclerosis: Established and Future Targets. Pharmaceuticals (Basel) 2022; 15:ph15040433. [PMID: 35455429 PMCID: PMC9025031 DOI: 10.3390/ph15040433] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating disease with evidence of degeneration involving upper and lower motor neuron compartments of the nervous system. Presently, two drugs, riluzole and edaravone, have been established as being useful in slowing disease progression in ALS. Riluzole possesses anti-glutamatergic properties, while edaravone eliminates free radicals (FRs). Glutamate is the excitatory neurotransmitter in the brain and spinal cord and binds to several inotropic receptors. Excessive activation of these receptors generates FRs, inducing neurodegeneration via damage to intracellular organelles and upregulation of proinflammatory mediators. FRs bind to intracellular structures, leading to cellular impairment that contributes to neurodegeneration. As such, excitotoxicity and FR toxicities have been considered as key pathophysiological mechanisms that contribute to the cascade of degeneration that envelopes neurons in ALS. Recent advanced technologies, including neurophysiological, imaging, pathological and biochemical techniques, have concurrently identified evidence of increased excitability in ALS. This review focuses on the relationship between FRs and excitotoxicity in motor neuronal degeneration in ALS and introduces concepts linked to increased excitability across both compartments of the human nervous system. Within this cellular framework, future strategies to promote therapeutic development in ALS, from the perspective of neuronal excitability and function, will be critically appraised.
Collapse
Affiliation(s)
- Kazumoto Shibuya
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba 260-8677, Japan; (K.S.); (R.O.); (Y.-i.S.); (S.K.)
| | - Ryo Otani
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba 260-8677, Japan; (K.S.); (R.O.); (Y.-i.S.); (S.K.)
| | - Yo-ichi Suzuki
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba 260-8677, Japan; (K.S.); (R.O.); (Y.-i.S.); (S.K.)
| | - Satoshi Kuwabara
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba 260-8677, Japan; (K.S.); (R.O.); (Y.-i.S.); (S.K.)
| | - Matthew C. Kiernan
- Brain and Mind Centre, Department of Neurology, University of Sydney, Royal Prince Alfred Hospital, Sydney 2050, Australia
- Correspondence:
| |
Collapse
|
9
|
Abstract
Obesity and associated complications are becoming a pandemic. Inhibiting adipogenesis is an important intervention for the treatment of obesity. Despite intensive investigations, numerous mechanistic aspects of adipogenesis remain unclear, and many potential therapeutic targets have yet to be discovered. Transcriptomics and lipidomics approaches were used to explore the functional genes regulating adipogenic differentiation and the potential mechanism in OP9 cells and adipose-derived stem cells. In this study, we found that NADH:ubiquinone oxidoreductase subunit A6 (Ndufa6) participates in the regulation of adipogenic differentiation. Furthermore, we show that the effect of Ndufa6 is mediated through stearoyl-CoA desaturase 1 (Scd1) and demonstrate the inhibitory effect of a SCD1 inhibitor on adipogenesis. Our study broadens the understanding of adipogenic differentiation and offers NDUFA6-SCD1 as a potential therapeutic target for the treatment of obesity.
Collapse
Affiliation(s)
- Jingwei Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wei Wang
- Department of metabolism, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Ninghan Feng
- Department of metabolism, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Department of Urology, the Wuxi No. 2 People’s Hospital, Wuxi 214002, China
| | - Xuan Jiang
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Shenglong Zhu
- Department of metabolism, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Wuxi Translational Medicine ResearchCenter and Jiangsu Translational Medicine Research Institute Wuxi Branch, China
| | - Yong Q Chen
- Department of metabolism, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Wuxi Translational Medicine ResearchCenter and Jiangsu Translational Medicine Research Institute Wuxi Branch, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
10
|
Xiao B, Li Y, Lin Y, Lin J, Zhang L, Wu D, Zeng J, Li J, Liu JW, Li G. Eicosapentaenoic acid (EPA) exhibits antioxidant activity via mitochondrial modulation. Food Chem 2021; 373:131389. [PMID: 34710690 DOI: 10.1016/j.foodchem.2021.131389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/25/2021] [Accepted: 10/09/2021] [Indexed: 12/13/2022]
Abstract
Reactive oxygen species (ROS) are mitochondrial respiration byproducts, the accumulation of which may cause oxidative damage and is associated with several chronic health problems. As an essential unsaturated fatty acid, eicosapentaenoic acid (EPA) provides various physiological functions; however, its exact regulatory role remains elusive. The current study aimed to address how EPA regulates cellular antioxidant capacity and the possible mechanisms of action. Upon 48 h of EPA treatment, the ROS levels of HepG2 cells were reduced by at least 40%; the total cellular antioxidant capacity was increased by approximately 50-70%, accompanied by enhanced activities and expression of major antioxidant enzymes. Furthermore, the mitochondrial membrane potential and the mitochondrial biogenesis were dramatically improved in EPA-treated cells. These data suggest that EPA improves cellular antioxidant capacity by enhancing mitochondrial function and biogenesis, which sheds light on EPA as a dietary complement to relieve the oxidative damage caused by chronic diseases.
Collapse
Affiliation(s)
- Baoping Xiao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen, Fujian 361021, PR China
| | - Yuanyuan Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen, Fujian 361021, PR China
| | - Yanqi Lin
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen, Fujian 361021, PR China
| | - Jingyu Lin
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen, Fujian 361021, PR China
| | - Lingyu Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen, Fujian 361021, PR China
| | - Daren Wu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen, Fujian 361021, PR China
| | - Jun Zeng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen, Fujian 361021, PR China
| | - Jian Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen, Fujian 361021, PR China
| | - Jing Wen Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, PR China.
| | - Guiling Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, PR China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen, Fujian 361021, PR China.
| |
Collapse
|
11
|
Doğanlar ZB, Doğanlar O, Kurtdere K, Güçlü H, Chasan T, Turgut E. Melatonin prevents blood-retinal barrier breakdown and mitochondrial dysfunction in high glucose and hypoxia-induced in vitro diabetic macular edema model. Toxicol In Vitro 2021; 75:105191. [PMID: 33962019 DOI: 10.1016/j.tiv.2021.105191] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 04/29/2021] [Accepted: 05/02/2021] [Indexed: 12/31/2022]
Abstract
Diabetic macular edema (DME) is a leading cause of blindness in diabetic retinopathy. Prolonged hyperglycemia plus hypoxia contributes to DME pathogenesis. Retinal pigmented epithelial cells comprise the outer blood-retinal barrier and are essential for maintaining physiological functioning of the retina. Melatonin acts as an antioxidant and regulator of mitochondrial bioenergetics and has a protective effect against ocular diseases. However, the role of mitochondrial dysfunction and the therapeutic potential of melatonin in DME remain largely unexplored. Here, we used an in vitro model of DME to investigate blood-retinal barrier integrity and permeability, angiogenesis, mitochondrial dynamics, and apoptosis signaling to evaluate the potential protective efficacy of melatonin in DME. We found that melatonin prevents cell hyper-permeability and outer barrier breakdown by reducing HIF-1α, HIF-1β and VEGF and VEGF receptor gene expression. In addition, melatonin reduced the expression of genes involved in mitochondrial fission (DRP1, hFis1, MIEF2, MFF), mitophagy (PINK, BNip3, NIX), and increased the expression of genes involved in mitochondrial biogenesis (PGC-1α, NRF2, PPAR-γ) to maintain mitochondrial homeostasis. Moreover, melatonin prevented apoptosis of retinal pigmented epithelial cells. Our results suggest that mitochondrial dysfunction may be involved in DME pathology, and melatonin may have therapeutic value in DME, by targeting signaling in mitochondria.
Collapse
Affiliation(s)
- Zeynep Banu Doğanlar
- Trakya University, Faculty of Medicine, Department of Medical Biology, Edirne, Turkey.
| | - Oğuzhan Doğanlar
- Trakya University, Faculty of Medicine, Department of Medical Biology, Edirne, Turkey
| | - Kardelen Kurtdere
- Trakya University, Faculty of Medicine, Department of Medical Biology, Edirne, Turkey
| | - Hande Güçlü
- Trakya University, Faculty of Medicine, Department of Ophthalmology, Edirne, Turkey
| | - Tourkian Chasan
- Trakya University, Faculty of Medicine, Department of Medical Biology, Edirne, Turkey
| | - Esra Turgut
- Trakya University, Faculty of Medicine, Department of Medical Biology, Edirne, Turkey
| |
Collapse
|
12
|
Vijayakumar K, Rengarajan RL, Suganthi N, Prasanna B, Velayuthaprabhu S, Shenbagam M, Vijaya Anand A. Acute toxicity studies and protective effects of Cinnamon cassia bark extract in streptozotocin-induced diabetic rats. Drug Chem Toxicol 2021; 45:2086-2096. [PMID: 33849352 DOI: 10.1080/01480545.2021.1907908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The medicinal properties of Cinnamon cassia (C. cassia) bark have been reported for their clinical importance for many diseases including diabetes. However, there is no clear evidence so far regarding dose selection for its hepato- and nephroprotective effect in diabetic condition. Hence, the present study aims at evaluating in vitro antioxidant activity, the acute toxicity, and dose fixation of C. cassia bark for their effective medicinal values in streptozotocin (STZ)-induced rats. All the extracts exhibited potential in vitro antioxidant activity and showed a dose-dependent (1000, 2000, 3000, 4000, and 5000 mg/kg BW) acute toxicity by in vivo model. The levels of aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), urea, and creatinine showed a significant elevation in animals treated with the highest dose. In further studies along with histopathological studies, animals treated with STZ (60 mg/kg BW) followed by a different dose (300, 400, and 500 mg/kg BW) of ethanolic extract of the C. cassia bark and glibenclamide (3 mg/kg BW) revealed that the altered level of mitochondrial enzymes, hepatic, and renal marker in STZ-induced animals were restored in C. cassia bark extract-treated group as of control. These results could be of scientific support for the use of the ethanolic extract of the C. cassia bark in folk medicine for the management of diabetes and its associated complications.
Collapse
Affiliation(s)
- K Vijayakumar
- Department of Chemistry, Sri Meenakshi Vidiyal Arts and Science College, Tiruchirappalli, India
| | - R L Rengarajan
- Department of Animal Science, Bharathidasan University, Tiruchirappalli, India
| | - N Suganthi
- Department of Nanoscience and Technology, Alagappa University, Karaikudi, India
| | - B Prasanna
- Department of Biochemistry, Manonmaniam Sundaranar University, Thirunelveli, India
| | - S Velayuthaprabhu
- Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - M Shenbagam
- Department of Biochemistry and Biotechnology, Annamalai University, Chidambaram, India
| | - A Vijaya Anand
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, India
| |
Collapse
|
13
|
Role of Oxidative Stress in the Pathogenesis of Amyotrophic Lateral Sclerosis: Antioxidant Metalloenzymes and Therapeutic Strategies. Biomolecules 2021; 11:biom11030437. [PMID: 33809730 PMCID: PMC8002298 DOI: 10.3390/biom11030437] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) affects motor neurons in the cerebral cortex, brainstem and spinal cord and leads to death due to respiratory failure within three to five years. Although the clinical symptoms of this disease were first described in 1869 and it is the most common motor neuron disease and the most common neurodegenerative disease in middle-aged individuals, the exact etiopathogenesis of ALS remains unclear and it remains incurable. However, free oxygen radicals (i.e., molecules containing one or more free electrons) are known to contribute to the pathogenesis of this disease as they very readily bind intracellular structures, leading to functional impairment. Antioxidant enzymes, which are often metalloenzymes, inactivate free oxygen radicals by converting them into a less harmful substance. One of the most important antioxidant enzymes is Cu2+Zn2+ superoxide dismutase (SOD1), which is mutated in 20% of cases of the familial form of ALS (fALS) and up to 7% of sporadic ALS (sALS) cases. In addition, the proper functioning of catalase and glutathione peroxidase (GPx) is essential for antioxidant protection. In this review article, we focus on the mechanisms through which these enzymes are involved in the antioxidant response to oxidative stress and thus the pathogenesis of ALS and their potential as therapeutic targets.
Collapse
|
14
|
Zingariello M, Rosti V, Vannucchi AM, Guglielmelli P, Mazzarini M, Barosi G, Genova ML, Migliaccio AR. Shared and Distinctive Ultrastructural Abnormalities Expressed by Megakaryocytes in Bone Marrow and Spleen From Patients With Myelofibrosis. Front Oncol 2020; 10:584541. [PMID: 33312951 PMCID: PMC7701330 DOI: 10.3389/fonc.2020.584541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/19/2020] [Indexed: 12/21/2022] Open
Abstract
Numerous studies have documented ultrastructural abnormalities in malignant megakaryocytes from bone marrow (BM) of myelofibrosis patients but the morphology of these cells in spleen, an important extramedullary site in this disease, was not investigated as yet. By transmission-electron microscopy, we compared the ultrastructural features of megakaryocytes from BM and spleen of myelofibrosis patients and healthy controls. The number of megakaryocytes was markedly increased in both BM and spleen. However, while most of BM megakaryocytes are immature, those from spleen appear mature with well-developed demarcation membrane systems (DMS) and platelet territories and are surrounded by platelets. In BM megakaryocytes, paucity of DMS is associated with plasma (thick with protrusions) and nuclear (dilated with large pores) membrane abnormalities and presence of numerous glycosomes, suggesting a skewed metabolism toward insoluble polyglucosan accumulation. By contrast, the membranes of the megakaryocytes from the spleen were normal but these cells show mitochondria with reduced crests, suggesting deficient aerobic energy-metabolism. These distinctive morphological features suggest that malignant megakaryocytes from BM and spleen express distinctive metabolic impairments that may play different roles in the pathogenesis of myelofibrosis.
Collapse
Affiliation(s)
- Maria Zingariello
- Unit of Microscopic and Ultrastructural Anatomy, Department of Medicine, University Campus Bio-Medico, Rome, Italy
| | - Vittorio Rosti
- Center for the Study of Myelofibrosis, Laboratory of Biochemistry Biotechnology and Advanced Diagnosis, IRCCS Policlinico San Matteo, Pavia, Italy
| | - Alessandro M Vannucchi
- CRIMM; Center Research and Innovation of Myeloproliferative Neoplasms, AOUC, University of Florence, Florence, Italy
| | - Paola Guglielmelli
- CRIMM; Center Research and Innovation of Myeloproliferative Neoplasms, AOUC, University of Florence, Florence, Italy
| | - Maria Mazzarini
- Biomedical and Neuromotor Sciences, Alma Mater University Bologna, Bologna, Italy
| | - Giovanni Barosi
- Center for the Study of Myelofibrosis, Laboratory of Biochemistry Biotechnology and Advanced Diagnosis, IRCCS Policlinico San Matteo, Pavia, Italy
| | - Maria Luisa Genova
- Biomedical and Neuromotor Sciences, Alma Mater University Bologna, Bologna, Italy
| | - Anna Rita Migliaccio
- Biomedical and Neuromotor Sciences, Alma Mater University Bologna, Bologna, Italy.,Myeloproliferative Neoplasm-Research Consortium, New York, NY, United States
| |
Collapse
|
15
|
Yuan YG, Mesalam A, Song SH, Lee KL, Xu L, Joo MD, Kong IK. Effect of nicotinamide supplementation in in vitro fertilization medium on bovine embryo development. Mol Reprod Dev 2020; 87:1070-1081. [PMID: 32885880 DOI: 10.1002/mrd.23417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 07/21/2020] [Accepted: 08/15/2020] [Indexed: 01/19/2023]
Abstract
Increased oxidative stress is one of the main causes of poorly developed embryos in assisted reproductive technologies. Nicotinamide (NAM) has been shown to suppress reactive oxygen species (ROS) production through its potent antioxidative and anti-senescent effects. In the present study, we explored the effects of short-term NAM-treatment (3 and 5 h) during in vitro fertilization (IVF) on the development of bovine embryos. Treatment with 10 mM NAM for 3 h significantly increased the blastocyst formation but extending the treatment to 5 h did not enhance the benefits any further. Immunofluorescence analysis demonstrated that treatment with 10 mM NAM for 3 h decreased the expression of intracellular ROS, 8-oxo-7,8-dihydroguanine, caspase-3, and increased the expression of Sirt1, and incorporation of bromodeoxyuridine in one-cell stage embryos. Similarly, the level of H3K56ac significantly increased in the NAM-treated (3 and 5 h) one-cell stage embryos. Contrastingly, the treatment with 10 mM NAM for 5 h increased the caspase-9 level in blastocysts. Collectively, these findings suggest that NAM possesses antioxidant activity and supplementation of IVF medium with 10 mM NAM for 3 h improves the in vitro developmental competence of bovine embryos.
Collapse
Affiliation(s)
- Yu-Guo Yuan
- College of Veterinary Medicine/Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ayman Mesalam
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Seok-Hwan Song
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Kyeong-Lim Lee
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Lianguang Xu
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Myeong-Don Joo
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Il-Keun Kong
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
- The King Kong Corp. Ltd., Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| |
Collapse
|
16
|
Xu N, Jiang S, Persson PB, Persson EAG, Lai EY, Patzak A. Reactive oxygen species in renal vascular function. Acta Physiol (Oxf) 2020; 229:e13477. [PMID: 32311827 DOI: 10.1111/apha.13477] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/22/2020] [Accepted: 04/14/2020] [Indexed: 12/14/2022]
Abstract
Reactive oxygen species (ROS) are produced by the aerobic metabolism. The imbalance between production of ROS and antioxidant defence in any cell compartment is associated with cell damage and may play an important role in the pathogenesis of renal disease. NADPH oxidase (NOX) family is the major ROS source in the vasculature and modulates renal perfusion. Upregulation of Ang II and adenosine activates NOX via AT1R and A1R in renal microvessels, leading to superoxide production. Oxidative stress in the kidney prompts renal vascular remodelling and increases preglomerular resistance. These are key elements in hypertension, acute and chronic kidney injury, as well as diabetic nephropathy. Renal afferent arterioles (Af), the primary resistance vessel in the kidney, fine tune renal hemodynamics and impact on blood pressure. Vice versa, ROS increase hypertension and diabetes, resulting in upregulation of Af vasoconstriction, enhancement of myogenic responses and change of tubuloglomerular feedback (TGF), which further promotes hypertension and diabetic nephropathy. In the following, we highlight oxidative stress in the function and dysfunction of renal hemodynamics. The renal microcirculatory alterations brought about by ROS importantly contribute to the pathophysiology of kidney injury, hypertension and diabetes.
Collapse
Affiliation(s)
- Nan Xu
- Department of Physiology Zhejiang University School of Medicine Hangzhou China
| | - Shan Jiang
- Department of Physiology Zhejiang University School of Medicine Hangzhou China
| | - Pontus B. Persson
- Charité ‐ Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin Humboldt‐Universität zu Berlin, and Berlin Institute of Health Institute of Vegetative Physiology Berlin Germany
| | | | - En Yin Lai
- Department of Physiology Zhejiang University School of Medicine Hangzhou China
- Charité ‐ Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin Humboldt‐Universität zu Berlin, and Berlin Institute of Health Institute of Vegetative Physiology Berlin Germany
| | - Andreas Patzak
- Charité ‐ Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin Humboldt‐Universität zu Berlin, and Berlin Institute of Health Institute of Vegetative Physiology Berlin Germany
| |
Collapse
|
17
|
Yang L, Youngblood H, Wu C, Zhang Q. Mitochondria as a target for neuroprotection: role of methylene blue and photobiomodulation. Transl Neurodegener 2020; 9:19. [PMID: 32475349 PMCID: PMC7262767 DOI: 10.1186/s40035-020-00197-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/06/2020] [Indexed: 12/18/2022] Open
Abstract
Mitochondrial dysfunction plays a central role in the formation of neuroinflammation and oxidative stress, which are important factors contributing to the development of brain disease. Ample evidence suggests mitochondria are a promising target for neuroprotection. Recently, methods targeting mitochondria have been considered as potential approaches for treatment of brain disease through the inhibition of inflammation and oxidative injury. This review will discuss two widely studied approaches for the improvement of brain mitochondrial respiration, methylene blue (MB) and photobiomodulation (PBM). MB is a widely studied drug with potential beneficial effects in animal models of brain disease, as well as limited human studies. Similarly, PBM is a non-invasive treatment that promotes energy production and reduces both oxidative stress and inflammation, and has garnered increasing attention in recent years. MB and PBM have similar beneficial effects on mitochondrial function, oxidative damage, inflammation, and subsequent behavioral symptoms. However, the mechanisms underlying the energy enhancing, antioxidant, and anti-inflammatory effects of MB and PBM differ. This review will focus on mitochondrial dysfunction in several different brain diseases and the pathological improvements following MB and PBM treatment.
Collapse
Affiliation(s)
- Luodan Yang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Hannah Youngblood
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Chongyun Wu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Quanguang Zhang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA.
| |
Collapse
|
18
|
Li Y, Ruan DY, Jia CC, Zheng J, Wang GY, Zhao H, Yang Q, Liu W, Yi SH, Li H, Wang GS, Yang Y, Chen GH, Zhang Q. Aging aggravates hepatic ischemia-reperfusion injury in mice by impairing mitophagy with the involvement of the EIF2α-parkin pathway. Aging (Albany NY) 2019; 10:1902-1920. [PMID: 30089704 PMCID: PMC6128434 DOI: 10.18632/aging.101511] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 07/28/2018] [Indexed: 02/07/2023]
Abstract
Hepatic ischemia-reperfusion (I/R) injury fundamentally influences the performance of aged liver grafts. The significance of mitophagy in the age dependence of sensitivity to I/R injury remains poorly understood. Here, we show that aging aggravated hepatic I/R injury with decreased mitophagy in mice. The enhancement of mitophagy resulted in significant protection against hepatic I/R injury. Parkin, an E3 ubiquitin ligase, was found depleted by I/R in aged livers. In oxygen-glucose deprivation reperfusion (OGD-Rep.)-treated L02 cells, parkin silencing impaired mitophagy and aggravated cell damage through a relative large mitochondrial membrane potential transition. The phosphorylation of the endoplasmic reticulum stress response protein EIF2α, which was also reduced in the aged liver, induced parkin expression both in vivo and vitro. Forty-six hepatic biopsy specimens from liver graft were collected 2 hours after complete revascularization, followed by immunohistochemical analyses. Parkin expression was negatively correlated to donor age and the peak level of aspartate aminotransferase within first week after liver transplantation. Our translational study demonstrates that aging aggravated hepatic I/R injury by impairing the age-dependent mitophagy function via an insufficient parkin expression and identifies a new strategy to evaluate the capacity of an aged liver graft in the process of I/R through the parkin expression.
Collapse
Affiliation(s)
- Yang Li
- Department of Liver Surgery and Liver Transplantation, Guangzhou Clinical Research and Translation Center for Liver Disease, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China.,Guangdong Key laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangdong 510630, China
| | - Dan-Yun Ruan
- Department of Medical Oncology, The Third Affiliated Hospital of Sun Yat-sen University, Guangdong 510630, China
| | - Chang-Chang Jia
- Department of Biotherapy, The Third Affiliated Hospital of Sun Yat-sen University, Guangdong 510630, China.,Guangdong Key laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangdong 510630, China
| | - Jun Zheng
- Department of Liver Surgery and Liver Transplantation, Guangzhou Clinical Research and Translation Center for Liver Disease, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China.,Guangdong Key laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangdong 510630, China
| | - Guo-Ying Wang
- Department of Liver Surgery and Liver Transplantation, Guangzhou Clinical Research and Translation Center for Liver Disease, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Hui Zhao
- Department of Liver Surgery and Liver Transplantation, Guangzhou Clinical Research and Translation Center for Liver Disease, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Qing Yang
- Department of Liver Surgery and Liver Transplantation, Guangzhou Clinical Research and Translation Center for Liver Disease, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Wei Liu
- Department of Liver Surgery and Liver Transplantation, Guangzhou Clinical Research and Translation Center for Liver Disease, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China.,Guangdong Key laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangdong 510630, China
| | - Shu-Hong Yi
- Department of Liver Surgery and Liver Transplantation, Guangzhou Clinical Research and Translation Center for Liver Disease, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Hua Li
- Department of Liver Surgery and Liver Transplantation, Guangzhou Clinical Research and Translation Center for Liver Disease, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Gen-Shu Wang
- Department of Liver Surgery and Liver Transplantation, Guangzhou Clinical Research and Translation Center for Liver Disease, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Yang Yang
- Department of Liver Surgery and Liver Transplantation, Guangzhou Clinical Research and Translation Center for Liver Disease, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Gui-Hua Chen
- Department of Liver Surgery and Liver Transplantation, Guangzhou Clinical Research and Translation Center for Liver Disease, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Qi Zhang
- Department of Biotherapy, The Third Affiliated Hospital of Sun Yat-sen University, Guangdong 510630, China.,Guangdong Key laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangdong 510630, China
| |
Collapse
|
19
|
Discrete Changes in Glucose Metabolism Define Aging. Sci Rep 2019; 9:10347. [PMID: 31316102 PMCID: PMC6637183 DOI: 10.1038/s41598-019-46749-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 06/25/2019] [Indexed: 12/14/2022] Open
Abstract
Aging is a physiological process in which multifactorial processes determine a progressive decline. Several alterations contribute to the aging process, including telomere shortening, oxidative stress, deregulated autophagy and epigenetic modifications. In some cases, these alterations are so linked with the aging process that it is possible predict the age of a person on the basis of the modification of one specific pathway, as proposed by Horwath and his aging clock based on DNA methylation. Because the energy metabolism changes are involved in the aging process, in this work, we propose a new aging clock based on the modifications of glucose catabolism. The biochemical analyses were performed on mononuclear cells isolated from peripheral blood, obtained from a healthy population with an age between 5 and 106 years. In particular, we have evaluated the oxidative phosphorylation function and efficiency, the ATP/AMP ratio, the lactate dehydrogenase activity and the malondialdehyde content. Further, based on these biochemical markers, we developed a machine learning-based mathematical model able to predict the age of an individual with a mean absolute error of approximately 9.7 years. This mathematical model represents a new non-invasive tool to evaluate and define the age of individuals and could be used to evaluate the effects of drugs or other treatments on the early aging or the rejuvenation.
Collapse
|
20
|
Amodei D, Egertson J, MacLean BX, Johnson R, Merrihew GE, Keller A, Marsh D, Vitek O, Mallick P, MacCoss MJ. Improving Precursor Selectivity in Data-Independent Acquisition Using Overlapping Windows. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:669-684. [PMID: 30671891 PMCID: PMC6445824 DOI: 10.1007/s13361-018-2122-8] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/03/2018] [Accepted: 12/05/2018] [Indexed: 05/22/2023]
Abstract
A major goal of proteomics research is the accurate and sensitive identification and quantification of a broad range of proteins within a sample. Data-independent acquisition (DIA) approaches that acquire MS/MS spectra independently of precursor information have been developed to overcome the reproducibility challenges of data-dependent acquisition and the limited breadth of targeted proteomics strategies. Typical DIA implementations use wide MS/MS isolation windows to acquire comprehensive fragment ion data. However, wide isolation windows produce highly chimeric spectra, limiting the achievable sensitivity and accuracy of quantification and identification. Here, we present a DIA strategy in which spectra are collected with overlapping (rather than adjacent or random) windows and then computationally demultiplexed. This approach improves precursor selectivity by nearly a factor of 2, without incurring any loss in mass range, mass resolution, chromatographic resolution, scan speed, or other key acquisition parameters. We demonstrate a 64% improvement in sensitivity and a 17% improvement in peptides detected in a 6-protein bovine mix spiked into a yeast background. To confirm the method's applicability to a realistic biological experiment, we also analyze the regulation of the proteasome in yeast grown in rapamycin and show that DIA experiments with overlapping windows can help elucidate its adaptation toward the degradation of oxidatively damaged proteins. Our integrated computational and experimental DIA strategy is compatible with any DIA-capable instrument. The computational demultiplexing algorithm required to analyze the data has been made available as part of the open-source proteomics software tools Skyline and msconvert (Proteowizard), making it easy to apply as part of standard proteomics workflows. Graphical Abstract.
Collapse
Affiliation(s)
- Dario Amodei
- Department of Radiology, Stanford University, 3155 Porter Drive, Palo Alto, CA USA
| | - Jarrett Egertson
- Department of Genome Sciences, University of Washington, 3720 15th Ave. NE, Seattle, WA USA
| | - Brendan X. MacLean
- Department of Genome Sciences, University of Washington, 3720 15th Ave. NE, Seattle, WA USA
| | - Richard Johnson
- Department of Genome Sciences, University of Washington, 3720 15th Ave. NE, Seattle, WA USA
| | - Gennifer E. Merrihew
- Department of Genome Sciences, University of Washington, 3720 15th Ave. NE, Seattle, WA USA
| | - Austin Keller
- Department of Genome Sciences, University of Washington, 3720 15th Ave. NE, Seattle, WA USA
| | - Don Marsh
- Department of Genome Sciences, University of Washington, 3720 15th Ave. NE, Seattle, WA USA
| | - Olga Vitek
- College of Computer and Information Science, Northeastern University, 440 Huntington Ave, Boston, MA USA
| | - Parag Mallick
- Department of Radiology, Stanford University, 3155 Porter Drive, Palo Alto, CA USA
| | - Michael J. MacCoss
- Department of Genome Sciences, University of Washington, 3720 15th Ave. NE, Seattle, WA USA
| |
Collapse
|
21
|
Hwang JY, Yadav AK, Jang BC, Kim YC. Antioxidant and cytoprotective effects of Stachys riederi var. japonica ethanol extract on UVA‑irradiated human dermal fibroblasts. Int J Mol Med 2019; 43:1497-1504. [PMID: 30628642 DOI: 10.3892/ijmm.2019.4048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 11/26/2018] [Indexed: 11/06/2022] Open
Abstract
Stachys riederi is one of the largest genera in the flowering plant family Lamiaceae. The aqueous extract of Stachys riederi var. japonica is known for its anti‑allergic effect. In the present study, the antioxidant and cytoprotective effects of Stachys riederi var. japonica ethanol extract (SREE) on ultraviolet A (UVA)‑irradiated human dermal fibroblasts (HDFs) were evaluated. At 100 µg/ml, SREE significantly inhibited production of reactive oxygen species (ROS) in UVA‑irradiated HDFs. SREE at 100 µg/ml additionally markedly interfered with the loss of mitochondrial membrane potential (ΔΨm) in these cells. In addition, SREE at 100 µg/ml attenuated UVA‑induced DNA fragmentation and caspase‑3 activation in HDFs. SREE at 100 µg/ml additionally increased mRNA and protein expressions of Bcl‑2 and decreased those of Bax and cytochrome c in UVA‑irradiated HDFs. In summary, to the best of our knowledge, these results demonstrate for the first time that SREE exhibited antioxidant and cytoprotective effects on UVA‑irradiated HDFs, which may be mediated through suppression of ROS generation, inhibition of the loss of ΔΨm and inhibition of apoptosis.
Collapse
Affiliation(s)
- Ji Yeon Hwang
- Department of Research and Development, Research Center for Natural Ingredients and New Materials, Daepyung Co., Ltd., Sangju 37112, Republic of Korea
| | - Anil Kumar Yadav
- Department of Molecular Medicine, College of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| | - Byeong-Churl Jang
- Department of Molecular Medicine, College of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| | - Young Chul Kim
- Department of Public Health, Faculty of Food and Health Sciences, Keimyung University, Daegu 42601, Republic of Korea
| |
Collapse
|
22
|
Assessment of the State of the Natural Antioxidant Barrier of a Body in Patients Complaining about the Presence of Tinnitus. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1439575. [PMID: 30510615 PMCID: PMC6230382 DOI: 10.1155/2018/1439575] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/24/2018] [Accepted: 10/08/2018] [Indexed: 12/19/2022]
Abstract
Background Tinnitus is defined as a phantom auditory perception, i.e., sound experience despite the lack of acoustic stimuli in the environment. The aim of this study was to assess the state of the natural antioxidant barrier of a body in patients complaining about the presence of tinnitus. Material and Methods The study included a total of 51 patients aged from 20 to 62 years with diagnosed idiopathic tinnitus and 19 healthy subjects as a control group. All patients underwent the audiometric tone test, speech audiometry, distortion otoacoustic emission product testing, study of evoked auditory potentials of short latency, and biochemical analysis of venous blood concerning values of activity or concentration of glutathione, glutathione peroxidase, S-transferase, glutathione reductase superoxide dismutase, malondialdehyde, and ceruloplasmin as the selected parameters of oxidative stress. Results Disorders of the auditory pathway were not only limited to the cochlea but also covered its further episodes. Mean values of activity or concentration of the selected parameters of oxidative stress in the study and control groups showed reduced effectiveness of the body's natural antioxidant barrier. Discussion Patients complaining about the presence of tinnitus showed reduced effectiveness of the body's natural antioxidant barrier compared to the control group. Conclusions The main indication to undertake further research on the functioning of the antioxidant barrier in people suffering from ailments in the form of tinnitus is to determine a suitable therapy aimed at improving the quality of life of these patients, which might be the administration of antioxidant medications.
Collapse
|
23
|
Formella I, Svahn AJ, Radford RAW, Don EK, Cole NJ, Hogan A, Lee A, Chung RS, Morsch M. Real-time visualization of oxidative stress-mediated neurodegeneration of individual spinal motor neurons in vivo. Redox Biol 2018; 19:226-234. [PMID: 30193184 PMCID: PMC6126400 DOI: 10.1016/j.redox.2018.08.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/21/2018] [Accepted: 08/21/2018] [Indexed: 12/13/2022] Open
Abstract
Generation of reactive oxygen species (ROS) has been shown to be important for many physiological processes, ranging from cell differentiation to apoptosis. With the development of the genetically encoded photosensitiser KillerRed (KR) it is now possible to efficiently produce ROS dose-dependently in a specific cell type upon green light illumination. Zebrafish are the ideal vertebrate animal model for these optogenetic methods because of their transparency and efficient transgenesis. Here we describe a zebrafish model that expresses membrane-targeted KR selectively in motor neurons. We show that KR-activated neurons in the spinal cord undergo stress and cell death after induction of ROS. Using single-cell resolution and time-lapse confocal imaging, we selectively induced neurodegeneration in KR-expressing neurons leading to characteristic signs of apoptosis and cell death. We furthermore illustrate a targeted microglia response to the induction site as part of a physiological response within the zebrafish spinal cord. Our data demonstrate the successful implementation of KR mediated ROS toxicity in motor neurons in vivo and has important implications for studying the effects of ROS in a variety of conditions within the central nervous system, including aging and age-related neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis. Motor neurons can be targeted for oxidative stress using optogenetics in zebrafish. KillerRed expressing neurons undergo characteristic sequence of neurodegeneration. Targeted neurons show microglial activation as part of the physiological response. ROS toxicity has important implications for mechanisms driving neurodegeneration.
Collapse
Affiliation(s)
- Isabel Formella
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Adam J Svahn
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Rowan A W Radford
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Emily K Don
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Nicholas J Cole
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Alison Hogan
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Albert Lee
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Roger S Chung
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia.
| | - Marco Morsch
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia.
| |
Collapse
|
24
|
Sun X, Cui Y, Wang Q, Tang S, Cao X, Luo H, He Z, Hu X, Nie X, Yang Y, Wang T. Proteogenomic Analyses Revealed Favorable Metabolism Pattern Alterations in Rotifer Brachionus plicatilis Fed with Selenium-rich Chlorella. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6699-6707. [PMID: 29874910 DOI: 10.1021/acs.jafc.8b00139] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Organoselenium have garnered attention because of their potential to be used as ingredients in new anti-aging and antioxidation medicines and food. Rotifers are frequently used as a model organism for aging research. In this study, we used Se-enriched Chlorella (Se- Chlorella), a novel organoselenium compound, to feed Brachionus plicatilis to establish a rotifer model with a prolonged lifespan. The results showed that the antioxidative effect in Se-enriched rotifer was associated with an increase in guaiacol peroxidase (GPX) and catalase (CAT). The authors then performed the first proteogenomic analysis of rotifers to understand their possible metabolic mechanisms. With the de novo assembly of RNA-Seq reads as the reference, we mapped the proteomic output generated by iTRAQ-based mass spectrometry. We found that the differentially expressed proteins were primarily involved in antireactive oxygen species (ROS) and antilipid peroxidation (LPO), selenocompound metabolism, glycolysis, and amino acid metabolisms. Furthermore, the ROS level of rotifers was diminished after Se- Chlorella feeding, indicating that Se- Chlorella could help rotifers to enhance their amino acid metabolism and shift the energy generating metabolism from tricarboxylic acid cycle to glycolysis, which leads to reduced ROS production. This is the first report to demonstrate the anti-aging effect of Se- Chlorella on rotifers and to provide a possible mechanism for this activity. Thus, Se- Chlorella is a promising novel organoselenium compound with the potential to prolong human lifespans.
Collapse
Affiliation(s)
- Xian Sun
- Institute of Hydrobiology and Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms , Guangdong Higher Education Institutes , Guangzhou 510006 , China
| | - Yizhi Cui
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and Institute of Life and Health Engineering , Jinan University , Guangzhou 510632 , China
| | - Qing Wang
- Institute of Hydrobiology and Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms , Guangdong Higher Education Institutes , Guangzhou 510006 , China
| | - Shengquan Tang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and Institute of Life and Health Engineering , Jinan University , Guangzhou 510632 , China
| | - Xin Cao
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and Institute of Life and Health Engineering , Jinan University , Guangzhou 510632 , China
| | - Hongtian Luo
- Institute of Hydrobiology and Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms , Guangdong Higher Education Institutes , Guangzhou 510006 , China
| | - Zhili He
- School of Environmental Science and Engineering , Sun Yat-Sen University , Guangzhou 510275 , China
| | - Xiaonong Hu
- Institute of Hydrobiology and Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms , Guangdong Higher Education Institutes , Guangzhou 510006 , China
| | - Xiangping Nie
- Institute of Hydrobiology and Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms , Guangdong Higher Education Institutes , Guangzhou 510006 , China
| | - Yufeng Yang
- Institute of Hydrobiology and Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms , Guangdong Higher Education Institutes , Guangzhou 510006 , China
| | - Tong Wang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and Institute of Life and Health Engineering , Jinan University , Guangzhou 510632 , China
| |
Collapse
|
25
|
Avenatti R, McKeever K, Horohov D, Malinowski K. Effects of age and exercise on inflammatory cytokines, HSP70 and HSP90 gene expression and protein content in Standardbred horses. COMPARATIVE EXERCISE PHYSIOLOGY 2018. [DOI: 10.3920/cep170020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We hypothesised that the cortisol response to acute exercise, markers of oxidative stress, expression of inflammatory cytokines, heat shock protein (HSP)70 and HSP90 expression in whole blood and skeletal muscle, and HSP70 and HSP90 protein concentrations in skeletal muscle are altered by age and in response to acute submaximal exercise in horses. Young (n=6; 5.5±2.8 year) and aged (n=6; 22.6±2.25 year) unconditioned Standardbred mares underwent an acute submaximal exercise test. Blood samples were collected and analysed for plasma cortisol and malondialdehyde (MDA) concentrations, and for cytokine and HSP gene expression pre- and post-exercise. Gluteus medius biopsies were obtained for analysis of cytokine and HSP gene expression pre- and at 0, 4, 24 and 48 h post-exercise. Data were analysed for main effects using a two-way ANOVA for repeated measures. Post-hoc comparisons of means were conducted using Student-Neuman-Keuls for pair-wise multiple comparisons where appropriate. Acute submaximal exercise increased plasma cortisol concentration in both young and aged mares, and the duration of the post-exercise rise in cortisol was altered in aged horses. Plasma MDA concentration and expression of tumour necrosis factor-α (TNF-α) and interleukin (IL)-6 were unchanged in blood and muscle. Exercise increased IL-1β expression in whole blood of young and aged mares, with young mares having greater exercise-induced expression at 2 (P<0.001) and 4 (P=0.019) h post-exercise. Both young and aged horses had increased HSP70 expression in whole blood following acute exercise, with young horses exhibiting 3-fold greater HSP70 expression than aged mares at 2 h post-exercise. HSP90 expression in whole blood following exercise was increased only in young horses. Both young and aged horses had increased HSP90 expression in skeletal muscle following exercise, but there was no difference due to age. However, the timing of HSP70 expression was different between young and aged horses. The age-related changes in cortisol and IL-1β expression following acute submaximal exercise can have implications for energy homeostasis and the adaption to such disturbances at a cellular and whole animal level. Quantification of HSP expression in whole blood may be a useful biomarker, with implications for cellular adaptation and survival in aged horses.
Collapse
Affiliation(s)
- R.C. Avenatti
- Department of Animal Science, Equine Science Center, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
- Kindred Biosciences, 1555 Old Bayshore Hwy #200, Burlingame, CA 94010, USA
| | - K.H. McKeever
- Department of Animal Science, Equine Science Center, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - D.W. Horohov
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA
| | - K. Malinowski
- Department of Animal Science, Equine Science Center, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
26
|
OuYang Q, Tao N, Zhang M. A Damaged Oxidative Phosphorylation Mechanism Is Involved in the Antifungal Activity of Citral against Penicillium digitatum. Front Microbiol 2018; 9:239. [PMID: 29503638 PMCID: PMC5820319 DOI: 10.3389/fmicb.2018.00239] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 01/31/2018] [Indexed: 11/13/2022] Open
Abstract
Citral exhibits strong antifungal activity against Penicillium digitatum. In this study, 41 over-expressed and 84 repressed proteins in P. digitatum after 1.0 μL/mL of citral exposure for 30 min were identified by the iTRAQ technique. The proteins were closely related with oxidative phosphorylation, the TCA cycle and RNA transport. The mitochondrial complex I, complex II, complex III, complex IV and complex V, which are involved in oxidative phosphorylation were drastically affected. Among of them, the activities of mitochondrial complex I and complex IV were apparently suppressed, whereas those of mitochondrial complex II, complex III and complex V were significantly induced. Meanwhile, citral apparently triggered a reduction in the intracellular ATP, the mitochondrial membrane potential (MMP) and glutathione content, in contrast to an increase in the glutathione S-transferase activity and the accumulation of reactive oxygen species (ROS). Addition of exogenous cysteine decreased the antifungal activity. In addition, cysteine maintained the basal ROS level, deferred the decrease of MMP and the membrane damage. These results indicate that citral inhibited the growth of P. digitatum by damaging oxidative phosphorylation and cell membranes through the massive accumulation of ROS.
Collapse
Affiliation(s)
- Qiuli OuYang
- School of Chemical Engineering, Xiangtan University, Xiangtan, China
| | - Nengguo Tao
- School of Chemical Engineering, Xiangtan University, Xiangtan, China
| | - Miaoling Zhang
- School of Chemical Engineering, Xiangtan University, Xiangtan, China
| |
Collapse
|
27
|
Wu J, Li R, Li W, Ren M, Thangthaeng N, Sumien N, Liu R, Yang S, Simpkins JW, Forster MJ, Yan LJ. Administration of 5-methoxyindole-2-carboxylic acid that potentially targets mitochondrial dihydrolipoamide dehydrogenase confers cerebral preconditioning against ischemic stroke injury. Free Radic Biol Med 2017; 113:244-254. [PMID: 29017857 PMCID: PMC5699942 DOI: 10.1016/j.freeradbiomed.2017.10.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 09/09/2017] [Accepted: 10/06/2017] [Indexed: 02/06/2023]
Abstract
The objective of this study was to investigate a possible role of mitochondrial dihydrolipoamide dehydrogenase (DLDH) as a chemical preconditioning target for neuroprotection against ischemic injury. We used 5-methoxyindole-2-carboxylic acid (MICA), a reportedly reversible DLDH inhibitor, as the preconditioning agent and administered MICA to rats mainly via dietary intake. Upon completion of 4 week's MICA treatment, rats underwent 1h transient ischemia and 24h reperfusion followed by tissue collection. Our results show that MICA protected the brain against ischemic stroke injury as the infarction volume of the brain from the MICA-treated group was significantly smaller than that from the control group. Data were then collected without or with stroke surgery following MICA feeding. It was found that in the absence of stroke following MICA feeding, DLDH activity was lower in the MICA treated group than in the control group, and this decreased activity could be partly due to DLDH protein sulfenation. Moreover, DLDH inhibition by MICA was also found to upregulate the expression of NAD(P)H-ubiquinone oxidoreductase 1(NQO1) via the Nrf2 signaling pathway. In the presence of stroke following MICA feeding, decreased DLDH activity and increased Nrf2 signaling were also observed along with increased NQO1 activity, decreased oxidative stress, decreased cell death, and increased mitochondrial ATP output. We also found that MICA had a delayed preconditioning effect four weeks post MICA treatment. Our study indicates that administration of MICA confers chemical preconditioning and neuroprotection against ischemic stroke injury.
Collapse
Affiliation(s)
- Jinzi Wu
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Rongrong Li
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Wenjun Li
- Center for Neuroscience Discovery, Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Ming Ren
- Center for Neuroscience Discovery, Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Nopporn Thangthaeng
- Center for Neuroscience Discovery, Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Nathalie Sumien
- Center for Neuroscience Discovery, Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Ran Liu
- Center for Neuroscience Discovery, Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Shaohua Yang
- Center for Neuroscience Discovery, Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - James W Simpkins
- Department of Physiology and Pharmacology, Center for Basic and Translational Stroke Research, West Virginia University, 1 Medical Center Drive, Morgantown, WV 26506, USA
| | - Michael J Forster
- Center for Neuroscience Discovery, Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Liang-Jun Yan
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA.
| |
Collapse
|
28
|
Stefanatos R, Sanz A. The role of mitochondrial ROS in the aging brain. FEBS Lett 2017; 592:743-758. [PMID: 29106705 DOI: 10.1002/1873-3468.12902] [Citation(s) in RCA: 234] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 10/23/2017] [Accepted: 10/30/2017] [Indexed: 12/26/2022]
Abstract
The brain is the most complex human organ, consuming more energy than any other tissue in proportion to its size. It relies heavily on mitochondria to produce energy and is made up of mitotic and postmitotic cells that need to closely coordinate their metabolism to maintain essential bodily functions. During aging, damaged mitochondria that produce less ATP and more reactive oxygen species (ROS) accumulate. The current consensus is that ROS cause oxidative stress, damaging mitochondria and resulting in an energetic crisis that triggers neurodegenerative diseases and accelerates aging. However, in model organisms, increasing mitochondrial ROS (mtROS) in the brain extends lifespan, suggesting that ROS may participate in signaling that protects the brain. Here, we summarize the mechanisms by which mtROS are produced at the molecular level, how different brain cells and regions produce different amounts of mtROS, and how mtROS levels change during aging. Finally, we critically discuss the possible roles of ROS in aging as signaling molecules and damaging agents, addressing whether age-associated increases in mtROS are a cause or a consequence of aging.
Collapse
Affiliation(s)
- Rhoda Stefanatos
- Institute for Cell and Molecular Biosciences, Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, UK
| | - Alberto Sanz
- Institute for Cell and Molecular Biosciences, Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
29
|
Hardeland R. Melatonin and the electron transport chain. Cell Mol Life Sci 2017; 74:3883-3896. [PMID: 28785805 PMCID: PMC11107625 DOI: 10.1007/s00018-017-2615-9] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 08/03/2017] [Indexed: 12/24/2022]
Abstract
Melatonin protects the electron transport chain (ETC) in multiple ways. It reduces levels of ·NO by downregulating inducible and inhibiting neuronal nitric oxide synthases (iNOS, nNOS), thereby preventing excessive levels of peroxynitrite. Both ·NO and peroxynitrite-derived free radicals, such as ·NO2, hydroxyl (·OH) and carbonate radicals (CO3·-) cause blockades or bottlenecks in the ETC, by ·NO binding to irons, protein nitrosation, nitration and oxidation, changes that lead to electron overflow or even backflow and, thus, increased formation of superoxide anions (O2·-). Melatonin improves the intramitochondrial antioxidative defense by enhancing reduced glutathione levels and inducing glutathione peroxidase and Mn-superoxide dismutase (Mn-SOD) in the matrix and Cu,Zn-SOD in the intermembrane space. An additional action concerns the inhibition of cardiolipin peroxidation. This oxidative change in the membrane does not only initiate apoptosis or mitophagy, as usually considered, but also seems to occur at low rate, e.g., in aging, and impairs the structural integrity of Complexes III and IV. Moreover, elevated levels of melatonin inhibit the opening of the mitochondrial permeability transition pore and shorten its duration. Additionally, high-affinity binding sites in mitochondria have been described. The assumption of direct binding to the amphipathic ramp of Complex I would require further substantiation. The mitochondrial presence of the melatonin receptor MT1 offers the possibility that melatonin acts via an inhibitory G protein, soluble adenylyl cyclase, decreased cAMP and lowered protein kinase A activity, a signaling pathway shown to reduce Complex I activity in the case of a mitochondrial cannabinoid receptor.
Collapse
Affiliation(s)
- Rüdiger Hardeland
- Johann Friedrich Blumenbach, Institute of Zoology and Anthropology, University of Göttingen, Bürgerstr. 50, 37073, Göttingen, Germany.
| |
Collapse
|
30
|
Storoni M, Robert MP, Plant GT. The therapeutic potential of a calorie-restricted ketogenic diet for the management of Leber hereditary optic neuropathy. Nutr Neurosci 2017; 22:156-164. [PMID: 28994349 DOI: 10.1080/1028415x.2017.1368170] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Leber hereditary optic neuropathy (LHON) is a maternally inherited, bilateral, sequential optic neuropathy that usually affects young males. LHON arises from a defect in complex I of the oxidative phosphorylation chain that generates increased reactive oxygen species and causes a decline in cellular ATP production. There exists no cure at present for LHON. Asymptomatic LHON mutation carriers show signs of increased mitochondrial biogenesis that may compensate for the compromise in complex I activity. Partial recovery in LHON is associated with a wider optic disc diameter and a younger age at disease onset, which may allow for greater mitochondrial bioenergetic capacity. Rescuing a mitochondrial bioenergetic deficit soon after disease onset may improve the chances of recovery and reduce visual loss in the second eye. We here propose that a calorie-restricted ketogenic diet has the potential to enhance mitochondrial bioenergetic capacity and should be explored as a potential therapeutic option for treating LHON.
Collapse
Affiliation(s)
- Mithu Storoni
- a Department of Neuro-Ophthalmology , The National Hospital for Neurology and Neurosurgery , Box 93, Queen Square, London WC1N 3BG , UK
| | - Matthieu P Robert
- a Department of Neuro-Ophthalmology , The National Hospital for Neurology and Neurosurgery , Box 93, Queen Square, London WC1N 3BG , UK.,b Service d'ophtalmologie , Hôpital Universitaire Necker-Enfants malades , AP-HP, Rue de Sèvres, 75015 Paris , France
| | - Gordon T Plant
- a Department of Neuro-Ophthalmology , The National Hospital for Neurology and Neurosurgery , Box 93, Queen Square, London WC1N 3BG , UK.,c St. Thomas' Hospital , London , UK
| |
Collapse
|
31
|
Bayazit H, Selek S, Karababa IF, Cicek E, Aksoy N. Evaluation of Oxidant/Antioxidant Status and Cytokine Levels in Patients with Cannabis Use Disorder. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2017; 15:237-242. [PMID: 28783932 PMCID: PMC5565077 DOI: 10.9758/cpn.2017.15.3.237] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/04/2016] [Accepted: 09/11/2016] [Indexed: 02/06/2023]
Abstract
Objective Cannabis is the most commonly used illegal drug in the world and it has several adverse effects such as anxiety, panic reactions and psychotic symptoms. In this study, we aimed to evaluate oxidant, anti-oxidant status and cytokine levels in individuals with cannabis use disorder. Methods Thirty-four patients with cannabis use disorder and 34 healthy controls were enrolled to the study. Serum total antioxidant status, total oxidant status and cytokine levels were investigated in patients with cannabis use disorder and healthy controls. Results We found increased levels of total oxidant status, oxidative stress index and interleukin (IL) 1β, IL-6, IL-8, and tumor necrosis factor (TNF) α in individuals with cannabis dependency compared to healthy people. When we compared total antioxidant status, IL-12, and interferon (IFN) γ levels, there were no differences in both groups. There was positive correlation between IL-6 and total oxidant status, oxidative stress index levels. Conclusion The oxidative balance of individuals with cannabis use disorder was impaired and they had higher levels of IL-1β, IL-6, IL-8, and TNF-α, which is a pro-inflammatory cytokine and indicates increased inflammation compared to healthy controls. Thus, these findings suggest that cannabis increased inflammation and impaired the oxidative balance.
Collapse
Affiliation(s)
- Huseyin Bayazit
- Department of Psychiatry, Siverek State Hospital, Sanliurfa, Turkey
| | - Salih Selek
- Harris County Psychiatric Center, University of Texas Health Science Center at Houston, TX, USA
| | | | - Erdinc Cicek
- Department of Psychiatry, Çumra State Hospital, Konya, Turkey
| | - Nurten Aksoy
- Department of Clinical Biochemistry, Faculty of Medicine, University of Harran, Sanliurfa, Turkey
| |
Collapse
|
32
|
Ravera S, Cossu V, Tappino B, Nicchia E, Dufour C, Cavani S, Sciutto A, Bolognesi C, Columbaro M, Degan P, Cappelli E. Concentration-dependent metabolic effects of metformin in healthy and Fanconi anemia lymphoblast cells. J Cell Physiol 2017; 233:1736-1751. [PMID: 28681917 DOI: 10.1002/jcp.26085] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 07/05/2017] [Indexed: 12/25/2022]
Abstract
Metformin (MET) is the drug of choice for patients with type 2 diabetes and has been proposed for use in cancer therapy and for treating other metabolic diseases. More than 14,000 studies have been published addressing the cellular mechanisms affected by MET. However, several in vitro studies have used concentrations of the drug 10-100-fold higher than the plasmatic concentration measured in patients. Here, we evaluated the biochemical, metabolic, and morphologic effects of various concentrations of MET. Moreover, we tested the effect of MET on Fanconi Anemia (FA) cells, a DNA repair genetic disease with defects in energetic and glucose metabolism, as well as on human promyelocytic leukemia (HL60) cell lines. We found that the response of wild-type cells to MET is concentration dependent. Low concentrations (15 and 150 µM) increase both oxidative phosphorylation and the oxidative stress response, acting on the AMPK/Sirt1 pathway, while the high concentration (1.5 mM) inhibits the respiratory chain, alters cell morphology, becoming toxic to the cells. In FA cells, MET was unable to correct the energetic/respiratory defect and did not improve the response to oxidative stress and DNA damage. By contrast, HL60 cells appear sensitive also at 150 μM. Our findings underline the importance of the MET concentration in evaluating the effect of this drug on cell metabolism and demonstrate that data obtained from in vitro experiments, that have used high concentrations of MET, cannot be readily translated into improving our understanding of the cellular effects of metformin when used in the clinical setting.
Collapse
Affiliation(s)
- Silvia Ravera
- Department of Pharmacy, Biochemistry Laboratory, University of Genova, Genova, Italy
| | - Vanessa Cossu
- Department of Pharmacy, Biochemistry Laboratory, University of Genova, Genova, Italy
| | - Barbara Tappino
- Centro di Diagnostica Genetica e Biochimica Delle Malattie Metaboliche, Istituto Giannina Gaslini, Genova, Italy
| | - Elena Nicchia
- Department of Medical Sciences University of Trieste, Trieste, Italy
| | - Carlo Dufour
- Hematology Unit, Istituto Giannina Gaslini, Genova, Italy
| | - Simona Cavani
- Laboratorio di Genetica Umana, E.O. Ospedali Galliera, Genova, Italy
| | - Andrea Sciutto
- Environmental Carcinogenesis Unit, Ospedale Policlinico San Martino, Genova, Italy
| | - Claudia Bolognesi
- Environmental Carcinogenesis Unit, Ospedale Policlinico San Martino, Genova, Italy
| | - Marta Columbaro
- SC Laboratory of Musculoskeletal Cell Biology, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Paolo Degan
- U.O. Mutagenesi e Prevenzione Oncologica, IRCCS AOU San Martino-IST (Istituto Nazionale per la Ricerca sul Cancro), Genova, Italy
| | | |
Collapse
|
33
|
Wojtala A, Karkucinska-Wieckowska A, Sardao VA, Szczepanowska J, Kowalski P, Pronicki M, Duszynski J, Wieckowski MR. Modulation of mitochondrial dysfunction-related oxidative stress in fibroblasts of patients with Leigh syndrome by inhibition of prooxidative p66Shc pathway. Mitochondrion 2017; 37:62-79. [PMID: 28739512 DOI: 10.1016/j.mito.2017.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 05/22/2017] [Accepted: 07/13/2017] [Indexed: 11/24/2022]
Abstract
The mitochondrial respiratory chain, and in particular, complex I, is a major source of reactive oxygen species (ROS) in cells. Elevated levels of ROS are associated with an imbalance between the rate of ROS formation and the capacity of the antioxidant defense system. Increased ROS production may lead to oxidation of DNA, lipids and proteins and thus can affect fundamental cellular processes. The aim of this study was to investigate the magnitude of intracellular oxidative stress in fibroblasts of patients with Leigh syndrome with defined mutations in complex I. Moreover, we hypothesized that activation of the p66Shc protein (phosphorylation of p66Shc at Ser36 by PKCβ), being part of the oxidative stress response pathway, is partially responsible for the increased ROS production in cells with dysfunctional complex I. Characterization of bioenergetic parameters and ROS production showed that the cellular model of Leigh syndrome is described by increased intracellular oxidative stress and oxidative damage to DNA and proteins, which correlate with increased p66Shc phosphorylation at Ser36. Treatment of patients' fibroblasts with hispidin (an inhibitor of the protein kinase PKCβ), in addition to decreasing ROS production and intracellular oxidative stress, resulted in restoration of complex I activity.
Collapse
Affiliation(s)
- Aleksandra Wojtala
- Department of Biochemistry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | | | - Vilma A Sardao
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech Building, Biocant Park, Cantanhede, Portugal
| | - Joanna Szczepanowska
- Department of Biochemistry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Pawel Kowalski
- Department of Medical Genetics, The Children's Memorial Health Institute, Warsaw, Poland
| | - Maciej Pronicki
- Department of Pathology, The Children's Memorial Health Institute, Warsaw, Poland
| | - Jerzy Duszynski
- Department of Biochemistry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Mariusz R Wieckowski
- Department of Biochemistry, Nencki Institute of Experimental Biology, Warsaw, Poland.
| |
Collapse
|
34
|
Stern M. Evidence that a mitochondrial death spiral underlies antagonistic pleiotropy. Aging Cell 2017; 16:435-443. [PMID: 28185435 PMCID: PMC5418193 DOI: 10.1111/acel.12579] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2017] [Indexed: 01/01/2023] Open
Abstract
The antagonistic pleiotropy (AP) theory posits that aging occurs because alleles that are detrimental in older organisms are beneficial to growth early in life and thus are maintained in populations. Although genes of the insulin signaling pathway likely participate in AP, the insulin‐regulated cellular correlates of AP have not been identified. The mitochondrial quality control process called mitochondrial autophagy (mitophagy), which is inhibited by insulin signaling, might represent a cellular correlate of AP. In this view, rapidly growing cells are limited by ATP production; these cells thus actively inhibit mitophagy to maximize mitochondrial ATP production and compete successfully for scarce nutrients. This process maximizes early growth and reproduction, but by permitting the persistence of damaged mitochondria with mitochondrial DNA mutations, becomes detrimental in the longer term. I suggest that as mitochondrial ATP output drops, cells respond by further inhibiting mitophagy, leading to a further decrease in ATP output in a classic death spiral. I suggest that this increasing ATP deficit is communicated by progressive increases in mitochondrial ROS generation, which signals inhibition of mitophagy via ROS‐dependent activation of insulin signaling. This hypothesis clarifies a role for ROS in aging, explains why insulin signaling inhibits autophagy, and why cells become progressively more oxidized during aging with increased levels of insulin signaling and decreased levels of autophagy. I suggest that the mitochondrial death spiral is not an error in cell physiology but rather a rational approach to the problem of enabling successful growth and reproduction in a competitive world of scarce nutrients.
Collapse
Affiliation(s)
- Michael Stern
- Department of BioSciences, Program in Biochemistry and Cell Biology; Rice University; Houston TX USA
| |
Collapse
|
35
|
CEDIKOVA M, PITULE P, KRIPNEROVA M, MARKOVA M, KUNCOVA J. Multiple Roles of Mitochondria in Aging Processes. Physiol Res 2016; 65:S519-S531. [DOI: 10.33549/physiolres.933538] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Aging is a multifactorial process influenced by genetic factors, nutrition, and lifestyle. According to mitochondrial theory of aging, mitochondrial dysfunction is widely considered a major contributor to age-related processes. Mitochondria are both the main source and targets of detrimental reactions initiated in association with age-dependent deterioration of the cellular functions. Reactions leading to increased reactive oxygen species generation, mtDNA mutations, and oxidation of mitochondrial proteins result in subsequent induction of apoptotic events, impaired oxidative phosphorylation capacity, mitochondrial dynamics, biogenesis and autophagy. This review summarizes the major changes of mitochondria related to aging, with emphasis on mitochondrial DNA mutations, the role of the reactive oxygen species, and structural and functional changes of mitochondria.
Collapse
Affiliation(s)
| | | | | | | | - J. KUNCOVA
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| |
Collapse
|
36
|
Fang D, Qing Y, Yan S, Chen D, Yan SS. Development and Dynamic Regulation of Mitochondrial Network in Human Midbrain Dopaminergic Neurons Differentiated from iPSCs. Stem Cell Reports 2016; 7:678-692. [PMID: 27666790 PMCID: PMC5063542 DOI: 10.1016/j.stemcr.2016.08.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 08/22/2016] [Accepted: 08/23/2016] [Indexed: 02/05/2023] Open
Abstract
Mitochondria are critical to neurogenesis, but the mechanisms of mitochondria in neurogenesis have not been well explored. We fully characterized mitochondrial alterations and function in relation to the development of human induced pluripotent stem cell (hiPSC)-derived dopaminergic (DA) neurons. Following directed differentiation of hiPSCs to DA neurons, mitochondria in these neurons exhibit pronounced changes during differentiation, including mature neurophysiology characterization and functional synaptic network formation. Inhibition of mitochondrial respiratory chains via application of complex IV inhibitor KCN (potassium cyanide) or complex I inhibitor rotenone restricted neurogenesis of DA neurons. These results demonstrated the direct importance of mitochondrial development and bioenergetics in DA neuronal differentiation. Our study also provides a neurophysiologic model of mitochondrial involvement in neurogenesis, which will enhance our understanding of the role of mitochondrial dysfunctions in neurodegenerative diseases. Mitochondria are essential for the development of hiPSC-derived DA neurons Mitochondrial defects suppress maturation and synaptogenesis of DA neurons ROS levels positively correlate to DA neuron maturation and synaptic formation A model of crosstalk of mitochondrial network to neurogenesis of DA neurons
Collapse
Affiliation(s)
- Du Fang
- Department of Pharmacology and Toxicology, Higuchi Bioscience Center, School of Pharmacy, University of Kansas, 2099 Constant Avenue, Lawrence, KS 66047, USA
| | - Yu Qing
- Department of Pharmacology and Toxicology, Higuchi Bioscience Center, School of Pharmacy, University of Kansas, 2099 Constant Avenue, Lawrence, KS 66047, USA; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Cheng Du 610041, China
| | - Shijun Yan
- Department of Pharmacology and Toxicology, Higuchi Bioscience Center, School of Pharmacy, University of Kansas, 2099 Constant Avenue, Lawrence, KS 66047, USA
| | - Doris Chen
- Department of Pharmacology and Toxicology, Higuchi Bioscience Center, School of Pharmacy, University of Kansas, 2099 Constant Avenue, Lawrence, KS 66047, USA
| | - Shirley ShiDu Yan
- Department of Pharmacology and Toxicology, Higuchi Bioscience Center, School of Pharmacy, University of Kansas, 2099 Constant Avenue, Lawrence, KS 66047, USA.
| |
Collapse
|
37
|
Immunolocalisation pattern of complex I-V in ageing human retina: Correlation with mitochondrial ultrastructure. Mitochondrion 2016; 31:20-32. [PMID: 27581213 DOI: 10.1016/j.mito.2016.08.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 08/23/2016] [Accepted: 08/25/2016] [Indexed: 11/22/2022]
Abstract
Earlier studies reported accumulation of mitochondrial DNA mutations in ageing and age-related macular degeneration. To know about the mitochondrial status with age, we examined immunoreactivity (IR) to markers of mitochondria (anti-mitochondrial antibody and voltage-dependent anion channel-1) and complex I-V (that mediate oxidative phosphorylation, OXPHOS) in donor human retinas (age: 19-94years; N=26; right eyes). In all samples, at all ages, IR to anti-mitochondrial antibody and voltage-dependent anion channel-1 was prominent in photoreceptor cells. Between second and seventh decade of life, strong IR to complex I-V was present in photoreceptors over macular to peripheral retina. With progressive ageing, the photoreceptors showed a decrease in complex I-IR (subunit NDUFB4) at eighth decade, and a weak or absence of IR in 10 retinas between ninth and tenth decade. Patchy IR to complex III and complex IV was detected at different ages. IR to ND1 (complex I) and complex II and V remained unaltered with ageing. Nitrosative stress (evaluated by IR to a nitro-tyrosine antibody) was found in photoreceptors. Superoxide dismutase-2 was found upregulated in photoreceptors with ageing. Mitochondrial ultrastructure was examined in two young retinas with intact complex IR and six aged retinas whose counterparts showed weak to absence of IR. Observations revealed irregular, photoreceptor inner segment mitochondria in aged maculae and mid-peripheral retina between eighth and ninth decade; many cones possessed autophagosomes with damaged mitochondria, indicating age-related alterations. A trend in age-dependent reduction of complex I-IR was evident in aged photoreceptors, whereas patchy complex IV-IR (subunits I and II) was age-independent, suggesting that the former is prone to damage with ageing perhaps due to oxidative stress. These changes in OXPHOS system may influence the energy budget of human photoreceptors, affecting their viability.
Collapse
|
38
|
Fang D, Yan S, Yu Q, Chen D, Yan SS. Mfn2 is Required for Mitochondrial Development and Synapse Formation in Human Induced Pluripotent Stem Cells/hiPSC Derived Cortical Neurons. Sci Rep 2016; 6:31462. [PMID: 27535796 PMCID: PMC4989148 DOI: 10.1038/srep31462] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 07/18/2016] [Indexed: 02/07/2023] Open
Abstract
Mitochondria are essential dynamic organelles for energy production. Mitochondria dynamically change their shapes tightly coupled to fission and fusion. Imbalance of fission and fusion can cause deficits in mitochondrial respiration, morphology and motility. Mfn2 (mitofusin 2), a mitochondrial membrane protein that participates in mitochondrial fusion in mammalian cells, contributes to the maintenance and operation of the mitochondrial network. Due to lack of applicable model systems, the mechanisms and involvement of mitochondria in neurogenesis in human brain cells have not been well explored. Here, by employing the human induced pluripotent stem cells (hiPSCs) differentiation system, we fully characterized mitochondrial development, neurogenesis and synapse formation in hiPSCs-derived cortical neurons. Differentiation of hiPSCs to cortical neurons with extended period demonstrates mature neurophysiology characterization and functional synaptic network formation. Mitochondrial respiration, morphology and motility in the differentiated neurons also exhibit pronounced development during differentiation. Mfn2 knock-down results in deficits in mitochondrial metabolism and network, neurogenesis and synapse formation, while Mfn2 overexpression enhances mitochondrial bioenergetics and functions, and promotes the differentiation and maturation of neurons. Together, our data indicate that Mfn2 is essential for human mitochondrial development in neuronal maturation and differentiation, which will enhance our understanding of the role of Mfn2 in neurogenesis.
Collapse
Affiliation(s)
- Du Fang
- Department of Pharmacology and Toxicology, and Higuchi Bioscience Center, School of Pharmacology, University of Kansas, Lawrence, KS, USA
| | - Shijun Yan
- Department of Pharmacology and Toxicology, and Higuchi Bioscience Center, School of Pharmacology, University of Kansas, Lawrence, KS, USA
| | - Qing Yu
- Department of Pharmacology and Toxicology, and Higuchi Bioscience Center, School of Pharmacology, University of Kansas, Lawrence, KS, USA
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Cheng Du, China
| | - Doris Chen
- Department of Pharmacology and Toxicology, and Higuchi Bioscience Center, School of Pharmacology, University of Kansas, Lawrence, KS, USA
| | - Shirley ShiDu Yan
- Department of Pharmacology and Toxicology, and Higuchi Bioscience Center, School of Pharmacology, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
39
|
Cannistrà M, Grande R, Ruggiero M, Novello M, Zullo A, Bonaiuto E, Vaccarisi S, Cavallari G, Serra R, Nardo B. Resection of hepatocellular carcinoma in elderly patients and the role of energy balance. Int J Surg 2016; 33 Suppl 1:S119-25. [PMID: 27353847 DOI: 10.1016/j.ijsu.2016.06.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Progressive functional impairment with age has a significant impact on perioperative risk management. Chronic liver diseases induce a strong oxidative stress; in the elderly, in particular, impaired elimination of free radicals leads to insufficient DNA repair. The events associated with a weak response to growth factors after hepatectomy leads to a decline in liver regeneration. Hypercholesterolemia is highly prevalent in the elderly, which may alter the coenzyme Q10 (CoQ) levels and in turn the cellular energy balance. This condition is commonly treated with statins. The aim of this study is to investigate the role of preoperative cellular energy balance in predicting hepatocellular carcinoma (HCC) postresection outcomes. MATERIALS AND METHODS In a 5-year period (2009-2013), elderly patients with hypercholesterolemia, cardiovascular disease, and diabetes mellitus, undergoing HCC resection, were recruited and grouped by age (<75 and ≥ 75 years old). All patients were previously treated with statins. The risk factors associated with hospital morbidity/mortality and prolonged length of stay (LOS) were evaluated. RESULTS Forty-five elderly patients were recruited and grouped according to their treatment: Group 1 (n = 23) was treated with statins alone (control group), whereas Group 2 (n = 22) was treated with statins and a CoQ analogue, 3 weeks from the surgery and at least a month later (experimental group). The majority of our patients were treated with atorvastatin [n = 28 (53.84%)] and the minority with simvastatin [n = 17 (32.69%)], 20 mg/day, for at least 3 years before the surgery. Perioperative mortality was observed in one patient of Group 1 (4.3%). Morbidities were noted in 13 patients of Group 1 (56.5%) and four patients of Group 2 (18.2%). The control group showed delayed functional recovery, muscle weakness, increased infection rate, and pleural effusion due to prolonged bed rest (hospital stay 13 days (7-19) vs. 8.5 days (5-12)), compared with the experimental group. The overall survival at 5 years was similar for both groups (n = 10 patients (43%) in Group 1 vs. n = 10 patients (45%) in Group 2). CONCLUSION In the elderly population, survival is closely linked to postoperative morbidity and mortality. In our study, prolonged LOS was found to be related to delayed bioenergetic recovery. When limited, risk factors such as infections, neutropenia, and red blood cell transfusions could lower LOS and mortality of elderly patients with HCC. Higher age was associated with greater postoperative morbidity and successful hospital stay.
Collapse
Affiliation(s)
- Marco Cannistrà
- Department of Surgery, Annunziata Hospital of Cosenza, Cosenza, Italy.
| | - Raffaele Grande
- Department of Medical and Surgical Sciences, University of Catanzaro, Italy.
| | - Michele Ruggiero
- Department of Medical and Surgical Sciences, University of Catanzaro, Italy.
| | - Matteo Novello
- Department of Medical and Surgical Sciences, S. Orsola-Malpighi Hospital, University of Bologna, Italy.
| | - Alessandra Zullo
- Department of Medical and Surgical Sciences, University of Catanzaro, Italy.
| | | | | | - Giuseppe Cavallari
- Department of Experimental, Diagnostic and Specialty Medicine, S. Orsola-Malpighi Hospital, University of Bologna, Italy.
| | - Raffaele Serra
- Department of Medical and Surgical Sciences, University of Catanzaro, Italy.
| | - Bruno Nardo
- Department of Medical and Surgical Sciences, S. Orsola-Malpighi Hospital, University of Bologna, Italy.
| |
Collapse
|
40
|
Ge A, Ma Y, Liu YN, Li YS, Gu H, Zhang JX, Wang QX, Zeng XN, Huang M. Diosmetin prevents TGF-β1-induced epithelial-mesenchymal transition via ROS/MAPK signaling pathways. Life Sci 2016; 153:1-8. [PMID: 27101925 DOI: 10.1016/j.lfs.2016.04.023] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/10/2016] [Accepted: 04/15/2016] [Indexed: 11/17/2022]
Abstract
AIMS Epithelial-mesenchymal transition (EMT) plays a critical role in airway repair and remodeling in many respiratory diseases such as asthma and pulmonary fibrosis. The flavone aglycone, diosmetin, possesses anti-remodeling activity in a murine model of chronic asthma, but little is known about its effects on EMT. Herein, we investigated whether diosmetin inhibits transforming growth factor-β1 (TGF-β1)-induced EMT with underlying mechanisms in human bronchial epithelial (HBE) cells. MAIN METHODS HBE cells were incubated with TGF-β1 (10ng/ml), either alone or in combination with diosmetin for indicated times. We measured reactive oxygen species (ROS) levels using FACScan and immunofluorescent assays. We assessed protein expression of NADPH oxidase 4 (NOX4), superoxide dismutase (SOD), catalase, Akt, Erk, p38, and phosphorylation levels of Akt, Erk and p38 by Western blot analysis. KEY FINDINGS TGF-β1 promoted EMT and ROS generation in HBE cells. Diosmetin significantly suppressed TGF-β1-induced increases in cell migration and altered N-cadherin, E-cadherin, and α-smooth muscle actin expression. In addition, diosmetin prevented TGF-β1-induced intracellular ROS generation, down-regulated NOX4, and up-regulated SOD and catalase expression. Furthermore, diosmetin remarkably inhibited TGF-β1-induced phosphorylation of phosphoinositide 3-kinase (PI3K)/Akt and mitogen activated protein kinase (MAPK) pathways in HBE cells. SIGNIFICANCE Our results demonstrate for the first time that diosmetin alleviates TGF-β1-induced EMT by inhibiting ROS generation and inactivating PI3K/Akt and MAPK pathways. Our findings revealed a new role for diosmetin in reducing airway remodeling and fibrogenesis.
Collapse
Affiliation(s)
- Ai Ge
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, China
| | - Yuan Ma
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, China
| | - Ya-Nan Liu
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, China; Department of Respiratory & Critical Care Medicine, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai West Road, Xuzhou, Jiangsu 221000, China
| | - Ye-Shan Li
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, China; Department of Respiratory & Critical Care Medicine, The Second People's Hospital of Wuhu, 263 Jiuhuashan Road, Wuhu, Anhui 241001, China
| | - Hao Gu
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, China
| | - Jia-Xiang Zhang
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, China
| | - Qin-Xue Wang
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, China
| | - Xiao-Ning Zeng
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, China.
| | - Mao Huang
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, China.
| |
Collapse
|
41
|
Jin Z, Wu J, Yan LJ. Chemical Conditioning as an Approach to Ischemic Stroke Tolerance: Mitochondria as the Target. Int J Mol Sci 2016; 17:351. [PMID: 27005615 PMCID: PMC4813212 DOI: 10.3390/ijms17030351] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 02/26/2016] [Accepted: 03/04/2016] [Indexed: 12/17/2022] Open
Abstract
It is well established that the brain can be prepared to resist or tolerate ischemic stroke injury, and mitochondrion is a major target for this tolerance. The preparation of ischemic stroke tolerance can be achieved by three major approaches: ischemic conditioning, hypoxic conditioning and chemical conditioning. In each conditioning approach, there are often two strategies that can be used to achieve the conditioning effects, namely preconditioning (Pre-C) and postconditioning (Post-C). In this review, we focus on chemical conditioning of mitochondrial proteins as targets for neuroprotection against ischemic stroke injury. Mitochondrial targets covered include complexes I, II, IV, the ATP-sensitive potassium channel (mitoKATP), adenine dinucleotide translocase (ANT) and the mitochondrial permeability transition pore (mPTP). While numerous mitochondrial proteins have not been evaluated in the context of chemical conditioning and ischemic stroke tolerance, the paradigms and approaches reviewed in this article should provide general guidelines on testing those mitochondrial components that have not been investigated. A deep understanding of mitochondria as the target of chemical conditioning for ischemic stroke tolerance should provide valuable insights into strategies for fighting ischemic stroke, a leading cause of death in the world.
Collapse
Affiliation(s)
- Zhen Jin
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA.
| | - Jinzi Wu
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA.
| | - Liang-Jun Yan
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA.
| |
Collapse
|
42
|
Understanding Muscle Dysfunction in Chronic Fatigue Syndrome. J Aging Res 2016; 2016:2497348. [PMID: 26998359 PMCID: PMC4779819 DOI: 10.1155/2016/2497348] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 12/12/2015] [Accepted: 01/13/2016] [Indexed: 12/11/2022] Open
Abstract
Introduction. Chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) is a debilitating disorder of unknown aetiology, characterised by severe disabling fatigue in the absence of alternative diagnosis. Historically, there has been a tendency to draw psychological explanations for the origin of fatigue; however, this model is at odds with findings that fatigue and accompanying symptoms may be explained by central and peripheral pathophysiological mechanisms, including effects of the immune, oxidative, mitochondrial, and neuronal pathways. For example, patient descriptions of their fatigue regularly cite difficulty in maintaining muscle activity due to perceived lack of energy. This narrative review examined the literature for evidence of biochemical dysfunction in CFS/ME at the skeletal muscle level. Methods. Literature was examined following searches of PUB MED, MEDLINE, and Google Scholar, using key words such as CFS/ME, immune, autoimmune, mitochondria, muscle, and acidosis. Results. Studies show evidence for skeletal muscle biochemical abnormality in CFS/ME patients, particularly in relation to bioenergetic dysfunction. Discussion. Bioenergetic muscle dysfunction is evident in CFS/ME, with a tendency towards an overutilisation of the lactate dehydrogenase pathway following low-level exercise, in addition to slowed acid clearance after exercise. Potentially, these abnormalities may lead to the perception of severe fatigue in CFS/ME.
Collapse
|
43
|
Chang J, Lee CW, Alsulimani HH, Choi JE, Lee JK, Kim A, Park BH, Kim J, Lee H. Role of fatty acid composites in the toxicity of titanium dioxide nanoparticles used in cosmetic products. J Toxicol Sci 2016; 41:533-42. [DOI: 10.2131/jts.41.533] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- JuOae Chang
- Department of Pharmaceutical Sciences, Northeastern University, USA
| | | | | | - Jee Eun Choi
- Department of Pharmaceutical Sciences, Northeastern University, USA
| | - Joo-Kyung Lee
- Division of Quantum Phases and Devices, Department of Physics, Konkuk University, South Korea
| | - AhYoung Kim
- Division of Quantum Phases and Devices, Department of Physics, Konkuk University, South Korea
| | - Bae Ho Park
- Division of Quantum Phases and Devices, Department of Physics, Konkuk University, South Korea
| | - Jonghan Kim
- Department of Pharmaceutical Sciences, Northeastern University, USA
| | - HeaYeon Lee
- Department of Pharmaceutical Sciences, Northeastern University, USA
- Department of Nano-integrated Cogno-Mechatronics Engineering, Pusan National University, South Korea
| |
Collapse
|
44
|
Jiang Z, Wang W, Perry G, Zhu X, Wang X. Mitochondrial dynamic abnormalities in amyotrophic lateral sclerosis. Transl Neurodegener 2015. [PMID: 26225210 PMCID: PMC4518588 DOI: 10.1186/s40035-015-0037-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common motor neuron disease characterized by progressive loss of motor neurons in the brainstem and spinal cord. Currently, there is no cure or effective treatment for ALS and the cause of disease is unknown in the majority of ALS cases. Neuronal mitochondria dysfunction is one of the earliest features of ALS. Mitochondria are highly dynamic organelles that undergo continuous fission, fusion, trafficking and turnover, all of which contribute to the maintenance of mitochondrial function. Abnormal mitochondrial dynamics have been repeatedly reported in ALS and increasing evidence suggests altered mitochondrial dynamics as possible pathomechanisms underlying mitochondrial dysfunction in ALS. Here, we provide an overview of mitochondrial dysfunction and dynamic abnormalities observed in ALS, and discuss the possibility of targeting mitochondrial dynamics as a novel therapeutic approach for ALS.
Collapse
Affiliation(s)
- Zhen Jiang
- Department of Pathology, Case Western Reserve University, Cleveland, OH USA
| | - Wenzhang Wang
- Department of Pathology, Case Western Reserve University, Cleveland, OH USA
| | - George Perry
- College of Sciences, University of Texas at San Antonio, San Antonio, TX USA
| | - Xiongwei Zhu
- Department of Pathology, Case Western Reserve University, Cleveland, OH USA
| | - Xinglong Wang
- Department of Pathology, Case Western Reserve University, Cleveland, OH USA
| |
Collapse
|
45
|
Li W, Wen C, Li W, Wang H, Guan X, Zhang W, Ye W, Lu J. The tRNA(Gly) T10003C mutation in mitochondrial haplogroup M11b in a Chinese family with diabetes decreases the steady-state level of tRNA(Gly), increases aberrant reactive oxygen species production, and reduces mitochondrial membrane potential. Mol Cell Biochem 2015; 408:171-9. [PMID: 26134044 DOI: 10.1007/s11010-015-2493-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 06/18/2015] [Indexed: 11/28/2022]
Abstract
Mitochondrial diabetes originates mainly from mutations located in maternally transmitted, mitochondrial tRNA-coding genes. In a genetic screening program of type 2 diabetes conducted with a Chinese Han population, we found one family with suggestive maternally transmitted diabetes. The proband's mitochondrial genome was analyzed using DNA sequencing. Total 42 known nucleoside changes and 1 novel variant were identified, and the entire mitochondrial DNA sequence was assigned to haplogroup M11b. Phylogenetic analysis showed that a homoplasmic mutation, 10003T>C transition, occurred at the highly conserved site in the gene encoding tRNA(Gly). Using a transmitochondrial cybrid cell line harboring this mutation, we observed that the steady-state level of tRNA(Gly) significantly affected and the amount of tRNA(Gly) decreased by 97%, production of reactive oxygen species was enhanced, and mitochondrial membrane potential, mtDNA copy number and cellular oxygen consumption rate were remarkably decreased compared with wild-type cybrid cells. The homoplasmic 10003T>C mutation in the mitochondrial tRNA(Gly) gene suggested to be as a pathogenesis-related mutation which might contribute to the maternal inherited diabetes in the Han Chinese family.
Collapse
Affiliation(s)
- Wei Li
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou, 325035, Zhejiang, People's Republic of China.,Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou, 325035, Zhejiang, People's Republic of China.,Wenzhou Medical University School of Laboratory Medicine and Life Sciences, Higher Education Park, Chashan Town, Wenzhou, 325035, Zhejiang, People's Republic of China
| | - Chaowei Wen
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou, 325035, Zhejiang, People's Republic of China
| | - Weixing Li
- Department of Laboratory Medicine, Zhejiang Provincial People's Hospital, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Hailing Wang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou, 325035, Zhejiang, People's Republic of China
| | - Xiaomin Guan
- Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou, 325035, Zhejiang, People's Republic of China
| | - Wanlin Zhang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou, 325035, Zhejiang, People's Republic of China
| | - Wei Ye
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou, 325035, Zhejiang, People's Republic of China
| | - Jianxin Lu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou, 325035, Zhejiang, People's Republic of China. .,Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou, 325035, Zhejiang, People's Republic of China. .,Wenzhou Medical University School of Laboratory Medicine and Life Sciences, Higher Education Park, Chashan Town, Wenzhou, 325035, Zhejiang, People's Republic of China.
| |
Collapse
|
46
|
Ravera S, Bartolucci M, Cuccarolo P, Litamè E, Illarcio M, Calzia D, Degan P, Morelli A, Panfoli I. Oxidative stress in myelin sheath: The other face of the extramitochondrial oxidative phosphorylation ability. Free Radic Res 2015; 49:1156-64. [PMID: 25971447 DOI: 10.3109/10715762.2015.1050962] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Oxidative phosphorylation (OXPHOS) is not only the main source of ATP for the cell, but also a major source of reactive oxygen species (ROS), which lead to oxidative stress. At present, mitochondria are considered the organelles responsible for the OXPHOS, but in the last years we have demonstrated that it can also occur outside the mitochondrion. Myelin sheath is able to conduct an aerobic metabolism, producing ATP that we have hypothesized is transferred to the axon, to support its energetic demand. In this work, spectrophotometric, cytofluorimetric, and luminometric analyses were employed to investigate the oxidative stress production in isolated myelin, as far as its respiratory activity is concerned. We have evaluated the levels of malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE), markers of lipid peroxidation, as well as of hydrogen peroxide (H2O2), marker of ROS production. To assess the presence of endogenous antioxidant systems, superoxide dismutase, catalase, and glutathione peroxidase activities were assayed. The effect of certain uncoupling or antioxidant molecules on oxidative stress in myelin was also investigated. We report that isolated myelin produces high levels of MDA, 4-HNE, and H2O2, likely through the pathway composed by Complex I-III-IV, but it also contains active superoxide dismutase, catalase, and glutathione peroxidase, as antioxidant defense. Uncoupling compounds or Complex I inhibitors increase oxidative stress, while antioxidant compounds limit ROS generation. Data may shed new light on the role of myelin sheath in physiology and pathology. In particular, it can be presumed that the axonal degeneration associated with myelin loss in demyelinating diseases is related to oxidative stress caused by impaired OXPHOS.
Collapse
Affiliation(s)
- S Ravera
- Department of Pharmacy (DIFAR), Biochemistry Laboratory, University of Genova , Genova , Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Li XH, Li Y, Cheng ZY, Cai XG, Wang HM. The Effects of Phellinus linteus Polysaccharide Extracts on Cholesterol Efflux in Oxidized Low-Density Lipoprotein–Loaded THP-1 Macrophages. J Investig Med 2015; 63:752-7. [DOI: 10.1097/jim.0000000000000201] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
48
|
Kwak JY, Ham HJ, Kim CM, Hwang ES. Nicotinamide exerts antioxidative effects on senescent cells. Mol Cells 2015; 38:229-35. [PMID: 25600149 PMCID: PMC4363722 DOI: 10.14348/molcells.2015.2253] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 11/14/2014] [Accepted: 11/19/2014] [Indexed: 12/19/2022] Open
Abstract
Nicotinamide (NAM) has been shown to suppress reactive oxygen species (ROS) production in primary human fibroblasts, thereby extending their replicative lifespan when added to the medium during long-term cultivation. Based on this finding, NAM is hypothesized to affect cellular senescence progression by keeping ROS accumulation low. In the current study, we asked whether NAM is indeed able to reduce ROS levels and senescence phenotypes in cells undergoing senescence progression and those already in senescence. We employed two different cellular models: MCF-7 cells undergoing senescence progression and human fibroblasts in a state of replicative senescence. In both models, NAM treatment substantially decreased ROS levels. In addition, NAM attenuated the expression of the assessed senescence phenotypes, excluding irreversible growth arrest. N-acetyl cysteine, a potent ROS scavenger, did not have comparable effects in the tested cell types. These data show that NAM has potent antioxidative as well as anti-senescent effects. Moreover, these findings suggest that NAM can reduce cellular deterioration caused by oxidative damage in postmitotic cells in vivo.
Collapse
Affiliation(s)
- Ju Yeon Kwak
- Department of Life Science, University of Seoul, Seoul 130-743,
Korea
| | - Hyun Joo Ham
- Department of Life Science, University of Seoul, Seoul 130-743,
Korea
| | | | - Eun Seong Hwang
- Department of Life Science, University of Seoul, Seoul 130-743,
Korea
| |
Collapse
|
49
|
Vijay V, Han T, Moland CL, Kwekel JC, Fuscoe JC, Desai VG. Sexual dimorphism in the expression of mitochondria-related genes in rat heart at different ages. PLoS One 2015; 10:e0117047. [PMID: 25615628 PMCID: PMC4304718 DOI: 10.1371/journal.pone.0117047] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 12/18/2014] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of mortality worldwide. Moreover, sex and age are considered major risk factors in the development of CVDs. Mitochondria are vital for normal cardiac function, and regulation of mitochondrial structure and function may impact susceptibility to CVD. To identify potential role of mitochondria in sex-related differences in susceptibility to CVD, we analyzed the basal expression levels of mitochondria-related genes in the hearts of male and female rats. Whole genome expression profiling was performed in the hearts of young (8-week), adult (21-week), and old (78-week) male and female Fischer 344 rats and the expression of 670 unique genes related to various mitochondrial functions was analyzed. A significant (p<0.05) sexual dimorphism in expression levels of 46, 114, and 41 genes was observed in young, adult and old rats, respectively. Gene Ontology analysis revealed the influence of sex on various biological pathways related to cardiac energy metabolism at different ages. The expression of genes involved in fatty acid metabolism was significantly different between the sexes in young and adult rat hearts. Adult male rats also showed higher expression of genes associated with the pyruvate dehydrogenase complex compared to females. In young and adult hearts, sexual dimorphism was not noted in genes encoding oxidative phosphorylation. In old rats, however, a majority of genes involved in oxidative phosphorylation had higher expression in females compared to males. Such basal differences between the sexes in cardiac expression of genes associated with energy metabolism may indicate a likely involvement of mitochondria in susceptibility to CVDs. In addition, female rats showed lower expression levels of apoptotic genes in hearts compared to males at all ages, which may have implications for better preservation of cardiac mass in females than in males.
Collapse
Affiliation(s)
- Vikrant Vijay
- Personalized Medicine Branch, Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, United States of America
| | - Tao Han
- Personalized Medicine Branch, Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, United States of America
| | - Carrie L. Moland
- Personalized Medicine Branch, Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, United States of America
| | - Joshua C. Kwekel
- Personalized Medicine Branch, Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, United States of America
| | - James C. Fuscoe
- Personalized Medicine Branch, Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, United States of America
| | - Varsha G. Desai
- Personalized Medicine Branch, Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, United States of America
- * E-mail:
| |
Collapse
|
50
|
Ahuja A, Dev K, Tanwar RS, Selwal KK, Tyagi PK. Copper mediated neurological disorder: visions into amyotrophic lateral sclerosis, Alzheimer and Menkes disease. J Trace Elem Med Biol 2015; 29:11-23. [PMID: 24975171 DOI: 10.1016/j.jtemb.2014.05.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 04/16/2014] [Accepted: 05/08/2014] [Indexed: 12/31/2022]
Abstract
Copper (Cu) is a vital redox dynamic metal that is possibly poisonous in superfluous. Metals can traditionally or intricately cause propagation in reactive oxygen species (ROS) accretion in cells and this may effect in programmed cell death. Accumulation of Cu causes necrosis that looks to be facilitated by DNA damage, followed by activation of P53. Cu dyshomeostasis has also been concerned in neurodegenerative disorders such as Alzheimer, Amyotrophic lateral sclerosis (ALS) or Menkes disease and is directly related to neurodegenerative syndrome that usually produces senile dementia. These mortal syndromes are closely related with an immense damage of neurons and synaptic failure in the brain. This review focuses on copper mediated neurological disorders with insights into amyotrophic lateral sclerosis, Alzheimer and Menkes disease.
Collapse
Affiliation(s)
- Anami Ahuja
- Department of Biotechnology, NIMS University, Jaipur, India.
| | - Kapil Dev
- Faculty of Medicine in Hradec Kralove, University of Charles, Prague, Czech Republic
| | - Ranjeet S Tanwar
- Department of Biotechnology, N.C. College of Engineering, Israna, India
| | - Krishan K Selwal
- Department of Biotechnology, Deenbandhu Chotu Ram University of Science and Technology, Murthal, India
| | - Pankaj K Tyagi
- Department of Biotechnology, Meerut Institute of Engineering and Technology, Meerut, India
| |
Collapse
|