1
|
Stepanov YK, Herrmann C, Stöckl JB, Köhn FM, Pickl U, Trottmann M, Fröhlich T, Mayerhofer A, Welter H. Prolonged exposure to dexamethasone alters the proteome and cellular phenotype of human testicular peritubular cells. Proteomics 2024; 24:e2300616. [PMID: 38419139 DOI: 10.1002/pmic.202300616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/09/2024] [Accepted: 02/09/2024] [Indexed: 03/02/2024]
Abstract
Human testicular peritubular cells (HTPCs) are smooth muscle cells, which in the testis form a small compartment surrounding the seminiferous tubules. Contractions of HTPCs are responsible for sperm transport, HTPCs contribute to spermatogenesis, have immunological roles and are a site of glucocorticoid receptor expression. Importantly, HTPCs maintain their characteristics in vitro, and thus can serve as an experimental window into the male gonad. Previously we reported consequences of 3-day treatment with Dexamethasone (Dex), a synthetic glucocorticoid and multi-purpose anti-inflammatory drug. However, as glucocorticoid therapies in man often last longer, we now studied consequences of a prolonged 7-day exposure to 1 µM Dex. Combining live cell imaging with quantative proteomics of samples taken from men, we confirmed our recent findings but more importantly, found numerous novel proteomic alterations induced by prolonged Dex treatment. The comparison of the 7-day treatment with the 3-day treatment dataset revealed that extracellular matrix- and focal adhesion-related proteins become more prominent after 7 days of treatment. In contrast, extended stimulation is, for example, associated with a decrease of proteins related to cholesterol and steroid metabolism. Our dataset, which describes phenotypic and proteomic alterations, is a valuable resource for further research projects investigating effects of Dex on human testicular cells.
Collapse
Affiliation(s)
- Youli K Stepanov
- Gene Center Munich, Laboratory for Functional Genome Analysis (LAFUGA), Ludwig Maximilian University of Munich, Munich, Germany
| | - Carola Herrmann
- Biomedical Center Munich (BMC), Cell Biology, Anatomy III, Faculty of Medicine, AG Mayerhofer, Ludwig Maximilian University of Munich, Planegg-Martinsried, Germany
| | - Jan B Stöckl
- Gene Center Munich, Laboratory for Functional Genome Analysis (LAFUGA), Ludwig Maximilian University of Munich, Munich, Germany
| | | | | | | | - Thomas Fröhlich
- Gene Center Munich, Laboratory for Functional Genome Analysis (LAFUGA), Ludwig Maximilian University of Munich, Munich, Germany
| | - Artur Mayerhofer
- Biomedical Center Munich (BMC), Cell Biology, Anatomy III, Faculty of Medicine, AG Mayerhofer, Ludwig Maximilian University of Munich, Planegg-Martinsried, Germany
| | - Harald Welter
- Biomedical Center Munich (BMC), Cell Biology, Anatomy III, Faculty of Medicine, AG Mayerhofer, Ludwig Maximilian University of Munich, Planegg-Martinsried, Germany
| |
Collapse
|
2
|
Mueller ML, McNabb BR, Owen JR, Hennig SL, Ledesma AV, Angove ML, Conley AJ, Ross PJ, Van Eenennaam AL. Germline ablation achieved via CRISPR/Cas9 targeting of NANOS3 in bovine zygotes. Front Genome Ed 2023; 5:1321243. [PMID: 38089499 PMCID: PMC10711618 DOI: 10.3389/fgeed.2023.1321243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/09/2023] [Indexed: 02/01/2024] Open
Abstract
NANOS3 is expressed in migrating primordial germ cells (PGCs) to protect them from apoptosis, and it is known to be a critical factor for germline development of both sexes in several organisms. However, to date, live NANOS3 knockout (KO) cattle have not been reported, and the specific role of NANOS3 in male cattle, or bulls, remains unexplored. This study generated NANOS3 KO cattle via cytoplasmic microinjection of the CRISPR/Cas9 system in vitro produced bovine zygotes and evaluated the effect of NANOS3 elimination on bovine germline development, from fetal development through reproductive age. The co-injection of two selected guide RNA (gRNA)/Cas9 ribonucleoprotein complexes (i.e., dual gRNA approach) at 6 h post fertilization achieved a high NANOS3 KO rate in developing embryos. Subsequent embryo transfers resulted in a 31% (n = 8/26) pregnancy rate. A 75% (n = 6/8) total KO rate (i.e., 100% of alleles present contained complete loss-of-function mutations) was achieved with the dual gRNA editing approach. In NANOS3 KO fetal testes, PGCs were found to be completely eliminated by 41-day of fetal age. Importantly, despite the absence of germ cells, seminiferous tubule development was not impaired in NANOS3 KO bovine testes during fetal, perinatal, and adult stages. Moreover, a live, NANOS3 KO, germline-ablated bull was produced and at sexual maturity he exhibited normal libido, an anatomically normal reproductive tract, and intact somatic gonadal development and structure. Additionally, a live, NANOS3 KO, germline-ablated heifer was produced. However, it was evident that the absence of germ cells in NANOS3 KO cattle compromised the normalcy of ovarian development to a greater extent than it did testes development. The meat composition of NANOS3 KO cattle was unremarkable. Overall, this study demonstrated that the absence of NANOS3 in cattle leads to the specific deficiency of both male and female germ cells, suggesting the potential of NANOS3 KO cattle to act as hosts for donor-derived exogenous germ cell production in both sexes. These findings contribute to the understanding of NANOS3 function in cattle and have valuable implications for the development of novel breeding technologies using germline complementation in NANOS3 KO germline-ablated hosts.
Collapse
Affiliation(s)
- Maci L. Mueller
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Bret R. McNabb
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Joseph R. Owen
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Sadie L. Hennig
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Alba V. Ledesma
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Mitchell L. Angove
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Alan J. Conley
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Pablo J. Ross
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | | |
Collapse
|
3
|
Voigt AL, de Lima e Martins Lara N, Dobrinski I. Comparing the adult and pre-pubertal testis: Metabolic transitions and the change in the spermatogonial stem cell metabolic microenvironment. Andrology 2023; 11:1132-1146. [PMID: 36690000 PMCID: PMC10363251 DOI: 10.1111/andr.13397] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023]
Abstract
BACKGROUND Survivors of childhood cancer often suffer from infertility. While sperm cryopreservation is not feasible before puberty, the patient's own spermatogonial stem cells could serve as a germ cell reservoir, enabling these patients to father their own children in adulthood through the isolation, in vitro expansion, and subsequent transplantation of spermatogonial stem cells. However, this approach requires large numbers of stem cells, and methods for successfully propagating spermatogonial stem cells in the laboratory are yet to be established for higher mammals and humans. The improvement of spermatogonial stem cell culture requires deeper understanding of their metabolic requirements and the mechanisms that regulate metabolic homeostasis. AIM This review gives a summary on our knowledge of spermatogonial stem cell metabolism during maintenance and differentiation and highlights the potential influence of Sertoli cell and stem cell niche maturation on spermatogonial stem cell metabolic requirements during development. RESULTS AND CONCLUSIONS Fetal human spermatogonial stem cell precursors, or gonocytes, migrate into the seminiferous cords and supposedly mature to adult stem cells within the first year of human development. However, the spermatogonial stem cell niche does not fully differentiate until puberty, when Sertoli cells dramatically rearrange the architecture and microenvironment within the seminiferous epithelium. Consequently, pre-pubertal and adult spermatogonial stem cells experience two distinct niche environments potentially affecting spermatogonial stem cell metabolism and maturation. Indeed, the metabolic requirements of mouse primordial germ cells and pig gonocytes are distinct from their adult counterparts, and novel single-cell RNA sequencing analysis of human and porcine spermatogonial stem cells during development confirms this metabolic transition. Knowledge of the metabolic requirements and their changes and regulation during spermatogonial stem cell maturation is necessary to implement laboratory-based techniques and enable clinical use of spermatogonial stem cells. Based on the advancement in our understanding of germline metabolism circuits and maturation events of niche cells within the testis, we propose a new definition of spermatogonial stem cell maturation and its amendment in the light of metabolic change.
Collapse
Affiliation(s)
- Anna Laura Voigt
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine; and Faculty of Veterinary Medicine, University of Calgary, AB, Canada
| | - Nathalia de Lima e Martins Lara
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine; and Faculty of Veterinary Medicine, University of Calgary, AB, Canada
| | - Ina Dobrinski
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine; and Faculty of Veterinary Medicine, University of Calgary, AB, Canada
| |
Collapse
|
4
|
Toussaint AB, Ellis AS, Bongiovanni AR, Peterson DR, Bavley CC, Karbalaei R, Mayberry HL, Bhakta S, Dressler CC, Imperio CG, Maurer JJ, Schmidt HD, Chen C, Bland K, Liu-Chen LY, Wimmer ME. Paternal morphine exposure enhances morphine self-administration and induces region-specific neural adaptations in reward-related brain regions of male offspring. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.03.522600. [PMID: 36711571 PMCID: PMC9881847 DOI: 10.1101/2023.01.03.522600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Background A growing body of preclinical studies report that preconceptional experiences can have a profound and long-lasting impact on adult offspring behavior and physiology. However, less is known about paternal drug exposure and its effects on reward sensitivity in the next generation. Methods Adult male rats self-administered morphine for 65 days; controls received saline. Sires were bred to drug-naïve dams to produce first-generation (F1) offspring. Morphine, cocaine, and nicotine self-administration were measured in adult F1 progeny. Molecular correlates of addiction-like behaviors were measured in reward-related brain regions of drug naïve F1 offspring. Results Male, but not female offspring produced by morphine-exposed sires exhibited dose-dependent increased morphine self-administration and increased motivation to earn morphine infusions under a progressive ratio schedule of reinforcement. This phenotype was drug-specific as self-administration of cocaine, nicotine, and sucrose were not altered by paternal morphine history. The male offspring of morphine-exposed sires also had increased expression of mu-opioid receptors in the ventral tegmental area but not in the nucleus accumbens. Conclusions Paternal morphine exposure increased morphine addiction-like behavioral vulnerability in male but not female progeny. This phenotype is likely driven by long-lasting neural adaptations within the reward neural brain pathways.
Collapse
Affiliation(s)
- Andre B Toussaint
- Department of Psychology, Program in Neuroscience Temple University, Philadelphia, PA, USA
| | - Alexandra S Ellis
- Department of Psychology, Program in Neuroscience Temple University, Philadelphia, PA, USA
| | - Angela R Bongiovanni
- Department of Psychology, Program in Neuroscience Temple University, Philadelphia, PA, USA
| | - Drew R Peterson
- Department of Psychology, Program in Neuroscience Temple University, Philadelphia, PA, USA
| | - Charlotte C Bavley
- Department of Psychology, Program in Neuroscience Temple University, Philadelphia, PA, USA
| | - Reza Karbalaei
- Department of Psychology, Program in Neuroscience Temple University, Philadelphia, PA, USA
| | - Hannah L Mayberry
- Department of Psychology, Program in Neuroscience Temple University, Philadelphia, PA, USA
| | - Shivam Bhakta
- Department of Psychology, Program in Neuroscience Temple University, Philadelphia, PA, USA
| | - Carmen C Dressler
- Department of Psychology, Program in Neuroscience Temple University, Philadelphia, PA, USA
| | - Caesar G Imperio
- Department of Psychiatry and Behavioral Science, Temple University, Philadelphia, PA, USA
| | - John J Maurer
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Heath D Schmidt
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chongguang Chen
- Center for Substance Abuse Research and Department of Neural Sciences. Temple University Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Kathryn Bland
- Center for Substance Abuse Research and Department of Neural Sciences. Temple University Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Lee-Yuan Liu-Chen
- Center for Substance Abuse Research and Department of Neural Sciences. Temple University Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Mathieu E Wimmer
- Department of Psychology, Program in Neuroscience Temple University, Philadelphia, PA, USA
| |
Collapse
|
5
|
Cannarella R, Gül M, Rambhatla A, Agarwal A. Temporal decline of sperm concentration: role of endocrine disruptors. Endocrine 2023; 79:1-16. [PMID: 36194343 DOI: 10.1007/s12020-022-03136-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/03/2022] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Male infertility is a widespread disease with an etiology that is not always clear. A number of studies have reported a decrease in sperm production in the last forty years. Although the reasons are still undefined, the change in environmental conditions and the higher exposure to endocrine-disrupting chemicals (EDCs), namely bisphenol A, phthalates, polychlorinated biphenyls, polybrominated diphenyl esters, dichlorodiphenyl-dichloroethylene, pesticides, and herbicides, organophosphates, and heavy metals, starting from prenatal life may represent a possible factor justifying the temporal decline in sperm count. AIM The aim of this study is to provide a comprehensive description of the effects of the exposure to EDCs on testicular development, spermatogenesis, the prevalence of malformations of the male genital tract (cryptorchidism, testicular dysgenesis, and hypospadias), testicular tumor, and the mechanisms of testicular EDC-mediated damage. NARRATIVE REVIEW Animal studies confirm the deleterious impact of EDCs on the male reproductive apparatus. EDCs can compromise male fertility by binding to hormone receptors, dysregulating the expression of receptors, disrupting steroidogenesis and hormonal metabolism, and altering the epigenetic mechanisms. In humans, exposure to EDCs has been associated with poor semen quality, increased sperm DNA fragmentation, increased gonadotropin levels, a slightly increased risk of structural abnormalities of the genital apparatus, such as cryptorchidism and hypospadias, and development of testicular tumor. Finally, maternal exposure to EDCs seems to predispose to the risk of developing testicular tumors. CONCLUSION EDCs negatively impact the testicular function, as suggested by evidence in both experimental animals and humans. A prenatal and postnatal increase to EDC exposure compared to the past may likely represent one of the factors leading to the temporal decline in sperm counts.
Collapse
Affiliation(s)
- Rossella Cannarella
- Glickman Urological & Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Murat Gül
- Department of Urology, Selcuk University School of Medicine, Konya, Turkey
| | | | - Ashok Agarwal
- American Center for Reproductive Medicine (Virtual Research), Global Andrology Forum, Cleveland, OH, USA.
| |
Collapse
|
6
|
Song H, Park HJ, Lee WY, Lee KH. Models and Molecular Markers of Spermatogonial Stem Cells in Vertebrates: To Find Models in Nonmammals. Stem Cells Int 2022; 2022:4755514. [PMID: 35685306 PMCID: PMC9174007 DOI: 10.1155/2022/4755514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/21/2022] [Accepted: 04/17/2022] [Indexed: 11/24/2022] Open
Abstract
Spermatogonial stem cells (SSCs) are the germline stem cells that are essential for the maintenance of spermatogenesis in the testis. However, it has not been sufficiently understood in amphibians, reptiles, and fish because numerous studies have been focused mainly on mammals. The aim of this review is to discuss scientific ways to elucidate SSC models of nonmammals in the context of the evolution of testicular organization since rodent SSC models. To further understand the SSC models in nonmammals, we point out common markers of an SSC pool (undifferentiated spermatogonia) in various types of testes where the kinetics of the SSC pool appears. This review includes the knowledge of (1) common molecular markers of vertebrate type A spermatogonia including putative SSC markers, (2) localization of the markers on the spermatogonia that have been reported in previous studies, (3) highlighting the most common markers in vertebrates, and (4) suggesting ways of finding SSC models in nonmammals.
Collapse
Affiliation(s)
- Hyuk Song
- Department of Stem Cell and Regenerative Technology, KIT, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyun-Jung Park
- Department of Animal Biotechnology, College of Life Science and Natural Resources, Sangji University, Wonju-si 26339, Republic of Korea
| | - Won-Young Lee
- Department of Animal Science, Korea National College of Agriculture and Fisheries, Jeonju-si 54874, Republic of Korea
| | - Kyung Hoon Lee
- Department of Stem Cell and Regenerative Technology, KIT, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
7
|
Ho SM, Rao R, Ouyang B, Tam NNC, Schoch E, Song D, Ying J, Leung YK, Govindarajah V, Tarapore P. Three-Generation Study of Male Rats Gestationally Exposed to High Butterfat and Bisphenol A: Impaired Spermatogenesis, Penetrance with Reduced Severity. Nutrients 2021; 13:nu13103636. [PMID: 34684636 PMCID: PMC8541510 DOI: 10.3390/nu13103636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/03/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022] Open
Abstract
Gestational high butterfat (HFB) and/or endocrine disruptor exposure was previously found to disrupt spermatogenesis in adulthood. This study addresses the data gap in our knowledge regarding transgenerational transmission of the disruptive interaction between a high-fat diet and endocrine disruptor bisphenol A (BPA). F0 generation Sprague-Dawley rats were fed diets containing butterfat (10 kcal%) and high in butterfat (39 kcal%, HFB) with or without BPA (25 µg/kg body weight/day) during mating and pregnancy. Gestationally exposed F1-generation offspring from different litters were mated to produce F2 offspring, and similarly, F2-generation animals produced F3-generation offspring. One group of F3 male offspring was administered either testosterone plus estradiol-17β (T + E2) or sham via capsule implants from postnatal days 70 to 210. Another group was naturally aged to 18 months. Combination diets of HFB + BPA in F0 dams, but not single exposure to either, disrupted spermatogenesis in F3-generation adult males in both the T + E2-implanted group and the naturally aged group. CYP19A1 localization to the acrosome and estrogen receptor beta (ERbeta) localization to the nucleus were associated with impaired spermatogenesis. Finally, expression of methyl-CpG-binding domain-3 (MBD3) was consistently decreased in the HFB and HFB + BPA exposed F1 and F3 testes, suggesting an epigenetic component to this inheritance. However, the severe atrophy within testes present in F1 males was absent in F3 males. In conclusion, the HFB + BPA group demonstrated transgenerational inheritance of the impaired spermatogenesis phenotype, but severity was reduced in the F3 generation.
Collapse
Affiliation(s)
- Shuk-Mei Ho
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (N.N.C.T.); (Y.-K.L.)
- Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA
- Correspondence: (S.-M.H.); (P.T.); Tel.: +501-686-5347 (S.-M.H.); +513-558-5148 (P.T.)
| | - Rahul Rao
- Department of Environmental and Public Health Sciences, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA; (R.R.); (B.O.); (E.S.); (D.S.); (J.Y.)
| | - Bin Ouyang
- Department of Environmental and Public Health Sciences, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA; (R.R.); (B.O.); (E.S.); (D.S.); (J.Y.)
- Center for Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
| | - Neville N. C. Tam
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (N.N.C.T.); (Y.-K.L.)
- Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA
| | - Emma Schoch
- Department of Environmental and Public Health Sciences, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA; (R.R.); (B.O.); (E.S.); (D.S.); (J.Y.)
| | - Dan Song
- Department of Environmental and Public Health Sciences, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA; (R.R.); (B.O.); (E.S.); (D.S.); (J.Y.)
| | - Jun Ying
- Department of Environmental and Public Health Sciences, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA; (R.R.); (B.O.); (E.S.); (D.S.); (J.Y.)
- Center for Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Yuet-Kin Leung
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (N.N.C.T.); (Y.-K.L.)
- Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA
| | - Vinothini Govindarajah
- Stem Cell Program, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
| | - Pheruza Tarapore
- Department of Environmental and Public Health Sciences, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA; (R.R.); (B.O.); (E.S.); (D.S.); (J.Y.)
- Center for Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
- Cincinnati Cancer Center, Cincinnati, OH 45267, USA
- Correspondence: (S.-M.H.); (P.T.); Tel.: +501-686-5347 (S.-M.H.); +513-558-5148 (P.T.)
| |
Collapse
|
8
|
Oliver E, Alves-Lopes JP, Harteveld F, Mitchell RT, Åkesson E, Söder O, Stukenborg JB. Self-organising human gonads generated by a Matrigel-based gradient system. BMC Biol 2021; 19:212. [PMID: 34556114 PMCID: PMC8461962 DOI: 10.1186/s12915-021-01149-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 09/09/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Advances in three-dimensional culture technologies have led to progression in systems used to model the gonadal microenvironment in vitro. Despite demonstrating basic functionality, tissue organisation is often limited. We have previously detailed a three-dimensional culture model termed the three-layer gradient system to generate rat testicular organoids in vitro. Here we extend the model to human first-trimester embryonic gonadal tissue. RESULTS Testicular cell suspensions reorganised into testis-like organoids with distinct seminiferous-like cords situated within an interstitial environment after 7 days. In contrast, tissue reorganisation failed to occur when mesonephros, which promotes testicular development in vivo, was included in the tissue digest. Organoids generated from dissociated female gonad cell suspensions formed loosely organised cords after 7 days. In addition to displaying testis-specific architecture, testis-like organoids demonstrated evidence of somatic cell differentiation. Within the 3-LGS, we observed the onset of AMH expression in the cytoplasm of SOX9-positive Sertoli cells within reorganised testicular cords. Leydig cell differentiation and onset of steroidogenic capacity was also revealed in the 3-LGS through the expression of key steroidogenic enzymes StAR and CYP17A1 within the interstitial compartment. While the 3-LGS generates a somatic cell environment capable of supporting germ cell survival in ovarian organoids germ cell loss was observed in testicular organoids. CONCLUSION The 3-LGS can be used to generate organised whole gonadal organoids within 7 days. The 3-LGS brings a new opportunity to explore gonadal organogenesis and contributes to the development of more complex in vitro models in the field of developmental and regenerative medicine.
Collapse
Affiliation(s)
- Elizabeth Oliver
- NORDFERTIL Research Lab Stockholm, Childhood Cancer Research Unit, J9:30, Department of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, Visionsgatan 4, 17164, Solna, Stockholm, Sweden
| | - João Pedro Alves-Lopes
- NORDFERTIL Research Lab Stockholm, Childhood Cancer Research Unit, J9:30, Department of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, Visionsgatan 4, 17164, Solna, Stockholm, Sweden.,Present address: Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Femke Harteveld
- NORDFERTIL Research Lab Stockholm, Childhood Cancer Research Unit, J9:30, Department of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, Visionsgatan 4, 17164, Solna, Stockholm, Sweden
| | - Rod T Mitchell
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh, Scotland, EH16 4TJ, UK.,Royal Hospital for Children and Young People, 9 Sciennes Road, Edinburgh, EH9 1LF, Scotland, UK
| | - Elisabet Åkesson
- Department of Neurobiology, Care Sciences & Society, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden.,The R&D Unit, Stockholms Sjukhem, Stockholm, Sweden
| | - Olle Söder
- NORDFERTIL Research Lab Stockholm, Childhood Cancer Research Unit, J9:30, Department of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, Visionsgatan 4, 17164, Solna, Stockholm, Sweden
| | - Jan-Bernd Stukenborg
- NORDFERTIL Research Lab Stockholm, Childhood Cancer Research Unit, J9:30, Department of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, Visionsgatan 4, 17164, Solna, Stockholm, Sweden.
| |
Collapse
|
9
|
Gaspari L, Paris F, Kalfa N, Soyer-Gobillard MO, Sultan C, Hamamah S. Experimental Evidence of 2,3,7,8-Tetrachlordibenzo-p-Dioxin (TCDD) Transgenerational Effects on Reproductive Health. Int J Mol Sci 2021; 22:ijms22169091. [PMID: 34445797 PMCID: PMC8396488 DOI: 10.3390/ijms22169091] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/09/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022] Open
Abstract
Previous studies have demonstrated that endocrine disruptors (EDs) can promote the transgenerational inheritance of disease susceptibility. Among the many existing EDs, 2,3,7,8-tetrachlordibenzo-p-dioxin (TCDD) affects reproductive health, including in humans, following direct occupational exposure or environmental disasters, for instance the Agent Orange sprayed during the Vietnam War. Conversely, few studies have focused on TCDD multigenerational and transgenerational effects on human reproductive health, despite the high amount of evidence in animal models of such effects on male and female reproductive health that mimic human reproductive system disorders. Importantly, these studies show that paternal ancestral TCDD exposure substantially contributes to pregnancy outcome and fetal health, although pregnancy outcome is considered tightly related to the woman’s health. In this work, we conducted a systematic review of the literature and a knowledge synthesis in order (i) to describe the findings obtained in rodent models concerning TCDD transgenerational effects on reproductive health and (ii) to discuss the epigenetic molecular alterations that might be involved in this process. As ancestral toxicant exposure cannot be changed in humans, identifying the crucial reproductive functions that are negatively affected by such exposure may help clinicians to preserve male and female fertility and to avoid adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Laura Gaspari
- Unité d’Endocrinologie-Gynécologie Pédiatrique, Service de Pédiatrie, CHU Montpellier, University of Montpellier, 34090 Montpellier, France; (L.G.); (F.P.); (C.S.)
- Centre de Référence Maladies Rares du Développement Génital, Constitutif Sud, CHU Montpellier, University of Montpellier, Hôpital Lapeyronie, 34090 Montpellier, France;
- INSERM 1203, Développement Embryonnaire Fertilité Environnement, University of Montpellier, 34295 Montpellier, France
| | - Françoise Paris
- Unité d’Endocrinologie-Gynécologie Pédiatrique, Service de Pédiatrie, CHU Montpellier, University of Montpellier, 34090 Montpellier, France; (L.G.); (F.P.); (C.S.)
- Centre de Référence Maladies Rares du Développement Génital, Constitutif Sud, CHU Montpellier, University of Montpellier, Hôpital Lapeyronie, 34090 Montpellier, France;
- INSERM 1203, Développement Embryonnaire Fertilité Environnement, University of Montpellier, 34295 Montpellier, France
| | - Nicolas Kalfa
- Centre de Référence Maladies Rares du Développement Génital, Constitutif Sud, CHU Montpellier, University of Montpellier, Hôpital Lapeyronie, 34090 Montpellier, France;
- Département de Chirurgie Viscérale et Urologique Pédiatrique, CHU Montpellier, University of Montpellier, Hôpital Lapeyronie, 34090 Montpellier, France
- Institut Debrest de Santé Publique IDESP, UMR INSERM, University of Montpellier, 34090 Montpellier, France
| | - Marie-Odile Soyer-Gobillard
- CNRS, Sorbonne University, 75006 Paris, France;
- Association Hhorages-France, 95270 Asnières-sur-Oise, France
| | - Charles Sultan
- Unité d’Endocrinologie-Gynécologie Pédiatrique, Service de Pédiatrie, CHU Montpellier, University of Montpellier, 34090 Montpellier, France; (L.G.); (F.P.); (C.S.)
| | - Samir Hamamah
- INSERM 1203, Développement Embryonnaire Fertilité Environnement, University of Montpellier, 34295 Montpellier, France
- Département de Biologie de la Reproduction, Biologie de la Reproduction/DPI et CECOS, CHU Montpellier, University of Montpellier, 34090 Montpellier, France
- Correspondence: ; Fax: +33-4-67-33-62-90
| |
Collapse
|
10
|
Seralini GE, Jungers G. Endocrine disruptors also function as nervous disruptors and can be renamed endocrine and nervous disruptors (ENDs). Toxicol Rep 2021; 8:1538-1557. [PMID: 34430217 PMCID: PMC8365328 DOI: 10.1016/j.toxrep.2021.07.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/22/2021] [Accepted: 07/29/2021] [Indexed: 01/14/2023] Open
Abstract
Endocrine disruption (ED) and endocrine disruptors (EDs) emerged as scientific concepts in 1995, after numerous chemical pollutants were found to be responsible for reproductive dysfunction. The World Health Organization established in the United Nations Environment Programme a list of materials, plasticizers, pesticides, and various pollutants synthesized from petrochemistry that impact not only reproduction, but also hormonal functions, directly or indirectly. Cells communicate via either chemical or electrical signals transmitted within the endocrine or nervous systems. To investigate whether hormone disruptors may also interfere directly or indirectly with the development or functioning of the nervous system through either a neuroendocrine or a more general mechanism, we examined the scientific literature to ascertain the effects of EDs on the nervous system, specifically in the categories of neurotoxicity, cognition, and behaviour. To date, we demonstrated that all of the 177 EDs identified internationally by WHO are known to have an impact on the nervous system. Furthermore, the precise mechanisms underlying this neurodisruption have also been established. It was previously believed that EDs primarily function via the thyroid. However, this study presents substantial evidence that approximately 80 % of EDs operate via other mechanisms. It thus outlines a novel concept: EDs are also neurodisruptors (NDs) and can be collectively termed endocrine and nervous disruptors (ENDs). Most of ENDs are derived from petroleum residues, and their various mechanisms of action are similar to those of "spam" in electronic communications technologies. Therefore, ENDs can be considered as an instance of spam in a biological context.
Collapse
Affiliation(s)
- Gilles-Eric Seralini
- University of Caen Normandy, Network on Risks, Quality and Sustainable Development, Faculty of Sciences, Esplanade de la Paix, 14032, Caen, France
| | - Gerald Jungers
- University of Caen Normandy, Network on Risks, Quality and Sustainable Development, Faculty of Sciences, Esplanade de la Paix, 14032, Caen, France
| |
Collapse
|
11
|
Eustache F, Bennani Smires B, Moison D, Bergès R, Canivenc-Lavier MC, Vaiman D, Auger J. Different exposure windows to low doses of genistein and/or vinclozolin result in contrasted disorders of testis function and gene expression of exposed rats and their unexposed progeny. ENVIRONMENTAL RESEARCH 2020; 190:109975. [PMID: 32827888 DOI: 10.1016/j.envres.2020.109975] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/18/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
Living species including humans are continuously exposed to low levels of a myriad of endocrine active compounds that may affect their reproductive function. In contrast, experimental designs scrutinizing this question mostly consider the gestational/lactational period, select high unrealistic doses and, have rarely investigated the possible reproductive consequences in the progeny. The present study aimed at assessing comparatively a set of male reproductive endpoints according to exposure windows, gestational/lactational versus pre-pubertal to adulthood, using low doses of endocrine active substances in male rats as well as their unexposed male progeny. Animals were orally exposed to 1 mg/kg bw/d of genistein and/or vinclozolin, from conception to weaning or from prepuberty to young adulthood. A number of reproductive endpoints were assessed as well as testicular mRNA expression profiles, in the exposed rats and their unexposed progeny. Overall, the low dosage used only affected weakly most of classical reproductive endpoints. However, the gestational/lactational exposure to vinclozolin alone or combined to genistein significantly delayed the puberty onset. Contrasting with the gestational/lactational exposure, a decreased sperm production was found in the animals exposed to genistein and vinclozolin from the pre-pubertal period but also in their progeny for vinclozolin and the mixture. The expression level of several genes involved in meiosis, apoptosis and steroidogenesis was also affected differentially as a function of the exposure window in both exposed rats and unexposed offspring. We also provide further evidence that doses of endocrine active substances relevant with human exposure may affect the male reproductive phenotype and testicular transcriptome in the exposed generation as well as in the indirectly exposed offspring.
Collapse
Affiliation(s)
- Florence Eustache
- Service D'Histologie-Embryologie, Cytogénétique, Biologie de La Reproduction / CECOS, Hôpitaux Universitaires Paris Seine-Saint-Denis, Site Jean Verdier, Bondy, France; INSERM U1016, Equipe "Génomique, Epigénétique et Physiologie de La Reproduction", Institut Cochin, Université Paris 5, Paris, France.
| | - Badria Bennani Smires
- Service D'Histologie-Embryologie, Cytogénétique, Biologie de La Reproduction / CECOS, Hôpitaux Universitaires Paris Seine-Saint-Denis, Site Jean Verdier, Bondy, France; INSERM U1016, Equipe "Génomique, Epigénétique et Physiologie de La Reproduction", Institut Cochin, Université Paris 5, Paris, France
| | - Delphine Moison
- INSERM UMR967, Laboratoire de Développement des Gonades, Equipe "Stabilité Génomique, Cellules Souches et Radiations", Université Paris 7, Sorbonne Paris Cité and CEA, Fontenay-aux-Roses, France
| | - Raymond Bergès
- INRA UMR1324, Centre des Sciences Du Goût et de L'Alimentation, Dijon, France
| | | | - Daniel Vaiman
- INSERM U1016, Equipe "Génomique, Epigénétique et Physiologie de La Reproduction", Institut Cochin, Université Paris 5, Paris, France
| | - Jacques Auger
- INSERM U1016, Equipe "Génomique, Epigénétique et Physiologie de La Reproduction", Institut Cochin, Université Paris 5, Paris, France
| |
Collapse
|
12
|
Ren XM, Kuo Y, Blumberg B. Agrochemicals and obesity. Mol Cell Endocrinol 2020; 515:110926. [PMID: 32619583 PMCID: PMC7484009 DOI: 10.1016/j.mce.2020.110926] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 06/11/2020] [Accepted: 06/23/2020] [Indexed: 12/11/2022]
Abstract
Obesity has become a very large concern worldwide, reaching pandemic proportions over the past several decades. Lifestyle factors, such as excess caloric intake and decreased physical activity, together with genetic predispositions, are well-known factors related to obesity. There is accumulating evidence suggesting that exposure to some environmental chemicals during critical windows of development may contribute to the rapid increase in the incidence of obesity. Agrochemicals are a class of chemicals extensively used in agriculture, which have been widely detected in human. There is now considerable evidence linking human exposure to agrochemicals with obesity. This review summarizes human epidemiological evidence and experimental animal studies supporting the association between agrochemical exposure and obesity and outlines possible mechanistic underpinnings for this link.
Collapse
Affiliation(s)
- Xiao-Min Ren
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697-2300, USA
| | - Yun Kuo
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697-2300, USA
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697-2300, USA; Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA; Department of Biomedical Engineering, University of California, Irvine, CA, USA.
| |
Collapse
|
13
|
Plunk EC, Richards SM. Epigenetic Modifications due to Environment, Ageing, Nutrition, and Endocrine Disrupting Chemicals and Their Effects on the Endocrine System. Int J Endocrinol 2020; 2020:9251980. [PMID: 32774366 PMCID: PMC7391083 DOI: 10.1155/2020/9251980] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 06/18/2020] [Indexed: 01/17/2023] Open
Abstract
The epigenome of an individual can be altered by endogenous hormones, environment, age, diet, and exposure to endocrine disrupting chemicals (EDCs), and the effects of these modifications can be seen across generations. Epigenetic modifications to the genome can alter the phenotype of the individual without altering the DNA sequence itself. Epigenetic modifications include DNA methylation, histone modification, and aberrant microRNA (miRNA) expression; they begin during germ cell development and embryogenesis and continue until death. Hormone modulation occurs during the ageing process due to epigenetic modifications. Maternal overnutrition or undernutrition can affect the epigenome of the fetus, and the effects can be seen throughout life. Furthermore, maternal care during the childhood of the offspring can lead to different phenotypes seen in adulthood. Diseases controlled by the endocrine system, such as obesity and diabetes, as well as infertility in females can be associated with epigenetic changes. Not only can these phenotypes be seen in F1, but also some chemical effects can be passed through the germline and have effects transgenerationally, and the phenotypes are seen in F3. The following literature review expands upon these topics and discusses the state of the science related to epigenetic effects of age, diet, and EDCs on the endocrine system.
Collapse
Affiliation(s)
- Elizabeth C. Plunk
- Department of Biological and Environmental Sciences, University of Tennessee, Chattanooga, TN 37403, USA
| | - Sean M. Richards
- Department of Biological and Environmental Sciences, University of Tennessee, Chattanooga, TN 37403, USA
| |
Collapse
|
14
|
King SE, Nilsson E, Beck D, Skinner MK. Adipocyte epigenetic alterations and potential therapeutic targets in transgenerationally inherited lean and obese phenotypes following ancestral exposures. Adipocyte 2019; 8:362-378. [PMID: 31755359 PMCID: PMC6948971 DOI: 10.1080/21623945.2019.1693747] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/30/2019] [Accepted: 11/11/2019] [Indexed: 01/01/2023] Open
Abstract
The incidence of obesity has increased dramatically over the past two decades with a prevalence of approximately 40% of the adult population within the United States. The current study examines the potential for transgenerational adipocyte (fat cell) epigenetic alterations. Adipocytes were isolated from the gonadal fat pad of the great-grand offspring F3 generation 1-year old rats ancestrally exposed to DDT (dichlorodiphenyltrichloroethane), atrazine, or vehicle control in order to obtain adipocytes for DNA methylation analysis. Observations indicate that there were differential DNA methylated regions (DMRs) in the adipocytes with the lean or obese phenotypes compared to control normal (non-obese or lean) populations. The comparison of epigenetic alterations indicated that there were substantial overlaps between the different treatment lineage groups for both the lean and obese phenotypes. Novel correlated genes and gene pathways associated with DNA methylation were identified, and may aid in the discovery of potential therapeutic targets for metabolic diseases such as obesity. Observations indicate that ancestral exposures during critical windows of development can induce the epigenetic transgenerational inheritance of DNA methylation changes in adipocytes that ultimately may contribute to an altered metabolic phenotype.
Collapse
Affiliation(s)
- Stephanie E. King
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Eric Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Daniel Beck
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Michael K. Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| |
Collapse
|
15
|
Gillette R, Son MJ, Ton L, Gore AC, Crews D. Passing experiences on to future generations: endocrine disruptors and transgenerational inheritance of epimutations in brain and sperm. Epigenetics 2018; 13:1106-1126. [PMID: 30444163 DOI: 10.1080/15592294.2018.1543506] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
All animals have body burdens of polychlorinated biphenyls (PCBs) despite their ban decades ago. These and modern endocrine-disrupting chemicals (EDCs) such as the fungicide vinclozolin (VIN) perturb hormone signaling and lead to dysfunctions following prenatal exposures. Beyond direct exposures, transgenerational disease phenotypes can persist for multiple generations without subsequent exposure. The mechanisms of action of these EDCs differ: VIN is anti-androgenic while the PCB mixture Aroclor 1221 (A1221) is weakly estrogenic. Based on limited evidence for the inheritance of epimutations in germline, we measured DNA methylation in brain and sperm of rats. Pregnant dams were exposed from day 8-18 of gestation to low dosages of VIN, A1221, or the vehicle. To produce paternal lineages, exposed F1 males were bred with untreated females, creating the F2 and subsequently F3 generations. In adult F1 and F3 males, mature sperm was collected, and brain nuclei involved in anxiety and social behaviors (CA3 of the hippocampus; central amygdala) were selected for assays of epimutations in CpG islands using reduced representation bisulfite sequencing. In F1 sperm, VIN and PCBs induced differential methylation in 215 and 284 CpG islands, respectively, compared to vehicle. The majority of effects were associated with hypermethylation. Fewer epimutations were detected in the brain. A subset of differentially methylated regions were retained from the F1 to the F3 generation, suggesting a common mechanism of EDC and germline epigenome interaction. Thus, EDCs can cause heritable epimutations in the sperm that may embody the future phenotype of brain-behavior disorders caused by direct or transgenerational exposures.
Collapse
Affiliation(s)
- Ross Gillette
- a Institute for Cellular and Molecular Biology , The University of Texas at Austin , Austin , TX , USA
| | - Min Ji Son
- b Section of Integrative Biology , The University of Texas at Austin , Austin , TX , USA
| | - Lexi Ton
- b Section of Integrative Biology , The University of Texas at Austin , Austin , TX , USA
| | - Andrea C Gore
- a Institute for Cellular and Molecular Biology , The University of Texas at Austin , Austin , TX , USA.,c Division of Pharmacology and Toxicology, College of Pharmacy , The University of Texas at Austin , Austin , TX , USA
| | - David Crews
- a Institute for Cellular and Molecular Biology , The University of Texas at Austin , Austin , TX , USA.,b Section of Integrative Biology , The University of Texas at Austin , Austin , TX , USA
| |
Collapse
|
16
|
Danchin E, Pocheville A, Rey O, Pujol B, Blanchet S. Epigenetically facilitated mutational assimilation: epigenetics as a hub within the inclusive evolutionary synthesis. Biol Rev Camb Philos Soc 2018. [PMCID: PMC6378602 DOI: 10.1111/brv.12453] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
After decades of debate about the existence of non‐genetic inheritance, the focus is now slowly shifting towards dissecting its underlying mechanisms. Here, we propose a new mechanism that, by integrating non‐genetic and genetic inheritance, may help build the long‐sought inclusive vision of evolution. After briefly reviewing the wealth of evidence documenting the existence and ubiquity of non‐genetic inheritance in a table, we review the categories of mechanisms of parent–offspring resemblance that underlie inheritance. We then review several lines of argument for the existence of interactions between non‐genetic and genetic components of inheritance, leading to a discussion of the contrasting timescales of action of non‐genetic and genetic inheritance. This raises the question of how the fidelity of the inheritance system can match the rate of environmental variation. This question is central to understanding the role of different inheritance systems in evolution. We then review and interpret evidence indicating the existence of shifts from inheritance systems with low to higher transmission fidelity. Based on results from different research fields we propose a conceptual hypothesis linking genetic and non‐genetic inheritance systems. According to this hypothesis, over the course of generations, shifts among information systems allow gradual matching between the rate of environmental change and the inheritance fidelity of the corresponding response. A striking conclusion from our review is that documented shifts between types of inherited non‐genetic information converge towards epigenetics (i.e. inclusively heritable molecular variation in gene expression without change in DNA sequence). We then interpret the well‐documented mutagenicity of epigenetic marks as potentially generating a final shift from epigenetic to genetic encoding. This sequence of shifts suggests the existence of a relay in inheritance systems from relatively labile ones to gradually more persistent modes of inheritance, a relay that could constitute a new mechanistic basis for the long‐proposed, but still poorly documented, hypothesis of genetic assimilation. A profound difference between the genocentric and the inclusive vision of heredity revealed by the genetic assimilation relay proposed here lies in the fact that a given form of inheritance can affect the rate of change of other inheritance systems. To explore the consequences of such inter‐connection among inheritance systems, we briefly review published theoretical models to build a model of genetic assimilation focusing on the shift in the engraving of environmentally induced phenotypic variation into the DNA sequence. According to this hypothesis, when environmental change remains stable over a sufficient number of generations, the relay among inheritance systems has the potential to generate a form of genetic assimilation. In this hypothesis, epigenetics appears as a hub by which non‐genetically inherited environmentally induced variation in traits can become genetically encoded over generations, in a form of epigenetically facilitated mutational assimilation. Finally, we illustrate some of the major implications of our hypothetical framework, concerning mutation randomness, the central dogma of molecular biology, concepts of inheritance and the curing of inherited disorders, as well as for the emergence of the inclusive evolutionary synthesis.
Collapse
Affiliation(s)
- Etienne Danchin
- Laboratoire Évolution & Diversité Biologique (EDB UMR 5174); Université de Toulouse Midi-Pyrénées, CNRS, IRD, UPS. 118 route de Narbonne, Bat 4R1; 31062 Toulouse Cedex 9 France
| | - Arnaud Pocheville
- Laboratoire Évolution & Diversité Biologique (EDB UMR 5174); Université de Toulouse Midi-Pyrénées, CNRS, IRD, UPS. 118 route de Narbonne, Bat 4R1; 31062 Toulouse Cedex 9 France
- Department of Philosophy and Charles Perkins Centre; University of Sydney; Sydney NSW 2006 Australia
| | - Olivier Rey
- CNRS, Station d'Ecologie Théorique et Expérimentale (SETE), UMR5321; 09200 Moulis France
- Université de Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Université de Montpellier; F-66860 Perpignan France
| | - Benoit Pujol
- Laboratoire Évolution & Diversité Biologique (EDB UMR 5174); Université de Toulouse Midi-Pyrénées, CNRS, IRD, UPS. 118 route de Narbonne, Bat 4R1; 31062 Toulouse Cedex 9 France
| | - Simon Blanchet
- Laboratoire Évolution & Diversité Biologique (EDB UMR 5174); Université de Toulouse Midi-Pyrénées, CNRS, IRD, UPS. 118 route de Narbonne, Bat 4R1; 31062 Toulouse Cedex 9 France
- CNRS, Station d'Ecologie Théorique et Expérimentale (SETE), UMR5321; 09200 Moulis France
| |
Collapse
|
17
|
Kaur G, Vadala S, Dufour JM. An overview of a Sertoli cell transplantation model to study testis morphogenesis and the role of the Sertoli cells in immune privilege. ENVIRONMENTAL EPIGENETICS 2017; 3:dvx012. [PMID: 29492314 PMCID: PMC5804552 DOI: 10.1093/eep/dvx012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/16/2017] [Accepted: 05/31/2017] [Indexed: 05/29/2023]
Abstract
Advanced testicular germ cells, expressing novel cell surface and intracellular proteins, appear after the establishment of central tolerance and thus are auto-immunogenic. However, due to testis immune privilege these germ cells normally do not evoke a detrimental immune response. The Sertoli cell (SC) barrier (also known as the blood-testis barrier) creates a unique microenvironment required for the completion of spermatogenesis and sequesters the majority of the advanced germ cells from the immune system. Given that an intact SC barrier is necessary for spermatogenesis and that disruption of the SC barrier results in loss of advanced germ cells independent of an immune response, this dual role of the SC barrier makes it difficult to directly test the importance of the SC barrier in immune privilege. The ability of SCs to survive and protect co-grafted cells when transplanted ectopically (outside the testis) across immunological barriers is well-documented. Here, we will discuss the use of a SC transplantation model to investigate the role of SC and the SC barrier in immune privilege. Additionally, the formation of cord/tubule like structures in this model, containing both SCs and myoid cells, further extends its application to study testis morphogenesis. We will also discuss the potential use of this model to study the effects of drugs/environmental toxins on testis morphogenesis, tight junction formation and SC-myoid cell interactions.
Collapse
Affiliation(s)
- Gurvinder Kaur
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Scott Vadala
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Jannette M. Dufour
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
18
|
Horan TS, Marre A, Hassold T, Lawson C, Hunt PA. Germline and reproductive tract effects intensify in male mice with successive generations of estrogenic exposure. PLoS Genet 2017; 13:e1006885. [PMID: 28727826 PMCID: PMC5519010 DOI: 10.1371/journal.pgen.1006885] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/21/2017] [Indexed: 12/24/2022] Open
Abstract
The hypothesis that developmental estrogenic exposure induces a constellation of male reproductive tract abnormalities is supported by experimental and human evidence. Experimental data also suggest that some induced effects persist in descendants of exposed males. These multi- and transgenerational effects are assumed to result from epigenetic changes to the germline, but few studies have directly analyzed germ cells. Typically, studies of transgenerational effects have involved exposing one generation and monitoring effects in subsequent unexposed generations. This approach, however, has limited human relevance, since both the number and volume of estrogenic contaminants has increased steadily over time, intensifying rather than reducing or eliminating exposure. Using an outbred CD-1 mouse model, and a sensitive and quantitative marker of germline development, meiotic recombination, we tested the effect of successive generations of exposure on the testis. We targeted the germline during a narrow, perinatal window using oral exposure to the synthetic estrogen, ethinyl estradiol. A complex three generation exposure protocol allowed us to compare the effects of individual, paternal, and grandpaternal (ancestral) exposure. Our data indicate that multiple generations of exposure not only exacerbate germ cell exposure effects, but also increase the incidence and severity of reproductive tract abnormalities. Taken together, our data suggest that male sensitivity to environmental estrogens is increased by successive generations of exposure.
Collapse
Affiliation(s)
- Tegan S. Horan
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, Washington, United States of America
| | - Alyssa Marre
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, Washington, United States of America
| | - Terry Hassold
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, Washington, United States of America
| | - Crystal Lawson
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, Washington, United States of America
| | - Patricia A. Hunt
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, Washington, United States of America
| |
Collapse
|
19
|
Jenardhanan P, Panneerselvam M, Mathur PP. Effect of environmental contaminants on spermatogenesis. Semin Cell Dev Biol 2016; 59:126-140. [DOI: 10.1016/j.semcdb.2016.03.024] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 03/30/2016] [Accepted: 03/31/2016] [Indexed: 11/16/2022]
|
20
|
Hypoxia causes transgenerational impairments in reproduction of fish. Nat Commun 2016; 7:12114. [PMID: 27373813 PMCID: PMC4932196 DOI: 10.1038/ncomms12114] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 06/01/2016] [Indexed: 12/21/2022] Open
Abstract
Hypoxia is amongst the most widespread and pressing problems in aquatic environments. Here we demonstrate that fish (Oryzias melastigma) exposed to hypoxia show reproductive impairments (retarded gonad development, decrease in sperm count and sperm motility) in F1 and F2 generations despite these progenies (and their germ cells) having never been exposed to hypoxia. We further show that the observed transgenerational reproductive impairments are associated with a differential methylation pattern of specific genes in sperm of both F0 and F2 coupled with relevant transcriptomic and proteomic alterations, which may impair spermatogenesis. The discovered transgenerational and epigenetic effects suggest that hypoxia might pose a dramatic and long-lasting threat to the sustainability of fish populations. Because the genes regulating spermatogenesis and epigenetic modifications are highly conserved among vertebrates, these results may also shed light on the potential transgenerational effects of hypoxia on other vertebrates, including humans. Hypoxia has diverse effects on aquatic life. Wang et al. show that reproductive defects resulting from hypoxia are epigenetically heritable in Japanese rice fish, and that this intergenerational inheritance is accompanied by differential methylation and gene expression in sperm.
Collapse
|
21
|
Keller SM, Roth TL. Environmental influences on the female epigenome and behavior. ENVIRONMENTAL EPIGENETICS 2016; 2:dvw007. [PMID: 27746953 PMCID: PMC5065103 DOI: 10.1093/eep/dvw007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/01/2016] [Accepted: 06/02/2016] [Indexed: 06/06/2023]
Abstract
Environmental factors have long-lasting effects on brain development and behavior. One way experiences are propagated is via epigenetic modifications to the genome. Environmentally-driven epigenetic modifications show incredible brain region- and sex-specificity, and many brain regions affected are ones involved in maternal behavior. In rodent models, females are typically the primary caregiver and thus, any environmental factors that modulate the epigenotype of the mother could have consequences for her current and future offspring. Here we review evidence of the susceptibility of the female epigenome to environmental factors, with a focus on brain regions involved in maternal behavior. Accordingly, implications for interventions that target the mother's epigenome and parenting behavior are discussed.
Collapse
Affiliation(s)
- Samantha M. Keller
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA
| | - Tania L. Roth
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
22
|
Zhang L, Ding S, Qiao P, Dong L, Yu M, Wang C, Zhang M, Zhang L, Li Y, Tang N, Chang B. n-butylparaben induces male reproductive disorders via regulation of estradiol and estrogen receptors. J Appl Toxicol 2016; 26:1223-1234. [DOI: 10.1002/jat.3291] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/11/2015] [Accepted: 12/21/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Linyuan Zhang
- Key Laboratory of Chemical Safety and Health; National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention; No. 29 Nanwei Road , Xicheng district Beijing 100050 China
| | - Sijin Ding
- Key Laboratory of Chemical Safety and Health; National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention; No. 29 Nanwei Road , Xicheng district Beijing 100050 China
| | - Peihuan Qiao
- Key Laboratory of Chemical Safety and Health; National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention; No. 29 Nanwei Road , Xicheng district Beijing 100050 China
| | - Li Dong
- Department of Environmental Toxicology; Institute of Environmental Health and Related Product Safety, Chinese Center for Disease Control and Prevention; No. 7 Panjiayuan nanli , Chaoyang district Beijing 100021 China
| | - Miao Yu
- Key Laboratory of Chemical Safety and Health; National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention; No. 29 Nanwei Road , Xicheng district Beijing 100050 China
| | - Chong Wang
- Department of Environmental Toxicology; Institute of Environmental Health and Related Product Safety, Chinese Center for Disease Control and Prevention; No. 7 Panjiayuan nanli , Chaoyang district Beijing 100021 China
| | - Ming Zhang
- Department of Environmental Toxicology; Institute of Environmental Health and Related Product Safety, Chinese Center for Disease Control and Prevention; No. 7 Panjiayuan nanli , Chaoyang district Beijing 100021 China
| | - Lixia Zhang
- Department of Environmental Toxicology; Institute of Environmental Health and Related Product Safety, Chinese Center for Disease Control and Prevention; No. 7 Panjiayuan nanli , Chaoyang district Beijing 100021 China
| | - Yimin Li
- Department of Environmental Toxicology; Institute of Environmental Health and Related Product Safety, Chinese Center for Disease Control and Prevention; No. 7 Panjiayuan nanli , Chaoyang district Beijing 100021 China
| | - Ning Tang
- Department of Environmental Toxicology; Institute of Environmental Health and Related Product Safety, Chinese Center for Disease Control and Prevention; No. 7 Panjiayuan nanli , Chaoyang district Beijing 100021 China
| | - Bing Chang
- Key Laboratory of Chemical Safety and Health; National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention; No. 29 Nanwei Road , Xicheng district Beijing 100050 China
| |
Collapse
|
23
|
Non-coding RNA in Spermatogenesis and Epididymal Maturation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 886:95-120. [PMID: 26659489 DOI: 10.1007/978-94-017-7417-8_6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Testicular germ and somatic cells express many classes of small ncRNAs, including Dicer-independent PIWI-interacting RNAs, Dicer-dependent miRNAs, and endogenous small interfering RNA. Several studies have identified ncRNAs that are highly, exclusively, or preferentially expressed in the testis and epididymis in specific germ and somatic cell types. Temporal and spatial expression of proteins is a key requirement of successful spermatogenesis and large-scale gene transcription occurs in two key stages, just prior to transcriptional quiescence in meiosis and then during spermiogenesis just prior to nuclear silencing in elongating spermatids. More than 60 % of these transcripts are then stockpiled for subsequent translation. In this capacity ncRNAs may act to interpret and transduce cellular signals to either maintain the undifferentiated stem cell population and/or drive cell differentiation during spermatogenesis and epididymal maturation. The assignation of specific roles to the majority of ncRNA species implicated as having a role in spermatogenesis and epididymal function will underpin fundamental understanding of normal and disease states in humans such as infertility and the development of germ cell tumours.
Collapse
|
24
|
Transgenerational Inheritance of Paternal Neurobehavioral Phenotypes: Stress, Addiction, Ageing and Metabolism. Mol Neurobiol 2015; 53:6367-6376. [PMID: 26572641 DOI: 10.1007/s12035-015-9526-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/05/2015] [Indexed: 02/07/2023]
Abstract
Epigenetic modulation is found to get involved in multiple neurobehavioral processes. It is believed that different types of environmental stimuli could alter the epigenome of the whole brain or related neural circuits, subsequently contributing to the long-lasting neural plasticity of certain behavioral phenotypes. While the maternal influence on the health of offsprings has been long recognized, recent findings highlight an alternative way for neurobehavioral phenotypes to be passed on to the next generation, i.e., through the male germ line. In this review, we focus specifically on the transgenerational modulation induced by environmental stress, drugs of abuse, and other physical or mental changes (e.g., ageing, metabolism, fear) in fathers, and recapitulate the underlying mechanisms potentially mediating the alterations in epigenome or gene expression of offsprings. Together, these findings suggest that the inheritance of phenotypic traits through male germ-line epigenome may represent the unique manner of adaptation during evolution. Hence, more attention should be paid to the paternal health, given its equivalently important role in affecting neurobehaviors of descendants.
Collapse
|
25
|
Porro V, Pagotto R, Harreguy MB, Ramírez S, Crispo M, Santamaría C, Luque EH, Rodríguez HA, Bollati-Fogolín M. Characterization of Oct4-GFP transgenic mice as a model to study the effect of environmental estrogens on the maturation of male germ cells by using flow cytometry. J Steroid Biochem Mol Biol 2015; 154:53-61. [PMID: 26151743 DOI: 10.1016/j.jsbmb.2015.06.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 06/01/2015] [Accepted: 06/17/2015] [Indexed: 12/24/2022]
Abstract
Oct4 is involved in regulation of pluripotency during normal development and is down-regulated during formation of postnatal reservoir of germ cells. We propose thatOct4/GFP transgenic mouse, which mimics the endogenous expression pattern of Oct4, could be used as a mammalian model to study the effects of environmental estrogens on the development of male germ cells. Oct4/GFP maturation profile was assessed during postnatal days -PND- 3, 5, 7, 10, 14 and 80, using flow cytometry. Then, we exposed pregnant mothers to 17α-ethinylestradiol (EE2) from day post coitum (dpc) 5 to PND7. Percentage of Oct4/GFP-expressing cells and levels of expression of Oct4/GPF were increased in PND7 after EE2 exposure. These observations were confirmed by analysis of GFP and endogenous Oct4 protein in the seminiferous tubules and by a reduction in epididymal sperm count in adult mice. We introduced Oct4/GFP mouse together with flow cytometry as a tool to evaluate changes in male germ cells development.
Collapse
Affiliation(s)
- Valentina Porro
- Cell Biology Unit, Institut Pasteur de Montevideo, Mataojo 2020, CP 11400 Montevideo, Uruguay
| | - Romina Pagotto
- Cell Biology Unit, Institut Pasteur de Montevideo, Mataojo 2020, CP 11400 Montevideo, Uruguay
| | - María Belén Harreguy
- Cell Biology Unit, Institut Pasteur de Montevideo, Mataojo 2020, CP 11400 Montevideo, Uruguay
| | - Sofía Ramírez
- Cell Biology Unit, Institut Pasteur de Montevideo, Mataojo 2020, CP 11400 Montevideo, Uruguay
| | - Martina Crispo
- Transgenic and Experimental Animal Unit, Institut Pasteur de Montevideo, Mataojo 2020, CP 11400 Montevideo, Uruguay
| | - Clarisa Santamaría
- Instituto de Salud y Ambiente del Litoral (ISAL), Ciudad Universitaria, Paraje El Pozo, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, CP3000 Santa Fe, Argentina
| | - Enrique H Luque
- Instituto de Salud y Ambiente del Litoral (ISAL), Ciudad Universitaria, Paraje El Pozo, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, CP3000 Santa Fe, Argentina
| | - Horacio A Rodríguez
- Instituto de Salud y Ambiente del Litoral (ISAL), Ciudad Universitaria, Paraje El Pozo, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, CP3000 Santa Fe, Argentina.
| | - Mariela Bollati-Fogolín
- Cell Biology Unit, Institut Pasteur de Montevideo, Mataojo 2020, CP 11400 Montevideo, Uruguay
| |
Collapse
|
26
|
O'Doherty AM, McGettigan PA. Epigenetic processes in the male germline. Reprod Fertil Dev 2015; 27:725-38. [DOI: 10.1071/rd14167] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 08/01/2014] [Indexed: 12/12/2022] Open
Abstract
Sperm undergo some of the most extensive chromatin modifications seen in mammalian biology. During male germline development, paternal DNA methylation marks are erased and established on a global scale through waves of demethylation and de novo methylation. As spermatogenesis progresses, the majority of the histones are removed and replaced by protamines, enabling a tighter packaging of the DNA and transcriptional shutdown. Following fertilisation, the paternal genome is rapidly reactivated, actively demethylated, the protamines are replaced with histones and the embryonic genome is activated. The development of new assays, made possible by high-throughput sequencing technology, has resulted in the revisiting of what was considered settled science regarding the state of DNA packaging in mammalian spermatozoa. Researchers have discovered that not all histones are replaced by protamines and, in certain experiments, various species of RNA have been detected in what was previously considered transcriptionally quiescent spermatozoa. Most controversially, several groups have suggested that environmental modifications of the epigenetic state of spermatozoa may operate as a non-DNA-based form of inheritance, a process known as ‘transgenerational epigenetic inheritance’. Other developments in the field include the increased focus on the involvement of short RNAs, such as microRNAs, long non-coding RNAs and piwi-interacting RNAs. There has also been an accumulation of evidence illustrating associations between defects in sperm DNA packaging and disease and fertility. In this paper we review the literature, recent findings and areas of controversy associated with epigenetic processes in the male germline, focusing on DNA methylation dynamics, non-coding RNAs, the biology of sperm chromatin packaging and transgenerational inheritance.
Collapse
|
27
|
Greene AD, Patounakis G, Segars JH. Genetic associations with diminished ovarian reserve: a systematic review of the literature. J Assist Reprod Genet 2014; 31:935-46. [PMID: 24840722 DOI: 10.1007/s10815-014-0257-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 05/08/2014] [Indexed: 12/23/2022] Open
Abstract
PURPOSE Diminished ovarian reserve (DOR) affects 10 % of women seeking fertility treatment. Although it is much more prevalent than premature ovarian failure, less is known about its etiology. The purpose of this article is to review the possible genetic causes of, and associations with, pathologic DOR. METHODS A systematic review was conducted using PubMed from 1966 through November 2013. RESULTS Twenty-one articles identified genes associated with DOR: one gene mutation (FMR1), three polymorphisms (GDF9, FSHR, and ESR1), and seven genes differentially expressed between women with DOR and controls (AMH, LHCGR, IGF1, IGF2, IGF1R, IGF2R and GREM1). Six candidate genes were discovered in mice, including Foxl2, Gdf9, Bmp15, Aire, Wnt4, and Gpr3. Two case reports of chromosomal translocations were also identified. CONCLUSIONS While the etiology of pathologic DOR is likely multifactorial, it is possible that many cases attributed to an idiopathic cause may have a genetic component. Larger studies are needed to expose the impact gene mutations, polymorphisms, and epigenetics have on pathologic DOR.
Collapse
Affiliation(s)
- Alexis D Greene
- Obstetrics & Gynecology Department, St Luke's Roosevelt Hospital Center, 1000 Tenth Ave, Suite 10 C, New York, NY, 10019, USA
| | | | | |
Collapse
|
28
|
Blegen MB, Kennedy BC, Thibert KA, Gewirtz JC, Tran PV, Georgieff MK. Multigenerational effects of fetal-neonatal iron deficiency on hippocampal BDNF signaling. Physiol Rep 2013; 1:e00096. [PMID: 24303168 PMCID: PMC3841032 DOI: 10.1002/phy2.96] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 08/29/2013] [Indexed: 01/15/2023] Open
Abstract
Fetal-neonatal iron deficiency induces adult learning impairments concomitant with changes in expression of key genes underlying hippocampal learning and memory in spite of neonatal iron replenishment. Notably, expression of brain-derived neurotrophic factor (BDNF), a gene critical for neuronal maturation and synaptic plasticity, is lowered both acutely and in adulthood following early-life iron deficiency. Although the mechanism behind its long-term downregulation remains unclear, epigenetic modification in BDNF, as seen in other models of early-life adversity, may play a role. Given that early iron deficiency occurs during critical periods in both hippocampal and gonadal development, we hypothesized that the iron-sufficient offspring (F2 IS) of formerly iron-deficient (F1 FID) rats would show a similar suppression of the BDNF gene as their parents. We compared hippocampal mRNA levels of BDNF and functionally related genes among F1 IS, F1 ID, and F2 IS male rats at postnatal day (P) 15 and P65 using RT-qPCR. As expected, the F1 ID group showed a downregulation of BDNF and associated genes acutely at P15 and chronically at P65. However, the F2 IS group showed an upregulation of these genes at P15, returning to control levels at P65. These results demonstrate that adverse effects of early iron deficiency on hippocampal gene expression observed in the F1 are not present in the F2 generation, suggesting differential effects of nutritionally induced epigenetic programing during the critical periods of hippocampal and gonadal development.
Collapse
Affiliation(s)
- Mariah B Blegen
- Department of Pediatrics, University of Minnesota Minneapolis, 55455, Minnesota
| | | | | | | | | | | |
Collapse
|
29
|
Fan Y, Ding S, Ye X, Manyande A, He D, Zhao N, Yang H, Jin X, Liu J, Tian C, Xu S, Ying C. Does preconception paternal exposure to a physiologically relevant level of bisphenol A alter spatial memory in an adult rat? Horm Behav 2013; 64:598-604. [PMID: 24005185 DOI: 10.1016/j.yhbeh.2013.08.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 08/23/2013] [Accepted: 08/23/2013] [Indexed: 01/13/2023]
Abstract
Bisphenol A (BPA) is a ubiquitous environmental endocrine disrupting compound (EDC); public health concerns have been fueled by findings that maternal BPA exposure can change sex differences in the brain and in some behaviors. We investigated whether a physiologically relevant dose of BPA ingested by male rats before conception would affect spatial memory and hippocampal acetylcholinesterase (AchE) in their adult offspring. Twenty-two 60-day-old male rats (F0) received either a BPA diet (50 μg/kg/day) or vehicle alone for 10 weeks before being mated with non-exposed females. The paternal rats and their forty adult offspring's (F1) behaviors were then examined in the Morris Water Maze (MWM) and their AchE activities in the hippocampus were evaluated. BPA exposure led to spatial memory deficits along with decreased AchE activities in the hippocampus (p = 0.01) in adult F0 rats. This paternal exposure also induced impairment in spatial memory acquisition in both sexes while retention only in females in F1 rats, as well as abolished sex differences in the hippocampus AchE. Overall, these data provide new evidence that paternal BPA exposure, at a "safe" dose, may induce transgenerational alterations in spatial memory in a sex-specific manner.
Collapse
Affiliation(s)
- Ying Fan
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Sleiman HK, Romano RM, Oliveira CAD, Romano MA. Effects of prepubertal exposure to silver nanoparticles on reproductive parameters in adult male Wistar rats. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2013; 76:1023-1032. [PMID: 24168038 DOI: 10.1080/15287394.2013.831723] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The incidence of male reproductive pathologies, such as hypospadias, cryptorchidism, testicular cancer, and low sperm production in adulthood, is increasing and may be related to exposure to environmental contaminants. The silver nanoparticles (AgNP) are a new class of chemical compounds commonly used in both medical and nonmedical settings, and they affect development of spermatogonial stem cells in vitro. The aim of this study was to examine the adverse productive toxic effects of AgNPs in male Wistar rats exposed during the prepubertal period and sacrificed at postnatal day (PND) 53 and PND90. Growth was assessed by daily weighing. The progress of puberty in the rats was measured by preputial separation, while spermatogenesis was assayed by (1) measuring the sperm count in testes and epididymis and (2) examining the morphology and morphometry of seminiferous epithelium using stereological analysis. In addition, testosterone and estradiol levels were assayed by radioimmunoassay. The weight of the animals at PND90 did not change markedly, but growth was less in the group treated with AgNP at 50 μg/kg from PND34 to PND53. AgNP exposure produced a delay in puberty in both treated groups. Decreased sperm reserves in the epididymis and diminished sperm transit time were observed at PND53, while a reduction in sperm production occurred at PND90. The morphology of the seminiferous epithelium was markedly altered. Data demonstrated that prepubertal exposure to AgNP altered reproductive development in prepubertal male Wistar rats, as evidenced by impairment in spermatogenesis and a lower sperm count in adulthood.
Collapse
|
31
|
Affiliation(s)
- Kiran Singh
- Department of Molecular & Human Genetics, Banaras Hindu University, Varanasi 221005, India
| | - Deepika Jaiswal
- Department of Molecular & Human Genetics, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
32
|
Ohsako S. Perinatal Exposure to Environmental Chemicals Induces Epigenomic Changes in Offspring. Genes Environ 2011. [DOI: 10.3123/jemsge.33.43] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
33
|
Mohamed ESA, Song WH, Oh SA, Park YJ, You YA, Lee S, Choi JY, Kim YJ, Jo I, Pang MG. The transgenerational impact of benzo(a)pyrene on murine male fertility. Hum Reprod 2010; 25:2427-33. [DOI: 10.1093/humrep/deq205] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
34
|
Nelson VR, Spezio SH, Nadeau JH. Transgenerational genetic effects of the paternal Y chromosome on daughters' phenotypes. Epigenomics 2010; 2:513-21. [PMID: 22121971 PMCID: PMC4045629 DOI: 10.2217/epi.10.26] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
AIMS Recent evidence suggests that transgenerational genetic effects contribute to phenotypic variation in complex traits. To test for the general occurrence of these effects and to estimate their strength, we took advantage of chromosome substitution strains (CSSs) of mice where the Y chromosome of the host strain has been replaced with the Y chromosome of the donor strain. Daughters of these CSS-Y males and host strain females are genetically identical and should be phenotypically indistinguishable in the absence of transgenerational genetic effects of the fathers' Y chromosome on daughters' phenotypes. MATERIALS & METHODS Assay results for a broad panel of physiological traits and behaviors were compared for genetically identical daughters of CSS-Y males and host strain females from the B6-Chr(A/J) and B6-Chr(PWD) panels of CSSs. In addition, behavioral traits including specific tests for anxiety-related behaviors were tested in daughters of B6-Chr(129) and 129-Chr(B6) CSS-Y males. RESULTS Across a panel of 41 multigenic traits assayed in the B6-Chr(A/J) panel of CSSs females and 21 multigenic traits in the B6-Chr(PWD) panel females, the frequency and strength for transgenerational genetic effects were remarkably similar to those for conventional inheritance of substituted chromosomes. In addition, we found strong evidence that the Y chromosome from the 129 inbred strain significantly reduced anxiety levels among daughters of B6-Chr(129) CSS-Y males. CONCLUSION We found that transgenerational genetic effects rival conventional genetic effects in frequency and strength, we suggest that some phenotypic variation found in conventional studies of complex traits are attributable in part to the action of genetic variants in previous generations, and we propose that transgenerational genetic effects contribute to 'missing heritability'.
Collapse
Affiliation(s)
- Vicki R Nelson
- Case Western Reserve University, School of Medicine, Cleveland, OH, USA
| | - Sabrina H Spezio
- Case Western Reserve University, School of Medicine, Cleveland, OH, USA
| | - Joseph H Nadeau
- Case Western Reserve University, School of Medicine, Cleveland, OH, USA
| |
Collapse
|
35
|
Skinner MK, Manikkam M, Guerrero-Bosagna C. Epigenetic transgenerational actions of environmental factors in disease etiology. Trends Endocrinol Metab 2010; 21:214-22. [PMID: 20074974 PMCID: PMC2848884 DOI: 10.1016/j.tem.2009.12.007] [Citation(s) in RCA: 464] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 12/09/2009] [Accepted: 12/14/2009] [Indexed: 12/26/2022]
Abstract
The ability of environmental factors to promote a phenotype or disease state not only in the individual exposed but also in subsequent progeny for successive generations is termed transgenerational inheritance. The majority of environmental factors such as nutrition or toxicants such as endocrine disruptors do not promote genetic mutations or alterations in DNA sequence. However, these factors do have the capacity to alter the epigenome. Epimutations in the germline that become permanently programmed can allow transmission of epigenetic transgenerational phenotypes. This review provides an overview of the epigenetics and biology of how environmental factors can promote transgenerational phenotypes and disease.
Collapse
Affiliation(s)
- Michael K Skinner
- Center for Reproductive Biology, School of Molecular Biosciences, Washington State University, Pullman, WA 99164-4236, USA.
| | | | | |
Collapse
|
36
|
Salonia A, Matloob R, Gallina A, Abdollah F, Saccà A, Briganti A, Suardi N, Colombo R, Rocchini L, Guazzoni G, Rigatti P, Montorsi F. Are Infertile Men Less Healthy than Fertile Men? Results of a Prospective Case-Control Survey. Eur Urol 2009; 56:1025-31. [DOI: 10.1016/j.eururo.2009.03.001] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2008] [Accepted: 03/02/2009] [Indexed: 10/21/2022]
|
37
|
Perinatal exposure of rats to Bisphenol A affects the fertility of male offspring. Life Sci 2009; 85:742-52. [DOI: 10.1016/j.lfs.2009.10.004] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Revised: 10/06/2009] [Accepted: 10/06/2009] [Indexed: 11/19/2022]
|
38
|
Guerrero-Bosagna CM, Skinner MK. Epigenetic transgenerational effects of endocrine disruptors on male reproduction. Semin Reprod Med 2009; 27:403-8. [PMID: 19711250 DOI: 10.1055/s-0029-1237428] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Endocrine-disrupting chemicals generally function as steroid receptor signaling antagonists or agonists that influence development to promote adult-onset disease. Exposure to the endocrine disruptors during the initiation of male reproductive tract development interferes with the normal hormonal signaling and formation of male reproductive organs. In particular, exposure to the endocrine disruptor vinclozolin promotes transgenerational transmission of adult-onset disease states such as male infertility, increased frequencies of tumors, prostate disease, kidney diseases, and immune abnormalities that develop as males age. An epigenetic change in the germ line would be involved in the transgenerational transmission of these induced phenotypes. Nevertheless, other studies have also reported transgenerational transmission of induced epigenetic changes, without altering the germ line. Here we propose a nomenclature to help clarify both cases of transgenerational epigenetic transmission. An intrinsic epigenetic transgenerational process would require a germ-line involvement, a permanent alteration in the germ cell epigenome, and only one exposure to the environmental factor. An extrinsic epigenetic transgenerational process would involve an epigenetic alteration in a somatic tissue and require exposure at each generation to maintain the transgenerational phenotype.
Collapse
Affiliation(s)
- Carlos M Guerrero-Bosagna
- Center for Reproductive Biology, School of Molecular Biosciences, Washington State University, Pullman, Washington 99164-4231, USA
| | | |
Collapse
|
39
|
Brucker-Davis F, Wagner-Mahler K, Delattre I, Ducot B, Ferrari P, Bongain A, Kurzenne JY, Mas JC, Fénichel P. Cryptorchidism at birth in Nice area (France) is associated with higher prenatal exposure to PCBs and DDE, as assessed by colostrum concentrations. Hum Reprod 2008; 23:1708-18. [PMID: 18503055 DOI: 10.1093/humrep/den186] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Since fetal exposure to anti-androgenic and/or estrogenic compounds has adverse effect on animal reproduction, such exposure could be harmful to human fetus. Data are scarce on cryptorchidism and human exposure to endocrine disruptors. METHODS We performed a prospective case-control study to assess the incidence of cryptorchidism and fetal exposure to selected chemicals in the Nice area. One hundred and fifty-one cord bloods (67 cryptorchid, 84 tightly matched controls) and 125 colostrums (56 for cryptorchid and 69 for controls) were screened for xenobiotics, including anti-androgenic dichloro-diphenyl-trichloro-ethylene (DDE), polychlorinated biphenyls (PCBs), and dibutylphthalate (and metabolite monobutylphthalate, mBP). RESULTS Median concentrations in colostrum were higher, although not statistically significantly, in cryptorchid versus controls. Cryptorchid boys were more likely to be classified in the most contaminated groups in colostrum for DDE, Sigma PCBs and the composite score PCB + DDE. The same trend, but again not statistically significantly was observed for mBP. Odds ratio for cryptorchidism was increased for the highest score of Sigma PCB, with a trend only for DDE and Sigma PCB + DDE versus the lowest score of those components. CONCLUSIONS Our results support an association between congenital cryptorchidism and fetal exposure to PCBs and possibly DDE. Higher concentrations in milk could be a marker of higher exposure or for an impaired detoxification pattern in genetically predisposed individuals.
Collapse
Affiliation(s)
- Françoise Brucker-Davis
- Endocrinology Department, Hôpital l'Archet 1, CHU Nice, 151 route de Saint-Antoine, 06200 Nice, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
McKinlay R, Plant JA, Bell JNB, Voulvoulis N. Endocrine disrupting pesticides: implications for risk assessment. ENVIRONMENT INTERNATIONAL 2008; 34:168-83. [PMID: 17881056 DOI: 10.1016/j.envint.2007.07.013] [Citation(s) in RCA: 279] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Revised: 07/26/2007] [Accepted: 07/27/2007] [Indexed: 05/04/2023]
Abstract
Endocrine disrupting (ED) chemicals are compounds that alter the normal functioning of the endocrine system, potentially causing disease or deformity in organisms and their offspring. Pesticides are used widely to kill unwanted organisms in crops, public areas, homes and gardens and medicinally to kill parasites. Many are proven or suspected to be EDs. Ancient physiological similarities between different vertebrate groups suggest that disorders observed in wildlife may indicate risks to humans. This makes accurate risk assessment and effective legislation difficult. In this paper, the hazardous properties of pesticides which are known to have ED properties are reviewed in order to assess the implications for risk assessment. As well as data on sources of exposure in the United Kingdom (UK) an assessment of the evidence on the health effects of ED pesticides is also included. In total, 127 have been identified from the literature and their effects and modes of action are listed in this paper. Using the UK as a case study, the types and quantities of pesticides used, and their methods of application are assessed, along with their potential pathways to humans. In the UK reliable data are available only for agricultural use, so non-agricultural routes of pesticide exposure have been poorly quantified. The exposure of people resident in or visiting rural areas could also have been grossly under-estimated. Material links between ED pesticide use and specific illnesses or deformities are complicated by the multifactorial nature of disease, which can be affected by factors such as diet. Despite these difficulties, a large body of evidence has accumulated linking specific conditions to ED pesticides in wildlife and humans. A more precautionary approach to the use of ED pesticides, especially for non-essential purposes is proposed.
Collapse
Affiliation(s)
- R McKinlay
- Centre for Environmental Policy, Imperial College London, South Kensington Campus, London, SW7 2AZ, United Kingdom
| | | | | | | |
Collapse
|
41
|
Yauk C, Polyzos A, Rowan-Carroll A, Somers CM, Godschalk RW, Van Schooten FJ, Berndt ML, Pogribny IP, Koturbash I, Williams A, Douglas GR, Kovalchuk O. Germ-line mutations, DNA damage, and global hypermethylation in mice exposed to particulate air pollution in an urban/industrial location. Proc Natl Acad Sci U S A 2008; 105:605-10. [PMID: 18195365 PMCID: PMC2206583 DOI: 10.1073/pnas.0705896105] [Citation(s) in RCA: 205] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Indexed: 11/18/2022] Open
Abstract
Particulate air pollution is widespread, yet we have little understanding of the long-term health implications associated with exposure. We investigated DNA damage, mutation, and methylation in gametes of male mice exposed to particulate air pollution in an industrial/urban environment. C57BL/CBA mice were exposed in situ to ambient air near two integrated steel mills and a major highway, alongside control mice breathing high-efficiency air particulate (HEPA) filtered ambient air. PCR analysis of an expanded simple tandem repeat (ESTR) locus revealed a 1.6-fold increase in sperm mutation frequency in mice exposed to ambient air for 10 wks, followed by a 6-wk break, compared with HEPA-filtered air, indicating that mutations were induced in spermatogonial stem cells. DNA collected after 3 or 10 wks of exposure did not exhibit increased mutation frequency. Bulky DNA adducts were below the detection threshold in testes samples, suggesting that DNA reactive chemicals do not reach the germ line and cause ESTR mutation. In contrast, DNA strand breaks were elevated at 3 and 10 wks, possibly resulting from oxidative stress arising from exposure to particles and associated airborne pollutants. Sperm DNA was hypermethylated in mice breathing ambient relative to HEPA-filtered air and this change persisted following removal from the environmental exposure. Increased germ-line DNA mutation frequencies may cause population-level changes in genetic composition and disease. Changes in methylation can have widespread repercussions for chromatin structure, gene expression and genome stability. Potential health effects warrant extensive further investigation.
Collapse
Affiliation(s)
- Carole Yauk
- Environmental and Occupational Toxicology Division, HECSB, Ottawa, ON, Canada K1A 0K9.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Mizukami T, Kanai Y, Fujisawa M, Kanai-Azuma M, Kurohmaru M, Hayashi Y. Five azacytidine, a DNA methyltransferase inhibitor, specifically inhibits testicular cord formation and Sertoli cell differentiation in vitro. Mol Reprod Dev 2008; 75:1002-10. [DOI: 10.1002/mrd.20850] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
43
|
Yauk CL, Polyzos A, Rowan-Carroll A, Kortubash I, Williams A, Kovalchuk O. Tandem repeat mutation, global DNA methylation, and regulation of DNA methyltransferases in cultured mouse embryonic fibroblast cells chronically exposed to chemicals with different modes of action. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2008; 49:26-35. [PMID: 18172875 DOI: 10.1002/em.20359] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Mutations at expanded simple tandem repeat (ESTR) DNA sequences provide a useful tool for screening germline mutation. However, the mechanisms resulting in induced mutations are unknown and provide an impediment to the utility of the method. Induced ESTR mutations arise through a nontargeted mechanism resulting in destabilization of the repeat locus. We hypothesized that alterations in DNA methylation, or in DNA methyltransferase expression, may be associated with this indirect mechanism of mutation. DNA mutation frequency was measured in C3H/10T1/2 mouse embryonic fibroblast cells following chronic exposure to six chemicals exhibiting different modes of genotoxic action: N-nitroso-N-ethylurea (ENU); benzo(a)pyrene (BaP); etoposide (ETOP); okadaic acid (OA); cisplatin (CisPt); and 5-azacytidine (5azadC). Induced mutation ranged from 2-fold (ENU, BaP, ETOP), to 1.3-1.4 fold (OA, 5azadC), to nonresponsive (CisPt). Global DNA methylation, measured using the cytosine extension assay, revealed hypomethylation following exposure to ENU and 5azadC, hypermethylation following BaP and OA exposure, and no change following treatment with ETOP or CisPt. DNA methyltransferase transcription (Dnmt1, Dnmt3a, Dnmt3b) was significantly affected by all treatments except ETOP, with the vast majority of changes being downregulation. There was no direct correlation between ESTR mutation, global methylation, or DNA methyltransferase transcription. However, 4/5 ESTR mutagens caused changes in global methylation, while the noninducer (CisPt) did not cause changes in methylation. We hypothesize that chemicals that modify chromatin conformation through changes in methylation may compromise the ability of mismatch repair enzymes (or other enzymes) to access and repair secondary structures that may form across ESTR loci resulting in mutation.
Collapse
Affiliation(s)
- Carole L Yauk
- Environmental Health Sciences and Research Bureau, Safe Environments Programme, Health Canada, Ottawa, Ontario, Canada.
| | | | | | | | | | | |
Collapse
|
44
|
Junien C, Nathanielsz P. Report on the IASO Stock Conference 2006: early and lifelong environmental epigenomic programming of metabolic syndrome, obesity and type II diabetes. Obes Rev 2007; 8:487-502. [PMID: 17949354 DOI: 10.1111/j.1467-789x.2007.00371.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Now that analysis of the organization of the human genome sequence is reaching completion, studies of the finely tuned chromatin epigenetic networks, DNA methylation and histone modifications, are required to determine how the same DNA sequence generates different cells, lineages and organs, i.e. the phenotype. Maternal nutrition, behaviour and metabolic disturbances as well as other environmental factors have been shown to have major effects on these epigenetic processes, potentially affecting the predisposition of offspring to obesity and related adult disorders. The March 2006 Stock Conference considered the latest evidence from studies in the field of obesity and other related areas that elucidate mechanisms by which the environment can modify gene expression and the resulting individual phenotype. Presentations included evaluation of the molecular basis of epigenetic memory and the nature of relevant sequence targets, windows of susceptibility, and maternal dietary and behavioural factors that determine epigenetic changes. Imprinted genes, age and tissue-related exposures, transgenerational and potential interventions were also discussed. In summary, it is clear that epigenetic alterations can no longer be ignored in evaluations of the causes of obesity and its associated disorders. There is a need for systematic large-scale epigenetic studies of obesity, employing appropriate strategies and techniques and appropriately chosen environmental factors in critical spatio-temporal windows.
Collapse
Affiliation(s)
- C Junien
- Inserm U 781, Clinique Maurice Lamy, Hôpital Necker Enfants Malades 149 rue de Sèvres, Paris, France.
| | | |
Collapse
|
45
|
Gallou-Kabani C, Vigé A, Gross MS, Junien C. Nutri-epigenomics: lifelong remodelling of our epigenomes by nutritional and metabolic factors and beyond. Clin Chem Lab Med 2007; 45:321-7. [PMID: 17378726 DOI: 10.1515/cclm.2007.081] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The phenotype of an individual is the result of complex interactions between genotype, epigenome and current, past and ancestral environment, leading to lifelong remodelling of our epigenomes. Various replication-dependent and -independent epigenetic mechanisms are involved in developmental programming, lifelong stochastic and environmental deteriorations, circadian deteriorations, and transgenerational effects. Several types of sequences can be targets of a host of environmental factors and can be associated with specific epigenetic signatures and patterns of gene expression. Depending on the nature and intensity of the insult, the critical spatiotemporal windows and developmental or lifelong processes involved, these epigenetic alterations can lead to permanent changes in tissue and organ structure and function, or to reversible changes using appropriate epigenetic tools. Given several encouraging trials, prevention and therapy of age- and lifestyle-related diseases by individualised tailoring of optimal epigenetic diets or drugs are conceivable. However, these interventions will require intense efforts to unravel the complexity of these epigenetic, genetic and environment interactions and to evaluate their potential reversibility with minimal side effects.
Collapse
Affiliation(s)
- Catherine Gallou-Kabani
- 1. Inserm, AP-HP, Université Paris-Descartes, Faculté de Médecine, Hôpital Necker-Enfants Malades, Inserm U781, Paris, France
| | | | | | | |
Collapse
|
46
|
Wyrobek AJ, Mulvihill JJ, Wassom JS, Malling HV, Shelby MD, Lewis SE, Witt KL, Preston RJ, Perreault SD, Allen JW, DeMarini DM, Woychik RP, Bishop JB. Assessing human germ-cell mutagenesis in the Postgenome Era: a celebration of the legacy of William Lawson (Bill) Russell. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2007; 48:71-95. [PMID: 17295306 PMCID: PMC2071946 DOI: 10.1002/em.20284] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Birth defects, de novo genetic diseases, and chromosomal abnormality syndromes occur in approximately 5% of all live births, and affected children suffer from a broad range of lifelong health consequences. Despite the social and medical impact of these defects, and the 8 decades of research in animal systems that have identified numerous germ-cell mutagens, no human germ-cell mutagen has been confirmed to date. There is now a growing consensus that the inability to detect human germ-cell mutagens is due to technological limitations in the detection of random mutations rather than biological differences between animal and human susceptibility. A multidisciplinary workshop responding to this challenge convened at The Jackson Laboratory in Bar Harbor, Maine. The purpose of the workshop was to assess the applicability of an emerging repertoire of genomic technologies to studies of human germ-cell mutagenesis. Workshop participants recommended large-scale human germ-cell mutation studies be conducted using samples from donors with high-dose exposures, such as cancer survivors. Within this high-risk cohort, parents and children could be evaluated for heritable changes in (a) DNA sequence and chromosomal structure, (b) repeat sequences and minisatellites, and (c) global gene expression profiles and pathways. Participants also advocated the establishment of a bio-bank of human tissue samples from donors with well-characterized exposure, including medical and reproductive histories. This mutational resource could support large-scale, multiple-endpoint studies. Additional studies could involve the examination of transgenerational effects associated with changes in imprinting and methylation patterns, nucleotide repeats, and mitochondrial DNA mutations. The further development of animal models and the integration of these with human studies are necessary to provide molecular insights into the mechanisms of germ-cell mutations and to identify prevention strategies. Furthermore, scientific specialty groups should be convened to review and prioritize the evidence for germ-cell mutagenicity from common environmental, occupational, medical, and lifestyle exposures. Workshop attendees agreed on the need for a full-scale assault to address key fundamental questions in human germ-cell environmental mutagenesis. These include, but are not limited to, the following: Do human germ-cell mutagens exist? What are the risks to future generations? Are some parents at higher risk than others for acquiring and transmitting germ-cell mutations? Obtaining answers to these, and other critical questions, will require strong support from relevant funding agencies, in addition to the engagement of scientists outside the fields of genomics and germ-cell mutagenesis.
Collapse
Affiliation(s)
| | - John J. Mulvihill
- University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - John S. Wassom
- YAHSGS, LLC, Richland, Washington
- Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Heinrich V. Malling
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Michael D. Shelby
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | | | - Kristine L. Witt
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - R. Julian Preston
- US Environmental Protection Agency, Research Triangle Park, North Carolina
| | - Sally D. Perreault
- US Environmental Protection Agency, Research Triangle Park, North Carolina
| | - James W. Allen
- US Environmental Protection Agency, Research Triangle Park, North Carolina
| | - David M. DeMarini
- US Environmental Protection Agency, Research Triangle Park, North Carolina
| | | | - Jack B. Bishop
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
- *Correspondence to: Dr. Jack B. Bishop, National Institute of Environmental Health Sciences, EC-01, PO Box 12233, Research Triangle Park, North Carolina, USA. E-mail:
| | | |
Collapse
|