1
|
Larsen ST, Dannersø JK, Nielsen CJF, Poulsen LR, Palmgren M, Nissen P. Conserved N-terminal Regulation of the ACA8 Calcium Pump with Two Calmodulin Binding Sites. J Mol Biol 2024; 436:168747. [PMID: 39168442 DOI: 10.1016/j.jmb.2024.168747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 07/30/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Abstract
The autoinhibited plasma membrane calcium ATPase ACA8 from A. thaliana has an N-terminal autoinhibitory domain. Binding of calcium-loaded calmodulin at two sites located at residues 42-62 and 74-96 relieves autoinhibition of ACA8 activity. Through activity studies and a yeast complementation assay we investigated wild-type (WT) and N-terminally truncated ACA8 constructs (Δ20, Δ30, Δ35, Δ37, Δ40, Δ74 and Δ100) to explore the role of conserved motifs in the N-terminal segment preceding the calmodulin binding sites. Furthermore, we purified WT, Δ20- and Δ100-ACA8, tested activity in vitro and performed structural studies of purified Δ20-ACA8 stabilized in a lipid nanodisc to explore the mechanism of autoinhibition. We show that an N-terminal segment between residues 20 and 35 including conserved Phe32, upstream of the calmodulin binding sites, is important for autoinhibition and the activation by calmodulin. Cryo-EM structure determination at 3.3 Å resolution of a beryllium fluoride inhibited E2 form, and at low resolution for an E1 state combined with AlphaFold prediction provide a model for autoinhibition, consistent with the mutational studies.
Collapse
Affiliation(s)
- Sigrid Thirup Larsen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark; Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Aarhus, Denmark
| | - Josephine Karlsen Dannersø
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark; Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Aarhus, Denmark
| | - Christine Juul Fælled Nielsen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark; Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Aarhus, Denmark
| | - Lisbeth Rosager Poulsen
- Department of Plant and Environmental Sciences, Copenhagen University, Thorvaldsensvej 40, DK-1871, Denmark
| | - Michael Palmgren
- Department of Plant and Environmental Sciences, Copenhagen University, Thorvaldsensvej 40, DK-1871, Denmark
| | - Poul Nissen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark; Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
2
|
Kim JW, Yong AJH, Aisenberg EE, Lobel JH, Wang W, Dawson TM, Dawson VL, Gao R, Jan YN, Bateup HS, Ingolia NT. Molecular recording of calcium signals via calcium-dependent proximity labeling. Nat Chem Biol 2024; 20:894-905. [PMID: 38658655 DOI: 10.1038/s41589-024-01603-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 03/08/2024] [Indexed: 04/26/2024]
Abstract
Calcium ions serve as key intracellular signals. Local, transient increases in calcium concentrations can activate calcium sensor proteins that in turn trigger downstream effectors. In neurons, calcium transients play a central role in regulating neurotransmitter release and synaptic plasticity. However, it is challenging to capture the molecular events associated with these localized and ephemeral calcium signals. Here we present an engineered biotin ligase that generates permanent molecular traces in a calcium-dependent manner. The enzyme, calcium-dependent BioID (Cal-ID), biotinylates nearby proteins within minutes in response to elevated local calcium levels. The biotinylated proteins can be identified via mass spectrometry and visualized using microscopy. In neurons, Cal-ID labeling is triggered by neuronal activity, leading to prominent protein biotinylation that enables transcription-independent activity labeling in the brain. In summary, Cal-ID produces a biochemical record of calcium signals and neuronal activity with high spatial resolution and molecular specificity.
Collapse
Affiliation(s)
- J Wren Kim
- Department of Molecular and Cell Biology at the University of California, Berkeley, Berkeley, CA, USA
| | - Adeline J H Yong
- Department of Physiology at the University of California, San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute at the University of California, San Francisco, San Francisco, CA, USA
| | - Erin E Aisenberg
- Helen Wills Neuroscience Institute at the University of California, Berkeley, Berkeley, CA, USA
| | - Joseph H Lobel
- Department of Molecular and Cell Biology at the University of California, Berkeley, Berkeley, CA, USA
| | - Wei Wang
- Department of Chemistry at the University of Illinois, Chicago, Chicago, IL, USA
| | - Ted M Dawson
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Valina L Dawson
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ruixuan Gao
- Department of Chemistry at the University of Illinois, Chicago, Chicago, IL, USA
| | - Yuh Nung Jan
- Department of Physiology at the University of California, San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute at the University of California, San Francisco, San Francisco, CA, USA
| | - Helen S Bateup
- Department of Molecular and Cell Biology at the University of California, Berkeley, Berkeley, CA, USA
- Helen Wills Neuroscience Institute at the University of California, Berkeley, Berkeley, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Nicholas T Ingolia
- Department of Molecular and Cell Biology at the University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
3
|
Delgado-Coello B, Luna-Reyes I, Méndez-Acevedo KM, Bravo-Martínez J, Montalvan-Sorrosa D, Mas-Oliva J. Analysis of cholesterol-recognition motifs of the plasma membrane Ca 2+-ATPase. J Bioenerg Biomembr 2024; 56:205-219. [PMID: 38436904 PMCID: PMC11116186 DOI: 10.1007/s10863-024-10010-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
The plasma membrane Ca2+-ATPase (PMCA) is crucial for the fine tuning of intracellular calcium levels in eukaryotic cells. In this study, we show the presence of CARC sequences in all human and rat PMCA isoforms and we performed further analysis by molecular dynamics simulations. This analysis focuses on PMCA1, containing three CARC motifs, and PMCA4, with four CARC domains. In PMCA1, two CARC motifs reside within transmembrane domains, while the third is situated at the intracellular interface. The simulations depict more stable RMSD values and lower RMSF fluctuations in the presence of cholesterol, emphasizing its potential stabilizing effect. In PMCA4, a distinct dynamic was found. Notably, the total energy differences between simulations with cholesterol and phospholipids are pronounced in PMCA4 compared to PMCA1. RMSD values for PMCA4 indicate a more energetically favorable conformation in the presence of cholesterol, suggesting a robust interaction between CARCs and this lipid in the membranes. Furthermore, RMSF analysis for CARCs in both PMCA isoforms exhibit lower values in the presence of cholesterol compared to POPC alone. The analysis of H-bond occupancy and total energy values strongly suggests the potential interaction of CARCs with cholesterol. Given the crucial role of PMCAs in physiological calcium regulation and their involvement in diverse pathological processes, this study underscores the significance of CARC motifs and their interaction with cholesterol in elucidating PMCA function. These insights into the energetic preferences associated with CARC-cholesterol interactions offer valuable implications for understanding PMCA function in maintaining calcium homeostasis and addressing potential associated pathologies.
Collapse
Affiliation(s)
- Blanca Delgado-Coello
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apdo. Postal 70-243, Ciudad de México, C.P. 04510, México.
| | - Ismael Luna-Reyes
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apdo. Postal 70-243, Ciudad de México, C.P. 04510, México
| | - Kevin M Méndez-Acevedo
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apdo. Postal 70-243, Ciudad de México, C.P. 04510, México
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Jorge Bravo-Martínez
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Danai Montalvan-Sorrosa
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Jaime Mas-Oliva
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apdo. Postal 70-243, Ciudad de México, C.P. 04510, México.
| |
Collapse
|
4
|
Wu Y, Cheng M, Jiang Y, Zhang X, Li J, Zhu Y, Yao Q. Calcium-based biomaterials: Unveiling features and expanding applications in osteosarcoma treatment. Bioact Mater 2024; 32:385-399. [PMID: 37920827 PMCID: PMC10618625 DOI: 10.1016/j.bioactmat.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/16/2023] [Accepted: 10/07/2023] [Indexed: 11/04/2023] Open
Abstract
Calcium, an indispensable element in bone tissues, plays a crucial role in various cellular processes involved in cancer progression. Its ubiquitous yet spatially distinct distribution in the body presents an opportunity to target calcium homeostasis as a novel strategies for cancer treatment, with specific advantages in osteosarcoma therapy. In this comprehensive review, we retrospect the calcium biology intersected with cancer progression, highlight the unveiling features of calcium-based biomaterials in regulating both bone homeostasis and cancer development. We also provide an overview of recent breakthroughs in cancer therapy that leverage calcium biomaterials, showcasing their potential to serve as versatile, customizable platforms for osteosarcoma treatment and as reservoirs for supporting bone reconstruction.
Collapse
Affiliation(s)
- Yilun Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Min Cheng
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yi Jiang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Xin Zhang
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Jiaxiang Li
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Yishen Zhu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Qingqiang Yao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| |
Collapse
|
5
|
Hernández-Oliveras A, Zarain-Herzberg A. The role of Ca 2+-signaling in the regulation of epigenetic mechanisms. Cell Calcium 2024; 117:102836. [PMID: 37988873 DOI: 10.1016/j.ceca.2023.102836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 11/23/2023]
Abstract
Epigenetic mechanisms regulate multiple cell functions like gene expression and chromatin conformation and stability, and its misregulation could lead to several diseases including cancer. Epigenetic drugs are currently under investigation in a broad range of diseases, but the cellular processes involved in regulating epigenetic mechanisms are not fully understood. Calcium (Ca2+) signaling regulates several cellular mechanisms such as proliferation, gene expression, and metabolism, among others. Moreover, Ca2+ signaling is also involved in diseases such as neurological disorders, cardiac, and cancer. Evidence indicates that Ca2+ signaling and epigenetics are involved in the same cellular functions, which suggests a possible interplay between both mechanisms. Ca2+-activated transcription factors regulate the recruitment of chromatin remodeling complexes into their target genes, and Ca2+-sensing proteins modulate their activity and intracellular localization. Thus, Ca2+ signaling is an important regulator of epigenetic mechanisms. Moreover, Ca2+ signaling activates epigenetic mechanisms that in turn regulate genes involved in Ca2+ signaling, suggesting possible feedback between both mechanisms. The understanding of how epigenetics are regulated could lead to developing better therapeutical approaches.
Collapse
Affiliation(s)
- Andrés Hernández-Oliveras
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Angel Zarain-Herzberg
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico.
| |
Collapse
|
6
|
Kowalski A, Betzer C, Larsen ST, Gregersen E, Newcombe EA, Bermejo MC, Bendtsen VW, Diemer J, Ernstsen CV, Jain S, Bou AE, Langkilde AE, Nejsum LN, Klipp E, Edwards R, Kragelund BB, Jensen PH, Nissen P. Monomeric α-synuclein activates the plasma membrane calcium pump. EMBO J 2023; 42:e111122. [PMID: 37916890 PMCID: PMC10690453 DOI: 10.15252/embj.2022111122] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 09/19/2023] [Accepted: 10/11/2023] [Indexed: 11/03/2023] Open
Abstract
Alpha-synuclein (aSN) is a membrane-associated and intrinsically disordered protein, well known for pathological aggregation in neurodegeneration. However, the physiological function of aSN is disputed. Pull-down experiments have pointed to plasma membrane Ca2+ -ATPase (PMCA) as a potential interaction partner. From proximity ligation assays, we find that aSN and PMCA colocalize at neuronal synapses, and we show that calcium expulsion is activated by aSN and PMCA. We further show that soluble, monomeric aSN activates PMCA at par with calmodulin, but independent of the autoinhibitory domain of PMCA, and highly dependent on acidic phospholipids and membrane-anchoring properties of aSN. On PMCA, the key site is mapped to the acidic lipid-binding site, located within a disordered PMCA-specific loop connecting the cytosolic A domain and transmembrane segment 3. Our studies point toward a novel physiological role of monomeric aSN as a stimulator of calcium clearance in neurons through activation of PMCA.
Collapse
Affiliation(s)
- Antoni Kowalski
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
- Danish Research Institute of Translational Neuroscience – DANDRITEAarhus UniversityAarhusDenmark
- REPIN and Structural Biology and NMR Laboratory, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
- Department of Molecular NeurochemistryMedical University of LodzLodzPoland
- Present address:
ImmunAware ApSHørsholmDenmark
| | - Cristine Betzer
- Danish Research Institute of Translational Neuroscience – DANDRITEAarhus UniversityAarhusDenmark
- Department of BiomedicineAarhus UniversityAarhusDenmark
- Present address:
Region Midtjylland, Regionshospitalet GødstrupHerningDenmark
| | - Sigrid Thirup Larsen
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
- Danish Research Institute of Translational Neuroscience – DANDRITEAarhus UniversityAarhusDenmark
| | - Emil Gregersen
- Danish Research Institute of Translational Neuroscience – DANDRITEAarhus UniversityAarhusDenmark
- Department of BiomedicineAarhus UniversityAarhusDenmark
- Present address:
Department of Clinical MedicineAarhus UniversityAarhus NDenmark
| | - Estella A Newcombe
- REPIN and Structural Biology and NMR Laboratory, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Montaña Caballero Bermejo
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
- Danish Research Institute of Translational Neuroscience – DANDRITEAarhus UniversityAarhusDenmark
- Department Biochemistry and Molecular Biology and Genetics, IBMPUniversity of ExtremaduraBadajozSpain
| | - Viktor Wisniewski Bendtsen
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
- Danish Research Institute of Translational Neuroscience – DANDRITEAarhus UniversityAarhusDenmark
| | - Jorin Diemer
- Theoretical BiophysicsHumboldt‐Universität zu BerlinBerlinGermany
| | | | - Shweta Jain
- Departments of Neurology and PhysiologyUniversity of California San FranciscoSan FranciscoCAUSA
| | - Alicia Espiña Bou
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
- Danish Research Institute of Translational Neuroscience – DANDRITEAarhus UniversityAarhusDenmark
| | | | - Lene N Nejsum
- Department of Clinical MedicineAarhus UniversityAarhus NDenmark
| | - Edda Klipp
- Theoretical BiophysicsHumboldt‐Universität zu BerlinBerlinGermany
| | - Robert Edwards
- Departments of Neurology and PhysiologyUniversity of California San FranciscoSan FranciscoCAUSA
| | - Birthe B Kragelund
- REPIN and Structural Biology and NMR Laboratory, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Poul Henning Jensen
- Danish Research Institute of Translational Neuroscience – DANDRITEAarhus UniversityAarhusDenmark
- Department of BiomedicineAarhus UniversityAarhusDenmark
| | - Poul Nissen
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
- Danish Research Institute of Translational Neuroscience – DANDRITEAarhus UniversityAarhusDenmark
| |
Collapse
|
7
|
Sims JN, Yun EJ, Chu J, Siddiqui MA, Desai SA. A robust fluorescence-based assay for human erythrocyte Ca ++ efflux suitable for high-throughput inhibitor screens. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023; 52:101-110. [PMID: 36512028 PMCID: PMC11019861 DOI: 10.1007/s00249-022-01623-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 10/20/2022] [Accepted: 11/27/2022] [Indexed: 12/14/2022]
Abstract
Intracellular calcium is maintained at very low concentrations through the action of PMCA Ca++ extrusion pumps. Although much of our knowledge about these Ca++ extrusion pumps derives from studies with human erythrocytes, kinetic studies of Ca++ transport for these cells are limited to radioisotope flux measurements. Here, we developed a robust, microplate-based assay for erythrocyte Ca++ efflux using extracellular fluorescent Ca++ indicators. We optimized Ca++ loading with the A23187 ionophore, established conditions for removal of the ionophore, and adjusted fluorescent dye sensitivity by addition of extracellular EGTA to allow continuous tracking of Ca++ efflux. Efflux kinetics were accelerated by glucose and inhibited in a dose-dependent manner by the nonspecific inhibitor vanadate, revealing that Ca++ pump activity can be tracked in a 384-well microplate format. These studies enable radioisotope-free kinetic measurements of the Ca++ pump and should facilitate screens for specific inhibitors of this essential transport activity.
Collapse
Affiliation(s)
- Jeremiah N Sims
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
- Institute of Protein Design, Medical Scientist Training Program, Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
| | - EJun Yun
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jonathan Chu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Mansoor A Siddiqui
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Sanjay A Desai
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA.
| |
Collapse
|
8
|
Beckmann D, Langnaese K, Gottfried A, Hradsky J, Tedford K, Tiwari N, Thomas U, Fischer KD, Korthals M. Ca 2+ Homeostasis by Plasma Membrane Ca 2+ ATPase (PMCA) 1 Is Essential for the Development of DP Thymocytes. Int J Mol Sci 2023; 24:ijms24021442. [PMID: 36674959 PMCID: PMC9865543 DOI: 10.3390/ijms24021442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/22/2022] [Accepted: 12/30/2022] [Indexed: 01/13/2023] Open
Abstract
The strength of Ca2+ signaling is a hallmark of T cell activation, yet the role of Ca2+ homeostasis in developing T cells before expressing a mature T cell receptor is poorly understood. We aimed to unveil specific functions of the two plasma membrane Ca2+ ATPases expressed in T cells, PMCA1 and PMCA4. On a transcriptional and protein level we found that PMCA4 was expressed at low levels in CD4-CD8- double negative (DN) thymocytes and was even downregulated in subsequent stages while PMCA1 was present throughout development and upregulated in CD4+CD8+ double positive (DP) thymocytes. Mice with a targeted deletion of Pmca1 in DN3 thymocytes had an almost complete block of DP thymocyte development with an accumulation of DN4 thymocytes but severely reduced numbers of CD8+ immature single positive (ISP) thymocytes. The DN4 thymocytes of these mice showed strongly elevated basal cytosolic Ca2+ levels and a pre-mature CD5 expression, but in contrast to the DP thymocytes they were only mildly prone to apoptosis. Surprisingly, mice with a germline deletion of Pmca4 did not show any signs of altered progression through the developmental thymocyte stages, nor altered Ca2+ homeostasis throughout this process. PMCA1 is, therefore, non-redundant in keeping cellular Ca2+ levels low in the early thymocyte development required for the DN to DP transition.
Collapse
Affiliation(s)
- David Beckmann
- Institute for Biochemistry and Cell Biology, Medical Faculty, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
| | - Kristina Langnaese
- Institute for Biochemistry and Cell Biology, Medical Faculty, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
| | - Anna Gottfried
- Institute for Biochemistry and Cell Biology, Medical Faculty, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
| | - Johannes Hradsky
- Institute for Biochemistry and Cell Biology, Medical Faculty, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
| | - Kerry Tedford
- Institute for Biochemistry and Cell Biology, Medical Faculty, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
| | - Nikhil Tiwari
- Department of Cellular Neuroscience, Leibniz Institute for Neurobiology, 39120 Magdeburg, Germany
| | - Ulrich Thomas
- Department of Cellular Neuroscience, Leibniz Institute for Neurobiology, 39120 Magdeburg, Germany
| | - Klaus-Dieter Fischer
- Institute for Biochemistry and Cell Biology, Medical Faculty, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
- Correspondence:
| | - Mark Korthals
- Institute for Biochemistry and Cell Biology, Medical Faculty, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
| |
Collapse
|
9
|
Barak P, Kaur S, Scappini E, Tucker CJ, Parekh AB. Plasma Membrane Ca 2+ ATPase Activity Enables Sustained Store-operated Ca 2+ Entry in the Absence of a Bulk Cytosolic Ca 2+ Rise. FUNCTION 2022; 3:zqac040. [PMID: 38989036 PMCID: PMC11234650 DOI: 10.1093/function/zqac040] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 07/12/2024] Open
Abstract
In many cell types, the rise in cytosolic Ca2+ due to opening of Ca2+ release-activated Ca2+ (CRAC) channels drives a plethora of responses, including secretion, motility, energy production, and gene expression. The amplitude and time course of the cytosolic Ca2+ rise is shaped by the rates of Ca2+ entry into and removal from the cytosol. However, an extended bulk Ca2+ rise is toxic to cells. Here, we show that the plasma membrane Ca2+ ATPase (PMCA) pump plays a major role in preventing a prolonged cytosolic Ca2+ signal following CRAC channel activation. Ca2+ entry through CRAC channels leads to a sustained sub-plasmalemmal Ca2+ rise but bulk Ca2+ is kept low by the activity of PMCA4b. Despite the low cytosolic Ca2+, membrane permeability to Ca2+ is still elevated and Ca2+ continues to enter through CRAC channels. Ca2+-dependent NFAT activation, driven by Ca2+ nanodomains near the open channels, is maintained despite the return of bulk Ca2+ to near pre-stimulation levels. Our data reveal a central role for PMCA4b in determining the pattern of a functional Ca2+ signal and in sharpening local Ca2+ gradients near CRAC channels, whilst protecting cells from a toxic Ca2+ overload.
Collapse
Affiliation(s)
- Pradeep Barak
- Department of Physiology, Anatomy and Genetics, Oxford University, Oxford OX1 3PT, UK
- Oxford Nanoimaging, Linacre House, Jordan Hill Business Park Banbury Road, Oxford OX2 8TA, UK
| | - Suneet Kaur
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, NIH, Research Triangle Park NC 27709, USA
| | - Erica Scappini
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, NIH, Research Triangle Park NC 27709, USA
| | - Charles J Tucker
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, NIH, Research Triangle Park NC 27709, USA
| | - Anant B Parekh
- Department of Physiology, Anatomy and Genetics, Oxford University, Oxford OX1 3PT, UK
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, NIH, Research Triangle Park NC 27709, USA
| |
Collapse
|
10
|
Malci A, Lin X, Sandoval R, Gundelfinger ED, Naumann M, Seidenbecher CI, Herrera-Molina R. Ca 2+ signaling in postsynaptic neurons: Neuroplastin-65 regulates the interplay between plasma membrane Ca 2+ ATPases and ionotropic glutamate receptors. Cell Calcium 2022; 106:102623. [PMID: 35853264 DOI: 10.1016/j.ceca.2022.102623] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 06/28/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022]
Abstract
Upon postsynaptic glutamate receptor activation, the cytosolic Ca2+ concentration rises and initiates signaling and plasticity in spines. The plasma membrane Ca2+ ATPase (PMCA) is a major player to limit the duration of cytosolic Ca2+ signals. It forms complexes with the glycoprotein neuroplastin (Np) isoforms Np55 and Np65 and functionally interplays with N-methyl-D-aspartate (NMDA)-type ionotropic glutamate receptors (iGluNRs). Moreover, binding of the Np65-specific extracellular domain to Ca2+-permeable GluA1-containing α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)-type ionotropic glutamate receptors (iGluA1Rs) was found to be required for long-term potentiation (LTP). However, the link between PMCA and iGluRs function to regulate cytosolic Ca2+ signals remained unclear. Here, we report that Np65 coordinates PMCA and iGluRs' functions to modulate the duration and amplitude of cytosolic Ca2+ transients in dendrites and spines of hippocampal neurons. Using live-cell Ca2+ imaging, acute pharmacological treatments, and GCaMP5G-expressing hippocampal neurons, we discovered that endogenous or Np65-promoted PMCA activity contributes to the restoration of basal Ca2+ levels and that this effect is dependent on iGluR activation. Super-resolution STED and confocal microscopy revealed that electrical stimulation increases the abundance of synaptic neuroplastin-PMCA complexes depending on iGluR activation and that low-rate overexpression of Np65 doubled PMCA levels and decreased cell surface levels of GluN2A and GluA1 in dendrites and Shank2-positive glutamatergic synapses. In neuroplastin-deficient hippocampi, we observed reduced PMCA and unchanged GluN2B levels, while GluN2A and GluA1 levels were imbalanced. Our electrophysiological data from hippocampal slices argues for an essential interplay of PMCA with GluN2A- but not with GluN2B-containing receptors upon induction of synaptic plasticity. Accordingly, we conclude that Np65 may interconnect PMCA with core players of glutamatergic neurotransmission to fine-tune the Ca2+ signal regulation in basal synaptic function and plasticity.
Collapse
Affiliation(s)
- Ayse Malci
- Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Xiao Lin
- Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Rodrigo Sandoval
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Eckart D Gundelfinger
- Leibniz Institute for Neurobiology, Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany; Institute of Pharmacology and Toxicology, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Michael Naumann
- Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Constanze I Seidenbecher
- Leibniz Institute for Neurobiology, Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Rodrigo Herrera-Molina
- Center for Behavioral Brain Sciences, Magdeburg, Germany; Centro Integrativo de Biología y Química Aplicada, Universidad Bernardo O'Higgins, Santiago, Chile; Combinatorial Combinatorial NeuroImaging (CNI), Leibniz Institute for Neurobiology, Magdeburg, Germany.
| |
Collapse
|
11
|
Gold Compounds Inhibit the Ca2+-ATPase Activity of Brain PMCA and Human Neuroblastoma SH-SY5Y Cells and Decrease Cell Viability. METALS 2021. [DOI: 10.3390/met11121934] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Plasma membrane calcium ATPases (PMCA) are key proteins in the maintenance of calcium (Ca2+) homeostasis. Dysregulation of PMCA function is associated with several human pathologies, including neurodegenerative diseases, and, therefore, these proteins are potential drug targets to counteract those diseases. Gold compounds, namely of Au(I), are well-known for their therapeutic use in rheumatoid arthritis and other diseases for centuries. Herein, we report the ability of dichloro(2-pyridinecarboxylate)gold(III) (1), chlorotrimethylphosphinegold(I) (2), 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidenegold(I) chloride (3), and chlorotriphenylphosphinegold(I) (4) compounds to interfere with the Ca2+-ATPase activity of pig brain purified PMCA and with membranes from SH-SY5Y neuroblastoma cell cultures. The Au(III) compound (1) inhibits PMCA activity with the IC50 value of 4.9 µM, while Au(I) compounds (2, 3, and 4) inhibit the protein activity with IC50 values of 2.8, 21, and 0.9 µM, respectively. Regarding the native substrate MgATP, gold compounds 1 and 4 showed a non-competitive type of inhibition, whereas compounds 2 and 3 showed a mixed type of inhibition. All gold complexes showed cytotoxic effects on human neuroblastoma SH-SY5Y cells, although compounds 1 and 3 were more cytotoxic than compounds 2 and 4. In summary, this work shows that both Au (I and III) compounds are high-affinity inhibitors of the Ca2+-ATPase activity in purified PMCA fractions and in membranes from SH-SY5Y human neuroblastoma cells. Additionally, they exert strong cytotoxic effects.
Collapse
|
12
|
Corradi GR, Mazzitelli LR, Petrovich GD, de Tezanos Pinto F, Rochi L, Adamo HP. Plasma Membrane Ca 2+ Pump PMCA4z Is More Active Than Splicing Variant PMCA4x. Front Cell Neurosci 2021; 15:668371. [PMID: 34512262 PMCID: PMC8428515 DOI: 10.3389/fncel.2021.668371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 07/22/2021] [Indexed: 11/13/2022] Open
Abstract
The plasma membrane Ca2+ pumps (PMCA) are P-ATPases that control Ca2+ signaling and homeostasis by transporting Ca2+ out of the eukaryotic cell. Humans have four genes that code for PMCA isoforms (PMCA1-4). A large diversity of PMCA isoforms is generated by alternative mRNA splicing at sites A and C. The different PMCA isoforms are expressed in a cell-type and developmental-specific manner and exhibit differential sensitivity to a great number of regulatory mechanisms. PMCA4 has two A splice variants, the forms "x" and "z". While PMCA4x is ubiquitously expressed and relatively well-studied, PMCA4z is less characterized and its expression is restricted to some tissues such as the brain and heart muscle. PMCA4z lacks a stretch of 12 amino acids in the so-called A-M3 linker, a conformation-sensitive region of the molecule connecting the actuator domain (A) with the third transmembrane segment (M3). We expressed in yeast PMCA4 variants "x" and "z", maintaining constant the most frequent splice variant "b" at the C-terminal end, and obtained purified preparations of both proteins. In the basal autoinhibited state, PMCA4zb showed a higher ATPase activity and a higher apparent Ca2+ affinity than PMCA4xb. Both isoforms were stimulated by calmodulin but PMCA4zb was more strongly activated by acidic lipids than PMCA4xb. The results indicate that a PMCA4 intrinsically more active and more responsive to acidic lipids is produced by the variant "z" of the splicing site A.
Collapse
Affiliation(s)
- Gerardo R Corradi
- Departamento de Química Biológica, Instituto de Química y Fisicoquímica Biológicas, Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Luciana R Mazzitelli
- Departamento de Química Biológica, Instituto de Química y Fisicoquímica Biológicas, Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Guido D Petrovich
- Departamento de Química Biológica, Instituto de Química y Fisicoquímica Biológicas, Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Felicitas de Tezanos Pinto
- Departamento de Química Biológica, Instituto de Química y Fisicoquímica Biológicas, Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Lucia Rochi
- Departamento de Química Biológica, Instituto de Química y Fisicoquímica Biológicas, Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Hugo P Adamo
- Departamento de Química Biológica, Instituto de Química y Fisicoquímica Biológicas, Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
13
|
Basu R, Dutta S, Pal A, Sengupta M, Chattopadhyay S. Calmodulin7: recent insights into emerging roles in plant development and stress. PLANT MOLECULAR BIOLOGY 2021; 107:1-20. [PMID: 34398355 DOI: 10.1007/s11103-021-01177-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 07/27/2021] [Indexed: 05/25/2023]
Abstract
Analyses of the function of Arabidopsis Calmodulin7 (CAM7) in concert with multiple regulatory proteins involved in various signal transduction processes. Calmodulin (CaM) plays various regulatory roles in multiple signaling pathways in eukaryotes. Arabidopsis CALMODULIN 7 (CAM7) is a unique member of the CAM family that works as a transcription factor in light signaling pathways. CAM7 works in concert with CONSTITUTIVE PHOTOMORPHOGENIC 1 and ELONGATED HYPOCOTYL 5, and plays an important role in seedling development. Further, it is involved in the regulation of the activity of various Ca2+-gated channels such as cyclic nucleotide gated channel 6 (CNGC6), CNGC14 and auto-inhibited Ca2+ ATPase 8. Recent studies further indicate that CAM7 is also an integral part of multiple signaling pathways including hormone, immunity and stress. Here, we review the recent advances in understanding the multifaceted role of CAM7. We highlight the open-ended questions, and also discuss the diverse aspects of CAM7 characterization that need to be addressed for comprehensive understanding of its cellular functions.
Collapse
Affiliation(s)
- Riya Basu
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India
| | - Siddhartha Dutta
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India
- Department of Biotechnology, University of Engineering and Management, University Area, Plot, Street Number 03, Action Area III, B/5, Newtown, Kolkata, West Bengal, 700156, India
| | - Abhideep Pal
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India
| | - Mandar Sengupta
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India
| | - Sudip Chattopadhyay
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India.
| |
Collapse
|
14
|
Sharma A, Ramena GT, Elble RC. Advances in Intracellular Calcium Signaling Reveal Untapped Targets for Cancer Therapy. Biomedicines 2021; 9:1077. [PMID: 34572262 PMCID: PMC8466575 DOI: 10.3390/biomedicines9091077] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/15/2021] [Accepted: 07/18/2021] [Indexed: 02/07/2023] Open
Abstract
Intracellular Ca2+ distribution is a tightly regulated process. Numerous Ca2+ chelating, storage, and transport mechanisms are required to maintain normal cellular physiology. Ca2+-binding proteins, mainly calmodulin and calbindins, sequester free intracellular Ca2+ ions and apportion or transport them to signaling hubs needing the cations. Ca2+ channels, ATP-driven pumps, and exchangers assist the binding proteins in transferring the ions to and from appropriate cellular compartments. Some, such as the endoplasmic reticulum, mitochondria, and lysosomes, act as Ca2+ repositories. Cellular Ca2+ homeostasis is inefficient without the active contribution of these organelles. Moreover, certain key cellular processes also rely on inter-organellar Ca2+ signaling. This review attempts to encapsulate the structure, function, and regulation of major intracellular Ca2+ buffers, sensors, channels, and signaling molecules before highlighting how cancer cells manipulate them to survive and thrive. The spotlight is then shifted to the slow pace of translating such research findings into anticancer therapeutics. We use the PubMed database to highlight current clinical studies that target intracellular Ca2+ signaling. Drug repurposing and improving the delivery of small molecule therapeutics are further discussed as promising strategies for speeding therapeutic development in this area.
Collapse
Affiliation(s)
- Aarushi Sharma
- Department of Pharmacology and Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL 62702, USA;
| | - Grace T. Ramena
- Department of Aquaculture, University of Arkansas, Pine Bluff, AR 71601, USA;
| | - Randolph C. Elble
- Department of Pharmacology and Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL 62702, USA;
| |
Collapse
|
15
|
Transcriptome profiling analysis of muscle tissue reveals potential candidate genes affecting water holding capacity in Chinese Simmental beef cattle. Sci Rep 2021; 11:11897. [PMID: 34099805 PMCID: PMC8184995 DOI: 10.1038/s41598-021-91373-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 05/26/2021] [Indexed: 11/12/2022] Open
Abstract
Water holding capacity (WHC) is an important sensory attribute that greatly influences meat quality. However, the molecular mechanism that regulates the beef WHC remains to be elucidated. In this study, the longissimus dorsi (LD) muscles of 49 Chinese Simmental beef cattle were measured for meat quality traits and subjected to RNA sequencing. WHC had significant correlation with 35 kg water loss (r = − 0.99, p < 0.01) and IMF content (r = 0.31, p < 0.05), but not with SF (r = − 0.20, p = 0.18) and pH (r = 0.11, p = 0.44). Eight individuals with the highest WHC (H-WHC) and the lowest WHC (L-WHC) were selected for transcriptome analysis. A total of 865 genes were identified as differentially expressed genes (DEGs) between two groups, of which 633 genes were up-regulated and 232 genes were down-regulated. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment revealed that DEGs were significantly enriched in 15 GO terms and 96 pathways. Additionally, based on protein–protein interaction (PPI) network, animal QTL database (QTLdb), and relevant literature, the study not only confirmed seven genes (HSPA12A, HSPA13, PPARγ, MYL2, MYPN, TPI, and ATP2A1) influenced WHC in accordance with previous studies, but also identified ATP2B4, ACTN1, ITGAV, TGFBR1, THBS1, and TEK as the most promising novel candidate genes affecting the WHC. These findings could offer important insight for exploring the molecular mechanism underlying the WHC trait and facilitate the improvement of beef quality.
Collapse
|
16
|
Whiteley SL, Holleley CE, Wagner S, Blackburn J, Deveson IW, Marshall Graves JA, Georges A. Two transcriptionally distinct pathways drive female development in a reptile with both genetic and temperature dependent sex determination. PLoS Genet 2021; 17:e1009465. [PMID: 33857129 PMCID: PMC8049264 DOI: 10.1371/journal.pgen.1009465] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/03/2021] [Indexed: 12/19/2022] Open
Abstract
How temperature determines sex remains unknown. A recent hypothesis proposes that conserved cellular mechanisms (calcium and redox; 'CaRe' status) sense temperature and identify genes and regulatory pathways likely to be involved in driving sexual development. We take advantage of the unique sex determining system of the model organism, Pogona vitticeps, to assess predictions of this hypothesis. P. vitticeps has ZZ male: ZW female sex chromosomes whose influence can be overridden in genetic males by high temperatures, causing male-to-female sex reversal. We compare a developmental transcriptome series of ZWf females and temperature sex reversed ZZf females. We demonstrate that early developmental cascades differ dramatically between genetically driven and thermally driven females, later converging to produce a common outcome (ovaries). We show that genes proposed as regulators of thermosensitive sex determination play a role in temperature sex reversal. Our study greatly advances the search for the mechanisms by which temperature determines sex.
Collapse
Affiliation(s)
- Sarah L. Whiteley
- Institute for Applied Ecology, University of Canberra, Canberra, Australia
- Australian National Wildlife Collection CSIRO National Research Collections Australia, Canberra, Australia
| | - Clare E. Holleley
- Australian National Wildlife Collection CSIRO National Research Collections Australia, Canberra, Australia
| | - Susan Wagner
- Institute for Applied Ecology, University of Canberra, Canberra, Australia
| | - James Blackburn
- Garvan Institute of Medical Research, Sydney, Australia
- St. Vincent’s Clinical School, UNSW, Sydney, Australia
| | - Ira W. Deveson
- Garvan Institute of Medical Research, Sydney, Australia
- St. Vincent’s Clinical School, UNSW, Sydney, Australia
| | - Jennifer A. Marshall Graves
- Institute for Applied Ecology, University of Canberra, Canberra, Australia
- Latrobe University, Melbourne, Australia
| | - Arthur Georges
- Institute for Applied Ecology, University of Canberra, Canberra, Australia
| |
Collapse
|
17
|
Gao J, Qin Z, Qu X, Wu S, Xie X, Liang C, Liu J. Endogenous neuroprotective mechanism of ATP2B1 in transcriptional regulation of ischemic preconditioning. Am J Transl Res 2021; 13:1170-1183. [PMID: 33841647 PMCID: PMC8014370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
UNLABELLED Ischemic stroke is the main cause of disability and mortality in the world. Clinical studies have shown that patients who undergo mild transient ischemic attack (TIA) before more severe ischemic stroke have lower clinical severity of stroke and better functional prognosis. This phenomenon is called ischemic preconditioning (IPC). IPC is a powerful intrinsic protection of the brain against ischemic injury, but the underlying mechanism of IPC-mediated endogenous protection of the brain is not clear. METHODS Using transcriptome method, we sequenced the serum of 3 stroke patients with progenitor TIA and 3 stroke patients without prodromal TIA. We explored the expression profiles of miRNAs and mRNAs in response to IPC, and predicted the regulatory pathway of IPC related genes and their expression in cerebral neurons. The methylation consistent expression of IPC-related gene ATP2B1 in blood and brain and alternative polyadenylate (APA) analysis were used to identify the pathway and molecular mechanism of endogenous neuroprotection of IPC. RESULTS We found that the brain protective effect of IPC was related to platelet homeostasis and Ca2+ concentration. IPC-related gene ATP2B1 was highly expressed in γ-aminobutyric acid (GABA)-containing neurons in the brain. From the mechanism, we speculated that ATP2B1 was representative of the same methylation in blood and brain and was affected by alternative polyadenylation. CONCLUSION We speculate that IPC can induce alternative polyadenylation of ATP2B1 and trigger the mechanism of brain endogenous neuroprotection by regulating the decrease of Ca2+ concentration in platelet homeostasis pathway and the activation of GABAB receptor.
Collapse
Affiliation(s)
- Jinggui Gao
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University in Nanning China
| | - Zhenxiu Qin
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University in Nanning China
| | - Xiang Qu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University in Nanning China
| | - Shuang Wu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University in Nanning China
| | - Xiaoyun Xie
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University in Nanning China
| | - Chengwei Liang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University in Nanning China
| | - Jingli Liu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University in Nanning China
| |
Collapse
|
18
|
Hwang SM, Lee JY, Park CK, Kim YH. The Role of TRP Channels and PMCA in Brain Disorders: Intracellular Calcium and pH Homeostasis. Front Cell Dev Biol 2021; 9:584388. [PMID: 33585474 PMCID: PMC7876282 DOI: 10.3389/fcell.2021.584388] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 01/06/2021] [Indexed: 12/19/2022] Open
Abstract
Brain disorders include neurodegenerative diseases (NDs) with different conditions that primarily affect the neurons and glia in the brain. However, the risk factors and pathophysiological mechanisms of NDs have not been fully elucidated. Homeostasis of intracellular Ca2+ concentration and intracellular pH (pHi) is crucial for cell function. The regulatory processes of these ionic mechanisms may be absent or excessive in pathological conditions, leading to a loss of cell death in distinct regions of ND patients. Herein, we review the potential involvement of transient receptor potential (TRP) channels in NDs, where disrupted Ca2+ homeostasis leads to cell death. The capability of TRP channels to restore or excite the cell through Ca2+ regulation depending on the level of plasma membrane Ca2+ ATPase (PMCA) activity is discussed in detail. As PMCA simultaneously affects intracellular Ca2+ regulation as well as pHi, TRP channels and PMCA thus play vital roles in modulating ionic homeostasis in various cell types or specific regions of the brain where the TRP channels and PMCA are expressed. For this reason, the dysfunction of TRP channels and/or PMCA under pathological conditions disrupts neuronal homeostasis due to abnormal Ca2+ and pH levels in the brain, resulting in various NDs. This review addresses the function of TRP channels and PMCA in controlling intracellular Ca2+ and pH, which may provide novel targets for treating NDs.
Collapse
Affiliation(s)
- Sung-Min Hwang
- Gachon Pain Center, Department of Physiology, Gachon University College of Medicine, Incheon, South Korea
| | - Ji Yeon Lee
- Gil Medical Center, Department of Anesthesiology and Pain Medicine, Gachon University, Incheon, South Korea
| | - Chul-Kyu Park
- Gachon Pain Center, Department of Physiology, Gachon University College of Medicine, Incheon, South Korea
| | - Yong Ho Kim
- Gachon Pain Center, Department of Physiology, Gachon University College of Medicine, Incheon, South Korea
| |
Collapse
|
19
|
Ikewuchi CC, Ifeanacho MO, Ikewuchi JC. Moderation of doxorubicin-induced nephrotoxicity in Wistar rats by aqueous leaf-extracts of Chromolaena odorata and Tridax procumbens. Porto Biomed J 2021; 6:e129. [PMID: 33884325 PMCID: PMC8055491 DOI: 10.1097/j.pbj.0000000000000129] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 01/03/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The major draw-back of doxorubicin's use in chemotherapy is its toxicity on various organs including the kidneys. This study investigated the potential protective role of aqueous leaf-extracts of Chromolaena odorata and Tridax procumbens against nephrotoxicity induced by doxorubicin. METHODS To this end, their impact on plasma biomarkers of kidney function, as well as renal lipid profile, biomarkers of oxidative stress, electrolyte profile and activities of renal ATPases was monitored in doxorubicin treated rats. Metformin (250 mg/kg body weight, orally) and the extracts (50, 75 and 100 mg/kg, orally) were daily administered for 14 days; while nephrotoxicity was induced with doxorubicin (15 mg/kg, intra-peritioneally), once on the 12th day of study. RESULTS The plasma concentrations of creatinine, and urea; as well as the renal malondialdehyde, cholesterol, calcium and sodium concentrations in the Test control, were significantly (P < .05) higher than those of all the other groups. However, the renal concentrations of ascorbic acid, chloride, magnesium and potassium, and the renal activities of catalase, glutathione peroxidase superoxide dismutase, Ca2+-ATPase, Mg2+-ATPase and Na+,K+-ATPase in the Test control were significantly (P < .05) lower than those of all the other groups. CONCLUSIONS Pre-treatment with the extracts and metformin boosted endogenous antioxidants, and prevented doxorubicin-induced renal damage, as indicated by the attenuation of doxorubicin-induced renal oxidative stress, as well as the attenuation of doxorubicin-induced adverse alterations in renal cholesterol, ATPases and electrolyte balance, and plasma biomarkers of kidney function, and keeping them at near-normal values.
Collapse
Affiliation(s)
| | - Mercy O Ifeanacho
- Department of Food Science, Faculty of Agriculture, University of Port Harcourt, P.M.B. 5323, Port Harcourt, Nigeria
| | | |
Collapse
|
20
|
Abstract
Ca2+ is a ubiquitous and dynamic second messenger molecule that is induced by many factors including receptor activation, environmental factors, and voltage, leading to pleiotropic effects on cell function including changes in migration, metabolism and transcription. As such, it is not surprising that aberrant regulation of Ca2+ signals can lead to pathological phenotypes, including cancer progression. However, given the highly context-specific nature of Ca2+-dependent changes in cell function, delineation of its role in cancer has been a challenge. Herein, we discuss the distinct roles of Ca2+ signaling within and between each type of cancer, including consideration of the potential of therapeutic strategies targeting these signaling pathways.
Collapse
Affiliation(s)
- Scott Gross
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Pranava Mallu
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Hinal Joshi
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Bryant Schultz
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Christina Go
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Jonathan Soboloff
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States; Department of Medical Genetics & Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.
| |
Collapse
|
21
|
Hegedűs L, Zámbó B, Pászty K, Padányi R, Varga K, Penniston JT, Enyedi Á. Molecular Diversity of Plasma Membrane Ca2+ Transporting ATPases: Their Function Under Normal and Pathological Conditions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:93-129. [DOI: 10.1007/978-3-030-12457-1_5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
22
|
Adeoye AO, Olanlokun JO, Tijani H, Lawal SO, Babarinde CO, Akinwole MT, Bewaji CO. Molecular docking analysis of apigenin and quercetin from ethylacetate fraction of Adansonia digitata with malaria-associated calcium transport protein: An in silico approach. Heliyon 2019; 5:e02248. [PMID: 31687530 PMCID: PMC6819832 DOI: 10.1016/j.heliyon.2019.e02248] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/20/2019] [Accepted: 08/05/2019] [Indexed: 11/29/2022] Open
Abstract
Background The investigation and knowledge of calcium handling mechanisms in the plasmodium has been considered as a potential biological target against malaria. Objective This study deals with the evaluation of inhibitory activity of secondary metabolites of ethylacetate partitioned-fraction of Adansonia digitata stem bark extract on malaria-associated protein using in silico docking studies. Materials and methods Molecular docking and virtual screening was performed to understand the mechanism of ligand binding and to identify potent calcium transporter inhibitors. The stem bark extracts of A. digitata contains rich sources of phytochemicals. The secondary metabolites were determined by HPLC-DAD and HRGC-MS analysis. The major chemical constituent present in the ethylacetate partitioned-fraction of A. digitata stem bark extract were examined for their antiplasmodial activity and were also involved in docking study. Results The secondary metabolites, quercetin and apigenin inhibited the formation of β-hematin. The results showed that all the selected compounds in the A. digitata showed binding energy ranging between -6.5 kcal/mol and -7.1 kcal/mol. Among the two chemical constituents, apigenin has the highest docking score along with the highest number of hydrogen bonds formed when compared to quercetin. Analysis of the results suggests that apigenin and quercetin could act as an anti-malaria agent. Conclusion Molecular docking analysis could lead to further development of potent calcium transporter inhibitors for the prevention and treatment of malaria and related conditions.
Collapse
Affiliation(s)
- Akinwunmi O Adeoye
- Department of Biochemistry, Federal University Oye Ekiti, Ekiti State, Nigeria.,Department of Biochemistry, University of Ilorin, Kwara State, Nigeria
| | - John O Olanlokun
- Biomembrane and Biotechnology Laboratory, Department of Biochemistry, University of Ibadan, Oyo State, Nigeria
| | - Habib Tijani
- Department of Biochemistry, University of Ilorin, Kwara State, Nigeria
| | - Segun O Lawal
- Biomembrane and Biotechnology Laboratory, Department of Biochemistry, University of Ibadan, Oyo State, Nigeria
| | - Cecilia O Babarinde
- Biomembrane and Biotechnology Laboratory, Department of Biochemistry, University of Ibadan, Oyo State, Nigeria
| | - Mobolaji T Akinwole
- Biomembrane and Biotechnology Laboratory, Department of Biochemistry, University of Ibadan, Oyo State, Nigeria
| | - Clement O Bewaji
- Department of Biochemistry, University of Ilorin, Kwara State, Nigeria
| |
Collapse
|
23
|
Molecular dissection of box jellyfish venom cytotoxicity highlights an effective venom antidote. Nat Commun 2019; 10:1655. [PMID: 31040274 PMCID: PMC6491561 DOI: 10.1038/s41467-019-09681-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 03/25/2019] [Indexed: 01/11/2023] Open
Abstract
The box jellyfish Chironex fleckeri is extremely venomous, and envenoming causes tissue necrosis, extreme pain and death within minutes after severe exposure. Despite rapid and potent venom action, basic mechanistic insight is lacking. Here we perform molecular dissection of a jellyfish venom-induced cell death pathway by screening for host components required for venom exposure-induced cell death using genome-scale lenti-CRISPR mutagenesis. We identify the peripheral membrane protein ATP2B1, a calcium transporting ATPase, as one host factor required for venom cytotoxicity. Targeting ATP2B1 prevents venom action and confers long lasting protection. Informatics analysis of host genes required for venom cytotoxicity reveal pathways not previously implicated in cell death. We also discover a venom antidote that functions up to 15 minutes after exposure and suppresses tissue necrosis and pain in mice. These results highlight the power of whole genome CRISPR screening to investigate venom mechanisms of action and to rapidly identify new medicines. Box jellyfish venom causes tissue damage, pain, and death through unknown molecular mechanisms. Here, Lau et al. perform a CRISPR screen to identify genes required for venom action and use this information to develop an antidote that blocks venom-induced pain and tissue damage in vivo.
Collapse
|
24
|
Zaidi A, Adewale M, McLean L, Ramlow P. The plasma membrane calcium pumps-The old and the new. Neurosci Lett 2019; 663:12-17. [PMID: 29452610 DOI: 10.1016/j.neulet.2017.09.066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 09/29/2017] [Accepted: 09/30/2017] [Indexed: 12/27/2022]
Abstract
The plasma membrane Ca2+-ATPase (PMCA) pumps play a critical role in the maintenance of calcium (Ca2+) homeostasis, crucial for optimal neuronal function and cell survival. Loss of Ca2+ homeostasis is a key precursor in neuronal dysfunction associated with brain aging and in the pathogenesis of neurodegenerative disorders. In this article, we review evidence showing age-related changes in the PMCAs in synaptic plasma membranes (SPMs) and lipid raft microdomains isolated from rat brain. Both PMCA activity and protein levels decline progressively with increasing age. However, the loss of activity is disproportionate to the reduction of protein levels suggesting the presence of dysfunctional PMCA molecules in aged brain. PMCA activity is also diminished in post-mortem human brain samples from Alzheimer's disease and Parkinson's disease patients and in cell models of these neurodegenerative disorders. Experimental reduction of the PMCAs not only alter Ca2+ homeostasis but also have diverse effects on neurons such as reduced neuritic network, impaired release of neurotransmitter and increased susceptibility to stressful stimuli, particularly to agents that elevate intracellular Ca2+ [Ca2+]i. Loss of PMCA is likely to contribute to neuronal dysfunction observed in the aging brain and in the development of age-dependent neurodegenerative disorders. Therapeutic (pharmacological and/or non-pharmacological) approaches that can enhance PMCA activity and stabilize [Ca2+]i homeostasis may be capable of preventing, slowing, and/or reversing neuronal degeneration.
Collapse
Affiliation(s)
- Asma Zaidi
- Division of Basic Sciences, Kansas City University of Medicine and Biosciences, 1750 Independence Avenue, Kansas City, MO 64106, USA.
| | - Mercy Adewale
- Division of Basic Sciences, Kansas City University of Medicine and Biosciences, 1750 Independence Avenue, Kansas City, MO 64106, USA
| | - Lauren McLean
- Division of Basic Sciences, Kansas City University of Medicine and Biosciences, 1750 Independence Avenue, Kansas City, MO 64106, USA
| | - Paul Ramlow
- Division of Basic Sciences, Kansas City University of Medicine and Biosciences, 1750 Independence Avenue, Kansas City, MO 64106, USA
| |
Collapse
|
25
|
Saffioti NA, de Sautu M, Ferreira-Gomes MS, Rossi RC, Berlin J, Rossi JPFC, Mangialavori IC. E2P-like states of plasma membrane Ca 2+‑ATPase characterization of vanadate and fluoride-stabilized phosphoenzyme analogues. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1861:366-379. [PMID: 30419189 DOI: 10.1016/j.bbamem.2018.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 10/22/2018] [Accepted: 11/01/2018] [Indexed: 01/18/2023]
Abstract
The plasma membrane Ca2+‑ATPase (PMCA) belongs to the family of P-type ATPases, which share the formation of an acid-stable phosphorylated intermediate as part of their reaction cycle. The crystal structure of PMCA is currently lacking. Its abundance is approximately 0.1% of the total protein in the membrane, hampering efforts to produce suitable crystals for X-ray structure analysis. In this work we characterized the effect of beryllium fluoride (BeFx), aluminium fluoride (AlFx) and magnesium fluoride (MgFx) on PMCA. These compounds are known inhibitors of P-type ATPases that stabilize E2P ground, E2·P phosphoryl transition and E2·Pi product states. Our results show that the phosphate analogues BeFx, AlFx and MgFx inhibit PMCA Ca2+‑ATPase activity, phosphatase activity and phosphorylation with high apparent affinity. Ca2+‑ATPase inhibition by AlFx and BeFx depended on Mg2+ concentration indicating that this ion stabilizes the complex between these inhibitors and the enzyme. Low pH increases AlFx and BeFx but not MgFx apparent affinity. Eosin fluorescent probe binds with high affinity to the nucleotide binding site of PMCA. The fluorescence of eosin decreases when fluoride complexes bind to PMCA indicating that the environment of the nucleotide binding site is less hydrophobic in E2P-like states. Finally, measuring the time course of E → E2P-like conformational change, we proposed a kinetic model for the binding of fluoride complexes and vanadate to PMCA. In summary, our results show that these fluoride complexes reveal different states of phosphorylated intermediates belonging to the mechanism of hydrolysis of ATP by the PMCA.
Collapse
Affiliation(s)
- Nicolás A Saffioti
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Facultad de Farmacia y Bioquímica, Junín 956, Ciudad Autónoma de Buenos Aires C1113AAD, Argentina
| | - Marilina de Sautu
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Facultad de Farmacia y Bioquímica, Junín 956, Ciudad Autónoma de Buenos Aires C1113AAD, Argentina
| | - Mariela S Ferreira-Gomes
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Facultad de Farmacia y Bioquímica, Junín 956, Ciudad Autónoma de Buenos Aires C1113AAD, Argentina
| | - Rolando C Rossi
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Facultad de Farmacia y Bioquímica, Junín 956, Ciudad Autónoma de Buenos Aires C1113AAD, Argentina
| | - Joshua Berlin
- Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Juan Pablo F C Rossi
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Facultad de Farmacia y Bioquímica, Junín 956, Ciudad Autónoma de Buenos Aires C1113AAD, Argentina
| | - Irene C Mangialavori
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Facultad de Farmacia y Bioquímica, Junín 956, Ciudad Autónoma de Buenos Aires C1113AAD, Argentina.
| |
Collapse
|
26
|
Expression of calcium pumps is differentially regulated by histone deacetylase inhibitors and estrogen receptor alpha in breast cancer cells. BMC Cancer 2018; 18:1029. [PMID: 30352569 PMCID: PMC6199715 DOI: 10.1186/s12885-018-4945-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 10/12/2018] [Indexed: 12/24/2022] Open
Abstract
Background Remodeling of Ca2+ signaling is an important step in cancer progression, and altered expression of members of the Ca2+ signaling toolkit including the plasma membrane Ca2+ ATPases (PMCA proteins encoded by ATP2B genes) is common in tumors. Methods In this study PMCAs were examined in breast cancer datasets and in a variety of breast cancer cell lines representing different subtypes. We investigated how estrogen receptor alpha (ER-α) and histone deacetylase (HDAC) inhibitors regulate the expression of these pumps. Results Three distinct datasets displayed significantly lower ATP2B4 mRNA expression in invasive breast cancer tissue samples compared to normal breast tissue, whereas the expression of ATP2B1 and ATP2B2 was not altered. Studying the protein expression profiles of Ca2+ pumps in a variety of breast cancer cell lines revealed low PMCA4b expression in the ER-α positive cells, and its marked upregulation upon HDAC inhibitor treatments. PMCA4b expression was also positively regulated by the ER-α pathway in MCF-7 cells that led to enhanced Ca2+ extrusion capacity in response to 17β-estradiol (E2) treatment. E2-induced PMCA4b expression was further augmented by HDAC inhibitors. Surprisingly, E2 did not affect the expression of PMCA4b in other ER-α positive cells ZR-75-1, T-47D and BT-474. These findings were in good accordance with ChIP-seq data analysis that revealed an ER-α binding site in the ATP2B4 gene in MCF-7 cells but not in other ER-α positive tumor cells. In the triple negative cells PMCA4b expression was relatively high, and the effect of HDAC inhibitor treatment was less pronounced as compared to that of the ER-α positive cells. Although, the expression of PMCA4b was relatively high in the triple negative cells, a fraction of the protein was found in intracellular compartments that could interfere with the cellular function of the protein. Conclusions Our results suggest that the expression of Ca2+ pumps is highly regulated in breast cancer cells in a subtype specific manner. Our results suggest that hormonal imbalances, epigenetic modifications and impaired protein trafficking could interfere with the expression and cellular function of PMCA4b in the course of breast cancer progression. Electronic supplementary material The online version of this article (10.1186/s12885-018-4945-x) contains supplementary material, which is available to authorized users.
Collapse
|
27
|
Steppan D, Geis L, Pan L, Gross K, Wagner C, Kurtz A. Lack of connexin 40 decreases the calcium sensitivity of renin-secreting juxtaglomerular cells. Pflugers Arch 2018; 470:969-978. [PMID: 29427253 PMCID: PMC10751884 DOI: 10.1007/s00424-018-2119-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 01/24/2018] [Accepted: 02/02/2018] [Indexed: 11/29/2022]
Abstract
The so-called calcium paradoxon of renin describes the phenomenon that exocytosis of renin from juxtaglomerular cells of the kidney is stimulated by lowering of the extracellular calcium concentration. The yet poorly understood effect of extracellular calcium on renin secretion appears to depend on the function of the gap junction protein connexin 40 (Cx40) in renin-producing cells. This study aimed to elucidate the role of Cx40 for the calcium dependency of renin secretion in more detail by investigating if Cx40 function is really essential for the influence of extracellular calcium on renin secretion, if and how Cx40 affects intracellular calcium dynamics in renin-secreting cells and if Cx40-mediated gap junctional coupling of renin-secreting cells with the mesangial cell area is relevant for the influence of extracellular calcium on renin secretion. Renin secretion was studied in isolated perfused mouse kidneys. Calcium measurements were performed in renin-producing cells of microdissected glomeruli. The ultrastructure of renin-secreting cells was examined by electron microscopy. We found that Cx40 was not essential for stimulation of renin secretion by lowering of the extracellular calcium concentration. Instead, Cx40 increased the sensitivity of renin secretion response towards lowering of the extracellular calcium concentration. In line, the sensitivity and dynamics of intracellular calcium in response to lowering of extracellular calcium were dampened when renin-secreting cells lacked Cx40. Disruption of gap junctional coupling of renin-secreting cells by selective deletion of Cx40 from mesangial cells, however, did not change the stimulation of renin secretion by lowering of the extracellular calcium concentration. Deletion of Cx40 from renin cells but not from mesangial cells was associated with a shift of renin expression from perivascular cells of afferent arterioles to extraglomerular mesangial cells. Our findings suggest that Cx40 is not directly involved in the regulation of renin secretion by extracellular calcium. Instead, it appears that in renin-secreting cells of the kidney lacking Cx40, intracellular calcium dynamics and therefore also renin secretion are desensitized towards changes of extracellular calcium. Whether the dampened calcium response of renin-secreting cells lacking Cx40 function results from a direct involvement of Cx40 in intracellular calcium regulation or from the cell type shift of renin expression from perivascular to mesangial cells remains to be clarified. In any case, Cx40-mediated gap junctional coupling between renin and mesangial cells is not relevant for the calcium paradoxon of renin secretion.
Collapse
Affiliation(s)
- Dominik Steppan
- Institute of Physiology, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany.
| | - Lisa Geis
- Clinic for Nephrology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Lin Pan
- Department of Pathology, Brigham and Women's Hospital, 652 NRB, 77 Ave Louis Pasteur, Boston, MA, 02115, USA
| | - Kenneth Gross
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Elm and Carlton Sts, Buffalo, NY, 14263-0001, USA
| | - Charlotte Wagner
- Institute of Physiology, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Armin Kurtz
- Institute of Physiology, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| |
Collapse
|
28
|
Aluminum inhibits the plasma membrane and sarcoplasmic reticulum Ca 2+-ATPases by different mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1580-1588. [PMID: 29859139 DOI: 10.1016/j.bbamem.2018.05.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 04/28/2018] [Accepted: 05/25/2018] [Indexed: 11/21/2022]
Abstract
Aluminum (Al3+) is involved in the pathophysiology of neurodegenerative disorders. The mechanisms that have been proposed to explain the action of Al3+ toxicity are linked to changes in the cellular calcium homeostasis, placing the transporting calcium pumps as potential targets. The aim of this work was to study the molecular inhibitory mechanism of Al3+ on Ca2+-ATPases such as the plasma membrane and the sarcoplasmic reticulum calcium pumps (PMCA and SERCA, respectively). These P-ATPases transport Ca2+ actively from the cytoplasm towards the extracellular medium and to the sarcoplasmic reticulum, respectively. For this purpose, we performed enzymatic measurements of the effect of Al3+ on purified preparations of PMCA and SERCA. Our results show that Al3+ is an irreversible inhibitor of PMCA and a slowly-reversible inhibitor of SERCA. The binding of Al3+ is affected by Ca2+ in SERCA, though not in PMCA. Al3+ prevents the phosphorylation of SERCA and, conversely, the dephosphorylation of PMCA. The dephosphorylation time courses of the complex formed by PMCA and Al3+ (EPAl) in the presence of ADP or ATP show that EPAl is composed mainly by the conformer E2P. This work shows for the first time a distinct mechanism of Al3+ inhibition that involves different intermediates of the reaction cycle of these two Ca2+-ATPases.
Collapse
|
29
|
Vinaiphat A, Thongboonkerd V. Characterizations of PMCA2-interacting complex and its role as a calcium oxalate crystal-binding protein. Cell Mol Life Sci 2018; 75:1461-1482. [PMID: 29085954 PMCID: PMC11105569 DOI: 10.1007/s00018-017-2699-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/24/2017] [Accepted: 10/26/2017] [Indexed: 12/27/2022]
Abstract
Three isoforms of plasma membrane Ca2+-ATPase (PMCA) are expressed in the kidney. While PMCA1 and PMCA4 play major role in regulating Ca2+ reabsorption, the role for PMCA2 remains vaguely defined. To define PMCA2 function, PMCA2-interacting complex was characterized by immunoprecipitation followed by nanoLC-ESI-Qq-TripleTOF MS/MS (IP-MS). After subtracting non-specific binders using isotype-controlled IP-MS, 474 proteins were identified as PMCA2-interacting partners. Among these, eight were known and 20 were potential PMCA2-interacting partners based on bioinformatic prediction, whereas other 446 were novel and had not been previously reported/predicted. Quantitative immuno-co-localization assay confirmed the association of PMCA2 with these partners. Gene ontology analysis revealed binding activity as the major molecular function of PMCA2-interacting complex. Functional validation using calcium oxalate monohydrate (COM) crystal-protein binding, crystal-cell adhesion, and crystal internalization assays together with neutralization by anti-PMCA2 antibody compared to isotype-controlled IgG and blank control, revealed a novel role of PMCA2 as a COM crystal-binding protein that was crucial for crystal retention and uptake. In summary, a large number of novel PMCA2-interacting proteins have been defined and a novel function of PMCA2 as a COM crystal-binding protein sheds light onto its involvement, at least in part, in kidney stone pathogenesis.
Collapse
Affiliation(s)
- Arada Vinaiphat
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, 6th Floor-SiMR Building, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
- Center for Research in Complex Systems Science, Mahidol University, Bangkok, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, 6th Floor-SiMR Building, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand.
- Center for Research in Complex Systems Science, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
30
|
Kim MJ, Choi KJ, Yoon MN, Oh SH, Kim DK, Kim SH, Park HS. Hydrogen peroxide inhibits Ca 2+ efflux through plasma membrane Ca 2+-ATPase in mouse parotid acinar cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2018. [PMID: 29520174 PMCID: PMC5840080 DOI: 10.4196/kjpp.2018.22.2.215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Intracellular Ca2+ mobilization is closely linked with the initiation of salivary secretion in parotid acinar cells. Reactive oxygen species (ROS) are known to be related to a variety of oxidative stress-induced cellular disorders and believed to be involved in salivary impairments. In this study, we investigated the underlying mechanism of hydrogen peroxide (H2O2) on cytosolic Ca2+ accumulation in mouse parotid acinar cells. Intracellular Ca2+ levels were slowly elevated when 1 mM H2O2 was perfused in the presence of normal extracellular Ca2+. In a Ca2+-free medium, 1 mM H2O2 still enhanced the intracellular Ca2+ level. Ca2+ entry tested using manganese quenching technique was not affected by perfusion of 1 mM H2O2. On the other hand, 10 mM H2O2 induced more rapid Ca2+ accumulation and facilitated Ca2+ entry from extracellular fluid. Ca2+ refill into intracellular Ca2+ store and inositol 1,4,5-trisphosphate (1 µM)-induced Ca2+ release from Ca2+ store was not affected by 1 mM H2O2 in permeabilized cells. Ca2+ efflux through plasma membrane Ca2+-ATPase (PMCA) was markedly blocked by 1 mM H2O2 in thapsigargin-treated intact acinar cells. Antioxidants, either catalase or dithiothreitol, completely protected H2O2-induced Ca2+ accumulation through PMCA inactivation. From the above results, we suggest that excessive production of H2O2 under pathological conditions may lead to cytosolic Ca2+ accumulation and that the primary mechanism of H2O2-induced Ca2+ accumulation is likely to inhibit Ca2+ efflux through PMCA rather than mobilize Ca2+ ions from extracellular medium or intracellular stores in mouse parotid acinar cells.
Collapse
Affiliation(s)
- Min Jae Kim
- Department of Physiology, College of Medicine, Konyang University, Daejeon 35365, Korea
| | - Kyung Jin Choi
- Department of Physiology, College of Medicine, Konyang University, Daejeon 35365, Korea
| | - Mi Na Yoon
- Department of Physiology, College of Medicine, Konyang University, Daejeon 35365, Korea
| | - Sang Hwan Oh
- Department of Dental Hygiene, College of Medical Science, Konyang University, Daejeon 35365, Korea
| | - Dong Kwan Kim
- Department of Physiology, College of Medicine, Konyang University, Daejeon 35365, Korea
| | - Se Hoon Kim
- Department of Physiology, College of Medicine, Konyang University, Daejeon 35365, Korea
| | - Hyung Seo Park
- Department of Physiology, College of Medicine, Konyang University, Daejeon 35365, Korea.,Myunggok Medical Research Institute, Konyang University, Daejeon 35365, Korea
| |
Collapse
|
31
|
Strehler EE, Thayer SA. Evidence for a role of plasma membrane calcium pumps in neurodegenerative disease: Recent developments. Neurosci Lett 2018; 663:39-47. [PMID: 28827127 PMCID: PMC5816698 DOI: 10.1016/j.neulet.2017.08.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/09/2017] [Accepted: 08/14/2017] [Indexed: 01/20/2023]
Abstract
Plasma membrane Ca2+ ATPases (PMCAs) are a major system for calcium extrusion from all cells. Different PMCA isoforms and splice variants are involved in the precise temporal and spatial handling of Ca2+ signals and the re-establishment of resting Ca2+ levels in the nervous system. Lack or inappropriate expression of specific PMCAs leads to characteristic neuronal phenotypes, which may be reciprocally exacerbated by genetic predisposition through alleles in other genes that modify PMCA interactions, regulation, and function. PMCA dysfunction is often poorly compensated in neurons and may lead to changes in synaptic transmission, altered excitability and, with long-term calcium overload, eventual cell death. Decrease and functional decline of PMCAs are hallmarks of neurodegeneration during aging, and mutations in specific PMCAs are responsible for neuronal dysfunction and accelerated neurodegeneration in many sensory and cognitive diseases.
Collapse
Affiliation(s)
- Emanuel E Strehler
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA; Department of Biomedicine, University of Basel, Basel, Switzerland.
| | - Stanley A Thayer
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA.
| |
Collapse
|
32
|
Tan W, Liang T, Du YP, Zhai H. The distribution and species of Ca 2+ and subcellular localization of Ca 2+ and Ca 2+-ATPase in grape leaves of plants treated with fluoroglycofen. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 143:207-213. [PMID: 29183594 DOI: 10.1016/j.pestbp.2017.09.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 09/08/2017] [Accepted: 09/16/2017] [Indexed: 06/07/2023]
Abstract
Fluoroglycofen, a post-emergence herbicide used in vineyards to eradicate weeds, has previously been shown to turn grape leaves dark green following its use. Therefore, this study evaluates the relationship of dark green leaves with calcium form and subcellular distribution. To do this, we focused on the Ca2+ distribution and Ca2+-ATPase activity in leaf cells of one-year-old self-rooted Chardonnay grapevines treated with fluoroglycofen. Plants were separated into different treatments when they had seven or eight leaves, and different concentrations of fluoroglycofen were sprayed on the sand. The results showed that all of the soluble calcium content in the grape leaves that were treated with the highest concentration of fluoroglycofen (187.5gaiha-1) increased significantly. Specifically, the water-soluble organic acid calcium, pectate calcium, and calcium oxalate increased by 18.43%, 17.14%, and 31.05%, respectively, in the upper leaves than in the control. The subcellular distribution of Ca2+ in the dark green leaves increased significantly, especially in the cell wall and chloroplast, which increased by 25.54% and 24.10%, respectively. Through the ultrastructure localization of Ca2+ and Ca2+-ATPase contrasted with the control, the extracellular space and chloroplasts in the mesophyll cells of dark green leaves had large calcium pyroantimonate (Ca-PA) deposits. The extracellular space had fewer Ca2+-ATPase precipitation particles, whereas the chloroplasts had more. At the same time, a high concentration of fluoroglycofen decreased Ca2+-ATPase activity in grape leaves, which potentially might be due to disrupted regulation of calcium homeostatic mechanisms inside and outside of cells, resulting in a large number of Ca2+ accumulation in cells. The Ca2+ accumulation not only hindered the various cellular physiological reactions, but also caused leaves to become dark green in color.
Collapse
Affiliation(s)
- Wei Tan
- College of Horticulture Science and Engineering, State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian 271018, China; Pomology Institute, Shanxi Academy of Agricultural Science, Taigu 030815, China
| | - Ting Liang
- College of Horticulture Science and Engineering, State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian 271018, China; Agricultural Bureau of Daiyue District, Taian' City, Shandong Province, Taian 271000, China
| | - Yuan-Peng Du
- College of Horticulture Science and Engineering, State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian 271018, China
| | - Heng Zhai
- College of Horticulture Science and Engineering, State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian 271018, China.
| |
Collapse
|
33
|
Lestari SW, Miati DN, Seoharso P, Sugiyanto R, Pujianto DA. Sperm Na+, K+-ATPase α4 and plasma membrane Ca2+-ATPase (PMCA) 4 regulation in asthenozoospermia. Syst Biol Reprod Med 2017; 63:294-302. [DOI: 10.1080/19396368.2017.1348565] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Silvia W. Lestari
- Department of Medical Biology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Dessy Noor Miati
- Master Program for Biomedical Sciences, Faculty of Medicine, Universitas Indonesi, Jakara, Indonesia
| | - P. Seoharso
- Department of Medical Biology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - R. Sugiyanto
- Department of Medical Biochemistry, Faculty of Medicine, Universitas Kristen Indonesia, Jakarta, Indonesia
| | - Dwi A. Pujianto
- Department of Medical Biology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
34
|
Khariv V, Elkabes S. Contribution of Plasma Membrane Calcium ATPases to neuronal maladaptive responses: Focus on spinal nociceptive mechanisms and neurodegeneration. Neurosci Lett 2017; 663:60-65. [PMID: 28780172 DOI: 10.1016/j.neulet.2017.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/10/2017] [Accepted: 08/01/2017] [Indexed: 10/19/2022]
Abstract
Plasma membrane calcium ATPases (PMCAs) are ion pumps that expel Ca2+ from cells and maintain Ca2+ homeostasis. Four isoforms and multiple splice variants play important and non-overlapping roles in cellular function and integrity and have been implicated in diseases including disorders of the central nervous system (CNS). In particular, one of these isoforms, PMCA2, is critical for spinal cord (SC) neuronal function. PMCA2 expression is decreased in SC neurons at onset of symptoms in animal models of multiple sclerosis. Decreased PMCA2 expression affects the function and viability of SC neurons, with motor neurons being the most vulnerable population. Recent studies have also shown that PMCA2 could be an important contributor to pain processing in the dorsal horn (DH) of the SC. Pain sensitivity was altered in female, but not male, PMCA2+/- mice compared to PMCA2+/+ littermates in a modality-dependent manner. Changes in pain responsiveness in the female PMCA2+/- mice were paralleled by female-specific alterations in the expression of effectors, which have been implicated in the excitability of DH neurons, in mechanisms governing nociception and in the transmission of pain signals. Other PMCA isoforms and in particular, PMCA4, also contribute to the excitability of neurons in the dorsal root ganglia (DRG), which contain the first-order sensory neurons that convey nociceptive information from the periphery to the DH. These findings suggest that specific PMCA isoforms play specialized functions in neurons that mediate pain processing. Further investigations are necessary to unravel the precise contribution of PMCAs to mechanisms governing pathological pain in models of injury and disease.
Collapse
Affiliation(s)
- Veronika Khariv
- Department of Neurological Surgery, Reynolds Family Spine Laboratory, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States; Graduate School of Biomedical Sciences, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Stella Elkabes
- Department of Neurological Surgery, Reynolds Family Spine Laboratory, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States.
| |
Collapse
|
35
|
Calcium signaling and cell cycle: Progression or death. Cell Calcium 2017; 70:3-15. [PMID: 28801101 DOI: 10.1016/j.ceca.2017.07.006] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 07/23/2017] [Accepted: 07/23/2017] [Indexed: 12/12/2022]
Abstract
Cytosolic Ca2+ concentration levels fluctuate in an ordered manner along the cell cycle, in line with the fact that Ca2+ is involved in the regulation of cell proliferation. Cell proliferation should be an error-free process, yet is endangered by mistakes. In fact, a complex network of proteins ensures that cell cycle does not progress until the previous phase has been successfully completed. Occasionally, errors occur during the cell cycle leading to cell cycle arrest. If the error is severe, and the cell cycle checkpoints work perfectly, this results into cellular demise by activation of apoptotic or non-apoptotic cell death programs. Cancer is characterized by deregulated proliferation and resistance against cell death. Ca2+ is a central key to these phenomena as it modulates signaling pathways that control oncogenesis and cancer progression. Here, we discuss how Ca2+ participates in the exogenous and endogenous signals controlling cell proliferation, as well as in the mechanisms by which cells die if irreparable cell cycle damage occurs. Moreover, we summarize how Ca2+ homeostasis remodeling observed in cancer cells contributes to deregulated cell proliferation and resistance to cell death. Finally, we discuss the possibility to target specific components of Ca2+ signal pathways to obtain cytostatic or cytotoxic effects.
Collapse
|
36
|
Kurusamy S, López-Maderuelo D, Little R, Cadagan D, Savage AM, Ihugba JC, Baggott RR, Rowther FB, Martínez-Martínez S, Arco PGD, Murcott C, Wang W, Francisco Nistal J, Oceandy D, Neyses L, Wilkinson RN, Cartwright EJ, Redondo JM, Armesilla AL. Selective inhibition of plasma membrane calcium ATPase 4 improves angiogenesis and vascular reperfusion. J Mol Cell Cardiol 2017; 109:38-47. [PMID: 28684310 DOI: 10.1016/j.yjmcc.2017.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 06/12/2017] [Accepted: 07/03/2017] [Indexed: 02/04/2023]
Abstract
AIMS Ischaemic cardiovascular disease is a major cause of morbidity and mortality worldwide. Despite promising results from pre-clinical animal models, VEGF-based strategies for therapeutic angiogenesis have yet to achieve successful reperfusion of ischaemic tissues in patients. Failure to restore efficient VEGF activity in the ischaemic organ remains a major problem in current pro-angiogenic therapeutic approaches. Plasma membrane calcium ATPase 4 (PMCA4) negatively regulates VEGF-activated angiogenesis via inhibition of the calcineurin/NFAT signalling pathway. PMCA4 activity is inhibited by the small molecule aurintricarboxylic acid (ATA). We hypothesize that inhibition of PMCA4 with ATA might enhance VEGF-induced angiogenesis. METHODS AND RESULTS We show that inhibition of PMCA4 with ATA in endothelial cells triggers a marked increase in VEGF-activated calcineurin/NFAT signalling that translates into a strong increase in endothelial cell motility and blood vessel formation. ATA enhances VEGF-induced calcineurin signalling by disrupting the interaction between PMCA4 and calcineurin at the endothelial-cell membrane. ATA concentrations at the nanomolar range, that efficiently inhibit PMCA4, had no deleterious effect on endothelial-cell viability or zebrafish embryonic development. However, high ATA concentrations at the micromolar level impaired endothelial cell viability and tubular morphogenesis, and were associated with toxicity in zebrafish embryos. In mice undergoing experimentally-induced hindlimb ischaemia, ATA treatment significantly increased the reperfusion of post-ischaemic limbs. CONCLUSIONS Our study provides evidence for the therapeutic potential of targeting PMCA4 to improve VEGF-based pro-angiogenic interventions. This goal will require the development of refined, highly selective versions of ATA, or the identification of novel PMCA4 inhibitors.
Collapse
Affiliation(s)
- Sathishkumar Kurusamy
- Cardiovascular Molecular Pharmacology Laboratory, School of Pharmacy, University of Wolverhampton, Wolverhampton, UK
| | - Dolores López-Maderuelo
- Gene Regulation in Cardiovascular Remodelling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; CIBERCV, Spain
| | - Robert Little
- Division of Cardiovascular Sciences, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK
| | - David Cadagan
- Cardiovascular Molecular Pharmacology Laboratory, School of Pharmacy, University of Wolverhampton, Wolverhampton, UK
| | - Aaron M Savage
- Department of Infection, Immunity & Cardiovascular Disease & Bateson Centre, University of Sheffield, UK
| | - Jude C Ihugba
- Cardiovascular Molecular Pharmacology Laboratory, School of Pharmacy, University of Wolverhampton, Wolverhampton, UK
| | - Rhiannon R Baggott
- Cardiovascular Molecular Pharmacology Laboratory, School of Pharmacy, University of Wolverhampton, Wolverhampton, UK
| | - Farjana B Rowther
- Brain Tumor UK Neuro-oncology Research Centre, University of Wolverhampton, Wolverhampton, UK
| | - Sara Martínez-Martínez
- Gene Regulation in Cardiovascular Remodelling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; CIBERCV, Spain
| | - Pablo Gómez-Del Arco
- Gene Regulation in Cardiovascular Remodelling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; CIBERCV, Spain; Department of Molecular Biology, Universidad Autonoma de Madrid (C.B.M.S.O.), Madrid, Spain
| | - Clare Murcott
- Cardiovascular Molecular Pharmacology Laboratory, School of Pharmacy, University of Wolverhampton, Wolverhampton, UK
| | - Weiguang Wang
- Oncology Laboratory, Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, UK
| | - J Francisco Nistal
- Cardiovascular Surgery, Hospital Universitario Marqués de Valdecilla, IDIVAL, Facultad de Medicina, Universidad de Cantabria, Santander, Spain
| | - Delvac Oceandy
- Division of Cardiovascular Sciences, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Ludwig Neyses
- Division of Cardiovascular Sciences, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK; University of Luxembourg, Luxembourg
| | - Robert N Wilkinson
- Department of Infection, Immunity & Cardiovascular Disease & Bateson Centre, University of Sheffield, UK
| | - Elizabeth J Cartwright
- Division of Cardiovascular Sciences, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Juan Miguel Redondo
- Gene Regulation in Cardiovascular Remodelling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; CIBERCV, Spain.
| | - Angel Luis Armesilla
- Cardiovascular Molecular Pharmacology Laboratory, School of Pharmacy, University of Wolverhampton, Wolverhampton, UK; CIBERCV, Spain.
| |
Collapse
|
37
|
Nurbaeva MK, Eckstein M, Feske S, Lacruz RS. Ca 2+ transport and signalling in enamel cells. J Physiol 2017; 595:3015-3039. [PMID: 27510811 PMCID: PMC5430215 DOI: 10.1113/jp272775] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 07/21/2016] [Indexed: 01/02/2023] Open
Abstract
Dental enamel is one of the most remarkable examples of matrix-mediated biomineralization. Enamel crystals form de novo in a rich extracellular environment in a stage-dependent manner producing complex microstructural patterns that are visually stunning. This process is orchestrated by specialized epithelial cells known as ameloblasts which themselves undergo striking morphological changes, switching function from a secretory role to a cell primarily engaged in ionic transport. Ameloblasts are supported by a host of cell types which combined represent the enamel organ. Fully mineralized enamel is the hardest tissue found in vertebrates owing its properties partly to the unique mixture of ionic species represented and their highly organized assembly in the crystal lattice. Among the main elements found in enamel, Ca2+ is the most abundant ion, yet how ameloblasts modulate Ca2+ dynamics remains poorly known. This review describes previously proposed models for passive and active Ca2+ transport, the intracellular Ca2+ buffering systems expressed in ameloblasts and provides an up-dated view of current models concerning Ca2+ influx and extrusion mechanisms, where most of the recent advances have been made. We also advance a new model for Ca2+ transport by the enamel organ.
Collapse
Affiliation(s)
- Meerim K. Nurbaeva
- Department of Basic Science and Craniofacial BiologyNew York University College of DentistryNew YorkUSA
| | - Miriam Eckstein
- Department of Basic Science and Craniofacial BiologyNew York University College of DentistryNew YorkUSA
| | - Stefan Feske
- Department of PathologyNew York University School of MedicineNew YorkNY10016USA
| | - Rodrigo S. Lacruz
- Department of Basic Science and Craniofacial BiologyNew York University College of DentistryNew YorkUSA
| |
Collapse
|
38
|
Pérez-Cañamás A, Benvegnù S, Rueda CB, Rábano A, Satrústegui J, Ledesma MD. Sphingomyelin-induced inhibition of the plasma membrane calcium ATPase causes neurodegeneration in type A Niemann-Pick disease. Mol Psychiatry 2017; 22:711-723. [PMID: 27620840 DOI: 10.1038/mp.2016.148] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 06/28/2016] [Accepted: 07/13/2016] [Indexed: 01/06/2023]
Abstract
Niemann-Pick disease type A (NPA) is a rare lysosomal storage disorder characterized by severe neurological alterations that leads to death in childhood. Loss-of-function mutations in the acid sphingomyelinase (ASM) gene cause NPA, and result in the accumulation of sphingomyelin (SM) in lysosomes and plasma membrane of neurons. Using ASM knockout (ASMko) mice as a NPA disease model, we investigated how high SM levels contribute to neural pathology in NPA. We found high levels of oxidative stress both in neurons from these mice and a NPA patient. Impaired activity of the plasma membrane calcium ATPase (PMCA) increases intracellular calcium. SM induces PMCA decreased activity, which causes oxidative stress. Incubating ASMko-cultured neurons in the histone deacetylase inhibitor, SAHA, restores PMCA activity and calcium homeostasis and, consequently, reduces the increased levels of oxidative stress. No recovery occurs when PMCA activity is pharmacologically impaired or genetically inhibited in vitro. Oral administration of SAHA prevents oxidative stress and neurodegeneration, and improves behavioral performance in ASMko mice. These results demonstrate a critical role for plasma membrane SM in neuronal calcium regulation. Thus, we identify changes in PMCA-triggered calcium homeostasis as an upstream mediator for NPA pathology. These findings can stimulate new approaches for pharmacological remediation in a disease with no current clinical treatments.
Collapse
Affiliation(s)
- A Pérez-Cañamás
- Centro Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - S Benvegnù
- Centro Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - C B Rueda
- Centro Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.,Instituto de Investigaciones Sanitarias, Fundación Jiménez Díaz, Madrid, Spain
| | - A Rábano
- Fundación Centro de Investigación de Enfermedades Neurológicas (CIEN), Madrid, Spain
| | - J Satrústegui
- Centro Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.,Instituto de Investigaciones Sanitarias, Fundación Jiménez Díaz, Madrid, Spain
| | - M D Ledesma
- Centro Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| |
Collapse
|
39
|
Boczek T, Lisek M, Ferenc B, Zylinska L. Cross talk among PMCA, calcineurin and NFAT transcription factors in control of calmodulin gene expression in differentiating PC12 cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:502-515. [PMID: 28153703 DOI: 10.1016/j.bbagrm.2017.01.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/16/2017] [Accepted: 01/27/2017] [Indexed: 11/19/2022]
Abstract
Brain aging is characterized by progressive loss of plasma membrane calcium pump (PMCA) and its activator - calmodulin (CaM), but the mechanism of this phenomenon remains unresolved. CaM encoded by three genes Calm1, Calm2, Calm3, works to translate Ca2+ signal into changes in frequently opposite cellular activities. This unique function allows CaM to affect gene expression via stimulation of calcineurin (CaN) and its downstream target - nuclear factor of activated T-cells (NFAT) and to terminate Ca2+ signal by stimulation of its extrusion. PMCA, which exists in four isoforms PMCA1-4, may in turn shape the pattern of Ca2+ transients and control CaN activity by its direct binding. Therefore, the interplay between PMCA, CaM and CaN/NFAT is highly plausible. To verify that, we used differentiated PC12 cells with reduced expression of PMCA2 or PMCA3 to mimic the potential changes in aged brain. Manipulation in PMCAs level decreased CaM protein in PMCA2 or PMCA3-reduced lines that was accompanied by down-regulation of Calm1 and Calm2 in both lines, but Calm3 only in PMCA2-reduced cells. Further studies showed substantially higher NFATc2 nuclear accumulation and increased NFAT transcriptional activity. Blocking of CaN/NFAT signalling resulted in almost full CaM recovery, mainly due to up-regulation of Calm2 and Calm3 genes. Moreover, higher occupancy of Calm2 and Calm3 promoters by NFATc2 and increased expression of these genes in response to NFATc2 silencing were demonstrated in PMCA2 and PMCA3-reduced lines. Our results indicate that decrease in CaM level in response to PMCAs downregulation can be driven by CaN/NFAT pathway.
Collapse
Affiliation(s)
- Tomasz Boczek
- Department of Molecular Neurochemistry, Medical University, Mazowiecka 6/8 Str., 92-215 Lodz, Poland; Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA.
| | - Malwina Lisek
- Department of Molecular Neurochemistry, Medical University, Mazowiecka 6/8 Str., 92-215 Lodz, Poland
| | - Bozena Ferenc
- Department of Molecular Neurochemistry, Medical University, Mazowiecka 6/8 Str., 92-215 Lodz, Poland
| | - Ludmila Zylinska
- Department of Molecular Neurochemistry, Medical University, Mazowiecka 6/8 Str., 92-215 Lodz, Poland
| |
Collapse
|
40
|
The Plasma Membrane Calcium Pump (PMCA): Regulation of Cytosolic Ca2+, Genetic Diversities and Its Role in Sub-plasma Membrane Microdomains. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 981:3-21. [DOI: 10.1007/978-3-319-55858-5_1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
41
|
Berrocal M, Corbacho I, Sepulveda MR, Gutierrez-Merino C, Mata AM. Phospholipids and calmodulin modulate the inhibition of PMCA activity by tau. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:1028-1035. [PMID: 27818274 DOI: 10.1016/j.bbamcr.2016.10.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/26/2016] [Accepted: 10/27/2016] [Indexed: 12/18/2022]
Abstract
The disruption of Ca2+ signaling in neurons, together with a failure to keep optimal intracellular Ca2+ concentrations, have been proposed as significant factors for neuronal dysfunction in the Ca2+ hypothesis of Alzheimer's disease (AD). Tau is a protein that plays an essential role in axonal transport and can form abnormal structures such as neurofibrillary tangles that constitute one of the hallmarks of AD. We have recently shown that plasma membrane Ca2+-ATPase (PMCA), a key enzyme in the maintenance of optimal cytosolic Ca2+ levels in cells, is inhibited by tau in membrane vesicles. In the present study we show that tau inhibits synaptosomal PMCA purified from pig cerebrum, and reconstituted in phosphatidylserine-containing lipid bilayers, with a Ki value of 1.5±0.2nM tau. Noteworthy, the inhibitory effect of tau is dependent on the charge of the phospholipid used for PMCA reconstitution. In addition, nanomolar concentrations of calmodulin, the major endogenous activator of PMCA, protects against inhibition of the Ca2+-ATPase activity by tau. Our results in a cellular model such as SH-SY5Y human neuroblastoma cells yielded an inhibition of PMCA by nanomolar tau concentrations and protection by calmodulin against this inhibition similar to those obtained with purified synaptosomal PMCA. Functional studies were also performed with native and truncated versions of human cerebral PMCA4b, an isoform that has been showed to be functionally regulated by amyloid peptides, whose aggregates constitutes another hallmark of AD. Kinetic assays point out that tau binds to the C-terminal tail of PMCA, at a site distinct but close to the calmodulin binding domain. In conclusion, PMCA can be seen as a molecular target for tau-induced cytosolic calcium dysregulation in synaptic terminals. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.
Collapse
Affiliation(s)
- María Berrocal
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain
| | - Isaac Corbacho
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain
| | - M Rosario Sepulveda
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain
| | - Carlos Gutierrez-Merino
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain
| | - Ana M Mata
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain.
| |
Collapse
|
42
|
D'Avolio A, Cusato J, De Nicolò A, Allegra S, Di Perri G. Pharmacogenetics of ribavirin-induced anemia in HCV patients. Pharmacogenomics 2016; 17:925-41. [PMID: 27248282 DOI: 10.2217/pgs.16.22] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Dual therapy (pegylated interferon plus ribavirin) was considered the standard of care for hepatitis C virus (HCV) treatment until 2011, when the first-wave direct-acting antivirals were added to this regimen for HCV genotype-1 patients to increase the sustained virological response rate. The second-wave direct-acting antivirals entered the clinical use also in some ribavirin (RBV)- and/or interferon-free combinations. Nevertheless, since some of the new therapeutic regimens also include RBV and its use results still associated with hemolytic anemia, this requires countermeasures to be prevented. These include the identification of several host predictive factors involved in RBV absorption, distribution, metabolism, elimination and many others that might influence this toxic effect. For this reason, we provided an overview of the potential role of pharmacogenomics in predisposing RBV-treated HCV patients to anemia.
Collapse
Affiliation(s)
- Antonio D'Avolio
- Unit of Infectious Diseases, Department of Medical Sciences, Amedeo di Savoia Hospital, University of Turin, Turin, Italy
| | - Jessica Cusato
- Unit of Infectious Diseases, Department of Medical Sciences, Amedeo di Savoia Hospital, University of Turin, Turin, Italy
| | - Amedeo De Nicolò
- Unit of Infectious Diseases, Department of Medical Sciences, Amedeo di Savoia Hospital, University of Turin, Turin, Italy
| | - Sarah Allegra
- Unit of Infectious Diseases, Department of Medical Sciences, Amedeo di Savoia Hospital, University of Turin, Turin, Italy
| | - Giovanni Di Perri
- Unit of Infectious Diseases, Department of Medical Sciences, Amedeo di Savoia Hospital, University of Turin, Turin, Italy
| |
Collapse
|
43
|
Kumar P, Chaudhary N, Sharma NK, Maurya PK. Detection of oxidative stress biomarkers in myricetin treated red blood cells. RSC Adv 2016. [DOI: 10.1039/c6ra15213a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Effect of myricetin on RBC membrane enzymes (Na+, K+-ATPase and Ca2+-ATPase) and Na+, H+exchanger.
Collapse
Affiliation(s)
- Prabhanshu Kumar
- Amity Institute of Biotechnology
- Amity University Uttar Pradesh
- Noida
- India
| | - Nidhee Chaudhary
- Amity Institute of Biotechnology
- Amity University Uttar Pradesh
- Noida
- India
| | - Narendra Kumar Sharma
- Division of Infectious Disease
- Department of Medicine
- Universidade Federal de Sao Paulo – UNIFESP
- Brazil
| | - Pawan Kumar Maurya
- Amity Institute of Biotechnology
- Amity University Uttar Pradesh
- Noida
- India
- Interdisciplinary Laboratory for Clinical Neuroscience (LiNC)
| |
Collapse
|
44
|
Multifaceted plasma membrane Ca(2+) pumps: From structure to intracellular Ca(2+) handling and cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:1351-63. [PMID: 26707182 DOI: 10.1016/j.bbamcr.2015.12.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/25/2015] [Accepted: 12/12/2015] [Indexed: 11/20/2022]
Abstract
Plasma membrane Ca(2+) ATPases (PMCAs) are intimately involved in the control of intracellular Ca(2+) concentration. They reduce Ca(2+) in the cytosol not only by direct ejection, but also by controlling the formation of inositol-1,4,5-trisphosphate and decreasing Ca(2+) release from the endoplasmic reticulum Ca(2+) pool. In mammals four genes (PMCA1-4) are expressed, and alternative RNA splicing generates more than twenty variants. The variants differ in their regulatory characteristics. They localize into highly specialized membrane compartments and respond to the incoming Ca(2+) with distinct temporal resolution. The expression pattern of variants depends on cell type; a change in this pattern can result in perturbed Ca(2+) homeostasis and thus altered cell function. Indeed, PMCAs undergo remarkable changes in their expression pattern during tumorigenesis that might significantly contribute to the unbalanced Ca(2+) homeostasis of cancer cells. This article is part of a Special Issue entitled: Calcium and Cell Fate. Guest Editors: Jacques Haiech, Claus Heizmann, Joachim Krebs, Thierry Capiod and Olivier Mignen.
Collapse
|
45
|
VDR gene polymorphisms impact on anemia at 2 weeks of anti-HCV therapy: a possible mechanism for early RBV-induced anemia. Pharmacogenet Genomics 2015; 25:164-72. [PMID: 25713999 DOI: 10.1097/fpc.0000000000000123] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Vitamin D receptors (VDR) bind calcitriol and modulate several physiological systems through genomic and nongenomic pathways. Calcitriol stimulates store-operated channels Ca²⁺ influx by translocation of the caveolar VDR to the plasma membrane. Intracellular Ca²⁺ levels in erythrocytes control biophysical properties and an increase in its concentration can deregulate membrane composition, cell volume, glycolytic enzymes regulation, redox state, and cell clearance.We evaluated the role of single nucleotide polymorphisms in ITPA, CYP27B1, CYP24A1, and VDR genes in the prediction of ribavirin-induced anemia in HCV-1/2/3/4 patients at 2 and 4 weeks of treatment. PATIENTS AND METHODS Two hundred and twenty-five patients treated with ribavirin and pegylated interferon-α were genotyped by real-time PCR. RESULTS BMI at baseline more than 30 kg/m² [P=0.013, odds ratio (OR): 10.95, 95% confidence interval (CI): 1.66-74.21], alanine aminotransferase at baseline more than 37 IU/l (P=0.020, OR: 0.26, 95% CI: 0.09-0.81), and the VDR BsmI AA profile (P=0.003, OR: 5.09, 95% CI: 1.72-15.05) were anemia-predictive factors at 2 weeks of therapy. At week 4, the ITPA rs6051702 AC/CC profile (P=0.001, OR: 0.19, 95% CI: 0.07-0.51) was the only factor that could predict this side effect. CONCLUSION The BsmI AA genotype is a predictive factor of 2-week anemia and it could be related to a VDR-enhanced activity, and thus an increased calcium influx, resulting in the deregulation of the Ca²⁺-dependent signaling, which can lead to erythrocytes hemolysis. This rapid mechanism could be responsible for the development of early anemia.These results indicate for the first time the strong, significant, and independent role of VDR in the early development of ribavirin-induced anemia and confirm the ITPA function in the prediction of anemia at week 4.
Collapse
|
46
|
Ryan ZC, Craig TA, Filoteo AG, Westendorf JJ, Cartwright EJ, Neyses L, Strehler EE, Kumar R. Deletion of the intestinal plasma membrane calcium pump, isoform 1, Atp2b1, in mice is associated with decreased bone mineral density and impaired responsiveness to 1, 25-dihydroxyvitamin D3. Biochem Biophys Res Commun 2015; 467:152-6. [PMID: 26392310 DOI: 10.1016/j.bbrc.2015.09.087] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 09/16/2015] [Indexed: 01/01/2023]
Abstract
The physiological importance of the intestinal plasma membrane calcium pump, isoform 1, (Pmca1, Atp2b1), in calcium absorption and homeostasis has not been previously demonstrated in vivo. Since global germ-line deletion of the Pmca1 in mice is associated with embryonic lethality, we selectively deleted the Pmca1 in intestinal absorptive cells. Mice with loxP sites flanking exon 2 of the Pmca1 gene (Pmca1(fl/fl)) were crossed with mice expressing Cre recombinase in the intestine under control of the villin promoter to give mice in which the Pmca1 had been deleted in the intestine (Pmca1(EKO) mice). Pmca1(EKO) mice were born at a reduced frequency and were small at the time of birth when compared to wild-type (Wt) littermates. At two months of age, Pmca1(EKO) mice fed a 0.81% calcium, 0.34% phosphorus, normal vitamin D diet had reduced whole body bone mineral density (P < 0.037), and reduced femoral bone mineral density (P < 0.015). There was a trend towards lower serum calcium and higher serum parathyroid hormone (PTH) and 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3) concentrations in Pmca1(EKO) mice compared to Wt mice but the changes were not statistically significant. The urinary phosphorus/creatinine ratio was increased in Pmca1(EKO) mice (P < 0.004). Following the administration of 200 ng of 1α,25(OH)2D3 intraperitoneally to Wt mice, active intestinal calcium transport increased ∼2-fold, whereas Pmca1(EKO) mice administered an equal amount of 1α,25(OH)2D3 failed to show an increase in active calcium transport. Deletion of the Pmca1 in the intestine is associated with reduced growth and bone mineralization, and a failure to up-regulate calcium absorption in response to 1α,25(OH)2D3.
Collapse
Affiliation(s)
- Zachary C Ryan
- Nephrology Research, Department of Internal Medicine, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Theodore A Craig
- Nephrology Research, Department of Internal Medicine, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Adelaida G Filoteo
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Jennifer J Westendorf
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA; Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | | | - Ludwig Neyses
- Institute of Cardiovascular Sciences, University of Manchester, Manchester, M13 9PT, UK; University of Luxembourg, L-4365, Esch-sur-Alzette, Luxembourg
| | - Emanuel E Strehler
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA.
| | - Rajiv Kumar
- Nephrology Research, Department of Internal Medicine, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA.
| |
Collapse
|
47
|
Ribiczey P, Papp B, Homolya L, Enyedi Á, Kovács T. Selective upregulation of the expression of plasma membrane calcium ATPase isoforms upon differentiation and 1,25(OH)2D3-vitamin treatment of colon cancer cells. Biochem Biophys Res Commun 2015; 464:189-94. [DOI: 10.1016/j.bbrc.2015.06.113] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 06/17/2015] [Indexed: 11/15/2022]
|
48
|
Strehler EE. Plasma membrane calcium ATPases: From generic Ca(2+) sump pumps to versatile systems for fine-tuning cellular Ca(2.). Biochem Biophys Res Commun 2015; 460:26-33. [PMID: 25998731 DOI: 10.1016/j.bbrc.2015.01.121] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 01/21/2015] [Indexed: 10/23/2022]
Abstract
The plasma membrane calcium ATPases (PMCAs) are ATP-driven primary ion pumps found in all eukaryotic cells. They are the major high-affinity calcium extrusion system for expulsion of Ca(2+) ions from the cytosol and help restore the low resting levels of intracellular [Ca(2+)] following the temporary elevation of Ca(2+) generated during Ca(2+) signaling. Due to their essential role in the maintenance of cellular Ca(2+) homeostasis they were initially thought to be "sump pumps" for Ca(2+) removal needed by all cells to avoid eventual calcium overload. The discovery of multiple PMCA isoforms and alternatively spliced variants cast doubt on this simplistic assumption, and revealed instead that PMCAs are integral components of highly regulated multi-protein complexes fulfilling specific roles in calcium-dependent signaling originating at the plasma membrane. Biochemical, genetic, and physiological studies in gene-manipulated and mutant animals demonstrate the important role played by specific PMCAs in distinct diseases including those affecting the peripheral and central nervous system, cardiovascular disease, and osteoporosis. Human PMCA gene mutations and allelic variants associated with specific disorders continue to be discovered and underline the crucial role of different PMCAs in particular cells, tissues and organs.
Collapse
Affiliation(s)
- Emanuel E Strehler
- Department of Biochemistry and Molecular Biology, Guggenheim 16-11A1, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
49
|
Pignataro MF, Dodes-Traian MM, González-Flecha FL, Sica M, Mangialavori IC, Rossi JPFC. Modulation of plasma membrane Ca2+-ATPase by neutral phospholipids: effect of the micelle-vesicle transition and the bilayer thickness. J Biol Chem 2015; 290:6179-90. [PMID: 25605721 PMCID: PMC4358257 DOI: 10.1074/jbc.m114.585828] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 10/29/2014] [Indexed: 11/06/2022] Open
Abstract
The effects of lipids on membrane proteins are likely to be complex and unique for each membrane protein. Here we studied different detergent/phosphatidylcholine reconstitution media and tested their effects on plasma membrane Ca(2+) pump (PMCA). We found that Ca(2+)-ATPase activity shows a biphasic behavior with respect to the detergent/phosphatidylcholine ratio. Moreover, the maximal Ca(2+)-ATPase activity largely depends on the length and the unsaturation degree of the hydrocarbon chain. Using static light scattering and fluorescence correlation spectroscopy, we monitored the changes in hydrodynamic radius of detergent/phosphatidylcholine particles during the micelle-vesicle transition. We found that, when PMCA is reconstituted in mixed micelles, neutral phospholipids increase the enzyme turnover. The biophysical changes associated with the transition from mixed micelles to bicelles increase the time of residence of the phosphorylated intermediate (EP), decreasing the enzyme turnover. Molecular dynamics simulations analysis of the interactions between PMCA and the phospholipid bilayer in which it is embedded show that in the 1,2-dioleoyl-sn-glycero-3-phosphocholine bilayer, charged residues of the protein are trapped in the hydrophobic core. Conversely, in the 1,2-dimyristoyl-sn-glycero-3-phosphocholine bilayer, the overall hydrophobic-hydrophilic requirements of the protein surface are fulfilled the best, reducing the thermodynamic cost of exposing charged residues to the hydrophobic core. The apparent mismatch produced by a 1,2-dioleoyl-sn-glycero-3-phosphocholine thicker bilayer could be a structural foundation to explain its functional effect on PMCA.
Collapse
Affiliation(s)
- María Florencia Pignataro
- From the Instituto de Química y Fisicoquímica Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, CONICET, Junín 956 (1113) Buenos Aires, Argentina and
| | - Martín M Dodes-Traian
- From the Instituto de Química y Fisicoquímica Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, CONICET, Junín 956 (1113) Buenos Aires, Argentina and
| | - F Luis González-Flecha
- From the Instituto de Química y Fisicoquímica Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, CONICET, Junín 956 (1113) Buenos Aires, Argentina and
| | - Mauricio Sica
- the Laboratorio de Bioenergías, IEDS, CONICET Centro Atómico Bariloche, E. Bustillo 9,500 (8400), San Carlos de Bariloche, Río Negro, Argentina
| | - Irene C Mangialavori
- From the Instituto de Química y Fisicoquímica Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, CONICET, Junín 956 (1113) Buenos Aires, Argentina and
| | - Juan Pablo F C Rossi
- From the Instituto de Química y Fisicoquímica Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, CONICET, Junín 956 (1113) Buenos Aires, Argentina and
| |
Collapse
|
50
|
Drougard A, Fournel A, Valet P, Knauf C. Impact of hypothalamic reactive oxygen species in the regulation of energy metabolism and food intake. Front Neurosci 2015; 9:56. [PMID: 25759638 PMCID: PMC4338676 DOI: 10.3389/fnins.2015.00056] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 02/07/2015] [Indexed: 12/31/2022] Open
Abstract
Hypothalamus is a key area involved in the control of metabolism and food intake via the integrations of numerous signals (hormones, neurotransmitters, metabolites) from various origins. These factors modify hypothalamic neurons activity and generate adequate molecular and behavioral responses to control energy balance. In this complex integrative system, a new concept has been developed in recent years, that includes reactive oxygen species (ROS) as a critical player in energy balance. ROS are known to act in many signaling pathways in different peripheral organs, but also in hypothalamus where they regulate food intake and metabolism by acting on different types of neurons, including proopiomelanocortin (POMC) and agouti-related protein (AgRP)/neuropeptide Y (NPY) neurons. Hypothalamic ROS release is under the influence of different factors such as pancreatic and gut hormones, adipokines (leptin, apelin,…), neurotransmitters and nutrients (glucose, lipids,…). The sources of ROS production are multiple including NADPH oxidase, but also the mitochondria which is considered as the main ROS producer in the brain. ROS are considered as signaling molecules, but conversely impairment of this neuronal signaling ROS pathway contributes to alterations of autonomic nervous system and neuroendocrine function, leading to metabolic diseases such as obesity and type 2 diabetes. In this review we focus our attention on factors that are able to modulate hypothalamic ROS release in order to control food intake and energy metabolism, and whose deregulations could participate to the development of pathological conditions. This novel insight reveals an original mechanism in the hypothalamus that controls energy balance and identify hypothalamic ROS signaling as a potential therapeutic strategy to treat metabolic disorders.
Collapse
Affiliation(s)
- Anne Drougard
- NeuroMicrobiota, European Associated Laboratory, INSERM/UCL, Institut National de la Santé et de la Recherche Médicale, U1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), CHU Rangueil, Université Paul SabatierToulouse, France
| | | | | | - Claude Knauf
- NeuroMicrobiota, European Associated Laboratory, INSERM/UCL, Institut National de la Santé et de la Recherche Médicale, U1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), CHU Rangueil, Université Paul SabatierToulouse, France
| |
Collapse
|