1
|
Yagi N, Fujita S, Nakamura M. Plant microtubule nucleating apparatus and its potential signaling pathway. CURRENT OPINION IN PLANT BIOLOGY 2024; 82:102624. [PMID: 39232346 DOI: 10.1016/j.pbi.2024.102624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/02/2024] [Accepted: 08/12/2024] [Indexed: 09/06/2024]
Abstract
Plant cell cortical microtubules are located beneath the plasma membrane and direct the location of cellulose synthases during interphase, influencing cell morphology. Microtubule-associated proteins (MAPs) regulate these microtubules in response to growth and environmental stimuli. This review focuses on recent advances in understanding microtubule nucleation mechanisms in plants and the spatiotemporal regulation of cortical arrays via phytohormone signaling. Emphasis is placed on the conserved nature of the gamma-tubulin ring complex (γTuRC) and plant-specific components. The discussion includes the role of the Augmin complex and the distinct function of the Msd1-Wdr8 complex in plants. We also explore the effects of hormone signaling, particularly brassinosteroids, on the microtubule regulatory apparatus. The interplay between hormone signaling pathways and microtubule dynamics, including phosphorylation events and post-translational modifications, is also addressed. Finally, the impact of environmental signals and the role of protein post-translational modifications in regulating microtubule organization are suggested for future research.
Collapse
Affiliation(s)
- Noriyoshi Yagi
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, 464-8601, Japan
| | - Satoshi Fujita
- Plant Science Research Laboratory (LRSV), UMR5546 CNRS/Université Toulouse 3, 24 Chemin de Borde Rouge, 31320, Auzeville Tolosane, France
| | - Masayoshi Nakamura
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, 464-8601, Japan; Institute of Advanced Research, Nagoya University, Nagoya, 464-0814, Japan.
| |
Collapse
|
2
|
Wang K, Wang X, Zhang L, Chi Y, Luo Y, Xu W, Wang Y, Qu S. Morphological Analyses and QTL Mapping of Mottled Leaf in Zucchini ( Cucurbita pepo L.). Int J Mol Sci 2024; 25:2491. [PMID: 38473740 DOI: 10.3390/ijms25052491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/07/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
The mottled leaf is one of the agronomic traits of zucchini and can be applied as a marker trait in aggregation breeding. However, the genetic mechanism responsible for mottled leaf has yet to be elucidated. In the present study, we used two inbred lines (line '19': silver mottled leaf; line '113': normal leaf) as parents for the physiological and genetic analysis of mottled leaf. The synthesis and net photosynthetic rate of chlorophyll were not significantly affected in the mottled areas of leaves. However, we detected a large space between the palisade parenchyma in the leaf mottle area of line '19', which may have caused the mottled leaf phenotype. Light also plays an important role in the formation of mottled leaf, and receiving light during the early stages of leaf development is a necessary factor. Genetic analysis has previously demonstrated that mottled leaf is a quantitative trait that is controlled by multiple genes. Based on the strategy of quantitative trait locus sequencing (QTL-seq), two QTLs were identified on chromosomes 1 and 17, named CpML1.1 and CpML17.1, respectively. Two major loci were identified using R/qtl software version 1.66 under greenhouse conditions in April 2019 (2019A) and April 2020 (2020A) and under open cultivation conditions in May 2020 (2020M). The major QTL, CpML1.1, was located in a 925.2-kb interval on chromosome 1 and explained 10.51%-24.15% of the phenotypic variation. The CpML17.1 was located in a 719.7-kb interval on chromosome 17 and explained 16.25%-38.68% of the phenotypic variation. Based on gene annotation, gene sequence alignment, and qRT-PCR analysis, the Cp4.1LG01g23790 at the CpML1.1 locus encoding a protein of the TPX2 family (target protein of Xklp2) may be a candidate gene for mottled leaf in zucchini. Our findings may provide a theoretical basis for the formation of mottled leaf and provide a foundation for the fine mapping of genes associated with mottled leaf. Molecular markers closely linked to mottled leaf can be used in molecular-assisted selection for the zucchini mottled leaf breeding.
Collapse
Affiliation(s)
- Kexin Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Xinyu Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Lijing Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Yichen Chi
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Yusong Luo
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Wenlong Xu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Yunli Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Shuping Qu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
3
|
Kim P, Mahboob S, Nguyen HT, Eastman S, Fiala O, Sousek M, Gaussoin RE, Brungardt JL, Jackson-Ziems TA, Roston R, Alfano JR, Clemente TE, Guo M. Characterization of Soybean Events with Enhanced Expression of the Microtubule-Associated Protein 65-1 (MAP65-1). MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:62-71. [PMID: 37889205 DOI: 10.1094/mpmi-09-23-0134-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Microtubule-associated protein 65-1 (MAP65-1) protein plays an essential role in plant cellular dynamics through impacting stabilization of the cytoskeleton by serving as a crosslinker of microtubules. The role of MAP65-1 in plants has been associated with phenotypic outcomes in response to various environmental stresses. The Arabidopsis MAP65-1 (AtMAP65-1) is a known virulence target of plant bacterial pathogens and is thus a component of plant immunity. Soybean events were generated that carry transgenic alleles for both AtMAP65-1 and GmMAP65-1, the soybean AtMAP65-1 homolog, under control of cauliflower mosaic virus 35S promoter. Both AtMAP65-1 and GmMAP65-1 transgenic soybeans are more resistant to challenges by the soybean bacterial pathogen Pseudomonas syringae pv. glycinea and the oomycete pathogen Phytophthora sojae, but not the soybean cyst nematode, Heterodera glycines. Soybean plants expressing AtMAP65-1 and GmMAP65-1 also display a tolerance to the herbicide oryzalin, which has a mode of action to destabilize microtubules. In addition, GmMAP65-1-expressing soybean plants show reduced cytosol ion leakage under freezing conditions, hinting that ectopic expression of GmMAP65-1 may enhance cold tolerance in soybean. Taken together, overexpression of AtMAP65-1 and GmMAP65-1 confers tolerance of soybean plants to various biotic and abiotic stresses. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Panya Kim
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, U.S.A
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, U.S.A
| | - Samira Mahboob
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, U.S.A
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, U.S.A
| | - Hanh T Nguyen
- Department of Agronomy & Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, U.S.A
| | - Samuel Eastman
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68588, U.S.A
| | - Olivia Fiala
- Department of Agronomy & Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, U.S.A
| | - Matthew Sousek
- Department of Agronomy & Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, U.S.A
| | - Roch E Gaussoin
- Department of Agronomy & Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, U.S.A
| | - Jae L Brungardt
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68588, U.S.A
| | - Tamra A Jackson-Ziems
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68588, U.S.A
| | - Rebecca Roston
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, U.S.A
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, U.S.A
| | - James R Alfano
- Center for Plant Science Innovation and Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68588, U.S.A. (deceased)
| | - Tom Elmo Clemente
- Department of Agronomy & Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, U.S.A
| | - Ming Guo
- Department of Agronomy & Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, U.S.A
| |
Collapse
|
4
|
Gibson C, Jönsson H, Spelman TA. Mean-field theory approach to three-dimensional nematic phase transitions in microtubules. Phys Rev E 2023; 108:064414. [PMID: 38243538 DOI: 10.1103/physreve.108.064414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 11/16/2023] [Indexed: 01/21/2024]
Abstract
Microtubules are dynamic intracellular fibers that have been observed experimentally to undergo spontaneous self-alignment. We formulate a three-dimensional (3D) mean-field theory model to analyze the nematic phase transition of microtubules growing and interacting within a 3D space, then make a comparison with computational simulations. We identify a control parameter G_{eff} and predict a unique critical value G_{eff}=1.56 for which a phase transition can occur. Furthermore, we show both analytically and using simulations that this predicted critical value does not depend on the presence of zippering. The mean-field theory developed here provides an analytical estimate of microtubule patterning characteristics without running time-consuming simulations and is a step towards bridging scales from microtubule behavior to multicellular simulations.
Collapse
Affiliation(s)
- Cameron Gibson
- Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, United Kingdom
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA
- Department of Physics and Astronomy, Texas A&M University, College Station, Texas 77843, USA
| | - Henrik Jönsson
- Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, United Kingdom
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, CB3 0WA, United Kingdom
- Centre for Environmental and Climate Science, Lund University, SE-223 62 Lund, Sweden
| | - Tamsin A Spelman
- Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, United Kingdom
| |
Collapse
|
5
|
Gonzalez JP, Frandsen KEH, Kesten C. The role of intrinsic disorder in binding of plant microtubule-associated proteins to the cytoskeleton. Cytoskeleton (Hoboken) 2023; 80:404-436. [PMID: 37578201 DOI: 10.1002/cm.21773] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/15/2023]
Abstract
Microtubules (MTs) represent one of the main components of the eukaryotic cytoskeleton and support numerous critical cellular functions. MTs are in principle tube-like structures that can grow and shrink in a highly dynamic manner; a process largely controlled by microtubule-associated proteins (MAPs). Plant MAPs are a phylogenetically diverse group of proteins that nonetheless share many common biophysical characteristics and often contain large stretches of intrinsic protein disorder. These intrinsically disordered regions are determinants of many MAP-MT interactions, in which structural flexibility enables low-affinity protein-protein interactions that enable a fine-tuned regulation of MT cytoskeleton dynamics. Notably, intrinsic disorder is one of the major obstacles in functional and structural studies of MAPs and represents the principal present-day challenge to decipher how MAPs interact with MTs. Here, we review plant MAPs from an intrinsic protein disorder perspective, by providing a complete and up-to-date summary of all currently known members, and address the current and future challenges in functional and structural characterization of MAPs.
Collapse
Affiliation(s)
- Jordy Perez Gonzalez
- Department for Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Kristian E H Frandsen
- Department for Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Christopher Kesten
- Department for Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
6
|
Ortmann S, Marx J, Lampe C, Handrick V, Ehnert TM, Zinecker S, Reimers M, Bonas U, Erickson JL. A conserved microtubule-binding region in Xanthomonas XopL is indispensable for induced plant cell death reactions. PLoS Pathog 2023; 19:e1011263. [PMID: 37578981 PMCID: PMC10449215 DOI: 10.1371/journal.ppat.1011263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/24/2023] [Accepted: 07/17/2023] [Indexed: 08/16/2023] Open
Abstract
Pathogenic Xanthomonas bacteria cause disease on more than 400 plant species. These Gram-negative bacteria utilize the type III secretion system to inject type III effector proteins (T3Es) directly into the plant cell cytosol where they can manipulate plant pathways to promote virulence. The host range of a given Xanthomonas species is limited, and T3E repertoires are specialized during interactions with specific plant species. Some effectors, however, are retained across most strains, such as Xanthomonas Outer Protein L (XopL). As an 'ancestral' effector, XopL contributes to the virulence of multiple xanthomonads, infecting diverse plant species. XopL homologs harbor a combination of a leucine-rich-repeat (LRR) domain and an XL-box which has E3 ligase activity. Despite similar domain structure there is evidence to suggest that XopL function has diverged, exemplified by the finding that XopLs expressed in plants often display bacterial species-dependent differences in their sub-cellular localization and plant cell death reactions. We found that XopL from X. euvesicatoria (XopLXe) directly associates with plant microtubules (MTs) and causes strong cell death in agroinfection assays in N. benthamiana. Localization of XopLXe homologs from three additional Xanthomonas species, of diverse infection strategy and plant host, revealed that the distantly related X. campestris pv. campestris harbors a XopL (XopLXcc) that fails to localize to MTs and to cause plant cell death. Comparative sequence analyses of MT-binding XopLs and XopLXcc identified a proline-rich-region (PRR)/α-helical region important for MT localization. Functional analyses of XopLXe truncations and amino acid exchanges within the PRR suggest that MT-localized XopL activity is required for plant cell death reactions. This study exemplifies how the study of a T3E within the context of a genus rather than a single species can shed light on how effector localization is linked to biochemical activity.
Collapse
Affiliation(s)
- Simon Ortmann
- Department of Genetics, Institute for Biology, Martin Luther University Halle-Wittenberg, Halle, Germany
- Department of Biochemistry of Plant Interactions, Leibniz Institute for Plant Biochemistry, Halle, Germany
| | - Jolina Marx
- Department of Genetics, Institute for Biology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Christina Lampe
- Department of Genetics, Institute for Biology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Vinzenz Handrick
- Department of Biochemistry of Plant Interactions, Leibniz Institute for Plant Biochemistry, Halle, Germany
| | - Tim-Martin Ehnert
- Department of Biochemistry of Plant Interactions, Leibniz Institute for Plant Biochemistry, Halle, Germany
| | - Sarah Zinecker
- Department of Plant Physiology, Institute for Biology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Matthias Reimers
- Department of Plant Physiology, Institute for Biology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Ulla Bonas
- Department of Genetics, Institute for Biology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Jessica Lee Erickson
- Department of Genetics, Institute for Biology, Martin Luther University Halle-Wittenberg, Halle, Germany
- Department of Biochemistry of Plant Interactions, Leibniz Institute for Plant Biochemistry, Halle, Germany
| |
Collapse
|
7
|
Allsman LA, Bellinger MA, Huang V, Duong M, Contreras A, Romero AN, Verboonen B, Sidhu S, Zhang X, Steinkraus H, Uyehara AN, Martinez SE, Sinclair RM, Soriano GS, Diep B, Byrd V. D, Noriega A, Drakakaki G, Sylvester AW, Rasmussen CG. Subcellular positioning during cell division and cell plate formation in maize. FRONTIERS IN PLANT SCIENCE 2023; 14:1204889. [PMID: 37484472 PMCID: PMC10360171 DOI: 10.3389/fpls.2023.1204889] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/24/2023] [Indexed: 07/25/2023]
Abstract
Introduction During proliferative plant cell division, the new cell wall, called the cell plate, is first built in the middle of the cell and then expands outward to complete cytokinesis. This dynamic process requires coordinated movement and arrangement of the cytoskeleton and organelles. Methods Here we use live-cell markers to track the dynamic reorganization of microtubules, nuclei, endoplasmic reticulum, and endomembrane compartments during division and the formation of the cell plate in maize leaf epidermal cells. Results The microtubule plus-end localized protein END BINDING1 (EB1) highlighted increasing microtubule dynamicity during mitosis to support rapid changes in microtubule structures. The localization of the cell-plate specific syntaxin KNOLLE, several RAB-GTPases, as well as two plasma membrane localized proteins was assessed after treatment with the cytokinesis-specific callose-deposition inhibitor Endosidin7 (ES7) and the microtubule-disrupting herbicide chlorpropham (CIPC). While ES7 caused cell plate defects in Arabidopsis thaliana, it did not alter callose accumulation, or disrupt cell plate formation in maize. In contrast, CIPC treatment of maize epidermal cells occasionally produced irregular cell plates that split or fragmented, but did not otherwise disrupt the accumulation of cell-plate localized proteins. Discussion Together, these markers provide a robust suite of tools to examine subcellular trafficking and organellar organization during mitosis and cell plate formation in maize.
Collapse
Affiliation(s)
- Lindy A. Allsman
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, Riverside, CA, United States
| | - Marschal A. Bellinger
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, Riverside, CA, United States
| | - Vivian Huang
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, Riverside, CA, United States
| | - Matthew Duong
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, Riverside, CA, United States
| | - Alondra Contreras
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, Riverside, CA, United States
| | - Andrea N. Romero
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, Riverside, CA, United States
| | - Benjamin Verboonen
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, Riverside, CA, United States
| | - Sukhmani Sidhu
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, Riverside, CA, United States
| | - Xiaoguo Zhang
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States
| | - Holly Steinkraus
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States
| | - Aimee N. Uyehara
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, Riverside, CA, United States
| | - Stephanie E. Martinez
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, Riverside, CA, United States
| | - Rosalie M. Sinclair
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Gabriela Salazar Soriano
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, Riverside, CA, United States
| | - Beatrice Diep
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, Riverside, CA, United States
| | - Dawson Byrd V.
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, Riverside, CA, United States
| | - Alexander Noriega
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, Riverside, CA, United States
| | - Georgia Drakakaki
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Anne W. Sylvester
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States
| | - Carolyn G. Rasmussen
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
8
|
Inaba H, Oikawa K, Ishikawa K, Kodama Y, Matsuura K, Numata K. Binding of Tau-derived peptide-fused GFP to plant microtubules in Arabidopsis thaliana. PLoS One 2023; 18:e0286421. [PMID: 37267323 DOI: 10.1371/journal.pone.0286421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/16/2023] [Indexed: 06/04/2023] Open
Abstract
Studies on how exogenous molecules modulate properties of plant microtubules, such as their stability, structure, and dynamics, are important for understanding and modulating microtubule functions in plants. We have developed a Tau-derived peptide (TP) that binds to microtubules and modulates their properties by binding of TP-conjugated molecules in vitro. However, there was no investigation of TPs on microtubules in planta. Here, we generated transgenic Arabidopsis thaliana plants stably expressing TP-fused superfolder GFP (sfGFP-TP) and explored the binding properties and effects of sfGFP-TP on plant microtubules. Our results indicate that the expressed sfGFP-TP binds to the plant microtubules without inhibiting plant growth. A transgenic line strongly expressing sfGFP-TP produced thick fibrous structures that were stable under conditions where microtubules normally depolymerize. This study generates a new tool for analyzing and modulating plant microtubules.
Collapse
Affiliation(s)
- Hiroshi Inaba
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori, Japan
- Centre for Research on Green Sustainable Chemistry, Tottori University, Tottori, Japan
| | - Kazusato Oikawa
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Kazuya Ishikawa
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi, Japan
| | - Yutaka Kodama
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi, Japan
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Kazunori Matsuura
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori, Japan
- Centre for Research on Green Sustainable Chemistry, Tottori University, Tottori, Japan
| | - Keiji Numata
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| |
Collapse
|
9
|
Hsiao AS, Huang JY. Microtubule Regulation in Plants: From Morphological Development to Stress Adaptation. Biomolecules 2023; 13:biom13040627. [PMID: 37189374 DOI: 10.3390/biom13040627] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/09/2023] [Accepted: 03/25/2023] [Indexed: 04/03/2023] Open
Abstract
Microtubules (MTs) are essential elements of the eukaryotic cytoskeleton and are critical for various cell functions. During cell division, plant MTs form highly ordered structures, and cortical MTs guide the cell wall cellulose patterns and thus control cell size and shape. Both are important for morphological development and for adjusting plant growth and plasticity under environmental challenges for stress adaptation. Various MT regulators control the dynamics and organization of MTs in diverse cellular processes and response to developmental and environmental cues. This article summarizes the recent progress in plant MT studies from morphological development to stress responses, discusses the latest techniques applied, and encourages more research into plant MT regulation.
Collapse
|
10
|
Uyehara AN, Rasmussen CG. Redundant mechanisms in division plane positioning. Eur J Cell Biol 2023; 102:151308. [PMID: 36921356 DOI: 10.1016/j.ejcb.2023.151308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/05/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023] Open
Abstract
Redundancies in plant cell division contribute to the maintenance of proper division plane orientation. Here we highlight three types of redundancy: 1) Temporal redundancy, or correction of earlier defects that results in proper final positioning, 2) Genetic redundancy, or functional compensation by homologous genes, and 3) Synthetic redundancy, or redundancy within or between pathways that contribute to proper division plane orientation. Understanding the types of redundant mechanisms involved provides insight into current models of division plane orientation and opens up new avenues for exploration.
Collapse
Affiliation(s)
- Aimee N Uyehara
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, USA
| | - Carolyn G Rasmussen
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, USA.
| |
Collapse
|
11
|
Imaging the Plant Cytoskeleton by High-Pressure Freezing and Electron Tomography. Methods Mol Biol 2023; 2604:89-102. [PMID: 36773227 DOI: 10.1007/978-1-0716-2867-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Electron tomography (ET) imaging of high-pressure frozen/freeze-substituted samples provides a unique opportunity to study structural details of organelles and cytoskeletal arrays in plant cells. In this chapter, we discuss approaches for sample preparation by cryofixation at high pressure, freeze substitution, and resin embedding. We also include pipelines for data collection for electron tomography at ambient temperature, tomogram calculation, and segmentation.
Collapse
|
12
|
Methods to Visualize and Quantify Cortical Microtubule Arrays in Arabidopsis Conical Cells. Methods Mol Biol 2023; 2604:317-325. [PMID: 36773246 DOI: 10.1007/978-1-0716-2867-6_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Many studies from different model organisms have demonstrated that microtubules are essential for various cellular processes, including cell division, cell morphogenesis, and intracellular trafficking. In interphase plant cells, oriented cortical microtubule arrays are highly characteristic in cells that display various morphologies, such as elongated hypocotyl cells and root cells, jigsaw-puzzled leaf pavement cells, and petal epidermal conical cells. Conical cells represent a specialized epidermal cell type found in the petal epidermis of many flowering plants. It has been suggested that in the model plant Arabidopsis thaliana, the petal adaxial epidermal cells develop from a roughly hemispherical morphology to a conical shape, correlating with the reorientation of cortical microtubules from random to well-ordered circumferential arrays. This chapter presents an overview of the methods available to visualize the microtubule cytoskeleton in living conical cells via confocal microscopy.
Collapse
|
13
|
Lan M, Liu X, Kang E, Fu Y, Zhu L. ARK2 stabilizes the plus-end of microtubules and promotes microtubule bundling in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:100-116. [PMID: 36169006 DOI: 10.1111/jipb.13373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Microtubule dynamics and organization are important for plant cell morphogenesis and development. The microtubule-based motor protein kinesins are mainly responsible for the transport of some organelles and vesicles, although several have also been shown to regulate microtubule organization. The ARMADILLO REPEAT KINESIN (ARK) family is a plant-specific motor protein subfamily that consists of three members (ARK1, ARK2, and ARK3) in Arabidopsis thaliana. ARK2 has been shown to participate in root epidermal cell morphogenesis. However, whether and how ARK2 associates with microtubules needs further elucidation. Here, we demonstrated that ARK2 co-localizes with microtubules and facilitates microtubule bundling in vitro and in vivo. Pharmacological assays and microtubule dynamics analyses indicated that ARK2 stabilizes cortical microtubules. Live-cell imaging revealed that ARK2 moves along cortical microtubules in a processive mode and localizes both at the plus-end and the sidewall of microtubules. ARK2 therefore tracks and stabilizes the growing plus-ends of microtubules, which facilitates the formation of parallel microtubule bundles.
Collapse
Affiliation(s)
- Miao Lan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xianan Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Erfang Kang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Ying Fu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Lei Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
14
|
Mills AM, Rasmussen CG. Defects in division plane positioning in the root meristematic zone affect cell organization in the differentiation zone. J Cell Sci 2022; 135:jcs260127. [PMID: 36074053 PMCID: PMC9658997 DOI: 10.1242/jcs.260127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 09/01/2022] [Indexed: 11/20/2022] Open
Abstract
Cell-division-plane orientation is critical for plant and animal development and growth. TANGLED1 (TAN1) and AUXIN-INDUCED IN ROOT CULTURES 9 (AIR9) are division-site-localized microtubule-binding proteins required for division-plane positioning. The single mutants tan1 and air9 of Arabidopsis thaliana have minor or no noticeable phenotypes, but the tan1 air9 double mutant has synthetic phenotypes including stunted growth, misoriented divisions and aberrant cell-file rotation in the root differentiation zone. These data suggest that TAN1 plays a role in non-dividing cells. To determine whether TAN1 is required in elongating and differentiating cells in the tan1 air9 double mutant, we limited its expression to actively dividing cells using the G2/M-specific promoter of the syntaxin KNOLLE (pKN:TAN1-YFP). Unexpectedly, in addition to rescuing division-plane defects, expression of pKN:TAN1-YFP rescued root growth and cell file rotation defects in the root-differentiation zone in tan1 air9 double mutants. This suggests that defects that occur in the meristematic zone later affect the organization of elongating and differentiating cells.
Collapse
Affiliation(s)
| | - Carolyn G. Rasmussen
- Graduate Group in Biochemistry and Molecular Biology
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| |
Collapse
|
15
|
Zhang L, Ambrose C. CLASP balances two competing cell division plane cues during leaf development. NATURE PLANTS 2022; 8:682-693. [PMID: 35668154 DOI: 10.1038/s41477-022-01163-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Starting as small, densely packed boxes, leaf mesophyll cells expand to form an intricate mesh of interconnected cells and air spaces, the organization of which dictates the internal surface area of the leaf for light capture and gas exchange during photosynthesis. Despite their importance, little is known about the basic patterns of mesophyll cell division, and how they contribute to cell and intercellular space organization. To address this, we tracked divisions within individual cell lineages in three dimensions over time in Arabidopsis spongy mesophyll. We found that early on, successive cell division planes switch their orientation such that each new cell wall intersects the previous at a right angle, creating a new multi-cell junction (the intersection of three or more cells). These junctions then open to create intercellular spaces. During subsequent enlargement of the spaces, the division planes of the surrounding cells show an increasing tendency to tilt in the direction of their adjacent intercellular spaces. This disrupts the alternating pattern, and by extension, halts the initiation of new multi-cell junctions and intercellular spaces, but allows the expansion of existing spaces. Both division patterns are specified before mitosis by the orientation of interphase cortical microtubules, which gradually narrow to form a preprophase band in the same orientation to establish the future plane of cell division. In the absence of the microtubule-associated protein CLASP, the early alternating division plane and microtubule patterns are compromised, whereas space-oriented divisions are exacerbated. This results in large distortions of the topological relations between cells and intercellular spaces, as well as changes in their relative abundance. Our data reveal the existence of two competing cell division mechanisms that are balanced by CLASP to specify the distribution of cells and intercellular spaces in spongy mesophyll tissue.
Collapse
Affiliation(s)
- Liyong Zhang
- Department of Biology, The University of Saskatchewan, College of Arts and Science, Saskatoon, Saskatchewan, Canada
| | - Chris Ambrose
- Department of Biology, The University of Saskatchewan, College of Arts and Science, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
16
|
Comparative organization of tubulin microtubules in root cells of Zea mays (Poaceae) and Beta vulgaris (Chenopodiaceae s. str. / Amaranthaceae s. l.) under the influence of clinorotation. UKRAINIAN BOTANICAL JOURNAL 2021. [DOI: 10.15407/ukrbotj78.06.426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In order to identify the mechanism of functioning of the tubulin cytoskeleton, we have investigated the impact of clinorotation on cortical microtubules organization in the process of cell differentiation in growth zones of plant roots of Zea mays and Beta vulgaris. The similar organization of cortical and endoplasmic microtubules’ network in both species is noted. Clinorotation did not significantly change the organization of microtubules in meristem cells and the central elongation root zone. However, in the distal elongation zone of roots, both Z. mays and B. vulgaris expressed deviations of individual microtubules from the ordered transverse organization (at an angle greater than 45º). This deviation of the microtubules is likely caused by clinorotation and results in discoordination of root growth under these conditions. In addition, it has been found that the scope of destruction of the MT network by taxol in the root cells of both species is not dependent on clinorotation.
Collapse
|
17
|
Segundo-Ortin M, Calvo P. Consciousness and cognition in plants. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2021; 13:e1578. [PMID: 34558231 DOI: 10.1002/wcs.1578] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 12/17/2022]
Abstract
Unlike animal behavior, behavior in plants is traditionally assumed to be completely determined either genetically or environmentally. Under this assumption, plants are usually considered to be noncognitive organisms. This view nonetheless clashes with a growing body of empirical research that shows that many sophisticated cognitive capabilities traditionally assumed to be exclusive to animals are exhibited by plants too. Yet, if plants can be considered cognitive, even in a minimal sense, can they also be considered conscious? Some authors defend that the quest for plant consciousness is worth pursuing, under the premise that sentience can play a role in facilitating plant's sophisticated behavior. The goal of this article is not to provide a positive argument for plant cognition and consciousness, but to invite a constructive, empirically informed debate about it. After reviewing the empirical literature concerning plant cognition, we introduce the reader to the emerging field of plant neurobiology. Research on plant electrical and chemical signaling can help shed light into the biological bases for plant sentience. To conclude, we shall present a series of approaches to scientifically investigate plant consciousness. In sum, we invite the reader to consider the idea that if consciousness boils down to some form of biological adaptation, we should not exclude a priori the possibility that plants have evolved their own phenomenal experience of the world. This article is categorized under: Cognitive Biology > Evolutionary Roots of Cognition Philosophy > Consciousness Neuroscience > Cognition.
Collapse
Affiliation(s)
- Miguel Segundo-Ortin
- Department of Philosophy and Religious Studies, Faculty of Humanities, Utrecht University, Utrecht, The Netherlands
| | - Paco Calvo
- Minimal Intelligence Laboratory, Universidad de Murcia, Murcia, Spain
| |
Collapse
|
18
|
Jeong BY, Lee Y, Kwon Y, Kim JH, Ham TH, Kwon SW, Lee J. Genome-Wide Association Study Reveals the Genetic Basis of Chilling Tolerance in Rice at the Reproductive Stage. PLANTS 2021; 10:plants10081722. [PMID: 34451767 PMCID: PMC8398597 DOI: 10.3390/plants10081722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 11/16/2022]
Abstract
A genome-wide association study (GWAS) was used to investigate the genetic basis of chilling tolerance in a collection of 117 rice accessions, including 26 Korean landraces and 29 weedy rices, at the reproductive stage. To assess chilling tolerance at the early young microspore stage, plants were treated at 12 °C for 5 days, and tolerance was evaluated using seed set fertility. GWAS, together with principal component analysis and kinship matrix analysis, revealed five quantitative trait loci (QTLs) associated with chilling tolerance on chromosomes 3, 6, and 7. The percentage of phenotypic variation explained by the QTLs was 11-19%. The genomic region underlying the QTL on chromosome 3 overlapped with a previously reported QTL associated with spikelet fertility. Subsequent bioinformatic and haplotype analyses suggested three candidate chilling-tolerance genes within the QTL linkage disequilibrium block: Os03g0305700, encoding a protein similar to peptide chain release factor 2; Os06g0495700, encoding a beta tubulin, autoregulation binding-site-domain-containing protein; and Os07g0137800, encoding a protein kinase, core-domain-containing protein. Further analysis of the detected QTLs and the candidate chilling-tolerance genes will facilitate strategies for developing chilling-tolerant rice cultivars in breeding programs.
Collapse
Affiliation(s)
- Byeong Yong Jeong
- Department of Crop Science, Konkuk University, Seoul 05029, Korea; (B.Y.J.); (Y.L.); (Y.K.); (J.H.K.); (T.-H.H.)
| | - Yoonjung Lee
- Department of Crop Science, Konkuk University, Seoul 05029, Korea; (B.Y.J.); (Y.L.); (Y.K.); (J.H.K.); (T.-H.H.)
| | - Yebin Kwon
- Department of Crop Science, Konkuk University, Seoul 05029, Korea; (B.Y.J.); (Y.L.); (Y.K.); (J.H.K.); (T.-H.H.)
| | - Jee Hye Kim
- Department of Crop Science, Konkuk University, Seoul 05029, Korea; (B.Y.J.); (Y.L.); (Y.K.); (J.H.K.); (T.-H.H.)
| | - Tae-Ho Ham
- Department of Crop Science, Konkuk University, Seoul 05029, Korea; (B.Y.J.); (Y.L.); (Y.K.); (J.H.K.); (T.-H.H.)
| | - Soon-Wook Kwon
- Department of Plant Bioscience, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Korea;
| | - Joohyun Lee
- Department of Crop Science, Konkuk University, Seoul 05029, Korea; (B.Y.J.); (Y.L.); (Y.K.); (J.H.K.); (T.-H.H.)
- Correspondence:
| |
Collapse
|
19
|
Ishida T, Yoshimura H, Takekawa M, Higaki T, Ideue T, Hatano M, Igarashi M, Tani T, Sawa S, Ishikawa H. Discovery, characterization and functional improvement of kumamonamide as a novel plant growth inhibitor that disturbs plant microtubules. Sci Rep 2021; 11:6077. [PMID: 33758203 PMCID: PMC7988157 DOI: 10.1038/s41598-021-85501-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/23/2021] [Indexed: 11/23/2022] Open
Abstract
The discovery and useful application of natural products can help improve human life. Chemicals that inhibit plant growth are broadly utilized as herbicides to control weeds. As various types of herbicides are required, the identification of compounds with novel modes of action is desirable. In the present study, we discovered a novel N-alkoxypyrrole compound, kumamonamide from Streptomyces werraensis MK493-CF1 and established a total synthesis procedure. Resulted in the bioactivity assays, we found that kumamonamic acid, a synthetic intermediate of kumamonamide, is a potential plant growth inhibitor. Further, we developed various derivatives of kumamonamic acid, including a kumamonamic acid nonyloxy derivative (KAND), which displayed high herbicidal activity without adverse effects on HeLa cell growth. We also detected that kumamonamic acid derivatives disturb plant microtubules; and additionally, that KAND affected actin filaments and induced cell death. These multifaceted effects differ from those of known microtubule inhibitors, suggesting a novel mode of action of kumamonamic acid, which represents an important lead for the development of new herbicides.
Collapse
Affiliation(s)
- Takashi Ishida
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kurokami 2-39-1, Kumamoto, 860-8555, Japan.
| | - Haruna Yoshimura
- Graduate School of Science and Technology, Kumamoto University, Kurokami 2-39-1, Kumamoto, 860-8555, Japan
| | - Masatsugu Takekawa
- Graduate School of Science and Technology, Kumamoto University, Kurokami 2-39-1, Kumamoto, 860-8555, Japan
| | - Takumi Higaki
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kurokami 2-39-1, Kumamoto, 860-8555, Japan
| | - Takashi Ideue
- Graduate School of Science and Technology, Kumamoto University, Kurokami 2-39-1, Kumamoto, 860-8555, Japan.,Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
| | | | | | - Tokio Tani
- Graduate School of Science and Technology, Kumamoto University, Kurokami 2-39-1, Kumamoto, 860-8555, Japan.,Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Shinichiro Sawa
- Graduate School of Science and Technology, Kumamoto University, Kurokami 2-39-1, Kumamoto, 860-8555, Japan.,Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Hayato Ishikawa
- Graduate School of Science and Technology, Kumamoto University, Kurokami 2-39-1, Kumamoto, 860-8555, Japan. .,Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan. .,Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 263-8522, Japan.
| |
Collapse
|
20
|
Graham BP, Haigler CH. Microtubules exert early, partial, and variable control of cotton fiber diameter. PLANTA 2021; 253:47. [PMID: 33484350 DOI: 10.1007/s00425-020-03557-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/30/2020] [Indexed: 05/07/2023]
Abstract
Variable cotton fiber diameter is set early in anisotropic elongation by cell-type-specific processes involving the temporal and spatial regulation of microtubules in the apical region. Cotton fibers are single cells that originate from the seed epidermis of Gossypium species. Then, they undergo extreme anisotropic elongation and limited diametric expansion. The details of cellular morphogenesis determine the quality traits that affect fiber uses and value, such as length, strength, and diameter. Lower and more consistent diameter would increase the competitiveness of cotton fiber with synthetic fiber, but we do not know how this trait is controlled. The complexity of the question is indicated by the existence of fibers in two major width classes in the major commercial species: broad and narrow fibers exist in commonly grown G. hirsutum, whereas G. barbadense produces only narrow fiber. To further understand how fiber diameter is controlled, we used ovule cultures, morphology measurements, and microtubule immunofluorescence to observe the effects of microtubule antagonists on fiber morphology, including shape and diameter within 80 µm of the apex. The treatments were applied at either one or two days post-anthesis during different stages of fiber morphogenesis. The results showed that inhibiting the presence and/or dynamic activity of microtubules caused larger diameter tips to form, with greater effects often observed with earlier treatment. The presence and geometry of a microtubule-depleted-zone below the apex were transiently correlated with the apical diameter of the narrow tip types. Similarly, the microtubule antagonists had somewhat different effects between tip types. Overall, the results demonstrate cell-type-specific mechanisms regulating fiber expansion within 80 µm of the apex, with variation in the impact of microtubules between tip types and over developmental time.
Collapse
Affiliation(s)
- Benjamin P Graham
- Department of Crop and Soil Sciences and Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Candace H Haigler
- Department of Crop and Soil Sciences and Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
21
|
Yamamoto N, Takano T, Masumura T, Sasou A, Morita S, Sugimoto T, Yano K. Rapidly evolving phosphoenolpyruvate carboxylase Gmppc1 and Gmppc7 are highly expressed in the external seed coat of immature soybean seeds. Gene 2020; 762:145015. [PMID: 32783994 DOI: 10.1016/j.gene.2020.145015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 01/31/2023]
Abstract
Phosphoenolpyruvate carboxylase (PEPC) is a carbon fixation enzyme which probably plays crucial roles in seed development. A greater number of PEPC isoforms are encoded in the soybean genome, while most of the PEPC isoforms are functionally unknown. In this study, we investigated on soybean PEPC expressed in the external layer of seed coat (ELSC) during seed formation. PEPC activity in ELSC ranged from 0.24 to 1.0 U/g F.W., which could be comparable to those in whole seeds at U per dry matter. Public RNA-Seq data in separated soybean seed tissues revealed that six plant-type PEPC isogenes were substantially expressed in ELSC, and Gmppc1 and Gmppc7 were highly expressed in hourglass cells of ELSC. Gene Ontology enrichment of co-expressed genes with Gmppc1 and Gmppc7 implicated a role of these isogenes in assisting energy production and cellulose biosynthesis. Comparison of PEPC sequences from 16 leguminous species hypothesized adaptive evolution of the Gmppc1 and Gmppc7 lineage after divergence from the other plant-type PEPC lineages. Molecular diversification of these plant-type PEPC was possibly accomplished by adaptation to the functions of the soybean seed tissues. This study indicates that energy demand in immature seeds may be a driving force for the molecular evolution of PEPC.
Collapse
Affiliation(s)
- Naoki Yamamoto
- Laboratory of Bioinformatics, Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashi-mita, Kawasaki 214-8571, Japan; Laboratory of Genetic Engineering, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Kyoto 606-8522, Japan
| | - Tomoyuki Takano
- Laboratory of Bioinformatics, Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashi-mita, Kawasaki 214-8571, Japan
| | - Takehiro Masumura
- Laboratory of Genetic Engineering, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Kyoto 606-8522, Japan; Biotechnology Research Department, Kyoto Prefectural Agriculture, Forestry and Fisheries Technology Research Center, Kitainayazuma, Seika-cho, Soraku-gun, Kyoto 619-0244, Japan
| | - Ai Sasou
- Laboratory of Genetic Engineering, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Kyoto 606-8522, Japan
| | - Shigeto Morita
- Laboratory of Genetic Engineering, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Kyoto 606-8522, Japan; Biotechnology Research Department, Kyoto Prefectural Agriculture, Forestry and Fisheries Technology Research Center, Kitainayazuma, Seika-cho, Soraku-gun, Kyoto 619-0244, Japan
| | - Toshio Sugimoto
- Plant Nutrition Laboratory, Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Kentaro Yano
- Laboratory of Bioinformatics, Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashi-mita, Kawasaki 214-8571, Japan.
| |
Collapse
|
22
|
Takatsuka H, Ito M. Cytoskeletal Control of Planar Polarity in Root Hair Development. FRONTIERS IN PLANT SCIENCE 2020; 11:580935. [PMID: 33014003 PMCID: PMC7496891 DOI: 10.3389/fpls.2020.580935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 08/19/2020] [Indexed: 05/29/2023]
|
23
|
Genievskaya Y, Turuspekov Y, Rsaliyev A, Abugalieva S. Genome-wide association mapping for resistance to leaf, stem, and yellow rusts of common wheat under field conditions of South Kazakhstan. PeerJ 2020; 8:e9820. [PMID: 32944423 PMCID: PMC7469934 DOI: 10.7717/peerj.9820] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/05/2020] [Indexed: 11/20/2022] Open
Abstract
Common or bread wheat (Triticum aestivum L.) is the most important cereal crop in the world, including Kazakhstan, where it is a major agricultural commodity. Fungal pathogens producing leaf, stem, and yellow (stripe) rusts of wheat may cause yield losses of up to 50-60%. One of the most effective methods for preventing these losses is to develop resistant cultivars with high yield potential. This goal can be achieved using complex breeding studies, including the identification of key genetic factors controlling rust disease resistance. In this study, a panel consisting of 215 common wheat cultivars and breeding lines from Kazakhstan, Russia, Europe, USA, Canada, Mexico, and Australia, with a wide range of resistance to leaf rust (LR), stem rust (SR), and yellow rust (YR) diseases, was analyzed under field conditions in Southern Kazakhstan. The collection was genotyped using the 20K Illumina iSelect DNA array, where 11,510 informative single-nucleotide polymorphism markers were selected for further genome-wide association study (GWAS). Evaluation of the phenotypic diversity over 2 years showed a mostly mixed reaction to LR, mixed reaction/moderate susceptibility to SR, and moderate resistance to YR among wheat accessions from Kazakhstan. GWAS revealed 45 marker-trait associations (MTAs), including 23 for LR, 14 for SR, and eight for YR resistances. Three MTAs for LR resistance and one for SR resistance appeared to be novel. The MTAs identified in this work can be used for marker-assisted selection of common wheat in Kazakhstan in breeding new cultivars resistant to LR, SR, and YR diseases. These findings can be helpful for pyramiding genes with favorable alleles in promising cultivars and lines.
Collapse
Affiliation(s)
- Yuliya Genievskaya
- Plant Molecular Genetics Laboratory, Institute of Plant Biology and Biotechnology, Almaty, Kazakhstan
| | - Yerlan Turuspekov
- Plant Molecular Genetics Laboratory, Institute of Plant Biology and Biotechnology, Almaty, Kazakhstan.,Biodiversity and Bioresources, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Aralbek Rsaliyev
- Laboratory of Phytosanitary Safety, Research Institute of Biological Safety Problems, Gvardeisky, Zhambyl Region, Kazakhstan
| | - Saule Abugalieva
- Plant Molecular Genetics Laboratory, Institute of Plant Biology and Biotechnology, Almaty, Kazakhstan.,Kazakh National Agrarian University, Almaty, Kazakhstan
| |
Collapse
|
24
|
Montesinos JC, Abuzeineh A, Kopf A, Juanes-Garcia A, Ötvös K, Petrášek J, Sixt M, Benková E. Phytohormone cytokinin guides microtubule dynamics during cell progression from proliferative to differentiated stage. EMBO J 2020; 39:e104238. [PMID: 32667089 PMCID: PMC7459425 DOI: 10.15252/embj.2019104238] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 06/12/2020] [Accepted: 06/22/2020] [Indexed: 12/22/2022] Open
Abstract
Cell production and differentiation for the acquisition of specific functions are key features of living systems. The dynamic network of cellular microtubules provides the necessary platform to accommodate processes associated with the transition of cells through the individual phases of cytogenesis. Here, we show that the plant hormone cytokinin fine‐tunes the activity of the microtubular cytoskeleton during cell differentiation and counteracts microtubular rearrangements driven by the hormone auxin. The endogenous upward gradient of cytokinin activity along the longitudinal growth axis in Arabidopsis thaliana roots correlates with robust rearrangements of the microtubule cytoskeleton in epidermal cells progressing from the proliferative to the differentiation stage. Controlled increases in cytokinin activity result in premature re‐organization of the microtubule network from transversal to an oblique disposition in cells prior to their differentiation, whereas attenuated hormone perception delays cytoskeleton conversion into a configuration typical for differentiated cells. Intriguingly, cytokinin can interfere with microtubules also in animal cells, such as leukocytes, suggesting that a cytokinin‐sensitive control pathway for the microtubular cytoskeleton may be at least partially conserved between plant and animal cells.
Collapse
Affiliation(s)
| | - Anas Abuzeineh
- Department of Plant Biotechnology and Bioinformatics, Ghent University and Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Aglaja Kopf
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Alba Juanes-Garcia
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Krisztina Ötvös
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria.,Bioresources Unit, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Jan Petrášek
- Institute of Experimental Botany, The Czech Academy of Sciences, Praha, Czech Republic
| | - Michael Sixt
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Eva Benková
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| |
Collapse
|
25
|
Kim JH, Lim SD, Jang CS. Oryza sativa drought-, heat-, and salt-induced RING finger protein 1 (OsDHSRP1) negatively regulates abiotic stress-responsive gene expression. PLANT MOLECULAR BIOLOGY 2020; 103:235-252. [PMID: 32206999 DOI: 10.1007/s11103-020-00989-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 03/02/2020] [Indexed: 05/13/2023]
Abstract
Plants are sessile and unable to avoid environmental stresses, such as drought, high temperature, and high salinity, which often limit the overall plant growth. Plants have evolved many complex mechanisms to survive these abiotic stresses via post-translational modifications. Recent evidence suggests that ubiquitination plays a crucial role in regulating abiotic stress responses in plants by regulating their substrate proteins. Here, we reported the molecular function of a RING finger E3 ligase, Oryza sativa Drought, Heat and Salt-induced RING finger protein 1 (OsDHSRP1), involved in regulating plant abiotic stress tolerance via the Ub/26S proteasome system. The OsDHSRP1 gene transcripts were highly expressed under various abiotic stresses such as NaCl, drought, and heat and the phytohormone abscisic acid (ABA). In addition, in vitro ubiquitination assays demonstrated that the OsDHSRP1 protein possesses a RING-H2 type domain that confers ligase functionality. The results of yeast two-hybrid (Y2H), in vitro pull-down, and bimolecular fluorescence complementation assays support that OsDHSRP1 is able to regulate two substrates, O. sativa glyoxalase (OsGLYI-11.2) and O. sativa abiotic stress-induced cysteine proteinase 1 (OsACP1). We further confirmed that these two substrate proteins were ubiquitinated by OsDHSRP1 E3 ligase and caused protein degradation via the Ub/26S proteasome system. The Arabidopsis plants overexpressing OsDHSRP1 exhibited hypersensitivity to drought, heat, and NaCl stress and a decrease in their germination rates and root lengths compared to the control plants because the degradation of the OsGLYI-11.2 protein maintained lower glyoxalase levels, which increased the methylglyoxal amount in transgenic Arabidopsis plants. However, the OsDHSRP1-overexpressing plants showed no significant difference when treated with ABA. Our finding supports the hypothesis that the OsDHSRP1 E3 ligase acts as a negative regulator, and the degradation of its substrate proteins via ubiquitination plays important roles in regulating various abiotic stress responses via an ABA-independent pathway.
Collapse
Affiliation(s)
- Ju Hee Kim
- Plant Genomics Laboratory, Department of Bio-Resources Sciences, Kangwon National University, Chuncheon, 200-713, South Korea
| | - Sung Don Lim
- Plant Genomics Laboratory, Department of Bio-Resources Sciences, Kangwon National University, Chuncheon, 200-713, South Korea
| | - Cheol Seong Jang
- Plant Genomics Laboratory, Department of Bio-Resources Sciences, Kangwon National University, Chuncheon, 200-713, South Korea.
| |
Collapse
|
26
|
Yang B, Wendrich JR, De Rybel B, Weijers D, Xue H. Rice microtubule-associated protein IQ67-DOMAIN14 regulates grain shape by modulating microtubule cytoskeleton dynamics. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1141-1152. [PMID: 31622529 PMCID: PMC7152617 DOI: 10.1111/pbi.13279] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 10/10/2019] [Accepted: 10/15/2019] [Indexed: 05/07/2023]
Abstract
Cortical microtubule (MT) arrays play a critical role in plant cell shape determination by defining the direction of cell expansion. As plants continuously adapt to ever-changing environmental conditions, multiple environmental and developmental inputs need to be translated into changes of the MT cytoskeleton. Here, we identify and functionally characterize an auxin-inducible and MT-localized protein OsIQ67-DOMAIN14 (OsIQD14), which is highly expressed in rice seed hull cells. We show that while deficiency of OsIQD14 results in short and wide seeds and increases overall yield, overexpression leads to narrow and long seeds, caused by changed MT alignment. We further show that OsIQD14-mediated MT reordering is regulated by specifically affecting MT dynamics, and ectopic expression of OsIQD14 in Arabidopsis could change the cell shape both in pavement cells and in hypocotyl cells. Additionally, OsIQD14 activity is tightly controlled by calmodulin proteins, providing an alternative way to modify the OsIQD14 activity. Our results indicate that OsIQD14 acts as a key factor in regulating MT rearrangements in rice hull cells and hence the grain shape, and allows effective local cell shape manipulation to improve the rice yield trait.
Collapse
Affiliation(s)
- BaoJun Yang
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | - Jos R. Wendrich
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
- Laboratory of BiochemistryWageningen UniversityWageningenThe Netherlands
| | - Bert De Rybel
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | - Dolf Weijers
- Laboratory of BiochemistryWageningen UniversityWageningenThe Netherlands
| | - Hong‐Wei Xue
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
- School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
27
|
Xiaoxia L, Zhang J, Jinkai S, Ying L, Guodong R. The Salix SmSPR1 Involved in Light-Regulated Cell Expansion by Modulating Microtubule Arrangement. Front Cell Dev Biol 2019; 7:309. [PMID: 31850345 PMCID: PMC6892981 DOI: 10.3389/fcell.2019.00309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/13/2019] [Indexed: 12/14/2022] Open
Abstract
Light signaling and cortical microtubule (MT) arrays are essential to the anisotropic growth of plant cells. Microtubule-associated proteins (MAPs) function as regulators that mediate plant cell expansion or elongation by altering the arrangements of the MT arrays. However, current understanding of the molecular mechanism of MAPs in relation to light to regulate cell expansion or elongation is limited. Here, we show that the MPS SPR1 is involved in light-regulated directional cell expansion by modulating microtubule arrangement. Overexpression of SmSPR1 in Arabidopsis results in right-handed helical orientation of hypocotyls in dark-grown etiolated seedlings, whereas the phenotype of transgenic plants was indistinguishable from those of wild-type plants under light conditions. Phenotypic characterization of the transgenic plants showed reduced anisotropic growth and left-handed helical MT arrays in etiolated hypocotyl cells. Protein interaction assays revealed that SPR1, CSN5A (subunits of COP9 signalosome, a negative regulator of photomorphogenesis), and ELONGATED HYPOCOTYL 5 (HY5, a transcription factor that promotes photomorphogenesis) interacted with each other in vivo. The phenotype of Arabidopsis AtSPR1-overexpressing transgenic lines was similar to that of SmSPR1-overexpressing transgenic plants, and overexpression of Salix SmSPR1 can rescue the spr1 mutant phenotype, thereby revealing the function of SPR1 in plants.
Collapse
Affiliation(s)
- Liu Xiaoxia
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Jianguo Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.,Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China.,Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Sui Jinkai
- Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Luo Ying
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Rao Guodong
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
28
|
Saruta M, Takada Y, Yamashita KI, Sayama T, Komatsu K. A QTL associated with high seed coat cracking rate of a leading Japanese soybean variety. BREEDING SCIENCE 2019; 69:665-671. [PMID: 31988631 PMCID: PMC6977449 DOI: 10.1270/jsbbs.19094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/22/2019] [Indexed: 06/01/2023]
Abstract
Seed coat cracking in soybeans [Glycine max (L). Merr.] leads to commercial and agronomic losses. The Japanese elite soybean cultivar 'Fukuyutaka' is often used as a parent for breeding, but its high rate of seed coat cracking is an obstacle to its further use in breeding programs. To establish a DNA marker-assisted selection system for seed coat cracking, genetic factors related to high rates of seed coat cracking were surveyed, and a quantitative trait locus (QTL) with a stable effect on seed coat cracking in both years of a two-year replication experiment was detected on chromosome 20. Comparison of a set of near-isogenic lines (NILs) around this locus verified that the presence of the 'Fukuyutaka' allele significantly increased seed coat cracking in the kernel. The locus is located in a genomic region spanning 3.2 Mb. Marker-assisted selection for the locus will improve the selection efficiency of 'Fukuyutaka'-derived breeding populations.
Collapse
Affiliation(s)
- Masayasu Saruta
- Western Region Agricultural Research Center Shikoku Research Station, National Agriculture and Food Research Organization,
1-3-1 Sen-yu, Zentsuji, Kagawa 765-8505,
Japan
| | - Yoshitake Takada
- Western Region Agricultural Research Center Shikoku Research Station, National Agriculture and Food Research Organization,
1-3-1 Sen-yu, Zentsuji, Kagawa 765-8505,
Japan
| | - Ken-ichiro Yamashita
- Western Region Agricultural Research Center Shikoku Research Station, National Agriculture and Food Research Organization,
1-3-1 Sen-yu, Zentsuji, Kagawa 765-8505,
Japan
| | - Takashi Sayama
- Western Region Agricultural Research Center Shikoku Research Station, National Agriculture and Food Research Organization,
1-3-1 Sen-yu, Zentsuji, Kagawa 765-8505,
Japan
| | - Kunihiko Komatsu
- Western Region Agricultural Research Center Shikoku Research Station, National Agriculture and Food Research Organization,
1-3-1 Sen-yu, Zentsuji, Kagawa 765-8505,
Japan
| |
Collapse
|
29
|
Wang W, Pan Q, Tian B, He F, Chen Y, Bai G, Akhunova A, Trick HN, Akhunov E. Gene editing of the wheat homologs of TONNEAU1-recruiting motif encoding gene affects grain shape and weight in wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:251-264. [PMID: 31219637 PMCID: PMC6851855 DOI: 10.1111/tpj.14440] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/02/2019] [Accepted: 06/10/2019] [Indexed: 05/08/2023]
Abstract
Grain size and weight are important components of a suite of yield-related traits in crops. Here, we showed that the CRISPR-Cas9 gene editing of TaGW7, a homolog of rice OsGW7 encoding a TONNEAU1-recruiting motif (TRM) protein, affects grain shape and weight in allohexaploid wheat. By editing the TaGW7 homoeologs in the B and D genomes, we showed that mutations in either of the two or both genomes increased the grain width and weight but reduced the grain length. The effect sizes of mutations in the TaGW7 gene homoeologs coincided with the relative levels of their expression in the B and D genomes. The effects of gene editing on grain morphology and weight traits were dosage dependent with the double-copy mutant showing larger effect than the respective single copy mutants. The TaGW7-centered gene co-expression network indicated that this gene is involved in the pathways regulating cell division and organ growth, also confirmed by the cellular co-localization of TaGW7 with α- and β-tubulin proteins, the building blocks of microtubule arrays. The analyses of exome capture data in tetraploid domesticated and wild emmer, and hexaploid wheat revealed the loss of diversity around TaGW7-associated with domestication selection, suggesting that TaGW7 is likely to play an important role in the evolution of yield component traits in wheat. Our study showed how integrating CRISPR-Cas9 system with cross-species comparison can help to uncover the function of a gene fixed in wheat for allelic variants targeted by domestication selection and select targets for engineering new gene variants for crop improvement.
Collapse
Affiliation(s)
- Wei Wang
- Department of Plant PathologyKansas State UniversityManhattanKSUSA
| | - Qianli Pan
- Department of Plant PathologyKansas State UniversityManhattanKSUSA
| | - Bin Tian
- Department of Plant PathologyKansas State UniversityManhattanKSUSA
| | - Fei He
- Department of Plant PathologyKansas State UniversityManhattanKSUSA
| | - Yueying Chen
- Department of Plant PathologyKansas State UniversityManhattanKSUSA
| | - Guihua Bai
- USDA‐ARS Hard Winter Wheat Genetics Research UnitManhattanKSUSA
| | - Alina Akhunova
- Department of Plant PathologyKansas State UniversityManhattanKSUSA
- Integrated Genomics FacilityKansas State UniversityManhattanKSUSA
| | - Harold N. Trick
- Department of Plant PathologyKansas State UniversityManhattanKSUSA
| | - Eduard Akhunov
- Department of Plant PathologyKansas State UniversityManhattanKSUSA
| |
Collapse
|
30
|
Gardiner J. Posttranslational modification of plant microtubules. PLANT SIGNALING & BEHAVIOR 2019; 14:e1654818. [PMID: 31564233 PMCID: PMC6768230 DOI: 10.1080/15592324.2019.1654818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/01/2019] [Accepted: 08/07/2019] [Indexed: 06/10/2023]
Abstract
Microtubules in eukaryotes have a number of posttranslational modifications catalyzed by an array of enzymes. These modifications alter the properties of the microtubules and the ways in which they interact with partner proteins. In recent years many of the enzymes which modify the microtubules have been identified in animals and protozoans. Relatively little work has been done on their function in plants, however. This study uses bioinformatics to identify homologues of these enzymes in plant species from the green alga Chlamydomonas reiinhardtii to the angiosperm Arabidopsis thaliana. Many are conserved and this gives insight into the likely future direction of this dynamic field.
Collapse
|
31
|
Mitra D, Klemm S, Kumari P, Quegwer J, Möller B, Poeschl Y, Pflug P, Stamm G, Abel S, Bürstenbinder K. Microtubule-associated protein IQ67 DOMAIN5 regulates morphogenesis of leaf pavement cells in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:529-543. [PMID: 30407556 DOI: 10.1101/268466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/22/2018] [Indexed: 05/23/2023]
Abstract
Plant microtubules form a highly dynamic intracellular network with important roles for regulating cell division, cell proliferation, and cell morphology. Their organization and dynamics are co-ordinated by various microtubule-associated proteins (MAPs) that integrate environmental and developmental stimuli to fine-tune and adjust cytoskeletal arrays. IQ67 DOMAIN (IQD) proteins recently emerged as a class of plant-specific MAPs with largely unknown functions. Here, using a reverse genetics approach, we characterize Arabidopsis IQD5 in terms of its expression domains, subcellular localization, and biological functions. We show that IQD5 is expressed mostly in vegetative tissues, where it localizes to cortical microtubule arrays. Our phenotypic analysis of iqd5 loss-of-function lines reveals functions of IQD5 in pavement cell (PC) shape morphogenesis. Histochemical analysis of cell wall composition further suggests reduced rates of cellulose deposition in anticlinal cell walls, which correlate with reduced anisotropic expansion. Lastly, we demonstrate IQD5-dependent recruitment of calmodulin calcium sensors to cortical microtubule arrays and provide first evidence for important roles for calcium in regulation of PC morphogenesis. Our work identifies IQD5 as a novel player in PC shape regulation and, for the first time, links calcium signaling to developmental processes that regulate anisotropic growth in PCs.
Collapse
Affiliation(s)
- Dipannita Mitra
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry (IPB),Halle (Saale), Germany
| | - Sandra Klemm
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry (IPB),Halle (Saale), Germany
| | - Pratibha Kumari
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry (IPB),Halle (Saale), Germany
| | - Jakob Quegwer
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry (IPB),Halle (Saale), Germany
| | - Birgit Möller
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Yvonne Poeschl
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- iDiv, German Integrative Research Center for Biodiversity, Leipzig, Germany
| | - Paul Pflug
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry (IPB),Halle (Saale), Germany
| | - Gina Stamm
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry (IPB),Halle (Saale), Germany
| | - Steffen Abel
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry (IPB),Halle (Saale), Germany
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Katharina Bürstenbinder
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry (IPB),Halle (Saale), Germany
| |
Collapse
|
32
|
Yoon JT, Ahn HK, Pai HS. The subfamily II catalytic subunits of protein phosphatase 2A (PP2A) are involved in cortical microtubule organization. PLANTA 2018; 248:1551-1567. [PMID: 30191298 DOI: 10.1007/s00425-018-3000-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 08/30/2018] [Indexed: 05/07/2023]
Abstract
The subfamily II catalytic subunits of protein phosphatase 2A (PP2A) regulate the cortical microtubule dynamics in Arabidopsis, through interaction with TONNEAU2 (TON2)/FASS and modulation of α-tubulin dephosphorylation. Protein phosphatase 2A is a major protein phosphatase in eukaryotes that dephosphorylates many different substrates to regulate their function. PP2A is assembled into a heterotrimeric complex of scaffolding A subunit, regulatory B subunit, and catalytic C subunit. Plant PP2A catalytic C subunit (PP2AC) isoforms are classified into two subfamilies. In this study, we investigated the cellular functions of the Arabidopsis PP2AC subfamily II genes PP2AC-3 and PP2AC-4, particularly regarding the cortical microtubule (MT) organization. PP2AC-3 and PP2AC-4 strongly interacted with the B'' regulatory subunit TON2. Simultaneous silencing of PP2AC-3 and PP2AC-4 by virus-induced gene silencing (PP2AC-3,4 VIGS) significantly altered plant morphology in Arabidopsis, increasing cell numbers in leaves and stems. The leaf epidermis of PP2AC-3,4 VIGS plants largely lost its jigsaw-puzzle shape and exhibited reduced trichome branch numbers. VIGS of PP2AC-3,4 in Arabidopsis transgenic plants that expressed GFP-fused β-tubulin 6 isoform (GFP-TUB6) for the visualization of MTs caused a reduction in the cortical MT array density in the pavement cells. VIGS of TON2 also led to similar cellular phenotypes and cortical MT patterns compared with those after VIGS of PP2AC-3,4, suggesting that PP2AC-3,4 and their interaction partner TON2 play a role in cortical MT organization in leaf epidermal cells. Furthermore, silencing of PP2AC-3,4 did not affect salt-induced phosphorylation of α-tubulin but delayed its dephosphorylation after salt removal. The reappearance of cortical MT arrays after salt removal was impaired in PP2AC-3,4 VIGS plants. These results suggest an involvement of PP2AC subfamily II in the regulation of cortical MT dynamics under normal and salt-stress conditions in Arabidopsis.
Collapse
Affiliation(s)
- Joong-Tak Yoon
- Department of Systems Biology, Yonsei University, Seoul, 03722, Korea
| | - Hee-Kyung Ahn
- Department of Systems Biology, Yonsei University, Seoul, 03722, Korea
- The Sainsbury Laboratory (TSL), Norwich Research Park, Norwich, NR4 7UH, UK
| | - Hyun-Sook Pai
- Department of Systems Biology, Yonsei University, Seoul, 03722, Korea.
| |
Collapse
|
33
|
Yi P, Goshima G. Microtubule nucleation and organization without centrosomes. CURRENT OPINION IN PLANT BIOLOGY 2018; 46:1-7. [PMID: 29981930 DOI: 10.1016/j.pbi.2018.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/11/2018] [Accepted: 06/15/2018] [Indexed: 06/08/2023]
Abstract
Centrosomes play various critical roles in animal cells such as microtubule nucleation and stabilization, mitotic spindle morphogenesis, and spindle orientation. Land plants have lost centrosomes and yet must execute many of these functions. Recent studies have revealed the crucial roles played by morphologically distinct cytoplasmic microtubule-organizing centers (MTOCs) in initiating spindle bipolarity and maintaining spindle orientation robustness. These MTOCs resemble centrosomes in many aspects, implying an evolutionary divergence of MT-organizing structures in plants. However, their functions rely on conserved nucleation and amplification mechanisms, indicating a similarity in MT network establishment between animals and plants. Moreover, recent characterization of a plant-specific MT minus-end tracking protein suggests that plants have developed functionally equivalent modules to stabilize and organize MTs at minus ends. These findings support the theory that plants overcome centrosome loss by utilizing modified but substantially conserved mechanisms to organize MT networks.
Collapse
Affiliation(s)
- Peishan Yi
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan.
| | - Gohta Goshima
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan.
| |
Collapse
|
34
|
Martinez P, Allsman LA, Brakke KA, Hoyt C, Hayes J, Liang H, Neher W, Rui Y, Roberts AM, Moradifam A, Goldstein B, Anderson CT, Rasmussen CG. Predicting Division Planes of Three-Dimensional Cells by Soap-Film Minimization. THE PLANT CELL 2018; 30:2255-2266. [PMID: 30150312 DOI: 10.1101/199885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/24/2018] [Accepted: 08/23/2018] [Indexed: 05/28/2023]
Abstract
One key aspect of cell division in multicellular organisms is the orientation of the division plane. Proper division plane establishment contributes to normal plant body organization. To determine the importance of cell geometry in division plane orientation, we designed a three-dimensional probabilistic mathematical model to directly test the century-old hypothesis that cell divisions mimic soap-film minima. According to this hypothesis, daughter cells have equal volume and the division plane occurs where the surface area is at a minimum. We compared predicted division planes to a plant microtubule array that marks the division site, the preprophase band (PPB). PPB location typically matched one of the predicted divisions. Predicted divisions offset from the PPB occurred when a neighboring cell wall or PPB was directly adjacent to the predicted division site to avoid creating a potentially structurally unfavorable four-way junction. By comparing divisions of differently shaped plant cells (maize [Zea mays] epidermal cells and developing ligule cells and Arabidopsis thaliana guard cells) and animal cells (Caenorhabditis elegans embryonic cells) to divisions simulated in silico, we demonstrate the generality of this model to accurately predict in vivo division. This powerful model can be used to separate the contribution of geometry from mechanical stresses or developmental regulation in predicting division plane orientation.
Collapse
Affiliation(s)
- Pablo Martinez
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, California 92521
- Biochemistry and Molecular Biology Graduate Program, University of California, Riverside, California 92521
- Institute of Integrative Genome Biology, University of California, Riverside, California 92521
| | - Lindy A Allsman
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, California 92521
- Institute of Integrative Genome Biology, University of California, Riverside, California 92521
| | - Kenneth A Brakke
- Department of Mathematics, Susquehanna University, Selinsgrove, Pennsylvania 17870
| | - Christopher Hoyt
- Center for Plant Cell Biology NSF-REU, Harvey Mudd College, Claremont, California 91711
| | - Jordan Hayes
- Institute of Integrative Genome Biology, University of California, Riverside, California 92521
| | - Hong Liang
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, California 92521
| | - Wesley Neher
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, California 92521
| | - Yue Rui
- Department of Biology, The Pennsylvania State University, State College, Pennsylvania 16801
| | - Allyson M Roberts
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Amir Moradifam
- Department of Mathematics, University of California, Riverside, California 92521
| | - Bob Goldstein
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Charles T Anderson
- Department of Biology, The Pennsylvania State University, State College, Pennsylvania 16801
| | - Carolyn G Rasmussen
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, California 92521
- Institute of Integrative Genome Biology, University of California, Riverside, California 92521
| |
Collapse
|
35
|
Martinez P, Allsman LA, Brakke KA, Hoyt C, Hayes J, Liang H, Neher W, Rui Y, Roberts AM, Moradifam A, Goldstein B, Anderson CT, Rasmussen CG. Predicting Division Planes of Three-Dimensional Cells by Soap-Film Minimization. THE PLANT CELL 2018; 30:2255-2266. [PMID: 30150312 PMCID: PMC6241264 DOI: 10.1105/tpc.18.00401] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/24/2018] [Accepted: 08/23/2018] [Indexed: 05/22/2023]
Abstract
One key aspect of cell division in multicellular organisms is the orientation of the division plane. Proper division plane establishment contributes to normal plant body organization. To determine the importance of cell geometry in division plane orientation, we designed a three-dimensional probabilistic mathematical model to directly test the century-old hypothesis that cell divisions mimic soap-film minima. According to this hypothesis, daughter cells have equal volume and the division plane occurs where the surface area is at a minimum. We compared predicted division planes to a plant microtubule array that marks the division site, the preprophase band (PPB). PPB location typically matched one of the predicted divisions. Predicted divisions offset from the PPB occurred when a neighboring cell wall or PPB was directly adjacent to the predicted division site to avoid creating a potentially structurally unfavorable four-way junction. By comparing divisions of differently shaped plant cells (maize [Zea mays] epidermal cells and developing ligule cells and Arabidopsis thaliana guard cells) and animal cells (Caenorhabditis elegans embryonic cells) to divisions simulated in silico, we demonstrate the generality of this model to accurately predict in vivo division. This powerful model can be used to separate the contribution of geometry from mechanical stresses or developmental regulation in predicting division plane orientation.
Collapse
Affiliation(s)
- Pablo Martinez
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, California 92521
- Biochemistry and Molecular Biology Graduate Program, University of California, Riverside, California 92521
- Institute of Integrative Genome Biology, University of California, Riverside, California 92521
| | - Lindy A Allsman
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, California 92521
- Institute of Integrative Genome Biology, University of California, Riverside, California 92521
| | - Kenneth A Brakke
- Department of Mathematics, Susquehanna University, Selinsgrove, Pennsylvania 17870
| | - Christopher Hoyt
- Center for Plant Cell Biology NSF-REU, Harvey Mudd College, Claremont, California 91711
| | - Jordan Hayes
- Institute of Integrative Genome Biology, University of California, Riverside, California 92521
| | - Hong Liang
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, California 92521
| | - Wesley Neher
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, California 92521
| | - Yue Rui
- Department of Biology, The Pennsylvania State University, State College, Pennsylvania 16801
| | - Allyson M Roberts
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Amir Moradifam
- Department of Mathematics, University of California, Riverside, California 92521
| | - Bob Goldstein
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Charles T Anderson
- Department of Biology, The Pennsylvania State University, State College, Pennsylvania 16801
| | - Carolyn G Rasmussen
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, California 92521
- Institute of Integrative Genome Biology, University of California, Riverside, California 92521
| |
Collapse
|
36
|
Adamakis IDS, Malea P, Panteris E. The effects of Bisphenol A on the seagrass Cymodocea nodosa: Leaf elongation impairment and cytoskeleton disturbance. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 157:431-440. [PMID: 29655159 DOI: 10.1016/j.ecoenv.2018.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 04/02/2018] [Accepted: 04/04/2018] [Indexed: 05/12/2023]
Abstract
Bisphenol A (BPA) is an emerging pollutant of environmental concern, classified as "moderately toxic" and "toxic", causing adverse effects on aquatic biota. Although information about BPA toxicity on aquatic fauna is available, the data about BPA effects on aquatic flora remain scarce, missing for marine macrophytes. The effects of environmentally relevant BPA concentrations (ranging from 0.03 to 3 μg L-1) on juvenile leaf elongation and the cytoskeleton (microtubules, MTs and actin filaments, AFs) were studied in the seagrass Cymodocea nodosa for 1-10 days. The suitability of cytoskeleton disturbance and leaf elongation impairment as "biomarkers" for BPA stress were tested. The highest BPA concentrations (0.3, 0.5, 1 and 3 μg L-1) affected significantly leaf elongation from the onset of the experiment, while defects of the cytoskeleton were observed even at lower concentrations. In particular, MTs were initially disrupted (i.e. "lowest observed effect concentrations", LOECs) at 0.1 μg L-1, while AFs were damaged even at 0.03 μg L-1. AFs appeared thus to be more sensitive to lower BPA concentrations, while there was a correlation between leaf elongation impairment and MT defects. Thus, AF damages, MT disruption and leaf elongation impairment in C. nodosa, in this particular order, appear to be sensitive "biomarkers" of BPA stress, at the above environmentally relevant BPA concentrations.
Collapse
Affiliation(s)
| | - Paraskevi Malea
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Macedonia, Greece.
| | - Emmanuel Panteris
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Macedonia, Greece
| |
Collapse
|
37
|
Liang H, Zhang Y, Martinez P, Rasmussen CG, Xu T, Yang Z. The Microtubule-Associated Protein IQ67 DOMAIN5 Modulates Microtubule Dynamics and Pavement Cell Shape. PLANT PHYSIOLOGY 2018; 177:1555-1568. [PMID: 29976837 PMCID: PMC6084666 DOI: 10.1104/pp.18.00558] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 06/26/2018] [Indexed: 05/10/2023]
Abstract
The dynamic arrangement of cortical microtubules (MTs) plays a pivotal role in controlling cell growth and shape formation in plants, but the mechanisms by which cortical MTs are organized to regulate these processes are not well characterized. In particular, the dynamic behavior of cortical MTs is critical for their spatial organization, yet the molecular mechanisms controlling MT dynamics remain poorly understood. In this study, we used the puzzle piece-shaped pavement cells of Arabidopsis (Arabidopsis thaliana) leaves as a model system in which to study cortical MT organization. We isolated an ethyl methanesulfonate mutant with reduced interdigitation of pavement cells in cotyledons. This line carried a mutation in IQ67 DOMAIN5 (IQD5), which encodes a member of the plant-specific IQ motif protein family. Live-cell imaging and biochemical analyses demonstrated that IQD5 binds to MTs and promotes MT assembly. MT-depolymerizing drug treatment and in vivo MT dynamics assays suggested that IQD5 functions to stabilize MTs. Hence, our findings provide genetic, cell biological, and biochemical evidence that IQD5 regulates MT dynamics that affect MT organization and subsequent cell shape formation.
Collapse
Affiliation(s)
- Hong Liang
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, People's Republic of China
- Center for Plant Cell Biology, Institute of Integrated Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, California 92521
| | - Yi Zhang
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, People's Republic of China
- University of the Chinese Academy of Sciences, Shanghai 201602, People's Republic of China
| | - Pablo Martinez
- Center for Plant Cell Biology, Institute of Integrated Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, California 92521
| | - Carolyn G Rasmussen
- Center for Plant Cell Biology, Institute of Integrated Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, California 92521
| | - Tongda Xu
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, People's Republic of China
| | - Zhenbiao Yang
- Center for Plant Cell Biology, Institute of Integrated Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, California 92521
| |
Collapse
|
38
|
Mamedes-Rodrigues TC, Batista DS, Vieira NM, Matos EM, Fernandes D, Nunes-Nesi A, Cruz CD, Viccini LF, Nogueira FTS, Otoni WC. Regenerative potential, metabolic profile, and genetic stability of Brachypodium distachyon embryogenic calli as affected by successive subcultures. PROTOPLASMA 2018; 255:655-667. [PMID: 29080994 DOI: 10.1007/s00709-017-1177-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 10/17/2017] [Indexed: 06/07/2023]
Abstract
Brachypodium distachyon, a model species for forage grasses and cereal crops, has been used in studies seeking improved biomass production and increased crop yield for biofuel production purposes. Somatic embryogenesis (SE) is the morphogenetic pathway that supports in vitro regeneration of such species. However, there are gaps in terms of studies on the metabolic profile and genetic stability along successive subcultures. The physiological variables and the metabolic profile of embryogenic callus (EC) and embryogenic structures (ES) from successive subcultures (30, 60, 90, 120, 150, 180, 210, 240, and 360-day-old subcultures) were analyzed. Canonical discriminant analysis separated EC into three groups: 60, 90, and 120 to 240 days. EC with 60 and 90 days showed the highest regenerative potential. EC grown for 90 days and submitted to SE induction in 2 mg L-1 of kinetin-supplemented medium was the highest ES producer. The metabolite profiles of non-embryogenic callus (NEC), EC, and ES submitted to principal component analysis (PCA) separated into two groups: 30 to 240- and 360-day-old calli. The most abundant metabolites for these groups were malonic acid, tryptophan, asparagine, and erythrose. PCA of ES also separated ages into groups and ranked 60- and 90-day-old calli as the best for use due to their high levels of various metabolites. The key metabolites that distinguished the ES groups were galactinol, oxaloacetate, tryptophan, and valine. In addition, significant secondary metabolites (e.g., caffeoylquinic, cinnamic, and ferulic acids) were important in the EC phase. Ferulic, cinnamic, and phenylacetic acids marked the decreases in the regenerative capacity of ES in B. distachyon. Decreased accumulations of the amino acids aspartic acid, asparagine, tryptophan, and glycine characterized NEC, suggesting that these metabolites are indispensable for the embryogenic competence in B. distachyon. The genetic stability of the regenerated plants was evaluated by flow cytometry, showing that ploidy instability in regenerated plants from B. distachyon calli is not correlated with callus age. Taken together, our data indicated that the loss of regenerative capacity in B. distachyon EC occurs after 120 days of subcultures, demonstrating that the use of EC can be extended to 90 days.
Collapse
Affiliation(s)
- T C Mamedes-Rodrigues
- Laboratório de Cultura de Tecidos/BIOAGRO, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Campus Universitário, Avenida Peter Henry Rolfs s/n, Viçosa, MG, 36570-900, Brazil
| | - D S Batista
- Laboratório de Cultura de Tecidos/BIOAGRO, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Campus Universitário, Avenida Peter Henry Rolfs s/n, Viçosa, MG, 36570-900, Brazil
| | - N M Vieira
- Departamento de Microbiologia/Núcleo de Análises de Biomoléculas-NUBIOMOL, Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n, Viçosa, MG, 36570-900, Brazil
| | - E M Matos
- Laboratório de Cultura de Tecidos/BIOAGRO, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Campus Universitário, Avenida Peter Henry Rolfs s/n, Viçosa, MG, 36570-900, Brazil
| | - D Fernandes
- Laboratório de Cultura de Tecidos/BIOAGRO, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Campus Universitário, Avenida Peter Henry Rolfs s/n, Viçosa, MG, 36570-900, Brazil
| | - A Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n, Viçosa, MG, 36570-900, Brazil
| | - C D Cruz
- Laboratório de Bioinformática/BIOAGRO, Departamento de Biologia Geral, Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n, Viçosa, MG, 35670-900, Brazil
| | - L F Viccini
- Laboratório de Genética e Biotecnologia, Departamento de Ciências Biológicas, Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer, s/n, Martelos, Juiz de Fora, MG, 36036-330, Brazil
| | - F T S Nogueira
- Laboratório de Genética Molecular do Desenvolvimento Vegetal (LGMDV), Universidade de São Paulo / ESALQ, Av. Pádua Dias, Piracicaba, SP, 13418-900, Brazil
| | - W C Otoni
- Laboratório de Cultura de Tecidos/BIOAGRO, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Campus Universitário, Avenida Peter Henry Rolfs s/n, Viçosa, MG, 36570-900, Brazil.
| |
Collapse
|
39
|
Yagi N, Matsunaga S, Hashimoto T. Insights into cortical microtubule nucleation and dynamics in Arabidopsis leaf cells. J Cell Sci 2018; 131:jcs.203778. [PMID: 28615412 DOI: 10.1242/jcs.203778] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/12/2017] [Indexed: 12/16/2022] Open
Abstract
Plant microtubules (MTs) are nucleated from the γ-tubulin-containing ring complex (γTuRC). In cortical MT arrays of interphase plant cells, γTuRC is preferentially recruited to the lattice of preexisting MTs, where it initiates MT nucleation in either a branch- or bundle-forming manner, or dissociates without mediating nucleation. In this study, we analyzed how γTuRCs influence MT nucleation and dynamics in cotyledon pavement cells of Arabidopsis thaliana We found that γTuRC nucleated MTs at angles of ∼40° toward the plus-ends of existing MTs, or in predominantly antiparallel bundles. A small fraction of γTuRCs was motile and tracked MT ends. When γTuRCs decorated the depolymerizing MT end, they reduced the depolymerization rate. Non-nucleating γTuRCs associated with the MT lattice promoted MT regrowth after a depolymerization phase. These results suggest that γTuRCs not only nucleate MT growth but also regulate MT dynamics by stabilizing MT ends. On rare occasions, a non-MT-associated γTuRC was pushed in the direction of the MT minus-end, while nucleating a new MT, suggesting that the polymerizing plus-end is anchored to the plasma membrane.
Collapse
Affiliation(s)
- Noriyoshi Yagi
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Sachihiro Matsunaga
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Takashi Hashimoto
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
40
|
Feiguelman G, Fu Y, Yalovsky S. ROP GTPases Structure-Function and Signaling Pathways. PLANT PHYSIOLOGY 2018; 176:57-79. [PMID: 29150557 PMCID: PMC5761820 DOI: 10.1104/pp.17.01415] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/13/2017] [Indexed: 05/19/2023]
Abstract
Interactions between receptor like kinases and guanyl nucleotide exchange factors together with identification of effector proteins reveal putative ROP GTPases signaling cascades.
Collapse
Affiliation(s)
- Gil Feiguelman
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ying Fu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shaul Yalovsky
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
41
|
Liu Y, Visetsouk M, Mynlieff M, Qin H, Lechtreck KF, Yang P. H +- and Na +- elicited rapid changes of the microtubule cytoskeleton in the biflagellated green alga Chlamydomonas. eLife 2017; 6:26002. [PMID: 28875932 PMCID: PMC5779235 DOI: 10.7554/elife.26002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 09/05/2017] [Indexed: 12/27/2022] Open
Abstract
Although microtubules are known for dynamic instability, the dynamicity is considered to be tightly controlled to support a variety of cellular processes. Yet diverse evidence suggests that this is not applicable to Chlamydomonas, a biflagellate fresh water green alga, but intense autofluorescence from photosynthesis pigments has hindered the investigation. By expressing a bright fluorescent reporter protein at the endogenous level, we demonstrate in real time discreet sweeping changes in algal microtubules elicited by rises of intracellular H+ and Na+. These results from this model organism with characteristics of animal and plant cells provide novel explanations regarding how pH may drive cellular processes; how plants may respond to, and perhaps sense stresses; and how organisms with a similar sensitive cytoskeleton may be susceptible to environmental changes.
Collapse
Affiliation(s)
- Yi Liu
- Department of Biological Sciences, Marquette University, Milwaukee, United States
| | - Mike Visetsouk
- Department of Biological Sciences, Marquette University, Milwaukee, United States
| | - Michelle Mynlieff
- Department of Biological Sciences, Marquette University, Milwaukee, United States
| | - Hongmin Qin
- Department of Biology, Texas A&M University, College Station, United States
| | - Karl F Lechtreck
- Department of Cellular Biology, University of Georgia, Athen, United States
| | - Pinfen Yang
- Department of Biological Sciences, Marquette University, Milwaukee, United States
| |
Collapse
|
42
|
Plattner H. Evolutionary Cell Biology of Proteins from Protists to Humans and Plants. J Eukaryot Microbiol 2017; 65:255-289. [PMID: 28719054 DOI: 10.1111/jeu.12449] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/04/2017] [Accepted: 07/07/2017] [Indexed: 01/10/2023]
Abstract
During evolution, the cell as a fine-tuned machine had to undergo permanent adjustments to match changes in its environment, while "closed for repair work" was not possible. Evolution from protists (protozoa and unicellular algae) to multicellular organisms may have occurred in basically two lineages, Unikonta and Bikonta, culminating in mammals and angiosperms (flowering plants), respectively. Unicellular models for unikont evolution are myxamoebae (Dictyostelium) and increasingly also choanoflagellates, whereas for bikonts, ciliates are preferred models. Information accumulating from combined molecular database search and experimental verification allows new insights into evolutionary diversification and maintenance of genes/proteins from protozoa on, eventually with orthologs in bacteria. However, proteins have rarely been followed up systematically for maintenance or change of function or intracellular localization, acquirement of new domains, partial deletion (e.g. of subunits), and refunctionalization, etc. These aspects are discussed in this review, envisaging "evolutionary cell biology." Protozoan heritage is found for most important cellular structures and functions up to humans and flowering plants. Examples discussed include refunctionalization of voltage-dependent Ca2+ channels in cilia and replacement by other types during evolution. Altogether components serving Ca2+ signaling are very flexible throughout evolution, calmodulin being a most conservative example, in contrast to calcineurin whose catalytic subunit is lost in plants, whereas both subunits are maintained up to mammals for complex functions (immune defense and learning). Domain structure of R-type SNAREs differs in mono- and bikonta, as do Ca2+ -dependent protein kinases. Unprecedented selective expansion of the subunit a which connects multimeric base piece and head parts (V0, V1) of H+ -ATPase/pump may well reflect the intriguing vesicle trafficking system in ciliates, specifically in Paramecium. One of the most flexible proteins is centrin when its intracellular localization and function throughout evolution is traced. There are many more examples documenting evolutionary flexibility of translation products depending on requirements and potential for implantation within the actual cellular context at different levels of evolution. From estimates of gene and protein numbers per organism, it appears that much of the basic inventory of protozoan precursors could be transmitted to highest eukaryotic levels, with some losses and also with important additional "inventions."
Collapse
Affiliation(s)
- Helmut Plattner
- Department of Biology, University of Konstanz, P. O. Box M625, Konstanz, 78457, Germany
| |
Collapse
|
43
|
Takatani S, Ozawa S, Yagi N, Hotta T, Hashimoto T, Takahashi Y, Takahashi T, Motose H. Directional cell expansion requires NIMA-related kinase 6 (NEK6)-mediated cortical microtubule destabilization. Sci Rep 2017; 7:7826. [PMID: 28798328 PMCID: PMC5552743 DOI: 10.1038/s41598-017-08453-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/12/2017] [Indexed: 11/09/2022] Open
Abstract
Plant cortical microtubules align perpendicular to the growth axis to determine the direction of cell growth. However, it remains unclear how plant cells form well-organized cortical microtubule arrays in the absence of a centrosome. In this study, we investigated the functions of Arabidopsis NIMA-related kinase 6 (NEK6), which regulates microtubule organization during anisotropic cell expansion. Quantitative analysis of hypocotyl cell growth in the nek6-1 mutant demonstrated that NEK6 suppresses ectopic outgrowth and promotes cell elongation in different regions of the hypocotyl. Loss of NEK6 function led to excessive microtubule waving and distortion, implying that NEK6 suppresses the aberrant cortical microtubules. Live cell imaging showed that NEK6 localizes to the microtubule lattice and to the shrinking plus and minus ends of microtubules. In agreement with this observation, the induced overexpression of NEK6 reduced and disorganized cortical microtubules and suppressed cell elongation. Furthermore, we identified five phosphorylation sites in β-tubulin that serve as substrates for NEK6 in vitro. Alanine substitution of the phosphorylation site Thr166 promoted incorporation of mutant β-tubulin into microtubules. Taken together, these results suggest that NEK6 promotes directional cell growth through phosphorylation of β-tubulin and the resulting destabilization of cortical microtubules.
Collapse
Affiliation(s)
- Shogo Takatani
- Department of Biological Science, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Okayama, 700-8530, Japan
| | - Shinichiro Ozawa
- Department of Biological Science, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Okayama, 700-8530, Japan.,Japan Science and Technology Agency, 4-1-8 Kawaguchi, Saitama, 332-0012, Japan
| | - Noriyoshi Yagi
- Graduate School of Biological Science, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan.,Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba, 278-8510, Japan
| | - Takashi Hotta
- Graduate School of Biological Science, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan.,Department of Embryology, Carnegie Institution for Science, 3520 San Martin Drive, Baltimore, MD, 21218, USA
| | - Takashi Hashimoto
- Graduate School of Biological Science, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Yuichiro Takahashi
- Department of Biological Science, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Okayama, 700-8530, Japan.,Japan Science and Technology Agency, 4-1-8 Kawaguchi, Saitama, 332-0012, Japan
| | - Taku Takahashi
- Department of Biological Science, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Okayama, 700-8530, Japan
| | - Hiroyasu Motose
- Department of Biological Science, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Okayama, 700-8530, Japan.
| |
Collapse
|
44
|
Rebocho AB, Southam P, Kennaway JR, Bangham JA, Coen E. Generation of shape complexity through tissue conflict resolution. eLife 2017; 6:e20156. [PMID: 28166865 PMCID: PMC5295819 DOI: 10.7554/elife.20156] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 01/02/2017] [Indexed: 12/22/2022] Open
Abstract
Out-of-plane tissue deformations are key morphogenetic events during plant and animal development that generate 3D shapes, such as flowers or limbs. However, the mechanisms by which spatiotemporal patterns of gene expression modify cellular behaviours to generate such deformations remain to be established. We use the Snapdragon flower as a model system to address this problem. Combining cellular analysis with tissue-level modelling, we show that an orthogonal pattern of growth orientations plays a key role in generating out-of-plane deformations. This growth pattern is most likely oriented by a polarity field, highlighted by PIN1 protein localisation, and is modulated by dorsoventral gene activity. The orthogonal growth pattern interacts with other patterns of differential growth to create tissue conflicts that shape the flower. Similar shape changes can be generated by contraction as well as growth, suggesting tissue conflict resolution provides a flexible morphogenetic mechanism for generating shape diversity in plants and animals.
Collapse
Affiliation(s)
- Alexandra B Rebocho
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, England
| | - Paul Southam
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, England
| | - J Richard Kennaway
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, England
| | - J Andrew Bangham
- School of Computational Sciences, University of East Anglia, Norwich, England
| | - Enrico Coen
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, England
| |
Collapse
|
45
|
Wong JH, Hashimoto T. Novel Arabidopsis microtubule-associated proteins track growing microtubule plus ends. BMC PLANT BIOLOGY 2017; 17:33. [PMID: 28148225 PMCID: PMC5288973 DOI: 10.1186/s12870-017-0987-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 01/25/2017] [Indexed: 05/07/2023]
Abstract
BACKGROUND Microtubules (MTs) are polarized polymers with highly dynamic plus ends that stochastically switch between growth and shrinkage phases. In eukaryotic cells, a plethora of MT-associated proteins (MAPs) regulate the dynamics and higher-order organization of MTs to mediate distinct cellular functions. Plus-end tracking proteins (+TIPs) are a group of MAPs that specifically accumulate at the growing MT plus ends, where they modulate the behavior of the MT plus ends and mediate interactions with cellular targets. Although several functionally important + TIP proteins have been characterized in yeast and animals, little is known about this group of proteins in plants. RESULTS We report here that two homologous MAPs from Arabidopsis thaliana, Growing Plus-end Tracking 1 (GPT1) and GPT2 (henceforth GPT1/2), contain basic MT-binding regions at their central and C-terminal regions, and bind directly to MTs in vitro. Interestingly, GPT1/2 preferentially accumulated at the growing plus ends of cortical MTs in interphase Arabidopsis cells. When the GPT1/12-decorated growing plus ends switched to rapid depolymerization, GPT1/2 dissociated from the MT plus ends. Conversely, when the depolymerizing ends were rescued and started to polymerize again, GPT1/2 were immediately recruited to the growing MT tips. This tip tracking behavior of GPT proteins does not depend on the two established plant + TIPs, End-Binding protein 1 (EB1) and SPIRAL1 (SPR1). CONCLUSIONS The Arabidopsis MAPs GPT1 and GPT2 bind MTs directly through their basic regions. These MAPs track the plus ends of growing MTs independently of EB1 and SPR1 and represent a novel plant-specific + TIP family.
Collapse
Affiliation(s)
- Jeh Haur Wong
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara, 630-0192, Japan
| | - Takashi Hashimoto
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara, 630-0192, Japan.
| |
Collapse
|
46
|
Zhang Q, Qu Y, Wang Q, Song P, Wang P, Jia Q, Guo J. Arabidopsis phospholipase D alpha 1-derived phosphatidic acid regulates microtubule organization and cell development under microtubule-interacting drugs treatment. JOURNAL OF PLANT RESEARCH 2017; 130:193-202. [PMID: 27864640 DOI: 10.1007/s10265-016-0870-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/17/2016] [Indexed: 05/21/2023]
Abstract
Phospholipase D (PLD) and its product phosphatidic acid (PA) are emerging as essential regulators of cytoskeleton organization in plants. However, the underlying molecular mechanisms of PA-mediated microtubule reorganization in plants remain largely unknown. In this study, we used pharmacological and genetic approaches to analyze the function of Arabidopsis thaliana PLDα1 in the regulation of microtubule organization and cell development in response to microtubule-affecting drugs. Treatment with the microtubule-stabilizing drug paclitaxel resulted in less growth inhibition and decreased rightward slant of roots, longitudinal alignment of microtubules, and enhanced length of hypocotyl epidermal cells in the pldα1 mutant, the phenotype of which was rescued by exogenous application of PA. Moreover, the pldα1 mutant was sensitive to the microtubule-disrupting drugs oryzalin and propyzamide in terms of seedling survival ratio, left-skewing angle of roots and microtubule organization. In addition, both disruption and stabilization of microtubules induced by drugs activated PLDα1 activity. Our findings demonstrate that in A. thaliana, PLDα1/PA might regulate cell development by modulating microtubule organization in an activity-dependent manner.
Collapse
Affiliation(s)
- Qun Zhang
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| | - Yana Qu
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Qing Wang
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Ping Song
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Peipei Wang
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Qianru Jia
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Jinhe Guo
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| |
Collapse
|
47
|
Affiliation(s)
- Noriko Inada
- The Graduate School of Biological Sciences, Nara Institute of Science and Technology
| |
Collapse
|
48
|
Krtková J, Benáková M, Schwarzerová K. Multifunctional Microtubule-Associated Proteins in Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:474. [PMID: 27148302 PMCID: PMC4838777 DOI: 10.3389/fpls.2016.00474] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 03/24/2016] [Indexed: 05/21/2023]
Abstract
Microtubules (MTs) are involved in key processes in plant cells, including cell division, growth and development. MT-interacting proteins modulate MT dynamics and organization, mediating functional and structural interaction of MTs with other cell structures. In addition to conventional microtubule-associated proteins (MAPs) in plants, there are many other MT-binding proteins whose primary function is not related to the regulation of MTs. This review focuses on enzymes, chaperones, or proteins primarily involved in other processes that also bind to MTs. The MT-binding activity of these multifunctional MAPs is often performed only under specific environmental or physiological conditions, or they bind to MTs only as components of a larger MT-binding protein complex. The involvement of multifunctional MAPs in these interactions may underlie physiological and morphogenetic events, e.g., under specific environmental or developmental conditions. Uncovering MT-binding activity of these proteins, although challenging, may contribute to understanding of the novel functions of the MT cytoskeleton in plant biological processes.
Collapse
Affiliation(s)
- Jana Krtková
- Department of Biology, University of WashingtonSeattle, WA, USA
- Katerina Schwarzerová Lab, Department of Experimental Plant Biology, Faculty of Science, Charles University in PraguePrague, Czech Republic
| | - Martina Benáková
- Katerina Schwarzerová Lab, Department of Experimental Plant Biology, Faculty of Science, Charles University in PraguePrague, Czech Republic
- Department of Biology, Faculty of Science, University of Hradec KrálovéRokitanského, Czech Republic
| | - Kateřina Schwarzerová
- Katerina Schwarzerová Lab, Department of Experimental Plant Biology, Faculty of Science, Charles University in PraguePrague, Czech Republic
| |
Collapse
|
49
|
Nemhauser JL, Torii KU. Plant synthetic biology for molecular engineering of signalling and development. NATURE PLANTS 2016; 2:16010. [PMID: 27249346 PMCID: PMC5164986 DOI: 10.1038/nplants.2016.10] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Molecular genetic studies of model plants in the past few decades have identified many key genes and pathways controlling development, metabolism and environmental responses. Recent technological and informatics advances have led to unprecedented volumes of data that may uncover underlying principles of plants as biological systems. The newly emerged discipline of synthetic biology and related molecular engineering approaches is built on this strong foundation. Today, plant regulatory pathways can be reconstituted in heterologous organisms to identify and manipulate parameters influencing signalling outputs. Moreover, regulatory circuits that include receptors, ligands, signal transduction components, epigenetic machinery and molecular motors can be engineered and introduced into plants to create novel traits in a predictive manner. Here, we provide a brief history of plant synthetic biology and significant recent examples of this approach, focusing on how knowledge generated by the reference plant Arabidopsis thaliana has contributed to the rapid rise of this new discipline, and discuss potential future directions.
Collapse
Affiliation(s)
| | - Keiko U Torii
- Department of Biology, University of Washington, Seattle, Washington 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, USA
- Institute of Transformative Biomolecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8601, Japan
| |
Collapse
|
50
|
Hotta T, Fujita S, Uchimura S, Noguchi M, Demura T, Muto E, Hashimoto T. Affinity Purification and Characterization of Functional Tubulin from Cell Suspension Cultures of Arabidopsis and Tobacco. PLANT PHYSIOLOGY 2016; 170:1189-205. [PMID: 26747285 PMCID: PMC4775104 DOI: 10.1104/pp.15.01173] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 12/29/2015] [Indexed: 05/02/2023]
Abstract
Microtubules assemble into several distinct arrays that play important roles in cell division and cell morphogenesis. To decipher the mechanisms that regulate the dynamics and organization of this versatile cytoskeletal component, it is essential to establish in vitro assays that use functional tubulin. Although plant tubulin has been purified previously from protoplasts by reversible taxol-induced polymerization, a simple and efficient purification method has yet to be developed. Here, we used a Tumor Overexpressed Gene (TOG) column, in which the tubulin-binding domains of a yeast (Saccharomyces cerevisiae) TOG homolog are immobilized on resin, to isolate functional plant tubulin. We found that several hundred micrograms of pure tubulin can readily be purified from cell suspension cultures of tobacco (Nicotiana tabacum) and Arabidopsis (Arabidopsis thaliana). The tubulin purified by the TOG column showed high assembly competence, partly because of low levels of polymerization-inhibitory phosphorylation of α-tubulin. Compared with porcine brain tubulin, Arabidopsis tubulin is highly dynamic in vitro at both the plus and minus ends, exhibiting faster shrinkage rates and more frequent catastrophe events, and exhibits frequent spontaneous nucleation. Furthermore, our study shows that an internal histidine tag in α-tubulin can be used to prepare particular isotypes and specifically engineered versions of α-tubulin. In contrast to previous studies of plant tubulin, our mass spectrometry and immunoblot analyses failed to detect posttranslational modification of the isolated Arabidopsis tubulin or detected only low levels of posttranslational modification. This novel technology can be used to prepare assembly-competent, highly dynamic pure tubulin from plant cell cultures.
Collapse
Affiliation(s)
- Takashi Hotta
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan (T.Ho., S.F., M.N., T.D., T.Ha.); andLaboratory of Molecular Biophysics, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan (S.U., E.M.)
| | - Satoshi Fujita
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan (T.Ho., S.F., M.N., T.D., T.Ha.); andLaboratory of Molecular Biophysics, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan (S.U., E.M.)
| | - Seiichi Uchimura
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan (T.Ho., S.F., M.N., T.D., T.Ha.); andLaboratory of Molecular Biophysics, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan (S.U., E.M.)
| | - Masahiro Noguchi
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan (T.Ho., S.F., M.N., T.D., T.Ha.); andLaboratory of Molecular Biophysics, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan (S.U., E.M.)
| | - Taku Demura
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan (T.Ho., S.F., M.N., T.D., T.Ha.); andLaboratory of Molecular Biophysics, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan (S.U., E.M.)
| | - Etsuko Muto
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan (T.Ho., S.F., M.N., T.D., T.Ha.); andLaboratory of Molecular Biophysics, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan (S.U., E.M.)
| | - Takashi Hashimoto
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan (T.Ho., S.F., M.N., T.D., T.Ha.); andLaboratory of Molecular Biophysics, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan (S.U., E.M.)
| |
Collapse
|