1
|
Ibrahim A, Montgomery EA. Gastrointestinal Stromal Tumors: Variants and Some Pitfalls That They Create. Adv Anat Pathol 2024; 31:354-363. [PMID: 39466697 DOI: 10.1097/pap.0000000000000463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
The diagnosis of gastrointestinal stromal tumors (GISTs) is generally straightforward using a combination of histologic evaluation and pertinent immunohistochemical staining with CD117/kit and DOG-1 (discovered on GIST) antibodies. However, this tumor can be challenging in cases with an unusual morphology, in limited biopsies, for those in uncommon sites, post-treatment, and when other neoplasms express CD117/kit and DOG-1, thereby mimicking GIST. Finding epithelioid GISTs in the stomach in younger patients should prompt testing for succinate dehydrogenase (SHD)-deficiency using immunohistochemical staining for subunit B (SDHB). However, SDH-deficient GISTs can also arise in older patients, or as part of the Carney triad or Carney-Stratakis syndrome. GISTs with PDGFRA mutations can also prove difficult if they lack kit expression. It is also important to consider morphologic and immunophenotypic changes associated with treatment, including the potential absence of kit expression, particularly in GISTs that have metastasized. Therefore, obtaining clinical information regarding prior therapy with a tyrosine kinase inhibitor (TKI) is crucial.
Collapse
Affiliation(s)
- Ammoura Ibrahim
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, FL
| | | |
Collapse
|
2
|
He C, Wang Z, Yu J, Mao S, Xiang X. Current Drug Resistance Mechanisms and Treatment Options in Gastrointestinal Stromal Tumors: Summary and Update. Curr Treat Options Oncol 2024:10.1007/s11864-024-01272-7. [PMID: 39441520 DOI: 10.1007/s11864-024-01272-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2024] [Indexed: 10/25/2024]
Abstract
OPINION STATEMENT Gastrointestinal stromal tumor (GIST) is characterized by well-defined oncogenes. Despite the significant improvement in treatment outcomes with adjuvant imatinib therapy for patients, drug resistance remains a major challenge for GIST therapy. This review focuses on the mechanisms contributing to drug resistance phenotype in GIST, such as primary imatinib-resistant mutants, secondary mutations, non-covalent binding of TKI to its target, tumor heterogeneity, re-activation of pro-survival/proliferation pathways through non-KIT/PDGFRA kinases, and loss of therapeutic targets in wild-type GIST. Corresponding suggestions are proposed to overcome drug-resistance phenotype of GIST. This review also summarizes the suitability of currently approved TKIs on different KIT/PDGFRA mutations and updates related clinical trials. Recent potent drugs and emerging strategies against advanced GISTs in clinical trials are presented. Additionally, metabolic intervention offers a new avenue for clinical management in GIST. A landscape of metabolism in GIST and metabolic changes under imatinib treatment are summarized based on currently published data. The OXPHOS pathway is a promising therapeutic target in combination with TKI against sensitive KIT/PDGFRA mutants. Comprehensive understanding of the above resistance mechanisms, experimental drugs/strategies and metabolic changes is critical to implement the proper therapy strategy and improve the clinical therapy outcomes for GIST.
Collapse
Affiliation(s)
- Chunxiao He
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China.
| | - Zilong Wang
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jiaying Yu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Shuang Mao
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xi Xiang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China.
| |
Collapse
|
3
|
Kim S, Kim HD, Kim EJ, Ryu MH, Kang YK. Impact of systemic steroids on the efficacy of first line imatinib treatment of patients with advanced gastrointestinal stromal tumors (GISTs). BMC Cancer 2024; 24:1245. [PMID: 39379868 PMCID: PMC11463065 DOI: 10.1186/s12885-024-13032-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 10/07/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Effective management of adverse events is required to maintain sufficient imatinib dosing when treating patients with gastrointestinal stromal tumors (GISTs). Skin rash is a common adverse event of imatinib, which can be effectively controlled by systemic steroid treatment without imatinib dose modification or interruption. However, the impact of the use of systemic steroids on the efficacy of imatinib treatment remains unclear. METHODS Between October 2014 and February 2022, 277 consecutive patients from a prospective registry of GIST patients were included as the study population. Patients who started systemic steroids due to grade ≥ 3 skin rash or grade 2 skin rash with grade 2 pruritis were classified as the steroid group, whereas patients who did not develop a skin rash or those who did not require steroids for a mild skin rash were classified as the control group. Efficacy outcomes were compared between the two groups. RESULTS Among the 277 patients, 30 (10.8%) were treated with systemic steroids for skin rash. There was no significant difference in progression free survival (PFS) or overall survival (OS) between the steroid and control groups (3-year PFS, 67.7% vs. 65.1%, p = 0.53; 3-year OS, 91% vs. 89.9%, p = 0.67, respectively). The use of systemic steroids was not an independent factor associated with PFS (hazard ratio 0.73, 95% confidence interval 0.36-1.49, p = 0.39) and OS (hazard ratio 0.37, 95% confidence interval 0.12-1.18, p = 0.09). In the steroid group, patients who successfully maintained the imatinib dosage showed a trend toward more favorable survival outcomes than those who did not (3-year PFS, 73.3% vs. 44.4%, p = 0.34; 3-year OS, 95.8% vs. 75.0%, p = 0.15, respectively). CONCLUSIONS The use of systemic steroids for the control of imatinib induced severe skin rash did not adversely affect the efficacy outcomes of imatinib in patients with advanced GIST.
Collapse
Affiliation(s)
- Sejin Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Hyung-Don Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Eo Jin Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Min-Hee Ryu
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Yoon-Koo Kang
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|
4
|
Fujii H, Hirano H, Shiraishi K, Shoji H, Hirose T, Okita N, Takashima A, Koyama T, Kato K. Comprehensive Genomic Assessment of Advanced-Stage GI Stromal Tumors Using the Japanese National Center for Cancer Genomics and Advanced Therapeutics Database. JCO Precis Oncol 2024; 8:e2400284. [PMID: 39447098 PMCID: PMC11520344 DOI: 10.1200/po.24.00284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/22/2024] [Accepted: 09/06/2024] [Indexed: 10/26/2024] Open
Abstract
PURPOSE Clinical utility of comprehensive genomic profiling (CGP) for precision medicine has become evident. Although there are several reports on the genomic landscape of GI stromal tumors (GISTs), large-scale data specific to GIST are limited, especially in Asia. Additionally, the applicability of molecular-targeted agents identified using CGP has not been extensively examined. We investigated the status of genomic alterations in Japanese patients with advanced GISTs using the National Center for Cancer Genomics and Advanced Therapeutics (C-CAT) database to identify novel treatment strategies and drug development. MATERIALS AND METHODS We retrospectively reviewed the clinical and CGP data of patients with advanced-stage GIST registered in the C-CAT database to assess the genomic landscape and potential actionable alterations. RESULTS Data from 144 patients were reviewed. Oncogenic alterations were detected frequently in KIT (78%), CDKN2A (37%), CDKN2B (29%), RB1 (11%), STK11 (10%), TP53 (9%), PDGFRA (6%), and SDHB (6%). Loss of CDKN2A/CDKN2B was only observed in KIT/PDGFRA-mutated GISTs, while alterations in SDHA/SDHB were only detected in KIT/PDGFRA wild-type GISTs. Among 119 KIT/PDGFRA-mutated GISTs, 95 (80%) had oncogenic genomic alterations and 29 (24%) had actionable alterations, excluding KIT and PDGFRA. However, among 25 KIT/PDGFRA wild-type GISTs, 22 (88%) had oncogenic alterations and 11 (44%) had actionable alterations. Representative candidate drugs for genome-matched therapies in KIT/PDGFRA-mutated and wild-type GISTs were as follows: pembrolizumab for tumor mutation burden-high in one and two patients, respectively; poly-adenosine diphosphate ribose polymerase inhibitors for alterations related to homologous recombination deficiency in 12 and one patient, respectively; NTRK inhibitor for ETV6-NTRK3 fusion in one with KIT/PDGFRA wild-type GIST; and human epidermal growth factor receptor 2-antibody-drug conjugate in one with KIT/PDGFRA-mutated GIST. CONCLUSION This study highlights the genomic landscape of advanced GISTs and the important role of CGP in identifying rational molecular-targeted therapeutic options.
Collapse
Affiliation(s)
- Hiroyuki Fujii
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Hidekazu Hirano
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Kouya Shiraishi
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, Japan
| | - Hirokazu Shoji
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
| | - Toshiharu Hirose
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Natsuko Okita
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Atsuo Takashima
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Takafumi Koyama
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
| | - Ken Kato
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
5
|
Boichuk S, Dunaev P, Galembikova A, Valeeva E. Fibroblast Growth Factor 2 (FGF2) Activates Vascular Endothelial Growth Factor (VEGF) Signaling in Gastrointestinal Stromal Tumors (GIST): An Autocrine Mechanism Contributing to Imatinib Mesylate (IM) Resistance. Cancers (Basel) 2024; 16:3103. [PMID: 39272961 PMCID: PMC11394061 DOI: 10.3390/cancers16173103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
We showed previously that the autocrine activation of the FGFR-mediated pathway in GIST lacking secondary KIT mutations was a result of the inhibition of KIT signaling. We show here that the FGF2/FGFR pathway regulates VEGF-A/VEGFR signaling in IM-resistant GIST cells. Indeed, recombinant FGF2 increased the production of VEGF-A by IM-naive and resistant GIST cells. VEGF-A production was also increased in KIT-inhibited GIST, whereas the neutralization of FGF2 by anti-FGF2 mAb attenuated VEGFR signaling. Of note, BGJ 398, pan FGFR inhibitor, effectively and time-dependently inhibited VEGFR signaling in IM-resistant GIST T-1R cells, thereby revealing the regulatory role of the FGFR pathway in VEGFR signaling for this particular GIST cell line. This also resulted in significant synergy between BGJ 398 and VEGFR inhibitors (i.e., sunitinib and regorafenib) by enhancing their pro-apoptotic and anti-proliferative activities. The high potency of the combined use of VEGFR and FGFR inhibitors in IM-resistant GISTs was revealed by the impressive synergy scores observed for regorafenib or sunitinib and BGJ 398. Moreover, FGFR1/2 and VEGFR1/2 were co-localized in IM-resistant GIST T-1R cells, and the direct interaction between the aforementioned RTKs was confirmed by co-immunoprecipitation. In contrast, IM-resistant GIST 430 cells expressed lower basal levels of FGF2 and VEGF-A. Despite the increased expression VEGFR1 and FGFR1/2 in GIST 430 cells, these RTKs were not co-localized and co-immunoprecipitated. Moreover, no synergy between FGFR and VEGFR inhibitors was observed for the IM-resistant GIST 430 cell line. Collectively, the dual targeting of FGFR and VEGFR pathways in IM-resistant GISTs is not limited to the synergistic anti-angiogenic treatment effects. The dual inhibition of FGFR and VEGFR pathways in IM-resistant GISTs potentiates the proapoptotic and anti-proliferative activities of the corresponding RTKi. Mechanistically, the FGF2-induced activation of the FGFR pathway turns on VEGFR signaling via the overproduction of VEGF-A, induces the interaction between FGFR1/2 and VEGFR1, and thereby renders cancer cells highly sensitive to the dual inhibition of the aforementioned RTKs. Thus, our data uncovers the novel mechanism of the cross-talk between the aforementioned RTKs in IM-resistant GISTs lacking secondary KIT mutations and suggests that the dual blockade of FGFR and VEGFR signaling might be an effective treatment strategy for patients with GIST-acquired IM resistance via KIT-independent mechanisms.
Collapse
Affiliation(s)
- Sergei Boichuk
- Department of Pathology, Kazan State Medical University, Kazan 420012, Russia
- Department of Radiotherapy and Radiology, Faculty of Surgery, Russian Medical Academy of Continuous Professional Education, Moscow 125993, Russia
- "Biomarker" Research Laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Pavel Dunaev
- Department of Pathology, Kazan State Medical University, Kazan 420012, Russia
| | - Aigul Galembikova
- Department of Pathology, Kazan State Medical University, Kazan 420012, Russia
| | - Elena Valeeva
- Central Research Laboratory, Kazan State Medical University, Kazan 420012, Russia
| |
Collapse
|
6
|
George S, Blay JY, Chi P, Jones RL, Serrano C, Somaiah N, Gelderblom H, Zalcberg JR, Reichmann W, Sprott K, Cox P, Sherman ML, Ruiz-Soto R, Heinrich MC, Bauer S. The INSIGHT study: a randomized, Phase III study of ripretinib versus sunitinib for advanced gastrointestinal stromal tumor with KIT exon 11 + 17/18 mutations. Future Oncol 2024; 20:1973-1982. [PMID: 39229786 PMCID: PMC11497949 DOI: 10.1080/14796694.2024.2376521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/02/2024] [Indexed: 09/05/2024] Open
Abstract
Somatic KIT activating mutations drive most gastrointestinal stromal tumors (GISTs). Disease progression eventually develops with first-line imatinib, commonly due to KIT secondary mutations, and different kinase inhibitors have various levels of treatment efficacy dependent on specific acquired resistance mutations. Ripretinib is a broad-spectrum switch-control KIT/PDGFRA tyrosine kinase inhibitor for patients with advanced GIST who received prior treatment with three or more kinase inhibitors, including imatinib. Exploratory baseline circulating tumor DNA analysis from the second-line INTRIGUE trial determined that patients with advanced GIST previously treated with imatinib harboring primary KIT exon 11 mutations and secondary resistance mutations restricted to KIT exons 17/18 had greater clinical benefit with ripretinib versus sunitinib. We describe the rationale and design of INSIGHT (NCT05734105), an ongoing Phase III open-label study of ripretinib versus sunitinib in patients with advanced GIST previously treated with imatinib exclusively harboring KIT exon 11 + 17/18 mutations detected by circulating tumor DNA.Clinical Trial Registration: NCT05734105 (ClinicalTrials.gov).
Collapse
Affiliation(s)
| | | | - Ping Chi
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Weill Cornell Medicine, New York, NY 10065, USA
| | - Robin L Jones
- Sarcoma Unit, The Royal Marsden NHS Foundation Trust & Institute of Cancer Research, London, SW3 6JJ, UK
| | - César Serrano
- Vall d'Hebron Institute of Oncology, Barcelona, 08035, Spain
| | - Neeta Somaiah
- The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hans Gelderblom
- Leiden University Medical Center, Leiden, 2333 ZA, Netherlands
| | - John R Zalcberg
- Monash University School of Public Health & Preventive Medicine & Department of Medical Oncology, Alfred Health, Melbourne, Victoria, 3004, Australia
| | | | - Kam Sprott
- Deciphera Pharmaceuticals, LLC, Waltham, MA 02451, USA
| | - Paulina Cox
- Deciphera Pharmaceuticals, LLC, Waltham, MA 02451, USA
| | | | | | - Michael C Heinrich
- Portland VA Health Care System, Portland, OR 97239, USA
- OHSU Knight Cancer Institute, Portland, OR 97239, USA
| | - Sebastian Bauer
- Department of Medical Oncology, Sarcoma Center, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, 45147, Germany
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, 45147, Germany
| |
Collapse
|
7
|
Ninomiya K, Ennishi D, Okamoto K, Ando M, Nakamura S, Tomida S, Ayada Y, Makimoto G, Ichihara E, Okita N, Toyooka S, Maeda Y, Tabata M. Response to Imatinib in a Patient With Gastric Adenocarcinoma With KIT Q556_K558 In-Frame Deletion: A Case Report. JCO Precis Oncol 2024; 8:e2400228. [PMID: 39298692 DOI: 10.1200/po.24.00228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/28/2024] [Accepted: 08/20/2024] [Indexed: 09/22/2024] Open
Abstract
Imatinib may be a useful targeted agent for patients with advanced gastric adenocarcinoma who have KIT mutations.
Collapse
Affiliation(s)
- Kiichiro Ninomiya
- Center for Comprehensive Genomic Medicine, Okayama University Hospital, Okayama, Japan
| | - Daisuke Ennishi
- Center for Comprehensive Genomic Medicine, Okayama University Hospital, Okayama, Japan
| | - Kunio Okamoto
- Department of Medical Oncology, Kagawa Prefectural Central Hospital, Takamatsu, Japan
| | - Midori Ando
- Department of Pathology, Kagawa Prefectural Central Hospital, Takamatsu, Japan
| | - Satoko Nakamura
- Department of Pathology, Kagawa Prefectural Central Hospital, Takamatsu, Japan
| | - Shuta Tomida
- Center for Comprehensive Genomic Medicine, Okayama University Hospital, Okayama, Japan
| | - Yoshiyuki Ayada
- Department of Pathology, Okayama University Hospital, Okayama, Japan
| | - Go Makimoto
- Center for Clinical Oncology, Okayama University Hospital, Okayama, Japan
| | - Eiki Ichihara
- Center for Clinical Oncology, Okayama University Hospital, Okayama, Japan
| | - Natsuko Okita
- Research Management Division, Clinical Research Support Office, National Cancer Center Hospital, Tokyo, Japan
| | - Shinichi Toyooka
- Center for Comprehensive Genomic Medicine, Okayama University Hospital, Okayama, Japan
| | - Yoshinobu Maeda
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masahiro Tabata
- Center for Clinical Oncology, Okayama University Hospital, Okayama, Japan
| |
Collapse
|
8
|
Baser T, Rifaioglu AS, Atalay MV, Atalay RC. Drug Repurposing Approach to Identify Candidate Drug Molecules for Hepatocellular Carcinoma. Int J Mol Sci 2024; 25:9392. [PMID: 39273340 PMCID: PMC11395636 DOI: 10.3390/ijms25179392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent primary liver cancer, with a high mortality rate due to the limited therapeutic options. Systemic drug treatments improve the patient's life expectancy by only a few months. Furthermore, the development of novel small molecule chemotherapeutics is time-consuming and costly. Drug repurposing has been a successful strategy for identifying and utilizing new therapeutic options for diseases with limited treatment options. This study aims to identify candidate drug molecules for HCC treatment through repurposing existing compounds, leveraging the machine learning tool MDeePred. The Open Targets Platform, UniProt, ChEMBL, and Expasy databases were used to create a dataset for drug target interaction (DTI) predictions by MDeePred. Enrichment analyses of DTIs were conducted, leading to the selection of 6 out of 380 DTIs identified by MDeePred for further analyses. The physicochemical properties, lipophilicity, water solubility, drug-likeness, and medicinal chemistry properties of the candidate compounds and approved drugs for advanced stage HCC (lenvatinib, regorafenib, and sorafenib) were analyzed in detail. Drug candidates exhibited drug-like properties and demonstrated significant target docking properties. Our findings indicated the binding efficacy of the selected drug compounds to their designated targets associated with HCC. In conclusion, we identified small molecules that can be further exploited experimentally in HCC therapeutics. Our study also demonstrated the use of the MDeePred deep learning tool in in silico drug repurposing efforts for cancer therapeutics.
Collapse
Affiliation(s)
- Tugce Baser
- Department of Health Informatics, Graduate School of Informatics, Middle East Technical University, 06800 Ankara, Türkiye
| | - Ahmet Sureyya Rifaioglu
- Institute for Computational Biomedicine, Faculty of Medicine, Heidelberg University Hospital, Heidelberg University, Bioquant, 69117 Heidelberg, Germany
- Department of Electrical and Electronics Engineering, Faculty of Engineering, İskenderun Technical University, 31200 Hatay, Türkiye
| | - Mehmet Volkan Atalay
- Department of Computer Engineering, Faculty of Engineering, Middle East Technical University, 06800 Ankara, Türkiye
| | - Rengul Cetin Atalay
- Department of Health Informatics, Graduate School of Informatics, Middle East Technical University, 06800 Ankara, Türkiye
| |
Collapse
|
9
|
Ali RH, Alsaber AR, Mohanty AK, Alnajjar A, Mohammed EMA, Alateeqi M, Jama H, Almarzooq A, Benobaid N, Alqallaf Z, Ahmed AA, Bahzad S, Alkandari M. Molecular Profiling of KIT/PDGFRA-Mutant and Wild-Type Gastrointestinal Stromal Tumors (GISTs) with Clinicopathological Correlation: An 18-Year Experience at a Tertiary Center in Kuwait. Cancers (Basel) 2024; 16:2907. [PMID: 39199677 PMCID: PMC11352935 DOI: 10.3390/cancers16162907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024] Open
Abstract
In gastrointestinal stromal tumors (GISTs), identifying prototypical mutations in the KIT/PDGFRA oncogenes, or in rare alternate genes, is essential for prognostication and predicting response to tyrosine kinase inhibitors. Conversely, wild-type GISTs (WT-GIST), which lack known mutations, have limited treatment options. Data on the mutational landscape of GISTs and their impact on disease progression are very limited in Kuwait. Using a targeted next-generation sequencing panel, we investigated the spectrum and frequency of KIT, PDGFRA, and RAS-pathway-related mutations in 95 out of 200 GISTs diagnosed at Kuwait Cancer Center from 2005 to 2023 and assessed their correlation with clinicopathological parameters. Among the 200 tumors (median age 55 years; 15-91), 54% originated in the stomach, 33% in the small bowel, 7% in the colorectum, 1.5% in the peritoneum, and 4.5% had an unknown primary site. Of the 95 molecularly profiled cases, 88% had a mutation: KIT (61%), PDGFRA (25%), NF1 (2%), and one NTRK1 rearrangement. Ten WT-GISTs were identified (stomach = 6, small bowel = 2, and colorectum = 2). WT-GISTs tended to be smaller (median 4.0 cm; 0.5-8.0) (p = 0.018), with mitosis ≤5/5 mm2, and were of lower risk (p = 0.019). KIT mutations were an adverse indicator of disease progression (p = 0.049), while wild-type status did not significantly impact progression (p = 0.934). The genetic landscape in this cohort mirrors that of global studies, but regional collaborations are needed to correlate outcomes with genetic variants.
Collapse
Affiliation(s)
- Rola H. Ali
- Department of Pathology, College of Medicine, Kuwait University, Safat 13110, Kuwait
- Histopathology Laboratory, Sabah Hospital, Sabah Medical District, Safat 13001, Kuwait
| | - Ahmad R. Alsaber
- Department of Management, College of Business and Economics, American University of Kuwait, Safat 13034, Kuwait;
| | - Asit K. Mohanty
- Department of Medical Oncology, Kuwait Cancer Center, Sabah Medical District, Safat 13001, Kuwait; (A.K.M.); (A.A.)
| | - Abdulsalam Alnajjar
- Department of Medical Oncology, Kuwait Cancer Center, Sabah Medical District, Safat 13001, Kuwait; (A.K.M.); (A.A.)
| | - Eiman M. A. Mohammed
- Molecular Genetics Laboratory, Kuwait Cancer Center, Sabah Medical District, Safat 13001, Kuwait; (E.M.A.M.); (M.A.); (H.J.); (A.A.); (N.B.); (Z.A.); (A.A.A.); (S.B.)
| | - Mona Alateeqi
- Molecular Genetics Laboratory, Kuwait Cancer Center, Sabah Medical District, Safat 13001, Kuwait; (E.M.A.M.); (M.A.); (H.J.); (A.A.); (N.B.); (Z.A.); (A.A.A.); (S.B.)
| | - Hiba Jama
- Molecular Genetics Laboratory, Kuwait Cancer Center, Sabah Medical District, Safat 13001, Kuwait; (E.M.A.M.); (M.A.); (H.J.); (A.A.); (N.B.); (Z.A.); (A.A.A.); (S.B.)
| | - Ammar Almarzooq
- Molecular Genetics Laboratory, Kuwait Cancer Center, Sabah Medical District, Safat 13001, Kuwait; (E.M.A.M.); (M.A.); (H.J.); (A.A.); (N.B.); (Z.A.); (A.A.A.); (S.B.)
| | - Noelle Benobaid
- Molecular Genetics Laboratory, Kuwait Cancer Center, Sabah Medical District, Safat 13001, Kuwait; (E.M.A.M.); (M.A.); (H.J.); (A.A.); (N.B.); (Z.A.); (A.A.A.); (S.B.)
| | - Zainab Alqallaf
- Molecular Genetics Laboratory, Kuwait Cancer Center, Sabah Medical District, Safat 13001, Kuwait; (E.M.A.M.); (M.A.); (H.J.); (A.A.); (N.B.); (Z.A.); (A.A.A.); (S.B.)
| | - Amir A. Ahmed
- Molecular Genetics Laboratory, Kuwait Cancer Center, Sabah Medical District, Safat 13001, Kuwait; (E.M.A.M.); (M.A.); (H.J.); (A.A.); (N.B.); (Z.A.); (A.A.A.); (S.B.)
| | - Shakir Bahzad
- Molecular Genetics Laboratory, Kuwait Cancer Center, Sabah Medical District, Safat 13001, Kuwait; (E.M.A.M.); (M.A.); (H.J.); (A.A.); (N.B.); (Z.A.); (A.A.A.); (S.B.)
| | - Mohammad Alkandari
- Histopathology Laboratory, Farwaniya Hospital, Sabah Al Nasser Area 92426, Kuwait;
| |
Collapse
|
10
|
Ganzon R, Chen W, Tinoco G. First Description of the Clinical Activity of Avapritinib in Sporadic Mesenteric Desmoid Tumor. Case Rep Oncol Med 2024; 2024:8684418. [PMID: 39135981 PMCID: PMC11319063 DOI: 10.1155/2024/8684418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/17/2024] [Accepted: 07/04/2024] [Indexed: 08/15/2024] Open
Abstract
Desmoid tumors (DTs) are rare and locally aggressive with a high rate of local recurrence even with optimal surgical resection. Systemic treatments are often utilized for desmoid cases with high risk of surgical morbidity or for local and symptomatic control of recurrent disease. However, the systemic treatment options for DTs are limited with limited responses. Avapritinib is a tyrosine kinase inhibitor (TKI) approved in 2020 for adults with unresectable or metastatic gastrointestinal (GI) stromal tumors (GISTs) harboring a platelet-derived growth factor receptor alpha (PDGFRA) Exon 18 mutation, including D842V mutations. In this case report, we describe a 55-year-old man with a history of D842V-mutant gastric GIST who presented several years after complete resection of the GIST with an enlarging soft tissue mass in the small intestine. After a nondiagnostic biopsy, the patient was started on avapritinib due to concerns for recurrent D842V-mutant GIST. The tumor had a partial response to treatment by RECIST 1.1 criteria, and the patient underwent surgical resection. The final pathology report revealed a sporadic DT. To our knowledge, this is the first known description of the activity of avapritinib in the treatment of a sporadic mesenteric DT, which is relevant given the limited treatment options for patients with this diagnosis. This clinical finding may be worth exploring in a dedicated clinical trial.
Collapse
Affiliation(s)
- Rebecca Ganzon
- Division of Medical OncologyThe Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, Ohio, USA
| | - Wei Chen
- Department of PathologyThe Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, Ohio, USA
| | - Gabriel Tinoco
- Division of Medical OncologyThe Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, Ohio, USA
| |
Collapse
|
11
|
Fukuda M, Mukohara T, Kuwata T, Sunami K, Naito Y. Efficacy of Trametinib in Neurofibromatosis Type 1-Associated Gastrointestinal Stromal Tumors: A Case Report. JCO Precis Oncol 2024; 8:e2300649. [PMID: 39116355 PMCID: PMC11371073 DOI: 10.1200/po.23.00649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/14/2024] [Accepted: 07/02/2024] [Indexed: 08/10/2024] Open
Abstract
Trametinib, an MEK inhibitor, may offer a new therapeutic option for patients with NF1-related GIST.
Collapse
Affiliation(s)
- Misao Fukuda
- Department of Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Toru Mukohara
- Department of Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan
- Department of Genetic Medicine and Services, National Cancer Center Hospital East, Kashiwa, Japan
| | - Takeshi Kuwata
- Department of Genetic Medicine and Services, National Cancer Center Hospital East, Kashiwa, Japan
| | - Kuniko Sunami
- Department of Laboratory Medicine, National Cancer Center Hospital, Tokyo, Japan
| | - Yoichi Naito
- Department of Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan
- Department of General Internal Medicine, National Cancer Center Hospital East, Kashiwa, Japan
| |
Collapse
|
12
|
Alvarez CS, Piazuelo MB, Fleitas-Kanonnikoff T, Ruhl J, Pérez-Fidalgo JA, Camargo MC. Incidence and Survival Outcomes of Gastrointestinal Stromal Tumors. JAMA Netw Open 2024; 7:e2428828. [PMID: 39158910 PMCID: PMC11333982 DOI: 10.1001/jamanetworkopen.2024.28828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/23/2024] [Indexed: 08/20/2024] Open
Abstract
Importance The incidence of gastrointestinal stromal tumors (GISTs) increased after the implementation of GIST-specific histology coding in 2001, but updated data on trends and survival are lacking. Objective To examine the evolving epidemiology of GISTs in major organ sites. Design, Setting, and Participants This descriptive, population-based cohort study used nationally representative data from the National Cancer Institute Surveillance, Epidemiology, and End Results (SEER) Program, including the SEER-22 and SEER-17 registries. Data were from evaluated patients aged 20 years or older with GISTs diagnosed between January 1, 2000, and December 31, 2019. Analyses were last updated on October 29, 2023. Main Outcomes and Measures Organ site-specific trends in age-standardized incidence rates and annual percent changes (APCs) in rates were estimated by race and ethnicity and, when possible, by sex, age, and primary indicator. Multivariable Cox proportional hazards regression models were used to examine racial and ethnic differences in overall and GIST-specific survival by site. Results The SEER-22 and SEER-17 datasets contained 23 001 and 12 109 case patients with GISTs, respectively. Patients in the SEER-22 registry had a mean (SD) age of 64 (13) years and 51.3% were men. With regard to race and ethnicity, 9.7% of patients were Asian or Pacific Islander, 12.3% were Hispanic, 19.6% were non-Hispanic Black, and 57.7% were non-Hispanic White. Overall incidence rates of GISTs in the SEER-22 cohort increased substantially over time for all organ sites but the colon (APCs: esophagus, 7.3% [95% CI, 4.4% to 10.2%]; gastric, 5.1% [95% CI, 4.2% to 6.1%]; small intestine, 2.7% [95% CI, 1.8% to 3.7%]; colon, -0.2% [95% CI, -1.3% to 0.9%]; and rectum, 1.9% [95% CI, 0.1% to 3.8%]). There were similar increasing trends by age groups (<50 vs ≥50 years), sex, race and ethnicity, and primary indicator for gastric and small intestine GISTs. Increases were mainly restricted to localized stage disease. Patients in the SEER-17 cohort had a mean (SD) age of 64 (14) years and 51.9% were men. With regard to race and ethnicity, 13.3% of patients were Asian or Pacific Islander, 11.6% were Hispanic, 17.8% were non-Hispanic Black, and 56.6% were non-Hispanic White. Non-Hispanic Black individuals had higher overall mortality for esophageal (adjusted hazard ratio [HR], 6.4 [95% CI, 2.0 to 20.3]) and gastric (adjusted HR, 1.4 [95% CI, 1.2 to 1.5]) GISTs compared with non-Hispanic White individuals. Asian or Pacific Islander individuals also had higher overall mortality for esophageal GISTs (adjusted HR, 5.6 [95% CI, 1.5 to 20.2]). Results were similar for GIST-specific survival. Conclusions and Relevance In this cohort study using SEER data, the incidence of GISTs in major organ sites increased in the last 2 decades among several population groups. These findings suggest that additional studies are warranted to identify risk factors, because histologic reclassification and higher availability of endoscopy and imaging do not fully explain these unfavorable incidence trends. Prevention efforts are needed to reduce the substantial survival disparities among racial and ethnic minoritized populations.
Collapse
Affiliation(s)
- Christian S. Alvarez
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - M. Blanca Piazuelo
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Tania Fleitas-Kanonnikoff
- Department of Medical Oncology, Instituto de Investigación Sanitaria (INCLIVA) Biomedical Research Institute, University of Valencia, Valencia, Spain
| | - Jennifer Ruhl
- Division of Cancer Control and Population Sciences, National Cancer Institute, Rockville, Maryland
| | - J. Alejandro Pérez-Fidalgo
- Medical Oncology Department, University Hospital of Valencia, INCLIVA Biomedical Research Institute, Valencia, Spain
- Centro de Investigación Biomédica en Red Cáncer, Valencia, Spain
| | - M. Constanza Camargo
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| |
Collapse
|
13
|
Duda-Madej A, Viscardi S, Szewczyk W, Topola E. Natural Alkaloids in Cancer Therapy: Berberine, Sanguinarine and Chelerythrine against Colorectal and Gastric Cancer. Int J Mol Sci 2024; 25:8375. [PMID: 39125943 PMCID: PMC11313295 DOI: 10.3390/ijms25158375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
The rising incidence of colorectal cancer (CRC) and gastric cancer (GC) worldwide, coupled with the limited effectiveness of current chemotherapeutic agents, has prioritized the search for new therapeutic options. Natural substances, which often exhibit cytostatic properties, hold significant promise in this area. This review evaluates the anticancer properties of three natural alkaloids-berberine, sanguinarine, and chelerythrine-against CRC and GC. In vivo and in vitro studies have demonstrated that these substances can reduce tumor volume and inhibit the epithelial-mesenchymal transition (EMT) of tumors. At the molecular level, these alkaloids disrupt key signaling pathways in cancer cells, including mTOR, MAPK, EGFR, PI3K/AKT, and NF-κB. Additionally, they exhibit immunomodulatory effects, leading to the induction of programmed cell death through both apoptosis and autophagy. Notably, these substances have shown synergistic effects when combined with classical cytostatic agents such as cyclophosphamide, 5-fluorouracil, cetuximab, and erlotinib. Furthermore, berberine has demonstrated the ability to restore sensitivity in individuals originally resistant to cisplatin GC. Given these findings, natural compounds emerge as a promising option in the chemotherapy of malignant gastrointestinal tumors, particularly in cases with limited treatment options. However, more research is necessary to fully understand their therapeutic potential.
Collapse
Affiliation(s)
- Anna Duda-Madej
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Chałubińskiego 4, 50-368 Wrocław, Poland
| | - Szymon Viscardi
- Faculty of Medicine, Wroclaw Medical University, Ludwika Pasteura 1, 50-367 Wrocław, Poland; (S.V.); (W.S.); (E.T.)
| | - Wiktoria Szewczyk
- Faculty of Medicine, Wroclaw Medical University, Ludwika Pasteura 1, 50-367 Wrocław, Poland; (S.V.); (W.S.); (E.T.)
| | - Ewa Topola
- Faculty of Medicine, Wroclaw Medical University, Ludwika Pasteura 1, 50-367 Wrocław, Poland; (S.V.); (W.S.); (E.T.)
| |
Collapse
|
14
|
Yu Y, Yu M, Luo L, Zhang Z, Zeng H, Chen Y, Lin Z, Chen M, Wang W. Molecular characteristics and immune microenvironment of gastrointestinal stromal tumours: targets for therapeutic strategies. Front Oncol 2024; 14:1405727. [PMID: 39070147 PMCID: PMC11272528 DOI: 10.3389/fonc.2024.1405727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 06/24/2024] [Indexed: 07/30/2024] Open
Abstract
Gastrointestinal stromal tumours (GISTs) are the most common mesenchymal tumours, arising mainly from the interstitial cells of Cajal (ICCs) of the gastrointestinal tract. As radiotherapy and chemotherapy are generally ineffective for GISTs, the current primary treatment is surgical resection. However, surgical resection is not choice for most patients. Therefore, new therapeutic strategies are urgently needed. Targeted therapy, represented by tyrosine kinase inhibitors (TKIs), and immunotherapy, represented by immune checkpoint inhibitor therapies and chimeric antigen receptor T-cell immunotherapy (CAR-T), offer new therapeutic options in GISTs and have shown promising treatment responses. In this review, we summarize the molecular classification and immune microenvironment of GISTs and discuss the corresponding targeted therapy and immunotherapy options. This updated knowledge may provide more options for future therapeutic strategies and applications in GISTs.
Collapse
Affiliation(s)
- Yang Yu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Mengdie Yu
- Guangzhou KingMed Diagnostics Group Co., Ltd., Guangzhou, Guangdong, China
| | - Lijie Luo
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Zijing Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Haiping Zeng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Yan Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Zeyu Lin
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Mengnan Chen
- Department of Thyroid and Breast Surgery, Baiyun Hospital, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Wei Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
15
|
Gómez-Peregrina D, Cicala CM, Serrano C. Monitoring advanced gastrointestinal stromal tumor with circulating tumor DNA. Curr Opin Oncol 2024; 36:282-290. [PMID: 38726808 DOI: 10.1097/cco.0000000000001040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
PURPOSE OF REVIEW This review explores the role of circulating tumor (ct)DNA as a biomarker for clinical decision-making and monitoring purposes in metastatic gastrointestinal stromal tumor (GIST) patients. We discuss key insights from recent clinical trials and anticipate the future perspectives of ctDNA profiling within the clinical landscape of GIST. RECENT FINDINGS The identification and molecular characterization of KIT/platelet-derived growth factor receptor alpha (PDGFRA) mutations from ctDNA in metastatic GIST is feasible and reliable. Such identification through ctDNA serves as a predictor of clinical outcomes to tyrosine-kinase inhibitors (TKIs) in metastatic patients. Additionally, conjoined ctDNA analysis from clinical trials reveal the evolving mutational landscapes and increase in intratumoral heterogeneity across treatment lines. Together, this data positions ctDNA determination as a valuable tool for monitoring disease progression and guiding therapy in metastatic patients. These collective efforts culminated in the initiation of a ctDNA-based randomized clinical trial in GIST, marking a significant milestone in integrating ctDNA testing into the clinical care of GIST patients. SUMMARY The dynamic field of ctDNA technologies is rapidly evolving and holds significant promise for research. Several trials have successfully validated the clinical utility of ctDNA in metastatic GIST, laying the foundations for its prospective integration into the routine clinical management of GIST patients.
Collapse
Affiliation(s)
- David Gómez-Peregrina
- Sarcoma Translational Research Laboratory, Vall d'Hebron Institute of Oncology (VHIO)
| | - Carlo Maria Cicala
- Sarcoma Translational Research Laboratory, Vall d'Hebron Institute of Oncology (VHIO)
- Department of Medical Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - César Serrano
- Sarcoma Translational Research Laboratory, Vall d'Hebron Institute of Oncology (VHIO)
- Department of Medical Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| |
Collapse
|
16
|
Joensuu H, Reichardt A, Eriksson M, Hohenberger P, Boye K, Cameron S, Lindner LH, Jost PJ, Bauer S, Schütte J, Lindskog S, Kallio R, Jaakkola PM, Goplen D, Wardelmann E, Reichardt P. Survival of patients with ruptured gastrointestinal stromal tumour treated with adjuvant imatinib in a randomised trial. Br J Cancer 2024; 131:299-304. [PMID: 38862742 PMCID: PMC11263706 DOI: 10.1038/s41416-024-02738-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/18/2024] [Accepted: 05/28/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Patients with ruptured gastrointestinal stromal tumour (GIST) have poor prognosis. Little information is available about how adjuvant imatinib influences survival. METHODS We explored recurrence-free survival (RFS) and overall survival (OS) of patients with ruptured GIST who participated in a randomised trial (SSG XVIII/AIO), where 400 patients with high-risk GIST were allocated to adjuvant imatinib for either 1 year or 3 years after surgery. Of the 358 patients with confirmed localised GIST, 73 (20%) had rupture reported. The ruptures were classified retrospectively using the Oslo criteria. RESULTS Most ruptures were major, four reported ruptures were reclassified unruptured. The 69 patients with rupture had inferior RFS and OS compared with 289 patients with unruptured GIST (10-year RFS 21% vs. 55%, OS 59% vs. 78%, respectively). Three-year adjuvant imatinib did not significantly improve RFS or OS of the patients with rupture compared with 1-year treatment, but in the largest mutational subset with KIT exon 11 deletion/indel mutation OS was higher in the 3-year group than in the 1-year group (10-year OS 94% vs. 54%). CONCLUSIONS About one-fifth of ruptured GISTs treated with adjuvant imatinib did not recur during the first decade of follow-up. Relatively high OS rates were achieved despite rupture. CLINICAL TRIAL REGISTRATION NCT00116935.
Collapse
Affiliation(s)
- Heikki Joensuu
- Department of Oncology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.
| | - Annette Reichardt
- Helios Klinikum Berlin-Buch, and Berlin Medical School, Berlin, Germany
| | - Mikael Eriksson
- Department of Oncology, Skåne University Hospital and Lund University, Lund, Sweden
| | - Peter Hohenberger
- Division of Surgical Oncology & Thoracic Surgery, Mannheim University Medical Center, Mannheim, Germany
| | - Kjetil Boye
- Department of Oncology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Silke Cameron
- Department of Gastroenterology and Gastrointestinal Oncology, University Medicine Göttingen, Göttingen, Germany
| | - Lars H Lindner
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Philipp J Jost
- Medical Department III, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Division of Clinical Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Sebastian Bauer
- Department of Medical Oncology and Sarcoma Center, West German Cancer Center, University Duisburg-Essen, Medical School, Essen, Germany
- DKTK partner site Essen, German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Jochen Schütte
- Schwerpunktpraxis Oncology/ Hematology, Düsseldorf, Germany
- Universitätsklinikum Essen Innere Klinik Essen, Essen, Germany
| | - Stefan Lindskog
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Surgery, Halland Hospital, Varberg, Sweden
| | - Raija Kallio
- Department of Oncology and Radiotherapy, Oulu University Hospital, Oulu, Finland
| | - Panu M Jaakkola
- Department of Oncology, Turku University Hospital and University of Turku, Turku, Finland
| | | | - Eva Wardelmann
- Gerhard-Domagk-Institute of Pathology, University of Münster, Münster, Germany
| | - Peter Reichardt
- Helios Klinikum Berlin-Buch, and Berlin Medical School, Berlin, Germany
| |
Collapse
|
17
|
Olivera-Salazar R, Salcedo Cabañas G, Vega-Clemente L, Alonso-Martín D, Castellano Megías VM, Volward P, García-Olmo D, García-Arranz M. Pilot Study by Liquid Biopsy in Gastrointestinal Stromal Tumors: Analysis of PDGFRA D842V Mutation and Hypermethylation of SEPT9 Presence by Digital Droplet PCR. Int J Mol Sci 2024; 25:6783. [PMID: 38928487 PMCID: PMC11203410 DOI: 10.3390/ijms25126783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Tissue biopsy remains the standard for diagnosing gastrointestinal stromal tumors (GISTs), although liquid biopsy is emerging as a promising alternative in oncology. In this pilot study, we advocate for droplet digital PCR (ddPCR) to diagnose GIST in tissue samples and explore its potential for early diagnosis via liquid biopsy, focusing on the PDGFRA D842V mutation and SEPT9 hypermethylated gene. We utilized ddPCR to analyze the predominant PDGFRA mutation (D842V) in surgical tissue samples from 15 GIST patients, correlating with pathologists' diagnoses. We expanded our analysis to plasma samples to compare DNA alterations between tumor tissue and plasma, also investigating SEPT9 gene hypermethylation. We successfully detected the PDGFRA D842V mutation in GIST tissues by ddPCR. Despite various protocols to enhance mutation detection in early-stage disease, it remained challenging, likely due to the low concentration of DNA in plasma samples. Additionally, the results of Area Under the Curve (AUC) for the hypermethylated SEPT9 gene, analyzing concentration, ratio, and abundance were 0.74 (95% Confidence Interval (CI): 0.52 to 0.97), 0.77 (95% CI: 0.56 to 0.98), and 0.79 (95% CI: 0.59 to 0.99), respectively. As a rare disease, the early detection of GIST through such biomarkers is particularly crucial, offering significant potential to improve patient outcomes.
Collapse
Affiliation(s)
- Rocío Olivera-Salazar
- New Therapies Laboratory, Health Research Institute-Fundación Jiménez Díaz University Hospital (IIS-FJD), Avda. Reyes Católicos, 2, 28040 Madrid, Spain; (L.V.-C.); (D.A.-M.); (D.G.-O.); (M.G.-A.)
| | - Gabriel Salcedo Cabañas
- Surgeon Esophagogastric Unit, Hospital Fundación Jiménez Díaz, Avda. Reyes Católicos, 2, 28040 Madrid, Spain; (G.S.C.); (P.V.)
| | - Luz Vega-Clemente
- New Therapies Laboratory, Health Research Institute-Fundación Jiménez Díaz University Hospital (IIS-FJD), Avda. Reyes Católicos, 2, 28040 Madrid, Spain; (L.V.-C.); (D.A.-M.); (D.G.-O.); (M.G.-A.)
| | - David Alonso-Martín
- New Therapies Laboratory, Health Research Institute-Fundación Jiménez Díaz University Hospital (IIS-FJD), Avda. Reyes Católicos, 2, 28040 Madrid, Spain; (L.V.-C.); (D.A.-M.); (D.G.-O.); (M.G.-A.)
| | | | - Peter Volward
- Surgeon Esophagogastric Unit, Hospital Fundación Jiménez Díaz, Avda. Reyes Católicos, 2, 28040 Madrid, Spain; (G.S.C.); (P.V.)
| | - Damián García-Olmo
- New Therapies Laboratory, Health Research Institute-Fundación Jiménez Díaz University Hospital (IIS-FJD), Avda. Reyes Católicos, 2, 28040 Madrid, Spain; (L.V.-C.); (D.A.-M.); (D.G.-O.); (M.G.-A.)
- Department of Surgery, Fundación Jiménez Díaz University Hospital (FJD), 28040 Madrid, Spain
- Department of Surgery, Universidad Autónoma de Madrid, 28034 Madrid, Spain
| | - Mariano García-Arranz
- New Therapies Laboratory, Health Research Institute-Fundación Jiménez Díaz University Hospital (IIS-FJD), Avda. Reyes Católicos, 2, 28040 Madrid, Spain; (L.V.-C.); (D.A.-M.); (D.G.-O.); (M.G.-A.)
- Department of Surgery, Universidad Autónoma de Madrid, 28034 Madrid, Spain
| |
Collapse
|
18
|
Judson I, Jones RL, Wong NACS, Dileo P, Bulusu R, Smith M, Almond M. Gastrointestinal stromal tumour (GIST): British Sarcoma Group clinical practice guidelines. Br J Cancer 2024:10.1038/s41416-024-02672-0. [PMID: 38840030 DOI: 10.1038/s41416-024-02672-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND British Sarcoma Group guidelines for the management of GIST were initially informed by those published by the European Society of Clinical Oncology. This update was written by a group of experts to includes a discussion of the highlight improvements in our knowledge of the disease and recent treatment developments. The guidelines include sections on Incidence, Aetiology, Diagnosis, including risk assessment, Treatment and Follow-up. METHODS A careful review of the literature was performed to ensure that wherever possible recommendations are supported by the results of clinical trials or substantive retrospective reports. Areas of uncertainty are indicated appropriately. CONCLUSION Guidelines represent a consensus view of current best clinical practice. Where appropriate, key recommendations are given and the levels of evidence and strength of recommendation gradings are those used by the European Society for Medical Oncology (ESMO).
Collapse
Affiliation(s)
- Ian Judson
- The Institute of Cancer Research, London, UK.
| | | | | | | | | | - Myles Smith
- Royal Marsden NHS Foundation Trust, London, UK
| | - Max Almond
- Birmingham University Hospitals, Birmingham, UK
| |
Collapse
|
19
|
Hirota S, Tateishi U, Nakamoto Y, Yamamoto H, Sakurai S, Kikuchi H, Kanda T, Kurokawa Y, Cho H, Nishida T, Sawaki A, Ozaka M, Komatsu Y, Naito Y, Honma Y, Takahashi F, Hashimoto H, Udo M, Araki M, Nishidate S. English version of Japanese Clinical Practice Guidelines 2022 for gastrointestinal stromal tumor (GIST) issued by the Japan Society of Clinical Oncology. Int J Clin Oncol 2024; 29:647-680. [PMID: 38609732 PMCID: PMC11130037 DOI: 10.1007/s10147-024-02488-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/12/2024] [Indexed: 04/14/2024]
Abstract
The Japan Society of Clinical Oncology Clinical Practice Guidelines 2022 for gastrointestinal stromal tumor (GIST) have been published in accordance with the Minds Manual for Guideline Development 2014 and 2017. A specialized team independent of the working group for the revision performed a systematic review. Since GIST is a rare type of tumor, clinical evidence is not sufficient to answer several clinical and background questions. Thus, in these guidelines, we considered that consensus among the experts who manage GIST, the balance between benefits and harms, patients' wishes, medical economic perspective, etc. are important considerations in addition to the evidence. Although guidelines for the treatment of GIST have also been published by the National Comprehensive Cancer Network (NCCN) and the European Society for Medical Oncology (ESMO), there are some differences between the treatments proposed in those guidelines and the treatments in the present guidelines because of the differences in health insurance systems among countries.
Collapse
Affiliation(s)
- Seiichi Hirota
- Department of Surgical Pathology, Hyogo Medical University School of Medicine, Nishinomiya, Japan.
| | - Ukihide Tateishi
- Department of Diagnostic Radiology and Nuclear Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuji Nakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hidetaka Yamamoto
- Department of Pathology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Shinji Sakurai
- Department of Diagnostic Pathology, Japan Community Healthcare Organization Gunma Central Hospital, Maebashi, Japan
| | - Hirotoshi Kikuchi
- Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tatsuo Kanda
- Department of Gastroenterology, Southern TOHOKU General Hospital, Koriyama, Japan
| | - Yukinori Kurokawa
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Haruhiko Cho
- Department of Surgery, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Toshirou Nishida
- Department of Surgery, Japan Community Healthcare Organization Osaka Hospital, Osaka, Japan
| | - Akira Sawaki
- Department of Medical Oncology, Shonan Kamakura General Hospital, Kamakura, Japan
| | - Masato Ozaka
- Department of Hepato-Biliary-Pancreatic Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yoshito Komatsu
- Department of Cancer Chemotherapy, Hokkaido University Hospital Cancer Center, Sapporo, Japan
| | - Yoichi Naito
- Department of General Internal Medicine, National Cancer Center Hospital East, Kashiwa, Japan
| | - Yoshitaka Honma
- Department of Head and Neck, Esophageal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Fumiaki Takahashi
- Department of Information Science, Iwate Medical University, Morioka, Japan
| | | | - Midori Udo
- Nursing Department, Osaka Police Hospital, Osaka, Japan
| | - Minako Araki
- Association of Chubu GIST Patients and Their Families, Nagoya, Japan
| | | |
Collapse
|
20
|
Bleckman RF, Haag CMSC, Rifaela N, Beukema G, Mathijssen RHJ, Steeghs N, Gelderblom H, Desar IME, Cleven A, Ter Elst A, Schuuring E, Reyners AKL. Levels of circulating tumor DNA correlate with tumor volume in gastro-intestinal stromal tumors: an exploratory long-term follow-up study. Mol Oncol 2024. [PMID: 38790141 DOI: 10.1002/1878-0261.13644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/26/2024] [Accepted: 03/15/2024] [Indexed: 05/26/2024] Open
Abstract
Patients with gastro-intestinal stromal tumors (GISTs) undergoing tyrosine kinase inhibitor therapy are monitored with regular computed tomography (CT) scans, exposing patients to cumulative radiation. This exploratory study aimed to evaluate circulating tumor DNA (ctDNA) testing to monitor treatment response and compare changes in ctDNA levels with RECIST 1.1 and total tumor volume measurements. Between 2014 and 2021, six patients with KIT proto-oncogene, receptor tyrosine kinase (KIT) exon-11-mutated GIST from whom long-term plasma samples were collected prospectively were included in the study. ctDNA levels of relevant plasma samples were determined using the KIT exon 11 digital droplet PCR drop-off assay. Tumor volume measurements were performed using a semi-automated approach. In total, 94 of 130 clinically relevant ctDNA samples were analyzed. Upon successful treatment response, ctDNA became undetectable in all patients. At progressive disease, ctDNA was detectable in five out of six patients. Higher levels of ctDNA correlated with larger tumor volumes. Undetectable ctDNA at the time of progressive disease on imaging was consistent with lower tumor volumes compared to those with detectable ctDNA. In summary, ctDNA levels seem to correlate with total tumor volume at the time of progressive disease. Our exploratory study shows promise for including ctDNA testing in treatment follow-up.
Collapse
Affiliation(s)
- Roos F Bleckman
- Department of Medical Oncology and Pathology, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Charlotte M S C Haag
- Department of Medical Oncology and Pathology, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Naomi Rifaela
- Department of Medical Oncology and Pathology, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Gerrieke Beukema
- Department of Medical Oncology and Pathology, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Ron H J Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Neeltje Steeghs
- Department of Medical Oncology, The Netherlands Cancer Institute Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| | - Hans Gelderblom
- Department of Medical Oncology, Leiden University Medical Center, The Netherlands
| | - Ingrid M E Desar
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Arjen Cleven
- Department of Medical Oncology and Pathology, University Medical Center Groningen, University of Groningen, The Netherlands
- Department of Medical Oncology, Leiden University Medical Center, The Netherlands
| | - Arja Ter Elst
- Department of Medical Oncology and Pathology, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Ed Schuuring
- Department of Medical Oncology and Pathology, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Anna K L Reyners
- Department of Medical Oncology and Pathology, University Medical Center Groningen, University of Groningen, The Netherlands
| |
Collapse
|
21
|
Kikuchi Y, Shimada H, Yamasaki F, Yamashita T, Araki K, Horimoto K, Yajima S, Yashiro M, Yokoi K, Cho H, Ehira T, Nakahara K, Yasuda H, Isobe K, Hayashida T, Hatakeyama S, Akakura K, Aoki D, Nomura H, Tada Y, Yoshimatsu Y, Miyachi H, Takebayashi C, Hanamura I, Takahashi H. Clinical practice guidelines for molecular tumor marker, 2nd edition review part 2. Int J Clin Oncol 2024; 29:512-534. [PMID: 38493447 DOI: 10.1007/s10147-024-02497-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/21/2024] [Indexed: 03/19/2024]
Abstract
In recent years, rapid advancement in gene/protein analysis technology has resulted in target molecule identification that may be useful in cancer treatment. Therefore, "Clinical Practice Guidelines for Molecular Tumor Marker, Second Edition" was published in Japan in September 2021. These guidelines were established to align the clinical usefulness of external diagnostic products with the evaluation criteria of the Pharmaceuticals and Medical Devices Agency. The guidelines were scoped for each tumor, and a clinical questionnaire was developed based on a serious clinical problem. This guideline was based on a careful review of the evidence obtained through a literature search, and recommendations were identified following the recommended grades of the Medical Information Network Distribution Services (Minds). Therefore, this guideline can be a tool for cancer treatment in clinical practice. We have already reported the review portion of "Clinical Practice Guidelines for Molecular Tumor Marker, Second Edition" as Part 1. Here, we present the English version of each part of the Clinical Practice Guidelines for Molecular Tumor Marker, Second Edition.
Collapse
Affiliation(s)
| | - Hideaki Shimada
- Department of Clinical Oncology, Toho University, Tokyo, Japan.
- Department of Surgery, Toho University, Tokyo, Japan.
| | - Fumiyuki Yamasaki
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Taku Yamashita
- Department of Otorhinolaryngology-Head and Neck Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Koji Araki
- Department of Otorhinolaryngology-Head and Neck Surgery, National Defense Medical College, Saitama, Japan
| | - Kohei Horimoto
- Department of Dermatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | | | - Masakazu Yashiro
- Department of Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Keigo Yokoi
- Department of Lower Gastrointestinal Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Haruhiko Cho
- Department of Surgery, Tokyo Metropolitan Komagome Hospital, Tokyo, Japan
| | - Takuya Ehira
- Department of Gastroenterology, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Kazunari Nakahara
- Department of Gastroenterology, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Hiroshi Yasuda
- Department of Gastroenterology, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Kazutoshi Isobe
- Division of Respiratory Medicine, Department of Internal Medicine (Omori), Toho University, Tokyo, Japan
| | - Tetsu Hayashida
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Shingo Hatakeyama
- Department of Urology, Hirosaki University Graduate School of Medicine, Aomori, Japan
| | | | - Daisuke Aoki
- International University of Health and Welfare Graduate School, Tokyo, Japan
| | - Hiroyuki Nomura
- Department of Obstetrics and Gynecology, School of Medicine, Fujita Health University, Aichi, Japan
| | - Yuji Tada
- Department of Pulmonology, School of Medicine, International University of Health and Welfare, Chiba, Japan
| | - Yuki Yoshimatsu
- Department of Patient-Derived Cancer Model, Tochigi Cancer Center Research Institute, Tochigi, Japan
| | - Hayato Miyachi
- Faculty of Clinical Laboratory Sciences, Nitobe Bunka College, Tokyo, Japan
| | - Chiaki Takebayashi
- Division of Hematology and Oncology, Department of Internal Medicine (Omori), Toho University, Tokyo, Japan
| | - Ichiro Hanamura
- Division of Hematology, Department of Internal Medicine, Aichi Medical University, Aichi, Japan
| | | |
Collapse
|
22
|
Denu RA, Joseph CP, Urquiola ES, Byrd PS, Yang RK, Ratan R, Zarzour MA, Conley AP, Araujo DM, Ravi V, Nassif Haddad EF, Nakazawa MS, Patel S, Wang WL, Lazar AJ, Somaiah N. Utility of Clinical Next Generation Sequencing Tests in KIT/PDGFRA/SDH Wild-Type Gastrointestinal Stromal Tumors. Cancers (Basel) 2024; 16:1707. [PMID: 38730662 PMCID: PMC11083047 DOI: 10.3390/cancers16091707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Objective: The vast majority of gastrointestinal stromal tumors (GISTs) are driven by activating mutations in KIT, PDGFRA, or components of the succinate dehydrogenase (SDH) complex (SDHA, SDHB, SDHC, and SDHD genes). A small fraction of GISTs lack alterations in KIT, PDGFRA, and SDH. We aimed to further characterize the clinical and genomic characteristics of these so-called "triple-negative" GISTs. Methods: We extracted clinical and genomic data from patients seen at MD Anderson Cancer Center with a diagnosis of GIST and available clinical next generation sequencing data to identify "triple-negative" patients. Results: Of the 20 patients identified, 11 (55.0%) had gastric, 8 (40.0%) had small intestinal, and 1 (5.0%) had rectal primary sites. In total, 18 patients (90.0%) eventually developed recurrent or metastatic disease, and 8 of these presented with de novo metastatic disease. For the 13 patients with evaluable response to imatinib (e.g., neoadjuvant treatment or for recurrent/metastatic disease), the median PFS with imatinib was 4.4 months (range 0.5-191.8 months). Outcomes varied widely, as some patients rapidly developed progressive disease while others had more indolent disease. Regarding potential genomic drivers, four patients were found to have alterations in the RAS/RAF/MAPK pathway: two with a BRAF V600E mutation and two with NF1 loss-of-function (LOF) mutations (one deletion and one splice site mutation). In addition, we identified two with TP53 LOF mutations, one with NTRK3 fusion (ETV6-NTRK3), one with PTEN deletion, one with FGFR1 gain-of-function (GOF) mutation (K654E), one with CHEK2 LOF mutation (T367fs*), one with Aurora kinase A fusion (AURKA-CSTF1), and one with FANCA deletion. Patients had better responses with molecularly targeted therapies than with imatinib. Conclusions: Triple-negative GISTs comprise a diverse cohort with different driver mutations. Compared to KIT/PDGFRA-mutant GIST, limited benefit was observed with imatinib in triple-negative GIST. In depth molecular profiling can be helpful in identifying driver mutations and guiding therapy.
Collapse
Affiliation(s)
- Ryan A. Denu
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Cissimol P. Joseph
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Elizabeth S. Urquiola
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Precious S. Byrd
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Richard K. Yang
- Department of Pathology, Division of Pathology & Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ravin Ratan
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Maria Alejandra Zarzour
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Anthony P. Conley
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dejka M. Araujo
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Vinod Ravi
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Elise F. Nassif Haddad
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Michael S. Nakazawa
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shreyaskumar Patel
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Wei-Lien Wang
- Department of Pathology, Division of Pathology & Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Alexander J. Lazar
- Department of Pathology, Division of Pathology & Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Neeta Somaiah
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
23
|
De Luca I, Miliziano D, Guerra G, Colombo R, Morosi C, Sposito C, Fiore M, Venturelli E, Sangalli C, Casali PG, Cavalleri A, Fumagalli E. Hemodialysis and imatinib: Plasma levels, efficacy and tolerability in a patient with metastatic GIST - Case report. Heliyon 2024; 10:e28494. [PMID: 38596050 PMCID: PMC11002597 DOI: 10.1016/j.heliyon.2024.e28494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 04/11/2024] Open
Abstract
Purpose To study plasma levels, efficacy and tolerability of imatinib in a patient affected by metastatic GIST treated with oral Imatinib and undergoing hemodialysis. Patients and methods The patient suffered from metastatic GIST to the liver having a mutation of exon 9 of KIT. He was on hemodialysis and received first-line treatment with imatinib 400 mg/day. Results The overall mean plasma level of imatinib was 1875,4 ng/ml pre-dialysis, 1553,0 ng/ml post-dialysis and 1998,1 ng/ml post-24h. In red blood cells the overall mean level of imatinib was 619,5 ng/ml pre-dialysis, 484,9 ng/ml post-dialysis and 663,1 ng/ml post-24h. The plasma level of nor-imatinib/imatinib was 16,2% pre-dialysis, 15,6% post-dialysis and 16,4% post-24h. Comparing our findings regarding levels of imatinib in plasma and RBC, we found a statistically significant difference between pre-dialysis and post-dialysis (respectively p < 0,001 and p = 0,002), post-dialysis and post-24h (both p < 0,001), pre-dialysis and post-24h (respectively p = 0.035 and p = 0,042). Ultimately, regarding nor-imatinib/imatinib in plasma, we did not find any statistically significant difference between pre-dialysis and post-dialysis (p = 0,091), post-dialysis and post-24h (p = 0,091), pre-dialysis and post-24h (p = 0.903). Currently the patient is receiving oral imatinib 400 mg/day with radiological evidence of response. Conclusion In this case, hemodialysis did not affect significantly imatinib plasma levels. The statistically significant difference between pre- and post-dialysis can be explained by the fact that dialysis may likely contribute to a small portion of the normal metabolism of imatinib. The evaluation of imatinib levels in RBC and of its main metabolite in plasma also suggests that hemodialysis did not affect other aspects of the elimination of the drug.
Collapse
Affiliation(s)
- Ida De Luca
- Fondazione IRCCS Istituto Nazionale dei Tumori, Oncologia medica 2 Tumori mesenchimali dell'adulto, Milan, Italy
| | - Daniela Miliziano
- Fondazione IRCCS Istituto Nazionale dei Tumori, Oncologia medica 2 Tumori mesenchimali dell'adulto, Milan, Italy
| | - Giulia Guerra
- Fondazione IRCCS Istituto Nazionale dei Tumori, s.c. Epidemiologia e Prevenzione, Milan, Italy
| | | | - Carlo Morosi
- Fondazione IRCCS Istituto Nazionale dei Tumori, Radiologia diagnostica ed interventistica, Milan, Italy
| | - Carlo Sposito
- Fondazione IRCCS Istituto Nazionale dei Tumori, Chirurgia dell'apparato digerente e Trapianto di Fegato, Milan, Italy
| | - Marco Fiore
- Fondazione IRCCS Istituto Nazionale dei Tumori, Dipartimento di Chirurgia, Milan, Italy
| | - Elisabetta Venturelli
- Fondazione IRCCS Istituto Nazionale dei Tumori, s.s.d. Ricerca Nutrizionale e Metabolomica, Milan, Italy
| | - Claudia Sangalli
- Fondazione IRCCS Istituto Nazionale dei Tumori, Radioterapia, Milan, Italy
| | - Paolo G. Casali
- Fondazione IRCCS Istituto Nazionale dei Tumori & University of Milan, Milan, Italy
| | - Adalberto Cavalleri
- Fondazione IRCCS Istituto Nazionale dei Tumori, s.c. Epidemiologia e Prevenzione, Milan, Italy
| | - Elena Fumagalli
- Fondazione IRCCS Istituto Nazionale dei Tumori, Oncologia medica 2 Tumori mesenchimali dell'adulto, Milan, Italy
| |
Collapse
|
24
|
Kim HR, Lee SJ, Ahn MS, Kim JE, Kang MJ, Hong JY, Lee J, Kim ST. Imatinib in c-KIT-mutated metastatic solid tumors: A multicenter trial of Korean Cancer Study Group (UN18-05 Trial). J Cancer Res Ther 2024; 20:972-978. [PMID: 39023605 DOI: 10.4103/jcrt.jcrt_2698_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 01/03/2023] [Indexed: 07/20/2024]
Abstract
INTRODUCTION We conducted an open-label, single-arm, multi-center phase II trial to evaluate the efficacy and safety of imatinib chemotherapy-refractory or metastatic solid tumor patients with c-KIT mutations and/or amplification. METHODS c-KIT mutations and amplification were detected using NGS. Imatinib (400 mg daily) was administered continuously in 28-day cycles until disease progression, unacceptable adverse events, or death by any cause. The primary endpoint was the objective response rate (ORR). RESULT In total, 18 patients were enrolled on this trial. The most common tumor type was melanoma (n = 15, 83.3%), followed by ovarian cancer, breast cancer, and metastasis of unknown origin (MUO) (each n = 1, 5.5%). The total number of evaluable patients was 17, of which one patient had a complete response, six patients had partial response, and two patients had stable disease. The overall response rate (ORR) of 41.2% (95% CI 17.80-64.60) and a disease control rate of 52.9% (95% CI 29.17-76.63). The median progression-free survival was 2.2 months (95% CI 1.29-3.20), and median overall survival was 9.1 months (95% CI 2.10-16.11). The most common adverse events were edema (31.3%), anorexia (25.0%), nausea (18.8%), and skin rash (18.8%). CONCLUSION Imatinib demonstrated modest anti-tumor activity and a manageable safety profile in chemotherapy-refractory solid tumors with c-KIT mutation, especially in melanoma patients.
Collapse
Affiliation(s)
- Hye Ryeon Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Department of Internal Medicine, Dong-A University College of Medicine, Busan, Korea
| | - Su Jin Lee
- Division of Hematology-Oncology, Department of Internal Medicine, Ewha Womans University College of Medicine, Seoul, Korea
| | - Mi Sun Ahn
- Division of Hematology/Oncology, Department of Medicine, Ajou University Medical Center, Suwon, Korea
| | - Jeong Eun Kim
- Department of Oncology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Myoung Joo Kang
- Division of Oncology, Department of Internal Medicine, Inje University College of Medicine, Haeundae Paik Hospital, Busan, Korea
| | - Jung Yong Hong
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jeeyun Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seung Tae Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
25
|
Wu X, Iwatsuki M, Takaki M, Saito T, Hayashi T, Kondo M, Sakai Y, Gotohda N, Tanaka E, Nishida T, Baba H. FBXW7 regulates the sensitivity of imatinib in gastrointestinal stromal tumors by targeting MCL1. Gastric Cancer 2024; 27:235-247. [PMID: 38142463 DOI: 10.1007/s10120-023-01454-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/23/2023] [Indexed: 12/26/2023]
Abstract
BACKGROUND Imatinib contributes to improving prognosis of high-risk or unresectable gastrointestinal stromal tumors (GISTs). As therapeutic efficacy is limited by imatinib resistance and toxicity, the exploration of predictive markers of imatinib therapeutic efficacy that enables patients to utilize more effective therapeutic strategies remains urgent. METHODS The correlation between FBXW7 and imatinib resistance via FBXW7-MCL1 axis was evaluated in vitro and in vivo experiments. The significance of FBXW7 as a predictor of imatinib treatment efficacy was examined in 140 high-risk patients with GISTs. RESULTS The ability of FBXW7 to predict therapeutic efficacy of adjuvant imatinib in high-risk GIST patients was determined through 5-year recurrence-free survival (RFS) rates analysis and multivariate analysis. FBXW7 affects imatinib sensitivity by regulating apoptosis in GIST-T1 cells. FBXW7 targets MCL1 to regulate apoptosis. MCL1 involves in the regulation of imatinib sensitivity through inhibiting apoptosis in GIST-T1 cells. FBXW7 regulates imatinib sensitivity by down-regulating MCL1 to enhance imatinib-induced apoptosis in vitro. FBXW7 regulates imatinib sensitivity of GIST cells by targeting MCL1 to predict efficacy of imatinib treatment in vivo. CONCLUSIONS FBXW7 regulates imatinib sensitivity by inhibiting MCL1 to enhance imatinib-induced apoptosis in GIST, and predicts efficacy of imatinib treatment in high-risk GIST patients treated with imatinib.
Collapse
Affiliation(s)
- Xiyu Wu
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Masaaki Iwatsuki
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan.
| | - Masakazu Takaki
- Department of Rehabilitation, Hospitality Care Garden Seisei Rehabilitation Hospital, Kasuga, Japan
| | - Takuro Saito
- Department of Gastroenterological Surgery, Osaka University, Suita, Japan
| | - Tsutomu Hayashi
- Gastric Surgery Division, National Cancer Center Hospital, Tokyo, Japan
| | - Masato Kondo
- Department of Surgery, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Yoshiharu Sakai
- Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Naoto Gotohda
- Department of Hepatobiliary and Pancreatic Surgery, National Cancer Center Hospital East, Tokyo, Japan
| | - Eiji Tanaka
- Department of Surgery, Japanese Red Cross Kumamoto Hospital, Kumamoto, Japan
| | - Toshirou Nishida
- Department of Surgery, Japan Community Health-Care Organization Osaka Hospital, Osaka, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| |
Collapse
|
26
|
Nowak KM, Chetty R. Predictive and prognostic biomarkers in gastrointestinal tract tumours. Pathology 2024; 56:205-213. [PMID: 38238239 DOI: 10.1016/j.pathol.2023.12.412] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/28/2023] [Accepted: 12/30/2023] [Indexed: 02/18/2024]
Abstract
Tumours of the gastrointestinal tract represent nearly a quarter of all newly diagnosed tumours diagnosed in 2019. Various treatment modalities for gastrointestinal cancers exist, some of which may be guided by biomarkers. Biomarkers act as gauges of either normal or pathogenic processes or responses to an exposure or intervention. They come in many forms. This review explores established and potential molecular/immunohistochemical (IHC) predictive and prognostic biomarkers of the gastrointestinal tract.
Collapse
Affiliation(s)
- Klaudia M Nowak
- Laboratory Medicine Program, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada.
| | | |
Collapse
|
27
|
Yang L, Zhang D, Zheng T, Liu D, Fang Y. Predicting the progression-free survival of gastrointestinal stromal tumors after imatinib therapy through multi-sequence magnetic resonance imaging. Abdom Radiol (NY) 2024; 49:801-813. [PMID: 38006414 DOI: 10.1007/s00261-023-04093-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 11/27/2023]
Abstract
PURPOSE Identify radiomics features associated with progression-free survival (PFS) and develop a predictive model for accurate PFS prediction in liver metastatic gastrointestinal stromal tumor patients (GIST). METHODS This multi-center retrospective study involved a comprehensive review of clinical and imaging data pertaining to 211 patients with gastrointestinal stromal tumors (GIST) from Center A and B. A total of 147 patients with hepatic metastatic GIST were included, with 102 cases as the training set and 45 cases as the external validation set. Radiomics features were extracted from non-enhanced MR images, specifically T2WI, DWI, and ADC, and relevant features were selected through LASSO-Cox regression. A radiomics nomogram model was then constructed using multivariable Cox regression analysis to effectively predict PFS. The models performance were evaluated with the concordance index (C-index). RESULTS The median age of the patients was 53 years, with 82 males and 65 females. A total of 21 radiomics features were selected to generate the radiomics signature. Radiomics signature slightly outperformed the clinical model but without significant difference (P > 0.05). Integrated radiomics signature with clinical features to build a nomogram, which exhibited high predictive performance in both training (C-index 0.757, 95% CI 0.692-0.822) and validation cohorts (C-index 0.718, 95% CI 0.618-0.818). Nomogram significantly outperformed the clinical model (P = 0.002 for training cohort, P < 0.001 for validation cohort). Stable long-term predictions shown by time-dependent ROC analysis (AUC 0.765-0.919 in training, 0.766-0.893 in validation). Multivariable Cox regression confirmed radiomics signature as an independent prognostic factor for preoperative survival prediction in hepatic metastatic GIST patients (HR = 3.973). CONCLUSION Radiomics signature is valuable for predicting PFS in metastatic GIST patients. Integrating imaging features and clinical factors into a comprehensive nomogram improves accuracy and effectiveness of survival prognosis, guiding personalized treatment strategies.
Collapse
Affiliation(s)
- Linsha Yang
- Department of Medical Imaging, The First Hospital of Qinhuangdao, Qinhuangdao, People's Republic of China
| | - Duo Zhang
- Department of Medical Imaging, Baoding No. 1 Central Hospital, Baoding, People's Republic of China
| | - Tao Zheng
- Department of Medical Imaging, The First Hospital of Qinhuangdao, Qinhuangdao, People's Republic of China
| | - Defeng Liu
- Department of Medical Imaging, The First Hospital of Qinhuangdao, Qinhuangdao, People's Republic of China.
| | - Yuan Fang
- Medical Imaging Center, Chongqing Yubei District People's Hospital, Chongqing, People's Republic of China.
| |
Collapse
|
28
|
Teranishi R, Takahashi T, Sato S, Sakurai K, Kishi K, Hosogi H, Nakai T, Kurokawa Y, Fujita J, Nishida T, Hirota S, Tsujinaka T. The impact of contour maps on estimating the risk of gastrointestinal stromal tumor recurrence: indications for adjuvant therapy: an analysis of the Kinki GIST registry. Gastric Cancer 2024; 27:355-365. [PMID: 38146035 PMCID: PMC10896809 DOI: 10.1007/s10120-023-01444-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/19/2023] [Indexed: 12/27/2023]
Abstract
INTRODUCTION Contour maps enable risk classification of GIST recurrence in individual patients within 10 postoperative years. Although contour maps have been referred to in Japanese guidelines, their usefulness and role in determining indications for adjuvant therapy is still unclear in Japanese patients. The aims of this study are to investigate the validity of contour maps in Japanese patients with GIST and explore the new strategy for adjuvant therapy. MATERIALS AND METHODS A total of 1426 Japanese GIST patients who were registered to the registry by the Kinki GIST Study Group between 2003 and 2012 were analyzed. Patients who had R0 surgery without perioperative therapy were included in this study. The accuracy of contour maps was validated. RESULTS Overall, 994 patients have concluded this study. Using contour maps, we validated the patients. The 5-year recurrence-free survival rates of patients within the GIST classification groups of 0-10%, 10-20%, 20-40%, 40-60%, 60-80%, 80-90%, and 90-100% were 98.1%, 96.6%, 92.3%, 48.0%, 37.3%, 41.0% and 42.4%, respectively. We confirmed that this classification by contour maps was well reflected recurrence prediction. Further, in the high-risk group stratified by the modified National Institutes of Health consensus criteria (m-NIHC), the 10-year RFS rate was remarkably changed at a cutoff of 40% (0-40% group vs. 40-100% group: 88.7% vs. 50.3%, p < 0.001). CONCLUSION Contour maps are effective in predicting individual recurrence rates. And it may be useful for the decision of individual strategy for high-risk patients combined with m-NIHC.
Collapse
Affiliation(s)
- Ryugo Teranishi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita City, Osaka, 565-0871, Japan
| | - Tsuyoshi Takahashi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita City, Osaka, 565-0871, Japan.
| | - Shinsuke Sato
- Department of Gastroenterological Surgery, Shizuoka General Hospital, Shizuoka, Japan
| | - Katsunobu Sakurai
- Department of Gastroenterological Surgery, Osaka City General Hospital, Osaka, Japan
| | - Kentaro Kishi
- Department of Surgery, Osaka Police Hospital, Osaka, Japan
| | - Hisahiro Hosogi
- Department of Surgery, Japanese Red Cross Osaka Hospital, Osaka, Japan
| | - Takuya Nakai
- Department of Surgery, Faculty of Medicine, Kindai University, Higashiosaka, Osaka, Japan
| | - Yukinori Kurokawa
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita City, Osaka, 565-0871, Japan
| | - Junya Fujita
- Department of Surgery, Yao Municipal Hospital, Osaka, Japan
| | - Toshirou Nishida
- Department of Surgery, Japan Community Health Care Organization Osaka Hospital, Osaka, Japan
| | - Seiichi Hirota
- Department of Surgical Pathology, Hyogo Medical University, Nishinomiya, Japan
| | | |
Collapse
|
29
|
Huang J, Chen J. Pharmacokinetics and pharmacodynamic evaluation of hyaluronic acid-modified imatinib-loaded PEGylated liposomes in CD44-positive Gist882 tumor-bearing mice. J Liposome Res 2024; 34:97-112. [PMID: 37401372 DOI: 10.1080/08982104.2023.2228888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/14/2023] [Indexed: 07/05/2023]
Abstract
To develop a PEGylated and CD44-targeted liposomes, enabled by surface coating with hyaluronic acid (HA) via amide bond to improve the efficacy of imatinib mesylate (IM), for tumor-targeted cytoplasmic drug delivery. HA was covalently grafted on DSPE-PEG2000-NH2 polymer. HA-modified or unmodified PEGylated liposomes were prepared with ethanol injection method, and the stability, drug release, and cytotoxicity of these liposomes were studied. Meanwhile, intracellular drug delivery efficiency, antitumor efficacy, and pharmacokinetics were also investigated. Ex vivo fluorescence biodistribution was also detected by small animal imaging. In addition, endocytosis mechanism was also explored HA-coated PEGylated liposomes (137.5 nm ± 10.24) had a negative zeta potential (-29.3 mV ± 5.44) and high drug loading (27.8%, w/w). The liposomes were stable with cumulative drug leakage (<60%) under physiological conditions. Blank liposomes were nontoxic to Gist882 cells, and IM-loaded liposomes had higher cytotoxicity to Gist882 cells. HA-modified PEGylated liposomes were internalized more effectively than non-HA coating via CD44-mediated endocytosis. Besides, the cellular uptake of HA-modified liposomes also partly depends on caveolin-medicated endocytosis and micropinocytosis. In rats, both liposomes produced a prolonged half-life of IM (HA/Lp/IM: 14.97h; Lp/IM: 11.15h) by 3- to 4.5-folds compared with the IM solution (3.61h). HA-decorated PEGylated liposomes encapsulated IM exhibited strong inhibitory effect on tumor growth in Gist882 cell-bearing nude mice and formation of 2D/3D tumor spheroids. The Ki67 immunohistochemistry result was consistent with the above results. IM-loaded PEGylated liposomes modified with HA exerted the excellent anti-tumor effect on tumor-bearing mice and more drugs accumulated into the tumor site.
Collapse
Affiliation(s)
- Ju Huang
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences Peking Union Medical College, Beijing, China
| | - Jian Chen
- Department of Oncology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| |
Collapse
|
30
|
Affiliation(s)
- Eric C T Geijteman
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Evelien J M Kuip
- Department of Medical Oncology and Department of Anesthesiology, Pain and Palliative Care, Radboudumc, Nijmegen, The Netherlands
| | | | - Diana Lees
- Department of Respiratory Medicine, Liverpool University Foundation Teaching Hospital, United Kingdom
| | - Eduardo Bruera
- Department of Palliative Rehabilitation and Integrative Medicine, University of Texas MD Anderson Cancer Center, Houston, USA
| |
Collapse
|
31
|
Yoshinami Y, Nishimura E, Hosokai T, Yamamoto S, Matsuda S, Nomura M, Kawakubo H, Kato K, Kitagawa Y. Rare malignant neoplasm of the esophagus: current status and future perspectives. Jpn J Clin Oncol 2024; 54:111-120. [PMID: 37861097 PMCID: PMC10849183 DOI: 10.1093/jjco/hyad144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/29/2023] [Indexed: 10/21/2023] Open
Abstract
Esophageal cancer is common worldwide, including in Japan, and its major histological subtype is squamous cell carcinoma. However, there are some rare esophageal cancers, including neuroendocrine neoplasm, gastrointestinal stromal tumor, carcinosarcoma and malignant melanoma. The biological and clinical features of these cancers differ from those of esophageal squamous cell carcinoma. Therefore, different treatment strategies are needed for these cancers but are based on limited evidence. Neuroendocrine neoplasm is mainly divided into neuroendocrine tumor and neuroendocrine carcinoma by differentiation and the Ki-67 proliferation index or mitotic index. Epidemiologically, the majority of esophageal neuroendocrine neoplasms are neuroendocrine carcinoma. The treatment of neuroendocrine carcinoma is similar to that of small cell lung cancer, which has similar morphological and biological features. Gastrointestinal stromal tumor is known to be associated with alterations in the c-KIT and platelet-derived growth factor receptor genes and, if resectable, is treated in accordance with the modified Fletcher classification. Carcinosarcoma is generally resistant to both chemotherapy and radiotherapy and requires multimodal treatments such as surgery plus chemotherapy to achieve cure. Primary malignant melanoma is resistant to cytotoxic chemotherapy, but immune checkpoint inhibitors have recently demonstrated efficacy for malignant melanoma of the esophagus. This review focuses on the current status and future perspectives for rare cancer of the esophagus.
Collapse
Affiliation(s)
- Yuri Yoshinami
- Department of Head and Neck, Esophageal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Erica Nishimura
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Taisuke Hosokai
- Department of Clinical Oncology, Kyoto University Hospital, Kyoto, Japan
| | - Shun Yamamoto
- Department of Head and Neck, Esophageal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Satoru Matsuda
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Motoo Nomura
- Department of Clinical Oncology, Kyoto University Hospital, Kyoto, Japan
| | - Hirofumi Kawakubo
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Ken Kato
- Department of Head and Neck, Esophageal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yuko Kitagawa
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
32
|
Jiang Z, Guo Y, Shi J, Zhang S, Zhang L, Wang Y, Li G, Bai R, Zhao H, Sun J. Cell-permeable PI3 kinase competitive peptide inhibits KIT mutant mediated tumorigenesis of gastrointestinal stromal tumor (GIST). Mol Biol Rep 2024; 51:98. [PMID: 38206538 DOI: 10.1007/s11033-023-09120-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 12/06/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND Mutations in the receptor tyrosine kinase KIT are the main cause of gastrointestinal stromal tumor (GIST), and the KIT mutants mediated PI3 kinase activation plays a key role in the tumorigenesis of GIST. In this study, we aimed to block PI3 kinase activation by cell-permeable peptide and investigate its possible application in the treatment of GIST. METHODS AND RESULTS We designed cell-permeable peptides based on the binding domain of PI3 kinase subunit p85 to KIT or PI3 kinase subunit p110, respectively, in order to compete for the binding between p85 and KIT or p110 and therefore inhibit the activation of PI3 kinases mediated by KIT. The results showed that the peptide can penetrate the cells, and inhibit the activation of PI3 kinases, leading to reduced cell survival and cell proliferation mediated by KIT mutants in vitro. Treatment of mice carrying germline KIT/V558A mutation, which can develop GIST, with the peptide that can compete for the binding between p85 and p110, led to reduced tumorigenesis of GIST. The peptide can further enhance the inhibition of the tumor growth by imatinib which is used as the first line targeted therapy of GIST. CONCLUSIONS Our results showed that cell-permeable PI3 kinase competitive peptide can inhibit KIT-mediated PI3 kinase activation and tumorigenesis of GIST, providing a rationale to further test the peptide in the treatment of GIST and even other tumors with over-activation of PI3 kinases.
Collapse
Affiliation(s)
- Zongying Jiang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Yue Guo
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jun Shi
- The Second Affiliated Hospital of Ningxia Medical University, Yinchuan, China
| | - Shaoting Zhang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Liangying Zhang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Yapeng Wang
- School of Nursing, Ningxia Medical University, Yinchuan, China
| | - Guofu Li
- Department of Pathology, The General Hospital of Ningxia Medical University, Yinchuan, China
| | - Ru Bai
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Hui Zhao
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Jianmin Sun
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China.
| |
Collapse
|
33
|
Sasa K, Son R, Oguchi A, Ashizawa K, Hasegawa N, Kubota D, Suehara Y, Takagi T, Okubo T, Akaike K, Sugimoto K, Takahashi M, Sakamoto K, Hashimoto T, Mine S, Fukunaga T, Ishijima M, Hayashi T, Yao T, Murakawa Y, Saito T. NTRK2 expression in gastrointestinal stromal tumors with a special emphasis on the clinicopathological and prognostic impacts. Sci Rep 2024; 14:768. [PMID: 38191907 PMCID: PMC10774370 DOI: 10.1038/s41598-024-51211-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 01/02/2024] [Indexed: 01/10/2024] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are typically characterized by activating mutations of the KIT proto-oncogene receptor tyrosine kinase (KIT) or platelet-derived growth factor receptor alpha (PDGFRA). Recently, the neurotrophic tyrosine receptor kinase (NTRK) fusion was reported in a small subset of wild-type GIST. We examined trk IHC and NTRK gene expressions in GIST. Pan-trk immunohistochemistry (IHC) was positive in 25 (all 16 duodenal and 9 out of 16 small intestinal GISTs) of 139 cases, and all pan-trk positive cases showed diffuse and strong expression of c-kit. Interestingly, all of these cases showed only trkB but not trkA/trkC expression. Cap analysis of gene expression (CAGE) analysis identified increased number of genes whose promoters were activated in pan-trk/trkB positive GISTs. Imbalanced expression of NTRK2, which suggests the presence of NTRK2 fusion, was not observed in any of trkB positive GISTs, despite higher mRNA expression. TrkB expression was found in duodenal GISTs and more than half of small intestinal GISTs, and this subset of cases showed poor prognosis. However, there was not clear difference in clinical outcomes according to the trkB expression status in small intestinal GISTs. These findings may provide a possible hypothesis for trkB overexpression contributing to the tumorigenesis and aggressive clinical outcome in GISTs of duodenal origin.
Collapse
Affiliation(s)
- Keita Sasa
- Department of Human Pathology, Juntendo University School of Medicine, Tokyo, Japan
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University School of Medicine, Tokyo, Japan
| | - Raku Son
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Akiko Oguchi
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Karin Ashizawa
- Department of Human Pathology, Juntendo University School of Medicine, Tokyo, Japan
| | - Nobuhiko Hasegawa
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University School of Medicine, Tokyo, Japan
| | - Daisuke Kubota
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University School of Medicine, Tokyo, Japan
| | - Yoshiyuki Suehara
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University School of Medicine, Tokyo, Japan
| | - Tatsuya Takagi
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University School of Medicine, Tokyo, Japan
| | - Taketo Okubo
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University School of Medicine, Tokyo, Japan
| | - Keisuke Akaike
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University School of Medicine, Tokyo, Japan
- Department of Orthopaedic Surgery, Yamanashi Central Hospital, Yamanashi, Japan
| | - Kiichi Sugimoto
- Department of Coloproctological Surgery, Graduate School of Medicine, Juntendo University, Tokyo, 113-8421, Japan
| | - Makoto Takahashi
- Department of Coloproctological Surgery, Graduate School of Medicine, Juntendo University, Tokyo, 113-8421, Japan
| | - Kazuhiro Sakamoto
- Department of Coloproctological Surgery, Graduate School of Medicine, Juntendo University, Tokyo, 113-8421, Japan
| | - Takashi Hashimoto
- Department of Upper Gastroenterological Surgery, Juntendo University Hospital, Bunkyo-ku, Tokyo, 113-8431, Japan
| | - Shinji Mine
- Department of Upper Gastroenterological Surgery, Juntendo University Hospital, Bunkyo-ku, Tokyo, 113-8431, Japan
| | - Tetsu Fukunaga
- Department of Upper Gastroenterological Surgery, Juntendo University Hospital, Bunkyo-ku, Tokyo, 113-8431, Japan
| | - Muneaki Ishijima
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University School of Medicine, Tokyo, Japan
- Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, 113-8421, Japan
| | - Takuo Hayashi
- Department of Human Pathology, Juntendo University School of Medicine, Tokyo, Japan
| | - Takashi Yao
- Department of Human Pathology, Juntendo University School of Medicine, Tokyo, Japan
| | - Yasuhiro Murakawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
- IFOM ETS - the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Tsuyoshi Saito
- Department of Human Pathology, Juntendo University School of Medicine, Tokyo, Japan.
- Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, 113-8421, Japan.
| |
Collapse
|
34
|
Incorvaia L, De Biase D, Nannini M, Fumagalli E, Vincenzi B, De Luca I, Brando C, Perez A, Pantaleo MA, Gasperoni S, D’Ambrosio L, Grignani G, Maloberti T, Pedone E, Bazan Russo TD, Mazzocca A, Algeri L, Dimino A, Barraco N, Serino R, Gristina V, Galvano A, Bazan V, Russo A, Badalamenti G. KIT/PDGFRA Variant Allele Frequency as Prognostic Factor in Gastrointestinal Stromal Tumors (GISTs): Results From a Multi-Institutional Cohort Study. Oncologist 2024; 29:e141-e151. [PMID: 37463014 PMCID: PMC10769785 DOI: 10.1093/oncolo/oyad206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/09/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND The patient selection for optimal adjuvant therapy in gastrointestinal stromal tumors (GISTs) is provided by nomogram based on tumor size, mitotic index, tumor location, and tumor rupture. Although mutational status is not currently used to risk assessment, tumor genotype showed a prognostic influence on natural history and tumor relapse. Innovative measures, such as KIT/PDGFRA-mutant-specific variant allele frequency (VAF) levels detection from next-generation sequencing (NGS), may act as a surrogate of tumor burden and correlate with prognosis and overall survival of patients with GIST, helping the choice for adjuvant treatment. PATIENTS AND METHODS This was a multicenter, hospital-based, retrospective/prospective cohort study to investigate the prognostic role of KIT or PDGFRA-VAF of GIST in patients with radically resected localized disease. In the current manuscript, we present the results from the retrospective phase of the study. RESULTS Two-hundred (200) patients with GIST between 2015 and 2022 afferent to 6 Italian Oncologic Centers in the EURACAN Network were included in the study. The receiver operating characteristic (ROC) curves analysis was used to classify "low" vs. "high" VAF values, further normalized on neoplastic cellularity (nVAF). When RFS between the low and high nVAF groups were compared, patients with GIST with KIT/PDGFRA nVAF > 50% showed less favorable RFS than patients in the group of nVAF ≤ 50% (2-year RFS, 72.6% vs. 93%, respectively; P = .003). The multivariable Cox regression model confirmed these results. In the homogeneous sub-population of intermediate-risk, patients with KIT-mutated GIST, the presence of nVAF >50% was statistically associated with higher disease recurrence. CONCLUSION In our study, we demonstrated that higher nVAF levels were independent predictors of GIST prognosis and survival in localized GIST patients with tumors harboring KIT or PDGFRA mutations. In the cohort of intermediate-risk patients, nVAF could be helpful to improve prognostication and the use of adjuvant imatinib.
Collapse
Affiliation(s)
- Lorena Incorvaia
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Dario De Biase
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Margherita Nannini
- Department of Experimental, Diagnostic and Specialized Medicine, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Elena Fumagalli
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Bruno Vincenzi
- Department of Medical Oncology, Campus Biomedico University of Rome, Rome, Italy
| | - Ida De Luca
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Chiara Brando
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Alessandro Perez
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Maria A Pantaleo
- Department of Experimental, Diagnostic and Specialized Medicine, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Silvia Gasperoni
- Department of Oncology and Robotic Surgery, Translational Oncology Unit, University Hospital Careggi, Firenze, Italy
| | - Lorenzo D’Ambrosio
- Division of Medical Oncology, Candiolo Cancer Institute, FPO - IRCCS, Candiolo, TO, Italy
| | - Giovanni Grignani
- Division of Medical Oncology, Candiolo Cancer Institute, FPO - IRCCS, Candiolo, TO, Italy
| | - Thais Maloberti
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Erika Pedone
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Tancredi Didier Bazan Russo
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Alessandro Mazzocca
- Department of Medical Oncology, Campus Biomedico University of Rome, Rome, Italy
| | - Laura Algeri
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Alessandra Dimino
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Nadia Barraco
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Roberta Serino
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Valerio Gristina
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Antonio Galvano
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Viviana Bazan
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Antonio Russo
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Giuseppe Badalamenti
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| |
Collapse
|
35
|
Trembath HE, Yeh JJ, Lopez NE. Gastrointestinal Malignancy: Genetic Implications to Clinical Applications. Cancer Treat Res 2024; 192:305-418. [PMID: 39212927 DOI: 10.1007/978-3-031-61238-1_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Advances in molecular genetics have revolutionized our understanding of the pathogenesis, progression, and therapeutic options for treating gastrointestinal (GI) cancers. This chapter provides a comprehensive overview of the molecular landscape of GI cancers, focusing on key genetic alterations implicated in tumorigenesis across various anatomical sites including GIST, colon and rectum, and pancreas. Emphasis is placed on critical oncogenic pathways, such as mutations in tumor suppressor genes, oncogenes, chromosomal instability, microsatellite instability, and epigenetic modifications. The role of molecular biomarkers in predicting prognosis, guiding treatment decisions, and monitoring therapeutic response is discussed, highlighting the integration of genomic profiling into clinical practice. Finally, we address the evolving landscape of precision oncology in GI cancers, considering targeted therapies and immunotherapies.
Collapse
Affiliation(s)
- Hannah E Trembath
- Division of Colon and Rectal Surgery, Department of Surgery, University of California San Diego, 4303 La Jolla Village Drive Suite 2110, San Diego, CA, 92122, USA
- Division of Surgical Oncology, Department of Surgery, University of North Carolina, 170 Manning Drive, CB#7213, 1150 Physician's Office Building, Chapel Hill, NC, 27599-7213, USA
| | - Jen Jen Yeh
- Division of Colon and Rectal Surgery, Department of Surgery, University of California San Diego, 4303 La Jolla Village Drive Suite 2110, San Diego, CA, 92122, USA
- Division of Surgical Oncology, Department of Surgery, University of North Carolina, 170 Manning Drive, CB#7213, 1150 Physician's Office Building, Chapel Hill, NC, 27599-7213, USA
| | - Nicole E Lopez
- Division of Colon and Rectal Surgery, Department of Surgery, University of California San Diego, 4303 La Jolla Village Drive Suite 2110, San Diego, CA, 92122, USA.
- Division of Surgical Oncology, Department of Surgery, University of North Carolina, 170 Manning Drive, CB#7213, 1150 Physician's Office Building, Chapel Hill, NC, 27599-7213, USA.
| |
Collapse
|
36
|
Tassinari E, Conci N, Battisti G, Porta F, Di Scioscio V, Pirini MG, de Biase D, Nigro MC, Iezza M, Castagnetti F, Lovato L, Fanti S, Pantaleo MA, Nannini M. Metabolic pseudoprogression in a patient with metastatic KIT exon 11 GIST after 1 month of first-line imatinib: a case report. Front Oncol 2023; 13:1310452. [PMID: 38188286 PMCID: PMC10769864 DOI: 10.3389/fonc.2023.1310452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/27/2023] [Indexed: 01/09/2024] Open
Abstract
Background Positron emission tomography (PET) with 18-fluorodeoxyglucose (18FDG) has proven to be highly sensitive in the early assessment of tumor response in gastrointestinal stromal tumors (GIST), especially in cases where there is doubt or when the early prediction of the response could be clinically useful for patient management. As widely known, kinase mutations have an undoubtful predictive value for sensitivity to imatinib, and the inclusion of KIT and PDGFRa mutational analysis in the diagnostic workup of all GIST is now considered standard practice. Case presentation Herein, we described in detail a case of an exon 11 KIT mutated-metastatic GIST patient, who presented an unexpected metabolic progression at the early 18FDG-PET evaluation after 1 month of first-line imatinib, unconfirmed at the liver biopsy performed near after, which has conversely shown a complete pathological response. Conclusions This report aims to highlight the existence of this metabolic pseudoprogression in GIST at the beginning of imatinib therapy in order to avoid early treatment discontinuation. Therefore, an early metabolic progression during a molecular targeted therapy always deserves to be evaluated in the context of the disease molecular profiling, and in case of a discordant finding between functional imaging and molecular background, a short-term longitudinal control should be suggested.
Collapse
Affiliation(s)
- Elisa Tassinari
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Nicole Conci
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Giacomo Battisti
- Nuclear Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna-Policlinico di Sant'Orsola, Bologna, Italy
| | - Francesco Porta
- Department of Pediatric and Adult Cardio-Thoracovascular, Oncoematologic and Emergencies Radiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Valerio Di Scioscio
- Department of Pediatric and Adult Cardio-Thoracovascular, Oncoematologic and Emergencies Radiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Maria Giulia Pirini
- Pathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna-Policlinico di Sant'Orsola, Bologna, Italy
| | - Dario de Biase
- Department of Pharmacy and Biotechnology (FaBit), University of Bologna, Bologna, Italy
| | - Maria Concetta Nigro
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Miriam Iezza
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- Hematology "Lorenzo E Ariosto Seràgnoli", IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Fausto Castagnetti
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- Hematology "Lorenzo E Ariosto Seràgnoli", IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Luigi Lovato
- Department of Pediatric and Adult Cardio-Thoracovascular, Oncoematologic and Emergencies Radiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Stefano Fanti
- Nuclear Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna-Policlinico di Sant'Orsola, Bologna, Italy
| | - Maria Abbondanza Pantaleo
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- Oncology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Margherita Nannini
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- Oncology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
37
|
Duangdara J, Boonsri B, Sayinta A, Supradit K, Thintharua P, Kumkate S, Suriyonplengsaeng C, Larbcharoensub N, Mingphruedhi S, Rungsakulkij N, Muangkaew P, Tangtawee P, Vassanasiri W, Suragul W, Janvilisri T, Tohtong R, Bates DO, Wongprasert K. CP-673451, a Selective Platelet-Derived Growth Factor Receptor Tyrosine Kinase Inhibitor, Induces Apoptosis in Opisthorchis viverrini-Associated Cholangiocarcinoma via Nrf2 Suppression and Enhanced ROS. Pharmaceuticals (Basel) 2023; 17:9. [PMID: 38275995 PMCID: PMC10821224 DOI: 10.3390/ph17010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
Platelet-derived growth factors (PDGFs) and PDGF receptors (PDGFRs) play essential roles in promoting cholangiocarcinoma (CCA) cell survival by mediating paracrine crosstalk between tumor and cancer-associated fibroblasts (CAFs), indicating the potential of PDGFR as a target for CCA treatment. Clinical trials evaluating PDGFR inhibitors for CCA treatment have shown limited efficacy. Furthermore, little is known about the role of PDGF/PDGFR expression and the mechanism underlying PDGFR inhibitors in CCA related to Opisthorchis viverrini (OV). Therefore, we examined the effect of PDGFR inhibitors in OV-related CCA cells and investigated the molecular mechanism involved. We found that the PDGF and PDGFR mRNAs were overexpressed in CCA tissues compared to resection margins. Notably, PDGFR-α showed high expression in CCA cells, while PDGFR-β was predominantly expressed in CAFs. The selective inhibitor CP-673451 induced CCA cell death by suppressing the PI3K/Akt/Nrf2 pathway, leading to a decreased expression of Nrf2-targeted antioxidant genes. Consequently, this led to an increase in ROS levels and the promotion of CCA apoptosis. CP-673451 is a promising PDGFR-targeted drug for CCA and supports the further clinical investigation of CP-673451 for CCA treatment, particularly in the context of OV-related cases.
Collapse
Affiliation(s)
- Jinchutha Duangdara
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (J.D.); (B.B.); (K.S.); (P.T.)
| | - Boonyakorn Boonsri
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (J.D.); (B.B.); (K.S.); (P.T.)
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Apinya Sayinta
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (J.D.); (B.B.); (K.S.); (P.T.)
- Division of Basic and Medical Sciences, Faculty of Allied Health Sciences, Pathumthani University, Pathum Thani 12000, Thailand
| | - Kittiya Supradit
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (J.D.); (B.B.); (K.S.); (P.T.)
- Department of Radiological Technology, Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand
| | - Pakpoom Thintharua
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (J.D.); (B.B.); (K.S.); (P.T.)
- Chakri Naruebodindra Medical Institute (CNMI), Faculty of Medicine Ramathibodi Hospital, Samut Prakan 10540, Thailand
| | - Supeecha Kumkate
- Department of Biology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Chinnawut Suriyonplengsaeng
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (J.D.); (B.B.); (K.S.); (P.T.)
| | - Noppadol Larbcharoensub
- Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand;
| | - Somkit Mingphruedhi
- Department of Surgery, Hepato-Pancreato-Biliary Division, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (S.M.); (W.V.); (W.S.)
| | - Narongsak Rungsakulkij
- Department of Surgery, Hepato-Pancreato-Biliary Division, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (S.M.); (W.V.); (W.S.)
| | - Paramin Muangkaew
- Department of Surgery, Hepato-Pancreato-Biliary Division, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (S.M.); (W.V.); (W.S.)
| | - Pongsatorn Tangtawee
- Department of Surgery, Hepato-Pancreato-Biliary Division, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (S.M.); (W.V.); (W.S.)
| | - Watoo Vassanasiri
- Department of Surgery, Hepato-Pancreato-Biliary Division, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (S.M.); (W.V.); (W.S.)
| | - Wikran Suragul
- Department of Surgery, Hepato-Pancreato-Biliary Division, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (S.M.); (W.V.); (W.S.)
| | - Tavan Janvilisri
- Graduate Program in Molecular Medicine, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
| | - Rutaiwan Tohtong
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
| | - David O. Bates
- Centre for Cancer Sciences, Division of Cancer and Stem Cells, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | - Kanokpan Wongprasert
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (J.D.); (B.B.); (K.S.); (P.T.)
| |
Collapse
|
38
|
Yan M, Lin J, Shu M, Luo Y, Sun K, Yang S, Zhang X. Diagnosis, Treatment, and Prognosis of Patients with Primary Familial Gastrointestinal Stromal Tumor: A Case Report and Literature Review. Oncologist 2023; 28:e1134-e1141. [PMID: 37311038 PMCID: PMC10712720 DOI: 10.1093/oncolo/oyad168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/24/2023] [Indexed: 06/15/2023] Open
Abstract
Gastrointestinal stromal tumors are the most common mesenchymal tumors of the digestive tract, most of which are sporadic, and familial GISTs with germline mutations are rarely seen. Here, we report a 26-year-old female with a germline p. W557R mutation in exon 11 of the KIT gene. The proband and her father and sister presented with multifocal GIST and pigmented nevi. All 3 patients underwent surgery and imatinib therapy. To date, only 49 kindreds with germline KIT mutations and 6 kindreds with germline PDGFRA mutations have been reported. Summarizing the reported kindreds, the majority of familial GISTs manifest as multiple primary GISTs complicated with special clinical manifestations, including cutaneous hyperpigmentation, dysphagia, mastocytosis, inflammatory fibrous polyps, and large hands. Familial GISTs are generally thought to exhibit TKI sensitivity similar to that of sporadic GISTs with the same mutation.
Collapse
Affiliation(s)
- Miao Yan
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Jianghua Lin
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Man Shu
- Department of Pathology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Yanji Luo
- Department of Radiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Kaiyu Sun
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Shaohua Yang
- Center of Digestive Disease, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, People's Republic of China
| | - Xinhua Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People’s Republic of China
| |
Collapse
|
39
|
Li C, Wang Q, Jiang KW, Ye YJ. Hallmarks and novel insights for gastrointestinal stromal tumors: A bibliometric analysis. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2023; 49:107079. [PMID: 37826966 DOI: 10.1016/j.ejso.2023.107079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 09/13/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND Due to the increasing recognition of gastrointestinal stromal tumor (GIST), novel insights have appeared in both preclinical and clinical research and begun to reshape the field. This study aims to map the research landscape through bibliometric analysis and provide a brief overview for the future of the GIST field. METHODS We searched the Web of Science Core Collection without publication data restrictions for GISTs and performed a bibliometric analysis with CiteSpace and VOSviewer software. RESULTS In sum, 5,911 of 13,776 records were included, and these studies were published in 948 journals and written by 24,965 authors from 4,633 institutions in 100 countries. Referring to published reviews and bibliometric analysis, we classified the future trends in four groups. In epidemiological study, precise incidence and clinicopathological features in different regions and races might become potential hotspots. Novel therapy, such as drugs, modified strategies, radioligand therapy, was persistent hotspots in GIST fields, and ctDNA-guided diagnosis, monitoring, and treatment might meet future clinical needs. The debate over serosa surgery vs. mucosa surgery will remain active for a long time in GIST surgery, and function reserve surgery, biology-based surgery will play an important role in future. Moreover, rare GIST type, like NF-1-associated GIST, Carney triads and SDH mutant GIST, need more studies in pathogenesis and genetic mutation to provide appropriate treatment for this orphan GIST patients. CONCLUSIONS Potential hotspots in future GIST trends might involve epidemiology, agents, resection therapy and rare type GIST, moreover, researchers could pay more attention in these four fields.
Collapse
Affiliation(s)
- Chen Li
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing, 100044, China
| | - Quan Wang
- Ambulatory Surgery Center, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, China
| | - Ke-Wei Jiang
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing, 100044, China.
| | - Ying-Jiang Ye
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing, 100044, China.
| |
Collapse
|
40
|
Wallander K, Öfverholm I, Boye K, Tsagkozis P, Papakonstantinou A, Lin Y, Haglund de Flon F. Sarcoma care in the era of precision medicine. J Intern Med 2023; 294:690-707. [PMID: 37643281 DOI: 10.1111/joim.13717] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Sarcoma subtype classification is currently mainly based upon histopathological morphology. Molecular analyses have emerged as an efficient addition to the diagnostic workup and sarcoma care. Knowledge about the sarcoma genome increases, and genetic events that can either support a histopathological diagnosis or suggest a differential diagnosis are identified, as well as novel therapeutic targets. In this review, we present diagnostic, therapeutic, and prognostic molecular markers that are, or might soon be, used clinically. For sarcoma diagnostics, there are specific fusions highly supportive or pathognomonic for a diagnostic entity-for instance, SYT::SSX in synovial sarcoma. Complex karyotypes also give diagnostic information-for example, supporting dedifferentiation rather than low-grade central osteosarcoma or well-differentiated liposarcoma when detected in combination with MDM2/CDK4 amplification. Molecular treatment predictive sarcoma markers are available for gastrointestinal stromal tumor (GIST) and locally aggressive benign mesenchymal tumors. The molecular prognostic markers for sarcomas in clinical practice are few. For solitary fibrous tumor, the type of NAB2::STAT6 fusion is associated with the outcome, and the KIT/PDGFRA pathogenic variant in GISTs can give prognostic information. With the exploding availability of sequencing technologies, it becomes increasingly important to understand the strengths and limitations of those methods and their context in sarcoma diagnostics. It is reasonable to believe that most sarcoma treatment centers will increase the use of massive-parallel sequencing soon. We conclude that the context in which the genetic findings are interpreted is of importance, and the interpretation of genomic findings requires considering tumor histomorphology.
Collapse
Affiliation(s)
- Karin Wallander
- Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | | | - Kjetil Boye
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Panagiotis Tsagkozis
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Andri Papakonstantinou
- Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Breast Cancer, Endocrine Tumors and Sarcoma, Karolinska University Hospital and Karolinska Comprehensive Cancer Centre, Stockholm, Sweden
| | - Yingbo Lin
- Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Felix Haglund de Flon
- Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Pathology and Cancer diagnostics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
41
|
Al-Bzour NN, Al-Bzour AN, Ababneh OE, Al-Jezawi MM, Saeed A, Saeed A. Cancer-Associated Fibroblasts in Gastrointestinal Cancers: Unveiling Their Dynamic Roles in the Tumor Microenvironment. Int J Mol Sci 2023; 24:16505. [PMID: 38003695 PMCID: PMC10671196 DOI: 10.3390/ijms242216505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Gastrointestinal cancers are highly aggressive malignancies with significant mortality rates. Recent research emphasizes the critical role of the tumor microenvironment (TME) in these cancers, which includes cancer-associated fibroblasts (CAFs), a key component of the TME that have diverse origins, including fibroblasts, mesenchymal stem cells, and endothelial cells. Several markers, such as α-SMA and FAP, have been identified to label CAFs, and some specific markers may serve as potential therapeutic targets. In this review article, we summarize the literature on the multifaceted role of CAFs in tumor progression, including their effects on angiogenesis, immune suppression, invasion, and metastasis. In addition, we highlight the use of single-cell transcriptomics to understand CAF heterogeneity and their interactions within the TME. Moreover, we discuss the dynamic interplay between CAFs and the immune system, which contributes to immunosuppression in the TME, and the potential for CAF-targeted therapies and combination approaches with immunotherapy to improve cancer treatment outcomes.
Collapse
Affiliation(s)
- Noor N. Al-Bzour
- Department of Medicine, Division of Hematology & Oncology, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA 15232, USA; (N.N.A.-B.); (A.N.A.-B.)
| | - Ayah N. Al-Bzour
- Department of Medicine, Division of Hematology & Oncology, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA 15232, USA; (N.N.A.-B.); (A.N.A.-B.)
| | - Obada E. Ababneh
- Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan; (O.E.A.); (M.M.A.-J.)
| | - Moayad M. Al-Jezawi
- Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan; (O.E.A.); (M.M.A.-J.)
| | - Azhar Saeed
- Department of Pathology and Laboratory Medicine, University of Vermont Medical Center, Burlington, VT 05401, USA;
| | - Anwaar Saeed
- Department of Medicine, Division of Hematology & Oncology, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA 15232, USA; (N.N.A.-B.); (A.N.A.-B.)
- UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| |
Collapse
|
42
|
Schötz S, Griepe AK, Goerisch BB, Kortam S, Vainer YS, Dimde M, Koeppe H, Wedepohl S, Quaas E, Achazi K, Schroeder A, Haag R. Esterase-Responsive Polyglycerol-Based Nanogels for Intracellular Drug Delivery in Rare Gastrointestinal Stromal Tumors. Pharmaceuticals (Basel) 2023; 16:1618. [PMID: 38004483 PMCID: PMC10675119 DOI: 10.3390/ph16111618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/26/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Rare gastrointestinal stromal tumors (GISTs) are caused by mutations in the KIT and PDGFRA genes. Avapritinib (BLU-285) is a targeted selective inhibitor for mutated KIT and PDGFRA receptors that can be used to treat these tumors. However, there are subtypes of GISTs that exhibit resistance against BLU-285 and thus require other treatment strategies. This can be addressed by employing a drug delivery system that transports a combination of drugs with distinct cell targets. In this work, we present the synthesis of esterase-responsive polyglycerol-based nanogels (NGs) to overcome drug resistance in rare GISTs. Using inverse nanoprecipitation mediated with inverse electron-demand Diels-Alder cyclizations (iEDDA) between dPG-methyl tetrazine and dPG-norbornene, multi-drug-loaded NGs were formed based on a surfactant-free encapsulation protocol. The obtained NGs displayed great stability in the presence of fetal bovine serum (FBS) and did not trigger hemolysis in red blood cells over a period of 24 h. Exposing the NGs to Candida Antarctica Lipase B (CALB) led to the degradation of the NG network, indicating the capability of targeted drug release. The bioactivity of the loaded NGs was tested in vitro on various cell lines of the GIST-T1 family, which exhibit different drug resistances. Cell internalization with comparable uptake kinetics of the NGs could be confirmed by confocal laser scanning microscopy (CLSM) and flow cytometry for all cell lines. Cell viability and live cell imaging studies revealed that the loaded NGs are capable of intracellular drug release by showing similar IC50 values to those of the free drugs. Furthermore, multi-drug-loaded NGs were capable of overcoming BLU-285 resistance in T1-α-D842V + G680R cells, demonstrating the utility of this carrier system.
Collapse
Affiliation(s)
- Sebastian Schötz
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr, 3, 14195 Berlin, Germany; (S.S.); (A.K.G.); (B.B.G.); (H.K.)
| | - Adele K. Griepe
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr, 3, 14195 Berlin, Germany; (S.S.); (A.K.G.); (B.B.G.); (H.K.)
| | - Björn B. Goerisch
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr, 3, 14195 Berlin, Germany; (S.S.); (A.K.G.); (B.B.G.); (H.K.)
| | - Sally Kortam
- School of Biomedical Engineering, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Yael Shammai Vainer
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Technion, Haifa 32000, Israel;
| | - Mathias Dimde
- Research Center of Electron Microscopy, Freie Universität Berlin, Fabeckstr, 36A, 14195 Berlin, Germany;
| | - Hanna Koeppe
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr, 3, 14195 Berlin, Germany; (S.S.); (A.K.G.); (B.B.G.); (H.K.)
| | - Stefanie Wedepohl
- Research Building SupraFAB, Freie Universität Berlin, Altensteinstr, 23a, 14195 Berlin, Germany (E.Q.); (K.A.)
| | - Elisa Quaas
- Research Building SupraFAB, Freie Universität Berlin, Altensteinstr, 23a, 14195 Berlin, Germany (E.Q.); (K.A.)
| | - Katharina Achazi
- Research Building SupraFAB, Freie Universität Berlin, Altensteinstr, 23a, 14195 Berlin, Germany (E.Q.); (K.A.)
| | - Avi Schroeder
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Technion, Haifa 32000, Israel;
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr, 3, 14195 Berlin, Germany; (S.S.); (A.K.G.); (B.B.G.); (H.K.)
- Research Building SupraFAB, Freie Universität Berlin, Altensteinstr, 23a, 14195 Berlin, Germany (E.Q.); (K.A.)
| |
Collapse
|
43
|
Ottaiano A, Sabbatino F, Perri F, Cascella M, Santorsola M, Nasti G. Back to the Bench: Unveiling the Tissue Context is Crucial to Enhance the Efficacy of Agnostic Therapies in Oncology. Target Oncol 2023; 18:819-820. [PMID: 37864664 DOI: 10.1007/s11523-023-01004-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2023] [Indexed: 10/23/2023]
Affiliation(s)
- Alessandro Ottaiano
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via M. Semmola, 80131, Naples, Italy.
| | - Francesco Sabbatino
- Oncology Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, 84081, Baronissi, Salerno, Italy
| | - Francesco Perri
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via M. Semmola, 80131, Naples, Italy
| | - Marco Cascella
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via M. Semmola, 80131, Naples, Italy
| | - Mariachiara Santorsola
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via M. Semmola, 80131, Naples, Italy
| | - Guglielmo Nasti
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via M. Semmola, 80131, Naples, Italy
| |
Collapse
|
44
|
Maki RG. Flashback Foreword: Kinase Mutations and Imatinib Response in Patients With Metastatic GI Stromal Tumor. J Clin Oncol 2023; 41:4827-4828. [PMID: 37890276 DOI: 10.1200/jco.23.00213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/17/2023] [Indexed: 10/29/2023] Open
Affiliation(s)
- Robert G Maki
- Associate Editor, Journal of Clinical Oncology, Alexandria, VA
- Perelman School of Medicine, University of Pennsylvania, Abramson Cancer Center, Philadelphia, PA
- Memorial Sloan-Kettering Cancer Center, New York, NY
| |
Collapse
|
45
|
Bhattacharjee D, Bakar J, Chitnis SP, Sausville EL, Ashtekar KD, Mendelson BE, Long K, Smith JC, Heppner DE, Sheltzer JM. Inhibition of a lower potency target drives the anticancer activity of a clinical p38 inhibitor. Cell Chem Biol 2023; 30:1211-1222.e5. [PMID: 37827156 PMCID: PMC10715717 DOI: 10.1016/j.chembiol.2023.09.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/27/2023] [Accepted: 09/21/2023] [Indexed: 10/14/2023]
Abstract
The small-molecule drug ralimetinib was developed as an inhibitor of the p38α mitogen-activated protein kinase, and it has advanced to phase 2 clinical trials in oncology. Here, we demonstrate that ralimetinib resembles EGFR-targeting drugs in pharmacogenomic profiling experiments and that ralimetinib inhibits EGFR kinase activity in vitro and in cellulo. While ralimetinib sensitivity is unaffected by deletion of the genes encoding p38α and p38β, its effects are blocked by expression of the EGFR-T790M gatekeeper mutation. Finally, we solved the cocrystal structure of ralimetinib bound to EGFR, providing further evidence that this drug functions as an ATP-competitive EGFR inhibitor. We conclude that, though ralimetinib is >30-fold less potent against EGFR compared to p38α, its ability to inhibit EGFR drives its primary anticancer effects. Our results call into question the value of p38α as an anticancer target, and we describe a multi-modal approach that can be used to uncover a drug's mechanism-of-action.
Collapse
Affiliation(s)
| | - Jaweria Bakar
- Yale University School of Medicine, New Haven, CT 06511, USA
| | - Surbhi P Chitnis
- Department of Chemistry, The University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | | | - Kumar Dilip Ashtekar
- Yale University School of Medicine, New Haven, CT 06511, USA; Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06511, USA; Yale Cancer Biology Institute, West Haven, CT 06516, USA
| | | | - Kaitlin Long
- Yale University School of Medicine, New Haven, CT 06511, USA
| | - Joan C Smith
- Yale University School of Medicine, New Haven, CT 06511, USA; Meliora Therapeutics, New Haven, CT 06511, USA
| | - David E Heppner
- Department of Chemistry, The University at Buffalo, State University of New York, Buffalo, NY 14260, USA; Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA.
| | | |
Collapse
|
46
|
Gouda MA, Janku F, Somaiah N, Hunt KK, Yedururi S, Subbiah V. Multi-disciplinary management of recurrent gastrointestinal stromal tumor harboring KIT exon 11 mutation with the switch-control kinase inhibitor ripretinib and surgery. Oncoscience 2023; 10:38-43. [PMID: 37736254 PMCID: PMC10511119 DOI: 10.18632/oncoscience.586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/21/2023] [Indexed: 09/23/2023] Open
Abstract
Ripretinib is a tyrosine kinase inhibitor that was approved by the United States FDA in 2020 for treatment of advanced gastrointestinal stromal tumor (GIST) in patients who received prior treatment with three or more tyrosine kinase inhibitors. In this case report, we show the durable clinical benefit achieved in a patient with GIST by using ripretinib and repeated timely surgical resection of limited disease progression. The total time on ripretinib was 43 months which is longer than the current reported data from ripretinib clinical trials. Such approach for using multi-disciplinary disease management can improve the durability of response to tyrosine kinase inhibitors, including ripretinib, and associated clinical outcomes.
Collapse
Affiliation(s)
- Mohamed A. Gouda
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Filip Janku
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Neeta Somaiah
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kelly K. Hunt
- Departments of Breast Surgical Oncology and Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sireesha Yedururi
- Department of Abdominal Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Vivek Subbiah
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Sarah Cannon Research Institute, Nashville, TN 37203, USA
| |
Collapse
|
47
|
George S, Heinrich MC, Somaiah N, Oppelt P, McLeod R, Nishioka S, Kundu MG, Qian X, Kumar P, Laadem A, Lau Y, Tran BP, Fallon M, Dosunmu O, Shi J, Naito Y. A Phase I, Multicenter, Open-Label, First-in-Human Study of DS-6157a in Patients with Advanced Gastrointestinal Stromal Tumor. Clin Cancer Res 2023; 29:3659-3667. [PMID: 37363962 PMCID: PMC10502450 DOI: 10.1158/1078-0432.ccr-23-0640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/05/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023]
Abstract
PURPOSE To evaluate DS-6157a, an antibody-drug conjugate targeting G protein-coupled receptor 20 (GPR20), in gastrointestinal stromal tumors (GIST). PATIENTS AND METHODS In this phase I multicenter, open-label, multiple-dose study, patients with previously treated advanced GIST received intravenous DS-6157a on Day 1 of 21-day cycles, with a starting dose of 1.6 mg/kg. The primary objective evaluated the safety and tolerability of DS-6157a, while determining dose-limiting toxicity (DLT) and the MTD. Secondary objectives included plasma pharmacokinetics parameters, plasma antidrug antibodies (ADA), and efficacy. RESULTS A total of 34 patients enrolled. DS-6157a was well tolerated, with DLTs in 4 patients (11.8%) at doses of 6.4 mg/kg, 9.6 mg/kg, and 12.8 mg/kg; the MTD was determined to be 6.4 mg/kg. Treatment-emergent adverse events (TEAE) grade ≥3 occurred in 17 patients (50.0%), including decreased platelet count (23.5%), anemia (20.6%), decreased neutrophil count (14.7%), and decreased white blood cell count (11.8%). Four patients (11.8%) experienced serious adverse events related to DS-6157a. Six patients died with 5 due to disease progression and 1 due to DS-6157a-related TEAE. Tumor shrinkage was observed in 7 patients (20.6%), and 1 patient (2.9%) achieved a partial response. Plasma concentrations and exposure of intact DS-6157a, DXd, and total anti-GPR20 antibody all demonstrated a dose-dependent profile. No treatment-emergent ADAs were observed. CONCLUSIONS Targeting GPR20 with DS-6157a was tolerated in patients with advanced GIST with tumor shrinkage demonstrated in KIT/PDGFRA wild-type GIST. However, the study did not proceed further due to lower efficacy outcomes than anticipated.
Collapse
Affiliation(s)
- Suzanne George
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Michael C. Heinrich
- Division of Hematology and Medical Oncology, Portland VA Health Care System and OHSU Knight Cancer Institute, Oregon Health & Science University School of Medicine, Portland, Oregon
| | - Neeta Somaiah
- Department of Sarcoma Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Peter Oppelt
- Department of Medicine, Oncology Division, Section of Medical Oncology, Washington University School of Medicine, St. Louis, Missouri
| | | | | | | | | | | | | | - Yvonne Lau
- Daiichi Sankyo, Inc., Basking Ridge, New Jersey
| | | | | | - Ololade Dosunmu
- Medical & Clinical Science, Sarah Cannon Research Institute, Nashville, Tennessee
| | - Julia Shi
- Sarah Cannon Development Innovations, Nashville, Tennessee
| | - Yoichi Naito
- Department of General Internal Medicine/Developmental Therapeutics/Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| |
Collapse
|
48
|
Joensuu H, Wardelmann E, Eriksson M, Reichardt A, Hall KS, Schütte J, Cameron S, Hohenberger P, Sihto H, Jost PJ, Lindner LH, Bauer S, Nilsson B, Kallio R, Pesonen T, Reichardt P. KIT and PDGFRA Mutations and Survival of Gastrointestinal Stromal Tumor Patients Treated with Adjuvant Imatinib in a Randomized Trial. Clin Cancer Res 2023; 29:3313-3319. [PMID: 37014660 PMCID: PMC10472091 DOI: 10.1158/1078-0432.ccr-22-3980] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/04/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023]
Abstract
PURPOSE Limited data are available about the influence of KIT and PDGFRA mutations on overall survival (OS) of patients with gastrointestinal stromal tumor (GIST) treated with adjuvant imatinib. PATIENTS AND METHODS The Scandinavian Sarcoma Group XVIII/AIO multicenter trial accrued 400 patients with a high risk for GIST recurrence after macroscopically complete surgery between February 4, 2004, and September 29, 2008. The patients received adjuvant imatinib 400 mg/day for either 1 year or 3 years based on random allocation. We analyzed using conventional sequencing KIT and PDGFRA mutations centrally from 341 (85%) patients who had localized, centrally confirmed GIST, and correlated the results with recurrence-free survival (RFS) and OS in exploratory analyses. RESULTS During a median follow-up time of 10 years, 164 RFS events and 76 deaths occurred. Most patients were re-treated with imatinib when GIST recurred. Patients with KIT exon 11 deletion or indel mutation treated with 3 years of adjuvant imatinib survived longer than patients treated for 1 year [10-year OS 86% versus 64%, respectively; HR, 0.34; 95% confidence interval (CI), 0.15-0.72; P = 0.007], and also had longer RFS (10-year RFS 47% versus 29%; HR, 0.48; 95% CI, 0.31-0.74; P < 0.001). Patients with KIT exon 9 mutation had unfavorable OS regardless of the duration of adjuvant imatinib. CONCLUSIONS Compared with 1 year of imatinib, 3 years of adjuvant imatinib led to 66% reduction in the estimated risk of death and a high 10-year OS rate in the subset of patients with a KIT exon 11 deletion/indel mutation.
Collapse
Affiliation(s)
- Heikki Joensuu
- Department of Oncology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Eva Wardelmann
- Gerhard-Domagk-Institute of Pathology, University of Münster, Münster, Germany
| | - Mikael Eriksson
- Department of Oncology, Skåne University Hospital and Lund University, Lund, Sweden
| | - Annette Reichardt
- Helios Klinikum Berlin-Buch, Sarkomzentrum Berlin-Brandenburg, Berlin, Germany
| | - Kirsten Sundby Hall
- Department of Oncology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | | | - Silke Cameron
- Department of Gastroenterology, University of Göttingen, Göttingen, Germany
| | - Peter Hohenberger
- Division of Surgical Oncology & Thoracic Surgery, Mannheim University Medical Center, Mannheim, Germany
| | - Harri Sihto
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Philipp J. Jost
- Medical Department III, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Lars H. Lindner
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | | | - Bengt Nilsson
- Department of Surgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Raija Kallio
- Department of Oncology and Radiotherapy, Oulu University Hospital, Oulu, Finland
| | | | - Peter Reichardt
- Helios Klinikum Berlin-Buch, Sarkomzentrum Berlin-Brandenburg, Berlin, Germany
| |
Collapse
|
49
|
Serrano C, Álvarez R, Carrasco JA, Marquina G, Martínez-García J, Martínez-Marín V, Sala MÁ, Sebio A, Sevilla I, Martín-Broto J. SEOM-GEIS clinical guideline for gastrointestinal stromal tumors (2022). Clin Transl Oncol 2023; 25:2707-2717. [PMID: 37129716 PMCID: PMC10425520 DOI: 10.1007/s12094-023-03177-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 05/03/2023]
Abstract
Gastrointestinal stromal tumor (GIST) is the most common malignant neoplasm of mesenchymal origin, and a paradigmatic model for a successful rational development of targeted therapies in cancer. The introduction of tyrosine kinase inhibitors with activity against KIT/PDGFRA in both localized and advanced stages has remarkably improved the survival in a disease formerly deemed resistant to all systemic therapies. These guidelines are elaborated by the conjoint effort of the Spanish Society of Medical Oncology (SEOM) and the Spanish Sarcoma Research Group (GEIS) and provide a multidisciplinary and updated consensus for the diagnosis and treatment of GIST patients. We strongly encourage that the managing of these patients should be performed within multidisciplinary teams in reference centers.
Collapse
Affiliation(s)
- César Serrano
- Sarcoma Translational Research Group, Vall d’Hebron Institute of Oncology (VHIO), Hospital Universitario Vall d’Hebron, Vall d’Hebron Barcelona Hospital Campus, C/Natzaret, 115-117, 08035 Barcelona, Spain
| | - Rosa Álvarez
- Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Juan Antonio Carrasco
- Hospital Álvaro Cunqueiro–Complejo Hospitalario Universitario de Vigo, Pontevedra, Spain
| | | | | | | | | | - Ana Sebio
- Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
| | - Isabel Sevilla
- Hospitales Universitarios Regional y Virgen de la Victoria, Málaga, Spain
| | | |
Collapse
|
50
|
Serrano C, Martín-Broto J, Asencio-Pascual JM, López-Guerrero JA, Rubió-Casadevall J, Bagué S, García-del-Muro X, Fernández-Hernández JÁ, Herrero L, López-Pousa A, Poveda A, Martínez-Marín V. 2023 GEIS Guidelines for gastrointestinal stromal tumors. Ther Adv Med Oncol 2023; 15:17588359231192388. [PMID: 37655207 PMCID: PMC10467260 DOI: 10.1177/17588359231192388] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 07/19/2023] [Indexed: 09/02/2023] Open
Abstract
Gastrointestinal stromal tumor (GIST) is the most common malignant neoplasm of mesenchymal origin. GIST spans a wide clinical spectrum that ranges from tumors with essentially no metastatic potential to malignant and life-threatening spread diseases. Gain-of-function mutations in KIT or PDGFRA receptor tyrosine kinases are the crucial drivers of most GISTs, responsible for tumor initiation and evolution throughout the entire course of the disease. The introduction of tyrosine kinase inhibitors targeting these receptors has substantially improved the outcomes in this formerly chemoresistant cancer. As of today, five agents hold regulatory approval for the treatment of GIST: imatinib, sunitinib, regorafenib, ripretinib, and avapritinib. This, in turn, represents a success for a rare neoplasm. During the past two decades, GIST has become a paradigmatic model in cancer for multidisciplinary work, given the disease-specific particularities regarding tumor biology and tumor evolution. Herein, we review currently available evidence for the management of GIST. This clinical practice guideline has been developed by a multidisciplinary expert panel (oncologist, pathologist, surgeon, molecular biologist, radiologist, and representative of patients' advocacy groups) from the Spanish Group for Sarcoma Research, and it is conceived to provide, from a critical perspective, the standard approach for diagnosis, treatment, and follow-up.
Collapse
Affiliation(s)
- César Serrano
- Sarcoma Translational Research Group, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron University Hospital, Vall d’Hebron Barcelona Hospital Campus, Carrer de Natzaret, 115-117, Barcelona 08035, Spain
| | - Javier Martín-Broto
- Medical Oncology Department, Fundación Jimenez Diaz University Hospital, Madrid, Spain
- University Hospital General de Villalba, Madrid, Spain Instituto de investigación Sanitaria Fundación Jimenez Diaz (IIS/FJD; UAM), Madrid, Spain
| | - José Manuel Asencio-Pascual
- Department of General Surgery, Gregorio Marañón University Hospital, Madrid, Spain
- Department of Surgery, Universidad Complutense de Madrid, Madrid, Spain
| | | | - Jordi Rubió-Casadevall
- Department of Medical Oncology, Catalan Institute of Oncology, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Silvia Bagué
- Department of Pathology, Santa Creu i Sant Pau University Hospital, Barcelona, Spain
| | - Xavier García-del-Muro
- Department of Medical Oncology, Institut Català d’Oncologia, IDIBELL and University of Barcelona, Barcelona, Spain
| | | | - Luís Herrero
- GIST advocacy group – Colectivo GIST, Valladolid, Spain
| | - Antonio López-Pousa
- Department of Pathology, Santa Creu i Sant Pau University Hospital, Barcelona, Spain
| | - Andrés Poveda
- Initia Oncologia, Hospital Quironsalud, Valencia, Spain
| | | |
Collapse
|