1
|
Pan Y, Berkovska O, Marathe S, Mermelekas G, Gudoityte G, Wolide AD, Arslan T, Seashore-Ludlow B, Lehtiö J, Orre LM. Functional-proteomics-based investigation of the cellular response to farnesyltransferase inhibition in lung cancer. iScience 2025; 28:111864. [PMID: 39995872 PMCID: PMC11848503 DOI: 10.1016/j.isci.2025.111864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/16/2024] [Accepted: 01/17/2025] [Indexed: 02/26/2025] Open
Abstract
Farnesylation is a lipid post-translational modification of proteins crucial for protein membrane anchoring and cellular signaling. Farnesyltransferase inhibitors (FTIs), such as tipifarnib, are being tested in cancer therapy. However, the full impact of FTIs on farnesylation substrates remains poorly understood, thus limiting their use in precision medicine. In this study, we performed a global proteomics analysis to investigate farnesylation and the effects of tipifarnib in lung cancer cell lines. Using metabolic labeling and mass spectrometry, we identified farnesylated proteins and mapped their subcellular localization. We also analyzed tipifarnib-dependent protein relocalization and proteome-wide changes. Key findings include the potential therapeutic value of FTIs for NRAS-mutated melanoma and GNAQ/GNA11-mutated uveal melanoma by inhibiting INPP5A farnesylation. Additionally, we identified a synergistic drug combination involving tipifarnib and a ferroptosis inducer and discovered PTP4A1 as a regulator of interferon signaling. Our data, covering 15,080 proteins, offer valuable insights for future studies of farnesylation and FTIs.
Collapse
Affiliation(s)
- Yanbo Pan
- SciLifeLab, Department of Oncology and Pathology, Karolinska Institutet, 17165 Solna, Sweden
| | - Olena Berkovska
- SciLifeLab, Department of Oncology and Pathology, Karolinska Institutet, 17165 Solna, Sweden
| | - Soumitra Marathe
- SciLifeLab, Department of Oncology and Pathology, Karolinska Institutet, 17165 Solna, Sweden
| | - Georgios Mermelekas
- SciLifeLab, Department of Oncology and Pathology, Karolinska Institutet, 17165 Solna, Sweden
| | - Greta Gudoityte
- SciLifeLab, Department of Oncology and Pathology, Karolinska Institutet, 17165 Solna, Sweden
| | - Amare D. Wolide
- SciLifeLab, Department of Oncology and Pathology, Karolinska Institutet, 17165 Solna, Sweden
| | - Taner Arslan
- SciLifeLab, Department of Oncology and Pathology, Karolinska Institutet, 17165 Solna, Sweden
| | - Brinton Seashore-Ludlow
- SciLifeLab, Department of Oncology and Pathology, Karolinska Institutet, 17165 Solna, Sweden
| | - Janne Lehtiö
- SciLifeLab, Department of Oncology and Pathology, Karolinska Institutet, 17165 Solna, Sweden
| | - Lukas M. Orre
- SciLifeLab, Department of Oncology and Pathology, Karolinska Institutet, 17165 Solna, Sweden
| |
Collapse
|
2
|
Zhao A, Tu D, He Y, Liu L, Wu B, Ren Y. Identification and validation the predictive biomarkers based on risk-adjusted control chart in gemcitabine with or without erlotinib for pancreatic cancer therapy. Front Genet 2024; 15:1497254. [PMID: 39741907 PMCID: PMC11685217 DOI: 10.3389/fgene.2024.1497254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 11/29/2024] [Indexed: 01/03/2025] Open
Abstract
Background In a randomized clinical controlled trial (PA.3) conducted by the Canadian Cancer Trials Group, the effects of gemcitabine combined with the targeted drug erlotinib (GEM-E) versus gemcitabine alone (GEM) on patients with unresectable, locally advanced, or metastatic pancreatic cancer were studied. This trial statistically demonstrated that the GEM-E combination therapy moderately improves overall survival (OS) of patients. However, real-world analysis suggested that GEM-E for pancreatic cancer was not more effective than GEM. The heterogeneity in outcomes or treatment effect exist. Thus, we tried to find predictive biomarkers to identifying the heterogeneous patients. Methods Of the 569 eligible patients, 480 patients had plasma samples. Univariate and multivariate Cox proportional hazards model were used to identify baseline characteristics related to OS, and a risk adjusted Exponentially Weighted Moving Average (EWMA) control chart based on a weighted score test from the Cox model was constructed to monitor patients' survival risk. Maximally selected rank statistics were constructed to identifying the predictive biomarkers, in addition, a risk adjusted control chart based on a weighted score test from the Cox model was constructed to validating the predictive biomarkers, discover the patients who sensitive to the GEM-E or GEM. Results Three baseline characteristics (ECOG performance status, extent of disease, and pain intensity) were identified related to prognosis. A risk-adjusted EWMA control chart was constructed and showed that GEM-E did improve OS in a few patients. Three biomarkers (BMP2, CXCL6, and HER2) were identified as predictive biomarkers based on maximum selected rank test, and using the risk-adjusted EWMA control chart to validate the reality and discover some patients who are sensitive to the GEM-E therapy. Conclusion In reality, GEM-E has not shown a significant advantage over GEM in the treatment of pancreatic cancer. However, we discovered some patients who are sensitive to the GEM-E therapy based on the predictive biomarkers, which suggest that the predictive biomarkers provide ideas for personalized medicine in pancreatic cancer.
Collapse
Affiliation(s)
- Aijun Zhao
- School of Mathematical Science and Geomathematics Key Laboratory of Sichuan Province, Chengdu University of Technology, Chengdu, China
| | - Dongsheng Tu
- Department of Public Health Sciences, Canadian Cancer Trials Group, Queen’s University, Kingston, ON, Canada
| | - Ye He
- Visual Computing and Virtual Reality Key Laboratory of Sichuan Province, Sichuan Normal University, Chengdu, China
| | - Liu Liu
- School of Mathematical Science and Geomathematics Key Laboratory of Sichuan Province, Chengdu University of Technology, Chengdu, China
| | - Bin Wu
- College of Management Science, Chengdu University of Technology, Chengdu, China
| | - Yixing Ren
- Department of General Surgery, Institute of Hepato-Biliary-Pancreas and Intestinal Disease, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
3
|
Haggstrom L, Chan WY, Nagrial A, Chantrill LA, Sim HW, Yip D, Chin V. Chemotherapy and radiotherapy for advanced pancreatic cancer. Cochrane Database Syst Rev 2024; 12:CD011044. [PMID: 39635901 PMCID: PMC11619003 DOI: 10.1002/14651858.cd011044.pub3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
BACKGROUND Pancreatic cancer (PC) is a lethal disease with few effective treatment options. Many anti-cancer therapies have been tested in the locally advanced and metastatic setting, with mixed results. This review synthesises all the randomised data available to help better inform patient and clinician decision-making. It updates the previous version of the review, published in 2018. OBJECTIVES To assess the effects of chemotherapy, radiotherapy, or both on overall survival, severe or life-threatening adverse events, and quality of life in people undergoing first-line treatment of advanced pancreatic cancer. SEARCH METHODS We searched for published and unpublished studies in CENTRAL, MEDLINE, Embase, and CANCERLIT, and handsearched various sources for additional studies. The latest search dates were in March and July 2023. SELECTION CRITERIA We included randomised controlled trials comparing chemotherapy, radiotherapy, or both with another intervention or best supportive care. Participants were required to have locally advanced, unresectable pancreatic cancer or metastatic pancreatic cancer not amenable to curative intent treatment. Histological confirmation was required. Trials were required to report overall survival. DATA COLLECTION AND ANALYSIS We used standard methodological procedures expected by Cochrane. MAIN RESULTS We included 75 studies in the review and 51 in the meta-analysis (11,333 participants). We divided the studies into seven categories: any anti-cancer treatment versus best supportive care; various chemotherapy types versus gemcitabine; gemcitabine-based combinations versus gemcitabine alone; various chemotherapy combinations versus gemcitabine plus nab-paclitaxel; fluoropyrimidine-based studies; miscellaneous studies; and radiotherapy studies. In general, the included studies were at low risk for random sequence generation, detection bias, attrition bias, and reporting bias, at unclear risk for allocation concealment, and high risk for performance bias. Compared to best supportive care, chemotherapy likely results in little to no difference in overall survival (OS) (hazard ratio (HR) 1.08, 95% confidence interval (CI) 0.88 to 1.33; absolute risk of death at 12 months of 971 per 1000 versus 962 per 1000; 4 studies, 298 participants; moderate-certainty evidence). The adverse effects of chemotherapy and impacts on quality of life (QoL) were uncertain. Many of the chemotherapy regimens were outdated. Eight studies compared non-gemcitabine-based chemotherapy regimens to gemcitabine. These showed that 5-fluorouracil (5FU) likely reduces OS (HR 1.69, 95% CI 1.26 to 2.27; risk of death at 12 months of 914 per 1000 versus 767 per 1000; 1 study, 126 participants; moderate certainty), and grade 3/4 adverse events (QoL not reported). Fixed dose rate gemcitabine likely improves OS (HR 0.79, 95% CI 0.66 to 0.94; risk of death at 12 months of 683 per 1000 versus 767 per 1000; 2 studies, 644 participants; moderate certainty), and likely increase grade 3/4 adverse events (QoL not reported). FOLFIRINOX improves OS (HR 0.51, 95% CI 0.43 to 0.60; risk of death at 12 months of 524 per 1000 versus 767 per 1000; P < 0.001; 2 studies, 652 participants; high certainty), and delays deterioration in QoL, but increases grade 3/4 adverse events. Twenty-eight studies compared gemcitabine-based combinations to gemcitabine. Gemcitabine plus platinum may result in little to no difference in OS (HR 0.94, 95% CI 0.81 to 1.08; risk of death at 12 months of 745 per 1000 versus 767 per 1000; 6 studies, 1140 participants; low certainty), may increase grade 3/4 adverse events, and likely worsens QoL. Gemcitabine plus fluoropyrimidine improves OS (HR 0.88, 95% CI 0.81 to 0.95; risk of death at 12 months of 722 per 1000 versus 767 per 1000; 10 studies, 2718 participants; high certainty), likely increases grade 3/4 adverse events, and likely improves QoL. Gemcitabine plus topoisomerase inhibitors result in little to no difference in OS (HR 1.01, 95% CI 0.87 to 1.16; risk of death at 12 months of 770 per 1000 versus 767 per 1000; 3 studies, 839 participants; high certainty), likely increases grade 3/4 adverse events, and likely does not alter QoL. Gemcitabine plus taxane result in a large improvement in OS (HR 0.71, 95% CI 0.62 to 0.81; risk of death at 12 months of 644 per 1000 versus 767 per 1000; 2 studies, 986 participants; high certainty), and likely increases grade 3/4 adverse events and improves QoL. Nine studies compared chemotherapy combinations to gemcitabine plus nab-paclitaxel. Fluoropyrimidine-based combination regimens improve OS (HR 0.79, 95% CI 0.70 to 0.89; risk of death at 12 months of 542 per 1000 versus 628 per 1000; 6 studies, 1285 participants; high certainty). The treatment arms had distinct toxicity profiles, and there was little to no difference in QoL. Alternative schedules of gemcitabine plus nab-paclitaxel likely result in little to no difference in OS (HR 1.10, 95% CI 0.82 to 1.47; risk of death at 12 months of 663 per 1000 versus 628 per 1000; 2 studies, 367 participants; moderate certainty) or QoL, but may increase grade 3/4 adverse events. Four studies compared fluoropyrimidine-based combinations to fluoropyrimidines alone, with poor quality evidence. Fluoropyrimidine-based combinations are likely to result in little to no impact on OS (HR 0.84, 95% CI 0.61 to 1.15; risk of death at 12 months of 765 per 1000 versus 704 per 1000; P = 0.27; 4 studies, 491 participants; moderate certainty) versus fluoropyrimidines alone. The evidence suggests that there was little to no difference in grade 3/4 adverse events or QoL between the two groups. We included only one radiotherapy (iodine-125 brachytherapy) study with 165 participants. The evidence is very uncertain about the effect of radiotherapy on outcomes. AUTHORS' CONCLUSIONS Combination chemotherapy remains standard of care for metastatic pancreatic cancer. Both FOLFIRINOX and gemcitabine plus a taxane improve OS compared to gemcitabine alone. Furthermore, the evidence suggests that fluoropyrimidine-based combination chemotherapy regimens improve OS compared to gemcitabine plus nab-paclitaxel. The effects of radiotherapy were uncertain as only one low-quality trial was included. Selection of the most appropriate chemotherapy for individuals still remains unpersonalised, with clinicopathological stratification remaining elusive. Biomarker development is essential to assist in rationalising treatment selection for patients.
Collapse
Affiliation(s)
- Lucy Haggstrom
- Medical Oncology, The Kinghorn Cancer Care Centre, St Vincent's Hospital, Sydney, Australia
- Medical Oncology, Illawarra Shoalhaven Local Health District, Wollongong, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Wei Yen Chan
- Medical Oncology, The Kinghorn Cancer Care Centre, St Vincent's Hospital, Sydney, Australia
- Medical Oncology, Chris O'Brien Lifehouse, Sydney, Australia
| | - Adnan Nagrial
- The Crown Princess Mary Cancer Centre, Westmead, Australia
- Medical School, The University of Sydney, Sydney, Australia
| | - Lorraine A Chantrill
- Medical Oncology, Illawarra Shoalhaven Local Health District, Wollongong, Australia
- University of Wollongong, Wollongong, Australia
| | - Hao-Wen Sim
- Medical Oncology, The Kinghorn Cancer Care Centre, St Vincent's Hospital, Sydney, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, Australia
| | - Desmond Yip
- Department of Medical Oncology, The Canberra Hospital, Garran, Australia
- ANU Medical School, Australian National University, Acton, Australia
| | - Venessa Chin
- Medical Oncology, The Kinghorn Cancer Care Centre, St Vincent's Hospital, Sydney, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
- Medical Oncology, Garvan Institute of Medical Research, Sydney, Australia
| |
Collapse
|
4
|
Tushoski-Alemán GW, Crespin AJ, Oguejiofor CJ, Szymkiewicz DD, Herremans KM, Han S, Hughes SJ. Variability of quality-of-life measurements and reporting in randomised controlled trials of pancreatic cancer: a systematic review. BMJ Open 2024; 14:e083696. [PMID: 39551595 PMCID: PMC11574412 DOI: 10.1136/bmjopen-2023-083696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 10/11/2024] [Indexed: 11/19/2024] Open
Abstract
OBJECTIVES This systematic review aims to evaluate the methodology used in pancreatic cancer (PC) randomised controlled trials (RCTs) measuring quality of life (QOL) and focuses on the type, frequency, survey compliance and duration of these assessments. DESIGN Systematic review of PC RCTs measuring QOL. DATA SOURCES A search of PubMed.gov and ClinicalTrials.gov was conducted for PC RCTs measuring QOL from inception to 21 March 2023. Only phase III RCTs were included. Studies were excluded if QOL was not measured, the study was phase I/II, in the second-line setting or unavailable in English. Data were independently extracted by two reviewers in a standardised fashion. PRIMARY AND SECONDARY OUTCOME MEASURES Primary outcomes included the type of QOL instrument used, the timing and frequency of assessments, methods of analysis and survey completion rates (SCRs) over time. Secondary outcomes included patient demographics, significant QOL improvements and the frequency of trials measuring QOL. RESULTS Out of 269 studies screened, 54 RCTs were identified, and 24 measured QOL (involving 11 229 patients). Instruments used included the EORTC QLQ-C30 (n=15), FACT-HEP (n=3), Spitzer-QOL-Index (n=2), EQ-5D (n=2), LASA (n=1) and FACT-PA (n=1). Most trials assessed QOL until disease progression or death (10/24), with 4-week intervals being the most common (7/24). SCRs were reported in 15/24 trials, with disease stage influencing SCRs over time. In trials with metastatic, locally advanced/metastatic, and resectable disease, the median times to reach a 50% response rate-defined as the point where the number of surveys completed was half of the enrolled participants-were 12.41 weeks (n=2), 14.14 weeks (n=10), and 54.2 weeks (n=3), respectively." Only 2/24 trials reported significant QOL improvements between treatment arms. Patient age was reported in all trials, while race/ethnicity was only reported in 4/24 trials. CONCLUSIONS Significant variability exists in the timing, methods and reporting of QOL assessments in PC trials. There is a need for further research to assess the implications of missing data and consider the temporality of QOL assessment in patients with advanced cancers and poor prognosis.
Collapse
Affiliation(s)
| | | | | | | | - Kelly M Herremans
- Department of Surgery, University of Florida, Gainesville, Florida, USA
| | - Song Han
- Department of Surgery, University of Florida, Gainesville, Florida, USA
| | - Steven J Hughes
- Department of Surgery, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
5
|
Dominguez AA, Perz MT, Xu Y, Cedillo LG, Huang OD, McIntyre CA, Vudatha V, Trevino JG, Liu J, Wang P. Unveiling the Promise: Navigating Clinical Trials 1978-2024 for PDAC. Cancers (Basel) 2024; 16:3564. [PMID: 39518005 PMCID: PMC11544830 DOI: 10.3390/cancers16213564] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Despite many decades of research, pancreatic ductal adenocarcinoma (PDAC) remains one of the most difficult cancers to diagnose and treat effectively. Although there have been improvements in the 5-year overall survival rate, it is still very low at 12.5%. The limited efficacy of current therapies, even when PDAC is detected early, underscores the aggressive nature of the disease and the urgent need for more effective treatments. Clinical management of PDAC still relies heavily on a limited repertoire of therapeutic interventions, highlighting a significant gap between research efforts and available treatments. Over 4300 clinical trials have been or are currently investigating different treatment modalities and diagnostic strategies for PDAC, including targeted therapies, immunotherapies, and precision medicine approaches. These trials aim to develop more effective treatments and improve early detection methods through advanced imaging techniques and blood-based biomarkers. This review seeks to categorize and analyze PDAC-related clinical trials across various dimensions to understand why so few chemotherapeutic options are available to patients despite the numerous trials being conducted. This review aims to provide a comprehensive and nuanced understanding of the landscape of PDAC-related clinical trials, with the overarching goal of identifying opportunities to accelerate progress in drug development and improve patient outcomes in the fight against this devastating disease.
Collapse
Affiliation(s)
- Angel A. Dominguez
- Department of Cell Systems & Anatomy; University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (A.A.D.); (M.T.P.); (Y.X.); (L.G.C.); (O.D.H.); (J.L.)
| | - Matthew T. Perz
- Department of Cell Systems & Anatomy; University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (A.A.D.); (M.T.P.); (Y.X.); (L.G.C.); (O.D.H.); (J.L.)
| | - Yi Xu
- Department of Cell Systems & Anatomy; University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (A.A.D.); (M.T.P.); (Y.X.); (L.G.C.); (O.D.H.); (J.L.)
| | - Leonor G. Cedillo
- Department of Cell Systems & Anatomy; University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (A.A.D.); (M.T.P.); (Y.X.); (L.G.C.); (O.D.H.); (J.L.)
| | - Orry D. Huang
- Department of Cell Systems & Anatomy; University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (A.A.D.); (M.T.P.); (Y.X.); (L.G.C.); (O.D.H.); (J.L.)
| | - Caitlin A. McIntyre
- Division of Surgical Oncology and Endocrine Surgery, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA;
| | - Vignesh Vudatha
- Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA; (V.V.); (J.G.T.)
| | - Jose G. Trevino
- Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA; (V.V.); (J.G.T.)
| | - Jun Liu
- Department of Cell Systems & Anatomy; University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (A.A.D.); (M.T.P.); (Y.X.); (L.G.C.); (O.D.H.); (J.L.)
| | - Pei Wang
- Department of Cell Systems & Anatomy; University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (A.A.D.); (M.T.P.); (Y.X.); (L.G.C.); (O.D.H.); (J.L.)
| |
Collapse
|
6
|
Wang J, Yang J, Narang A, He J, Wolfgang C, Li K, Zheng L. Consensus, debate, and prospective on pancreatic cancer treatments. J Hematol Oncol 2024; 17:92. [PMID: 39390609 PMCID: PMC11468220 DOI: 10.1186/s13045-024-01613-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/25/2024] [Indexed: 10/12/2024] Open
Abstract
Pancreatic cancer remains one of the most aggressive solid tumors. As a systemic disease, despite the improvement of multi-modality treatment strategies, the prognosis of pancreatic cancer was not improved dramatically. For resectable or borderline resectable patients, the surgical strategy centered on improving R0 resection rate is consensus; however, the role of neoadjuvant therapy in resectable patients and the optimal neoadjuvant therapy of chemotherapy with or without radiotherapy in borderline resectable patients were debated. Postoperative adjuvant chemotherapy of gemcitabine/capecitabine or mFOLFIRINOX is recommended regardless of the margin status. Chemotherapy as the first-line treatment strategy for advanced or metastatic patients included FOLFIRINOX, gemcitabine/nab-paclitaxel, or NALIRIFOX regimens whereas 5-FU plus liposomal irinotecan was the only standard of care second-line therapy. Immunotherapy is an innovative therapy although anti-PD-1 antibody is currently the only agent approved by for MSI-H, dMMR, or TMB-high solid tumors, which represent a very small subset of pancreatic cancers. Combination strategies to increase the immunogenicity and to overcome the immunosuppressive tumor microenvironment may sensitize pancreatic cancer to immunotherapy. Targeted therapies represented by PARP and KRAS inhibitors are also under investigation, showing benefits in improving progression-free survival and objective response rate. This review discusses the current treatment modalities and highlights innovative therapies for pancreatic cancer.
Collapse
Affiliation(s)
- Junke Wang
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Jie Yang
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Amol Narang
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Jin He
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Christopher Wolfgang
- Department of Surgery, New York University School of Medicine and NYU-Langone Medical Center, New York, NY, USA
| | - Keyu Li
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, 610041, Sichuan, China.
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St, Baltimore, MD, 21287, USA.
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| | - Lei Zheng
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St, Baltimore, MD, 21287, USA.
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- The Multidisciplinary Gastrointestinal Cancer Laboratories Program, the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| |
Collapse
|
7
|
Kabir E, Azam F, Khan T, Yasmin H, Chowdhury N, Ahmed S, Sagar B, Tahrim N. Modeling Overall Survival in Patients With Pancreatic Cancer From a Pooled Analysis of Phase II Trials. Cancer Med 2024; 13:e70289. [PMID: 39387320 PMCID: PMC11465028 DOI: 10.1002/cam4.70289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 06/08/2024] [Accepted: 09/21/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND We evaluated the validity of surrogacy of progression-free survival (PFS) or time-to-progression (TTP) and overall response rate (ORR) in phase II trials of pancreatic ductal adenocarcinoma (PDAC). In addition, we explored the impact of predictive variables on overall survival (OS) and developed an optimal OS model. METHODS We analyzed 1867 clinical endpoint from 619 phase II PDAC trials with a systematic search from PubMed. Endpoint correlations were determined by Spearman's rank correlation. The assessed predictive factors included PFS/TTP, treatment size, therapy type, stage, and previous treatment. The relationship between predictors and OS was explored by a gamma generalized linear model (GLM) with a log-link function and compared with linear models. RESULTS The Spearman rank correlation coefficient between PFS/TTP and OS was 0.88 (95% confidence interval [CI] 0.85-0.89; p < 0.0001; n = 610) and between ORR and OS was 0.58 (0.52-0.64; p < 0.0001; n = 514). Model comparison favored the GLM model over the linear model, offering more accurate predictions for higher OS values. Consequently, PFS/TTP was the strongest predictor (pseudo-R2 = 0.75), with 1 added median PFS/TTP month associated with 13% (95% CI 13%-14%) increase in median OS. Subgroup analysis revealed that chemotherapy conferred significantly longer OS compared to targeted therapy in 1-Agent and 2-Agent trials, exhibiting a "very large" and "medium" effect size, respectively (rank biserial, rrb = 0.40 [95% CI 0.22-0.56] and rrb = 0.29 [0.16-0.41], both p < 0.0001), although inconsistent efficacy in 3-Agent trials (rrb = 0.12 [-0.07-0.30], p = 0.21). CONCLUSIONS PFS/TTP is a more reliable surrogate than ORR and a strong predictor of OS in phase II trials of pancreatic cancer. Moreover, gamma GLM (log-link function) is a robust tool for modeling positively skewed survival data with non-constant variance, thus can be applied to other cancers' OS data of such nature.
Collapse
Affiliation(s)
| | - Faruque Azam
- School of PharmacyBRAC UniversityDhakaBangladesh
| | | | | | | | | | | | | |
Collapse
|
8
|
Seufferlein T, Mayerle J, Boeck S, Brunner T, Ettrich TJ, Grenacher L, Gress TM, Hackert T, Heinemann V, Kestler A, Sinn M, Tannapfel A, Wedding U, Uhl W. S3-Leitlinie Exokrines Pankreaskarzinom – Version 3.1. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2024; 62:874-995. [PMID: 39389103 DOI: 10.1055/a-2338-3533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Affiliation(s)
| | | | | | - Thomas Brunner
- Universitätsklinik für Strahlentherapie-Radioonkologie, Medizinische Universität Graz, Austria
| | | | | | - Thomas Mathias Gress
- Gastroenterologie und Endokrinologie Universitätsklinikum Gießen und Marburg, Germany
| | - Thilo Hackert
- Klinik und Poliklinik für Allgemein-, Viszeral- und Thoraxchirurgie, Universitätsklinikum Hamburg-Eppendorf, Germany
| | - Volker Heinemann
- Medizinische Klinik und Poliklinik III, Klinikum der Universität München-Campus Grosshadern, München, Germany
| | | | - Marianne Sinn
- Medizinische Klinik und Poliklinik II Onkologie und Hämatologie, Universitätsklinikum Hamburg-Eppendorf, Germany
| | | | | | - Waldemar Uhl
- Allgemein- und Viszeralchirurgie, St Josef-Hospital, Bochum, Germany
| |
Collapse
|
9
|
Than MT, O'Hara M, Stanger BZ, Reiss KA. KRAS-Driven Tumorigenesis and KRAS-Driven Therapy in Pancreatic Adenocarcinoma. Mol Cancer Ther 2024; 23:1378-1388. [PMID: 39118358 PMCID: PMC11444872 DOI: 10.1158/1535-7163.mct-23-0519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/09/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is associated with significant morbidity and mortality and is projected to be the second leading cause of cancer-related deaths by 2030. Mutations in KRAS are found in the vast majority of PDAC cases and plays an important role in the development of the disease. KRAS drives tumor cell proliferation and survival through activating the MAPK pathway to drive cell cycle progression and to lead to MYC-driven cellular programs. Moreover, activated KRAS promotes a protumorigenic microenvironment through forming a desmoplastic stroma and by impairing antitumor immunity. Secretion of granulocyte-macrophage colony-stimulating factor and recruitment of myeloid-derived suppressor cells and protumorigenic macrophages results in an immunosuppressive environment while secretion of secrete sonic hedgehog and TGFβ drive fibroblastic features characteristic of PDAC. Recent development of several small molecules to directly target KRAS marks an important milestone in precision medicine. Many molecules show promise in preclinical models of PDAC and in early phase clinical trials. In this review, we discuss the underlying cell intrinsic and extrinsic roles of KRAS in PDAC tumorigenesis, the pharmacologic development of KRAS inhibition, and therapeutic strategies to target KRAS in PDAC.
Collapse
Affiliation(s)
- Minh T Than
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mark O'Hara
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ben Z Stanger
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kim A Reiss
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
10
|
Kazemi-Harikandei SZ, Karimi A, Tavangar SM. Clinical Perspectives on the Histomolecular Features of the Pancreatic Precursor Lesions: A Narrative Review. Middle East J Dig Dis 2024; 16:136-146. [PMID: 39386334 PMCID: PMC11459284 DOI: 10.34172/mejdd.2024.387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 06/07/2024] [Indexed: 10/12/2024] Open
Abstract
Pancreatic cancer (PC) is a lethal cancer with poor prognoses. Identifying and characterizing pancreatic cystic lesions (PCLs) in the early detection and follow-up plans is thought to help detect pancreatic malignancy. Besides, the molecular features of PCLs are thought to unravel potentials for targeted therapies. We present a narrative review of the existing literature on the role of PCLs in the early detection, risk stratification, and medical management of PC. High-grade intraductal papillary mucinous neoplasms (IPMN) and pancreatic intraepithelial neoplasia (PanIN) stage III are high-risk lesions for developing PC. These lesions often require thorough histomolecular characterization using endoscopic ultrasound (EUS), before a surgical decision is made. EUS is also useful in the risk assessment of PCLs with tentative plans-for instance, in branch-duct IPMNs (BD-IPMN)- where the final decision might change. Besides the operative decisions, recent improvements in the application of targeted therapies are expected to improve survival measures. Knowledge of molecular features has helped develop targeted therapies. In summary, the histomolecular characterization of PCLs is helpful in optimizing management plans in PC. Further improvements are still needed for the broad application of this knowledge in the clinical setting.
Collapse
Affiliation(s)
| | - Amirali Karimi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Tavangar
- Department of Pathology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Long SA, Amparo AM, Goodhart G, Ahmad SA, Waters AM. Evaluation of KRAS inhibitor-directed therapies for pancreatic cancer treatment. Front Oncol 2024; 14:1402128. [PMID: 38800401 PMCID: PMC11116577 DOI: 10.3389/fonc.2024.1402128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 04/25/2024] [Indexed: 05/29/2024] Open
Abstract
Despite significant advancements in the treatment of other cancers, pancreatic ductal adenocarcinoma (PDAC) remains one of the world's deadliest cancers. More than 90% of PDAC patients harbor a Kirsten rat sarcoma (KRAS) gene mutation. Although the clinical potential of anti-KRAS therapies has long been realized, all initial efforts to target KRAS were unsuccessful. However, with the recent development of a new generation of KRAS-targeting drugs, multiple KRAS-targeted treatment options for patients with PDAC have entered clinical trials. In this review, we provide an overview of current standard of care treatment, describe RAS signaling and the relevance of KRAS mutations, and discuss RAS isoform- and mutation-specific differences. We also evaluate the clinical efficacy and safety of mutation-selective and multi-selective inhibitors, in the context of PDAC. We then provide a comparison of clinically relevant KRAS inhibitors to second-line PDAC treatment options. Finally, we discuss putative resistance mechanisms that may limit the clinical effectiveness of KRAS-targeted therapies and provide a brief overview of promising therapeutic approaches in development that are focused on mitigating these resistance mechanisms.
Collapse
Affiliation(s)
- Szu-Aun Long
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Amber M. Amparo
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Grace Goodhart
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Syed A. Ahmad
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Andrew M. Waters
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
12
|
Peng S, Huang H, Zhu X, Chen J, Ding X, Wang F, Chen L, Lu Z. Anlotinib plus tislelizumab for recurrent metastatic pancreas ductal adenocarcinoma with germline BRCA2 mutation: A case report. Exp Ther Med 2024; 27:178. [PMID: 38515651 PMCID: PMC10952340 DOI: 10.3892/etm.2024.12466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/09/2024] [Indexed: 03/23/2024] Open
Abstract
While combined immunotherapy and anti-angiogenic therapy have demonstrated efficacy in renal cell carcinoma, non-small cell lung cancer and hepatocellular carcinoma, the efficacy of first-line treatment for pancreatic ductal adenocarcinoma (PDAC) with germline BRCA2 mutation remains unproven. We described a BRCA2-mutated patient with PDAC who presented with posterior cardiac metastasis 8 months after surgery. After receiving four cycles of anlotinib combined with tislelizumab, abdominal CT scans indicated a complete response. The patient sustained this response for over 14 months on the combination regimen, with no reported adverse events. In conclusion, the combination of tislelizumab and anlotinib may offer a viable therapeutic option for recurrent metastatic BRCA2-mutated PDAC.
Collapse
Affiliation(s)
- Sujuan Peng
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Hongxiang Huang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Xie Zhu
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Jinhong Chen
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Xinjing Ding
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Fen Wang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Li Chen
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Zhihui Lu
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| |
Collapse
|
13
|
Kang MJ, Li HX, Gan Y, Fang C, Yang XL, Li B, Su S. Efficacy and safety of first-line chemotherapies for patients with advanced pancreatic ductal adenocarcinoma: A systematic review and network meta-analysis. Heliyon 2024; 10:e27679. [PMID: 38681566 PMCID: PMC11046077 DOI: 10.1016/j.heliyon.2024.e27679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 02/05/2024] [Accepted: 03/05/2024] [Indexed: 05/01/2024] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease, often diagnosed at an advanced stage. Systemic chemotherapy is the primary treatment, but direct comparisons of different regimens are limited. This study conducted a systematic review and network meta-analysis (NMA) to compare the efficacy and safety of various chemotherapy regimens, with the unique advantage of only including Phase III randomized controlled trials (RCTs). Methods NMA was conducted regarding the searched phase III RCTs by comparing overall survival (OS), progression-free survival (PFS), objective response rate (ORR), and adverse events (AEs) of different chemotherapy protocols. Results The analysis included 24 studies with 11470 patients across 25 treatment modalities. Among the chemotherapy regimens evaluated, FOLFIRINOX (fluorouracil, leucovorin, irinotecan, and oxaliplatin) demonstrated the highest OS and PFS, with a risk ratio (logHR) of 4.5 (95 % confidence interval 4.32-4.68) compared to gemcitabine monotherapy. The PEFG regimen (cisplatin, epirubicin, 5-fluorouracil, and gemcitabine) exhibited the highest ORR, with an odds ratio (OR) of 6.67 (2.08-20) compared to gemcitabine monotherapy. Notably, gemcitabine plus sorafenib was associated with the lowest hematological toxicity, with an odds ratio (OR) of 0.1 (0.02-0.48). Conclusion Combination therapies may offer greater benefits but also cause more toxic effects. However, combinations with targeted agents seem to have fewer adverse reactions.
Collapse
Affiliation(s)
| | | | - Yu Gan
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Cheng Fang
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Xiao-Li Yang
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Bo Li
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Song Su
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Sichuan, China
| |
Collapse
|
14
|
Yuan Y, Li P, Li J, Zhao Q, Chang Y, He X. Protein lipidation in health and disease: molecular basis, physiological function and pathological implication. Signal Transduct Target Ther 2024; 9:60. [PMID: 38485938 PMCID: PMC10940682 DOI: 10.1038/s41392-024-01759-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/31/2023] [Accepted: 01/24/2024] [Indexed: 03/18/2024] Open
Abstract
Posttranslational modifications increase the complexity and functional diversity of proteins in response to complex external stimuli and internal changes. Among these, protein lipidations which refer to lipid attachment to proteins are prominent, which primarily encompassing five types including S-palmitoylation, N-myristoylation, S-prenylation, glycosylphosphatidylinositol (GPI) anchor and cholesterylation. Lipid attachment to proteins plays an essential role in the regulation of protein trafficking, localisation, stability, conformation, interactions and signal transduction by enhancing hydrophobicity. Accumulating evidence from genetic, structural, and biomedical studies has consistently shown that protein lipidation is pivotal in the regulation of broad physiological functions and is inextricably linked to a variety of diseases. Decades of dedicated research have driven the development of a wide range of drugs targeting protein lipidation, and several agents have been developed and tested in preclinical and clinical studies, some of which, such as asciminib and lonafarnib are FDA-approved for therapeutic use, indicating that targeting protein lipidations represents a promising therapeutic strategy. Here, we comprehensively review the known regulatory enzymes and catalytic mechanisms of various protein lipidation types, outline the impact of protein lipidations on physiology and disease, and highlight potential therapeutic targets and clinical research progress, aiming to provide a comprehensive reference for future protein lipidation research.
Collapse
Affiliation(s)
- Yuan Yuan
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peiyuan Li
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianghui Li
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China.
| | - Ying Chang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China.
| | - Xingxing He
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China.
| |
Collapse
|
15
|
Abstract
Pancreatic cancer remains among the malignancies with the worst outcomes. Survival has been improving, but at a slower rate than other cancers. Multimodal treatment, including chemotherapy, surgical resection, and radiotherapy, has been under investigation for many years. Because of the anatomical characteristics of the pancreas, more emphasis on treatment selection has been placed on local extension into major vessels. Recently, the development of more effective treatment regimens has opened up new treatment strategies, but urgent research questions have also become apparent. This review outlines the current management of pancreatic cancer, and the recent advances in its treatment. The review discusses future treatment pathways aimed at integrating novel findings of translational and clinical research.
Collapse
Affiliation(s)
- Marco Del Chiaro
- Division of Surgical Oncology, Department of Surgery, University of Colorado School of Medicine, Aurora, CO, USA
- University of Colorado Cancer Center, University of Colorado School of Medicine, Aurora, CO, USA
| | - Toshitaka Sugawara
- Division of Surgical Oncology, Department of Surgery, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sana D Karam
- University of Colorado Cancer Center, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Wells A Messersmith
- University of Colorado Cancer Center, University of Colorado School of Medicine, Aurora, CO, USA
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
16
|
Shen X, Niu N, Xue J. Oncogenic KRAS triggers metabolic reprogramming in pancreatic ductal adenocarcinoma. J Transl Int Med 2023; 11:322-329. [PMID: 38130635 PMCID: PMC10732496 DOI: 10.2478/jtim-2022-0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with an extremely high lethality rate. Oncogenic KRAS activation has been proven to be a key driver of PDAC initiation and progression. There is increasing evidence that PDAC cells undergo extensive metabolic reprogramming to adapt to their extreme energy and biomass demands. Cell-intrinsic factors, such as KRAS mutations, are able to trigger metabolic rewriting. Here, we update recent advances in KRAS-driven metabolic reprogramming and the associated metabolic therapeutic potential in PDAC.
Collapse
Affiliation(s)
- Xuqing Shen
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai200127, China
| | - Ningning Niu
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai200127, China
| | - Jing Xue
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai200127, China
| |
Collapse
|
17
|
Zhou K, Liu Y, Yuan S, Zhou Z, Ji P, Huang Q, Wen F, Li Q. Signalling in pancreatic cancer: from pathways to therapy. J Drug Target 2023; 31:1013-1026. [PMID: 37869884 DOI: 10.1080/1061186x.2023.2274806] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023]
Abstract
Pancreatic cancer (PC) is a common malignant tumour in the digestive system. Due to the lack of sensitive diagnostic markers, strong metastasis ability, and resistance to anti-cancer drugs, the prognosis of PC is inferior. In the past decades, increasing evidence has indicated that the development of PC is closely related to various signalling pathways. With the exploration of RAS-driven, epidermal growth factor receptor, Hedgehog, NF-κB, TGF-β, and NOTCH signalling pathways, breakthroughs have been made to explore the mechanism of pancreatic carcinogenesis, as well as the novel therapies. In this review, we discussed the signalling pathways involved in PC and summarised current targeted agents in the treatment of PC. Furthermore, opportunities and challenges in the exploration of potential therapies targeting signalling pathways were also highlighted.
Collapse
Affiliation(s)
- Kexun Zhou
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yingping Liu
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, China
| | | | - Ziyu Zhou
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Pengfei Ji
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Qianhan Huang
- School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Feng Wen
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qiu Li
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Zhang J, Darman L, Hassan MS, Von Holzen U, Awasthi N. Targeting KRAS for the potential treatment of pancreatic ductal adenocarcinoma: Recent advancements provide hope (Review). Oncol Rep 2023; 50:206. [PMID: 37800636 PMCID: PMC10570661 DOI: 10.3892/or.2023.8643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/24/2023] [Indexed: 10/07/2023] Open
Abstract
Kirsten rat sarcoma viral oncogene homolog (KRAS) is one of the most frequently mutated oncogenes in solid tumors. More than 90% of pancreatic ductal adenocarcinoma (PDAC) are driven by mutations in the KRAS gene, suggesting the importance of targeting this oncogene in PDAC. Initial efforts to target KRAS have been unsuccessful due to its small size, high affinity for guanosine triphosphate/guanosine diphosphate, and lack of distinct drug‑binding pockets. Therefore, much of the focus has been directed at inhibiting the activation of major signaling pathways downstream of KRAS, most notably the PI3K/AKT and RAF/MAPK pathways, using tyrosine kinase inhibitors and monoclonal antibodies. While preclinical studies showed promising results, clinical data using the inhibitors alone and in combination with other standard therapies have shown limited practicality, largely due to the lack of efficacy and dose‑limiting toxicities. Recent therapeutic approaches for KRAS‑driven tumors focus on mutation‑specific drugs such as selective KRASG12C inhibitors and son of sevenless 1 pan‑KRAS inhibitors. While KRASG12C inhibitors showed great promise against patients with non‑small cell lung cancer (NSCLC) harboring KRASG12C mutations, they were not efficacious in PDAC largely because the major KRAS mutant isoforms in PDAC are G12D, G12V, and G12R. As a result, KRASG12D and pan‑KRAS inhibitors are currently under investigation as potential therapeutic options for PDAC. The present review summarized the importance of KRAS oncogenic signaling, challenges in its targeting, and preclinical and clinical targeted agents including recent direct KRAS inhibitors for blocking KRAS signaling in PDAC.
Collapse
Affiliation(s)
- Joshua Zhang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Lily Darman
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Md Sazzad Hassan
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
- Department of Surgery, Indiana University School of Medicine, South Bend, IN 46617, USA
| | - Urs Von Holzen
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
- Department of Surgery, Indiana University School of Medicine, South Bend, IN 46617, USA
- Goshen Center for Cancer Care, Goshen, IN 46526, USA
- University of Basel School of Medicine, 4056 Basel, Switzerland
| | - Niranjan Awasthi
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
- Department of Surgery, Indiana University School of Medicine, South Bend, IN 46617, USA
| |
Collapse
|
19
|
de Jesus VHF, Mathias-Machado MC, de Farias JPF, Aruquipa MPS, Jácome AA, Peixoto RD. Targeting KRAS in Pancreatic Ductal Adenocarcinoma: The Long Road to Cure. Cancers (Basel) 2023; 15:5015. [PMID: 37894382 PMCID: PMC10605759 DOI: 10.3390/cancers15205015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains an important cause of cancer-related mortality, and it is expected to play an even bigger part in cancer burden in the years to come. Despite concerted efforts from scientists and physicians, patients have experienced little improvement in survival over the past decades, possibly because of the non-specific nature of the tested treatment modalities. Recently, the discovery of potentially targetable molecular alterations has paved the way for the personalized treatment of PDAC. Indeed, the central piece in the molecular framework of PDAC is starting to be unveiled. KRAS mutations are seen in 90% of PDACs, and multiple studies have demonstrated their pivotal role in pancreatic carcinogenesis. Recent investigations have shed light on the differences in prognosis as well as therapeutic implications of the different KRAS mutations and disentangled the relationship between KRAS and effectors of downstream and parallel signaling pathways. Additionally, the recognition of other mechanisms involving KRAS-mediated pathogenesis, such as KRAS dosing and allelic imbalance, has contributed to broadening the current knowledge regarding this molecular alteration. Finally, KRAS G12C inhibitors have been recently tested in patients with pancreatic cancer with relative success, and inhibitors of KRAS harboring other mutations are under clinical development. These drugs currently represent a true hope for a meaningful leap forward in this dreadful disease.
Collapse
Affiliation(s)
| | | | | | | | - Alexandre A. Jácome
- Department of Gastrointestinal Medical Oncology, Oncoclínicas, Belo Horizonte 30360-680, Brazil
| | | |
Collapse
|
20
|
Dutta H, Jain N. Post-translational modifications and their implications in cancer. Front Oncol 2023; 13:1240115. [PMID: 37795435 PMCID: PMC10546021 DOI: 10.3389/fonc.2023.1240115] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/21/2023] [Indexed: 10/06/2023] Open
Abstract
Post-translational modifications (PTMs) are crucial regulatory mechanisms that alter the properties of a protein by covalently attaching a modified chemical group to some of its amino acid residues. PTMs modulate essential physiological processes such as signal transduction, metabolism, protein localization, and turnover and have clinical relevance in cancer and age-related pathologies. Majority of proteins undergo post-translational modifications, irrespective of their occurrence in or after protein biosynthesis. Post-translational modifications link to amino acid termini or side chains, causing the protein backbone to get cleaved, spliced, or cyclized, to name a few. These chemical modifications expand the diversity of the proteome and regulate protein activity, structure, locations, functions, and protein-protein interactions (PPIs). This ability to modify the physical and chemical properties and functions of proteins render PTMs vital. To date, over 200 different protein modifications have been reported, owing to advanced detection technologies. Some of these modifications include phosphorylation, glycosylation, methylation, acetylation, and ubiquitination. Here, we discuss about the existing as well as some novel post-translational protein modifications, with their implications in aberrant states, which will help us better understand the modified sites in different proteins and the effect of PTMs on protein functions in core biological processes and progression in cancer.
Collapse
Affiliation(s)
- Hashnu Dutta
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Nishant Jain
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
21
|
Jäger MC, Kędzierski J, Gell V, Wey T, Kollár J, Winter DV, Schuster D, Smieško M, Odermatt A. Virtual screening and biological evaluation to identify pharmaceuticals potentially causing hypertension and hypokalemia by inhibiting steroid 11β-hydroxylase. Toxicol Appl Pharmacol 2023; 475:116638. [PMID: 37499767 DOI: 10.1016/j.taap.2023.116638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
Several drugs were found after their market approval to unexpectedly inhibit adrenal 11β-hydroxylase (CYP11B1)-dependent cortisol synthesis. Known side-effects of CYP11B1 inhibition include hypertension and hypokalemia, due to a feedback activation of adrenal steroidogenesis, leading to supraphysiological concentrations of 11-deoxycortisol and 11-deoxycorticosterone that can activate the mineralocorticoid receptor. This results in potassium excretion and sodium and water retention, ultimately causing hypertension. With the risk known but usually not addressed in preclinical evaluation, this study aimed to identify drugs and drug candidates inhibiting CYP11B1. Two conceptually different virtual screening methods were combined, a pharmacophore based and an induced fit docking approach. Cell-free and cell-based CYP11B1 activity measurements revealed several inhibitors with IC50 values in the nanomolar range. Inhibitors include retinoic acid metabolism blocking agents (RAMBAs), azole antifungals, α2-adrenoceptor ligands, and a farnesyltransferase inhibitor. The active compounds share a nitrogen atom embedded in an aromatic ring system. Structure activity analysis identified the free electron pair of the nitrogen atom as a prerequisite for the drug-enzyme interaction, with its pKa value as an indicator of inhibitory potency. Another important parameter is drug lipophilicity, exemplified by etomidate. Changing its ethyl ester moiety to a more hydrophilic carboxylic acid group dramatically decreased the inhibitory potential, most likely due to less efficient cellular uptake. The presented work successfully combined different in silico and in vitro methods to identify several previously unknown CYP11B1 inhibitors. This workflow facilitates the identification of compounds that inhibit CYP11B1 and therefore pose a risk for inducing hypertension and hypokalemia.
Collapse
Affiliation(s)
- Marie-Christin Jäger
- Swiss Centre for Applied Human Toxicology (SCAHT), University of Basel, Missionsstrasse 64, 4055 Basel, Switzerland; Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland.
| | - Jacek Kędzierski
- Swiss Centre for Applied Human Toxicology (SCAHT), University of Basel, Missionsstrasse 64, 4055 Basel, Switzerland; Division of Computational Pharmacy, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 61, 4056 Basel, Switzerland.
| | - Victoria Gell
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland; Division of Computational Pharmacy, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 61, 4056 Basel, Switzerland.
| | - Tim Wey
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland.
| | - Jakub Kollár
- Institute of Pharmacy, Department of Pharmaceutical and Medicinal Chemistry, Paracelsus Medical University, Strubergasse 21, 5020 Salzburg, Austria.
| | - Denise V Winter
- Swiss Centre for Applied Human Toxicology (SCAHT), University of Basel, Missionsstrasse 64, 4055 Basel, Switzerland; Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland.
| | - Daniela Schuster
- Institute of Pharmacy, Department of Pharmaceutical and Medicinal Chemistry, Paracelsus Medical University, Strubergasse 21, 5020 Salzburg, Austria.
| | - Martin Smieško
- Swiss Centre for Applied Human Toxicology (SCAHT), University of Basel, Missionsstrasse 64, 4055 Basel, Switzerland; Division of Computational Pharmacy, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 61, 4056 Basel, Switzerland.
| | - Alex Odermatt
- Swiss Centre for Applied Human Toxicology (SCAHT), University of Basel, Missionsstrasse 64, 4055 Basel, Switzerland; Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland.
| |
Collapse
|
22
|
Ashok Kumar P, Serinelli S, Zaccarini DJ, Huang R, Danziger N, Janovitz T, Basnet A, Sivapiragasam A, Graziano S, Ross JS. Genomic landscape of clinically advanced KRAS wild-type pancreatic ductal adenocarcinoma. Front Oncol 2023; 13:1169586. [PMID: 37404765 PMCID: PMC10315669 DOI: 10.3389/fonc.2023.1169586] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 06/07/2023] [Indexed: 07/06/2023] Open
Abstract
Introduction KRAS mutation is a common occurrence in Pancreatic Ductal Adenocarcinoma (PDA) and is a driver mutation for disease development and progression. KRAS wild-type PDA may constitute a distinct molecular and clinical subtype. We used the Foundation one data to analyze the difference in Genomic Alterations (GAs) that occur in KRAS mutated and wild-type PDA. Methods Comprehensive genomic profiling (CGP) data, tumor mutational burden (TMB), microsatellite instability (MSI) and PD-L1 by Immunohistochemistry (IHC) were analyzed. Results and discussion Our cohort had 9444 cases of advanced PDA. 8723 (92.37%) patients had KRAS mutation. 721 (7.63%) patients were KRAS wild-type. Among potentially targetable mutations, GAs more common in KRAS wild-type included ERBB2 (mutated vs wild-type: 1.7% vs 6.8%, p <0.0001), BRAF (mutated vs wild-type: 0.5% vs 17.9%, p <0.0001), PIK3CA (mutated vs wild-type: 2.3% vs 6.5%, p <0.001), FGFR2 (mutated vs wild-type: 0.1% vs 4.4%, p <0.0001), ATM (mutated vs wild-type: 3.6% vs 6.8%, p <0.0001). On analyzing untargetable GAs, the KRAS mutated group had a significantly higher percentage of TP53 (mutated vs wild-type: 80.2% vs 47.6%, p <0.0001), CDKN2A (mutated vs wild-type: 56.2% vs 34.4%, p <0.0001), CDKN2B (mutated vs wild-type: 28.9% vs 23%, p =0.007), SMAD4 (mutated vs wild-type: 26.8% vs 15.7%, p <0.0001) and MTAP (mutated vs wild-type: 21.7% vs 18%, p =0.02). ARID1A (mutated vs wild-type: 7.7% vs 13.6%, p <0.0001 and RB1(mutated vs wild-type: 2% vs 4%, p =0.01) were more prevalent in the wild-type subgroup. Mean TMB was higher in the KRAS wild-type subgroup (mutated vs wild-type: 2.3 vs 3.6, p <0.0001). High TMB, defined as TMB > 10 mut/mB (mutated vs wild-type: 1% vs 6.3%, p <0.0001) and very-high TMB, defined as TMB >20 mut/mB (mutated vs wild-type: 0.5% vs 2.4%, p <0.0001) favored the wild-type. PD-L1 high expression was similar between the 2 groups (mutated vs wild-type: 5.7% vs 6%,). GA associated with immune checkpoint inhibitors (ICPIs) response including PBRM1 (mutated vs wild-type: 0.7% vs 3.2%, p <0.0001) and MDM2 (mutated vs wild-type: 1.3% vs 4.4%, p <0.0001) were more likely to be seen in KRAS wild-type PDA.
Collapse
Affiliation(s)
| | - Serenella Serinelli
- Department of Pathology, Upstate Medical University, Syracuse, NY, United States
| | - Daniel J. Zaccarini
- Department of Pathology, Upstate Medical University, Syracuse, NY, United States
| | | | | | | | - Alina Basnet
- Upstate Cancer Center, Upstate Medical University, Syracuse, NY, United States
| | | | - Stephen Graziano
- Upstate Cancer Center, Upstate Medical University, Syracuse, NY, United States
| | - Jeffrey S. Ross
- Department of Pathology, Upstate Medical University, Syracuse, NY, United States
- Foundation Medicine, Cambridge, MA, United States
| |
Collapse
|
23
|
Ben Yahia H, Petit FM, Saada-Bouzid E. Targeting Harvey rat sarcoma viral oncogene homolog in head and neck cancer: how to move forward? Curr Opin Oncol 2023; 35:178-185. [PMID: 36966498 DOI: 10.1097/cco.0000000000000943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2023]
Abstract
PURPOSE OF REVIEW Despite recent advances, treatment personalization remains an issue for recurrent metastatic head and neck squamous cell carcinoma (RM HNSCC) patients. After human papilloma virus (HPV) and programmed death ligand 1 (PDL1) expression, Harvey rat sarcoma viral oncogene homolog (HRAS) appears as an emerging target in this field. In this review, we summarize the features of HRAS -mutated HNSCC and its targeting by farnesyl transferase inhibitors. RECENT FINDINGS HRAS mutations define a small subgroup of RM HNSCC patients with a poor prognosis and often refractory to the standard treatments. Posttranslational processing of HRAS being dependent on farnesylation, farnesyl transferase inhibitors have been evaluated in HRAS -mutated tumors. Tipifarnib, a first in class farnesyl transferase inhibitor, has shown efficacy in phase 2 trials with HRAS -mutated tumors. Despite reported high response rates in selected population, the efficacy of Tipifarnib is inconsistent and always transient, probably because of limiting hematological toxicities leading to dose reduction and occurrence of secondary resistance mutations. SUMMARY Tipifarnib is the first in the class of farnesyl transferase inhibitors to show efficacy in HRAS -mutated RM HNSCC. The understanding of mechanisms of resistance will pave the way for the design of second-generation farnesyl transferases inhibitors.
Collapse
Affiliation(s)
- Hédi Ben Yahia
- Translational Research in Oncology Laboratory, Cote d'Azur University
- Oncopharmacology Laboratory
| | - François M Petit
- Translational Research in Oncology Laboratory, Cote d'Azur University
- Oncopharmacology Laboratory
| | - Esma Saada-Bouzid
- Translational Research in Oncology Laboratory, Cote d'Azur University
- Medical Oncology Department, Antoine Lacassagne Cancer Center, Nice, France
| |
Collapse
|
24
|
Ciardiello D, Maiorano BA, Martinelli E. Targeting KRAS G12C in colorectal cancer: the beginning of a new era. ESMO Open 2023; 8:100745. [PMID: 36549128 PMCID: PMC9800313 DOI: 10.1016/j.esmoop.2022.100745] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 12/24/2022] Open
Abstract
RAS mutation is considered one of the most relevant oncogenic drivers in human cancers. Unfortunately, for more than three decades, RAS has been considered an undruggable target. Recently, the discovery of selective and potent KRASG12C inhibitors represented a light at the end of the tunnel. Indeed, sotorasib and adagrasib proved clinical activity in patients with refractory metastatic colorectal cancer harboring KRASG12C mutation; however, responses are lower than expected, suggesting the presence of intrinsic resistance. Consequently, novel combinatory strategies to disrupt the RAS signaling pathways are under clinical investigation. This review aims to discuss the current knowledge and novel routes of KRASG12C inhibition in metastatic colorectal cancer.
Collapse
Affiliation(s)
- D Ciardiello
- Oncology Unit, IRCCS Foundation Casa Sollievo della Sofferenza, San Giovanni Rotondo; Medical Oncology Unit, Department of Precision Medicine, 'Luigi Vanvitelli' University of Campania, Naples.
| | - B A Maiorano
- Oncology Unit, IRCCS Foundation Casa Sollievo della Sofferenza, San Giovanni Rotondo; Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, Rome, Italy
| | - E Martinelli
- Medical Oncology Unit, Department of Precision Medicine, 'Luigi Vanvitelli' University of Campania, Naples
| |
Collapse
|
25
|
Shaya J, Kato S, Adashek JJ, Patel H, Fanta PT, Botta GP, Sicklick JK, Kurzrock R. Personalized matched targeted therapy in advanced pancreatic cancer: a pilot cohort analysis. NPJ Genom Med 2023; 8:1. [PMID: 36670111 PMCID: PMC9860045 DOI: 10.1038/s41525-022-00346-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/07/2022] [Indexed: 01/21/2023] Open
Abstract
Despite progress, 2-year pancreatic cancer survival remains dismal. We evaluated a biomarker-driven, combination/N-of-one strategy in 18 patients (advanced/metastatic pancreatic cancer) (from Molecular Tumor Board). Targeted agents administered/patient = 2.5 (median) (range, 1-4); first-line therapy (N = 5); second line, (N = 13). Comparing patients (high versus low degrees of matching) (matching score ≥50% versus <50%; reflecting number of alterations matched to targeted agents divided by number of pathogenic alterations), survival was significantly longer (hazard ratio [HR] 0.24 (95% confidence interval [CI], 0.078-0.76, P = 0.016); clinical benefit rates (CBR) (stable disease ≥6 months/partial/complete response) trended higher (45.5 vs 0.0%, P = 0.10); progression-free survival, HR, 95% CI, 0.36 (0.12-1.10) (p = 0.075). First versus ≥2nd-line therapy had higher CBRs (80.0 vs 7.7%, P = 0.008). No grade 3-4 toxicities occurred. The longest responder achieved partial remission (17.5 months) by co-targeting MEK and CDK4/6 alterations (chemotherapy-free). Therefore, genomically matched targeted agent combinations were active in these advanced pancreatic cancers. Larger prospective trials are warranted.
Collapse
Affiliation(s)
- Justin Shaya
- Division of Hematology and Oncology, Department of Medicine, University of California San Diego Moores Cancer Center, La Jolla, CA, USA
- Center for Personalized Cancer Therapy, University of California San Diego Moores Cancer Center, La Jolla, CA, USA
| | - Shumei Kato
- Division of Hematology and Oncology, Department of Medicine, University of California San Diego Moores Cancer Center, La Jolla, CA, USA.
- Center for Personalized Cancer Therapy, University of California San Diego Moores Cancer Center, La Jolla, CA, USA.
| | - Jacob J Adashek
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at The Johns Hopkins Hospital, Baltimore, MD, USA.
| | - Hitendra Patel
- Division of Hematology and Oncology, Department of Medicine, University of California San Diego Moores Cancer Center, La Jolla, CA, USA
| | - Paul T Fanta
- Division of Hematology and Oncology, Department of Medicine, University of California San Diego Moores Cancer Center, La Jolla, CA, USA
| | - Gregory P Botta
- Division of Hematology and Oncology, Department of Medicine, University of California San Diego Moores Cancer Center, La Jolla, CA, USA
| | - Jason K Sicklick
- Center for Personalized Cancer Therapy, University of California San Diego Moores Cancer Center, La Jolla, CA, USA
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at The Johns Hopkins Hospital, Baltimore, MD, USA
- Department of Surgery, Division of Surgical Oncology, University of California San Diego, UC San Diego Health, San Diego, CA, USA
- Department of Pharmacology, University of California San Diego, UC San Diego Health, San Diego, CA, USA
| | - Razelle Kurzrock
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, USA
- WIN Consortium, Paris, France
- University of Nebraska, Lincoln, NE, USA
| |
Collapse
|
26
|
Yang H, Zhou X, Fu D, Le C, Wang J, Zhou Q, Liu X, Yuan Y, Ding K, Xiao Q. Targeting RAS mutants in malignancies: successes, failures, and reasons for hope. Cancer Commun (Lond) 2023; 43:42-74. [PMID: 36316602 PMCID: PMC9859734 DOI: 10.1002/cac2.12377] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/15/2022] [Accepted: 10/13/2022] [Indexed: 01/22/2023] Open
Abstract
RAS genes are the most frequently mutated oncogenes and play critical roles in the development and progression of malignancies. The mutation, isoform (KRAS, HRAS, and NRAS), position, and type of substitution vary depending on the tissue types. Despite decades of developing RAS-targeted therapies, only small subsets of these inhibitors are clinically effective, such as the allele-specific inhibitors against KRASG12C . Targeting the remaining RAS mutants would require further experimental elucidation of RAS signal transduction, RAS-altered metabolism, and the associated immune microenvironment. This study reviews the mechanisms and efficacy of novel targeted therapies for different RAS mutants, including KRAS allele-specific inhibitors, combination therapies, immunotherapies, and metabolism-associated therapies.
Collapse
Affiliation(s)
- Hang Yang
- Department of Colorectal Surgery and OncologyKey Laboratory of Cancer Prevention and InterventionMinistry of EducationThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310009P. R. China
| | - Xinyi Zhou
- Department of Colorectal Surgery and OncologyKey Laboratory of Cancer Prevention and InterventionMinistry of EducationThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310009P. R. China
| | - Dongliang Fu
- Department of Colorectal Surgery and OncologyKey Laboratory of Cancer Prevention and InterventionMinistry of EducationThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310009P. R. China
| | - Chenqin Le
- Department of Colorectal Surgery and OncologyKey Laboratory of Cancer Prevention and InterventionMinistry of EducationThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310009P. R. China
| | - Jiafeng Wang
- Department of Pharmacology and Department of Gastroenterology of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310058P. R. China
| | - Quan Zhou
- Department of Cell BiologySchool of Basic Medical SciencesZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Xiangrui Liu
- Department of Pharmacology and Department of Gastroenterology of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310058P. R. China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Ying Yuan
- Department of Medical Oncologythe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouZhejiang310058P. R. China
| | - Kefeng Ding
- Department of Colorectal Surgery and OncologyKey Laboratory of Cancer Prevention and InterventionMinistry of EducationThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310009P. R. China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Qian Xiao
- Department of Colorectal Surgery and OncologyKey Laboratory of Cancer Prevention and InterventionMinistry of EducationThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310009P. R. China
| |
Collapse
|
27
|
Seufferlein T, Mayerle J, Böck S, Brunner T, Ettrich TJ, Grenacher L, Gress TM, Hackert T, Heinemann V, Kestler A, Sinn M, Tannapfel A, Wedding U, Uhl W. S3-Leitlinie zum exokrinen Pankreaskarzinom – Langversion 2.0 – Dezember 2021 – AWMF-Registernummer: 032/010OL. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2022; 60:e812-e909. [PMID: 36368658 DOI: 10.1055/a-1856-7346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
| | | | - Stefan Böck
- Medizinische Klinik und Poliklinik III, Universitätsklinikum München, Germany
| | - Thomas Brunner
- Universitätsklinik für Strahlentherapie-Radioonkologie, Medizinische Universität Graz, Austria
| | | | | | - Thomas Mathias Gress
- Klinik für Gastroenterologie und Endokrinologie, Universitätsklinikum Gießen und Marburg, Germany
| | - Thilo Hackert
- Klinik für Allgemein-, Viszeral- und Transplantationschirurgie Universitätsklinikum, Heidelberg, Germany
| | - Volker Heinemann
- Medizinische Klinik und Poliklinik III, Klinikum der Universität München-Campus Grosshadern, München, Germany
| | | | - Marianne Sinn
- Universitätsklinikum Hamburg-Eppendorf Medizinische Klinik und Poliklinik II Onkologie Hämatologie, Hamburg, Germany
| | | | | | - Waldemar Uhl
- Allgemein- und Viszeralchirurgie, St Josef-Hospital, Bochum, Germany
| |
Collapse
|
28
|
Burchett JR, Dailey JM, Kee SA, Pryor DT, Kotha A, Kankaria RA, Straus DB, Ryan JJ. Targeting Mast Cells in Allergic Disease: Current Therapies and Drug Repurposing. Cells 2022; 11:3031. [PMID: 36230993 PMCID: PMC9564111 DOI: 10.3390/cells11193031] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/31/2022] [Accepted: 09/20/2022] [Indexed: 11/22/2022] Open
Abstract
The incidence of allergic disease has grown tremendously in the past three generations. While current treatments are effective for some, there is considerable unmet need. Mast cells are critical effectors of allergic inflammation. Their secreted mediators and the receptors for these mediators have long been the target of allergy therapy. Recent drugs have moved a step earlier in mast cell activation, blocking IgE, IL-4, and IL-13 interactions with their receptors. In this review, we summarize the latest therapies targeting mast cells as well as new drugs in clinical trials. In addition, we offer support for repurposing FDA-approved drugs to target mast cells in new ways. With a multitude of highly selective drugs available for cancer, autoimmunity, and metabolic disorders, drug repurposing offers optimism for the future of allergy therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - John J. Ryan
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
29
|
Avery TY, Köhler N, Zeiser R, Brummer T, Ruess DA. Onco-immunomodulatory properties of pharmacological interference with RAS-RAF-MEK-ERK pathway hyperactivation. Front Oncol 2022; 12:931774. [PMID: 35965494 PMCID: PMC9363660 DOI: 10.3389/fonc.2022.931774] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/30/2022] [Indexed: 12/25/2022] Open
Abstract
Hyperactivation of the RAS-RAF-MEK-ERK cascade - a mitogen-activated protein kinase pathway – has a well-known association with oncogenesis of leading tumor entities, including non-small cell lung cancer, colorectal carcinoma, pancreatic ductal adenocarcinoma, and malignant melanoma. Increasing evidence shows that genetic alterations leading to RAS-RAF-MEK-ERK pathway hyperactivation mediate contact- and soluble-dependent crosstalk between tumor, tumor microenvironment (TME) and the immune system resulting in immune escape mechanisms and establishment of a tumor-sustaining environment. Consequently, pharmacological interruption of this pathway not only leads to tumor-cell intrinsic disruptive effects but also modification of the TME and anti-tumor immunomodulation. At the same time, the importance of ERK signaling in immune cell physiology and potentiation of anti-tumor immune responses through ERK signaling inhibition within immune cell subsets has received growing appreciation. Specifically, a strong case was made for targeted MEK inhibition due to promising associated immune cell intrinsic modulatory effects. However, the successful transition of therapeutic agents interrupting RAS-RAF-MEK-ERK hyperactivation is still being hampered by significant limitations regarding durable efficacy, therapy resistance and toxicity. We here collate and summarize the multifaceted role of RAS-RAF-MEK-ERK signaling in physiology and oncoimmunology and outline the rationale and concepts for exploitation of immunomodulatory properties of RAS-RAF-MEK-ERK inhibition while accentuating the role of MEK inhibition in combinatorial and intermittent anticancer therapy. Furthermore, we point out the extensive scientific efforts dedicated to overcoming the challenges encountered during the clinical transition of various therapeutic agents in the search for the most effective and safe patient- and tumor-tailored treatment approach.
Collapse
Affiliation(s)
- Thomas Yul Avery
- Department of General and Visceral Surgery, Center of Surgery, Medical Center University of Freiburg, Freiburg, Germany
- *Correspondence: Thomas Yul Avery, ; Dietrich Alexander Ruess,
| | - Natalie Köhler
- Department of Medicine I - Medical Center, Medical Center University of Freiburg, Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Robert Zeiser
- Department of Medicine I - Medical Center, Medical Center University of Freiburg, Freiburg, Germany
- German Cancer Consortium Deutsches Konsortium Translationale Krebsforschung (DKTK), partner site Freiburg, German Cancer Research Center Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Tilman Brummer
- German Cancer Consortium Deutsches Konsortium Translationale Krebsforschung (DKTK), partner site Freiburg, German Cancer Research Center Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
- Institute of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Comprehensive Cancer Center Freiburg (CCCF), Faculty of Medicine, Medical Center University of Freiburg, Freiburg, Germany
| | - Dietrich Alexander Ruess
- Department of General and Visceral Surgery, Center of Surgery, Medical Center University of Freiburg, Freiburg, Germany
- German Cancer Consortium Deutsches Konsortium Translationale Krebsforschung (DKTK), partner site Freiburg, German Cancer Research Center Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
- *Correspondence: Thomas Yul Avery, ; Dietrich Alexander Ruess,
| |
Collapse
|
30
|
Odeniyide P, Yohe ME, Pollard K, Vaseva AV, Calizo A, Zhang L, Rodriguez FJ, Gross JM, Allen AN, Wan X, Somwar R, Schreck KC, Kessler L, Wang J, Pratilas CA. Targeting farnesylation as a novel therapeutic approach in HRAS-mutant rhabdomyosarcoma. Oncogene 2022; 41:2973-2983. [PMID: 35459782 PMCID: PMC9122815 DOI: 10.1038/s41388-022-02305-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/25/2022] [Accepted: 03/30/2022] [Indexed: 01/11/2023]
Abstract
Activating RAS mutations are found in a subset of fusion-negative rhabdomyosarcoma (RMS), and therapeutic strategies to directly target RAS in these tumors have been investigated, without clinical success to date. A potential strategy to inhibit oncogenic RAS activity is the disruption of RAS prenylation, an obligate step for RAS membrane localization and effector pathway signaling, through inhibition of farnesyltransferase (FTase). Of the major RAS family members, HRAS is uniquely dependent on FTase for prenylation, whereas NRAS and KRAS can utilize geranylgeranyl transferase as a bypass prenylation mechanism. Tumors driven by oncogenic HRAS may therefore be uniquely sensitive to FTase inhibition. To investigate the mutation-specific effects of FTase inhibition in RMS we utilized tipifarnib, a potent and selective FTase inhibitor, in in vitro and in vivo models of RMS genomically characterized for RAS mutation status. Tipifarnib reduced HRAS processing, and plasma membrane localization leading to decreased GTP-bound HRAS and decreased signaling through RAS effector pathways. In HRAS-mutant cell lines, tipifarnib reduced two-dimensional and three-dimensional cell growth, and in vivo treatment with tipifarnib resulted in tumor growth inhibition exclusively in HRAS-mutant RMS xenografts. Our data suggest that small molecule inhibition of FTase is active in HRAS-driven RMS and may represent an effective therapeutic strategy for a genomically-defined subset of patients with RMS.
Collapse
Affiliation(s)
- Patience Odeniyide
- Division of Pediatric Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marielle E Yohe
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kai Pollard
- Division of Pediatric Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Angelina V Vaseva
- The Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Ana Calizo
- Division of Pediatric Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lindy Zhang
- Division of Pediatric Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fausto J Rodriguez
- Department of Laboratory Medicine and Pathology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - John M Gross
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Amy N Allen
- Division of Pediatric Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xiaolin Wan
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Romel Somwar
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Karisa C Schreck
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Jiawan Wang
- Division of Pediatric Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christine A Pratilas
- Division of Pediatric Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
31
|
Negri F, Bottarelli L, de’Angelis GL, Gnetti L. KRAS: A Druggable Target in Colon Cancer Patients. Int J Mol Sci 2022; 23:4120. [PMID: 35456940 PMCID: PMC9027058 DOI: 10.3390/ijms23084120] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 12/18/2022] Open
Abstract
Mutations in KRAS are among the most frequent aberrations in cancer, including colon cancer. KRAS direct targeting is daunting due to KRAS protein resistance to small molecule inhibition. Moreover, its elevated affinity to cellular guanosine triphosphate (GTP) has made the design of specific drugs challenging. Indeed, KRAS was considered 'undruggable'. KRASG12C is the most commonly mutated variant of KRAS in non-small cell lung cancer. Currently, the achievements obtained with covalent inhibitors of this variant have given the possibility to assess the best therapeutic approach to KRAS-driven tumors. Mutation-related biochemical assets and the tissue of origin are expected to influence responses to treatment. Further attempts to obtain mutant-specific KRAS (KRASG12C) switch-II covalent inhibitors are ongoing and the results are promising. Drugs targeted to block KRAS effector pathways could be combined with direct KRAS inhibitors, immunotherapy or T cell-targeting approaches in KRAS-mutant tumors. The development of valuable combination regimens will be essential against potential mechanisms of resistance that may arise during treatment.
Collapse
Affiliation(s)
- Francesca Negri
- Gastroenterology and Endoscopy Unit, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy;
| | - Lorena Bottarelli
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy;
| | - Gian Luigi de’Angelis
- Gastroenterology and Endoscopy Unit, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy;
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy;
| | - Letizia Gnetti
- Pathology Unit, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy;
| |
Collapse
|
32
|
Osei-Bordom DC, Sachdeva G, Christou N. Liquid Biopsy as a Prognostic and Theranostic Tool for the Management of Pancreatic Ductal Adenocarcinoma. Front Med (Lausanne) 2022; 8:788869. [PMID: 35096878 PMCID: PMC8795626 DOI: 10.3389/fmed.2021.788869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 12/02/2021] [Indexed: 12/24/2022] Open
Abstract
Pancreatic ductal adenocarcinomas (PDAC) represent one of the deadliest cancers worldwide. Survival is still low due to diagnosis at an advanced stage and resistance to treatment. Herein, we review the main types of liquid biopsy able to help in both prognosis and adaptation of treatments.
Collapse
Affiliation(s)
- Daniel C Osei-Bordom
- Department of General Surgery, Queen Elizabeth Hospital, University Hospitals Birmingham, Birmingham, United Kingdom
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Centre for Liver and Gastroenterology Research, University of Birmingham, Birmingham, United Kingdom
| | - Gagandeep Sachdeva
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Niki Christou
- Department of General Surgery, Queen Elizabeth Hospital, University Hospitals Birmingham, Birmingham, United Kingdom
- Department of General Surgery, University Hospital of Limoges, Limoges, France
- EA3842 CAPTuR Laboratory "Cell Activation Control, Tumor Progression and Therapeutic Resistance", Faculty of Medicine, Limoges, France
| |
Collapse
|
33
|
Takumoto Y, Sasahara Y, Narimatsu H, Akazawa M. Comparative Outcomes of First-Line Chemotherapy for Metastatic Pancreatic Cancer Among the Regimens Used in Japan: A Systematic Review and Network Meta-analysis. JAMA Netw Open 2022; 5:e2145515. [PMID: 35099549 PMCID: PMC8804927 DOI: 10.1001/jamanetworkopen.2021.45515] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
IMPORTANCE Various first-line chemotherapy treatment regimens for patients with metastatic pancreatic cancer have been approved in Japan, including gemcitabine (GEM); fluorouracil, leucovorin, irinotecan, and oxaliplatin combination (FOLFIRINOX); GEM plus albumin-bound paclitaxel (GEM+NPTX), and S-1 (tegafur + gimeracil + oteracil). However, direct comparisons of these chemotherapy regimens are limited. OBJECTIVE To assess the short-term and long-term outcomes associated with first-line chemotherapy regimens for metastatic pancreatic cancer compared with chemotherapy regimens recommended in Japanese guidelines. DATA SOURCES In this systematic review and network meta-analysis, the bibliographic databases PubMed, Cochrane Library, and Web of Science, as well as medical journals published between January 1, 2002, and December 31, 2018, were searched for clinical trials comparing chemotherapy regimens. STUDY SELECTION Randomized 2-arm clinical trials evaluating first-line chemotherapy for advanced or metastatic pancreatic cancer were included. DATA EXTRACTION AND SYNTHESIS The Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) Extension Statement for Reporting of Systematic Reviews Incorporating Network Meta-analyses of Health Care Interventions was followed for data abstractions. Data were pooled using a random-effects model. The SIGN 50 Quality Assessment Instrument was used to assess the risk of bias and overall study quality of the selected trials. MAIN OUTCOMES AND MEASURES The primary end point was overall survival (OS), and the secondary end point was progression-free survival (PFS) compared with GEM for first-line chemotherapy for metastatic pancreatic cancer. The Kaplan-Meier curve of GEM from the literature and the estimated hazard ratios (HRs) were used to model the long-term associations to calculate the area under the curve (AUC) (person-months) for OS and PFS of each chemotherapy. Sensitivity analyses with multiple functional models were conducted to confirm the long-term estimations. RESULTS A total of 22 regimens (25 studies) for OS and a total of 18 regimens (21 studies) for PFS were identified from literature. The total number of participants was 10 186, with 5856 male (57.5%) and 4330 female (42.5%). The FOLFIRINOX and GEM+NPTX regimens were associated with reduction in the risk of death, with an HR of 0.57 (95% CI, 0.41-0.79) and 0.72 (95% CI, 0.55-0.95) compared with GEM, respectively. The curve estimation also showed that FOLFIRINOX had the largest AUC for survival at 15.49 person-months (range, 13.84-15.51 person-months), followed by GEM+NPTX with 12.36 person-months (range, 10.98-12.59 person-months), GEM+ERLO with 10.84 person-months (range, 9.66-11.23 person-months), S-1 with 8.44 person-months (range, 8.26-9.74 person-months), and GEM with 8.10 person-months (range, 7.93-9.38 person-months). CONCLUSIONS AND RELEVANCE The results of this network meta-analysis support the relative short-term and long-term outcomes associated with first-line chemotherapy for metastatic pancreatic cancer used clinically in Japan.
Collapse
Affiliation(s)
- Yuki Takumoto
- Department of Public Health and Epidemiology, Meiji Pharmaceutical University, Tokyo, Japan
- Center for Outcomes Research and Economic Evaluation for Health, National Institute of Public Health, Saitama, Japan
| | - Yuriko Sasahara
- Department of Clinical Oncology, Yamagata Prefectural Central Hospital, Yamagata, Japan
| | - Hiroto Narimatsu
- Department of Genetic Medicine, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
- Cancer Prevention and Cancer Control Division, Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa, Japan
- Graduate School of Health Innovation, Kanagawa University of Human Services, Kawasaki, Kanagawa, Japan
| | - Manabu Akazawa
- Department of Public Health and Epidemiology, Meiji Pharmaceutical University, Tokyo, Japan
| |
Collapse
|
34
|
Rajpurohit T, Bhattacharya S. Moving Towards Dawn: KRas Signaling and Treatment in Pancreatic Ductal Adenocarcinoma. Curr Mol Pharmacol 2022; 15:904-928. [PMID: 35088684 DOI: 10.2174/1874467215666220128161647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/20/2021] [Accepted: 11/17/2021] [Indexed: 12/24/2022]
Abstract
"Pancreatic ductal adenocarcinoma (PDAC)" is robust, nearly clueless, and all-around deadly among all tumors. Below 10 %, the general 5-year endurance period has remained adamantly unaltered in the last 30 years, regardless of enormous clinical and therapeutic endeavors. The yearly number of deaths is more than the number of recently analyzed cases. Not a classic one, but "Carbohydrate Antigen CA19- 9" remains the prevailing tool for diagnosis. MicroRNAs and non-invasive techniques are now incorporated for the effective prognosis of PDAC than just CA19-9. Mutated "Rat sarcoma virus Ras" conformation "V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog KRas" is 95 % accountable for PDAC, and its active (GTP-bound) formation activates signaling cascade comprising "Rapidly accelerated fibrosarcoma Raf"/"Mitogen-activated protein kinase MEK"/ "Extracellular signal-regulated kinase ERK" with "Phosphoinositide 3-kinase PI3K"/ "protein kinase B Akt"/ "mammalian target of rapamycin mTOR" pathways. KRas has acquired the label of 'undruggable' since the crosstalk in the nexus of pathways compensates for Raf and PI3K signaling cascade blocking. It is arduous to totally regulate KRascoordinated PDAC with traditional medicaments like "gemcitabine GEM" plus nabpaclitaxel/ FOLFIRINOX. For long-haul accomplishments aiming at KRas, future endeavors should be directed to combinatorial methodologies to adequately block KRas pathways at different standpoints. Currently they are contributing to healing PDAC. In this review article, we outline the function of KRas in carcinogenesis in PDAC, its signaling cascade, former techniques utilized in hindering Kras, current and future possibilities for targeting Kras.
Collapse
Affiliation(s)
- Tarun Rajpurohit
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| |
Collapse
|
35
|
Sankarasubramanian S, Pfohl U, Regenbrecht CRA, Reinhard C, Wedeken L. Context Matters-Why We Need to Change From a One Size Fits all Approach to Made-to-Measure Therapies for Individual Patients With Pancreatic Cancer. Front Cell Dev Biol 2021; 9:760705. [PMID: 34805167 PMCID: PMC8599957 DOI: 10.3389/fcell.2021.760705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer is one of the deadliest cancers and remains a major unsolved health problem. While pancreatic ductal adenocarcinoma (PDAC) is associated with driver mutations in only four major genes (KRAS, TP53, SMAD4, and CDKN2A), every tumor differs in its molecular landscape, histology, and prognosis. It is crucial to understand and consider these differences to be able to tailor treatment regimens specific to the vulnerabilities of the individual tumor to enhance patient outcome. This review focuses on the heterogeneity of pancreatic tumor cells and how in addition to genetic alterations, the subsequent dysregulation of multiple signaling cascades at various levels, epigenetic and metabolic factors contribute to the oncogenesis of PDAC and compensate for each other in driving cancer progression if one is tackled by a therapeutic approach. This implicates that besides the need for new combinatorial therapies for PDAC, a personalized approach for treating this highly complex cancer is required. A strategy that combines both a target-based and phenotypic approach to identify an effective treatment, like Reverse Clinical Engineering® using patient-derived organoids, is discussed as a promising way forward in the field of personalized medicine to tackle this deadly disease.
Collapse
Affiliation(s)
| | - Ulrike Pfohl
- CELLphenomics GmbH, Berlin, Germany
- ASC Oncology GmbH, Berlin, Germany
- Institute for Molecular Bio Science, Goethe University Frankfurt Am Main, Frankfurt, Germany
| | - Christian R. A. Regenbrecht
- CELLphenomics GmbH, Berlin, Germany
- ASC Oncology GmbH, Berlin, Germany
- Institute for Pathology, Universitätsklinikum Göttingen, Göttingen, Germany
| | | | - Lena Wedeken
- CELLphenomics GmbH, Berlin, Germany
- ASC Oncology GmbH, Berlin, Germany
| |
Collapse
|
36
|
Hu HF, Ye Z, Qin Y, Xu XW, Yu XJ, Zhuo QF, Ji SR. Mutations in key driver genes of pancreatic cancer: molecularly targeted therapies and other clinical implications. Acta Pharmacol Sin 2021; 42:1725-1741. [PMID: 33574569 PMCID: PMC8563973 DOI: 10.1038/s41401-020-00584-2] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/16/2020] [Indexed: 02/08/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers, with a minimal difference between its incidence rate and mortality rate. Advances in oncology over the past several decades have dramatically improved the overall survival of patients with multiple cancers due to the implementation of new techniques in early diagnosis, therapeutic drugs, and personalized therapy. However, pancreatic cancers remain recalcitrant, with a 5-year relative survival rate of <9%. The lack of measures for early diagnosis, strong resistance to chemotherapy, ineffective adjuvant chemotherapy and the unavailability of molecularly targeted therapy are responsible for the high mortality rate of this notorious disease. Genetically, PDAC progresses as a complex result of the activation of oncogenes and inactivation of tumor suppressors. Although next-generation sequencing has identified numerous new genetic alterations, their clinical implications remain unknown. Classically, oncogenic mutations in genes such as KRAS and loss-of-function mutations in tumor suppressors, such as TP53, CDNK2A, DPC4/SMAD4, and BRCA2, are frequently observed in PDAC. Currently, research on these key driver genes is still the main focus. Therefore, studies assessing the functions of these genes and their potential clinical implications are of paramount importance. In this review, we summarize the biological function of key driver genes and pharmaceutical targets in PDAC. In addition, we conclude the results of molecularly targeted therapies in clinical trials and discuss how to utilize these genetic alterations in further clinical practice.
Collapse
Affiliation(s)
- Hai-Feng Hu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Zeng Ye
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Yi Qin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Xiao-Wu Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Xian-Jun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Qi-Feng Zhuo
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Shun-Rong Ji
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
37
|
Kessler L, Malik S, Leoni M, Burrows F. Potential of Farnesyl Transferase Inhibitors in Combination Regimens in Squamous Cell Carcinomas. Cancers (Basel) 2021; 13:cancers13215310. [PMID: 34771475 PMCID: PMC8582567 DOI: 10.3390/cancers13215310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/14/2021] [Accepted: 10/19/2021] [Indexed: 11/16/2022] Open
Abstract
Current therapies for recurrent and metastatic SCC are associated with poor outcomes, and options for later lines of treatment are limited. Insights into potential therapeutic targets, as well as mechanisms of resistance to available therapies, have begun to be elucidated, creating the basis for exploration of combination approaches to drive better patient outcomes. Tipifarnib, a farnesyl transferase inhibitor (FTI), is a small molecule drug that has demonstrated encouraging clinical activity in a genetically-defined subset of head and neck squamous cell carcinoma (HNSCC)-specifically, tumors that express a mutation in the HRAS protooncogene. More recently, bioinformatic analyses and results from patient-derived xenograft modeling indicate that HRAS pathway dependency may extend to a broader subpopulation of SCCs beyond HRAS mutants in the context of combination with agents such as cisplatin, cetuximab, or alpelisib. In addition, tipifarnib can also inactivate additional farnesylated proteins implicated in resistance to approved therapies, including immunotherapies, through a variety of distinct mechanisms, suggesting that tipifarnib could serve as an anchor for combination regimens in SCCs and other tumor types.
Collapse
|
38
|
Tang D, Kroemer G, Kang R. Oncogenic KRAS blockade therapy: renewed enthusiasm and persistent challenges. Mol Cancer 2021; 20:128. [PMID: 34607583 PMCID: PMC8489073 DOI: 10.1186/s12943-021-01422-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/08/2021] [Indexed: 02/08/2023] Open
Abstract
Across a broad range of human cancers, gain-of-function mutations in RAS genes (HRAS, NRAS, and KRAS) lead to constitutive activity of oncoproteins responsible for tumorigenesis and cancer progression. The targeting of RAS with drugs is challenging because RAS lacks classic and tractable drug binding sites. Over the past 30 years, this perception has led to the pursuit of indirect routes for targeting RAS expression, processing, upstream regulators, or downstream effectors. After the discovery that the KRAS-G12C variant contains a druggable pocket below the switch-II loop region, it has become possible to design irreversible covalent inhibitors for the variant with improved potency, selectivity and bioavailability. Two such inhibitors, sotorasib (AMG 510) and adagrasib (MRTX849), were recently evaluated in phase I-III trials for the treatment of non-small cell lung cancer with KRAS-G12C mutations, heralding a new era of precision oncology. In this review, we outline the mutations and functions of KRAS in human tumors and then analyze indirect and direct approaches to shut down the oncogenic KRAS network. Specifically, we discuss the mechanistic principles, clinical features, and strategies for overcoming primary or secondary resistance to KRAS-G12C blockade.
Collapse
Affiliation(s)
- Daolin Tang
- The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China. .,Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France. .,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France. .,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
39
|
Bannoura SF, Uddin MH, Nagasaka M, Fazili F, Al-Hallak MN, Philip PA, El-Rayes B, Azmi AS. Targeting KRAS in pancreatic cancer: new drugs on the horizon. Cancer Metastasis Rev 2021; 40:819-835. [PMID: 34499267 PMCID: PMC8556325 DOI: 10.1007/s10555-021-09990-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 08/27/2021] [Indexed: 02/07/2023]
Abstract
Kirsten Rat Sarcoma (KRAS) is a master oncogene involved in cellular proliferation and survival and is the most commonly mutated oncogene in all cancers. Activating KRAS mutations are present in over 90% of pancreatic ductal adenocarcinoma (PDAC) cases and are implicated in tumor initiation and progression. Although KRAS is a critical oncogene, and therefore an important therapeutic target, its therapeutic inhibition has been very challenging, and only recently specific mutant KRAS inhibitors have been discovered. In this review, we discuss the activation of KRAS signaling and the role of mutant KRAS in PDAC development. KRAS has long been considered undruggable, and many drug discovery efforts which focused on indirect targeting have been unsuccessful. We discuss the various efforts for therapeutic targeting of KRAS. Further, we explore the reasons behind these obstacles, novel successful approaches to target mutant KRAS including G12C mutation as well as the mechanisms of resistance.
Collapse
Affiliation(s)
- Sahar F Bannoura
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Md Hafiz Uddin
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Misako Nagasaka
- Division of Hematology/Oncology, Department of Medicine, UCI Health, Orange, CA, 92868, USA
| | - Farzeen Fazili
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Mohammed Najeeb Al-Hallak
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Philip A Philip
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Bassel El-Rayes
- Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Asfar S Azmi
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
40
|
Chen K, Zhang Y, Qian L, Wang P. Emerging strategies to target RAS signaling in human cancer therapy. J Hematol Oncol 2021; 14:116. [PMID: 34301278 PMCID: PMC8299671 DOI: 10.1186/s13045-021-01127-w] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023] Open
Abstract
RAS mutations (HRAS, NRAS, and KRAS) are among the most common oncogenes, and around 19% of patients with cancer harbor RAS mutations. Cells harboring RAS mutations tend to undergo malignant transformation and exhibit malignant phenotypes. The mutational status of RAS correlates with the clinicopathological features of patients, such as mucinous type and poor differentiation, as well as response to anti-EGFR therapies in certain types of human cancers. Although RAS protein had been considered as a potential target for tumors with RAS mutations, it was once referred to as a undruggable target due to the consecutive failure in the discovery of RAS protein inhibitors. However, recent studies on the structure, signaling, and function of RAS have shed light on the development of RAS-targeting drugs, especially with the approval of Lumakras (sotorasib, AMG510) in treatment of KRASG12C-mutant NSCLC patients. Therefore, here we fully review RAS mutations in human cancer and especially focus on emerging strategies that have been recently developed for RAS-targeting therapy.
Collapse
Affiliation(s)
- Kun Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yalei Zhang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ling Qian
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Peng Wang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
41
|
Di Federico A, Tateo V, Parisi C, Formica F, Carloni R, Frega G, Rizzo A, Ricci D, Di Marco M, Palloni A, Brandi G. Hacking Pancreatic Cancer: Present and Future of Personalized Medicine. Pharmaceuticals (Basel) 2021; 14:677. [PMID: 34358103 PMCID: PMC8308563 DOI: 10.3390/ph14070677] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 12/20/2022] Open
Abstract
Pancreatic cancer (PC) is a recalcitrant disease characterized by high incidence and poor prognosis. The extremely complex genomic landscape of PC has a deep influence on cultivating a tumor microenvironment, resulting in the promotion of tumor growth, drug resistance, and immune escape mechanisms. Despite outstanding progress in personalized medicine achieved for many types of cancer, chemotherapy still represents the mainstay of treatment for PC. Olaparib was the first agent to demonstrate a significant benefit in a biomarker-selected population, opening the doors for a personalized approach. Despite the failure of a large number of studies testing targeted agents or immunotherapy to demonstrate benefits over standard chemotherapy regimens, some interesting agents, alone or in combination with other drugs, have achieved promising results. A wide spectrum of therapeutic strategies, including immune-checkpoint inhibitors tyrosine kinase inhibitors and agents targeting metabolic pathways or the tumor microenvironment, is currently under investigation. In this review, we aim to provide a comprehensive overview of the current landscape and future directions of personalized medicine for patients affected by PC.
Collapse
Affiliation(s)
- Alessandro Di Federico
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.D.F.); (V.T.); (C.P.); (F.F.); (R.C.); (G.F.); (A.R.); (D.R.); (M.D.M.); (G.B.)
- Department of Specialized, Experimental and Diagnostic Medicine, University of Bologna, Via Giuseppe Massarenti, 9, 40138 Bologna, Italy
| | - Valentina Tateo
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.D.F.); (V.T.); (C.P.); (F.F.); (R.C.); (G.F.); (A.R.); (D.R.); (M.D.M.); (G.B.)
- Department of Specialized, Experimental and Diagnostic Medicine, University of Bologna, Via Giuseppe Massarenti, 9, 40138 Bologna, Italy
| | - Claudia Parisi
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.D.F.); (V.T.); (C.P.); (F.F.); (R.C.); (G.F.); (A.R.); (D.R.); (M.D.M.); (G.B.)
- Department of Specialized, Experimental and Diagnostic Medicine, University of Bologna, Via Giuseppe Massarenti, 9, 40138 Bologna, Italy
| | - Francesca Formica
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.D.F.); (V.T.); (C.P.); (F.F.); (R.C.); (G.F.); (A.R.); (D.R.); (M.D.M.); (G.B.)
- Department of Specialized, Experimental and Diagnostic Medicine, University of Bologna, Via Giuseppe Massarenti, 9, 40138 Bologna, Italy
| | - Riccardo Carloni
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.D.F.); (V.T.); (C.P.); (F.F.); (R.C.); (G.F.); (A.R.); (D.R.); (M.D.M.); (G.B.)
- Department of Specialized, Experimental and Diagnostic Medicine, University of Bologna, Via Giuseppe Massarenti, 9, 40138 Bologna, Italy
| | - Giorgio Frega
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.D.F.); (V.T.); (C.P.); (F.F.); (R.C.); (G.F.); (A.R.); (D.R.); (M.D.M.); (G.B.)
- Department of Specialized, Experimental and Diagnostic Medicine, University of Bologna, Via Giuseppe Massarenti, 9, 40138 Bologna, Italy
| | - Alessandro Rizzo
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.D.F.); (V.T.); (C.P.); (F.F.); (R.C.); (G.F.); (A.R.); (D.R.); (M.D.M.); (G.B.)
- Department of Specialized, Experimental and Diagnostic Medicine, University of Bologna, Via Giuseppe Massarenti, 9, 40138 Bologna, Italy
| | - Dalia Ricci
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.D.F.); (V.T.); (C.P.); (F.F.); (R.C.); (G.F.); (A.R.); (D.R.); (M.D.M.); (G.B.)
- Department of Specialized, Experimental and Diagnostic Medicine, University of Bologna, Via Giuseppe Massarenti, 9, 40138 Bologna, Italy
| | - Mariacristina Di Marco
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.D.F.); (V.T.); (C.P.); (F.F.); (R.C.); (G.F.); (A.R.); (D.R.); (M.D.M.); (G.B.)
- Department of Specialized, Experimental and Diagnostic Medicine, University of Bologna, Via Giuseppe Massarenti, 9, 40138 Bologna, Italy
| | - Andrea Palloni
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.D.F.); (V.T.); (C.P.); (F.F.); (R.C.); (G.F.); (A.R.); (D.R.); (M.D.M.); (G.B.)
- Department of Specialized, Experimental and Diagnostic Medicine, University of Bologna, Via Giuseppe Massarenti, 9, 40138 Bologna, Italy
| | - Giovanni Brandi
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.D.F.); (V.T.); (C.P.); (F.F.); (R.C.); (G.F.); (A.R.); (D.R.); (M.D.M.); (G.B.)
- Department of Specialized, Experimental and Diagnostic Medicine, University of Bologna, Via Giuseppe Massarenti, 9, 40138 Bologna, Italy
| |
Collapse
|
42
|
Mohindroo C, Hasanov M, Rogers JE, Dong W, Prakash LR, Baydogan S, Mizrahi JD, Overman MJ, Varadhachary GR, Wolff RA, Javle MM, Fogelman DR, Lotze MT, Kim MP, Katz MHG, Pant S, Tzeng CWD, McAllister F. Antibiotic use influences outcomes in advanced pancreatic adenocarcinoma patients. Cancer Med 2021; 10:5041-5050. [PMID: 34250759 PMCID: PMC8335807 DOI: 10.1002/cam4.3870] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/14/2020] [Accepted: 12/31/2020] [Indexed: 12/21/2022] Open
Abstract
Recent studies defined a potentially important role of the microbiome in modulating pancreatic ductal adenocarcinoma (PDAC) and responses to therapies. We hypothesized that antibiotic usage may predict outcomes in patients with PDAC. We retrospectively analyzed clinical data of patients with resectable or metastatic PDAC seen at MD Anderson Cancer from 2003 to 2017. Demographic, chemotherapy regimen and antibiotic use, duration, type, and reason for indication were recorded. A total of 580 patients with PDAC were studied, 342 resected and 238 metastatic patients, selected retrospectively from our database. Antibiotic use, for longer than 48 hrs, was detected in 209 resected patients (61%) and 195 metastatic ones (62%). On resectable patients, we did not find differences in overall survival (OS) or progression‐free survival (PFS), based on antibiotic intake. However, in the metastatic cohort, antibiotic consumption was associated with a significantly longer OS (13.3 months vs. 9.0 months, HR 0.48, 95% CI 0.34–0.7, p = 0.0001) and PFS (4.4 months vs. 2 months, HR 0.48, 95% CI 0.34–0.68, p = <0.0001). In multivariate analysis, the impact of ATB remained significant for PFS (HR 0.59, p = 0.005) and borderline statistically significant for OS (HR 0.69, p = 0.06). When we analyzed by chemotherapy regimen, we found that patients who received gemcitabine‐based chemotherapy as first‐line therapy (n = 118) had significantly prolonged OS (HR 0.4, p 0.0013) and PFS (HR 0.55, p 0.02) if they received antibiotics, while those receiving 5FU‐based chemotherapy (n = 98) had only prolonged PFS (HR 0.54, p = 0.03). Antibiotics‐associated modulation of the microbiome is associated with better outcomes in patients with metastatic PDAC. We have analyzed the effect of antibiotics’ intake on two cohorts of patients with pancreatic adenocarcinoma, resectable, and metastatic. We have found that on the metastatic cohort, antibiotics use was significantly associated with better outcomes, particularly, on patients that received gemcitabine based‐chemotherapy as the first line.
Collapse
Affiliation(s)
- Chirayu Mohindroo
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Merve Hasanov
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jane E Rogers
- Pharmacy Clinical Programs, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Wenli Dong
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Laura R Prakash
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Seyda Baydogan
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jonathan D Mizrahi
- Department of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Michael J Overman
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Gauri R Varadhachary
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Robert A Wolff
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Milind M Javle
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - David R Fogelman
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Michael T Lotze
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Michael P Kim
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Matthew H G Katz
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Shubham Pant
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Investigation Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ching-Wei D Tzeng
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Florencia McAllister
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
43
|
Heinrich MA, Mostafa AMRH, Morton JP, Hawinkels LJAC, Prakash J. Translating complexity and heterogeneity of pancreatic tumor: 3D in vitro to in vivo models. Adv Drug Deliv Rev 2021; 174:265-293. [PMID: 33895214 DOI: 10.1016/j.addr.2021.04.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 02/08/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an extremely aggressive type of cancer with an overall survival rate of less than 7-8%, emphasizing the need for novel effective therapeutics against PDAC. However only a fraction of therapeutics which seemed promising in the laboratory environment will eventually reach the clinic. One of the main reasons behind this low success rate is the complex tumor microenvironment (TME) of PDAC, a highly fibrotic and dense stroma surrounding tumor cells, which supports tumor progression as well as increases the resistance against the treatment. In particular, the growing understanding of the PDAC TME points out a different challenge in the development of efficient therapeutics - a lack of biologically relevant in vitro and in vivo models that resemble the complexity and heterogeneity of PDAC observed in patients. The purpose and scope of this review is to provide an overview of the recent developments in different in vitro and in vivo models, which aim to recapitulate the complexity of PDAC in a laboratory environment, as well to describe how 3D in vitro models can be integrated into drug development pipelines that are already including sophisticated in vivo models. Hereby a special focus will be given on the complexity of in vivo models and the challenges in vitro models face to reach the same levels of complexity in a controllable manner. First, a brief introduction of novel developments in two dimensional (2D) models and ex vivo models is provided. Next, recent developments in three dimensional (3D) in vitro models are described ranging from spheroids, organoids, scaffold models, bioprinted models to organ-on-chip models including a discussion on advantages and limitations for each model. Furthermore, we will provide a detailed overview on the current PDAC in vivo models including chemically-induced models, syngeneic and xenogeneic models, highlighting hetero- and orthotopic, patient-derived tissues (PDX) models, and genetically engineered mouse models. Finally, we will provide a discussion on overall limitations of both, in vitro and in vivo models, and discuss necessary steps to overcome these limitations to reach an efficient drug development pipeline, as well as discuss possibilities to include novel in silico models in the process.
Collapse
Affiliation(s)
- Marcel A Heinrich
- Department of Biomaterials Science and Technology, Section Targeted Therapeutics, Technical Medical Centre, University of Twente, 7500AE Enschede, the Netherlands
| | - Ahmed M R H Mostafa
- Department of Biomaterials Science and Technology, Section Targeted Therapeutics, Technical Medical Centre, University of Twente, 7500AE Enschede, the Netherlands
| | - Jennifer P Morton
- Cancer Research UK, Beatson Institute, Garscube Estate, Switchback Rd, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Rd, Glasgow G61 1QH, UK
| | - Lukas J A C Hawinkels
- Department of Gastroenterology-Hepatology, Leiden University Medical Centre, PO-box 9600, 2300 RC Leiden, the Netherlands
| | - Jai Prakash
- Department of Biomaterials Science and Technology, Section Targeted Therapeutics, Technical Medical Centre, University of Twente, 7500AE Enschede, the Netherlands.
| |
Collapse
|
44
|
Colloca G. Performance status as prognostic factor in phase III trials of first-line chemotherapy of unresectable or metastatic pancreatic cancer: A trial-level meta-analysis. Asia Pac J Clin Oncol 2021; 18:232-239. [PMID: 34161667 DOI: 10.1111/ajco.13598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 03/21/2021] [Indexed: 12/25/2022]
Abstract
For patients with unresectable or metastatic pancreatic adenocarcinoma (mPDAC), there are no standardized prognostic and predictive factors beyond performance status (PS). A poor PS, as defined by Eastern Cooperative Oncology Group (ECOG) score of 2 or more, has been related with a detrimental effect of chemotherapy. Therefore, even more trials enrolled patients with good PS. The current analysis aims to evaluate the results of PS as a prognostic factor in phase III trials of patients with mPDAC receiving first-line chemotherapy. A literature search on two databases, from 2000 to 2019, and a further selection of clinical trials were performed by predefined criteria. Twelve phase III studies have been included in the analysis: the trials, enrolling 5619 patients, confirmed the worse prognosis of patients with higher ECOG PS scores (hazard ratio [HR] = 1.45; 95% confidence interval [CI], 1.21-1.74; p-value < 0.001), and a similar trend was evident for patients with an ECOG PS 1 versus 0 (HR = 1.61; 95% CI, 1.43-1.80; p-value < 0.001) in six studies, enrolling 2799 patients. Heterogeneity of trials was high, with I2 = 91%. Some possible moderators have been suggested, such as the number of drugs in the chemotherapy regimen and the male gender. In conclusion, a low ECOG PS score appears to be related with a longer survival even in trials that excluded patients with an ECOG PS 2 score, but the meta-analyses reported high heterogeneity and publication bias.
Collapse
Affiliation(s)
- Giuseppe Colloca
- Department of Oncology, Ospedale Civile di Sanremo, Sanremo, Italy
| |
Collapse
|
45
|
Henkels KM, Rehl KM, Cho KJ. Blocking K-Ras Interaction With the Plasma Membrane Is a Tractable Therapeutic Approach to Inhibit Oncogenic K-Ras Activity. Front Mol Biosci 2021; 8:673096. [PMID: 34222333 PMCID: PMC8244928 DOI: 10.3389/fmolb.2021.673096] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/20/2021] [Indexed: 12/12/2022] Open
Abstract
Ras proteins are membrane-bound small GTPases that promote cell proliferation, differentiation, and apoptosis. Consistent with this key regulatory role, activating mutations of Ras are present in ∼19% of new cancer cases in the United States per year. K-Ras is one of the three ubiquitously expressed isoforms in mammalian cells, and oncogenic mutations in this isoform account for ∼75% of Ras-driven cancers. Therefore, pharmacological agents that block oncogenic K-Ras activity would have great clinical utility. Most efforts to block oncogenic Ras activity have focused on Ras downstream effectors, but these inhibitors only show limited clinical benefits in Ras-driven cancers due to the highly divergent signals arising from Ras activation. Currently, four major approaches are being extensively studied to target K-Ras–driven cancers. One strategy is to block K-Ras binding to the plasma membrane (PM) since K-Ras requires the PM binding for its signal transduction. Here, we summarize recently identified molecular mechanisms that regulate K-Ras–PM interaction. Perturbing these mechanisms using pharmacological agents blocks K-Ras–PM binding and inhibits K-Ras signaling and growth of K-Ras–driven cancer cells. Together, these studies propose that blocking K-Ras–PM binding is a tractable strategy for developing anti–K-Ras therapies.
Collapse
Affiliation(s)
- Karen M Henkels
- Department of Biochemistry and Molecular Biology, School of Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Kristen M Rehl
- Department of Biochemistry and Molecular Biology, School of Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Kwang-Jin Cho
- Department of Biochemistry and Molecular Biology, School of Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| |
Collapse
|
46
|
Karelia DN, Kim S, K. Pandey M, Plano D, Amin S, Lu J, Sharma AK. Novel Seleno-Aspirinyl Compound AS-10 Induces Apoptosis, G1 Arrest of Pancreatic Ductal Adenocarcinoma Cells, Inhibits Their NF-κB Signaling, and Synergizes with Gemcitabine Cytotoxicity. Int J Mol Sci 2021; 22:4966. [PMID: 34067020 PMCID: PMC8124556 DOI: 10.3390/ijms22094966] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 02/06/2023] Open
Abstract
Current available therapies for pancreatic ductal adenocarcinoma (PDAC) provide minimal overall survival benefits and cause severe adverse effects. We have identified a novel molecule AS-10, a selenazolidine-bis-aspirinyl derivative, that was two to three orders of magnitude more potent than aspirin and at least one to two orders of magnitude more potent than gemcitabine in inhibiting PDAC cancer cell growth/viability against three PDAC cell lines while sparing mouse embryonic fibroblasts in the same exposure range. In Panc-1 cells, AS-10 induced apoptosis without necrosis, principally through caspase-3/7 cascade and reactive oxygen species, in addition to an induction of G1 cell cycle block. Transcriptomic profiling with RNA-seq indicated the top responses to AS-10 exposure as CDKN1A (P21Cip1), CCND1, and nuclear transcription factor-kappa B (NF-κB) complex and the top functions as cell cycle, cell death, and survival without inducing the DNA damage gene signature. AS-10 pretreatment (6 h) decreased cytokine tumor necrosis factor-alpha (TNF-α)-stimulated NF-κB nuclear translocation, DNA binding activity, and degradation of cytosolic inhibitor of κB (IκB) protein. As NF-κB activation in PDAC cells confers resistance to gemcitabine, the AS-10 combination with gemcitabine increased the in vitro cytotoxicity more than the additivity of both compounds. Overall, our results suggest AS-10 may be a promising drug lead for PDAC, both as a single agent and in combination therapy.
Collapse
Affiliation(s)
- Deepkamal N. Karelia
- Department of Pharmacology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA; (D.N.K.); (S.K.); (M.K.P.); (D.P.); (S.A.)
| | - Sangyub Kim
- Department of Pharmacology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA; (D.N.K.); (S.K.); (M.K.P.); (D.P.); (S.A.)
| | - Manoj K. Pandey
- Department of Pharmacology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA; (D.N.K.); (S.K.); (M.K.P.); (D.P.); (S.A.)
| | - Daniel Plano
- Department of Pharmacology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA; (D.N.K.); (S.K.); (M.K.P.); (D.P.); (S.A.)
| | - Shantu Amin
- Department of Pharmacology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA; (D.N.K.); (S.K.); (M.K.P.); (D.P.); (S.A.)
- Penn State Cancer Institute, 500 University Drive, Hershey, PA 17033, USA
| | - Junxuan Lu
- Department of Pharmacology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA; (D.N.K.); (S.K.); (M.K.P.); (D.P.); (S.A.)
- Penn State Cancer Institute, 500 University Drive, Hershey, PA 17033, USA
| | - Arun K. Sharma
- Department of Pharmacology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA; (D.N.K.); (S.K.); (M.K.P.); (D.P.); (S.A.)
- Penn State Cancer Institute, 500 University Drive, Hershey, PA 17033, USA
| |
Collapse
|
47
|
Sheffels E, Kortum RL. The Role of Wild-Type RAS in Oncogenic RAS Transformation. Genes (Basel) 2021; 12:genes12050662. [PMID: 33924994 PMCID: PMC8146411 DOI: 10.3390/genes12050662] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023] Open
Abstract
The RAS family of oncogenes (HRAS, NRAS, and KRAS) are among the most frequently mutated protein families in cancers. RAS-mutated tumors were originally thought to proliferate independently of upstream signaling inputs, but we now know that non-mutated wild-type (WT) RAS proteins play an important role in modulating downstream effector signaling and driving therapeutic resistance in RAS-mutated cancers. This modulation is complex as different WT RAS family members have opposing functions. The protein product of the WT RAS allele of the same isoform as mutated RAS is often tumor-suppressive and lost during tumor progression. In contrast, RTK-dependent activation of the WT RAS proteins from the two non-mutated WT RAS family members is tumor-promoting. Further, rebound activation of RTK–WT RAS signaling underlies therapeutic resistance to targeted therapeutics in RAS-mutated cancers. The contributions of WT RAS to proliferation and transformation in RAS-mutated cancer cells places renewed interest in upstream signaling molecules, including the phosphatase/adaptor SHP2 and the RasGEFs SOS1 and SOS2, as potential therapeutic targets in RAS-mutated cancers.
Collapse
|
48
|
Vitello DJ, Bentrem DJ. A review of response in neoadjuvant therapy for exocrine pancreatic cancer. J Surg Oncol 2021; 123:1449-1459. [PMID: 33831249 DOI: 10.1002/jso.26369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 12/27/2020] [Indexed: 11/11/2022]
Abstract
Despite overall advances in cancer therapy, patients with pancreatic ductal adenocarcinoma continue to have a poor prognosis. While adjuvant therapy is still considered standard, there is mounting evidence that neoadjuvant therapy confers similar benefits in patients with locally advanced disease. The primary measures of response are radiographic, biochemical, margin status, and pathologic. Given overall low response rates and the need for new treatment strategies, standard metrics remain important to the investigation of new systemic agents.
Collapse
Affiliation(s)
- Dominic J Vitello
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - David J Bentrem
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
49
|
Healy FM, Prior IA, MacEwan DJ. The importance of Ras in drug resistance in cancer. Br J Pharmacol 2021; 179:2844-2867. [PMID: 33634485 DOI: 10.1111/bph.15420] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/10/2021] [Accepted: 02/21/2021] [Indexed: 12/19/2022] Open
Abstract
In this review, we analyse the impact of oncogenic Ras mutations in mediating cancer drug resistance and the progress made in the abrogation of this resistance, through pharmacological targeting. At a physiological level, Ras is implicated in many cellular proliferation and survival pathways. However, mutations within this small GTPase can be responsible for the initiation of cancer, therapeutic resistance and failure, and ultimately disease relapse. Often termed "undruggable," Ras is notoriously difficult to target directly, due to its structure and intrinsic activity. Thus, Ras-mediated drug resistance remains a considerable pharmacological problem. However, with advances in both analytical techniques and novel drug classes, the therapeutic landscape against Ras is changing. Allele-specific, direct Ras-targeting agents have reached clinical trials for the first time, indicating there may, at last, be hope of targeting such an elusive but significant protein for better more effective cancer therapy.
Collapse
Affiliation(s)
- Fiona M Healy
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology (ISMIB), University of Liverpool, Liverpool, UK
| | - Ian A Prior
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology (ISMIB), University of Liverpool, Liverpool, UK
| | - David J MacEwan
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology (ISMIB), University of Liverpool, Liverpool, UK
| |
Collapse
|
50
|
Son M, Kim H, Han D, Kim Y, Huh I, Han Y, Hong SM, Kwon W, Kim H, Jang JY, Kim Y. A Clinically Applicable 24-Protein Model for Classifying Risk Subgroups in Pancreatic Ductal Adenocarcinomas using Multiple Reaction Monitoring-Mass Spectrometry. Clin Cancer Res 2021; 27:3370-3382. [PMID: 33593883 DOI: 10.1158/1078-0432.ccr-20-3513] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 01/12/2021] [Accepted: 02/12/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Pancreatic ductal adenocarcinoma (PDAC) subtypes have been identified using various methodologies. However, it is a challenge to develop classification system applicable to routine clinical evaluation. We aimed to identify risk subgroups based on molecular features and develop a classification model that was more suited for clinical applications. EXPERIMENTAL DESIGN We collected whole dissected specimens from 225 patients who underwent surgery at Seoul National University Hospital [Seoul, Republic of Korea (South)], between October 2009 and February 2018. Target proteins with potential relevance to tumor progression or prognosis were quantified with robust quality controls. We used hierarchical clustering analysis to identify risk subgroups. A random forest classification model was developed to predict the identified risk subgroups, and the model was validated using transcriptomic datasets from external cohorts (N = 700), with survival analysis. RESULTS We identified 24 protein features that could classify the four risk subgroups associated with patient outcomes: stable, exocrine-like; activated, and extracellular matrix (ECM) remodeling. The "stable" risk subgroup was characterized by proteins that were associated with differentiation and tumor suppressors. "Exocrine-like" tumors highly expressed pancreatic enzymes. Two high-risk subgroups, "activated" and "ECM remodeling," were enriched in terms such as cell cycle, angiogenesis, immunocompetence, tumor invasion metastasis, and metabolic reprogramming. The classification model that included these features made prognoses with relative accuracy and precision in multiple cohorts. CONCLUSIONS We proposed PDAC risk subgroups and developed a classification model that may potentially be useful for routine clinical implementations, at the individual level. This clinical system may improve the accuracy of risk prediction and treatment guidelines.See related commentary by Thakur and Singh, p. 3272.
Collapse
Affiliation(s)
- Minsoo Son
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, Republic of Korea (South)
| | - Hongbeom Kim
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea (South)
| | - Dohyun Han
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea (South)
| | - Yoseop Kim
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, Republic of Korea (South)
| | - Iksoo Huh
- College of Nursing and Research Institute of Nursing Science, Seoul National University, Seoul, Republic of Korea (South)
| | - Youngmin Han
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea (South)
| | - Seung-Mo Hong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea (South)
| | - Wooil Kwon
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea (South)
| | - Haeryoung Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea (South)
| | - Jin-Young Jang
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea (South).
| | - Youngsoo Kim
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, Republic of Korea (South).
| |
Collapse
|