1
|
Yang Z, Carrio-Cordo P, Baudis M. Copy number variation heterogeneity reveals biological inconsistency in hierarchical cancer classifications. Mol Cytogenet 2024; 17:26. [PMID: 39506842 DOI: 10.1186/s13039-024-00692-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/02/2024] [Indexed: 11/08/2024] Open
Abstract
Cancers are heterogeneous diseases with unifying features of abnormal and consuming cell growth, where the deregulation of normal cellular functions is initiated by the accumulation of genomic mutations in cells of - potentially - any organ. At diagnosis malignancies typically present with patterns of somatic genome variants on diverse levels of heterogeneity. Among the different types of genomic alterations, copy number variants (CNV) represent a distinct, near-ubiquitous class of structural variants. Cancer classifications are foundational for patient care and oncology research. Terminologies such as the National Cancer Institute Thesaurus provide large sets of hierarchical cancer classification vocabularies and promote data interoperability and ontology-driven computational analysis. To find out how categorical classifications correspond to genomic observations, we conducted a meta-analysis of inter-sample genomic heterogeneity for classification hierarchies on CNV profiles from 97,142 individual samples across 512 cancer entities, and evaluated recurring CNV signatures across diagnostic subsets. Our results highlight specific biological mechanisms across cancer entities with the potential for improvement of patient stratification and future enhancement of cancer classification systems and provide some indications for cooperative genomic events across distinct clinical entities.
Collapse
Affiliation(s)
- Ziying Yang
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstr. 190, 8057, Zurich, Switzerland.
- Swiss Institute of Bioinformatics, Zurich, Switzerland.
| | - Paula Carrio-Cordo
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstr. 190, 8057, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Zurich, Switzerland
| | - Michael Baudis
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstr. 190, 8057, Zurich, Switzerland.
- Swiss Institute of Bioinformatics, Zurich, Switzerland.
| |
Collapse
|
2
|
Han M, Niu H, Duan F, Wang Z, Zhang Z, Ren H. Research status and development trends of omics in neuroblastoma a bibliometric and visualization analysis. Front Oncol 2024; 14:1383805. [PMID: 39450262 PMCID: PMC11499224 DOI: 10.3389/fonc.2024.1383805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 09/16/2024] [Indexed: 10/26/2024] Open
Abstract
Background Neuroblastoma (NB), a prevalent extracranial solid tumor in children, stems from the neural crest. Omics technologies are extensively employed in NB, and We analyzed published articles on NB omics to understand the research trends and hot topics in NB omics. Method We collected all articles related to NB omics published from 2005 to 2023 from the Web of Science Core Collection database. Subsequently, we conducted analyses using VOSviewer, CiteSpace, Bibliometrix, and the Bibliometric online analysis platform (https://bibliometric.com/ ). Results We included a total of 514 articles in our analysis. The increasing number of publications in this field since 2020 indicates growing attention to NB omics, gradually entering a mature development stage. These articles span 50 countries and 1,000 institutions, involving 3,669 authors and 292 journals. The United States has the highest publication output and collaboration with other countries, with Germany being the most frequent collaborator. Capital Medical University and the German Cancer Research Center are the institutions with the highest publication count. The Journal of Proteome Research and the Journal of Biological Chemistry are the most prolific journal and most co-cited journal, respectively. Wang, W, and Maris, JM are the scholars with the highest publication count and co-citations in this field. "Neuroblastoma" and "Expression" are the most frequent keywords, while "classification," "Metabolism," "Cancer," and "Diagnosis" are recent key terms. The article titled "Neuroblastoma" by John M. Maris is the most cited reference in this analysis. Conclusion The continuous growth in NB omics research underscores its increasing significance in the scientific community. Omics technologies have facilitated the identification of potential biomarkers, advancements in personalized medicine, and the development of novel therapeutic strategies. Despite these advancements, the field faces significant challenges, including tumor heterogeneity, data standardization issues, and the translation of research findings into clinical practice.
Collapse
Affiliation(s)
| | - Huizhong Niu
- First Department of General Surgery, Hebei Children’s Hospital,
Shijiazhuang, Hebei, China
| | | | | | | | | |
Collapse
|
3
|
Ognibene M, De Marco P, Amoroso L, Cangelosi D, Zara F, Parodi S, Pezzolo A. Multiple Genes with Potential Tumor Suppressive Activity Are Present on Chromosome 10q Loss in Neuroblastoma and Are Associated with Poor Prognosis. Cancers (Basel) 2023; 15:cancers15072035. [PMID: 37046696 PMCID: PMC10093755 DOI: 10.3390/cancers15072035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Neuroblastoma (NB) is a tumor affecting the peripheral sympathetic nervous system that substantially contributes to childhood cancer mortality. Despite recent advances in understanding the complexity of NB, the mechanisms determining its progression are still largely unknown. Some recurrent segmental chromosome aberrations (SCA) have been associated with poor survival. However, the prognostic role of most SCA has not yet been investigated. We examined a cohort of 260 NB primary tumors at disease onset for the loss of chromosome 10q, by array-comparative genomic hybridization (a-CGH) and Single Nucleotide Polymorphism (SNP) array and we found that 26 showed 10q loss, while the others 234 displayed different SCA. We observed a lower event-free survival for NB patients displaying 10q loss compared to patients with tumors carrying other SCA. Furthermore, analyzing the region of 10q loss, we identified a cluster of 75 deleted genes associated with poorer outcome. Low expression of six of these genes, above all CCSER2, was significantly correlated to worse survival using in silico data from 786 NB patients. These potential tumor suppressor genes can be partly responsible for the poor prognosis of NB patients with 10q loss.
Collapse
|
4
|
Paolini L, Hussain S, Galardy PJ. Chromosome instability in neuroblastoma: A pathway to aggressive disease. Front Oncol 2022; 12:988972. [PMID: 36338721 PMCID: PMC9633097 DOI: 10.3389/fonc.2022.988972] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/03/2022] [Indexed: 11/15/2023] Open
Abstract
For over 100-years, genomic instability has been investigated as a central player in the pathogenesis of human cancer. Conceptually, genomic instability includes an array of alterations from small deletions/insertions to whole chromosome alterations, referred to as chromosome instability. Chromosome instability has a paradoxical impact in cancer. In most instances, the introduction of chromosome instability has a negative impact on cellular fitness whereas in cancer it is usually associated with a worse prognosis. One exception is the case of neuroblastoma, the most common solid tumor outside of the brain in children. Neuroblastoma tumors have two distinct patterns of genome instability: whole-chromosome aneuploidy, which is associated with a better prognosis, or segmental chromosomal alterations, which is a potent negative prognostic factor. Through a computational screen, we found that low levels of the de- ubiquitinating enzyme USP24 have a highly significant negative impact on survival in neuroblastoma. At the molecular level, USP24 loss leads to destabilization of the microtubule assembly factor CRMP2 - producing mitotic errors and leading to chromosome missegregation and whole-chromosome aneuploidy. This apparent paradox may be reconciled through a model in which whole chromosome aneuploidy leads to the subsequent development of segmental chromosome alterations. Here we review the mechanisms behind chromosome instability and the evidence for the progressive development of segmental alterations from existing numerical aneuploidy in support of a multi-step model of neuroblastoma progression.
Collapse
Affiliation(s)
- Lucia Paolini
- Department of Pediatrics, University of Milano-Bicocca, San Gerardo Hospital, Monza, MI, Italy
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, United States
| | - Sajjad Hussain
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, United States
| | - Paul J. Galardy
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, United States
- Division of Pediatric Hematology-Oncology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
5
|
Keller KM, Eleveld TF, Schild L, van den Handel K, van den Boogaard M, Amo-Addae V, Eising S, Ober K, Koopmans B, Looijenga L, Tytgat GA, Ylstra B, Molenaar JJ, Dolman MEM, van Hooff SR. Chromosome 11q loss and MYCN amplification demonstrate synthetic lethality with checkpoint kinase 1 inhibition in neuroblastoma. Front Oncol 2022; 12:929123. [PMID: 36237330 PMCID: PMC9552537 DOI: 10.3389/fonc.2022.929123] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
Neuroblastoma is the most common extracranial solid tumor found in children and despite intense multi-modal therapeutic approaches, low overall survival rates of high-risk patients persist. Tumors with heterozygous loss of chromosome 11q and MYCN amplification are two genetically distinct subsets of neuroblastoma that are associated with poor patient outcome. Using an isogenic 11q deleted model system and high-throughput drug screening, we identify checkpoint kinase 1 (CHK1) as a potential therapeutic target for 11q deleted neuroblastoma. Further investigation reveals MYCN amplification as a possible additional biomarker for CHK1 inhibition, independent of 11q loss. Overall, our study highlights the potential power of studying chromosomal aberrations to guide preclinical development of novel drug targets and combinations. Additionally, our study builds on the growing evidence that DNA damage repair and replication stress response pathways offer therapeutic vulnerabilities for the treatment of neuroblastoma.
Collapse
Affiliation(s)
- Kaylee M. Keller
- Department of Research, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Thomas F. Eleveld
- Department of Research, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Linda Schild
- Department of Research, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Kim van den Handel
- Department of Research, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | | | - Vicky Amo-Addae
- Department of Research, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Selma Eising
- Department of Research, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Kimberley Ober
- Department of Research, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Bianca Koopmans
- Department of Research, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Leendert Looijenga
- Department of Research, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Godelieve A.M. Tytgat
- Department of Research, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Bauke Ylstra
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, Amsterdam, Netherlands
| | - Jan J. Molenaar
- Department of Research, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Department of Pharmaceutical Sciences, University Utrecht, Utrecht, Netherlands
- *Correspondence: Jan J. Molenaar,
| | - M. Emmy M. Dolman
- Department of Research, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Children’s Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia
- School of Women’s and Children’s Health, Faculty of Medicine, UNSW Sydney, Kensington, NSW, Australia
| | - Sander R. van Hooff
- Department of Research, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| |
Collapse
|
6
|
Gedminas JM, Laetsch TW. Targeting the DNA damage response in pediatric malignancies. Expert Rev Anticancer Ther 2022; 22:1099-1113. [PMID: 36099180 DOI: 10.1080/14737140.2022.2124970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION High levels of DNA damage and mutations in DNA damage response genes creates a high reliance on DNA damage repair in various tumors. This creates a vulnerability for new cancer therapies. Although there is extensive data for the use of these agents in adult tumors, the evaluation of these compounds in the pediatric population remains in the early stages. AREAS COVERED In this review, we discuss the role of the DNA damage response as a therapeutic vulnerability in pediatric malignancies, provide a summary of clinical data for the use of DNA damage response inhibitors in cancer, and review how these compounds can be extended to the pediatric population. EXPERT OPINION A number of pediatric cancers rely on robust DNA damage repair to maintain cell viability. This provides a therapeutic vulnerability in cancer cells resistant to other traditional therapies. Unfortunately, although clinical evaluation of inhibitors of various components of the DNA damage response has been done in adults, pediatric data remains limited. Further studies are needed to evaluate the efficacy of these compounds in the pediatric population.
Collapse
Affiliation(s)
- Jenna M Gedminas
- Children's Hospital of Philadelphia, Division of Oncology, Philadelphia, PA, USA
| | - Theodore W Laetsch
- Children's Hospital of Philadelphia, Division of Oncology, Philadelphia, PA, USA
| |
Collapse
|
7
|
Thomas Lucas J. Risk Factors Associated with Metastatic Site Failure in Patients with High-Risk Neuroblastoma. Clin Transl Radiat Oncol 2022; 34:42-50. [PMID: 35345864 PMCID: PMC8956847 DOI: 10.1016/j.ctro.2022.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 02/17/2022] [Accepted: 02/20/2022] [Indexed: 11/29/2022] Open
Abstract
We observed an increased hazard for failure at metastatic sites which remain persistently avid on MIBG following systemic therapy. -Limited response to induction therapy described by Curie and SIOPEN score selects patients at greater risk for poly-metastatic site failure. -The low proportion of metastatic sites treated with radiotherapy precluded definitive testing of its impact on the hazard for metastatic site failure. -Patients who are unable to undergo transplant, and/or have extensive disease at diagnosis (lung metastases) may be poor candidates for consolidative metastatic site directed radiotherapy given the high competing risk of failure at a new metastatic site.
Purpose This retrospective study sought to identify predictors of metastatic site failure (MSF) at new and/or original (present at diagnosis) sites in high-risk neuroblastoma patients. Methods and materials Seventy-six high-risk neuroblastoma patients treated on four institutional prospective trials from 1997 to 2014 with induction chemotherapy, surgery, myeloablative chemotherapy, stem-cell rescue, and were eligible for consolidative primary and metastatic site (MS) radiotherapy were eligible for study inclusion. Computed-tomography and I123 MIBG scans were used to assess disease response and Curie scores at diagnosis, post-induction, post-transplant, and treatment failure. Outcomes were described using the Kaplan–Meier estimator. Cox proportional hazards frailty (cphfR) and CPH regression (CPHr) were used to identify covariates predictive of MSF at a site identified either at diagnosis or later. Results MSF occurred in 42 patients (55%). Consolidative MS RT was applied to 30 MSs in 10 patients. Original-MSF occurred in 146 of 383 (38%) nonirradiated and 18 of 30 (60%) irradiated MSs (p = 0.018). Original- MSF occurred in postinduction MIBG-avid MSs in 68 of 81 (84%) nonirradiated and 12 of 14 (85%) radiated MSs (p = 0.867). The median overall and progression-free survival rates were 61 months (95% CI 42.6Not Reached) and 24.1 months (95% CI 16.538.7), respectively. Multivariate CPHr identified inability to undergo transplant (HR 32.4 95%CI 9.396.8, p < 0.001) and/or maintenance chemotherapy (HR 5.2, 95%CI 1.716.2, p = 0.005), and the presence of lung metastases at diagnosis (HR 4.4 95%CI 1.711.1, p = 0.002) as predictors of new MSF. The new MSF-free survival rate at 3 years was 25% and 87% in patients with and without high-risk factors. Conclusions Incremental improvements in systemic therapy influence the patterns and type of metastatic site failure in neuroblastoma. Persistence of MIBG-avidity following induction chemotherapy and transplant at MSs increased the hazard for MSF.
Collapse
|
8
|
Decaesteker B, Durinck K, Van Roy N, De Wilde B, Van Neste C, Van Haver S, Roberts S, De Preter K, Vermeirssen V, Speleman F. From DNA Copy Number Gains and Tumor Dependencies to Novel Therapeutic Targets for High-Risk Neuroblastoma. J Pers Med 2021; 11:1286. [PMID: 34945759 PMCID: PMC8707517 DOI: 10.3390/jpm11121286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 12/15/2022] Open
Abstract
Neuroblastoma is a pediatric tumor arising from the sympatho-adrenal lineage and a worldwide leading cause of childhood cancer-related deaths. About half of high-risk patients die from the disease while survivors suffer from multiple therapy-related side-effects. While neuroblastomas present with a low mutational burden, focal and large segmental DNA copy number aberrations are highly recurrent and associated with poor survival. It can be assumed that the affected chromosomal regions contain critical genes implicated in neuroblastoma biology and behavior. More specifically, evidence has emerged that several of these genes are implicated in tumor dependencies thus potentially providing novel therapeutic entry points. In this review, we briefly review the current status of recurrent DNA copy number aberrations in neuroblastoma and provide an overview of the genes affected by these genomic variants for which a direct role in neuroblastoma has been established. Several of these genes are implicated in networks that positively regulate MYCN expression or stability as well as cell cycle control and apoptosis. Finally, we summarize alternative approaches to identify and prioritize candidate copy-number driven dependency genes for neuroblastoma offering novel therapeutic opportunities.
Collapse
Grants
- P30 CA008748 NCI NIH HHS
- G087221N, G.0507.12, G049720N,12U4718N, 11C3921N, 11J8313N, 12B5313N, 1514215N, 1197617N,1238420N, 12Q8322N, 3F018519, 12N6917N Fund for Scientific Research Flanders
- 2018-087, 2018-125, 2020-112 Belgian Foundation against Cancer
Collapse
Affiliation(s)
- Bieke Decaesteker
- Department for Biomolecular Medicine, Ghent University, Medical Research Building (MRB1), Corneel Heymanslaan 10, B-9000 Ghent, Belgium; (B.D.); (K.D.); (N.V.R.); (B.D.W.); (C.V.N.); (S.V.H.); (K.D.P.); (V.V.)
| | - Kaat Durinck
- Department for Biomolecular Medicine, Ghent University, Medical Research Building (MRB1), Corneel Heymanslaan 10, B-9000 Ghent, Belgium; (B.D.); (K.D.); (N.V.R.); (B.D.W.); (C.V.N.); (S.V.H.); (K.D.P.); (V.V.)
| | - Nadine Van Roy
- Department for Biomolecular Medicine, Ghent University, Medical Research Building (MRB1), Corneel Heymanslaan 10, B-9000 Ghent, Belgium; (B.D.); (K.D.); (N.V.R.); (B.D.W.); (C.V.N.); (S.V.H.); (K.D.P.); (V.V.)
| | - Bram De Wilde
- Department for Biomolecular Medicine, Ghent University, Medical Research Building (MRB1), Corneel Heymanslaan 10, B-9000 Ghent, Belgium; (B.D.); (K.D.); (N.V.R.); (B.D.W.); (C.V.N.); (S.V.H.); (K.D.P.); (V.V.)
- Department of Internal Medicine and Pediatrics, Ghent University Hospital, Corneel Heymanslaan 10, B-9000 Ghent, Belgium
| | - Christophe Van Neste
- Department for Biomolecular Medicine, Ghent University, Medical Research Building (MRB1), Corneel Heymanslaan 10, B-9000 Ghent, Belgium; (B.D.); (K.D.); (N.V.R.); (B.D.W.); (C.V.N.); (S.V.H.); (K.D.P.); (V.V.)
| | - Stéphane Van Haver
- Department for Biomolecular Medicine, Ghent University, Medical Research Building (MRB1), Corneel Heymanslaan 10, B-9000 Ghent, Belgium; (B.D.); (K.D.); (N.V.R.); (B.D.W.); (C.V.N.); (S.V.H.); (K.D.P.); (V.V.)
| | - Stephen Roberts
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Katleen De Preter
- Department for Biomolecular Medicine, Ghent University, Medical Research Building (MRB1), Corneel Heymanslaan 10, B-9000 Ghent, Belgium; (B.D.); (K.D.); (N.V.R.); (B.D.W.); (C.V.N.); (S.V.H.); (K.D.P.); (V.V.)
| | - Vanessa Vermeirssen
- Department for Biomolecular Medicine, Ghent University, Medical Research Building (MRB1), Corneel Heymanslaan 10, B-9000 Ghent, Belgium; (B.D.); (K.D.); (N.V.R.); (B.D.W.); (C.V.N.); (S.V.H.); (K.D.P.); (V.V.)
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark 71, B-9052 Zwijnaarde, Belgium
| | - Frank Speleman
- Department for Biomolecular Medicine, Ghent University, Medical Research Building (MRB1), Corneel Heymanslaan 10, B-9000 Ghent, Belgium; (B.D.); (K.D.); (N.V.R.); (B.D.W.); (C.V.N.); (S.V.H.); (K.D.P.); (V.V.)
| |
Collapse
|
9
|
MYCN in Neuroblastoma: "Old Wine into New Wineskins". Diseases 2021; 9:diseases9040078. [PMID: 34842635 PMCID: PMC8628738 DOI: 10.3390/diseases9040078] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/20/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022] Open
Abstract
MYCN Proto-Oncogene, BHLH Transcription Factor (MYCN) has been one of the most studied genes in neuroblastoma. It is known for its oncogenetic mechanisms, as well as its role in the prognosis of the disease and it is considered one of the prominent targets for neuroblastoma therapy. In the present work, we attempted to review the literature, on the relation between MYCN and neuroblastoma from all possible mechanistic sites. We have searched the literature for the role of MYCN in neuroblastoma based on the following topics: the references of MYCN in the literature, the gene's anatomy, along with its transcripts, the protein's anatomy, the epigenetic mechanisms regulating MYCN expression and function, as well as MYCN amplification. MYCN plays a significant role in neuroblastoma biology. Its functions and properties range from the forming of G-quadraplexes, to the interaction with miRNAs, as well as the regulation of gene methylation and histone acetylation and deacetylation. Although MYCN is one of the most primary genes studied in neuroblastoma, there is still a lot to be learned. Our knowledge on the exact mechanisms of MYCN amplification, etiology and potential interventions is still limited. The knowledge on the molecular mechanisms of MYCN in neuroblastoma, could have potential prognostic and therapeutic advantages.
Collapse
|
10
|
Feng C, Xiang T, Yi Z, Meng X, Chu X, Huang G, Zhao X, Chen F, Xiong B, Feng J. A Deep-Learning Model With the Attention Mechanism Could Rigorously Predict Survivals in Neuroblastoma. Front Oncol 2021; 11:653863. [PMID: 34336652 PMCID: PMC8317851 DOI: 10.3389/fonc.2021.653863] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/24/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Neuroblastoma is one of the most devastating forms of childhood cancer. Despite large amounts of attempts in precise survival prediction in neuroblastoma, the prediction efficacy remains to be improved. METHODS Here, we applied a deep-learning (DL) model with the attention mechanism to predict survivals in neuroblastoma. We utilized 2 groups of features separated from 172 genes, to train 2 deep neural networks and combined them by the attention mechanism. RESULTS This classifier could accurately predict survivals, with areas under the curve of receiver operating characteristic (ROC) curves and time-dependent ROC reaching 0.968 and 0.974 in the training set respectively. The accuracy of the model was further confirmed in a validation cohort. Importantly, the two feature groups were mapped to two groups of patients, which were prognostic in Kaplan-Meier curves. Biological analyses showed that they exhibited diverse molecular backgrounds which could be linked to the prognosis of the patients. CONCLUSIONS In this study, we applied artificial intelligence methods to improve the accuracy of neuroblastoma survival prediction based on gene expression and provide explanations for better understanding of the molecular mechanisms underlying neuroblastoma.
Collapse
Affiliation(s)
- Chenzhao Feng
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianyu Xiang
- Department of Control Science and Engineering, College of Electronics and Information Engineering, Tongji University, Shanghai, China
- State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Zixuan Yi
- School of Mathematics and Statistics, College of Arts and Sciences, Wuhan University, Wuhan, China
| | - Xinyao Meng
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xufeng Chu
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guiyang Huang
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Zhao
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Chen
- Department of Pediatric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Bo Xiong
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiexiong Feng
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
11
|
Rezaei O, Honarmand Tamizkar K, Hajiesmaeili M, Taheri M, Ghafouri-Fard S. Non-Coding RNAs Participate in the Pathogenesis of Neuroblastoma. Front Oncol 2021; 11:617362. [PMID: 33718173 PMCID: PMC7945591 DOI: 10.3389/fonc.2021.617362] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/11/2021] [Indexed: 12/11/2022] Open
Abstract
Neuroblastoma is one of the utmost frequent neoplasms during the first year of life. This pediatric cancer is believed to be originated during the embryonic life from the neural crest cells. Previous studies have detected several types of chromosomal aberrations in this tumor. More recent studies have emphasized on expression profiling of neuroblastoma samples to identify the dysregulated genes in this type of cancer. Non-coding RNAs are among the mostly dysregulated genes in this type of cancer. Such dysregulation has been associated with a number of chromosomal aberrations that are frequently detected in neuroblastoma. In this study, we explain the role of non-coding transcripts in the malignant transformation in neuroblastoma and their role as biomarkers for this pediatric cancer.
Collapse
Affiliation(s)
- Omidvar Rezaei
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mohammadreza Hajiesmaeili
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Borenäs M, Umapathy G, Lai W, Lind DE, Witek B, Guan J, Mendoza‐Garcia P, Masudi T, Claeys A, Chuang T, El Wakil A, Arefin B, Fransson S, Koster J, Johansson M, Gaarder J, Van den Eynden J, Hallberg B, Palmer RH. ALK ligand ALKAL2 potentiates MYCN-driven neuroblastoma in the absence of ALK mutation. EMBO J 2021; 40:e105784. [PMID: 33411331 PMCID: PMC7849294 DOI: 10.15252/embj.2020105784] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/19/2020] [Accepted: 10/23/2020] [Indexed: 12/18/2022] Open
Abstract
High-risk neuroblastoma (NB) is responsible for a disproportionate number of childhood deaths due to cancer. One indicator of high-risk NB is amplification of the neural MYC (MYCN) oncogene, which is currently therapeutically intractable. Identification of anaplastic lymphoma kinase (ALK) as an NB oncogene raised the possibility of using ALK tyrosine kinase inhibitors (TKIs) in treatment of patients with activating ALK mutations. 8-10% of primary NB patients are ALK-positive, a figure that increases in the relapsed population. ALK is activated by the ALKAL2 ligand located on chromosome 2p, along with ALK and MYCN, in the "2p-gain" region associated with NB. Dysregulation of ALK ligand in NB has not been addressed, although one of the first oncogenes described was v-sis that shares > 90% homology with PDGF. Therefore, we tested whether ALKAL2 ligand could potentiate NB progression in the absence of ALK mutation. We show that ALKAL2 overexpression in mice drives ALK TKI-sensitive NB in the absence of ALK mutation, suggesting that additional NB patients, such as those exhibiting 2p-gain, may benefit from ALK TKI-based therapeutic intervention.
Collapse
Affiliation(s)
- Marcus Borenäs
- Department of Medical Biochemistry and Cell BiologyInstitute of BiomedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Ganesh Umapathy
- Department of Medical Biochemistry and Cell BiologyInstitute of BiomedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Wei‐Yun Lai
- Department of Medical Biochemistry and Cell BiologyInstitute of BiomedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Dan E Lind
- Department of Medical Biochemistry and Cell BiologyInstitute of BiomedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Barbara Witek
- Department of Molecular BiologyUmeå UniversityUmeåSweden
| | - Jikui Guan
- Department of Medical Biochemistry and Cell BiologyInstitute of BiomedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Children's Hospital Affiliated to Zhengzhou UniversityZhengzhouChina
| | - Patricia Mendoza‐Garcia
- Department of Medical Biochemistry and Cell BiologyInstitute of BiomedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Tafheem Masudi
- Department of Medical Biochemistry and Cell BiologyInstitute of BiomedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Arne Claeys
- Department of Human Structure and Repair, Anatomy and Embryology UnitGhent UniversityGhentBelgium
| | - Tzu‐Po Chuang
- Department of Medical Biochemistry and Cell BiologyInstitute of BiomedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Abeer El Wakil
- Department of Molecular BiologyUmeå UniversityUmeåSweden
- Present address:
Department of Biological SciencesAlexandria UniversityAlexandriaEgypt
| | - Badrul Arefin
- Department of Medical Biochemistry and Cell BiologyInstitute of BiomedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Susanne Fransson
- Laboratory MedicineInstitute of BiomedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Jan Koster
- Department of OncogenomicsAcademic Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
| | - Mathias Johansson
- Clinical GenomicsScience for life laboratoryUniversity of GothenburgGothenburgSweden
| | - Jennie Gaarder
- Laboratory MedicineInstitute of BiomedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Jimmy Van den Eynden
- Department of Human Structure and Repair, Anatomy and Embryology UnitGhent UniversityGhentBelgium
| | - Bengt Hallberg
- Department of Medical Biochemistry and Cell BiologyInstitute of BiomedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Ruth H Palmer
- Department of Medical Biochemistry and Cell BiologyInstitute of BiomedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| |
Collapse
|
13
|
Fernández-Blanco B, Berbegall AP, Martin-Vañó S, Castel V, Navarro S, Noguera R. Imbalance between genomic gain and loss identifies high-risk neuroblastoma patients with worse outcomes. Neoplasia 2020; 23:12-20. [PMID: 33190090 PMCID: PMC7674617 DOI: 10.1016/j.neo.2020.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/03/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
Survival in high-risk neuroblastoma (HR-NB) patients remains poor despite multimodal treatment. We aimed to identify HR-NB patients with worse outcomes by analyzing the genomic instability derived from segmental chromosomal aberrations. We calculated 3 genomic instability indexes for primary tumor SNP array profiles from 127 HR-NB patients: (1) Copy number aberration burden (%gainslength+%losseslength), (2) copy number load (CNL) (%gainslength-%losseslength) and (3) net genomic load (NGL) (%gainsamount-%lossesamount). Tumors were classified according to positive or negative CNL and NGL genomic subtypes. The impact of the genomic instability indexes on overall survival (OS) was assessed with Cox regression. We identified 38% of HR-NB patients with poor 5-year OS. A negative CNL genomic background was related to poor prognosis in patients ≥18 months showing tumors with homogeneous MYCN amplification (9.5% survival probability, P < 0.05) and patients with non-MYCN amplified NB (18.8% survival probability related to >2.4% CNL, P < 0.01). A positive CNL genomic background was associated with worse outcome in patients with heterogeneous MYCN amplification (22.5% survival probability, P < 0.05). We conclude that characterizing a tumor genomic background according to predominance of genome gained or lost contributes toward improved outcome prediction and brings greater insight into the tumor biology of HR-NB patients.
Collapse
Affiliation(s)
| | - Ana Pilar Berbegall
- Pathology Department, Medical School, University of Valencia-INCLIVA, Valencia, Spain; CIBERONC, Madrid, Spain
| | - Susana Martin-Vañó
- Pathology Department, Medical School, University of Valencia-INCLIVA, Valencia, Spain; CIBERONC, Madrid, Spain
| | - Victoria Castel
- Clinical and Translational Oncology Research Group, Investigation Institute La Fe, Valencia, Spain
| | - Samuel Navarro
- Pathology Department, Medical School, University of Valencia-INCLIVA, Valencia, Spain; CIBERONC, Madrid, Spain
| | - Rosa Noguera
- Pathology Department, Medical School, University of Valencia-INCLIVA, Valencia, Spain; CIBERONC, Madrid, Spain.
| |
Collapse
|
14
|
Salemme V, Angelini C, Chapelle J, Centonze G, Natalini D, Morellato A, Taverna D, Turco E, Ala U, Defilippi P. The p140Cap adaptor protein as a molecular hub to block cancer aggressiveness. Cell Mol Life Sci 2020; 78:1355-1367. [PMID: 33079227 PMCID: PMC7904710 DOI: 10.1007/s00018-020-03666-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/03/2020] [Accepted: 10/05/2020] [Indexed: 01/03/2023]
Abstract
The p140Cap adaptor protein is a scaffold molecule encoded by the SRCIN1 gene, which is physiologically expressed in several epithelial tissues and in the neurons. However, p140Cap is also strongly expressed in a significant subset of cancers including breast cancer and neuroblastoma. Notably, cancer patients with high p140Cap expression in their primary tumors have a lower probability of developing a distant event and ERBB2-positive breast cancer sufferers show better survival. In neuroblastoma patients, SRCIN1 mRNA levels represent an independent risk factor, which is inversely correlated to disease aggressiveness. Consistent with clinical data, SRCIN1 gain or loss of function mouse models demonstrated that p140Cap may affect tumor growth and metastasis formation by controlling the signaling pathways involved in tumorigenesis and metastatic features. This study reviews data showing the relevance of SRCIN1/p140Cap in cancer patients, the impact of SRCIN1 status on p140Cap expression, the specific mechanisms through which p140Cap can limit cancer progression, the molecular functions regulated by p140Cap, along with the p140Cap interactome, to unveil its key role for patient stratification in clinics.
Collapse
Affiliation(s)
- Vincenzo Salemme
- Department of Molecular Biotechnology and Health Science, Università degli Studi di Torino, Via Nizza 52, 10126, Torino, Italy
| | - Costanza Angelini
- Department of Molecular Biotechnology and Health Science, Università degli Studi di Torino, Via Nizza 52, 10126, Torino, Italy
| | - Jennifer Chapelle
- Department of Molecular Biotechnology and Health Science, Università degli Studi di Torino, Via Nizza 52, 10126, Torino, Italy
| | - Giorgia Centonze
- Department of Molecular Biotechnology and Health Science, Università degli Studi di Torino, Via Nizza 52, 10126, Torino, Italy
| | - Dora Natalini
- Department of Molecular Biotechnology and Health Science, Università degli Studi di Torino, Via Nizza 52, 10126, Torino, Italy
| | - Alessandro Morellato
- Department of Molecular Biotechnology and Health Science, Università degli Studi di Torino, Via Nizza 52, 10126, Torino, Italy
| | - Daniela Taverna
- Department of Molecular Biotechnology and Health Science, Università degli Studi di Torino, Via Nizza 52, 10126, Torino, Italy
| | - Emilia Turco
- Department of Molecular Biotechnology and Health Science, Università degli Studi di Torino, Via Nizza 52, 10126, Torino, Italy
| | - Ugo Ala
- Department of Veterinary Sciences, Università degli Studi di Torino, Largo Paolo Braccini 2, 10095, Grugliasco, TO, Italy.
| | - Paola Defilippi
- Department of Molecular Biotechnology and Health Science, Università degli Studi di Torino, Via Nizza 52, 10126, Torino, Italy.
| |
Collapse
|
15
|
Gene Expression Signature of Acquired Chemoresistance in Neuroblastoma Cells. Int J Mol Sci 2020; 21:ijms21186811. [PMID: 32948088 PMCID: PMC7555742 DOI: 10.3390/ijms21186811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 01/14/2023] Open
Abstract
Drug resistance of childhood cancer neuroblastoma is a serious clinical problem. Patients with relapsed disease have a poor prognosis despite intense treatment. In the present study, we aimed to identify chemoresistance gene expression signatures in vincristine resistant neuroblastoma cells. We found that vincristine-resistant neuroblastoma cells formed larger clones and survived under reduced serum conditions as compared with non-resistant parental cells. To identify the possible mechanisms underlying vincristine resistance in neuroblastoma cells, we investigated the expression profiles of genes known to be involved in cancer drug resistance. This specific gene expression patterns could predict the behavior of a tumor in response to chemotherapy and for predicting the prognosis of high-risk neuroblastoma patients. Our signature could help chemoresistant neuroblastoma patients in avoiding useless and harmful chemotherapy cycles.
Collapse
|
16
|
Tas ML, Nagtegaal M, Kraal KCJM, Tytgat GAM, Abeling NGGM, Koster J, Pluijm SMF, Zwaan CM, de Keizer B, Molenaar JJ, van Noesel MM. Neuroblastoma stage 4S: Tumor regression rate and risk factors of progressive disease. Pediatr Blood Cancer 2020; 67:e28061. [PMID: 31736229 DOI: 10.1002/pbc.28061] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/19/2019] [Accepted: 10/09/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND The clinical course of neuroblastoma stage 4S or MS is characterized by a high rate of spontaneous tumor regression and favorable outcome. However, the clinical course and rate of the regression are poorly understood. METHODS A retrospective cohort study was performed, including all patients with stage 4S neuroblastoma without MYCN amplification, from two Dutch centers between 1972 and 2012. We investigated the clinical characteristics, the biochemical activity reflected in urinary catecholamine excretion, and radiological imaging to describe the kinetics of tumor regression, therapy response and outcome. RESULTS The cohort of 31 patients reached a 10-year overall survival of 84% ± 7% (median follow-up 16 years; range, 3.3-39). During the regressive phase, liver size normalized in 91% of the patients and catecholamine excretion in 83%, both after a median of two months (liver size: range, 0-131; catecholamines: range, 0-158). The primary tumors completely regressed in 69% after 13 months (range, 6-73), and the liver architecture normalized in 52% after 15 months (range, 5-131). Antitumor treatment was given in 52% of the patients. Interestingly, regression rates were similar for treated and untreated patients. Four of seven patients < 4 weeks old died of rapid liver expansion and organ compression. Three patients progressed to stage 4, 3 to 13 months after diagnosis; all had persistently elevated catecholamines. CONCLUSION Patients < 4 weeks old with neuroblastoma stage 4S are at risk of fatal outcome caused by progression of liver metastases. In other patients, tumor regression is characterized by a rapid biochemical normalization that precedes radiological regression.
Collapse
Affiliation(s)
- Michelle L Tas
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Michelle Nagtegaal
- Department of Social Pediatrics, Emma Children's Hospital/Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | | | - Godelieve A M Tytgat
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.,Department of Social Pediatrics, Emma Children's Hospital/Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Nico G G M Abeling
- Laboratory for Genetic Metabolic Diseases, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Jan Koster
- Department of Oncogenomics, Amsterdam University Medical Centers/University of Amsterdam, Amsterdam, The Netherlands
| | - Saskia M F Pluijm
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - C Michel Zwaan
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.,Department of Pediatric Oncology, Erasmus Medical Center, Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Bart de Keizer
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.,Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jan J Molenaar
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Max M van Noesel
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| |
Collapse
|
17
|
Ognibene M, Morini M, Garaventa A, Podestà M, Pezzolo A. Identification of a minimal region of loss on chromosome 6q27 associated with poor survival of high-risk neuroblastoma patients. Cancer Biol Ther 2020; 21:391-399. [PMID: 31959052 DOI: 10.1080/15384047.2019.1704122] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Patients with high-risk neuroblastoma (HR-NB) often initially respond to therapy, but afterward they become resistant and disease recurred. Unfortunately, it does not exist one or more specific chromosome defects associated with relapse or refractory NB. Recently, genomic evidence from primary tumors indicated that the distal region of chromosome 6q is loss in HR-NB patients with fatal outcome. We identified a minimal common region of loss of chromosome 6q27 spanning an area of 2.09 Mb by high-resolution DNA copy number data of a small cohort of HR-NB samples carrying 6q loss. This region of loss harbored five genes T, SFT2D1, RPS6KA2, FGFR1OP, and UNC93A. We found that low SFT2D1, RPS6KA2, and FGFR1OP gene expression predicted poor outcome in HR-NB patients using public R2 Platform. Further functional studies will be essential to confirm the presumed tumor suppressor gene(s) located within 6q27 region. These results suggest that SFT2D1, RPS6KA2, and FGFR1OP genes may be responsible for poor prognosis of HR-NB tumors with 6q27 loss, and their haploinsufficiency may be crucial in accelerating tumor progression.
Collapse
Affiliation(s)
- Marzia Ognibene
- Laboratorio Cellule Staminali Post Natali e Terapie Cellulari, IRCCS Istituto Gaslini, Genova, Italy
| | - Martina Morini
- Laboratorio di Biologia Molecolare, IRCCS Istituto Gaslini, Genova, Italy
| | - Alberto Garaventa
- Dipartimento di Emato-oncologia, IRCCS Istituto Gaslini, Genova, Italy
| | - Marina Podestà
- Laboratorio Cellule Staminali Post Natali e Terapie Cellulari, IRCCS Istituto Gaslini, Genova, Italy
| | - Annalisa Pezzolo
- Laboratorio Cellule Staminali Post Natali e Terapie Cellulari, IRCCS Istituto Gaslini, Genova, Italy
| |
Collapse
|
18
|
Depuydt P, Boeva V, Hocking TD, Cannoodt R, Ambros IM, Ambros PF, Asgharzadeh S, Attiyeh EF, Combaret V, Defferrari R, Fischer M, Hero B, Hogarty MD, Irwin MS, Koster J, Kreissman S, Ladenstein R, Lapouble E, Laureys G, London WB, Mazzocco K, Nakagawara A, Noguera R, Ohira M, Park JR, Pötschger U, Theissen J, Tonini GP, Valteau-Couanet D, Varesio L, Versteeg R, Speleman F, Maris JM, Schleiermacher G, De Preter K. Genomic Amplifications and Distal 6q Loss: Novel Markers for Poor Survival in High-risk Neuroblastoma Patients. J Natl Cancer Inst 2019. [PMID: 29514301 PMCID: PMC6186524 DOI: 10.1093/jnci/djy022] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Neuroblastoma is characterized by substantial clinical heterogeneity. Despite intensive treatment, the survival rates of high-risk neuroblastoma patients are still disappointingly low. Somatic chromosomal copy number aberrations have been shown to be associated with patient outcome, particularly in low- and intermediate-risk neuroblastoma patients. To improve outcome prediction in high-risk neuroblastoma, we aimed to design a prognostic classification method based on copy number aberrations. Methods In an international collaboration, normalized high-resolution DNA copy number data (arrayCGH and SNP arrays) from 556 high-risk neuroblastomas obtained at diagnosis were collected from nine collaborative groups and segmented using the same method. We applied logistic and Cox proportional hazard regression to identify genomic aberrations associated with poor outcome. Results In this study, we identified two types of copy number aberrations that are associated with extremely poor outcome. Distal 6q losses were detected in 5.9% of patients and were associated with a 10-year survival probability of only 3.4% (95% confidence interval [CI] = 0.5% to 23.3%, two-sided P = .002). Amplifications of regions not encompassing the MYCN locus were detected in 18.1% of patients and were associated with a 10-year survival probability of only 5.8% (95% CI = 1.5% to 22.2%, two-sided P < .001). Conclusions Using a unique large copy number data set of high-risk neuroblastoma cases, we identified a small subset of high-risk neuroblastoma patients with extremely low survival probability that might be eligible for inclusion in clinical trials of new therapeutics. The amplicons may also nominate alternative treatments that target the amplified genes.
Collapse
Affiliation(s)
- Pauline Depuydt
- Center for Medical Genetics, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Valentina Boeva
- Institut Cochin, Inserm U1016, CNRS UMR 8104, Université Paris Descartes UMR-S1016, Paris, France.,Institut Curie, Inserm U900, Mines ParisTech, PSL Research University, Paris, France
| | - Toby D Hocking
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Robrecht Cannoodt
- Center for Medical Genetics, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium.,Data Mining and Modelling for Biomedicine Group, VIB Center for Inflammation Research, Ghent, Belgium
| | - Inge M Ambros
- Children's Cancer Research Institute, Austria.,Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Peter F Ambros
- Children's Cancer Research Institute, Austria.,Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Shahab Asgharzadeh
- Division of Hematology/Oncology, Children's Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, CA
| | - Edward F Attiyeh
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA.,Center for Childhood Cancer Research, University of Pennsylvania, Philadelphia, PA.,Department of Pediatrics, University of Pennsylvania, Philadelphia, PA
| | - Valérie Combaret
- Centre Léon-Bérard, Laboratoire de Recherche Translationnelle, Lyon, France
| | | | - Matthias Fischer
- Department of Experimental Pediatric Oncology, University of Cologne, Cologne, Germany.,University Children's Hospital Cologne, Medical Faculty, and Center for Molecular Medicine Cologne
| | - Barbara Hero
- Department of Pediatric Oncology and Hematology, University of Cologne, Cologne, Germany
| | - Michael D Hogarty
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA.,Perelman School of Medicine (MDH), University of Pennsylvania, Philadelphia, PA
| | - Meredith S Irwin
- Division of Hematology-Oncology, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Jan Koster
- Department of Oncogenomics, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Susan Kreissman
- Department of Pediatrics, Duke University School of Medicine, Durham, NC
| | - Ruth Ladenstein
- Children's Cancer Research Institute, Austria.,Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Eve Lapouble
- Genetic Somatic Unit.,Institut Curie, Paris, France
| | - Geneviève Laureys
- Department of Pediatric Hematology and Oncology, Ghent University Hospital, De Pintelaan, Ghent, Belgium
| | - Wendy B London
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA
| | - Katia Mazzocco
- Department of Pathology, Istituto Giannina Gaslini, Genova, Italy
| | | | - Rosa Noguera
- Pathology Department, Medical School, University of Valencia, Valencia, Spain.,Medical Research Foundation INCLIVA, Valencia, Spain.,CIBERONC, Madrid, Spain
| | - Miki Ohira
- Research Institute for Clinical Oncology Saitama Cancer Center, Saitama, Japan
| | - Julie R Park
- Seattle Children's Hospital and University of Washington, Seattle, WA
| | | | - Jessica Theissen
- Department of Experimental Pediatric Oncology, University of Cologne, Cologne, Germany
| | - Gian Paolo Tonini
- Laboratory of Neuroblastoma, Onco/Haematology Laboratory, University of Padua, Pediatric Research Institute (IRP)-Città della Speranza, Padova, Italy
| | | | - Luigi Varesio
- Laboratory of Molecular Biology (LV), Istituto Giannina Gaslini, Genova, Italy
| | - Rogier Versteeg
- Department of Oncogenomics, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Frank Speleman
- Center for Medical Genetics, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - John M Maris
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA.,Center for Childhood Cancer Research, University of Pennsylvania, Philadelphia, PA.,Department of Pediatrics, University of Pennsylvania, Philadelphia, PA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA.,Abramson Family Cancer Research Institute, Philadelphia, PA
| | - Gudrun Schleiermacher
- U830 INSERM, Recherche Translationelle en Oncologie Pédiatrique (RTOP) and Department of Pediatric Oncology
| | - Katleen De Preter
- Center for Medical Genetics, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| |
Collapse
|
19
|
Grasso S, Cangelosi D, Chapelle J, Alzona M, Centonze G, Lamolinara A, Salemme V, Angelini C, Morellato A, Saglietto A, Bianchi FT, Cabodi S, Salaroglio IC, Fusella F, Ognibene M, Iezzi M, Pezzolo A, Poli V, Di Cunto F, Eva A, Riganti C, Varesio L, Turco E, Defilippi P. The SRCIN1/p140Cap adaptor protein negatively regulates the aggressiveness of neuroblastoma. Cell Death Differ 2019; 27:790-807. [PMID: 31285546 PMCID: PMC7205889 DOI: 10.1038/s41418-019-0386-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 05/21/2019] [Accepted: 06/21/2019] [Indexed: 01/01/2023] Open
Abstract
Neuroblastoma is the most common extra-cranial pediatric solid tumor, responsible for 13–15% of pediatric cancer death. Its intrinsic heterogeneity makes it difficult to target for successful therapy. The adaptor protein p140Cap/SRCIN1 negatively regulates tumor cell features and limits breast cancer progression. This study wish to assess if p140Cap is a key biological determinant of neuroblastoma outcome. RNAseq profiles of a large cohort of neuroblastoma patients show that SRCIN1 mRNA levels are an independent risk factor inversely correlated to disease aggressiveness. In high-risk patients, CGH+SNP microarray analysis of primary neuroblastoma identifies SRCIN1 as frequently altered by hemizygous deletion, copy-neutral loss of heterozygosity, or disruption. Functional experiments show that p140Cap negatively regulates Src and STAT3 signaling, affects anchorage-independent growth and migration, in vivo tumor growth and spontaneous lung metastasis formation. p140Cap also increases sensitivity of neuroblastoma cells to doxorubicin and etoposide treatment, as well as to a combined treatment with chemotherapy drugs and Src inhibitors. Our functional findings point to a causal role of p140Cap in curbing the aggressiveness of neuroblastoma, due to its ability to impinge on specific molecular pathways, and to sensitize cells to therapeutic treatment. This study provides the first evidence that the SRCIN1/p140Cap adaptor protein is a key player in neuroblastoma as a new independent prognostic marker for patient outcome and treatment. Altogether, these data highlight the potential clinical impact of SRCIN1/p140Cap expression in neuroblastoma tumors, in terms of reducing cytotoxic effects of chemotherapy, one of the main issues for pediatric tumor treatment.
Collapse
Affiliation(s)
- Silvia Grasso
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126, Torino, Italy
| | - Davide Cangelosi
- Laboratory of Molecular Biology, Giannina Gaslini Institute, 16147, Genova, Italy
| | - Jennifer Chapelle
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126, Torino, Italy
| | - Melissa Alzona
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126, Torino, Italy
| | - Giorgia Centonze
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126, Torino, Italy
| | - Alessia Lamolinara
- Department of Medicine and Aging Science, Center of Excellence on Aging and Translational Medicine (CeSi-Met), G. D'Annunzio University, Chieti-Pescara, Italy
| | - Vincenzo Salemme
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126, Torino, Italy
| | - Costanza Angelini
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126, Torino, Italy
| | - Alessandro Morellato
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126, Torino, Italy
| | - Andrea Saglietto
- Cardiology Division, Department of Medical Sciences, University of Torino, 10126 Torino, Italy
| | - Federico Tommaso Bianchi
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126, Torino, Italy.,Neuroscience Institute Cavalieri Ottolenghi, Regione Gonzole 10, 10043, Orbassano (TO), Italy
| | - Sara Cabodi
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126, Torino, Italy
| | - Iris Chiara Salaroglio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126, Torino, Italy.,Department of Oncology, University of Torino, 10126, Torino, Italy
| | - Federica Fusella
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126, Torino, Italy
| | - Marzia Ognibene
- Laboratorio Cellule Staminali Post Natali e Terapie Cellulari, Istituto Giannina Gaslini, Genova, Italy
| | - Manuela Iezzi
- Department of Medicine and Aging Science, Center of Excellence on Aging and Translational Medicine (CeSi-Met), G. D'Annunzio University, Chieti-Pescara, Italy
| | - Annalisa Pezzolo
- Laboratorio Cellule Staminali Post Natali e Terapie Cellulari, Istituto Giannina Gaslini, Genova, Italy
| | - Valeria Poli
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126, Torino, Italy
| | - Ferdinando Di Cunto
- Neuroscience Institute Cavalieri Ottolenghi, Regione Gonzole 10, 10043, Orbassano (TO), Italy
| | - Alessandra Eva
- Laboratory of Molecular Biology, Giannina Gaslini Institute, 16147, Genova, Italy
| | - Chiara Riganti
- Department of Oncology, University of Torino, 10126, Torino, Italy
| | - Luigi Varesio
- Laboratory of Molecular Biology, Giannina Gaslini Institute, 16147, Genova, Italy
| | - Emilia Turco
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126, Torino, Italy
| | - Paola Defilippi
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126, Torino, Italy.
| |
Collapse
|
20
|
The Transcribed-Ultra Conserved Regions: Novel Non-Coding RNA Players in Neuroblastoma Progression. Noncoding RNA 2019; 5:ncrna5020039. [PMID: 31167408 PMCID: PMC6631508 DOI: 10.3390/ncrna5020039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 12/15/2022] Open
Abstract
The Transcribed-Ultra Conserved Regions (T-UCRs) are a class of novel non-coding RNAs that arise from the dark matter of the genome. T-UCRs are highly conserved between mouse, rat, and human genomes, which might indicate a definitive role for these elements in health and disease. The growing body of evidence suggests that T-UCRs contribute to oncogenic pathways. Neuroblastoma is a type of childhood cancer that is challenging to treat. The role of non-coding RNAs in the pathogenesis of neuroblastoma, in particular for cancer development, progression, and therapy resistance, has been documented. Exosmic non-coding RNAs are also involved in shaping the biology of the tumor microenvironment in neuroblastoma. In recent years, the involvement of T-UCRs in a wide variety of pathways in neuroblastoma has been discovered. Here, we present an overview of the involvement of T-UCRs in various cellular pathways, such as DNA damage response, proliferation, chemotherapy response, MYCN (v-myc myelocytomatosis viral related oncogene, neuroblastoma derived (avian)) amplification, gene copy number, and immune response, as well as correlate it to patient survival in neuroblastoma.
Collapse
|
21
|
Trigg RM, Shaw JA, Turner SD. Opportunities and challenges of circulating biomarkers in neuroblastoma. Open Biol 2019; 9:190056. [PMID: 31088252 PMCID: PMC6544987 DOI: 10.1098/rsob.190056] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/23/2019] [Indexed: 12/11/2022] Open
Abstract
Molecular analysis of nucleic acid and protein biomarkers is becoming increasingly common in paediatric oncology for diagnosis, risk stratification and molecularly targeted therapeutics. However, many current and emerging biomarkers are based on analysis of tumour tissue, which is obtained through invasive surgical procedures and in some cases may not be accessible. Over the past decade, there has been growing interest in the utility of circulating biomarkers such as cell-free nucleic acids, circulating tumour cells and extracellular vesicles as a so-called liquid biopsy of cancer. Here, we review the potential of emerging circulating biomarkers in the management of neuroblastoma and highlight challenges to their implementation in the clinic.
Collapse
Affiliation(s)
- Ricky M. Trigg
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Jacqui A. Shaw
- Leicester Cancer Research Centre, College of Life Sciences, University of Leicester, Leicester LE2 7LX, UK
| | - Suzanne D. Turner
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge CB2 0QQ, UK
| |
Collapse
|
22
|
Parodi S, Pistorio A, Erminio G, Ognibene M, Morini M, Garaventa A, Gigliotti AR, Haupt R, Frassoni F, Pezzolo A. Loss of whole chromosome X predicts prognosis of neuroblastoma patients with numerical genomic profile. Pediatr Blood Cancer 2019; 66:e27635. [PMID: 30688024 DOI: 10.1002/pbc.27635] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/17/2018] [Accepted: 01/05/2019] [Indexed: 01/21/2023]
Abstract
BACKGROUND Neuroblastoma (NB), a pediatric tumor of the sympathetic nervous system, is characterized by very frequent chromosomal aberrations at the onset of the disease. Identification of further risk factors for relapse, which could lead to increased survival and potentially reduced late effects among survivors, is still urgently needed. Segmental chromosome aberrations (SCA) are associated with poor prognosis, whereas numerical whole-chromosome aberrations (NCA) are found in patients with a good prognosis; however, a small percentage of the latter patients (10%-15%) subsequently relapse and/or die of disease. PROCEDURE DNA copy-number data from 174 NB patients with an NCA genomic profile were analyzed. Association between NCA and event-free survival (EFS) was investigated by the Kaplan-Meier estimator and prognostic decision tree (DT). RESULTS DT identified 65 patients with normal chromosome X and an excellent five-year EFS (100%) independently from the stage at diagnosis. The association between poor EFS and whole chromosome X alterations was confirmed after stratification into two groups of different expected prognosis and by internal validation via bootstrap analysis. Furthermore, the association was also observed in an independent cohort of NB patients extracted from the data set of the National Cancer Institute TARGET Project for Neuroblastoma, but sample size was small (n = 75) and statistical significance was not achieved. CONCLUSIONS Loss of whole chromosome X may represent a new prognostic marker for NB patients with an NCA genomic profile. If confirmed by further studies, this finding could indicate that such patients should be reclassified as intermediate risk and treated accordingly.
Collapse
Affiliation(s)
- Stefano Parodi
- Epidemiologia e Biostatistica, IRCCS Istituto Giannina, Genova, Italy
| | - Angela Pistorio
- Epidemiologia e Biostatistica, IRCCS Istituto Giannina, Genova, Italy
| | - Giovanni Erminio
- Epidemiologia e Biostatistica, IRCCS Istituto Giannina, Genova, Italy
| | - Marzia Ognibene
- Laboratorio Cellule Staminali Post Natali e Terapie Cellulari, IRCCS Istituto Giannina, Genova, Italy
| | - Martina Morini
- Laboratorio di Biologia Molecolare, IRCCS Istituto Giannina, Genova, Italy
| | - Alberto Garaventa
- Dipartimento di Emato-oncologia, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | | | - Riccardo Haupt
- Epidemiologia e Biostatistica, IRCCS Istituto Giannina, Genova, Italy
| | - Francesco Frassoni
- Laboratorio Cellule Staminali Post Natali e Terapie Cellulari, IRCCS Istituto Giannina, Genova, Italy
| | - Annalisa Pezzolo
- Laboratorio Cellule Staminali Post Natali e Terapie Cellulari, IRCCS Istituto Giannina, Genova, Italy
| |
Collapse
|
23
|
Umapathy G, Mendoza-Garcia P, Hallberg B, Palmer RH. Targeting anaplastic lymphoma kinase in neuroblastoma. APMIS 2019; 127:288-302. [PMID: 30803032 PMCID: PMC6850425 DOI: 10.1111/apm.12940] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 02/18/2019] [Indexed: 12/15/2022]
Abstract
Over the last decade, anaplastic lymphoma kinase (ALK), a receptor tyrosine kinase (RTK), has been identified as a fusion partner in a diverse variety of translocation events resulting in oncogenic signaling in many different cancer types. In tumors where the full‐length ALK RTK itself is mutated, such as neuroblastoma, the picture regarding the role of ALK as an oncogenic driver is less clear. Neuroblastoma is a complex and heterogeneous tumor that arises from the neural crest derived peripheral nervous system. Although high‐risk neuroblastoma is rare, it often relapses and becomes refractory to treatment. Thus, neuroblastoma accounts for 10–15% of all childhood cancer deaths. Since most cases are in children under the age of 2, understanding the role and regulation of ALK during neural crest development is an important goal in addressing neuroblastoma tumorigenesis. An impressive array of tyrosine kinase inhibitors (TKIs) that act to inhibit ALK have been FDA approved for use in ALK‐driven cancers. ALK TKIs bind differently within the ATP‐binding pocket of the ALK kinase domain and have been associated with different resistance mutations within ALK itself that arise in response to therapeutic use, particularly in ALK‐fusion positive non‐small cell lung cancer (NSCLC). This patient population has highlighted the importance of considering the relevant ALK TKI to be used for a given ALK mutant variant. In this review, we discuss ALK in neuroblastoma, as well as the use of ALK TKIs and other strategies to inhibit tumor growth. Current efforts combining novel approaches and increasing our understanding of the oncogenic role of ALK in neuroblastoma are aimed at improving the efficacy of ALK TKIs as precision medicine options in the clinic.
Collapse
Affiliation(s)
- Ganesh Umapathy
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Patricia Mendoza-Garcia
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Bengt Hallberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ruth H Palmer
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
24
|
Depuydt P, Koster J, Boeva V, Hocking TD, Speleman F, Schleiermacher G, De Preter K. Meta-mining of copy number profiles of high-risk neuroblastoma tumors. Sci Data 2018; 5:180240. [PMID: 30375995 PMCID: PMC6207068 DOI: 10.1038/sdata.2018.240] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 09/10/2018] [Indexed: 02/01/2023] Open
Abstract
Neuroblastoma, a pediatric tumor of the sympathetic nervous system, is predominantly driven by copy number aberrations, which predict survival outcome in global neuroblastoma cohorts and in low-risk cases. For high-risk patients there is still a need for better prognostic biomarkers. Via an international collaboration, we collected copy number profiles of 556 high-risk neuroblastomas generated on different array platforms. This manuscript describes the composition of the dataset, the methods used to process the data, including segmentation and aberration calling, and data validation. t-SNE analysis shows that samples cluster according to MYCN status, and shows a difference between array platforms. 97.3% of samples are characterized by the presence of segmental aberrations, in regions frequently affected in neuroblastoma. Focal aberrations affect genes known to be involved in neuroblastoma, such as ALK and LIN28B. To conclude, we compiled a unique large copy number dataset of high-risk neuroblastoma tumors, available via R2 and a Shiny web application. The availability of patient survival data allows to further investigate the prognostic value of copy number aberrations.
Collapse
Affiliation(s)
- Pauline Depuydt
- Center for Medical Genetics, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Jan Koster
- Department of Oncogenomics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Valentina Boeva
- Institut Cochin, Inserm U1016, CNRS UMR 8104, Université Paris Descartes UMR-S1016, F-75014 Paris, France.,Institut Curie, Inserm U900, Mines ParisTech, PSL Research University, F-75005 Paris, France
| | - Toby D Hocking
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Frank Speleman
- Center for Medical Genetics, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Gudrun Schleiermacher
- Recherche Translationelle en Oncologie Pédiatrique (RTOP) and Department of Pediatric Oncology, Institut Curie, Paris, France.,U830, INSERM, Paris, France
| | - Katleen De Preter
- Center for Medical Genetics, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| |
Collapse
|
25
|
BAP1 induces cell death via interaction with 14-3-3 in neuroblastoma. Cell Death Dis 2018; 9:458. [PMID: 29686263 PMCID: PMC5913307 DOI: 10.1038/s41419-018-0500-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/15/2018] [Accepted: 03/19/2018] [Indexed: 11/08/2022]
Abstract
BRCA1-associated protein 1 (BAP1) is a nuclear deubiquitinating enzyme that is associated with multiprotein complexes that regulate key cellular pathways, including cell cycle, cellular differentiation, cell death, and the DNA damage response. In this study, we found that the reduced expression of BAP1 pro6motes the survival of neuroblastoma cells, and restoring the levels of BAP1 in these cells facilitated a delay in S and G2/M phase of the cell cycle, as well as cell apoptosis. The mechanism that BAP1 induces cell death is mediated via an interaction with 14-3-3 protein. The association between BAP1 and 14-3-3 protein releases the apoptotic inducer protein Bax from 14-3-3 and promotes cell death through the intrinsic apoptosis pathway. Xenograft studies confirmed that the expression of BAP1 reduces tumor growth and progression in vivo by lowering the levels of pro-survival factors such as Bcl-2, which in turn diminish the survival potential of the tumor cells. Patient data analyses confirmed the finding that the high-BAP1 mRNA expression correlates with a better clinical outcome. In summary, our study uncovers a new mechanism for BAP1 in the regulation of cell apoptosis in neuroblastoma cells.
Collapse
|
26
|
Li ZS, Chen P, Yao K, Wang B, Li J, Mi QW, Chen XF, Zhao Q, Li YH, Chen JP, Deng CZ, Ye YL, Zhong MZ, Liu ZW, Qin ZK, Lin XT, Liang WC, Han H, Zhou FJ. Development of a new outcome prediction model for Chinese patients with penile squamous cell carcinoma based on preoperative serum C-reactive protein, body mass index, and standard pathological risk factors: the TNCB score group system. Oncotarget 2018; 7:21023-33. [PMID: 26980738 PMCID: PMC4991509 DOI: 10.18632/oncotarget.8037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 01/24/2016] [Indexed: 11/25/2022] Open
Abstract
Purpose To determine the predictive value and feasibility of the new outcome prediction model for Chinese patients with penile squamous cell carcinoma. Results The 3-year disease-specific survival (DSS) was 92.3% in patients with < 8.70 mg/L CRP and 54.9% in those with elevated CRP (P < 0.001). The 3-year DSS was 86.5% in patients with a BMI < 22.6 Kg/m2 and 69.9% in those with a higher BMI (P = 0.025). In a multivariate analysis, pathological T stage (P < 0.001), pathological N stage (P = 0.002), BMI (P = 0.002), and CRP (P = 0.004) were independent predictors of DSS. A new scoring model was developed, consisting of BMI, CRP, and tumor T and N classification. In our study, we found that the addition of the above-mentioned parameters significantly increased the predictive accuracy of the system of the American Joint Committee on Cancer (AJCC) anatomic stage group. The accuracy of the new prediction category was verified. Methods A total of 172 Chinese patients with penile squamous cell cancer were analyzed retrospectively between November 2005 and November 2014. Statistical data analysis was conducted using the nonparametric method. Survival analysis was performed with the log-rank test and the Cox proportional hazard model. Based on regression estimates of significant parameters in multivariate analysis, a new BMI-, CRP- and pathologic factors-based scoring model was developed to predict disease-specific outcomes. The predictive accuracy of the model was evaluated using the internal and external validation. Conclusion The present study demonstrated that the TNCB score group system maybe a precise and easy to use tool for predicting outcomes in Chinese penile squamous cell carcinoma patients.
Collapse
Affiliation(s)
- Zai-Shang Li
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.,State Key Laboratory of Oncology in Southern China, Guangzhou, P. R. China.,Collaborative Innovation Center of Cancer Medicine, Guangzhou, P. R. China
| | - Peng Chen
- Department of Urology, Affiliated Tumor Hospital of Xinjiang Medical University, Urumchi, P. R. China
| | - Kai Yao
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.,State Key Laboratory of Oncology in Southern China, Guangzhou, P. R. China.,Collaborative Innovation Center of Cancer Medicine, Guangzhou, P. R. China
| | - Bin Wang
- Department of Urology, Cancer Center of Guangzhou Medical University, Guangzhou, P. R. China
| | - Jing Li
- Department of Urology, Cancer Center of Guangzhou Medical University, Guangzhou, P. R. China
| | - Qi-Wu Mi
- Department of Urology, Dong Guan People's Hospital, Guang Dong, P. R. China
| | - Xiao-Feng Chen
- Department of Urology,The First People's Hospital of Chenzhou, Chenzhou, P. R. China
| | - Qi Zhao
- School of Life Science, Sun Yat-sen University, School of Life Science, Guang Dong, P. R. China
| | - Yong-Hong Li
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.,State Key Laboratory of Oncology in Southern China, Guangzhou, P. R. China.,Collaborative Innovation Center of Cancer Medicine, Guangzhou, P. R. China
| | - Jie-Ping Chen
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.,State Key Laboratory of Oncology in Southern China, Guangzhou, P. R. China.,Collaborative Innovation Center of Cancer Medicine, Guangzhou, P. R. China
| | - Chuang-Zhong Deng
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.,State Key Laboratory of Oncology in Southern China, Guangzhou, P. R. China.,Collaborative Innovation Center of Cancer Medicine, Guangzhou, P. R. China
| | - Yun-Lin Ye
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.,State Key Laboratory of Oncology in Southern China, Guangzhou, P. R. China.,Collaborative Innovation Center of Cancer Medicine, Guangzhou, P. R. China
| | - Ming-Zhu Zhong
- Department of Urology, The People's Hospital of Jiangmen, Jiangmen, P. R. China
| | - Zhuo-Wei Liu
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.,State Key Laboratory of Oncology in Southern China, Guangzhou, P. R. China.,Collaborative Innovation Center of Cancer Medicine, Guangzhou, P. R. China
| | - Zi-Ke Qin
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.,State Key Laboratory of Oncology in Southern China, Guangzhou, P. R. China.,Collaborative Innovation Center of Cancer Medicine, Guangzhou, P. R. China
| | - Xiang-Tian Lin
- Zhongshan School of Medicine, Sun Yat-sen University, Guang Dong, P. R. China
| | - Wei-Cong Liang
- Zhongshan School of Medicine, Sun Yat-sen University, Guang Dong, P. R. China
| | - Hui Han
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.,State Key Laboratory of Oncology in Southern China, Guangzhou, P. R. China.,Collaborative Innovation Center of Cancer Medicine, Guangzhou, P. R. China
| | - Fang-Jian Zhou
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.,State Key Laboratory of Oncology in Southern China, Guangzhou, P. R. China.,Collaborative Innovation Center of Cancer Medicine, Guangzhou, P. R. China
| |
Collapse
|
27
|
Zammit V, Baron B, Ayers D. MiRNA Influences in Neuroblast Modulation: An Introspective Analysis. Genes (Basel) 2018; 9:genes9010026. [PMID: 29315268 PMCID: PMC5793179 DOI: 10.3390/genes9010026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/22/2017] [Accepted: 12/29/2017] [Indexed: 02/07/2023] Open
Abstract
Neuroblastoma (NB) is the most common occurring solid paediatric cancer in children under the age of five years. Whether of familial or sporadic origin, chromosome abnormalities contribute to the development of NB and cause dysregulation of microRNAs (miRNAs). MiRNAs are small non-coding, single stranded RNAs that target messenger RNAs at the post-transcriptional levels by repressing translation within all facets of human physiology. Such gene 'silencing' activities by miRNAs allows the development of regulatory feedback loops affecting multiple functions within the cell, including the possible differentiation of neural stem cell (NSC) lineage selection. Neurogenesis includes stages of self-renewal and fate specification of NSCs, migration and maturation of young neurones, and functional integration of new neurones into the neural circuitry, all of which are regulated by miRNAs. The role of miRNAs and their interaction in cellular processes are recognised aspects of cancer genetics, and miRNAs are currently employed as biomarkers for prognosis and tumour characterisation in multiple cancer models. Consequently, thorough understanding of the mechanisms of how these miRNAs interplay at the transcriptomic level will definitely lead to the development of novel, bespoke and efficient therapeutic measures, with this review focusing on the influences of miRNAs on neuroblast modulations leading to neuroblastoma.
Collapse
Affiliation(s)
- Vanessa Zammit
- National Blood Transfusion Service, St. Luke's Hospital, PTA1010 G'Mangia, Malta.
- School of Biomedical Science and Physiology, University of Wolverhampton, Wolverhampton WV1 1LY, UK.
| | - Byron Baron
- Centre for Molecular Medicine and Biobanking, Faculty of Medicine and Surgery, University of Malta, MSD2080 Msida, Malta.
| | - Duncan Ayers
- Centre for Molecular Medicine and Biobanking, Faculty of Medicine and Surgery, University of Malta, MSD2080 Msida, Malta.
- School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK.
| |
Collapse
|
28
|
De Wilde B, Beckers A, Lindner S, Kristina A, De Preter K, Depuydt P, Mestdagh P, Sante T, Lefever S, Hertwig F, Peng Z, Shi LM, Lee S, Vandermarliere E, Martens L, Menten B, Schramm A, Fischer M, Schulte J, Vandesompele J, Speleman F. The mutational landscape of MYCN, Lin28b and ALKF1174L driven murine neuroblastoma mimics human disease. Oncotarget 2017; 9:8334-8349. [PMID: 29492199 PMCID: PMC5823580 DOI: 10.18632/oncotarget.23614] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 10/28/2017] [Indexed: 12/27/2022] Open
Abstract
Genetically engineered mouse models have proven to be essential tools for unraveling fundamental aspects of cancer biology and for testing novel therapeutic strategies. To optimally serve these goals, it is essential that the mouse model faithfully recapitulates the human disease. Recently, novel mouse models for neuroblastoma have been developed. Here, we report on the further genomic characterization through exome sequencing and DNA copy number analysis of four of the currently available murine neuroblastoma model systems (ALK, Th-MYCN, Dbh-MYCN and Lin28b). The murine tumors revealed a low number of genomic alterations – in keeping with human neuroblastoma - and a positive correlation of the number of genetic lesions with the time to onset of tumor formation was observed. Gene copy number alterations are the hallmark of both murine and human disease and frequently affect syntenic genomic regions. Despite low mutational load, the genes mutated in murine disease were found to be enriched for genes mutated in human disease. Taken together, our study further supports the validity of the tested mouse models for mechanistic and preclinical studies of human neuroblastoma.
Collapse
Affiliation(s)
- Bram De Wilde
- Center for Medical Genetics, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent University, Ghent, Belgium
| | | | - Sven Lindner
- Department of Pediatric Oncology and Hematology, University Children's Hospital, Essen, Germany
| | - Althoff Kristina
- Department of Pediatric Oncology and Hematology, University Children's Hospital, Essen, Germany
| | - Katleen De Preter
- Center for Medical Genetics, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent University, Ghent, Belgium
| | - Pauline Depuydt
- Center for Medical Genetics, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent University, Ghent, Belgium
| | - Pieter Mestdagh
- Center for Medical Genetics, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent University, Ghent, Belgium
| | - Tom Sante
- Center for Medical Genetics, Ghent University, Ghent, Belgium
| | - Steve Lefever
- Center for Medical Genetics, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent University, Ghent, Belgium
| | - Falk Hertwig
- Department of Experimental Pediatric Oncology, University Children's Hospital of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Zhiyu Peng
- BGI-Shenzhen, Bei Shan Industrial Zone, Yantian District, Shenzhen, Guangdong, China
| | - Le-Ming Shi
- Center for Pharmacogenomics and Fudan-Zhangjiang Center for Clinical Genomics, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Sangkyun Lee
- Department of Computer Science, Artificial Intelligence Group, TU Dortmund, Dortmund, Germany
| | - Elien Vandermarliere
- Medical Biotechnology Center, VIB, Ghent, Belgium.,Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Lennart Martens
- Medical Biotechnology Center, VIB, Ghent, Belgium.,Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Björn Menten
- Center for Medical Genetics, Ghent University, Ghent, Belgium
| | - Alexander Schramm
- Department of Pediatric Oncology and Hematology, University Children's Hospital, Essen, Germany
| | - Matthias Fischer
- Department of Experimental Pediatric Oncology, University Children's Hospital of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Johannes Schulte
- Pediatric Oncology and Hematology, Charité University Medicine, Berlin, Germany
| | - Jo Vandesompele
- Center for Medical Genetics, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent University, Ghent, Belgium
| | - Frank Speleman
- Center for Medical Genetics, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent University, Ghent, Belgium
| |
Collapse
|
29
|
Novel Mechanisms of ALK Activation Revealed by Analysis of the Y1278S Neuroblastoma Mutation. Cancers (Basel) 2017; 9:cancers9110149. [PMID: 29084134 PMCID: PMC5704167 DOI: 10.3390/cancers9110149] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/09/2017] [Accepted: 10/23/2017] [Indexed: 12/20/2022] Open
Abstract
Numerous mutations have been observed in the Anaplastic Lymphoma Kinase (ALK) receptor tyrosine kinase (RTK) in both germline and sporadic neuroblastoma. Here, we have investigated the Y1278S mutation, observed in four patient cases, and its potential importance in the activation of the full length ALK receptor. Y1278S is located in the 1278-YRASYY-1283 motif of the ALK activation loop, which has previously been reported to be important in the activation of the ALK kinase domain. In this study, we have characterized activation loop mutations within the context of the full length ALK employing cell culture and Drosophila melanogaster model systems. Our results show that the Y1278S mutant observed in patients with neuroblastoma harbors gain-of-function activity. Secondly, we show that the suggested interaction between Y1278 and other amino acids might be of less importance in the activation process of the ALK kinase than previously proposed. Thirdly, of the three individual tyrosines in the 1278-YRASYY-1283 activation loop, we find that Y1283 is the critical tyrosine in the activation process. Taken together, our observations employing different model systems reveal new mechanistic insights on how the full length ALK receptor is activated and highlight differences with earlier described activation mechanisms observed in the NPM-ALK fusion protein, supporting a mechanism of activation more in line with those observed for the Insulin Receptor (InR).
Collapse
|
30
|
Mlakar V, Jurkovic Mlakar S, Lopez G, Maris JM, Ansari M, Gumy-Pause F. 11q deletion in neuroblastoma: a review of biological and clinical implications. Mol Cancer 2017; 16:114. [PMID: 28662712 PMCID: PMC5492892 DOI: 10.1186/s12943-017-0686-8] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 06/25/2017] [Indexed: 12/12/2022] Open
Abstract
Deletion of the long arm of chromosome 11 (11q deletion) is one of the most frequent events that occur during the development of aggressive neuroblastoma. Clinically, 11q deletion is associated with higher disease stage and decreased survival probability. During the last 25 years, extensive efforts have been invested to identify the precise frequency of 11q aberrations in neuroblastoma, the recurrently involved genes, and to understand the molecular mechanisms of 11q deletion, but definitive answers are still unclear. In this review, it is our intent to compile and review the evidence acquired to date on 11q deletion in neuroblastoma.
Collapse
Affiliation(s)
- Vid Mlakar
- CANSEARCH Research Laboratory, Geneva University Medical School, Avenue de la Roseraie 64, 1205, Geneva, Switzerland
| | - Simona Jurkovic Mlakar
- CANSEARCH Research Laboratory, Geneva University Medical School, Avenue de la Roseraie 64, 1205, Geneva, Switzerland
| | - Gonzalo Lopez
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - John M Maris
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Marc Ansari
- CANSEARCH Research Laboratory, Geneva University Medical School, Avenue de la Roseraie 64, 1205, Geneva, Switzerland.,Department of Pediatrics, Onco-Hematology Unit, Geneva University Hospitals, Rue Willy-Donzé 6, 1205, Geneva, Switzerland
| | - Fabienne Gumy-Pause
- CANSEARCH Research Laboratory, Geneva University Medical School, Avenue de la Roseraie 64, 1205, Geneva, Switzerland. .,Department of Pediatrics, Onco-Hematology Unit, Geneva University Hospitals, Rue Willy-Donzé 6, 1205, Geneva, Switzerland.
| |
Collapse
|
31
|
Kuzyk A, Booth S, Righolt C, Mathur S, Gartner J, Mai S. MYCN overexpression is associated with unbalanced copy number gain, altered nuclear location, and overexpression of chromosome arm 17q genes in neuroblastoma tumors and cell lines. Genes Chromosomes Cancer 2015; 54:616-28. [PMID: 26171843 DOI: 10.1002/gcc.22273] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 05/13/2015] [Accepted: 05/13/2015] [Indexed: 12/26/2022] Open
Abstract
MYCN amplification and MYCN overexpression are poor prognostic factors in neuroblastoma. Tumors with unbalanced chromosome arm 17q gain are often associated with MYCN amplification; however, the relationship between chromosome 17 copy number status and MYCN expression is not known. We investigated the relationship between MYCN expression and chromosome 17 copy number, nuclear location, and gene expression. By performing dual-colored fluorescence in situ hybridization on 16 primary neuroblastomas, we found that those with unbalanced gain of 17q have high MYCN expression, those with no gain have medium expression, and those with numerical gain have low expression (P < 0.0001). We also found that the nuclear location of 17q correlates with chromosome 17 copy number status: copies in tumors with unbalanced gain and no gain of chromosome 17 occupy a more central location than those in tumors with balanced gain (P < 0.0001). We show that a more central nuclear location of 17q coincides with increased expression of genes found within this chromosome arm. To further understand the association between MYCN expression and chromosome 17, we overexpressed MYCN in two low-expressing MYCN cell lines, SHEP and GIMEN. We found that both cell lines had an unbalanced gain of chromosome 17q, a more central nuclear location of the region and increased expression of the 17q genes. Therefore, this study indicates, for the first time, a functional relationship between MYCN overexpression and the gain of 17q in neuroblastoma.
Collapse
Affiliation(s)
- Alexandra Kuzyk
- Manitoba Institute of Cell Biology, University of Manitoba, CancerCare Manitoba, Winnipeg, MB, Canada
| | - Samuel Booth
- Manitoba Institute of Cell Biology, University of Manitoba, CancerCare Manitoba, Winnipeg, MB, Canada
| | - Christiaan Righolt
- Manitoba Institute of Cell Biology, University of Manitoba, CancerCare Manitoba, Winnipeg, MB, Canada
| | - Shubha Mathur
- Manitoba Institute of Cell Biology, University of Manitoba, CancerCare Manitoba, Winnipeg, MB, Canada
| | - John Gartner
- Department of Pathology, University of Manitoba, Health Sciences Centre, Winnipeg, MB, Canada
| | - Sabine Mai
- Manitoba Institute of Cell Biology, University of Manitoba, CancerCare Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
32
|
Berbegall AP, Villamón E, Tadeo I, Martinsson T, Cañete A, Castel V, Navarro S, Noguera R. Neuroblastoma after childhood: prognostic relevance of segmental chromosome aberrations, ATRX protein status, and immune cell infiltration. Neoplasia 2015; 16:471-80. [PMID: 25077701 PMCID: PMC4198743 DOI: 10.1016/j.neo.2014.05.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 05/09/2014] [Accepted: 05/16/2014] [Indexed: 01/08/2023] Open
Abstract
Neuroblastoma (NB) is a common malignancy in children but rarely occurs during adolescence or adulthood. This subgroup is characterized by an indolent disease course, almost uniformly fatal, yet little is known about the biologic characteristics. The aim of this study was to identify differential features regarding DNA copy number alterations, α-thalassemia/mental retardation syndrome X-linked (ATRX) protein expression, and the presence of tumor-associated inflammatory cells. Thirty-one NB patients older than 10 years who were included in the Spanish NB Registry were considered for the current study; seven young and middle-aged adult patients (range 18-60 years) formed part of the cohort. We performed single nucleotide polymorphism arrays, immunohistochemistry for immune markers (CD4, CD8, CD20, CD11b, CD11c, and CD68), and ATRX protein expression. Assorted genetic profiles were found with a predominant presence of a segmental chromosome aberration (SCA) profile. Preadolescent and adolescent NB tumors showed a higher number of SCA, including 17q gain and 11q deletion. There was also a marked infiltration of immune cells, mainly high and heterogeneous, in young and middle-aged adult tumors. ATRX negative expression was present in the tumors. The characteristics of preadolescent, adolescent, young adult, and middle-aged adult NB tumors are different, not only from childhood NB tumors but also from each other. Similar examinations of a larger number of such tumor tissues from cooperative groups should lead to a better older age–dependent tumor pattern and to innovative, individual risk-adapted therapeutic approaches for these patients.
Collapse
Affiliation(s)
- Ana P Berbegall
- Pathology Department, Medical School, University of Valencia, INCLIVA, Valencia, Spain; Medical Research Foundation INCLIVA, Hospital Clínico, INCLIVA, Valencia, Spain
| | - Eva Villamón
- Pathology Department, Medical School, University of Valencia, INCLIVA, Valencia, Spain
| | - Irene Tadeo
- Pathology Department, Medical School, University of Valencia, INCLIVA, Valencia, Spain; Medical Research Foundation INCLIVA, Hospital Clínico, INCLIVA, Valencia, Spain
| | - Tommy Martinsson
- Department of Clinical Genetics, Göteborg University, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Adela Cañete
- Pediatric Oncology Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Victoria Castel
- Pediatric Oncology Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Samuel Navarro
- Pathology Department, Medical School, University of Valencia, INCLIVA, Valencia, Spain
| | - Rosa Noguera
- Pathology Department, Medical School, University of Valencia, INCLIVA, Valencia, Spain.
| |
Collapse
|
33
|
Angelini P, Baruchel S, Marrano P, Irwin MS, Thorner PS. The neuroblastoma and ganglion components of nodular ganglioneuroblastoma are genetically similar: evidence against separate clonal origins. Mod Pathol 2015; 28:166-76. [PMID: 25081755 DOI: 10.1038/modpathol.2014.90] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/18/2014] [Accepted: 04/19/2014] [Indexed: 12/12/2022]
Abstract
Nodular ganglioneuroblastoma is characterized by a macroscopic nodule of neuroblastoma within a ganglioneuromatous component. These two components have been considered to originate from separate clones, with the neuroblastoma clone accounting for the clinical behavior of nodular ganglioneuroblastoma. In order to investigate the clonal origin of the cellular components (neuroblasts, ganglion cells, and Schwann cells) of nodular ganglioneuroblastoma, paraffin-embedded tumor samples from eight cases were analyzed by single nucleotide polymorphism array and in situ hybridization. DNA was extracted separately from neuroblastomatous and ganglioneuromatous areas. By in situ hybridization, MYCN gain (4-10 gene copies/nucleus) was detected in 7/8 neuroblastoma samples. In ganglioneuromatous regions, gains were also detected in ganglion cells but not in Schwann cells. Single-nucleotide polymorphism array studies identified chromosome losses (11q and 14q) and gains (12, 13q, 17q and 18q) in the neuroblastoma component, whereas the ganglioneuromatous component showed fewer or no genetic alterations. There were no unique copy number changes distinguishing nodular ganglioneuroblastoma from other subtypes of neuroblastoma. By in situ hybridization, ganglion cells but not Schwann cells showed the same alterations detected in neuroblasts. Thus, neuroblasts and ganglion cells in nodular ganglioneuroblastoma are genetically related and may arise from the same clone. In contrast, the Schwann cells have a different origin and may be derived from a non-neoplastic neural crest precursor. Our results suggest that the clinical behavior of nodular ganglioneuroblastoma cannot be explained by the presence of separate clones with distinct genetic signatures.
Collapse
Affiliation(s)
- Paola Angelini
- Division of Haematology/Oncology, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Sylvain Baruchel
- 1] Division of Haematology/Oncology, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada [2] Department of Pediatrics, University of Toronto, University of Toronto, Toronto, ON, Canada
| | - Paula Marrano
- Division of Pathology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Meredith S Irwin
- 1] Division of Haematology/Oncology, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada [2] Department of Pediatrics, University of Toronto, University of Toronto, Toronto, ON, Canada
| | - Paul S Thorner
- 1] Division of Pathology, The Hospital for Sick Children, Toronto, ON, Canada [2] Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
34
|
Newman EA, Lu F, Bashllari D, Wang L, Opipari AW, Castle VP. Alternative NHEJ Pathway Components Are Therapeutic Targets in High-Risk Neuroblastoma. Mol Cancer Res 2015; 13:470-82. [PMID: 25563294 DOI: 10.1158/1541-7786.mcr-14-0337] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED In neuroblastoma, MYCN genomic amplification and segmental chromosomal alterations including 1p or 11q loss of heterozygocity and/or 17q gain are associated with progression and poor clinical outcome. Segmental alterations are the strongest predictor of relapse and result from unbalanced translocations attributable to erroneous repair of chromosomal breaks. Although sequence analysis of affected genomic regions suggests that these errors arise by nonhomologous end-joining (NHEJ) of DNA double-strand breaks (DSB), abnormalities in NHEJ have not been implicated in neuroblastoma pathogenesis. On this basis, the hypothesis that an error-prone mechanism of NHEJ is critical for neuroblastoma cell survival was tested. Plasmid-based DSB repair assays demonstrated efficient NHEJ activity in human neuroblastoma cells with repair products that were error-prone relative to nontransformed cells. Neuroblastoma cells derived from tumorigenic neuroblastic phenotypes had differential DNA repair protein expression patterns compared with nontumorigenic cells. Tumorigenic neuroblastoma cells were deficient in DNA ligase IV (Lig4) and Artemis (DCLRE1C), mediators of canonical NHEJ. Conversely, enzymes required for an error-prone alternative NHEJ pathway (alt-NHEJ), DNA Ligase IIIα (Lig3), DNA Ligase I (Lig1), and PARP1 protein were upregulated. Inhibition of Lig3 and Lig1 led to DSB accumulation and cell death, linking alt-NHEJ to cell survival in neuroblastoma. Neuroblastoma cells demonstrated sensitivity to PARP1 inhibition (PARPi) that paralleled PARP1 expression. In a dataset of human neuroblastoma patient tumors, overexpression of genes encoding alt-NHEJ proteins associated with poor survival. IMPLICATIONS These findings provide an insight into DNA repair fidelity in neuroblastoma and identify components of the alt-NHEJ pathway as promising therapeutic targets.
Collapse
Affiliation(s)
- Erika A Newman
- Department of Surgery, C.S. Mott Children and Women's Hospital, Translational Oncology Program, The University of Michigan Medical School, Ann Arbor, Michigan.
| | - Fujia Lu
- Department of Surgery, C.S. Mott Children and Women's Hospital, Translational Oncology Program, The University of Michigan Medical School, Ann Arbor, Michigan
| | - Daniela Bashllari
- Department of Surgery, C.S. Mott Children and Women's Hospital, Translational Oncology Program, The University of Michigan Medical School, Ann Arbor, Michigan
| | - Li Wang
- Department of Pediatrics, C.S. Mott Children and Women's Hospital, Translational Oncology Program, The University of Michigan Medical School, Ann Arbor, Michigan
| | - Anthony W Opipari
- Department of Obstetrics and Gynecology, C.S. Mott Children and Women's Hospital, The University of Michigan Medical School, Ann Arbor, Michigan
| | - Valerie P Castle
- Department of Pediatrics, C.S. Mott Children and Women's Hospital, Translational Oncology Program, The University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
35
|
Umapathy G, El Wakil A, Witek B, Chesler L, Danielson L, Deng X, Gray NS, Johansson M, Kvarnbrink S, Ruuth K, Schönherr C, Palmer RH, Hallberg B. The kinase ALK stimulates the kinase ERK5 to promote the expression of the oncogene MYCN in neuroblastoma. Sci Signal 2014; 7:ra102. [PMID: 25351247 DOI: 10.1126/scisignal.2005470] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Anaplastic lymphoma kinase (ALK) is an important molecular target in neuroblastoma. Although tyrosine kinase inhibitors abrogating ALK activity are currently in clinical use for the treatment of ALK-positive (ALK(+)) disease, monotherapy with ALK tyrosine kinase inhibitors may not be an adequate solution for ALK(+) neuroblastoma patients. Increased expression of the gene encoding the transcription factor MYCN is common in neuroblastomas and correlates with poor prognosis. We found that the kinase ERK5 [also known as big mitogen-activated protein kinase (MAPK) 1 (BMK1)] is activated by ALK through a pathway mediated by phosphoinositide 3-kinase (PI3K), AKT, MAPK kinase kinase 3 (MEKK3), and MAPK kinase 5 (MEK5). ALK-induced transcription of MYCN and stimulation of cell proliferation required ERK5. Pharmacological or RNA interference-mediated inhibition of ERK5 suppressed the proliferation of neuroblastoma cells in culture and enhanced the antitumor efficacy of the ALK inhibitor crizotinib in both cells and xenograft models. Together, our results indicate that ERK5 mediates ALK-induced transcription of MYCN and proliferation of neuroblastoma, suggesting that targeting both ERK5 and ALK may be beneficial in neuroblastoma patients.
Collapse
Affiliation(s)
- Ganesh Umapathy
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Göteborg, Sweden
| | - Abeer El Wakil
- Department of Molecular Biology, Building 6L, Umeå University, 901 87 Umeå, Sweden
| | - Barbara Witek
- Department of Molecular Biology, Building 6L, Umeå University, 901 87 Umeå, Sweden
| | - Louis Chesler
- The Institute of Cancer Research, The Royal Marsden NHS Foundation Trust, Sutton, Surrey SM2 5NG, UK
| | - Laura Danielson
- The Institute of Cancer Research, The Royal Marsden NHS Foundation Trust, Sutton, Surrey SM2 5NG, UK
| | - Xianming Deng
- School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China. Dana-Farber Cancer Institute, Harvard Medical School, Seeley G. Mudd Building, 628A, 250 Longwood Avenue, Boston, MA 02115, USA
| | - Nathanael S Gray
- Dana-Farber Cancer Institute, Harvard Medical School, Seeley G. Mudd Building, 628A, 250 Longwood Avenue, Boston, MA 02115, USA
| | - Mikael Johansson
- Department of Radiation Sciences, Oncology, Umeå University, 901 87 Umea, Sweden
| | - Samuel Kvarnbrink
- Department of Radiation Sciences, Oncology, Umeå University, 901 87 Umea, Sweden
| | - Kristina Ruuth
- Department of Molecular Biology, Building 6L, Umeå University, 901 87 Umeå, Sweden
| | - Christina Schönherr
- Department of Molecular Biology, Building 6L, Umeå University, 901 87 Umeå, Sweden
| | - Ruth H Palmer
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Göteborg, Sweden. Department of Molecular Biology, Building 6L, Umeå University, 901 87 Umeå, Sweden
| | - Bengt Hallberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Göteborg, Sweden.
| |
Collapse
|
36
|
Harvey H, Piskareva O, Creevey L, Alcock LC, Buckley PG, O'Sullivan MJ, Segura MF, Gallego S, Stallings RL, Bray IM. Modulation of chemotherapeutic drug resistance in neuroblastoma SK-N-AS cells by the neural apoptosis inhibitory protein and miR-520f. Int J Cancer 2014; 136:1579-88. [PMID: 25137037 DOI: 10.1002/ijc.29144] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 06/20/2014] [Accepted: 07/23/2014] [Indexed: 12/26/2022]
Abstract
The acquisition of multidrug resistance is a major impediment to the successful treatment of neuroblastoma, a clinically heterogeneous cancer accounting for ∼15% of all pediatric cancer deaths. The MYCN transcription factor, whose gene is amplified in ∼30% of high-risk neuroblastoma cases, influences drug resistance by regulating a cadre of genes, including those involved with drug efflux, however, other high-risk subtypes of neuroblastoma lacking MYCN amplification, such as those with chromosome 11q deletions, also acquire multidrug resistance. To elucidate additional mechanisms involved with drug resistance in non-MYCN amplified tumour cells, an SK-N-AS subline (SK-N-AsCis24) that is significantly resistant to cisplatin and cross resistant to etoposide was developed through a pulse-selection process. High resolution aCGH analysis of SK-N-AsCis24 revealed a focal gain on chromosome 5 containing the coding sequence for the neural apoptosis inhibitory protein (NAIP). Significant overexpression of NAIP mRNA and protein was documented, while experimental modulation of NAIP levels in both SK-N-AsCis24 and in parental SK-N-AS cells confirmed that NAIP was responsible for the drug resistant phenotype by apoptosis inhibition. Furthermore, a decrease in the NAIP targeting microRNA, miR-520f, was also demonstrated to be partially responsible for increased NAIP levels in SK-N-AsCis24. Interestingly, miR-520f levels were determined to be significantly lower in postchemotherapy treatment tumours relative to matched prechemotherapy samples, consistent with a role for this miRNA in the acquisition of drug resistance in vivo, potentially through decreased NAIP targeting. Our findings provide biological novel insight into neuroblastoma drug-resistance and have implications for future therapeutic research.
Collapse
Affiliation(s)
- Harry Harvey
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin 2, Ireland; National Children's Research Centre, Our Ladies Hospital for Sick Children, Dublin 12, Ireland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Althoff K, Beckers A, Bell E, Nortmeyer M, Thor T, Sprüssel A, Lindner S, De Preter K, Florin A, Heukamp LC, Klein-Hitpass L, Astrahantseff K, Kumps C, Speleman F, Eggert A, Westermann F, Schramm A, Schulte JH. A Cre-conditional MYCN-driven neuroblastoma mouse model as an improved tool for preclinical studies. Oncogene 2014; 34:3357-68. [PMID: 25174395 PMCID: PMC4487199 DOI: 10.1038/onc.2014.269] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 06/01/2014] [Accepted: 07/08/2014] [Indexed: 12/21/2022]
Abstract
Neuroblastoma, a childhood cancer that originates from neural crest-derived cells, is the most common deadly solid tumor of infancy. Amplification of the MYCN oncogene, which occurs in approximately 20–25% of human neuroblastomas, is the most prominent genetic marker of high-stage disease. The availability of valid preclinical in vivo models is a prerequisite to develop novel targeted therapies. We here report on the generation of transgenic mice with Cre-conditional induction of MYCN in dopamine β-hydroxylase-expressing cells, termed LSL-MYCN;Dbh-iCre. These mice develop neuroblastic tumors with an incidence of >75%, regardless of strain background. Molecular profiling of tumors revealed upregulation of the MYCN-dependent miR-17–92 cluster as well as expression of neuroblastoma marker genes, including tyrosine hydroxylase and the neural cell adhesion molecule 1. Gene set enrichment analyses demonstrated significant correlation with MYC-associated expression patterns. Array comparative genome hybridization showed that chromosomal aberrations in LSL-MYCN;Dbh-iCre tumors were syntenic to those observed in human neuroblastomas. Treatment of a cell line established from a tumor derived from a LSL-MYCN;Dbh-iCre mouse with JQ1 or MLN8237 reduced cell viability and demonstrated oncogene addiction to MYCN. Here we report establishment of the first Cre-conditional human MYCN-driven mouse model for neuroblastoma that closely recapitulates the human disease with respect to tumor localization, histology, marker expression and genomic make up. This mouse model is a valuable tool for further functional studies and to assess the effect of targeted therapies.
Collapse
Affiliation(s)
- K Althoff
- 1] Department of Pediatric Oncology and Hematology, University Children's Hospital Essen, Essen, Germany [2] German Cancer Consortium (DKTK), Partner Site Essen/Duesseldorf, Hufelandstr, Germany
| | - A Beckers
- Center for Medical Genetics Ghent (CMGG), Ghent University Hospital, De Pintelaan 185, Ghent, Belgium
| | - E Bell
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, Germany
| | - M Nortmeyer
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, Germany
| | - T Thor
- 1] Department of Pediatric Oncology and Hematology, University Children's Hospital Essen, Essen, Germany [2] German Cancer Consortium (DKTK), Partner Site Essen/Duesseldorf, Hufelandstr, Germany [3] German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, Germany [4] Translational Neuro-Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - A Sprüssel
- 1] Department of Pediatric Oncology and Hematology, University Children's Hospital Essen, Essen, Germany [2] German Cancer Consortium (DKTK), Partner Site Essen/Duesseldorf, Hufelandstr, Germany [3] German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, Germany [4] Translational Neuro-Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - S Lindner
- 1] Department of Pediatric Oncology and Hematology, University Children's Hospital Essen, Essen, Germany [2] German Cancer Consortium (DKTK), Partner Site Essen/Duesseldorf, Hufelandstr, Germany [3] German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, Germany [4] Translational Neuro-Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - K De Preter
- Center for Medical Genetics Ghent (CMGG), Ghent University Hospital, De Pintelaan 185, Ghent, Belgium
| | - A Florin
- Institute of Pathology, University Hospital Cologne, Cologne, Germany
| | - L C Heukamp
- 1] Institute of Pathology, University Hospital Cologne, Cologne, Germany [2] New Oncology -a division of Blackfield AG, Köln, Germany
| | - L Klein-Hitpass
- Institute of Cell Biology (Cancer Research), Faculty of Medicine, University of Duisburg-Essen, Essen, Germany
| | - K Astrahantseff
- Department of Pediatric Oncology, Hematology and BMT, Charité University Medicine, Augustenburger Platz 1, Berlin, Germany
| | - C Kumps
- Center for Medical Genetics Ghent (CMGG), Ghent University Hospital, De Pintelaan 185, Ghent, Belgium
| | - F Speleman
- Center for Medical Genetics Ghent (CMGG), Ghent University Hospital, De Pintelaan 185, Ghent, Belgium
| | - A Eggert
- Department of Pediatric Oncology, Hematology and BMT, Charité University Medicine, Augustenburger Platz 1, Berlin, Germany
| | - F Westermann
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, Germany
| | - A Schramm
- Department of Pediatric Oncology and Hematology, University Children's Hospital Essen, Essen, Germany
| | - J H Schulte
- 1] Department of Pediatric Oncology and Hematology, University Children's Hospital Essen, Essen, Germany [2] German Cancer Consortium (DKTK), Partner Site Essen/Duesseldorf, Hufelandstr, Germany [3] Center for Medical Genetics Ghent (CMGG), Ghent University Hospital, De Pintelaan 185, Ghent, Belgium [4] German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, Germany [5] Translational Neuro-Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
38
|
Schleiermacher G, Janoueix-Lerosey I, Delattre O. Recent insights into the biology of neuroblastoma. Int J Cancer 2014; 135:2249-61. [PMID: 25124476 DOI: 10.1002/ijc.29077] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 05/08/2014] [Indexed: 01/24/2023]
Abstract
Neuroblastoma (NB) is an embryonal tumor of the sympathetic nervous system which accounts for 8-10% of pediatric cancers. It is characterized by a broad spectrum of clinical behaviors from spontaneous regression to fatal outcome despite aggressive therapies. Considerable progress has been made recently in the germline and somatic genetic characterization of patients and tumors. Indeed, predisposition genes that account for a significant proportion of familial and syndromic cases have been identified and genome-wide association studies have retrieved a number of susceptibility loci. In addition, genome-wide sequencing, copy-number and expression studies have been conducted on tumors and have detected important gene modifications, profiles and signatures that have strong implications for the therapeutic stratification of patients. The identification of major players in NB oncogenesis, including MYCN, ALK, PHOX2B and LIN28B, has enabled the development of new animal models. Our review focuses on these recent advances, on the insights they provide on the mechanisms involved in NB development and their applications for the clinical management of patients.
Collapse
Affiliation(s)
- Gudrun Schleiermacher
- Equipe SIRIC Recherche Translationnelle en Oncologie Pédiatrique, Département de Recherche Translationnelle et Inserm U830, Centre de Recherche, Paris Cedex, 05, France; Département de pédiatrie, Institut Curie, Paris Cedex, 05, France; Unité Génétique et Biologie des Cancers, Inserm U830, Centre de Recherche, Institut Curie, Paris Cedex, 05, France
| | | | | |
Collapse
|
39
|
Ambros IM, Brunner C, Abbasi R, Frech C, Ambros PF. Ultra-High Density SNParray in Neuroblastoma Molecular Diagnostics. Front Oncol 2014; 4:202. [PMID: 25161957 PMCID: PMC4129917 DOI: 10.3389/fonc.2014.00202] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 07/15/2014] [Indexed: 12/27/2022] Open
Abstract
Neuroblastoma serves as a paradigm for applying tumor genomic data for determining patient prognosis and thus for treatment allocation. MYCN status, i.e., amplified vs. non-amplified, was one of the very first biomarkers in oncology to discriminate aggressive from less aggressive or even favorable clinical courses of neuroblastoma. However, MYCN amplification is by far not the only genetic change associated with unfavorable clinical courses. So called “segmental chromosomal aberrations,” (SCAs) i.e., gains or losses of chromosomal fragments, can also indicate tumor aggressiveness. The clinical use of these genomic aberrations has, however, been hampered for many years by methodical and interpretational problems. Only after reaching worldwide consensus on markers, methodology, and data interpretation, information on SCAs has recently been implemented in clinical studies. Now, a number of collaborative studies within COG, GPOH, and SIOPEN use genomic information to stratify therapy for patients with localized and metastatic disease. Recently, new types of DNA based aberrations influencing the clinical behavior of neuroblastomas have been described. Deletions or mutations of genes like ATRX and a phenomenon referred to as “chromothripsis” are all assumed to correlate with an unfavorable clinical behavior. However, these genomic aberrations need to be scrutinized in larger studies applying the most appropriate techniques. Single nucleotide polymorphism arrays have proven successful in deciphering genomic aberrations of cancer cells; these techniques, however, are usually not applied in the daily routine. Here, we present an ultra-high density (UHD) SNParray technique which is, because of its high specificity and sensitivity and the combined copy number and allele information, highly appropriate for the genomic diagnosis of neuroblastoma and other malignancies.
Collapse
Affiliation(s)
- Inge M Ambros
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung , Vienna , Austria
| | - Clemens Brunner
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung , Vienna , Austria
| | - Reza Abbasi
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung , Vienna , Austria
| | - Christian Frech
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung , Vienna , Austria
| | - Peter F Ambros
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung , Vienna , Austria ; Department of Pediatrics, Medical University of Vienna , Vienna , Austria
| |
Collapse
|
40
|
Guimier A, Ferrand S, Pierron G, Couturier J, Janoueix-Lerosey I, Combaret V, Mosseri V, Thebaud E, Gambart M, Plantaz D, Marabelle A, Coze C, Rialland X, Fasola S, Lapouble E, Fréneaux P, Peuchmaur M, Michon J, Delattre O, Schleiermacher G. Clinical characteristics and outcome of patients with neuroblastoma presenting genomic amplification of loci other than MYCN. PLoS One 2014; 9:e101990. [PMID: 25013904 PMCID: PMC4094484 DOI: 10.1371/journal.pone.0101990] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 06/13/2014] [Indexed: 01/01/2023] Open
Abstract
Background Somatically acquired genomic alterations with MYCN amplification (MNA) are key features of neuroblastoma (NB), the most common extra-cranial malignant tumour of childhood. Little is known about the frequency, clinical characteristics and outcome of NBs harbouring genomic amplification(s) distinct from MYCN. Methods Genomic profiles of 1100 NBs from French centres studied by array-CGH were re-examined specifically to identify regional amplifications. Patients were included if amplifications distinct from the MYCN locus were seen. A subset of NBs treated at Institut Curie and harbouring MNA as determined by array-CGH without other amplification was also studied. Clinical and histology data were retrospectively collected. Results In total, 56 patients were included and categorised into 3 groups. Group 1 (n = 8) presented regional amplification(s) without MNA. Locus 12q13-14 was a recurrent amplified region (4/8 cases). This group was heterogeneous in terms of INSS stages, primary localisations and histology, with atypical clinical features. Group 2 (n = 26) had MNA as well as other regional amplifications. These patients shared clinical features of those of a group of NBs MYCN amplified (Group 3, n = 22). Overall survival for group 1 was better than that of groups 2 and 3 (5 year OS: 87.5%±11% vs 34.9%±7%, log-rank p<0.05). Conclusion NBs harbouring regional amplification(s) without MNA are rare and seem to show atypical features in clinical presentation and genomic profile. Further high resolution genetic explorations are justified in this heterogeneous group, especially when considering these alterations as predictive markers for targeted therapy.
Collapse
Affiliation(s)
- Anne Guimier
- Institut Curie, Département de Pédiatrie, Paris, France
| | | | - Gaëlle Pierron
- Institut Curie, Unité de Génétique Somatique, Paris, France
| | | | | | - Valérie Combaret
- Centre Léon Bérard, Laboratoire de recherche translationnelle, Lyon, France
| | | | - Estelle Thebaud
- CHU Nantes, Service d'Hémato-Oncologie Pédiatrique, Nantes, France
| | - Marion Gambart
- CHU Toulouse, Service d'Hémato-Oncologie Pédiatrique, Toulouse, France
| | - Dominique Plantaz
- CHU Grenoble, Service d'Hémato-Oncologie Pédiatrique, Grenoble, France
| | - Aurélien Marabelle
- Institut d'Hématologie et d'Oncologie Pédiatrique, Centre de Lutte contre le Cancer Léon Bérard, Lyon, France
| | - Carole Coze
- Aix-Marseille Univ et APHM, Hôpital d'Enfants de La Timone, Service d'Hématologie-Oncologie Pédiatrique, Marseille, France
| | - Xavier Rialland
- CHU Angers, Service d'Hémato-Oncologie Pédiatrique, Angers, France
| | - Sylvie Fasola
- Hôpital Trousseau, Service d'Hémato-Oncologie Pédiatrique, Paris, France
| | - Eve Lapouble
- Institut Curie, Unité de Génétique Somatique, Paris, France
| | - Paul Fréneaux
- Institut Curie, Laboratoire d'anatomie pathologique, Paris, France
| | - Michel Peuchmaur
- APHP, hôpital Universitaire Robert Debré, Service de Pathologie, Paris, France, et Université Diderot Paris 7, Sorbonne Paris Cité, Paris, France
| | - Jean Michon
- Institut Curie, Département de Pédiatrie, Paris, France
| | - Olivier Delattre
- INSERM U830, Laboratoire de Génétique et Biologie des Cancers, Institut Curie, Paris, France
| | - Gudrun Schleiermacher
- Institut Curie, Département de Pédiatrie, Paris, France
- INSERM U830, Laboratoire de Génétique et Biologie des Cancers, Institut Curie, Paris, France
- * E-mail:
| |
Collapse
|
41
|
Gattolliat CH, Le Teuff G, Combaret V, Mussard E, Valteau-Couanet D, Busson P, Bénard J, Douc-Rasy S. Expression of two parental imprinted miRNAs improves the risk stratification of neuroblastoma patients. Cancer Med 2014; 3:998-1009. [PMID: 24931722 PMCID: PMC4303168 DOI: 10.1002/cam4.264] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/08/2014] [Accepted: 04/10/2014] [Indexed: 12/24/2022] Open
Abstract
Age at diagnosis, stage, and MYCN amplification are the cornerstones of the risk-stratification score of neuroblastoma that enables defining patients at low- and high risk. Refinement of this stratification is needed to optimize standard treatment and to plan future clinical trials. We investigated whether two parental imprinted miRNAs (miR-487b and miR-516a-5p) may lead to a risk score with a better discrimination. Expression levels of maternal miR-487b and paternal miR-516a-5p were determined using quantitative RT-PCR both for 231 neuroblastoma tumors (derivation set) and 101 independent neuroblastoma tumors (validation set). Survival outcomes were overall survival (OS) and disease-free survival (DFS). Multivariable Cox models were developed from derivation set and their performance evaluated using Akaike's information criterion (AIC) (goodness-of-fit) and time-dependent area under curves (discrimination). The selected model was validated using internal and external validation. The prognostic model including current prognostic factors plus miR-487b, miR-516a-5p, and interaction between two miRNAs was selected. Performance of this model was better in terms of both predictive ability (smallest AIC) and discrimination power (AUC close to 0.70). This model identifies three risk groups: high (3), intermediate (2), and low (1). Hazard ratios (HR) across risk groups were HR2/1 = 6.3 (2.7–14.6), HR3/1 = 14.8 (7.2–30.2) for OS and HR2/1 = 2.8 (1.5–5.4), HR3/1 = 7.2 (3.9–13.4) for DFS. The rank between these three risk groups was maintained and validated when performing internal and external validation. Expression of maternal miR-487b and paternal miR-516a-5p improves the risk stratification. This better discrimination at diagnosis is of clinical utility both for current and future treatments of neuroblastoma patients.
Collapse
Affiliation(s)
- Charles-Henry Gattolliat
- CNRS UMR 8126, Université Paris-Sud, Gustave Roussy, 114 rue Edouard Vaillant, 94805, Villejuif, France; INSERM UMR 1078, Etablissement Français du Sang, Centre Hospitalier Régional Universitaire de Brest, SFR ScInBioS, Université de Bretagne Occidentale, Faculté de Médecine, 22 avenue Camille Desmoulins, 29200, Brest, France
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Theissen J, Oberthuer A, Hombach A, Volland R, Hertwig F, Fischer M, Spitz R, Zapatka M, Brors B, Ortmann M, Simon T, Hero B, Berthold F. Chromosome 17/17q gain and unaltered profiles in high resolution array-CGH are prognostically informative in neuroblastoma. Genes Chromosomes Cancer 2014; 53:639-49. [PMID: 24737690 DOI: 10.1002/gcc.22174] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 03/31/2014] [Indexed: 12/22/2022] Open
Abstract
The prognostic relevance of chromosome 17 gain in neuroblastoma is still discussed. This investigation specifies the frequency, type, size, and transcriptional relevance in a large patient cohort. Primary tumor material of 202 patients was analyzed using high-resolution oligonucleotide array-based comparative genomic hybridization (aCGH) and correlated with clinical and survival data. A subset (n = 145) was correlated for differentially expressed genes (DEG) by microarray analysis. Chromosome 17 aCGH analysis showed numerical gain in 94/202 patients (47%), partial gain in 93/202 patients (46%), and no gain in 15/202 patients (7%). The frequency of partial gain was higher in stage 4 neuroblastoma (stage 1 15%; stage 2 12%; stage 3 16%; stage 4S 7%; and stage 4 50%). Overall survival (OS) was superior in patients with numerical gain compared with patients with partial gain or no gain (5-y-OS: 0.95 ± 0.02 vs. 0.63 ± 0.05 vs. 0.60 ± 0.13; P < 0.001). Gene expression analysis demonstrated 95/130 DEGs between tumors with numerical or partial chromosome/no gain. Only one DEG (CCKBR) was detected comparing tumors with partial gain and those with no gain. In patients with partial gain, the distribution of breakpoints did not correlate with stage and 11q status, but with MYCN amplification and 1p status. The "best" breakpoints in cases with partial 17q gain were at 42.5 Mb for event-free and 26.6 Mb for OS. Numerical gain of chromosome 17 is associated with a better prognosis than partial and no gain. The group of tumors with partial gain was similar to the group without gain with respect to stage distribution, outcome, and gene expression profile.
Collapse
Affiliation(s)
- Jessica Theissen
- Department of Pediatric Oncology and Hematology, Children's Hospital, University of Cologne, Cologne, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Mossé YP, Deyell RJ, Berthold F, Nagakawara A, Ambros PF, Monclair T, Cohn SL, Pearson AD, London WB, Matthay KK. Neuroblastoma in older children, adolescents and young adults: a report from the International Neuroblastoma Risk Group project. Pediatr Blood Cancer 2014; 61:627-35. [PMID: 24038992 DOI: 10.1002/pbc.24777] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 08/21/2013] [Indexed: 11/11/2022]
Abstract
BACKGROUND Neuroblastoma in older children and adolescents has a distinctive, indolent phenotype, but little is known about the clinical and biological characteristics that distinguish this rare subgroup. Our goal was to determine if an optimal age cut-off exists that defines indolent disease and if accepted prognostic factors and treatment approaches are applicable to older children. PROCEDURE Using data from the International Neuroblastoma Risk Group, among patients ≥18 months old (n = 4,027), monthly age cut-offs were tested to determine the effect of age on survival. The prognostic effect of baseline characteristics and autologous hematopoietic cell transplant (AHCT) for advanced disease was assessed within two age cohorts; ≥5 to <10 years (n = 730) and ≥10 years (n = 200). RESULTS Older age was prognostic of poor survival, with outcome gradually worsening with increasing age at diagnosis, without statistical evidence for an optimal age cut-off beyond 18 months. Among patients ≥5 years, factors significantly prognostic of lower event-free survival (EFS) and overall survival (OS) in multivariable analyses were INSS stage 4, MYCN amplification and unfavorable INPC histology classification. Among stage 4 patients, AHCT provided a significant EFS and OS benefit. Following relapse, patients in both older cohorts had prolonged OS compared to those ≥18 months to <5 years (P < 0.0001). CONCLUSIONS Despite indolent disease and infrequent MYCN amplification, older children with advanced disease have poor survival, without evidence for a specific age cut-off. Our data suggest that AHCT may provide a survival benefit in older children with advanced disease. Novel therapeutic approaches are required to more effectively treat these patients.
Collapse
Affiliation(s)
- Yaël P Mossé
- Division of Oncology, Children's Hospital of Philadelphia and Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
The burgeoning field of anaplastic lymphoma kinase (ALK) in cancer encompasses many cancer types, from very rare cancers to the more prevalent non-small-cell lung cancer (NSCLC). The common activation of ALK has led to the use of the ALK tyrosine kinase inhibitor (TKI) crizotinib in a range of patient populations and to the rapid development of second-generation drugs targeting ALK. In this Review, we discuss our current understanding of ALK function in human cancer and the implications for tumour treatment.
Collapse
MESH Headings
- Anaplastic Lymphoma Kinase
- Animals
- Antineoplastic Agents/therapeutic use
- Caenorhabditis elegans Proteins/physiology
- Cell Transformation, Neoplastic/genetics
- Clinical Trials as Topic
- Crizotinib
- Drosophila Proteins/physiology
- Drug Resistance, Neoplasm
- Enzyme Induction
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Neoplastic
- Humans
- Lymphoma, Large-Cell, Anaplastic/enzymology
- Lymphoma, Large-Cell, Anaplastic/genetics
- Mice
- Models, Biological
- Models, Molecular
- Mutation
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/chemistry
- Neoplasm Proteins/genetics
- Neoplasm Proteins/physiology
- Neoplasms/drug therapy
- Neoplasms/enzymology
- Neoplasms/genetics
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/physiology
- Protein Conformation
- Protein-Tyrosine Kinases/physiology
- Pyrazoles/therapeutic use
- Pyridines/therapeutic use
- Receptor Protein-Tyrosine Kinases/biosynthesis
- Receptor Protein-Tyrosine Kinases/chemistry
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor Protein-Tyrosine Kinases/physiology
- Signal Transduction
- Translocation, Genetic
- Zebrafish Proteins/physiology
Collapse
Affiliation(s)
- Bengt Hallberg
- Department of Molecular Biology, Building 6L, Umeå University, Umeå S-90187, Sweden
| | | |
Collapse
|
45
|
Abstract
Neuroblastoma is a genetically and clinically heterogeneous tumor of childhood, arising from precursor cells of the sympathetic nervous system. It is still a challenging cancer for pediatric oncology, as some tumors will spontaneously regress, while others will become refractory to all forms of therapy. The clinical course of this disease is greatly influenced by both patient age and the genetic abnormalities that occur within the tumors. MYCN (v-myc myelocytomatosis viral related oncogene, neuroblastoma derived (avian)) amplification and loss of chromosome 11q heterozygosity have been known to be indicative of poor prognosis. In this article, we review how mutations and structural alterations in specific genes contribute to inheritable predisposition to neuroblastoma and/or to aggressive disease pathogenesis, as well as implications for diagnosis and therapy. These genes include PHOX2B (paired-like homeobox 2b), ALK (anaplastic lymphoma receptor tyrosine kinase), and ATRX (alpha thalassemia/mental retardation syndrome X-linked).
Collapse
|
46
|
Abstract
Neuroblastoma is a solid tumour that arises from the developing sympathetic nervous system. Over the past decade, our understanding of this disease has advanced tremendously. The future challenge is to apply the knowledge gained to developing risk-based therapies and, ultimately, improving outcome. In this Review we discuss the key discoveries in the developmental biology, molecular genetics and immunology of neuroblastoma, as well as new translational tools for bringing these promising scientific advances into the clinic.
Collapse
Affiliation(s)
- Nai-Kong V. Cheung
- Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Michael A. Dyer
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN 38163
- Howard Hughes Medical Institute, Chevy Chase, MD 20815
| |
Collapse
|
47
|
Duijkers FAM, Meijerink JPP, Pieters R, van Noesel MM. Downregulation of Axl in non-MYCN amplified neuroblastoma cell lines reduces migration. Gene 2013; 521:62-8. [PMID: 23523856 DOI: 10.1016/j.gene.2013.03.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 03/07/2013] [Indexed: 12/14/2022]
Abstract
Neuroblastomas (NBL) are common pediatric solid tumors with a variable clinical course. At diagnosis half of all neuroblastoma patients presents with metastatic disease. The mechanisms of metastasis are largely unknown. Gene expression profiles (HU133plus2.0 arrays, Affymetrix) of 17 NBL and 5 peripheral neuro-ectodermal cell lines were used to identify a subgroup of non-MYCN amplified (non-NMA) NBL cell lines with a distinct gene expression profile and characterized by high expression of AXL. Axl is a tyrosine kinase receptor which plays a role in the metastatic process of several types of cancer. We hypothesized that Axl contributes to the metastasizing potential of non-NMA NBL and tested if AXL silencing diminishes malignant properties of high Axl expressing cell lines. AXL was silenced in two non-NMA NBL cell lines by using a lentiviral shRNA construct that was able to transduce these cell lines with more than 90% infection efficiency. Axl mRNA and protein level were efficiently knocked-down resulting in a decrease of migration of Axl positive cell lines GI-M-EN and SH-EP-2, and decreased invasion of GI-M-EN. Morphologically, Axl knockdown induced more rounded cells with a loss of contact. Intracellularly, we observed induction of stress fibers (immunofluorescence F-actin). These changes in cytoskeleton were associated with decreased migration, but were not accompanied by changes in genes involved in epithelial to mesenchymal transition such as CDH2, VIM or MMP9. No effects were observed for cell proliferation, apoptosis or downstream pathways. In conclusion, AXL is identified as a possible mediator of NBL metastasis.
Collapse
Affiliation(s)
- Floor A M Duijkers
- Department of Pediatric Oncology-Hematology, Erasmus MC-Sophia Children's Hospital, Dr. Molewaterplein 60, 3015 GJ Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
48
|
Cetinkaya C, Martinsson T, Sandgren J, Träger C, Kogner P, Dumanski J, Díaz de Ståhl T, Hedborg F. Age dependence of tumor genetics in unfavorable neuroblastoma: arrayCGH profiles of 34 consecutive cases, using a Swedish 25-year neuroblastoma cohort for validation. BMC Cancer 2013; 13:231. [PMID: 23656755 PMCID: PMC3664071 DOI: 10.1186/1471-2407-13-231] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 04/23/2013] [Indexed: 12/18/2022] Open
Abstract
Background Aggressive neuroblastoma remains a significant cause of childhood cancer death despite current intensive multimodal treatment protocols. The purpose of the present work was to characterize the genetic and clinical diversity of such tumors by high resolution arrayCGH profiling. Methods Based on a 32K BAC whole-genome tiling path array and using 50-250K Affymetrix SNP array platforms for verification, DNA copy number profiles were generated for 34 consecutive high-risk or lethal outcome neuroblastomas. In addition, age and MYCN amplification (MNA) status were retrieved for 112 unfavorable neuroblastomas of the Swedish Childhood Cancer Registry, representing a 25-year neuroblastoma cohort of Sweden, here used for validation of the findings. Statistical tests used were: Fisher’s exact test, Bayes moderated t-test, independent samples t-test, and correlation analysis. Results MNA or segmental 11q loss (11q-) was found in 28/34 tumors. With two exceptions, these aberrations were mutually exclusive. Children with MNA tumors were diagnosed at significantly younger ages than those with 11q- tumors (mean: 27.4 vs. 69.5 months; p=0.008; n=14/12), and MNA tumors had significantly fewer segmental chromosomal aberrations (mean: 5.5 vs. 12.0; p<0.001). Furthermore, in the 11q- tumor group a positive correlation was seen between the number of segmental aberrations and the age at diagnosis (Pearson Correlation 0.606; p=0.037). Among nonMNA/non11q- tumors (n=6), one tumor displayed amplicons on 11q and 12q and three others bore evidence of progression from low-risk tumors due to retrospective evidence of disease six years before diagnosis, or due to tumor profiles with high proportions of numerical chromosomal aberrations. An early age at diagnosis of MNA neuroblastomas was verified by registry data, with an average of 29.2 months for 43 cases that were not included in the present study. Conclusion MNA and segmental 11q loss define two major genetic variants of unfavorable neuroblastoma with apparent differences in their pace of tumor evolution and in genomic integrity. Other possible, but less common, routes in the development of aggressive tumors are progression of low-risk infant-type lesions, and gene amplifications other than MYCN. Knowledge on such nosological diversity of aggressive neuroblastoma might influence future strategies for therapy.
Collapse
Affiliation(s)
- Cihan Cetinkaya
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala SE-751 85, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Kumps C, Fieuw A, Mestdagh P, Menten B, Lefever S, Pattyn F, De Brouwer S, Sante T, Schulte JH, Schramm A, Van Roy N, Van Maerken T, Noguera R, Combaret V, Devalck C, Westermann F, Laureys G, Eggert A, Vandesompele J, De Preter K, Speleman F. Focal DNA copy number changes in neuroblastoma target MYCN regulated genes. PLoS One 2013; 8:e52321. [PMID: 23308108 PMCID: PMC3537730 DOI: 10.1371/journal.pone.0052321] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 11/16/2012] [Indexed: 02/07/2023] Open
Abstract
Neuroblastoma is an embryonic tumor arising from immature sympathetic nervous system cells. Recurrent genomic alterations include MYCN and ALK amplification as well as recurrent patterns of gains and losses of whole or large partial chromosome segments. A recent whole genome sequencing effort yielded no frequently recurring mutations in genes other than those affecting ALK. However, the study further stresses the importance of DNA copy number alterations in this disease, in particular for genes implicated in neuritogenesis. Here we provide additional evidence for the importance of focal DNA copy number gains and losses, which are predominantly observed in MYCN amplified tumors. A focal 5 kb gain encompassing the MYCN regulated miR-17∼92 cluster as sole gene was detected in a neuroblastoma cell line and further analyses of the array CGH data set demonstrated enrichment for other MYCN target genes in focal gains and amplifications. Next we applied an integrated genomics analysis to prioritize MYCN down regulated genes mediated by MYCN driven miRNAs within regions of focal heterozygous or homozygous deletion. We identified RGS5, a negative regulator of G-protein signaling implicated in vascular normalization, invasion and metastasis, targeted by a focal homozygous deletion, as a new MYCN target gene, down regulated through MYCN activated miRNAs. In addition, we expand the miR-17∼92 regulatory network controlling TGFß signaling in neuroblastoma with the ring finger protein 11 encoding gene RNF11, which was previously shown to be targeted by the miR-17∼92 member miR-19b. Taken together, our data indicate that focal DNA copy number imbalances in neuroblastoma (1) target genes that are implicated in MYCN signaling, possibly selected to reinforce MYCN oncogene addiction and (2) serve as a resource for identifying new molecular targets for treatment.
Collapse
Affiliation(s)
- Candy Kumps
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Annelies Fieuw
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Pieter Mestdagh
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Björn Menten
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Steve Lefever
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Filip Pattyn
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Sara De Brouwer
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Tom Sante
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Johannes Hubertus Schulte
- Department of Pediatric Oncology and Haematology, University Children's Hospital Essen, Essen, Germany
| | - Alexander Schramm
- Department of Pediatric Oncology and Haematology, University Children's Hospital Essen, Essen, Germany
| | - Nadine Van Roy
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Tom Van Maerken
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Rosa Noguera
- Department of Pathology, Medical School, University of Valencia, Valencia, Spain
| | - Valérie Combaret
- Centre Léon Bérard, FNCLCC, Laboratoire de Recherche Translationnelle, Lyon, France
| | - Christine Devalck
- Children's University Hospital, Hematology-Oncology, Brussels, Belgium
| | - Frank Westermann
- Department of Tumor Genetics, German Cancer Research Center, Heidelberg, Germany
| | - Geneviève Laureys
- Department of Pediatric Hematology-Oncology, Ghent University Hospital, Ghent, Belgium
| | - Angelika Eggert
- Department of Pediatric Oncology and Haematology, University Children's Hospital Essen, Essen, Germany
| | - Jo Vandesompele
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Katleen De Preter
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Frank Speleman
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- * E-mail:
| |
Collapse
|
50
|
Krüppel-like factor 4 (KLF4) suppresses neuroblastoma cell growth and determines non-tumorigenic lineage differentiation. Oncogene 2012; 32:4086-99. [PMID: 23045286 DOI: 10.1038/onc.2012.437] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Revised: 06/27/2012] [Accepted: 07/25/2012] [Indexed: 02/07/2023]
Abstract
Neuroblastoma (NB) is an embryonal tumor and possesses a unique propensity to exhibit either a spontaneous regression or an unrestrained growth. However, the underlying mechanism for this paradoxical clinical outcome remains largely unclear. Quantitative RT-PCR analysis on 102 primary NB tumors revealed that lower Krüppel-like factor 4 (KLF4) expression is frequently found in the unfavorable NB (Mann-Whitney test, P=0.027). In particular with the high-risk factors such as age of patient >1 year, MYCN amplification and low TRKA expression, the decreased expression of KLF4 was significantly associated with an unfavorable NB outcome. Despite knockdown of KLF4 alone is not sufficient to increase tumorigenicity of NB cells in vivo, stable expression of KLF4 short hairpin RNA in Be(2)-C cells significantly promoted growth of NB cells and inhibited cell differentiation toward fibromuscular lineage. In concordant with these observations, overexpression of KLF4 in SH-SY-5Y cells profoundly suppressed cell proliferation by direct upregulation of cell-cycle inhibitor protein p21(WAF1/CIP1), and knocking down p21(WAF1/CIP1) could partially rescue the suppressive effect of KLF4. Importantly, KLF4 overexpressing cells have lost their neuroblastic phenotypes, they were epithelial-like, strongly substrate-adherent, expressing smooth muscle marker and became non-tumorigenic, suggesting that KLF4 expression is crucial for lineage determination of NB cells, probably, favoring spontaneous tumor regression. Subsequent global gene expression profiling further revealed that transforming growth factor beta (TGFβ) and cell-cycle pathways are highly dysregulated upon KLF4 overexpression, and myogenic modulators, MEF2A and MYOD1 were found significantly upregulated. Taken together, we have demonstrated that KLF4 contributes to the favorable disease outcome by directly mediating the growth and lineage determination of NB cells.
Collapse
|