1
|
Montero-Calle A, Garranzo-Asensio M, Moreno-Casbas MT, Campuzano S, Barderas R. Autoantibodies in cancer: a systematic review of their clinical role in the most prevalent cancers. Front Immunol 2024; 15:1455602. [PMID: 39234247 PMCID: PMC11371560 DOI: 10.3389/fimmu.2024.1455602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 07/31/2024] [Indexed: 09/06/2024] Open
Abstract
Although blood autoantibodies were initially associated with autoimmune diseases, multiple evidence have been accumulated showing their presence in many types of cancer. This has opened their use in clinics, since cancer autoantibodies might be useful for early detection, prognosis, and monitoring of cancer patients. In this review, we discuss the different techniques available for their discovery and validation. Additionally, we discuss here in detail those autoantibody panels verified in at least two different reports that should be more likely to be specific of each of the four most incident cancers. We also report the recent developed kits for breast and lung cancer detection mostly based on autoantibodies and the identification of novel therapeutic targets because of the screening of the cancer humoral immune response. Finally, we discuss unsolved issues that still need to be addressed for the implementation of cancer autoantibodies in clinical routine for cancer diagnosis, prognosis, and/or monitoring.
Collapse
Affiliation(s)
- Ana Montero-Calle
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Maria Teresa Moreno-Casbas
- Investén-isciii, Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Research Center Network for Frailty and Healthy Ageing (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Susana Campuzano
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Rodrigo Barderas
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Research Center Network for Frailty and Healthy Ageing (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
2
|
Low ZY, Yip AJW, Chan AML, Choo WS. 14-3-3 Family of Proteins: Biological Implications, Molecular Interactions, and Potential Intervention in Cancer, Virus and Neurodegeneration Disorders. J Cell Biochem 2024; 125:e30624. [PMID: 38946063 DOI: 10.1002/jcb.30624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 07/02/2024]
Abstract
The 14-3-3 family of proteins are highly conserved acidic eukaryotic proteins (25-32 kDa) abundantly present in the body. Through numerous binding partners, the 14-3-3 is responsible for many essential cellular pathways, such as cell cycle regulation and gene transcription control. Hence, its dysregulation has been linked to the onset of critical illnesses such as cancers, neurodegenerative diseases and viral infections. Interestingly, explorative studies have revealed an inverse correlation of 14-3-3 protein in cancer and neurodegenerative diseases, and the direct manipulation of 14-3-3 by virus to enhance infection capacity has dramatically extended its significance. Of these, COVID-19 has been linked to the 14-3-3 proteins by the interference of the SARS-CoV-2 nucleocapsid (N) protein during virion assembly. Given its predisposition towards multiple essential host signalling pathways, it is vital to understand the holistic interactions between the 14-3-3 protein to unravel its potential therapeutic unit in the future. As such, the general structure and properties of the 14-3-3 family of proteins, as well as their known biological functions and implications in cancer, neurodegeneration, and viruses, were covered in this review. Furthermore, the potential therapeutic target of 14-3-3 proteins in the associated diseases was discussed.
Collapse
Affiliation(s)
- Zheng Yao Low
- School of Science, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Ashley Jia Wen Yip
- School of Science, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Alvin Man Lung Chan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Wee Sim Choo
- School of Science, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
3
|
Qiu J, Engelbrektson A, Song L, Park J, Murugan V, Williams S, Chung Y, Pompa-Mera EN, Sandoval-Ramirez JL, Mata-Marin JA, Gaytan-Martinez J, Troiani E, Sanguinetti M, Roncada P, Urbani A, Moretti G, Torres J, LaBaer J. Comparative Analysis of Antimicrobial Antibodies between Mild and Severe COVID-19. Microbiol Spectr 2023; 11:e0469022. [PMID: 37278651 PMCID: PMC10433851 DOI: 10.1128/spectrum.04690-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 05/17/2023] [Indexed: 06/07/2023] Open
Abstract
Patients with 2019 coronavirus disease (COVID-19) exhibit a broad spectrum of clinical presentations. A person's antimicrobial antibody profile, as partially shaped by past infection or vaccination, can reflect the immune system health that is critical to control and resolve the infection. We performed an explorative immunoproteomics study using microbial protein arrays displaying 318 full-length antigens from 77 viruses and 3 bacteria. We compared antimicrobial antibody profiles between 135 patients with mild COVID-19 disease and 215 patients with severe disease in 3 independent cohorts from Mexico and Italy. Severe disease patients were older with higher prevalence of comorbidities. We confirmed that severe disease patients elicited a stronger anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) response. We showed that antibodies against HCoV-229E and HcoV-NL63 but not against HcoV-HKU1 and HcoV-OC43 were also higher in those who had severe disease. We revealed that for a set of IgG and IgA antibodies targeting coronaviruses, herpesviruses, and other respiratory viruses, a subgroup of patients with the highest reactivity levels had a greater incidence of severe disease compared to those with mild disease across all three cohorts. On the contrary, fewer antibodies showed consistent greater prevalence in mild disease in all 3 cohorts. IMPORTANCE The clinical presentations of COVID-19 range from asymptomatic to critical illness that may lead to intensive care or even death. The health of the immune system, as partially shaped by past infections or vaccinations, is critical to control and resolve the infection. Using an innovative protein array platform, we surveyed antibodies against hundreds of full-length microbial antigens from 80 different viruses and bacteria in COVID-19 patients from different geographic regions with mild or severe disease. We not only confirmed the association of severe COVID-19 disease with higher reactivity of antibody responses to SARS-CoV-2 but also uncovered known and novel associations with antibody responses against herpesviruses and other respiratory viruses. Our study represents a significant step forward in understanding the factors contributing to COVID-19 disease severity. We also demonstrate the power of comprehensive antimicrobial antibody profiling in deciphering risk factors for severe COVID-19. We anticipate that our approach will have broad applications in infectious diseases.
Collapse
Affiliation(s)
- Ji Qiu
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Anna Engelbrektson
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Lusheng Song
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Jin Park
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Vel Murugan
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Stacy Williams
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Yunro Chung
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- College of Health Solutions, Arizona State University, Phoenix, Arizona, USA
| | - Ericka Nelly Pompa-Mera
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
- Hospital de Infectología, CMN “La Raza”, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | | | - Jose Antonio Mata-Marin
- Hospital de Infectología, CMN “La Raza”, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Jesus Gaytan-Martinez
- Hospital de Infectología, CMN “La Raza”, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | | | - Maurizio Sanguinetti
- Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Paola Roncada
- Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro, Italy
| | - Andrea Urbani
- Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giacomo Moretti
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Javier Torres
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Joshua LaBaer
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
4
|
Ding Y, Zhang J, Zhuang W, Gao Z, Kuang K, Tian D, Deng C, Wu H, Chen R, Lu G, Chen G, Mendogni P, Migliore M, Kang MW, Kanzaki R, Tang Y, Yang J, Shi Q, Qiao G. Improving the efficiency of identifying malignant pulmonary nodules before surgery via a combination of artificial intelligence CT image recognition and serum autoantibodies. Eur Radiol 2023; 33:3092-3102. [PMID: 36480027 DOI: 10.1007/s00330-022-09317-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/21/2022] [Accepted: 11/24/2022] [Indexed: 12/09/2022]
Abstract
OBJECTIVE To construct a new pulmonary nodule diagnostic model with high diagnostic efficiency, non-invasive and simple to measure. METHODS This study included 424 patients with radioactive pulmonary nodules who underwent preoperative 7-autoantibody (7-AAB) panel testing, CT-based AI diagnosis, and pathological diagnosis by surgical resection. The patients were randomly divided into a training set (n = 212) and a validation set (n = 212). The nomogram was developed through forward stepwise logistic regression based on the predictive factors identified by univariate and multivariate analyses in the training set and was verified internally in the verification set. RESULTS A diagnostic nomogram was constructed based on the statistically significant variables of age as well as CT-based AI diagnostic, 7-AAB panel, and CEA test results. In the validation set, the sensitivity, specificity, positive predictive value, and AUC were 82.29%, 90.48%, 97.24%, and 0.899 (95%[CI], 0.851-0.936), respectively. The nomogram showed significantly higher sensitivity than the 7-AAB panel test result (82.29% vs. 35.88%, p < 0.001) and CEA (82.29% vs. 18.82%, p < 0.001); it also had a significantly higher specificity than AI diagnosis (90.48% vs. 69.04%, p = 0.022). For lesions with a diameter of ≤ 2 cm, the specificity of the Nomogram was higher than that of the AI diagnostic system (90.00% vs. 67.50%, p = 0.022). CONCLUSIONS Based on the combination of a 7-AAB panel, an AI diagnostic system, and other clinical features, our Nomogram demonstrated good diagnostic performance in distinguishing lung nodules, especially those with ≤ 2 cm diameters. KEY POINTS • A novel diagnostic model of lung nodules was constructed by combining high-specific tumor markers with a high-sensitivity artificial intelligence diagnostic system. • The diagnostic model has good diagnostic performance in distinguishing malignant and benign pulmonary nodules, especially for nodules smaller than 2 cm. • The diagnostic model can assist the clinical decision-making of pulmonary nodules, with the advantages of high diagnostic efficiency, noninvasive, and simple measurement.
Collapse
Affiliation(s)
- Yu Ding
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, No.106, Zhongshan 2nd Road, Guangzhou, 510080, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jingyu Zhang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, No. 1, Medical College Road, Yuzhong District, Chongqing, 400016, China
| | - Weitao Zhuang
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, No.106, Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Zhen Gao
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | | | - Dan Tian
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, No.106, Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Cheng Deng
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, No.106, Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Hansheng Wu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Thoracic Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Rixin Chen
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Guojie Lu
- Department of Thoracic Surgery, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Gang Chen
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, No.106, Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Paolo Mendogni
- Thoracic Surgery and Lung Transplant Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marcello Migliore
- Thoracic Surgery, Cardio-Thoracic Department, University Hospital of Wales, Cardiff, UK
- Minimally Invasive Surgery and New Technology, University Hospital of Catania, Department of Surgery and Medical Specialties, University of Catania, Catania, Italy
| | - Min-Woong Kang
- Department of Thoracic and Cardiovascular Surgery, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Ryu Kanzaki
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yong Tang
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, No.106, Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Jiancheng Yang
- Dianei Technology, Shanghai, China
- Computer Vision Laboratory (CVLab), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Qiuling Shi
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, No. 1, Medical College Road, Yuzhong District, Chongqing, 400016, China.
| | - Guibin Qiao
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, No.106, Zhongshan 2nd Road, Guangzhou, 510080, China.
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
5
|
Lastwika KJ, Kunihiro A, Solan JL, Zhang Y, Taverne LR, Shelley D, Rho JH, Randolph TW, Li CI, Grogan EL, Massion PP, Fitzpatrick AL, MacPherson D, Houghton AM, Lampe PD. Posttranslational modifications induce autoantibodies with risk prediction capability in patients with small cell lung cancer. Sci Transl Med 2023; 15:eadd8469. [PMID: 36630482 PMCID: PMC10117289 DOI: 10.1126/scitranslmed.add8469] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Small cell lung cancer (SCLC) elicits the generation of autoantibodies that result in unique paraneoplastic neurological syndromes. The mechanistic basis for the formation of such autoantibodies is largely unknown but is key to understanding their etiology. We developed a high-dimensional technique that enables detection of autoantibodies in complex with native antigens directly from patient plasma. Here, we used our platform to screen 1009 human plasma samples for 3600 autoantibody-antigen complexes, finding that plasma from patients with SCLC harbors, on average, fourfold higher disease-specific autoantibody signals compared with plasma from patients with other cancers. Across three independent SCLC cohorts, we identified a set of common but previously unknown autoantibodies that are produced in response to both intracellular and extracellular tumor antigens. We further characterized several disease-specific posttranslational modifications within extracellular proteins targeted by these autoantibodies, including citrullination, isoaspartylation, and cancer-specific glycosylation. Because most patients with SCLC have metastatic disease at diagnosis, we queried whether these autoantibodies could be used for SCLC early detection. We created a risk prediction model using five autoantibodies with an average area under the curve of 0.84 for the three cohorts that improved to 0.96 by incorporating cigarette smoke consumption in pack years. Together, our findings provide an innovative approach to identify circulating autoantibodies in SCLC with mechanistic insight into disease-specific immunogenicity and clinical utility.
Collapse
Affiliation(s)
- Kristin J Lastwika
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Translational Research Program, Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Andrew Kunihiro
- Translational Research Program, Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Joell L Solan
- Translational Research Program, Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Yuzheng Zhang
- Department of Biostatistics, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Lydia R Taverne
- Translational Research Program, Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - David Shelley
- Translational Research Program, Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Jung-Hyun Rho
- Translational Research Program, Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Timothy W Randolph
- Department of Biostatistics, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Christopher I Li
- Translational Research Program, Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Eric L Grogan
- Departments of Surgery, Medicine Radiology, and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Pierre P Massion
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt Ingram Cancer Center, Nashville, TN 37232, USA
| | - Annette L Fitzpatrick
- Department of Family Medicine, University of Washington, Seattle, WA 98195, USA
- Departments of Family Medicine, Epidemiology, and Global Health, University of Washington, Seattle, WA 98195, USA
| | - David MacPherson
- Translational Research Program, Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - A McGarry Houghton
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Paul D Lampe
- Translational Research Program, Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| |
Collapse
|
6
|
Interactions between 14-3-3 Proteins and Actin Cytoskeleton and Its Regulation by microRNAs and Long Non-Coding RNAs in Cancer. ENDOCRINES 2022. [DOI: 10.3390/endocrines3040057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
14-3-3s are a family of structurally similar proteins that bind to phosphoserine or phosphothreonine residues, forming the central signaling hub that coordinates or integrates various cellular functions, thereby controlling many pathways important in cancer, cell motility, cell death, cytoskeletal remodeling, neuro-degenerative disorders and many more. Their targets are present in all cellular compartments, and when they bind to proteins they alter their subcellular localization, stability, and molecular interactions with other proteins. Changes in environmental conditions that result in altered homeostasis trigger the interaction between 14-3-3 and other proteins to retrieve or rescue homeostasis. In circumstances where these regulatory proteins are dysregulated, it leads to pathological conditions. Therefore, deeper understanding is needed on how 14-3-3 proteins bind, and how these proteins are regulated or modified. This will help to detect disease in early stages or design inhibitors to block certain pathways. Recently, more research has been devoted to identifying the role of MicroRNAs, and long non-coding RNAs, which play an important role in regulating gene expression. Although there are many reviews on the role of 14-3-3 proteins in cancer, they do not provide a holistic view of the changes in the cell, which is the focus of this review. The unique feature of the review is that it not only focuses on how the 14-3-3 subunits associate and dissociate with their binding and regulatory proteins, but also includes the role of micro-RNAs and long non-coding RNAs and how they regulate 14-3-3 isoforms. The highlight of the review is that it focuses on the role of 14-3-3, actin, actin binding proteins and Rho GTPases in cancer, and how this complex is important for cell migration and invasion. Finally, the reader is provided with super-resolution high-clarity images of each subunit of the 14-3-3 protein family, further depicting their distribution in HeLa cells to illustrate their interactions in a cancer cell.
Collapse
|
7
|
Irajizad E, Fahrmann JF, Long JP, Vykoukal J, Kobayashi M, Capello M, Yu CY, Cai Y, Hsiao FC, Patel N, Park S, Peng Q, Dennison JB, Kato T, Tai MC, Taguchi A, Kadara H, Wistuba II, Katayama H, Do KA, Hanash SM, Ostrin EJ. A Comprehensive Search of Non-Canonical Proteins in Non-Small Cell Lung Cancer and Their Impact on the Immune Response. Int J Mol Sci 2022; 23:ijms23168933. [PMID: 36012199 PMCID: PMC9409146 DOI: 10.3390/ijms23168933] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 12/02/2022] Open
Abstract
There is substantial interest in mining neoantigens for cancer applications. Non-canonical proteins resulting from frameshift mutations have been identified as neoantigens in cancer. We investigated the landscape of non-canonical proteins in non-small cell lung cancer (NSCLC) and their induced immune response in the form of autoantibodies. A database of cryptoproteins was computationally constructed and comprised all alternate open reading frames (altORFs) and ORFs identified in pseudogenes, noncoding RNAs, and untranslated regions of mRNAs that did not align with known canonical proteins. Proteomic profiles of seventeen lung adenocarcinoma (LUAD) cell lines were searched to evaluate the occurrence of cryptoproteins. To assess the immunogenicity, immunoglobulin (Ig)-bound cryptoproteins in plasmas were profiled by mass spectrometry. The specimen set consisted of plasmas from 30 newly diagnosed NSCLC cases, pre-diagnostic plasmas from 51 NSCLC cases, and 102 control plasmas. An analysis of LUAD cell lines identified 420 cryptoproteins. Plasma Ig-bound analyses revealed 90 cryptoproteins uniquely found in cases and 14 cryptoproteins that had a fold-change >2 compared to controls. In pre-diagnostic samples, 17 Ig-bound cryptoproteins yielded an odds ratio ≥2. Eight Ig-bound cryptoproteins were elevated in both pre-diagnostic and newly diagnosed cases compared to controls. Cryptoproteins represent a class of neoantigens that induce an autoantibody response in NSCLC.
Collapse
Affiliation(s)
- Ehsan Irajizad
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Johannes F. Fahrmann
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - James P. Long
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Jody Vykoukal
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Makoto Kobayashi
- Department of Basic Pathology, School of Medicine, Fukushima Medical University, Hikarigaoka, Fukushima 960-1247, Japan
| | - Michela Capello
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Chuan-Yih Yu
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Yining Cai
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Fu Chung Hsiao
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Nikul Patel
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Soyoung Park
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Qian Peng
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Jennifer B. Dennison
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Taketo Kato
- Department of Thoracic Surgery, Nagoya University, Nagoya 464-8601, Japan
| | - Mei Chee Tai
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Ayumu Taguchi
- Division of Molecular Diagnostics, Aichi Cancer Center, Nagoya 464-8601, Japan
- Division of Advanced Cancer Diagnostics, Nagoya University Graduate School of Medicine, Nagoya 464-8601, Japan
| | - Humam Kadara
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Ignacio I. Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Hiroyuki Katayama
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Kim-Anh Do
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
- Correspondence: (K.-A.D.); (S.M.H.); (E.J.O.); Tel.: +1-713-745-5242 (S.M.H.)
| | - Samir M. Hanash
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
- Correspondence: (K.-A.D.); (S.M.H.); (E.J.O.); Tel.: +1-713-745-5242 (S.M.H.)
| | - Edwin J. Ostrin
- Departments of General Internal Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
- Correspondence: (K.-A.D.); (S.M.H.); (E.J.O.); Tel.: +1-713-745-5242 (S.M.H.)
| |
Collapse
|
8
|
Wang JY, Zhang W, Roehrl VB, Roehrl MW, Roehrl MH. An Autoantigen Atlas From Human Lung HFL1 Cells Offers Clues to Neurological and Diverse Autoimmune Manifestations of COVID-19. Front Immunol 2022; 13:831849. [PMID: 35401574 PMCID: PMC8987778 DOI: 10.3389/fimmu.2022.831849] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/21/2022] [Indexed: 12/27/2022] Open
Abstract
COVID-19 is accompanied by a myriad of both transient and long-lasting autoimmune responses. Dermatan sulfate (DS), a glycosaminoglycan crucial for wound healing, has unique affinity for autoantigens (autoAgs) from apoptotic cells. DS-autoAg complexes are capable of stimulating autoreactive B cells and autoantibody production. We used DS-affinity proteomics to define the autoantigen-ome of lung fibroblasts and bioinformatics analyses to study the relationship between autoantigenic proteins and COVID-induced alterations. Using DS-affinity, we identified an autoantigen-ome of 408 proteins from human HFL1 cells, at least 231 of which are known autoAgs. Comparing with available COVID data, 352 proteins of the autoantigen-ome have thus far been found to be altered at protein or RNA levels in SARS-CoV-2 infection, 210 of which are known autoAgs. The COVID-altered proteins are significantly associated with RNA metabolism, translation, vesicles and vesicle transport, cell death, supramolecular fibrils, cytoskeleton, extracellular matrix, and interleukin signaling. They offer clues to neurological problems, fibrosis, smooth muscle dysfunction, and thrombosis. In particular, 150 altered proteins are related to the nervous system, including axon, myelin sheath, neuron projection, neuronal cell body, and olfactory bulb. An association with the melanosome is also identified. The findings from our study illustrate a connection between COVID infection and autoimmunity. The vast number of COVID-altered proteins with high intrinsic propensity to become autoAgs offers an explanation for the diverse autoimmune complications in COVID patients. The variety of autoAgs related to mRNA metabolism, translation, and vesicles suggests a need for long-term monitoring of autoimmunity in COVID. The COVID autoantigen atlas we are establishing provides a detailed molecular map for further investigation of autoimmune sequelae of the pandemic, such as "long COVID" syndrome. Summary Sentence An autoantigen-ome by dermatan sulfate affinity from human lung HFL1 cells may explain neurological and autoimmune manifestations of COVID-19.
Collapse
Affiliation(s)
| | - Wei Zhang
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | | | | | - Michael H. Roehrl
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
9
|
Garranzo-Asensio M, Solís-Fernández G, Montero-Calle A, García-Martínez JM, Fiuza MC, Pallares P, Palacios-Garcia N, García-Jiménez C, Guzman-Aranguez A, Barderas R. Seroreactivity Against Tyrosine Phosphatase PTPRN Links Type 2 Diabetes and Colorectal Cancer and Identifies a Potential Diagnostic and Therapeutic Target. Diabetes 2022; 71:497-510. [PMID: 35040477 DOI: 10.2337/db20-1206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 12/13/2021] [Indexed: 11/13/2022]
Abstract
Colorectal cancer (CRC) and diabetes are two of the most prevalent chronic diseases worldwide with dysregulated receptor tyrosine kinase signaling and strong co-occurrence correlation. Plasma autoantibodies represent a promising early diagnostic marker for both diseases before symptoms appear. In this study, we explore the value of autoantibodies against receptor-type tyrosine-protein phosphatase-like N (PTPRN; full-length or selected domains) as diagnostic markers using a cohort of individuals with type 2 diabetes (T2D), CRC, or both diseases or healthy individuals. We show that PTPRN autoantibody levels in plasma discriminated between patients with T2D with and without CRC. Consistently, high PTPRN expression correlated with decreased survival of patients with CRC. Mechanistically, PTPRN depletion significantly reduced invasiveness of CRC cells in vitro and liver homing and metastasis in vivo by means of a dysregulation of the epithelial-mesenchymal transition and a decrease of the insulin receptor signaling pathway. Therefore, PTPRN autoantibodies may represent a particularly helpful marker for the stratification of patients with T2D at high risk of developing CRC. Consistent with the critical role played by tyrosine kinases in diabetes and tumor biology, we provide evidence that tyrosine phosphatases such as PTPRN may hold potential as therapeutic targets in patients with CRC.
Collapse
Affiliation(s)
- María Garranzo-Asensio
- Departamento de Bioquímica y Biología Molecular, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, Madrid, Spain
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Guillermo Solís-Fernández
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Madrid, Spain
- Molecular Imaging and Photonics Division, Chemistry Department, Faculty of Sciences, KU Leuven, Leuven, Belgium
| | - Ana Montero-Calle
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Madrid, Spain
| | - José Manuel García-Martínez
- Area of Physiology, Department of Basic Health Sciences, Faculty of Health Sciences, Rey Juan Carlos University, Madrid, Spain
| | - Maria Carmen Fiuza
- Surgery Department, University Hospital Fundación Alcorcon, Madrid, Spain
| | - Pilar Pallares
- Central Units, Instituto de Salud Carlos III, Madrid, Spain
| | - Nuria Palacios-Garcia
- Endocrinology Department, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Custodia García-Jiménez
- Area of Physiology, Department of Basic Health Sciences, Faculty of Health Sciences, Rey Juan Carlos University, Madrid, Spain
| | - Ana Guzman-Aranguez
- Departamento de Bioquímica y Biología Molecular, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, Madrid, Spain
| | - Rodrigo Barderas
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
10
|
Yu R, Yang S, Liu Y, Zhu Z. Identification and validation of serum autoantibodies in children with B-cell acute lymphoblastic leukemia by serological proteome analysis. Proteome Sci 2022; 20:3. [PMID: 35109855 PMCID: PMC8808998 DOI: 10.1186/s12953-021-00184-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/16/2021] [Indexed: 01/20/2023] Open
Abstract
Background B-cell acute lymphoblastic leukemia (B-ALL) is the most common malignancy of childhood. Even though significant progresses have been made in the treatment of B-ALL, some pediatric B-ALL have still poor prognosis. The identification of tumor autoantibodies may have utility in early cancer diagnosis and immunotherapy. In this study, we used serological proteome analysis (SERPA) to screen serum autoantibodies of pediatric B-ALL, aiming to contribute to the early detection of B-ALL in children. Methods The total proteins from three pooled B-ALL cell lines (NALM-6, REH and BALL-1 cells) were separated using two-dimensional gel electrophoresis (2-DE), which was followed by Western blot by mixed serum samples from children with B-ALL (n=20) or healthy controls (n=20). We analyzed the images of 2-D gel and Western blot by PDQuest software, and then identified the spots of immune responses in B-ALL samples compared with those in control samples. The proteins from spots were identified using mass spectrometry (MS). The autoantibodies against alpha-enolase (α-enolase) and voltage-dependent anion-selective channel protein 1 (VDAC1) were further validated in sera from another 30 children with B-ALL and 25 normal individuals by the use of enzyme-linked immunosorbent assay (ELISA). The protein expression levels of the candidate antigens α-enolase and VDAC1 in B-ALL were thoroughly studied by immunohistochemical analysis. Results Utilizing the SERPA approach, α-enolase and VDAC1 were identified as candidate autoantigens in children with B-ALL. The frequencies of autoantibodies against α-enolase and VDAC1 in children with B-ALL were 27% and 23% by using ELISA analysis, respectively, which were significantly higher than those in normal controls (4% and 0, p<0.05). Immunohistochemical analysis showed the expression of α-enolase and VDAC1 was positive in 95% and 85% of B-ALL patients, respectively, but negative expression levels were showed in the control group. Conclusions This study incidated that α-enolase and VDAC1 may be the autoantigens associated with B-ALL. Therefore, α-enolase and VDAC1 autoantibodies may be the potential serological markers for children with B-ALL. Supplementary Information The online version contains supplementary material available at 10.1186/s12953-021-00184-w.
Collapse
Affiliation(s)
- Runhong Yu
- Institute of Hematology, Henan Provincial People's Hospital, 7 Weiwu Road, Jinshui District, Zhengzhou, Henan, 450003, China.,Henan Key laboratory of Stem Cell Differentiation and Modification, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Shiwei Yang
- Institute of Hematology, Henan Provincial People's Hospital, 7 Weiwu Road, Jinshui District, Zhengzhou, Henan, 450003, China.,Henan Key laboratory of Stem Cell Differentiation and Modification, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Yufeng Liu
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Road, Erqi District, Zhengzhou, Henan, 450052, China
| | - Zunmin Zhu
- Institute of Hematology, Henan Provincial People's Hospital, 7 Weiwu Road, Jinshui District, Zhengzhou, Henan, 450003, China. .,Henan Key laboratory of Stem Cell Differentiation and Modification, Henan Provincial People's Hospital, Zhengzhou, Henan, China. .,Department of Hematology, People's Hospital of Zhengzhou University, Henan, Zhengzhou, China.
| |
Collapse
|
11
|
Wang Z, Lv J, Yu P, Qu Y, Zhou Y, Zhou L, Zhu Q, Li S, Song J, Deng W, Gao R, Liu Y, Liu J, Tong WM, Qin C, Huang B. SARS-CoV-2 treatment effects induced by ACE2-expressing microparticles are explained by the oxidized cholesterol-increased endosomal pH of alveolar macrophages. Cell Mol Immunol 2022; 19:210-221. [PMID: 34983944 PMCID: PMC8724656 DOI: 10.1038/s41423-021-00813-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/28/2021] [Indexed: 01/02/2023] Open
Abstract
Exploring the cross-talk between the immune system and advanced biomaterials to treat SARS-CoV-2 infection is a promising strategy. Here, we show that ACE2-overexpressing A549 cell-derived microparticles (AO-MPs) are a potential therapeutic agent against SARS-CoV-2 infection. Intranasally administered AO-MPs dexterously navigate the anatomical and biological features of the lungs to enter the alveoli and are taken up by alveolar macrophages (AMs). Then, AO-MPs increase the endosomal pH but decrease the lysosomal pH in AMs, thus escorting bound SARS-CoV-2 from phago-endosomes to lysosomes for degradation. This pH regulation is attributable to oxidized cholesterol, which is enriched in AO-MPs and translocated to endosomal membranes, thus interfering with proton pumps and impairing endosomal acidification. In addition to promoting viral degradation, AO-MPs also inhibit the proinflammatory phenotype of AMs, leading to increased treatment efficacy in a SARS-CoV-2-infected mouse model without side effects. These findings highlight the potential use of AO-MPs to treat SARS-CoV-2-infected patients and showcase the feasibility of MP therapies for combatting emerging respiratory viruses in the future.
Collapse
Affiliation(s)
- Zhenfeng Wang
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, 100005, China
| | - Jiadi Lv
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, 100005, China
| | - Pin Yu
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, CAMS and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Yajin Qu
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, CAMS and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Yabo Zhou
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, 100005, China
| | - Li Zhou
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, 100005, China
| | - Qiangqiang Zhu
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, 100005, China
| | - Shunshun Li
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, 100005, China
| | - Jiangping Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, CAMS and Peking Union Medical College, Beijing, China
| | - Wei Deng
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, CAMS and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Ran Gao
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, CAMS and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Yuying Liu
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, 100005, China
| | - Jiangning Liu
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, CAMS and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Wei-Min Tong
- Department of Pathology, Institute of Basic Medical Sciences, CAMS and Peking Union Medical College, Beijing, China
| | - Chuan Qin
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, CAMS and Comparative Medicine Center, Peking Union Medical College, Beijing, China.
| | - Bo Huang
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, 100005, China.
- Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, China.
| |
Collapse
|
12
|
Zhang X, Li J, Wang Y, Liu M, Liu F, Zhang X, Pei L, Wang T, Jiang D, Wang X, Zhang J, Dai L. A Diagnostic Model With IgM Autoantibodies and Carcinoembryonic Antigen for Early Detection of Lung Adenocarcinoma. Front Immunol 2022; 12:728853. [PMID: 35140701 PMCID: PMC8818794 DOI: 10.3389/fimmu.2021.728853] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 12/28/2021] [Indexed: 12/19/2022] Open
Abstract
Immunoglobulin M (IgM) autoantibodies, as the early appearing antibodies in humoral immunity when stimulated by antigens, might be excellent biomarkers for the early detection of lung cancer (LC). We aimed to develop a multi-analyte integrative model combining IgM autoantibodies and a traditional tumor biomarker that could be a valuable and powerful auxiliary diagnostic tool and might improve the accuracy of early detection of lung adenocarcinoma (LUAD). A customized protein array based on cancer driver genes was constructed and applied in the discovery cohort consisting of 68 LUAD patients and 68 normal controls (NCs); 31 differentially expressed IgM autoantibodies were identified. The top 5 candidate IgM autoantibodies [based on the area under the receiver operating characteristic curve (AUC) ranking], namely, TSHR, ERBB2, survivin, PIK3CA, and JAK2, were validated in the validation cohort using enzyme-linked immunosorbent assay (ELISA), which included 147 LUAD samples, 72 lung squamous cell carcinoma (LUSC) samples, 44 small cell lung carcinoma (SCLC) samples, and 147 NCs. These indicators presented diagnostic capacity for LUAD, with AUCs of 0.599, 0.613, 0.579, 0.601, and 0.633, respectively (p < 0.05). However, none of them showed a significant difference between the SCLC and NC groups, and only the IgM autoantibody against JAK2 showed a higher expression in LUSC than in NC (p = 0.046). Through logistic regression analysis, with the five IgM autoantibodies and carcinoembryonic antigen (CEA), one diagnostic model was constructed for LUAD. The model yielded an AUC of 0.827 (sensitivity = 56.63%, specificity = 93.98%). The diagnostic efficiency was superior to that of either CEA (AUC = 0.692) or IgM autoantibodies alone (AUC = 0.698). Notably, the accuracy of this model in early-stage LUAD reached 83.02%. In conclusion, we discovered and identified five novel IgM indicators and developed a multi-analyte model combining IgM autoantibodies and CEA, which could be a valuable and powerful auxiliary diagnostic tool and might improve the accuracy of early detection of LUAD.
Collapse
Affiliation(s)
- Xue Zhang
- Henan Institute of Medical and Pharmaceutical Sciences & School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Tumor Epidemiology & Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, China
| | - Jiaqi Li
- Henan Institute of Medical and Pharmaceutical Sciences & School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Tumor Epidemiology & Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, China
| | - Yulin Wang
- Henan Institute of Medical and Pharmaceutical Sciences & School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Tumor Epidemiology & Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, China
| | - Man Liu
- Henan Institute of Medical and Pharmaceutical Sciences & School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Tumor Epidemiology & Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, China
| | - Fenghui Liu
- Department of Respiratory and Sleep Medicine in the First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Xiuzhi Zhang
- Department of Pathology, Henan Medical College, Zhengzhou, China
| | - Lu Pei
- Department of Clinical Laboratory, Zhengzhou Hospital of Traditional Chinese Medicine, Zhengzhou, China
| | - Tingting Wang
- Department of Clinical Laboratory, Fuwai Central China Cardiovascular Hospital, Zhengzhou, China
| | - Di Jiang
- Henan Institute of Medical and Pharmaceutical Sciences & School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Tumor Epidemiology & Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, China
| | - Xiao Wang
- Henan Institute of Medical and Pharmaceutical Sciences & School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Tumor Epidemiology & Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, China
| | - Jianying Zhang
- Henan Institute of Medical and Pharmaceutical Sciences & School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Tumor Epidemiology & Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, China
| | - Liping Dai
- Henan Institute of Medical and Pharmaceutical Sciences & School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Tumor Epidemiology & Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, China
- *Correspondence: Liping Dai,
| |
Collapse
|
13
|
Wang JY, Roehrl MW, Roehrl VB, Roehrl MH. A Master Autoantigen-ome Links Alternative Splicing, Female Predilection, and COVID-19 to Autoimmune Diseases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.07.30.454526. [PMID: 34373855 PMCID: PMC8351778 DOI: 10.1101/2021.07.30.454526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chronic and debilitating autoimmune sequelae pose a grave concern for the post-COVID-19 pandemic era. Based on our discovery that the glycosaminoglycan dermatan sulfate (DS) displays peculiar affinity to apoptotic cells and autoantigens (autoAgs) and that DS-autoAg complexes cooperatively stimulate autoreactive B1 cell responses, we compiled a database of 751 candidate autoAgs from six human cell types. At least 657 of these have been found to be affected by SARS-CoV-2 infection based on currently available multi-omic COVID data, and at least 400 are confirmed targets of autoantibodies in a wide array of autoimmune diseases and cancer. The autoantigen-ome is significantly associated with various processes in viral infections, such as translation, protein processing, and vesicle transport. Interestingly, the coding genes of autoAgs predominantly contain multiple exons with many possible alternative splicing variants, short transcripts, and short UTR lengths. These observations and the finding that numerous autoAgs involved in RNA-splicing showed altered expression in viral infections suggest that viruses exploit alternative splicing to reprogram host cell machinery to ensure viral replication and survival. While each cell type gives rise to a unique pool of autoAgs, 39 common autoAgs associated with cell stress and apoptosis were identified from all six cell types, with several being known markers of systemic autoimmune diseases. In particular, the common autoAg UBA1 that catalyzes the first step in ubiquitination is encoded by an X-chromosome escape gene. Given its essential function in apoptotic cell clearance and that X-inactivation escape tends to increase with aging, UBA1 dysfunction can therefore predispose aging women to autoimmune disorders. In summary, we propose a model of how viral infections lead to extensive molecular alterations and host cell death, autoimmune responses facilitated by autoAg-DS complexes, and ultimately autoimmune diseases. Overall, this master autoantigen-ome provides a molecular guide for investigating the myriad of autoimmune sequalae to COVID-19 and clues to the rare but reported adverse effects of the currently available COVID vaccines.
Collapse
Affiliation(s)
| | | | | | - Michael H. Roehrl
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, USA
| |
Collapse
|
14
|
Wang JY, Zhang W, Roehrl MW, Roehrl VB, Roehrl MH. An Autoantigen Profile from Jurkat T-Lymphoblasts Provides a Molecular Guide for Investigating Autoimmune Sequelae of COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.07.05.451199. [PMID: 34729561 PMCID: PMC8562547 DOI: 10.1101/2021.07.05.451199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In order to understand autoimmune phenomena contributing to the pathophysiology of COVID-19 and post-COVID syndrome, we have been profiling autoantigens (autoAgs) from various cell types. Although cells share numerous autoAgs, each cell type gives rise to unique COVID-altered autoAg candidates, which may explain the wide range of symptoms experienced by patients with autoimmune sequelae of SARS-CoV-2 infection. Based on the unifying property of affinity between autoantigens (autoAgs) and the glycosaminoglycan dermatan sulfate (DS), this paper reports 140 candidate autoAgs identified from proteome extracts of human Jurkat T-cells, of which at least 105 (75%) are known targets of autoantibodies. Comparison with currently available multi-omic COVID-19 data shows that 125 (89%) of DS-affinity proteins are altered at protein and/or RNA levels in SARS-CoV-2-infected cells or patients, with at least 94 being known autoAgs in a wide spectrum of autoimmune diseases and cancer. Protein alterations by ubiquitination and phosphorylation in the viral infection are major contributors of autoAgs. The autoAg protein network is significantly associated with cellular response to stress, apoptosis, RNA metabolism, mRNA processing and translation, protein folding and processing, chromosome organization, cell cycle, and muscle contraction. The autoAgs include clusters of histones, CCT/TriC chaperonin, DNA replication licensing factors, proteasome and ribosome proteins, heat shock proteins, serine/arginine-rich splicing factors, 14-3-3 proteins, and cytoskeletal proteins. AutoAgs such as LCP1 and NACA that are altered in the T cells of COVID patients may provide insight into T-cell responses in the viral infection and merit further study. The autoantigen-ome from this study contributes to a comprehensive molecular map for investigating acute, subacute, and chronic autoimmune disorders caused by SARS-CoV-2.
Collapse
Affiliation(s)
| | - Wei Zhang
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | | | | | - Michael H. Roehrl
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, USA
| |
Collapse
|
15
|
Wang JY, Zhang W, Roehrl MW, Roehrl VB, Roehrl MH. An autoantigen profile of human A549 lung cells reveals viral and host etiologic molecular attributes of autoimmunity in COVID-19. J Autoimmun 2021; 120:102644. [PMID: 33971585 PMCID: PMC8075847 DOI: 10.1016/j.jaut.2021.102644] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 04/08/2021] [Indexed: 12/13/2022]
Abstract
We aim to establish a comprehensive COVID-19 autoantigen atlas in order to understand autoimmune diseases caused by SARS-CoV-2 infection. Based on the unique affinity between dermatan sulfate and autoantigens, we identified 348 proteins from human lung A549 cells, of which 198 are known targets of autoantibodies. Comparison with current COVID data identified 291 proteins that are altered at protein or transcript level in SARS-CoV-2 infection, with 191 being known autoantigens. These known and putative autoantigens are significantly associated with viral replication and trafficking processes, including gene expression, ribonucleoprotein biogenesis, mRNA metabolism, translation, vesicle and vesicle-mediated transport, and apoptosis. They are also associated with cytoskeleton, platelet degranulation, IL-12 signaling, and smooth muscle contraction. Host proteins that interact with and that are perturbed by viral proteins are a major source of autoantigens. Orf3 induces the largest number of protein alterations, Orf9 affects the mitochondrial ribosome, and they and E, M, N, and Nsp proteins affect protein localization to membrane, immune responses, and apoptosis. Phosphorylation and ubiquitination alterations by viral infection define major molecular changes in autoantigen origination. This study provides a large list of autoantigens as well as new targets for future investigation, e.g., UBA1, UCHL1, USP7, CDK11A, PRKDC, PLD3, PSAT1, RAB1A, SLC2A1, platelet activating factor acetylhydrolase, and mitochondrial ribosomal proteins. This study illustrates how viral infection can modify host cellular proteins extensively, yield diverse autoantigens, and trigger a myriad of autoimmune sequelae. Our work provides a rich resource for studies into “long COVID” and related autoimmune sequelae.
Collapse
Affiliation(s)
| | - Wei Zhang
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | | | | | - Michael H Roehrl
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, USA.
| |
Collapse
|
16
|
Wang JY, Zhang W, Roehrl VB, Roehrl MW, Roehrl MH. An Autoantigen-ome from HS-Sultan B-Lymphoblasts Offers a Molecular Map for Investigating Autoimmune Sequelae of COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.04.05.438500. [PMID: 33851168 PMCID: PMC8043459 DOI: 10.1101/2021.04.05.438500] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
To understand how COVID-19 may induce autoimmune diseases, we have been compiling an atlas of COVID-autoantigens (autoAgs). Using dermatan sulfate (DS) affinity enrichment of autoantigenic proteins extracted from HS-Sultan lymphoblasts, we identified 362 DS-affinity proteins, of which at least 201 (56%) are confirmed autoAgs. Comparison with available multi-omic COVID data shows that 315 (87%) of the 362 proteins are affected in SARS-CoV-2 infection via altered expression, interaction with viral components, or modification by phosphorylation or ubiquitination, at least 186 (59%) of which are known autoAgs. These proteins are associated with gene expression, mRNA processing, mRNA splicing, translation, protein folding, vesicles, and chromosome organization. Numerous nuclear autoAgs were identified, including both classical ANAs and ENAs of systemic autoimmune diseases and unique autoAgs involved in the DNA replication fork, mitotic cell cycle, or telomerase maintenance. We also identified many uncommon autoAgs involved in nucleic acid and peptide biosynthesis and nucleocytoplasmic transport, such as aminoacyl-tRNA synthetases. In addition, this study found autoAgs that potentially interact with multiple SARS-CoV-2 Nsp and Orf components, including CCT/TriC chaperonin, insulin degrading enzyme, platelet-activating factor acetylhydrolase, and the ezrin-moesin-radixin family. Furthermore, B-cell-specific IgM-associated ER complex (including MBZ1, BiP, heat shock proteins, and protein disulfide-isomerases) is enriched by DS-affinity and up-regulated in B-cells of COVID-19 patients, and a similar IgH-associated ER complex was also identified in autoreactive pre-B1 cells in our previous study, which suggests a role of autoreactive B1 cells in COVID-19 that merits further investigation. In summary, this study demonstrates that virally infected cells are characterized by alterations of proteins with propensity to become autoAgs, thereby providing a possible explanation for infection-induced autoimmunity. The COVID autoantigen-ome provides a valuable molecular resource and map for investigation of COVID-related autoimmune sequelae and considerations for vaccine design.
Collapse
Affiliation(s)
| | - Wei Zhang
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | | | | | - Michael H. Roehrl
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, USA
| |
Collapse
|
17
|
Bantis LE, Tsimikas JV, Chambers G, Capello M, Hanash S, Feng Z. The length of the receiver operating characteristic curve and the two cutoff Youden index within a robust framework for discovery, evaluation, and cutoff estimation in biomarker studies involving improper receiver operating characteristic curves. Stat Med 2021; 40:1767-1789. [PMID: 33530129 PMCID: PMC9976806 DOI: 10.1002/sim.8869] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023]
Abstract
During the early stage of biomarker discovery, high throughput technologies allow for simultaneous input of thousands of biomarkers that attempt to discriminate between healthy and diseased subjects. In such cases, proper ranking of biomarkers is highly important. Common measures, such as the area under the receiver operating characteristic (ROC) curve (AUC), as well as affordable sensitivity and specificity levels, are often taken into consideration. Strictly speaking, such measures are appropriate under a stochastic ordering assumption, which implies, without loss of generality, that higher measurements are more indicative for the disease. Such an assumption is not always plausible and may lead to rejection of extremely useful biomarkers at this early discovery stage. We explore the length of a smooth ROC curve as a measure for biomarker ranking, which is not subject to directionality. We show that the length corresponds to a ϕ divergence, is identical to the corresponding length of the optimal (likelihood ratio) ROC curve, and is an appropriate measure for ranking biomarkers. We explore the relationship between the length measure and the AUC of the optimal ROC curve. We then provide a complete framework for the evaluation of a biomarker in terms of sensitivity and specificity through a proposed ROC analogue for use in improper settings. In the absence of any clinical insight regarding the appropriate cutoffs, we estimate the sensitivity and specificity under a two-cutoff extension of the Youden index and we further take into account the implied costs. We apply our approaches on two biomarker studies that relate to pancreatic and esophageal cancer.
Collapse
Affiliation(s)
- Leonidas E. Bantis
- Dept. of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, U.S.A
| | - John V. Tsimikas
- Dept of Statistics and Actuarial-Financial Mathematics, University of the Aegean, Samos, Greece
| | | | - Michela Capello
- Dept. of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, U.S.A
| | - Samir Hanash
- Dept. of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, U.S.A
| | - Ziding Feng
- Dept. of Biostatistics, Fred Hutchinson Cancer Research Center, Seattle, U.S.A
| |
Collapse
|
18
|
Wang JY, Zhang W, Roehrl MW, Roehrl VB, Roehrl MH. An Autoantigen Profile of Human A549 Lung Cells Reveals Viral and Host Etiologic Molecular Attributes of Autoimmunity in COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.02.21.432171. [PMID: 33655248 PMCID: PMC7924268 DOI: 10.1101/2021.02.21.432171] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We aim to establish a comprehensive COVID-19 autoantigen atlas in order to understand autoimmune diseases caused by SARS-CoV-2 infection. Based on the unique affinity between dermatan sulfate and autoantigens, we identified 348 proteins from human lung A549 cells, of which 198 are known targets of autoantibodies. Comparison with current COVID data identified 291 proteins that are altered at protein or transcript level in SARS-CoV-2 infection, with 191 being known autoantigens. These known and putative autoantigens are significantly associated with viral replication and trafficking processes, including gene expression, ribonucleoprotein biogenesis, mRNA metabolism, translation, vesicle and vesicle-mediated transport, and apoptosis. They are also associated with cytoskeleton, platelet degranulation, IL-12 signaling, and smooth muscle contraction. Host proteins that interact with and that are perturbed by viral proteins are a major source of autoantigens. Orf3 induces the largest number of protein alterations, Orf9 affects the mitochondrial ribosome, and they and E, M, N, and Nsp proteins affect protein localization to membrane, immune responses, and apoptosis. Phosphorylation and ubiquitination alterations by viral infection define major molecular changes in autoantigen origination. This study provides a large list of autoantigens as well as new targets for future investigation, e.g., UBA1, UCHL1, USP7, CDK11A, PRKDC, PLD3, PSAT1, RAB1A, SLC2A1, platelet activating factor acetylhydrolase, and mitochondrial ribosomal proteins. This study illustrates how viral infection can modify host cellular proteins extensively, yield diverse autoantigens, and trigger a myriad of autoimmune sequelae.
Collapse
Affiliation(s)
| | - Wei Zhang
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | | | | | - Michael H. Roehrl
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, USA
| |
Collapse
|
19
|
Wang JY, Zhang W, Roehrl MW, Roehrl VB, Roehrl MH. An Autoantigen Atlas from Human Lung HFL1 Cells Offers Clues to Neurological and Diverse Autoimmune Manifestations of COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.01.24.427965. [PMID: 33501444 PMCID: PMC7836114 DOI: 10.1101/2021.01.24.427965] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
COVID-19 is accompanied by a myriad of both transient and long-lasting autoimmune responses. Dermatan sulfate (DS), a glycosaminoglycan crucial for wound healing, has unique affinity for autoantigens (autoAgs) from apoptotic cells. DS-autoAg complexes are capable of stimulating autoreactive B cells and autoantibody production. Using DS affinity, we identified an autoantigenome of 408 proteins from human fetal lung fibroblast HFL11 cells, at least 231 of which are known autoAgs. Comparing with available COVID data, 352 proteins of the autoantigenome have thus far been found to be altered at protein or RNA levels in SARS-Cov-2 infection, 210 of which are known autoAgs. The COVID-altered proteins are significantly associated with RNA metabolism, translation, vesicles and vesicle transport, cell death, supramolecular fibrils, cytoskeleton, extracellular matrix, and interleukin signaling. They offer clues to neurological problems, fibrosis, smooth muscle dysfunction, and thrombosis. In particular, 150 altered proteins are related to the nervous system, including axon, myelin sheath, neuron projection, neuronal cell body, and olfactory bulb. An association with the melanosome is also identified. The findings from our study illustrate a strong connection between viral infection and autoimmunity. The vast number of COVID-altered proteins with propensity to become autoAgs offers an explanation for the diverse autoimmune complications in COVID patients. The variety of autoAgs related to mRNA metabolism, translation, and vesicles raises concerns about potential adverse effects of mRNA vaccines. The COVID autoantigen atlas we are establishing provides a detailed molecular map for further investigation of autoimmune sequelae of the pandemic.
Collapse
Affiliation(s)
| | - Wei Zhang
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | | | | | - Michael H. Roehrl
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, USA
| |
Collapse
|
20
|
Shepl S, Ganna S, Hodeib H, Abd El-Zaher A. A study of diagnostic utility of annexin A1 in bronchoalveolar lavage fluid of patients with bronchogenic carcinoma. TANTA MEDICAL JOURNAL 2021; 49:182. [DOI: 10.4103/tmj.tmj_63_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
21
|
Autoantibodies against tumor-associated antigens in sputum as biomarkers for lung cancer. Transl Oncol 2020; 14:100991. [PMID: 33333369 PMCID: PMC7736713 DOI: 10.1016/j.tranon.2020.100991] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/30/2020] [Accepted: 12/07/2020] [Indexed: 12/28/2022] Open
Abstract
Tumor antigens (TAs) can initiate host immune responses and produce TA-associated autoantibody (TAAbs), potential cancer biomarkers. Sputum is directly generated from the upper and lower airways, and thus can be used as a surrogate sample for the diagnosis of lung cancer based on molecular analysis. To develop sputum TAAb biomarkers for the early detection of lung cancer, the leading cause of cancer death, we probed a protein microarray containing more than 9,000 antigens with sputum supernatants of a discovery set of 30 lung cancer patients and 30 cancer-free smokers. Twenty-eight TAs with higher reactivity in sputum of lung cancer cases vs. controls were identified. The diagnostic significance of TAAbs against the TAs was determined by enzyme-linked immunosorbent assays (ELISAs) in sputum of the discovery set and additional 166 lung cancer patients and 213 cancer-free smokers (validation set). Three sputum TAAbs against DDX6, ENO1, and 14-3-3ζ were developed as a biomarker panel with 81% sensitivity and 83% specificity for diagnosis of lung cancer, regardless of stages, locations, and histological types of lung tumors. This study provides the first evidence that sputum TAAbs could be used as biomarkers for the early detection of lung cancer.
Collapse
|
22
|
Zhang X, Liu M, Zhang X, Wang Y, Dai L. Autoantibodies to tumor-associated antigens in lung cancer diagnosis. Adv Clin Chem 2020; 103:1-45. [PMID: 34229848 DOI: 10.1016/bs.acc.2020.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Lung cancer (LC) accounts for the majority of cancer-related deaths worldwide. Although screening the high-risk population by low-dose CT (LDCT) has reduced mortality, the cost and high false positivity rate has prevented its general diagnostic use. As such, better and more specific minimally invasive biomarkers are needed in general and for early LC detection, specifically. Autoantibodies produced by humoral immune response to tumor-associated antigens (TAA) are emerging as a promising noninvasive biomarker for LC. Given the low sensitivity of any one single autoantibody, a panel approach could provide a more robust and promising strategy to detect early stage LC. In this review, we summarize the background of TAA autoantibodies (TAAb) and the techniques currently used for identifying TAA, as well as recent findings of LC specific antigens and TAAb. This review provides guidance toward the development of accurate and reliable TAAb as immunodiagnostic biomarkers in the early detection of LC.
Collapse
Affiliation(s)
- Xiuzhi Zhang
- Department of Pathology, Henan Medical College, Zhengzhou, Henan, China
| | - Man Liu
- Henan Institute of Medical and Pharmaceutical Sciences in Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China; School of Basic Medical Sciences & Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China; Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou, Henan, China
| | - Xue Zhang
- Henan Institute of Medical and Pharmaceutical Sciences in Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China; School of Basic Medical Sciences & Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China; Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou, Henan, China
| | - Yulin Wang
- Henan Institute of Medical and Pharmaceutical Sciences in Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China; School of Basic Medical Sciences & Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China; Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou, Henan, China
| | - Liping Dai
- Henan Institute of Medical and Pharmaceutical Sciences in Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China; School of Basic Medical Sciences & Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China; Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
23
|
Wang JY, Zhang W, Rho JH, Roehrl MW, Roehrl MH. A proteomic repertoire of autoantigens identified from the classic autoantibody clinical test substrate HEp-2 cells. Clin Proteomics 2020; 17:35. [PMID: 32973414 PMCID: PMC7507713 DOI: 10.1186/s12014-020-09298-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Autoantibodies are a hallmark of autoimmune diseases. Autoantibody screening by indirect immunofluorescence staining of HEp-2 cells with patient sera is a current standard in clinical practice. Differential diagnosis of autoimmune disorders is based on commonly recognizable nuclear and cytoplasmic staining patterns. In this study, we attempted to identify as many autoantigens as possible from HEp-2 cells using a unique proteomic DS-affinity enrichment strategy. METHODS HEp-2 cells were cultured and lysed. Total proteins were extracted from cell lysate and fractionated with DS-Sepharose resins. Proteins were eluted with salt gradients, and fractions with low to high affinity were collected and sequenced by mass spectrometry. Literature text mining was conducted to verify the autoantigenicity of each protein. Protein interaction network and pathway analyses were performed on all identified proteins. RESULTS This study identified 107 proteins from fractions with low to high DS-affinity. Of these, 78 are verified autoantigens with previous reports as targets of autoantibodies, whereas 29 might be potential autoantigens yet to be verified. Among the 107 proteins, 82 can be located to nucleus and 15 to the mitotic cell cycle, which may correspond to the dominance of nuclear and mitotic staining patterns in HEp-2 test. There are 55 vesicle-associated proteins and 12 ribonucleoprotein granule proteins, which may contribute to the diverse speckled patterns in HEp-2 stains. There are also 32 proteins related to the cytoskeleton. Protein network analysis indicates that these proteins have significantly more interactions among themselves than would be expected of a random set, with the top 3 networks being mRNA metabolic process regulation, apoptosis, and DNA conformation change. CONCLUSIONS This study provides a proteomic repertoire of confirmed and potential autoantigens for future studies, and the findings are consistent with a mechanism for autoantigenicity: how self-molecules may form molecular complexes with DS to elicit autoimmunity. Our data contribute to the molecular etiology of autoimmunity and may deepen our understanding of autoimmune diseases.
Collapse
Affiliation(s)
| | - Wei Zhang
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Jung-hyun Rho
- MP Biomedicals New Zealand Limited, Auckland, New Zealand
| | | | - Michael H. Roehrl
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, USA
| |
Collapse
|
24
|
Wang W, Zhuang R, Ma H, Fang L, Wang Z, Lv W, Hu J. The diagnostic value of a seven-autoantibody panel and a nomogram with a scoring table for predicting the risk of non-small-cell lung cancer. Cancer Sci 2020; 111:1699-1710. [PMID: 32108977 PMCID: PMC7226194 DOI: 10.1111/cas.14371] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/20/2020] [Accepted: 02/22/2020] [Indexed: 12/17/2022] Open
Abstract
The early detection of non-small-cell lung cancer (NSCLC) remains a common concern. The aim of our study was to validate the diagnostic value of a seven-autoantibody (7-AAB) panel compared with radiological diagnosis for NSCLC. We constructed a nomogram and a scoring table based on the 7-AAB panel's result to predict the risk of NSCLC. We prospectively enrolled 268 patients who presented with radiological lesions and underwent both the 7-AAB panel test and pathological diagnosis by surgical resection. A comparison between the 7-AAB panel and radiological diagnosis was performed. A nomogram and a scoring table based on the 7-AAB panel's result to predict the risk of NSCLC were constructed and internally validated. The 7-AAB panel test had a specificity of 90.2% and a positive predictive value (PPV) of 92.7%, which were significantly higher than those of the radiological diagnosis. The 7-AAB panel also showed a preferable sensitivity in patients with early-stage disease. Seven factors, including the 7-AAB panel results, were integrated into the nomogram. For more convenient application, we formulated a scoring table based on the nomogram. The area under the receiver operating characteristic curve was 0.840 and 0.860 in the training group and validation group, respectively, which was higher than that using the 7-AAB panel or radiological diagnosis alone. This study reveals that our 7-AAB panel has clinical value in the diagnosis of NSCLC. The utility of our nomogram and the scoring table indicated that they have the potential to assist clinicians in avoiding unnecessary treatment or needless follow-up.
Collapse
Affiliation(s)
- Weidong Wang
- Department of Thoracic SurgeryThe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouChina
| | - Runzhou Zhuang
- Department of Thoracic SurgeryThe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouChina
| | - Honghai Ma
- Department of Thoracic SurgeryThe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouChina
| | - Likui Fang
- Department of Thoracic SurgeryThe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouChina
| | - Zhitian Wang
- Department of Thoracic SurgeryThe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouChina
| | - Wang Lv
- Department of Thoracic SurgeryThe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouChina
| | - Jian Hu
- Department of Thoracic SurgeryThe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouChina
| |
Collapse
|
25
|
Wu J, Hao Z, Ma C, Li P, Dang L, Sun S. Comparative proteogenomics profiling of non-small and small lung carcinoma cell lines using mass spectrometry. PeerJ 2020; 8:e8779. [PMID: 32351780 PMCID: PMC7183755 DOI: 10.7717/peerj.8779] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/21/2020] [Indexed: 12/15/2022] Open
Abstract
Background Evidences indicated that non-small-cell lung cancer (NSCLC) and small-cell lung cancer (SCLC) might originate from the same cell type, which however ended up to be two different subtypes of lung carcinoma, requiring different therapeutic regimens. We aimed to identify the differences between these two subtypes of lung cancer by using integrated proteome and genome approaches. Methods and Materials Two representative cell lines for each lung cancer subtype were comparatively analysed by quantitative proteomics, and their corresponding transcriptomics data were obtained from the Gene Expression Omnibus database. The integrated analyses of proteogenomic data were performed to determine key differentially expressed proteins that were positively correlated between proteomic and transcriptomic data. Result The proteomics analysis revealed 147 differentially expressed proteins between SCLC and NSCLC from a total of 3,970 identified proteins. Combined with available transcriptomics data, we further confirmed 14 differentially expressed proteins including six known and eight new lung cancer related proteins that were positively correlated with their transcriptomics data. These proteins are mainly involved in cell migration, proliferation, and invasion. Conclusion The proteogenomic data on both NSCLC and SCLC cell lines presented in this manuscript is complementary to existing genomic and proteomic data related to lung cancers and will be crucial for a systems biology-level understanding of the molecular mechanism of lung cancers. The raw mass spectrometry data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD015270.
Collapse
Affiliation(s)
- Jingyu Wu
- College of Life Science, Northwest University, Xi'an, China
| | - Zhifang Hao
- College of Life Science, Northwest University, Xi'an, China
| | - Chen Ma
- College of Life Science, Northwest University, Xi'an, China
| | - Pengfei Li
- College of Life Science, Northwest University, Xi'an, China
| | - Liuyi Dang
- College of Life Science, Northwest University, Xi'an, China
| | - Shisheng Sun
- College of Life Science, Northwest University, Xi'an, China
| |
Collapse
|
26
|
Proteome Profiling Uncovers an Autoimmune Response Signature That Reflects Ovarian Cancer Pathogenesis. Cancers (Basel) 2020; 12:cancers12020485. [PMID: 32092936 PMCID: PMC7072578 DOI: 10.3390/cancers12020485] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/13/2020] [Accepted: 02/17/2020] [Indexed: 02/07/2023] Open
Abstract
Harnessing the immune response to tumor antigens in the form of autoantibodies, which occurs early during tumor development, has relevance to the detection of cancer at early stages. We conducted an initial screen of antigens associated with an autoantibody response in serous ovarian cancer using recombinant protein arrays. The top 25 recombinants that exhibited increased reactivity with cases compared to controls revealed TP53 and MYC, which are ovarian cancer driver genes, as major network nodes. A mass spectrometry based independent analysis of circulating immunoglobulin (Ig)-bound proteins in ovarian cancer and of ovarian cancer cell surface MHC-II bound peptides also revealed a TP53–MYC related network of antigens. Our findings support the occurrence of a humoral immune response to antigens linked to ovarian cancer driver genes that may have utility for early detection applications.
Collapse
|
27
|
Garranzo-Asensio M, Guzmán-Aránguez A, Povedano E, Ruiz-Valdepeñas Montiel V, Poves C, Fernandez-Aceñero MJ, Montero-Calle A, Solís-Fernández G, Fernandez-Diez S, Camps J, Arenas M, Rodríguez-Tomàs E, Joven J, Sanchez-Martinez M, Rodriguez N, Dominguez G, Yáñez-Sedeño P, Pingarrón JM, Campuzano S, Barderas R. Multiplexed monitoring of a novel autoantibody diagnostic signature of colorectal cancer using HaloTag technology-based electrochemical immunosensing platform. Theranostics 2020; 10:3022-3034. [PMID: 32194852 PMCID: PMC7053203 DOI: 10.7150/thno.42507] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 01/02/2020] [Indexed: 12/15/2022] Open
Abstract
Background and Purpose: The humoral immune response in cancer patients can be used for early detection of the disease. Autoantibodies raised against tumor-associated antigens (TAAs) are promising clinical biomarkers for reliable cancer diagnosis, prognosis, and therapy monitoring. In this study, an electrochemical disposable multiplexed immunosensing platform able to integrate difficult- and easy-to-express colorectal cancer (CRC) TAAs is reported for the sensitive determination of eight CRC-specific autoantibodies. Methods: The electrochemical immunosensing approach involves the use of magnetic microcarriers (MBs) as solid supports modified with covalently immobilized HaloTag fusion proteins for the selective capture of specific autoantibodies. After magnetic capture of the modified MBs onto screen-printed carbon working electrodes, the amperometric responses measured using the hydroquinone (HQ)/H2O2 system were related to the levels of autoantibodies in plasma. Results: The biosensing platform was applied to the analysis of autoantibodies against 8 TAAs described for the first time in this work in plasma samples from healthy asymptomatic individuals (n=3), and patients with high-risk of developing CRC (n=3), and from patients already diagnosed with colorectal (n=3), lung (n=2) or breast (n=2) cancer. The developed bioplatform demonstrated an improved discrimination between CRC patients and controls (asymptomatic healthy individuals and breast and lung cancer patients) compared to an ELISA-like luminescence test. Conclusions: The proposed methodology uses a just-in-time produced protein in a simpler protocol, with low sample volume, and involves cost-effective instrumentation, which could be used in a high-throughput manner for reliable population screening to facilitate the detection of early CRC patients at affordable cost.
Collapse
Affiliation(s)
- María Garranzo-Asensio
- Departamento de Bioquímica y Biología Molecular, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, 28037 Madrid, Spain
- UFIEC, Chronic Disease Programme, Instituto de Salud Carlos III, Majadahonda 28220, Madrid, Spain
| | - Ana Guzmán-Aránguez
- Departamento de Bioquímica y Biología Molecular, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, 28037 Madrid, Spain
| | - Eloy Povedano
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Víctor Ruiz-Valdepeñas Montiel
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Carmen Poves
- Gastroenterology Unit, Hospital Universitario Clínico San Carlos, E-28040, Madrid, Spain
| | | | - Ana Montero-Calle
- UFIEC, Chronic Disease Programme, Instituto de Salud Carlos III, Majadahonda 28220, Madrid, Spain
| | | | | | - Jordi Camps
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d´Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus (Spain)
| | - Meritxell Arenas
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d´Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus (Spain)
| | - Elisabeth Rodríguez-Tomàs
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d´Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus (Spain)
- Department of Radiation Oncology, Hospital Universitari Sant Joan, Institut d´Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus (Spain)
| | - Jorge Joven
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d´Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus (Spain)
| | | | - Nuria Rodriguez
- Medical Oncology Department, Hospital Universitario La Paz, E-28046, Madrid, Spain
| | - Gemma Dominguez
- Departamento de Medicina, Facultad de Medicina, Instituto de Investigaciones Biomédicas "Alberto Sols", CSIC-UAM, E-28029, Madrid, Spain
| | - Paloma Yáñez-Sedeño
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - José Manuel Pingarrón
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Susana Campuzano
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Rodrigo Barderas
- UFIEC, Chronic Disease Programme, Instituto de Salud Carlos III, Majadahonda 28220, Madrid, Spain
| |
Collapse
|
28
|
Kobayashi M, Katayama H, Fahrmann JF, Hanash SM. Development of autoantibody signatures for common cancers. Semin Immunol 2020; 47:101388. [DOI: 10.1016/j.smim.2020.101388] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/01/2020] [Indexed: 12/14/2022]
|
29
|
Zhang L, Pu D, Liu D, Wang Y, Luo W, Tang H, Huang Y, Li W. Identification and validation of novel circulating biomarkers for early diagnosis of lung cancer. Lung Cancer 2019; 135:130-137. [DOI: 10.1016/j.lungcan.2019.06.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 06/01/2019] [Accepted: 06/17/2019] [Indexed: 10/26/2022]
|
30
|
Yang B, Li X, Ren T, Yin Y. Autoantibodies as diagnostic biomarkers for lung cancer: A systematic review. Cell Death Discov 2019; 5:126. [PMID: 31396403 PMCID: PMC6683200 DOI: 10.1038/s41420-019-0207-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/05/2019] [Accepted: 07/12/2019] [Indexed: 02/07/2023] Open
Abstract
Lung cancer (LC) accounts for the largest number of tumor-related deaths worldwide. As the overall 5-year survival rate of LC is associated with its stages at detection, development of a cost-effective and noninvasive cancer screening method is necessary. We conducted a systematic review to evaluate the diagnostic values of single and panel tumor-associated autoantibodies (TAAbs) in patients with LC. This review included 52 articles with 64 single TAAbs and 19 with 20 panels of TAAbs. Enzyme-linked immunosorbent assays (ELISA) were the most common detection method. The sensitivities of single TAAbs for all stages of LC ranged from 3.1% to 92.9% (mean: 45.2%, median: 37.1%), specificities from 60.6% to 100% (mean: 88.1%, median: 94.9%), and AUCs from 0.416 to 0.990 (mean: 0.764, median: 0.785). The single TAAb with the most significant diagnostic value was the autoantibody against human epididymis secretory protein (HE4) with the maximum sensitivity 91% for NSCLC. The sensitivities of the panel of TAAbs ranged from 30% to 94.8% (mean: 76.7%, median: 82%), specificities from 73% to 100% (mean: 86.8%, median: 89.0%), and AUCs from 0.630 to 0.982 (mean: 0.821, median: 0.820), and the most significant AUC value in a panel (M13 Phage 908, 3148, 1011, 3052, 1000) was 0.982. The single TAAb with the most significant diagnostic calue for early stage LC, was the autoantibody against Wilms tumor protein 1 (WT1) with the maximum sensitivity of 90.3% for NSCLC and its sensitivity and specificity in a panel (T7 Phage 72, 91, 96, 252, 286, 290) were both above 90.0%. Single or TAAbs panels may be useful biomarkers for detecting LC patients at all stages or an early-stage in high-risk populations or health people, but the TAAbs panels showed higher detection performance than single TAAbs. The diagnostic value of the panel of six TAAbs, which is higher than the panel of seven TAAbs, may be used as potential biomarkers for the early detection of LC and can probably be used in combination with low-dose CT in the clinic.
Collapse
Affiliation(s)
- Bin Yang
- China–Japan Union Hospital of Jilin University, Changchun, China
| | - Xiaoyan Li
- China–Japan Union Hospital of Jilin University, Changchun, China
| | - Tianyi Ren
- National Institutes of Health (NIH)), Bethesda, USA
| | - Yiyu Yin
- China–Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
31
|
Zang R, Li Y, Jin R, Wang X, Lei Y, Che Y, Lu Z, Mao S, Huang J, Liu C, Zheng S, Zhou F, Wu Q, Gao S, Sun N, He J. Enhancement of diagnostic performance in lung cancers by combining CEA and CA125 with autoantibodies detection. Oncoimmunology 2019; 8:e1625689. [PMID: 31646071 PMCID: PMC6791432 DOI: 10.1080/2162402x.2019.1625689] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/22/2019] [Accepted: 05/26/2019] [Indexed: 01/14/2023] Open
Abstract
Objectives: Although low-dose computed tomography has been confirmed to have meaningful diagnostic utility, lung cancer is still the leading cause of cancer-related deaths for both genders worldwide. Thus, a novel panel with a stronger diagnostic performance for lung cancer is needed. This study aimed to investigate the efficacy of a new panel in lung cancer diagnosis. Materials and Methods: The serum levels of carcinoembryonic antigen (CEA), cancer antigen 125 (CA125) and seven autoantibodies were measured and statistically analyzed in samples from healthy controls and patients with lung cancer. The 316 candidates enrolled in this study were randomly assigned into two groups for the training and validation of a diagnostic panel. Results: An optimal panel with four biomarkers (CEA, CA125, Annexin A1-Ab, and Alpha enolase-Ab) was established, with an area under the receiver operator characteristic (ROC) curve (AUC) of 0.897, a sensitivity of 86.5%, a specificity of 82.3%, a positive predictive value (PPV) of 88.3%, a negative predictive value (NPV) of 79.7%, and a diagnostic accuracy of 84.8% for the training group. The panel was validated, with an AUC of 0.856 and a sensitivity of 87.5% for the validation group. Furthermore, the new panel performed significantly better in lung cancer screening than did CEA and CA125 in all of the cohorts (p< .05). Conclusion: The diagnostic performance of CEA and CA125 was significantly enhanced through their combination with two autoantibodies (Annexin A1-Ab, and Alpha enolase-Ab). Optimization of the measured autoantibodies is critical for generating a panel to detect lung cancer in patients.
Collapse
Affiliation(s)
- Ruochuan Zang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Runsen Jin
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinfeng Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuanyuan Lei
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yun Che
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhiliang Lu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuangshuang Mao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianbing Huang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chengming Liu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Sufei Zheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fang Zhou
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qian Wu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shugeng Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nan Sun
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
32
|
Baracco EE, Petrazzuolo A, Kroemer G. Assessment of annexin A1 release during immunogenic cell death. Methods Enzymol 2019; 629:71-79. [PMID: 31727257 DOI: 10.1016/bs.mie.2019.06.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The protein annexin A1 (ANXA1) belongs to the danger-associated molecular patterns (DAMPs) that alert the innate immune system about tissue perturbations. In the context of immunogenic cell death (ICD), ANXA1 is released from the cytoplasm of dying cells and, once extracellular, acts on formyl peptide receptor 1 (FPR1) expressed on dendritic cells to favor long-term interactions between dying and dendritic cells. As a result, the accumulation of extracellular ANXA1 constitutes one of the hallmarks of ICD. In the past, the detection of ANXA1 was based on semiquantitative immunoblots. More recently, a commercial enzyme-linked immunosorbent assay (ELISA) has been developed to measure ANXA1 in an accurate fashion. Here, we detail the protocol to measure the concentration of ANXA1 in the supernatants of cancer cells treated with chemotherapy.
Collapse
Affiliation(s)
- Elisa Elena Baracco
- Equipe labellisée Ligue Nationale Contre le Cancer, Université Paris Descartes, Université Sorbonne Paris Cité, Université Paris Diderot, Institut National de la Santé et de la Recherche Médicale (INSERM), UMR1138, Centre de Recherche des Cordeliers, Paris, France.
| | - Adriana Petrazzuolo
- Equipe labellisée Ligue Nationale Contre le Cancer, Université Paris Descartes, Université Sorbonne Paris Cité, Université Paris Diderot, Institut National de la Santé et de la Recherche Médicale (INSERM), UMR1138, Centre de Recherche des Cordeliers, Paris, France
| | - Guido Kroemer
- Equipe labellisée Ligue Nationale Contre le Cancer, Université Paris Descartes, Université Sorbonne Paris Cité, Université Paris Diderot, Institut National de la Santé et de la Recherche Médicale (INSERM), UMR1138, Centre de Recherche des Cordeliers, Paris, France; Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France; Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China; Department of Women's and Children's Health, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
33
|
Xu YW, Chen H, Guo HP, Yang SH, Luo YH, Liu CT, Huang XY, Tang XM, Hong CQ, Li EM, Xu LY, Peng YH. Combined detection of serum autoantibodies as diagnostic biomarkers in esophagogastric junction adenocarcinoma. Gastric Cancer 2019; 22:546-557. [PMID: 30426295 PMCID: PMC6476828 DOI: 10.1007/s10120-018-0894-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/25/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND We previously found that autoantibodies against a panel of six tumor-associated antigens (p53, NY-ESO-1, MMP-7, Hsp70, PRDX6 and Bmi-1) may aid in early detection of esophageal squamous cell carcinoma. Here we aimed to evaluate the diagnostic value of this autoantibody panel in esophagogastric junction adenocarcinoma (EJA) patients. METHODS Serum autoantibody levels were measured by enzyme-linked immunosorbent assay in a training cohort and a validation cohort. We used receiver-operating characteristics (ROC) to calculate diagnostic accuracy. RESULTS We recruited 169 normal controls and 122 EJA patients to the training cohort, and 80 normal controls and 70 EJA patients to the validation cohort. Detection of the autoantibody panel demonstrated an area under the curve (AUC) of 0.818, sensitivity 59.0% and specificity 90.5% in training cohort, and AUC 0.815, sensitivity 61.4% and specificity 90.0% in validation cohort in the diagnosis of EJA. Measurement of the autoantibody panel could distinguish early stage EJA patients from normal controls (AUC 0.786 and 0.786, sensitivity 50.0% and 56.0%, and specificity 90.5% and 90.0%, for training and validation cohorts, respectively). Moreover, a restricted panel consisting of autoantibodies against p53, NY-ESO-1 and Bmi-1 exhibited similar diagnostic performance for EJA (AUC 0.814 and 0.823, sensitivity 53.5% and 60.0%, and specificity 90.5% and 93.7%, for training and validation cohorts, respectively) and early stage EJA (AUC 0.744 and 0.773, sensitivity 55.6% and 52.0%, and specificity 90.5% and 93.7%, for training and validation cohorts, respectively). CONCLUSIONS Autoantibodies against an optimized TAA panel as serum biomarkers appear to help identify the present of early stage EJA.
Collapse
Affiliation(s)
- Yi-Wei Xu
- Department of Clinical Laboratory Medicine, The Cancer Hospital of Shantou University Medical College, Shantou, 515041, People's Republic of China
- Guangdong Esophageal Cancer Research Institute, Shantou University Medical College, Shantou, 515041, People's Republic of China
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, People's Republic of China
| | - Hao Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Hai-Peng Guo
- Department of Head and Neck Surgery, The Cancer Hospital of Shantou University Medical College, Shantou, 515041, People's Republic of China
| | - Shi-Han Yang
- Department of Dermatology and Venereology, Shantou Central Hospital, Shantou, 515041, People's Republic of China
| | - Yu-Hao Luo
- Department of Clinical Laboratory Medicine, The Cancer Hospital of Shantou University Medical College, Shantou, 515041, People's Republic of China
| | - Can-Tong Liu
- Department of Clinical Laboratory Medicine, The Cancer Hospital of Shantou University Medical College, Shantou, 515041, People's Republic of China
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, People's Republic of China
| | - Xin-Yi Huang
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, People's Republic of China
| | - Xue-Miao Tang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Chao-Qun Hong
- Department of Oncological Laboratory Research, The Cancer Hospital of Shantou University Medical College, Shantou, 515041, People's Republic of China
| | - En-Min Li
- Guangdong Esophageal Cancer Research Institute, Shantou University Medical College, Shantou, 515041, People's Republic of China.
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, People's Republic of China.
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, People's Republic of China.
| | - Li-Yan Xu
- Guangdong Esophageal Cancer Research Institute, Shantou University Medical College, Shantou, 515041, People's Republic of China.
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, People's Republic of China.
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou, 515041, People's Republic of China.
| | - Yu-Hui Peng
- Department of Clinical Laboratory Medicine, The Cancer Hospital of Shantou University Medical College, Shantou, 515041, People's Republic of China.
- Guangdong Esophageal Cancer Research Institute, Shantou University Medical College, Shantou, 515041, People's Republic of China.
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, People's Republic of China.
| |
Collapse
|
34
|
Beutgen VM, Perumal N, Pfeiffer N, Grus FH. Autoantibody Biomarker Discovery in Primary Open Angle Glaucoma Using Serological Proteome Analysis (SERPA). Front Immunol 2019; 10:381. [PMID: 30899261 PMCID: PMC6417464 DOI: 10.3389/fimmu.2019.00381] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/14/2019] [Indexed: 12/18/2022] Open
Abstract
Glaucoma is an optic neurological disorder and the leading cause of irreversible blindness worldwide, with primary open angle glaucoma (POAG) as its most prevalent form. An early diagnosis of the disease is crucial to prevent loss of vision. Mechanisms behind glaucoma pathogenesis are not completely understood, but disease related alterations in the serological autoantibody profile indicate an immunologic component. These changes in immunoreactivity may serve as potential biomarkers for glaucoma diagnostics. We aimed to identify novel disease related autoantibodies targeting antigens in the trabecular meshwork as biomarkers to support early detection of POAG. We used serological proteome analysis (SERPA) for initial autoantibody profiling in a discovery sample set. The identified autoantibodies were validated by protein microarray analysis in a larger cohort with 60 POAG patients and 45 control subjects. In this study, we discovered CALD1, PGAM1, and VDAC2 as new biomarker candidates. With the use of artificial neural networks, the panel of these candidates and the already known markers HSPD1 and VIM was able to classify subjects into POAG patients and non-glaucomatous controls with a sensitivity of 81% and a specificity of 93%. These results suggest the benefit of these potential autoantibody biomarkers for utilization in glaucoma diagnostics.
Collapse
Affiliation(s)
- Vanessa M Beutgen
- Experimental and Translational Ophthalmology, Department of Ophthalmology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Natarajan Perumal
- Experimental and Translational Ophthalmology, Department of Ophthalmology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Norbert Pfeiffer
- Experimental and Translational Ophthalmology, Department of Ophthalmology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Franz H Grus
- Experimental and Translational Ophthalmology, Department of Ophthalmology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
35
|
Yan Y, Sun N, Wang H, Kobayashi M, Ladd JJ, Long JP, Lo KC, Patel J, Sullivan E, Albert T, Goodman GE, Do KA, Hanash SM. Whole Genome-Derived Tiled Peptide Arrays Detect Prediagnostic Autoantibody Signatures in Non-Small-Cell Lung Cancer. Cancer Res 2019; 79:1549-1557. [PMID: 30723114 DOI: 10.1158/0008-5472.can-18-1536] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 09/26/2018] [Accepted: 01/25/2019] [Indexed: 02/07/2023]
Abstract
The majority of non-small-cell lung cancer (NSCLC) cases are diagnosed at advanced stages, primarily because earlier stages of the disease are either asymptomatic or may be attributed to other causes such as infection or long-term effects from smoking. Therefore, early detection of NSCLC would likely increase response and survival rates due to timely intervention. Here, we utilize a novel approach based on whole genome-derived tiled peptide arrays to identify epitopes associated with autoantibody reactivity in NSCLC as a potential means for early detection. Arrays consisted of 2,781,902 tiled peptides representing 20,193 proteins encoded in the human genome. Analysis of 86 prediagnostic samples and 86 matched normal controls from a high-risk cohort revealed 48 proteins with three or more reactive epitopes in NSCLC samples relative to controls. Independent mass spectrometry analysis identified 40 of the 48 proteins in prediagnostic sera from NSCLC samples, of which, 21 occurred in the immunoglobulin-bound fraction. In addition, 63 and 34 proteins encompassed three or more epitopes that were distinct for squamous cell lung cancer and lung adenocarcinoma, respectively. Collectively, these data show that tiled peptide arrays provide a means to delineate epitopes encoded across the genome that trigger an autoantibody response associated with tumor development. SIGNIFICANCE: This study provides a modality for early diagnosis of NSCLC for precision oncology that can be applied to other cancer types.
Collapse
Affiliation(s)
- Yuanqing Yan
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nan Sun
- Red and Charline McCombs Institute for the Early Detection and Treatment of Cancer, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hong Wang
- Red and Charline McCombs Institute for the Early Detection and Treatment of Cancer, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Makoto Kobayashi
- Red and Charline McCombs Institute for the Early Detection and Treatment of Cancer, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jon J Ladd
- Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - James P Long
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ken C Lo
- Roche Diagnostics, Madison, Wisconsin
| | | | | | | | - Gary E Goodman
- Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Kim-Anh Do
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Samir M Hanash
- Red and Charline McCombs Institute for the Early Detection and Treatment of Cancer, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
36
|
Cherezov D, Hawkins SH, Goldgof DB, Hall LO, Liu Y, Li Q, Balagurunathan Y, Gillies RJ, Schabath MB. Delta radiomic features improve prediction for lung cancer incidence: A nested case-control analysis of the National Lung Screening Trial. Cancer Med 2018; 7:6340-6356. [PMID: 30507033 PMCID: PMC6308046 DOI: 10.1002/cam4.1852] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/04/2018] [Accepted: 10/05/2018] [Indexed: 12/19/2022] Open
Abstract
Background Current guidelines for lung cancer screening increased a positive scan threshold to a 6 mm longest diameter. We extracted radiomic features from baseline and follow‐up screens and performed size‐specific analyses to predict lung cancer incidence using three nodule size classes (<6 mm [small], 6‐16 mm [intermediate], and ≥16 mm [large]). Methods We extracted 219 features from baseline (T0) nodules and 219 delta features which are the change from T0 to first follow‐up (T1). Nodules were identified for 160 incidence cases diagnosed with lung cancer at T1 or second follow‐up screen (T2) and for 307 nodule‐positive controls that had three consecutive positive screens not diagnosed as lung cancer. The cases and controls were split into training and test cohorts; classifier models were used to identify the most predictive features. Results The final models revealed modest improvements for baseline and delta features when compared to only baseline features. The AUROCs for small‐ and intermediate‐sized nodules were 0.83 (95% CI 0.76‐0.90) and 0.76 (95% CI 0.71‐0.81) for baseline‐only radiomic features, respectively, and 0.84 (95% CI 0.77‐0.90) and 0.84 (95% CI 0.80‐0.88) for baseline and delta features, respectively. When intermediate and large nodules were combined, the AUROC for baseline‐only features was 0.80 (95% CI 0.76‐0.84) compared with 0.86 (95% CI 0.83‐0.89) for baseline and delta features. Conclusions We found modest improvements in predicting lung cancer incidence by combining baseline and delta radiomics. Radiomics could be used to improve current size‐based screening guidelines.
Collapse
Affiliation(s)
- Dmitry Cherezov
- Department of Computer Sciences and Engineering, University of South Florida, Tampa, Florida
| | - Samuel H Hawkins
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Dmitry B Goldgof
- Department of Computer Sciences and Engineering, University of South Florida, Tampa, Florida
| | - Lawrence O Hall
- Department of Computer Sciences and Engineering, University of South Florida, Tampa, Florida
| | - Ying Liu
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.,Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Qian Li
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.,Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Yoganand Balagurunathan
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Robert J Gillies
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Matthew B Schabath
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| |
Collapse
|
37
|
Djureinovic D, Dodig-Crnković T, Hellström C, Holgersson G, Bergqvist M, Mattsson JSM, Pontén F, Ståhle E, Schwenk JM, Micke P. Detection of autoantibodies against cancer-testis antigens in non-small cell lung cancer. Lung Cancer 2018; 125:157-163. [PMID: 30429015 DOI: 10.1016/j.lungcan.2018.09.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 09/14/2018] [Indexed: 01/16/2023]
Abstract
OBJECTIVES Cancer-testis antigens (CTAs) are defined as proteins that are specifically expressed in testis or placenta and their expression is frequently activated in cancer. Due to their ability to induce an immune response, CTAs may serve as suitable targets for immunotherapy. The aim of this study was to evaluate if there is reactivity against CTAs in the plasma of non-small cell lung cancer (NSCLC) patients through the detection of circulating antibodies. MATERIALS AND METHODS To comprehensively analyze autoantibodies against CTAs the multiplexing capacities of suspension bead array technology was used. Bead arrays were created with 120 protein fragments, representing 112 CTAs. Reactivity profiles were measured in plasma samples from 133 NSCLC patients and 57 cases with benign lung diseases. RESULTS Altogether reactivity against 69 antigens, representing 81 CTAs, was demonstrated in at least one of the analyzed samples. Twenty-nine of the antigens (45 CTAs) demonstrated exclusive reactivity in NSCLC samples. Reactivity against cancer-testis antigen family 47; member A (CT47A) genes, P antigen family member 3 (PAGE3), variable charge X-linked (VCX), melanoma antigen family B1 (MAGEB1), lin-28 homolog B (LIN28B) and chromosome 12 open reading frame 54 (C12orf54) were only found in NSCLC patients at a frequency of 1%-4%. The presence of autoantibodies towards these six antigens was confirmed in an independent group of 34 NSCLC patients. CONCLUSION We identified autoantibodies against CTAs in the plasma of lung cancer patients. The reactivity pattern of autoantibodies was higher in cancer patients compared to the benign group, stable over time, but low in frequency of occurrence. The findings suggest that some CTAs are immunogenic and that these properties can be utilized as immune targets.
Collapse
Affiliation(s)
- Dijana Djureinovic
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| | - Tea Dodig-Crnković
- Affinity Proteomics, SciLifeLab, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, Stockholm, Sweden.
| | - Cecilia Hellström
- Affinity Proteomics, SciLifeLab, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, Stockholm, Sweden.
| | - Georg Holgersson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden; Center for Research and Development, Uppsala University/County Council of Gävleborg, Gävle Hospital, Gävle, Sweden.
| | - Michael Bergqvist
- Department of Oncology, Gävle Hospital, Gävle, Sweden; Department of Radiation Sciences & Oncology, Umeå University Hospital, Umeå, Sweden.
| | - Johanna S M Mattsson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| | - Fredrik Pontén
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| | - Elisabeth Ståhle
- Department of Clinical Sciences, Uppsala University, Uppsala, Sweden.
| | - Jochen M Schwenk
- Affinity Proteomics, SciLifeLab, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, Stockholm, Sweden.
| | - Patrick Micke
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
38
|
A diagnostic autoantibody signature for primary cutaneous melanoma. Oncotarget 2018; 9:30539-30551. [PMID: 30093967 PMCID: PMC6078131 DOI: 10.18632/oncotarget.25669] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 06/04/2018] [Indexed: 01/16/2023] Open
Abstract
Melanoma is an aggressive form of skin cancer that is curable by surgical excision in the majority of cases, if detected at an early stage. To improve early stage melanoma detection, the development of a highly sensitive diagnostic test is of utmost importance. Here we aimed to identify antibodies to a panel of tumour associated antigens that can differentiate primary melanoma patients and healthy individuals. A total of 245 sera from primary melanoma patients and healthy volunteers were screened against a high-throughput microarray platform containing 1627 functional proteins. Following rigorous statistical analysis, we identified a combination of 10 autoantibody biomarkers that, as a panel, displays a sensitivity of 79%, specificity of 84% and an AUC of 0.828 for primary melanoma detection. This melanoma autoantibody signature may prove valuable for the development of a diagnostic blood test for routine population screening that, when used in conjunction with current melanoma diagnostic techniques, could improve the early diagnosis of this malignancy and ultimately decrease the mortality rate of patients.
Collapse
|
39
|
Bassaro L, Russell SJ, Pastwa E, Somiari SA, Somiari RI. Screening for Multiple Autoantibodies in Plasma of Patients with Breast Cancer. Cancer Genomics Proteomics 2018; 14:427-435. [PMID: 29109092 DOI: 10.21873/cgp.20052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 09/20/2017] [Accepted: 09/22/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND/AIM Autoantibodies have potential as circulating biomarkers for early cancer detection. This study aimed to screen for known autoantibodies in human plasma using an Autoantibody Profiling System (APS) and quantify the levels in plasma of donors with/without breast cancer. MATERIALS AND METHODS Plasma from nine female donors diagnosed with breast cancer (test group) and nine matched donors with no personal history of cancer (reference group) were screened with an APS containing probes for 30 autoantibodies. Autoantibody levels ≥1.5 times the mean concentration of the group were considered elevated, and test/reference ratios ≥1.3 were considered higher in the test group compared to the reference group. RESULTS Twenty percent of the probes detected elevated levels of autoantibodies against proteins involved in different cancer mechanisms. Amongst these, the levels of autoantibodies against interleukin 29 (IL29), osteoprotegerin (OPG), survivin (SUR), growth hormone (GRH) and resistin (RES) were significantly higher in the cancer group compared to the reference group (p<0.05), whereas the level of autoantibody against cytotoxic T-lymphocyte associated antigen-4 (CTLA4) was not significantly different between the two groups (p=0.38). CONCLUSION Disease-relevant autoantibodies were detected in the plasma of patients with breast cancer and donors without breast cancer. This means that identifying the type and level of autoantibodies in samples will be important in determining their significance in the disease process. A microtiter plate-based array system could be a fast and inexpensive screening method for identifying and quantifying autoantibodies in human plasma.
Collapse
Affiliation(s)
- Lauren Bassaro
- Functional Genomics & Proteomics Unit, ITSI-Biosciences, Johnstown, PA, U.S.A
| | - Stephen J Russell
- Functional Genomics & Proteomics Unit, ITSI-Biosciences, Johnstown, PA, U.S.A
| | - Elzbieta Pastwa
- Functional Genomics & Proteomics Unit, ITSI-Biosciences, Johnstown, PA, U.S.A
| | - Stella A Somiari
- Biobanking & Biospecimen Science Research Unit, Windber Research Institute, Windber, PA, U.S.A
| | - Richard I Somiari
- Functional Genomics & Proteomics Unit, ITSI-Biosciences, Johnstown, PA, U.S.A.
| |
Collapse
|
40
|
Wang X, Zhi X, Yang Z, Tian H, Li Y, Li M, Zhao W, Zhang C, Wang T, Liu J, Shen D, Zheng C, Zhao D, Yang S, Qi J, Xin H, Stojadinovic A, Avital I, Lee LJ, Rao J, Zhang W. A novel serum based biomarker panel has complementary ability to preclude presence of early lung cancer for low dose CT (LDCT). Oncotarget 2018; 8:45345-45355. [PMID: 28514755 PMCID: PMC5542191 DOI: 10.18632/oncotarget.17477] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/14/2017] [Indexed: 12/18/2022] Open
Abstract
Low Dosage Computerized Tomography (LDCT) has been shown to improve early detection of lung cancer and mortality rates in high-risk individuals, which was, however, limited by specifically coverage for heavy smokers and high rates of false positivity. Here, we aim to investigate a novel biomarker for early detection of lung cancer, and further extend to concentrate high-risk subjects for increasing specificity and coverage of LDCT. We performed retrospective blinded evaluation of lung cancer and healthy controls in training and validation cohorts. Macrophage inhibitory cytokine 1 (MIC-1) alone and panel were assessed. Our data showed the sensitivity of MIC-1 was 72.2% and 67.1% for lung cancer diagnosis and early diagnosis respectively, at 96.6% specificity, which were significantly higher than Cyfra21-1, NSE CA125, CEA and SCC. At 90% specificity, the panel of MIC-1, Cyfra21-1, CA125 and CEA provided 89.5% sensitivity for early diagnosis of lung cancer, which could be used to concentrate the high-risk subjects for further LDCT screening. We conclude that MIC-1 have great capacity in early lung cancer diagnosis. The algorithmic panel of MIC-1, Cyfra21-1, CA125 and CEA could be used to refine the preselection criteria of high-risk subjects, and thus might facilitate the widespread implementation of LDCT screening.
Collapse
Affiliation(s)
- Xiaobing Wang
- Tumor Marker Research Center, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Xiuyi Zhi
- Department of Thoracic Surgery, Xuanwu Hospital, Capital Medical University, Beijing, PR China
| | - Zhaogang Yang
- NSF Nanoscale Science and Engineering Center (NSEC), The Ohio State University, Columbus, OH, USA
| | - Haimei Tian
- Tumor Marker Research Center, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Yanfen Li
- Tumor Marker Research Center, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Mo Li
- Tumor Marker Research Center, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Wenya Zhao
- Tumor Marker Research Center, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Chao Zhang
- Tumor Marker Research Center, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Teng Wang
- Tumor Marker Research Center, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Jing Liu
- Tumor Marker Research Center, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Di Shen
- Laboratory of Clinical Biochemistry, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Cuining Zheng
- Laboratory of Clinical Biochemistry, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Dan Zhao
- Department of Gynecological Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Sheng Yang
- Department of Medicine, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Jun Qi
- Laboratory of Clinical Biochemistry, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Hongwu Xin
- The First Peoples' Hospital of Jingzhou City, The First Hospital and Clinical Medical School of Yangtze University, Jingzhou, PR China.,Laboratory of Oncology, Center for Molecular Medicine, Medical School, Yangtze University, Huber, PR China
| | | | | | - L James Lee
- NSF Nanoscale Science and Engineering Center (NSEC), The Ohio State University, Columbus, OH, USA
| | - Jianyu Rao
- Tumor Marker Research Center, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Wei Zhang
- Tumor Marker Research Center, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| |
Collapse
|
41
|
Sheikh MH, Solito E. Annexin A1: Uncovering the Many Talents of an Old Protein. Int J Mol Sci 2018; 19:E1045. [PMID: 29614751 PMCID: PMC5979524 DOI: 10.3390/ijms19041045] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 03/07/2018] [Accepted: 03/15/2018] [Indexed: 12/11/2022] Open
Abstract
Annexin A1 (ANXA1) has long been classed as an anti-inflammatory protein due to its control over leukocyte-mediated immune responses. However, it is now recognized that ANXA1 has widespread effects beyond the immune system with implications in maintaining the homeostatic environment within the entire body due to its ability to affect cellular signalling, hormonal secretion, foetal development, the aging process and development of disease. In this review, we aim to provide a global overview of the role of ANXA1 covering aspects of peripheral and central inflammation, immune repair and endocrine control with focus on the prognostic, diagnostic and therapeutic potential of the molecule in cancer, neurodegeneration and inflammatory-based disorders.
Collapse
Affiliation(s)
- Madeeha H Sheikh
- The William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK.
| | - Egle Solito
- The William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK.
| |
Collapse
|
42
|
Wu WB, Yie SM, Ye SR, Xie K, Zhang JB, Cao M, Chen J, He X, Ma XL, Zhang J. An Autoantibody Against Human DNA-Topoisomerase I Is a Novel Biomarker for Non-Small Cell Lung Cancer. Ann Thorac Surg 2018; 105:1664-1670. [PMID: 29453962 DOI: 10.1016/j.athoracsur.2018.01.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 01/08/2018] [Accepted: 01/15/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND We previously reported a novel tumor-associated antigen with a molecular weight of approximately 48 kDa that was a fragment derived from human DNA-topoisomerase I. The aim of this study is to further investigate the clinical significance of the autoantibody in patients with non-small cell lung cancer (NSCLC). METHODS We determined serum levels of the autoantibody in 127 NSCLC patients, 127 age-, sex-, and smoking history-matched healthy control subjects, and 38 patients with pulmonary benign tumors by using a specific enzyme linked immunosorbent assay for the autoantibody. We then statistically evaluated its clinical application value. RESULTS Serum levels of the autoantibody in NSCLC patients were significantly higher than in healthy control subjects and patients with benign tumors (p = 0.001). The percentage of sera with a positive level of the autoantibody was 71.8%, 65.6%, 41.9%, and 48.0% in stages I, II, III, and IV of the cancer, respectively (p = 0.049). The area under the receiver-operating characteristics curve was 0.971 (95% confidence interval: 0.953 to 0988) for healthy controls and patients with benign tumors versus early stage NSCLC patients. Moreover, the overall survival rate of the patients in stages I, II, and IV with negative levels of the autoantibody was significantly lower than that of patients with positive levels of the autoantibody (p = 0.013, 0.023, and 0.047 for stages I, II, and IV, respectively). CONCLUSIONS Our results indicate that the autoantibody can be used as a novel biomarker for the early diagnosis and prognosis of NSCLC.
Collapse
Affiliation(s)
- Wen-Bin Wu
- Department of Geriatrics, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Shang-Mian Yie
- Chengdu Cancer Bioengineering Research Institute, Chengdu, P.R. China; Core Laboratory, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospitals, Chengdu, P.R. China.
| | - Shang-Rong Ye
- Chengdu Cancer Bioengineering Research Institute, Chengdu, P.R. China
| | - Ke Xie
- Department of Oncology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospitals, Chengdu, P.R. China
| | - Jian-Bo Zhang
- Core Laboratory, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospitals, Chengdu, P.R. China
| | - Mei Cao
- Core Laboratory, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospitals, Chengdu, P.R. China
| | - Jie Chen
- Core Laboratory, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospitals, Chengdu, P.R. China
| | - Xu He
- Core Laboratory, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospitals, Chengdu, P.R. China
| | - Xiao-Li Ma
- Chengdu Cancer Bioengineering Research Institute, Chengdu, P.R. China
| | - Jia Zhang
- Chengdu Cancer Bioengineering Research Institute, Chengdu, P.R. China
| |
Collapse
|
43
|
Fan CW, Kuo YB, Lin GP, Chen SM, Chang SH, Li BA, Chan EC. Development of a multiplexed tumor-associated autoantibody-based blood test for the detection of colorectal cancer. Clin Chim Acta 2017; 475:157-163. [PMID: 29074220 DOI: 10.1016/j.cca.2017.10.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/01/2017] [Accepted: 10/22/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most common malignancies worldwide, and early diagnosis is vital to improving prognoses. We explored the diagnostic potential of a multiplex autoantibody panel as a biomarker for the detection of CRC by ELISA. METHODS In total, 192 serum samples (92 CRC and 100 matched controls) were tested against a panel of 12 tumor-associated antigens (TAAs): RPH3AL, RPL36, SLP2, p53, survivin, ANAXA4, SEC61B, CCCAP, NYCO16, NMDAR, PLSCR1, and HDAC5. Individual and combined autoantibody signatures were examined. RESULTS Compared to individual autoantibody markers, the combinations of TAAs provided better discrimination between tumorous and normal sera. The overall sensitivity of a selected panel of four antibodies (anti-SLP2, -p53, -SEC61B, and -PLSCR1) was 64.1%, with a specificity of 80% that increased to 83.7% when carcinoembryonic antigen (CEA) measurement was added. Furthermore, the sensitivity of the panel of four antibodies for early and advanced stages of CRC was 66.7% and 62%, increasing to 88.3% and 84%, respectively, when CEA was added. CONCLUSIONS We identified a panel of four antibodies as a promising diagnostic biomarker for the detection of CRC.
Collapse
Affiliation(s)
- Chung-Wei Fan
- Division of Colorectal Surgery, Chang Gung Memorial Hospital, Keelung and Chang Gung University, College of Medicine, Taoyuan, Taiwan
| | | | - Geng-Pin Lin
- Division of Colon and Rectal Surgery, Department of Surgery, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Si-Min Chen
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, Taiwan
| | - Shih-Hsien Chang
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, Taiwan
| | - Bo-An Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Err-Cheng Chan
- Division of Colon and Rectal Surgery, Department of Surgery, Chang Gung Memorial Hospital, Linkou, Taiwan; Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
44
|
The roles and applications of autoantibodies in progression, diagnosis, treatment and prognosis of human malignant tumours. Autoimmun Rev 2017; 16:1270-1281. [PMID: 29042252 DOI: 10.1016/j.autrev.2017.10.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 09/06/2017] [Indexed: 02/07/2023]
Abstract
The existence of autoantibodies towards an individual's own proteins or nucleic acids has been established for more than 100years, and for a long period, these autoantibodies have been believed to be closely associated with autoimmune diseases. However, in recent years, researchers have become more interested in the role and application of autoantibodies in progression, diagnosis, treatment and prognosis of human malignant tumours. Over the past few decades, numerous epidemiological studies have shown that the risk of certain cancers is significantly altered (increased or decreased) in patients with autoimmune diseases, which suggests that autoantibodies may play either promoting or suppressing roles in cancer progression. The idea that autoantibodies are directly involved in tumour progression gains special support by the findings that some antibodies secreted by a variety of cancer cells can promote their proliferation and metastasis. Because the cancer cells generate cell antigenic changes (neoantigens), which trigger the immune system to produce autoantibodies, serum autoantibodies against tumour-associated antigens have been established as a novel type of cancer biomarkers and have been extensively studied in different types of cancer. The autoantibodies as biomarkers in cancer diagnosis are not only more sensitive and specific than antigens, but also could appear before clinical evidences of the tumours, thus disclosing them. The observations that cancer risk is lower in patients with some autoimmune diseases suggest that certain autoantibodies may be protective from certain cancers. Moreover, the presence of autoantibodies in healthy individuals implies that it could be safe to employ autoantibodies to treat cancer. Of note, an autoantibodies derived from lupus murine model received much attention due to their selective cytotoxicity for malignant tumour cell without harming normal ones. These studies showed the therapeutic value of autoantibodies in cancer. In this review, we revisited the pathological or protective role of autoantibodies in cancer progression, summarize the application of autoantibodies in cancer diagnosis and prognosis, and discuss the value of autoantibodies in cancer therapy. The studies established to date suggest that autoantibodies not only regulate cancer progression but also promise to be valuable instruments in oncological diagnosis and therapy.
Collapse
|
45
|
Ren S, Zhang S, Jiang T, He Y, Ma Z, Cai H, Xu X, Li Y, Cai W, Zhou J, Liu X, Hu X, Zhang J, Yu H, Zhou C, Hirsch FR. Early detection of lung cancer by using an autoantibody panel in Chinese population. Oncoimmunology 2017; 7:e1384108. [PMID: 29308305 DOI: 10.1080/2162402x.2017.1384108] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/17/2017] [Accepted: 09/19/2017] [Indexed: 12/17/2022] Open
Abstract
We have previously identified a panel of autoantibodies (AABs), including p53, GAGE7, PGP9.5, CAGE, MAGEA1, SOX2 and GBU4-5, that was helpful in the early diagnosis of lung cancer. This large-scale, multicenter study was undertaken to validate the clinical value of this 7-AABs panel for early detection of lung cancer in a Chinese population. Two independent sets of plasma samples from 2308 participants were available for the assay of AABs (training set = 300; validation set = 2008). The concentrations of AABs were quantitated by enzyme-linked immunosorbent assay (ELISA), and the optimal cutoff value for each AAB was determined in the training set and then applied in the validation set. The value of the 7-AABs panel for the early detection of lung cancer was assessed in 540 patients who presented with ground-glass nodules (GGNs) and/or solid nodules. In the validation set, the sensitivity and specificity of the 7-AABs panel were 61% and 90%, respectively. For stage I and stage II non-small cell lung cancer (NSCLC), the sensitivity of the 7-AABs panel was 62% and 59%, respectively, and for limited stage small cell lung cancer (SCLC) it was 59%; these sensitivity values were considerably higher than for traditional biomarkers (including CEA, NSE and CYFRA21-1). Importantly, the combination of the 7-AABs panel and low-dose computed tomography (CT) scanning significantly improved the diagnostic yield in patients presenting with GGNs and/or solid nodules. In conclusion, our 7-AABs panel has clinical value for early detection of lung cancer, including early-stage lung cancer presenting as GGNs.
Collapse
Affiliation(s)
- Shengxiang Ren
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Shucai Zhang
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Tao Jiang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Yayi He
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Zhiyong Ma
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Hourong Cai
- Department of Respiratory Medicine, Nanjing Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
| | - Xiaohong Xu
- Clinical Laboratory Department, Zhejiang Province Cancer Hospital, Hangzhou, Zhejiang, China
| | - Yan Li
- Laboratory Department, Hubei General Hospital, Wuhan, China
| | - Weijing Cai
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Jing Zhou
- Hangzhou Cancer Probe Biotechnology Company, Hangzhou, China
| | - Xiaopeng Liu
- Hangzhou Cancer Probe Biotechnology Company, Hangzhou, China
| | - Xuejun Hu
- Hangzhou Cancer Probe Biotechnology Company, Hangzhou, China
| | - Jun Zhang
- Division of Hematology, Oncology and Blood & Marrow Transplantation, Department of Internal Medicine, Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Hui Yu
- Department of Medicine, Division of Medical Oncology, University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO, USA
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Fred R Hirsch
- Department of Medicine, Division of Medical Oncology, University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
46
|
Li P, Shi JX, Xing MT, Dai LP, Li JT, Zhang JY. Evaluation of serum autoantibodies against tumor-associated antigens as biomarkers in lung cancer. Tumour Biol 2017; 39:1010428317711662. [DOI: 10.1177/1010428317711662] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Pei Li
- The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, USA
| | - Jian-Xiang Shi
- The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, USA
- Henan Key Laboratory for Tumor Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Meng-Tao Xing
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, USA
| | - Li-Ping Dai
- The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, USA
- Henan Key Laboratory for Tumor Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Ji-Tian Li
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, USA
| | - Jian-Ying Zhang
- The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, USA
- Henan Key Laboratory for Tumor Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
47
|
Pan J, Song G, Chen D, Li Y, Liu S, Hu S, Rosa C, Eichinger D, Pino I, Zhu H, Qian J, Huang Y. Identification of Serological Biomarkers for Early Diagnosis of Lung Cancer Using a Protein Array-Based Approach. Mol Cell Proteomics 2017; 16:2069-2078. [PMID: 29021294 PMCID: PMC5724172 DOI: 10.1074/mcp.ra117.000212] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Indexed: 01/01/2023] Open
Abstract
Lung cancer (LC) remains the leading cause of mortality from malignant tumors worldwide. Currently, a lack of serological biomarkers for early LC diagnosis is a major roadblock for early intervention and prevention of LC. To undertake this challenge, we employed a two-phase strategy to discover and validate a biomarker panel using a protein array-based approach. In Phase I, we obtained serological autoimmune profiles of 80 LC patients and 20 healthy subjects on HuProt arrays, and identified 170 candidate proteins significantly associated with LC. In Phase II, we constructed a LC focused array with the 170 proteins, and profiled a large cohort, comprised of 352 LC patients, 93 healthy individuals, and 101 patients with lung benign lesions (LBL). The comparison of autoimmune profiles between the early stage LC and the combined group of healthy and LBL allowed us to identify and validate a biomarker panel of p53, HRas, and ETHE1 for diagnosis of early stage LC with 50% sensitivity at >90% specificity. Finally, the performance of this biomarker panel was confirmed in ELISA tests. In summary, this study represents one of the most comprehensive proteome-wide surveys with one of the largest (i.e. 1,101 unique samples) and most diverse (i.e. nine disease groups) cohorts, resulting in a biomarker panel with good performance.
Collapse
Affiliation(s)
- Jianbo Pan
- From the ‡Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Guang Song
- §Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Dunyan Chen
- ¶Provincial Clinical College, Fujian Medical University, Fuzhou 350001, Fujian, China.,‖Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou 350001, Fujian, China
| | - Yadong Li
- ¶Provincial Clinical College, Fujian Medical University, Fuzhou 350001, Fujian, China.,‖Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou 350001, Fujian, China
| | - Shuang Liu
- §Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Shaohui Hu
- **CDI Laboratories, Inc., Mayaguez, Puerto Rico 00682
| | | | | | - Ignacio Pino
- **CDI Laboratories, Inc., Mayaguez, Puerto Rico 00682
| | - Heng Zhu
- §Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205; .,‡‡The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Jiang Qian
- From the ‡Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205; .,‡‡The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Yi Huang
- ¶Provincial Clinical College, Fujian Medical University, Fuzhou 350001, Fujian, China; .,‖Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou 350001, Fujian, China
| |
Collapse
|
48
|
Masud MK, Yadav S, Islam MN, Nguyen NT, Salomon C, Kline R, Alamri HR, Alothman ZA, Yamauchi Y, Hossain MSA, Shiddiky MJA. Gold-Loaded Nanoporous Ferric Oxide Nanocubes with Peroxidase-Mimicking Activity for Electrocatalytic and Colorimetric Detection of Autoantibody. Anal Chem 2017; 89:11005-11013. [DOI: 10.1021/acs.analchem.7b02880] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Mostafa Kamal Masud
- Australian
Institute for Innovative Materials, University of Wollongong, Innovation Campus, North Wollongong, New South Wales 2500, Australia
| | | | | | | | - Carlos Salomon
- Exosome Biology Laboratory,
Centre for Clinical Diagnostics, University of Queensland Centre for
Clinical Research, Royal Brisbane and Women’s Hospital, The University of Queensland, Brisbane, Queensland 4029, Australia
- Maternal-Fetal
Medicine, Department of Obstetrics and Gynecology, Ochsner Clinic Foundation, New Orleans, Louisiana 70121, United States
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, Concepción, Chile
| | - Richard Kline
- Maternal-Fetal
Medicine, Department of Obstetrics and Gynecology, Ochsner Clinic Foundation, New Orleans, Louisiana 70121, United States
| | - Hatem R. Alamri
- Physics
Department, Jamoum University College, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Zeid A. Alothman
- Advanced
Materials
Research Chair, Chemistry Department, College
of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yusuke Yamauchi
- Australian
Institute for Innovative Materials, University of Wollongong, Innovation Campus, North Wollongong, New South Wales 2500, Australia
- International
Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Md. Shahriar A. Hossain
- Australian
Institute for Innovative Materials, University of Wollongong, Innovation Campus, North Wollongong, New South Wales 2500, Australia
- International
Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | | |
Collapse
|
49
|
Yang D, Zhang X, Powell CA, Ni J, Wang B, Zhang J, Zhang Y, Wang L, Xu Z, Zhang L, Wu G, Song Y, Tian W, Hu JA, Zhang Y, Hu J, Hong Q, Song Y, Zhou J, Bai C. Probability of cancer in high-risk patients predicted by the protein-based lung cancer biomarker panel in China: LCBP study. Cancer 2017; 124:262-270. [PMID: 28940455 DOI: 10.1002/cncr.31020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 08/17/2017] [Accepted: 08/21/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND The authors built a model for lung cancer diagnosis previously based on the blood biomarkers progastrin-releasing peptide (ProGRP), carcinoembryonic antigen (CEA), squamous cell carcinoma antigen (SCC), and cytokeratin 19 fragment (CYFRA21-1). In the current study, they examined whether modification of the model to include relevant clinical information, risk factors, and low-dose chest computed tomography screening would improve the performance of the biomarker panel in large cohorts of Chinese adults. METHODS The current study was a large-scale multicenter study (ClinicalTrials.gov identifier NCT01928836) performed in a Chinese population. A total of 715 participants were enrolled from 5 regional centers in Beijing, Henan, Nanjing, Shanghai, and Chongqing between October 2012 and February 2014. Serum biomarkers ProGRP, CEA, SCC, and CYFRA21-1 were analyzed on the ARCHITECT i2000SR. Relevant clinical information was collected and used to develop a patient risk model and a nodule risk model. RESULTS The resulting patient risk model had an area under the receiver operating characteristic (ROC) curve of 0.7037 in the training data set and 0.7190 in the validation data set. The resulting nodule risk model had an area under the ROC curve of 0.9151 in the training data set and 0.5836 in the validation data set. Moreover, the nodule risk model had a relatively higher area under the ROC curve (0.9151 vs 0.8360; P = 0.001) compared with the American College of Chest Physician model in patients with lung nodules. CONCLUSIONS Both the patient risk model and the nodule risk model, developed for the early diagnosis of lung cancer, demonstrated excellent discrimination, allowing for the stratification of patients with different levels of lung cancer risk. These new models are applicable in high-risk Chinese populations. Cancer 2018;124:262-70. © 2017 American Cancer Society.
Collapse
Affiliation(s)
- Dawei Yang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Chinese Alliance Against Lung Cancer, China.,Shanghai Respiratory Research Institution, Shanghai, China
| | - Xiaoju Zhang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Chinese Alliance Against Lung Cancer, China.,Henan Provincial People's Hospital, Zhengzhou, China
| | - Charles A Powell
- Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jun Ni
- Chinese Alliance Against Lung Cancer, China.,Department of Oncology, Peking University International Hospital, Beijing, China
| | - Bin Wang
- Chinese Alliance Against Lung Cancer, China.,Third Military Medical University, Chongqing, China
| | - Jianya Zhang
- Chinese Alliance Against Lung Cancer, China.,Nanjing People's Liberation Army General Hospital, Nanjing, China
| | - Yafei Zhang
- Chinese Alliance Against Lung Cancer, China.,The Chest Hospital of Henan Province, Zhengzhou, China
| | - Lijie Wang
- Shanghai Second Military College, Shanghai, China
| | - Zhihong Xu
- Chinese Alliance Against Lung Cancer, China.,Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Zhang
- Chinese Alliance Against Lung Cancer, China.,Peking Union Medical College Hospital, Beijing, China
| | - Guoming Wu
- Chinese Alliance Against Lung Cancer, China.,Third Military Medical University, Chongqing, China
| | - Yong Song
- Chinese Alliance Against Lung Cancer, China.,Nanjing People's Liberation Army General Hospital, Nanjing, China
| | - Wenhua Tian
- Shanghai Second Military College, Shanghai, China
| | - Jia-An Hu
- Chinese Alliance Against Lung Cancer, China.,Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong Zhang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Chinese Alliance Against Lung Cancer, China.,Shanghai Respiratory Research Institution, Shanghai, China
| | - Jie Hu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Chinese Alliance Against Lung Cancer, China.,Shanghai Respiratory Research Institution, Shanghai, China
| | - Qunying Hong
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Chinese Alliance Against Lung Cancer, China.,Shanghai Respiratory Research Institution, Shanghai, China
| | - Yuanlin Song
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Chinese Alliance Against Lung Cancer, China.,Shanghai Respiratory Research Institution, Shanghai, China
| | - Jian Zhou
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Chinese Alliance Against Lung Cancer, China.,Shanghai Respiratory Research Institution, Shanghai, China
| | - Chunxue Bai
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Chinese Alliance Against Lung Cancer, China.,Shanghai Respiratory Research Institution, Shanghai, China.,State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
50
|
Fortner RT, Damms-Machado A, Kaaks R. Systematic review: Tumor-associated antigen autoantibodies and ovarian cancer early detection. Gynecol Oncol 2017; 147:465-480. [PMID: 28800944 DOI: 10.1016/j.ygyno.2017.07.138] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/20/2017] [Accepted: 07/24/2017] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Tumor-associated autoantibodies (AAbs), produced as an immune response to tumor-associated antigens (TAAs), are a novel pathway of early detection markers. METHODS We conducted a systematic review on AAbs and ovarian cancer to summarize the diagnostic performance of individual AAbs and AAb panels. A total of 29 studies including 85 AAbs were included; 27 of the studies were conducted in prevalent cases and cancer-free controls and 2 investigations included pre-diagnosis samples. The majority of studies were hypothesis-driven, evaluating AAbs to target TAAs; 10 studies used screening approaches such as serological expression cloning (SEREX) and nucleic acid-programmable protein arrays (NAPPA). RESULTS The highest sensitivities for individual AAbs were reported for RhoGDI-AAbs (89.5%) and TUBA1C-AAbs (89%); however, specificity levels were relatively low (80% and 75%, respectively). High sensitivities at high specificities were reported for HOXA7-AAbs for detection of moderately differentiated ovarian tumors (66.7% sensitivity at 100% specificity) and IL8-AAbs in stage I-II ovarian cancer (65.5% sensitivity at 98% specificity). A panel of 11 AAbs (ICAM3, CTAG2, p53, STYXL1, PVR, POMC, NUDT11, TRIM39, UHMK1, KSR1, and NXF3) provided 45% sensitivity at 98% specificity for serous ovarian cancer, when at least 2 AAbs were above a threshold of 95% specificity. Twelve of the AAbs identified in this review were investigated in more than one study. Data on diagnostic discrimination by tumor histology and stage at diagnosis are sparse. Limited data suggest select AAb markers improve diagnostic discrimination when combined with markers such as CA125 and HE4. CONCLUSIONS AAbs for ovarian cancer early detection is an emerging area, and large-scale, prospective investigations considering histology and stage are required for discovery and validation. However, data to date suggests panels of AAbs may eventually reach sufficient diagnostic discrimination to allow earlier detection of disease as a complement to existing markers and transvaginal ultrasound.
Collapse
Affiliation(s)
| | - Antje Damms-Machado
- Division of Cancer Epidemiology, German Cancer Research Center (DFKZ), Heidelberg, Germany
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DFKZ), Heidelberg, Germany.
| |
Collapse
|