1
|
Lauricella E, Vilisova S, Chaoul N, Giglio A, D'Angelo G, Porta C, Cives M. The current status of somatostatin analogs in the treatment of neuroendocrine tumors and future perspectives. Expert Rev Neurother 2024:1-14. [PMID: 39415322 DOI: 10.1080/14737175.2024.2417419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/13/2024] [Indexed: 10/18/2024]
Abstract
INTRODUCTION Somatostatin analogs (SSAs) were developed as antisecretory agents to palliate hormonal symptoms in patients with functioning neuroendocrine tumors (NETs). Their antiproliferative activity has been established in the phase 3 PROMID and CLARINET trials. SSAs currently represent the standard first-line therapy for the majority of well-differentiated G1/G2 gastroenteropancreatic NETs as well as for pulmonary NETs. AREAS COVERED An update on the clinical applications of established SSAs for the treatment of NETs is provided. Perspectives on emerging nonpeptide SSAs such as paltusotine and innovative formulations of octreotide (CAM2029) are included. EXPERT OPINION SSAs represent the cornerstone of treatment for both functioning and nonfunctioning NETs. While standard-dose SSAs have a defined place in the therapeutic algorithm of well-differentiated NETs, uncertainties remain on how to best integrate above-label doses of SSAs in the treatment sequence, particularly when tumor control is the goal. Octreotide and lanreotide appear to be clinically interchangeable, and no signs of superiority of one agent over the other has been observed so far. Whether SSAs may be exploited in the maintenance setting following more aggressive treatments, whether continuing SSAs beyond-progression after first-line therapy could be an effective treatment strategy, and whether new-generation SSAs such as pasireotide could overcome resistance to established SSAs are key areas of investigation.
Collapse
Affiliation(s)
- Eleonora Lauricella
- Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Sofija Vilisova
- Department of Oncology, Pauls Stradins Clinical University Hospital, Riga, Latvia
| | - Nada Chaoul
- Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Andrea Giglio
- Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Gabriella D'Angelo
- Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Camillo Porta
- Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", Bari, Italy
- Division of Medical Oncology, A.O.U. Consorziale Policlinico di Bari, Bari, Italy
| | - Mauro Cives
- Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", Bari, Italy
- Division of Medical Oncology, A.O.U. Consorziale Policlinico di Bari, Bari, Italy
| |
Collapse
|
2
|
Maluchenko A, Maksimov D, Antysheva Z, Krupinova J, Avsievich E, Glazova O, Bodunova N, Karnaukhov N, Feidorov I, Salimgereeva D, Voloshin M, Volchkov P. Molecular Basis of Pancreatic Neuroendocrine Tumors. Int J Mol Sci 2024; 25:11017. [PMID: 39456803 PMCID: PMC11507569 DOI: 10.3390/ijms252011017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 10/28/2024] Open
Abstract
Pancreatic neuroendocrine tumors (NETs) are rare well-differentiated neoplasms with limited therapeutic options and unknown cells of origin. The current classification of pancreatic neuroendocrine tumors is based on proliferative grading, and guides therapeutic strategies, however, tumors within grades exhibit profound heterogeneity in clinical manifestation and outcome. Manifold studies have highlighted intra-patient differences in tumors at the genetic and transcriptomic levels. Molecular classification might become an alternative or complementary basis for treatment decisions and reflect tumor biology, actionable cellular processes. Here, we provide a comprehensive review of genomic, transcriptomic, proteomic and epigenomic studies of pancreatic NETs to elucidate patterns shared between proposed subtypes that could form a foundation for new classification. We denote four NET subtypes with distinct molecular features, which were consistently reproduced using various omics technologies.
Collapse
Affiliation(s)
- Alesia Maluchenko
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow 123592, Russia; (A.M.); (D.M.); (Z.A.); (E.A.); (O.G.); (P.V.)
| | - Denis Maksimov
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow 123592, Russia; (A.M.); (D.M.); (Z.A.); (E.A.); (O.G.); (P.V.)
| | - Zoia Antysheva
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow 123592, Russia; (A.M.); (D.M.); (Z.A.); (E.A.); (O.G.); (P.V.)
| | - Julia Krupinova
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow 123592, Russia; (A.M.); (D.M.); (Z.A.); (E.A.); (O.G.); (P.V.)
- Moscow Clinical Scientific Center N.A. A.S. Loginov, Moscow 111123, Russia; (N.B.); (N.K.); (I.F.); (D.S.); (M.V.)
| | - Ekaterina Avsievich
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow 123592, Russia; (A.M.); (D.M.); (Z.A.); (E.A.); (O.G.); (P.V.)
- Moscow Clinical Scientific Center N.A. A.S. Loginov, Moscow 111123, Russia; (N.B.); (N.K.); (I.F.); (D.S.); (M.V.)
| | - Olga Glazova
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow 123592, Russia; (A.M.); (D.M.); (Z.A.); (E.A.); (O.G.); (P.V.)
- Moscow Clinical Scientific Center N.A. A.S. Loginov, Moscow 111123, Russia; (N.B.); (N.K.); (I.F.); (D.S.); (M.V.)
| | - Natalia Bodunova
- Moscow Clinical Scientific Center N.A. A.S. Loginov, Moscow 111123, Russia; (N.B.); (N.K.); (I.F.); (D.S.); (M.V.)
| | - Nikolay Karnaukhov
- Moscow Clinical Scientific Center N.A. A.S. Loginov, Moscow 111123, Russia; (N.B.); (N.K.); (I.F.); (D.S.); (M.V.)
| | - Ilia Feidorov
- Moscow Clinical Scientific Center N.A. A.S. Loginov, Moscow 111123, Russia; (N.B.); (N.K.); (I.F.); (D.S.); (M.V.)
| | - Diana Salimgereeva
- Moscow Clinical Scientific Center N.A. A.S. Loginov, Moscow 111123, Russia; (N.B.); (N.K.); (I.F.); (D.S.); (M.V.)
| | - Mark Voloshin
- Moscow Clinical Scientific Center N.A. A.S. Loginov, Moscow 111123, Russia; (N.B.); (N.K.); (I.F.); (D.S.); (M.V.)
| | - Pavel Volchkov
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow 123592, Russia; (A.M.); (D.M.); (Z.A.); (E.A.); (O.G.); (P.V.)
- Moscow Clinical Scientific Center N.A. A.S. Loginov, Moscow 111123, Russia; (N.B.); (N.K.); (I.F.); (D.S.); (M.V.)
| |
Collapse
|
3
|
Greenspun BC, Foshag A, Tumati A, Marshall T, Xue D, Yang L, Chen S, Zarnegar R, Fahey TJ, Finnerty BM. DAXX is associated with early recurrence of pancreatic neuroendocrine tumors after R0 resection. Surgery 2024:S0039-6060(24)00694-9. [PMID: 39366850 DOI: 10.1016/j.surg.2024.06.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 10/06/2024]
Abstract
INTRODUCTION ATRX, DAXX, MEN1, and PTEN mutations are proposed drivers of pancreatic neuroendocrine tumor tumorigenesis and independent prognostic factors for metastasis and mortality. However, their implications after R0 resection remain debated. Thus, we sought to identify genomic signatures of pancreatic neuroendocrine tumor disease-specific mortality and recurrence after surgery for curative intent. METHODS Pancreatic neuroendocrine tumor patients who underwent whole exome sequencing with available survival data were identified using cBioPortal. Clinicopathologic variables, genomics, and outcomes were analyzed. RESULTS Seventy patients who underwent R0 resection were identified. Forty-five of 70 patients were disease free at last follow-up, whereas 25 of 70 patients had disease-specific mortality or recurrent disease and therefore were categorized as part of the recurrent cohort. There were no significant differences in age (P = .245), sex (P = .201), or median follow-up (38.9 vs 33.7 months, P = .122) between groups. Clinicopathologically, the recurrent cohort had significantly greater tumor size (median 5.0 cm vs 3.2 cm, P = .012) and were more likely to have vascular invasion (88% vs 40%, P = .000), positive lymph nodes (68.0% vs 35.6%, P = .013), and metastatic disease (44% vs 4.4%, P < .000). For both cohorts, most tumors were well or moderately differentiated. Tumor mutation burden was greater in the recurrent cohort (median 0.77 vs 0.43 mutations/Mb, P = .004). DAXX mutations were more frequent in the recurrent cohort (36% vs 11%, P = .026) and in those with vascular invasion (51% vs 92%, P = .010). CONCLUSION Our analysis demonstrated the prognostic significance of DAXX mutations after curative-intent surgery. Future studies investigating DAXX mutations as a biomarker for aggressive features to guide treatment are warranted.
Collapse
Affiliation(s)
- Benjamin C Greenspun
- Department of Surgery, Weill Cornell Medicine, New York, NY; Center for Genomic Health, Weill Cornell Medicine, New York, NY.
| | - Amanda Foshag
- Department of Surgery, Weill Cornell Medicine, New York, NY
| | - Abhinay Tumati
- Department of Surgery, Weill Cornell Medicine, New York, NY
| | | | - Dongxiang Xue
- Department of Surgery, Weill Cornell Medicine, New York, NY; Center for Genomic Health, Weill Cornell Medicine, New York, NY
| | - Liuliu Yang
- Department of Surgery, Weill Cornell Medicine, New York, NY; Center for Genomic Health, Weill Cornell Medicine, New York, NY
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medicine, New York, NY; Center for Genomic Health, Weill Cornell Medicine, New York, NY
| | - Rasa Zarnegar
- Department of Surgery, Weill Cornell Medicine, New York, NY
| | - Thomas J Fahey
- Department of Surgery, Weill Cornell Medicine, New York, NY
| | | |
Collapse
|
4
|
Tan B, Zhang B, Chen H. Gastroenteropancreatic neuroendocrine neoplasms: epidemiology, genetics, and treatment. Front Endocrinol (Lausanne) 2024; 15:1424839. [PMID: 39411312 PMCID: PMC11474919 DOI: 10.3389/fendo.2024.1424839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/10/2024] [Indexed: 10/19/2024] Open
Abstract
The incidence of gastroenteropancreatic neuroendocrine neoplasms (GEP NEN) is increasing at a rapid pace and is becoming an increasingly important consideration in clinical care. Epidemiological data from multiple countries indicate that the incidence of gastroenteropancreatic neuroendocrine neoplasms (GEP NEN) exhibits regional, site-specific, and gender-based variations. While the genetics and pathogenesis of some GEP NEN, particularly pancreatic NENs, have been investigated, there are still many mechanisms that require further investigation. The management of GEP NEN is diverse, but surgery remains the primary option for most cases. Peptide receptor radionuclide therapy (PRRT) is an effective treatment, and several clinical trials are exploring the potential of immunotherapy and targeted therapy, as well as combination therapy.
Collapse
Affiliation(s)
- Baizhou Tan
- Department of Histology and Embryology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Beiyu Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Hongping Chen
- Department of Histology and Embryology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Experimental Animals, Nanchang University, Nanchang, China
| |
Collapse
|
5
|
Mederos MA, Court CM, Dipardo BJ, Pisegna JR, Dawson DW, Joe Hines O, Donahue TR, Graeber TG, Girgis MD, Tomlinson JS. Oncogenic pathway signatures predict the risk of progression and recurrence in well-differentiated pancreatic neuroendocrine tumors. J Surg Oncol 2024. [PMID: 39155697 DOI: 10.1002/jso.27830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 07/25/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND Pancreatic neuroendocrine tumors (pNETs) are genomically diverse tumors. The management of newly diagnosed well-differentiated pNETs is limited by a lack of sensitivity of existing biomarkers for prognostication. Our goal was to investigate the potential utility of genetic markers as a predictor of progression-free survival (PFS) and recurrence-free survival (RFS). METHODS Whole-exome sequencing of resected well-differentiated, low and intermediate-grade (G1 and G2) pNETs and normal adjacent tissue from patients who underwent resection from 2005 to 2015 was performed. Genetic alterations were classified using pan-genomic and oncogenic pathway classifications. Additional samples with genetic and clinicopathologic data available were obtained from the publicly available International Cancer Genome Consortium (ICGC) database and included in the analysis. The prognostic relevance of these genomic signatures on PFS and RFS was analyzed. RESULTS Thirty-one patients who underwent resection for pNET were identified. Genomic analysis of mutational, copy number, cytogenetic, and complex phenomena revealed similar patterns to prior studies of pNETs with relatively few somatic gene mutations but numerous instances of copy number changes. Analysis of genomic and clinicopathologic outcomes using the combined data from our study as well as the ICGC pNET cohort (n = 124 patients) revealed that the recurrent pattern of whole chromosome loss (RPCL) and metastatic disease were independently associated with disease progression. When evaluating patients with local disease at the time of resection, RPCL and alterations in the TGFβ oncogenic pathway were independently associated with the risk of recurrence. CONCLUSIONS Well-differentiated pNETs are genomically diverse tumors. Pathway signatures may be prognostic for predicting disease progression and recurrence.
Collapse
Affiliation(s)
- Michael A Mederos
- Department of Surgery, University of California Los Angeles, Los Angeles, California, USA
| | - Colin M Court
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Benjamin J Dipardo
- Department of Surgery, University of California Los Angeles, Los Angeles, California, USA
| | - Joseph R Pisegna
- Department of Molecular, Cellular, and Integrative Physiology, University of California Los Angeles, Los Angeles, California, USA
| | - David W Dawson
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, California, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California, USA
| | - O Joe Hines
- Department of Surgery, University of California Los Angeles, Los Angeles, California, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California, USA
| | - Timothy R Donahue
- Department of Surgery, University of California Los Angeles, Los Angeles, California, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California, USA
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, USA
| | - Thomas G Graeber
- Department of Molecular, Cellular, and Integrative Physiology, University of California Los Angeles, Los Angeles, California, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute, University of California, Los Angeles, California, USA
| | - Mark D Girgis
- Department of Surgery, University of California Los Angeles, Los Angeles, California, USA
- Department of Surgery, Veterans Health Administration, Greater Los Angeles, Los Angeles, California, USA
| | - James S Tomlinson
- Department of Surgery, University of California Los Angeles, Los Angeles, California, USA
- Department of Surgery, Veterans Health Administration, Greater Los Angeles, Los Angeles, California, USA
| |
Collapse
|
6
|
Mormando M, Puliani G, Bianchini M, Lauretta R, Appetecchia M. The Role of Inositols in Endocrine and Neuroendocrine Tumors. Biomolecules 2024; 14:1004. [PMID: 39199391 PMCID: PMC11353224 DOI: 10.3390/biom14081004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
Inositols have demonstrated a role in cancer prevention and treatment in many kinds of neoplasms. Their molecular mechanisms vary from the regulation of survival and proliferative pathways to the modulation of immunity and oxidative stress. The dysregulation of many pathways and mechanisms regulated by inositols has been demonstrated in endocrine and neuroendocrine tumors but the role of inositol supplementation in this context has not been clarified. The aim of this review is to summarize the molecular basis of the possible role of inositols in endocrine and neuroendocrine tumors, proposing it as an adjuvant therapy.
Collapse
Affiliation(s)
| | | | | | | | - Marialuisa Appetecchia
- Oncological Endocrinology Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy; (M.M.); (G.P.); (M.B.); (R.L.)
| |
Collapse
|
7
|
Stefàno E, De Castro F, Ciccarese A, Muscella A, Marsigliante S, Benedetti M, Fanizzi FP. An Overview of Altered Pathways Associated with Sensitivity to Platinum-Based Chemotherapy in Neuroendocrine Tumors: Strengths and Prospects. Int J Mol Sci 2024; 25:8568. [PMID: 39201255 PMCID: PMC11354135 DOI: 10.3390/ijms25168568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
Neuroendocrine neoplasms (NENs) are a diverse group of malignancies with a shared phenotype but varying prognosis and response to current treatments. Based on their morphological features and rate of proliferation, NENs can be classified into two main groups with a distinct clinical behavior and response to treatment: (i) well-differentiated neuroendocrine tumors (NETs) or carcinoids (with a low proliferation rate), and (ii) poorly differentiated small- or large-cell neuroendocrine carcinomas (NECs) (with a high proliferation rate). For certain NENs (such as pancreatic tumors, higher-grade tumors, and those with DNA damage repair defects), chemotherapy is the main therapeutic approach. Among the different chemotherapic agents, cisplatin and carboplatin, in combination with etoposide, have shown the greatest efficacy in treating NECs compared to NETs. The cytotoxic effects of cisplatin and carboplatin are primarily due to their binding to DNA, which interferes with normal DNA transcription and/or replication. Consistent with this, NECs, which often have mutations in pathways involved in DNA repair (such as Rb, MDM2, BRCA, and PTEN), have a high response to platinum-based chemotherapy. Identifying mutations that affect molecular pathways involved in the initiation and progression of NENs can be crucial in predicting the response to platinum chemotherapy. This review aims to highlight targetable mutations that could serve as predictors of therapeutic response to platinum-based chemotherapy in NENs.
Collapse
Affiliation(s)
| | | | | | | | | | - Michele Benedetti
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, I-73100 Lecce, Italy; (E.S.); (F.D.C.); (A.C.); (A.M.); (S.M.); (F.P.F.)
| | | |
Collapse
|
8
|
Vitali E, Valente G, Panzardi A, Laffi A, Zerbi A, Uccella S, Mazziotti G, Lania A. Pancreatic neuroendocrine tumor progression and resistance to everolimus: the crucial role of NF-kB and STAT3 interplay. J Endocrinol Invest 2024; 47:1101-1117. [PMID: 37882947 DOI: 10.1007/s40618-023-02221-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/09/2023] [Indexed: 10/27/2023]
Abstract
PURPOSE The finding of mTOR overactivation in patients affected by pancreatic neuroendocrine tumors (Pa-NETs) led to their treatment with the mTOR inhibitor everolimus. Unfortunately, the efficacy of everolimus is restricted by the occurrence of resistance. The mechanisms leading to Pa-NETs' progression and resistance are not well understood. Notably, chronic inflammation is implicated in NET development. NF-kB is involved in inflammation and drug resistance mechanisms through the activation of several mediators, including STAT3. In this respect, NF-κB and STAT3 interaction is implicated in the crosstalk between inflammatory and tumor cells. METHODS We investigated the expression of NF-kB in different Pa-NETs by RT-qPCR and immunohistochemistry. Then, we studied the role of NF-κB and STAT3 interplay in QGP-1 cells. Subsequently, we assessed the impact of NF-κB and STAT3 inhibitors in QGP-1 cell proliferation and spheroids growth. Finally, we evaluated the implication of the NF-kB pathway in everolimus-resistant Pa-NET cells. RESULTS We found that the increased NF-kB expression correlates with a higher grade in Pa-NETs. The activation of the STAT3 pathway induced by TNFα is mediated by NF-kB p65. NF-kB p65 and STAT3 inhibitors decrease QGP-1 viability, spheroids growth, and Pa-NETs cell proliferation. These effects are maintained in everolimus-resistant QGP-1R cells. Interestingly, we found that NF-kB, STAT3, IL-8, and SOCS3 are overexpressed in QGP-1R compared to QGP-1. CONCLUSION Since the NF-kB pathway is implicated in Pa-NETs' progression and resistance to everolimus, these data could explain the potential use of NF-kB as a novel therapeutic target in Pa-NET patients.
Collapse
Affiliation(s)
- E Vitali
- Laboratory of Cellular and Molecular Endocrinology, IRCCS Humanitas Research Hospital, Manzoni 56, 20089, Rozzano, Milan, Italy.
| | - G Valente
- Laboratory of Cellular and Molecular Endocrinology, IRCCS Humanitas Research Hospital, Manzoni 56, 20089, Rozzano, Milan, Italy
| | - A Panzardi
- Laboratory of Cellular and Molecular Endocrinology, IRCCS Humanitas Research Hospital, Manzoni 56, 20089, Rozzano, Milan, Italy
| | - A Laffi
- Oncology Unit, IRCCS Humanitas Research Hospital, Manzoni 56, 20089, Rozzano, Milan, Italy
| | - A Zerbi
- Department of Biomedical Sciences, Humanitas University, Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy
- Surgery Unit, IRCCS Humanitas Research Hospital, Manzoni 56, 20089, Rozzano, Milan, Italy
| | - S Uccella
- Department of Biomedical Sciences, Humanitas University, Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy
- Pathology Unit, IRCCS Humanitas Research Hospital, Manzoni 56, 20089, Rozzano, ilan, Italy
| | - G Mazziotti
- Department of Biomedical Sciences, Humanitas University, Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy
- Endocrinology, Diabetology and Andrology Unit, IRCCS Humanitas Research Hospital, Manzoni 54, 20089, Rozzano, Milan, Italy
| | - A Lania
- Department of Biomedical Sciences, Humanitas University, Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy
- Endocrinology, Diabetology and Andrology Unit, IRCCS Humanitas Research Hospital, Manzoni 54, 20089, Rozzano, Milan, Italy
| |
Collapse
|
9
|
Fuentes ME, Lu X, Flores NM, Hausmann S, Mazur PK. Combined deletion of MEN1, ATRX and PTEN triggers development of high-grade pancreatic neuroendocrine tumors in mice. Sci Rep 2024; 14:8510. [PMID: 38609433 PMCID: PMC11014914 DOI: 10.1038/s41598-024-58874-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Pancreatic neuroendocrine tumors (PanNETs) are a heterogeneous group of tumors that exhibit an unpredictable and broad spectrum of clinical presentations and biological aggressiveness. Surgical resection is still the only curative therapeutic option for localized PanNET, but the majority of patients are diagnosed at an advanced and metastatic stage with limited therapeutic options. Key factors limiting the development of new therapeutics are the extensive heterogeneity of PanNETs and the lack of appropriate clinically relevant models. In that context, genomic sequencing of human PanNETs revealed recurrent mutations and structural alterations in several tumor suppressors. Here, we demonstrated that combined loss of MEN1, ATRX, and PTEN, tumor suppressors commonly mutated in human PanNETs, triggers the development of high-grade pancreatic neuroendocrine tumors in mice. Histopathological evaluation and gene expression analyses of the developed tumors confirm the presence of PanNET hallmarks and significant overlap in gene expression patterns found in human disease. Thus, we postulate that the presented novel genetically defined mouse model is the first clinically relevant immunocompetent high-grade PanNET mouse model.
Collapse
Affiliation(s)
- Mary Esmeralda Fuentes
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Xiaoyin Lu
- The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Natasha M Flores
- The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Simone Hausmann
- The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Pawel K Mazur
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| |
Collapse
|
10
|
Alors-Pérez E, Pedraza-Arevalo S, Blázquez-Encinas R, García-Vioque V, Agraz-Doblas A, Yubero-Serrano EM, Sánchez-Frías ME, Serrano-Blanch R, Gálvez-Moreno MÁ, Gracia-Navarro F, Gahete MD, Arjona-Sánchez Á, Luque RM, Ibáñez-Costa A, Castaño JP. Altered CELF4 splicing factor enhances pancreatic neuroendocrine tumors aggressiveness influencing mTOR and everolimus response. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102090. [PMID: 38187140 PMCID: PMC10767201 DOI: 10.1016/j.omtn.2023.102090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 12/01/2023] [Indexed: 01/09/2024]
Abstract
Pancreatic neuroendocrine tumors (PanNETs) comprise a heterogeneous group of tumors with growing incidence. Recent molecular analyses provided a precise picture of their genomic and epigenomic landscape. Splicing dysregulation is increasingly regarded as a novel cancer hallmark influencing key tumor features. We have previously demonstrated that splicing machinery is markedly dysregulated in PanNETs. Here, we aimed to elucidate the molecular and functional implications of CUGBP ELAV-like family member 4 (CELF4), one of the most altered splicing factors in PanNETs. CELF4 expression was determined in 20 PanNETs, comparing tumor and non-tumoral adjacent tissue. An RNA sequencing (RNA-seq) dataset was analyzed to explore CELF4-linked interrelations among clinical features, gene expression, and splicing events. Two PanNET cell lines were employed to assess CELF4 function in vitro and in vivo. PanNETs display markedly upregulated CELF4 expression, which is closely associated with malignancy features, altered expression of key tumor players, and distinct splicing event profiles. Modulation of CELF4 influenced proliferation in vitro and reduced in vivo xenograft tumor growth. Interestingly, functional assays and RNA-seq analysis revealed that CELF4 silencing altered mTOR signaling pathway, enhancing the effect of everolimus. We demonstrate that CELF4 is dysregulated in PanNETs, where it influences tumor development and aggressiveness, likely by modulating the mTOR pathway, suggesting its potential as therapeutic target.
Collapse
Affiliation(s)
- Emilia Alors-Pérez
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
| | - Sergio Pedraza-Arevalo
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
| | - Ricardo Blázquez-Encinas
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
| | - Víctor García-Vioque
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
| | - Antonio Agraz-Doblas
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
| | - Elena M. Yubero-Serrano
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
- Unidad de Gestión Clinica Medicina Interna, Lipids and Atherosclerosis Unit, Department of Internal Medicine, Reina Sofia University Hospital, Córdoba, Spain
| | - Marina E. Sánchez-Frías
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Pathology Service, Reina Sofia University Hospital, Córdoba, Spain
| | - Raquel Serrano-Blanch
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Medical Oncology Service, Reina Sofia University Hospital, Córdoba, Spain
| | - María Ángeles Gálvez-Moreno
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Endocrinology and Nutrition Service, Reina Sofia University Hospital, Córdoba, Spain
| | - Francisco Gracia-Navarro
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
| | - Manuel D. Gahete
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
| | - Álvaro Arjona-Sánchez
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- Surgery Service, Reina Sofia University Hospital, Córdoba, Spain
| | - Raúl M. Luque
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
| | - Alejandro Ibáñez-Costa
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
| | - Justo P. Castaño
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
| |
Collapse
|
11
|
Modica R, Liccardi A, Minotta R, Cannavale G, Benevento E, Colao A. Current understanding of pathogenetic mechanisms in neuroendocrine neoplasms. Expert Rev Endocrinol Metab 2024; 19:49-61. [PMID: 37936421 DOI: 10.1080/17446651.2023.2279540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/01/2023] [Indexed: 11/09/2023]
Abstract
INTRODUCTION Despite the fact that important advances in research on neuroendocrine neoplasms (NENs) have been made, consistent data about their pathogenetic mechanism are still lacking. Furthermore, different primary sites may recognize different pathogenetic mechanisms. AREAS COVERED This review analyzes the possible biological and molecular mechanisms that may lead to NEN onset and progression in different organs. Through extensive research of the literature, risk factors including hypercholesterolemia, inflammatory bowel disease, chronic atrophic gastritis are evaluated as potential pathogenetic mechanisms. Consistent evidence is available regarding sporadic gastric NENs and MEN1 related duodenopancreatic NENs precursor lesions, and genetic-epigenetic mutations may play a pivotal role in tumor development and bone metastases onset. In lung neuroendocrine tumors (NETs), diffuse proliferation of neuroendocrine cells on the bronchial wall (DIPNECH) has been proposed as a premalignant lesion, while in lung neuroendocrine carcinoma nicotine and smoke could be responsible for carcinogenic processes. Also, rare primary NENs such as thymic (T-NENs) and Merkel cell carcinoma (MCC) have been analyzed, finding different possible pathogenetic mechanisms. EXPERT OPINION New technologies in genomics and epigenomics are bringing new light to the pathogenetic landscape of NENs, but further studies are needed to improve both prevention and treatment in these heterogeneous neoplasms.
Collapse
Affiliation(s)
- Roberta Modica
- Endocrinology Unit, Department of Clinical Medicine and Surgery, Federico II University, Naples, Napoli, Italy
| | - Alessia Liccardi
- Endocrinology Unit, Department of Clinical Medicine and Surgery, Federico II University, Naples, Napoli, Italy
| | - Roberto Minotta
- Endocrinology Unit, Department of Clinical Medicine and Surgery, Federico II University, Naples, Napoli, Italy
| | - Giuseppe Cannavale
- Endocrinology Unit, Department of Clinical Medicine and Surgery, Federico II University, Naples, Napoli, Italy
| | - Elio Benevento
- Endocrinology Unit, Department of Clinical Medicine and Surgery, Federico II University, Naples, Napoli, Italy
| | - Annamaria Colao
- Endocrinology Unit, Department of Clinical Medicine and Surgery, Federico II University, Naples, Napoli, Italy
- UNESCO Chair "Education for Health and Sustainable Development, " Federico II University, Naples, Italy
| |
Collapse
|
12
|
Richter S, Steenblock C, Fischer A, Lemm S, Ziegler CG, Bechmann N, Nölting S, Pietzsch J, Ullrich M. Improving susceptibility of neuroendocrine tumors to radionuclide therapies: personalized approaches towards complementary treatments. Theranostics 2024; 14:17-32. [PMID: 38164150 PMCID: PMC10750207 DOI: 10.7150/thno.87345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/30/2023] [Indexed: 01/03/2024] Open
Abstract
Radionuclide therapies are an important tool for the management of patients with neuroendocrine neoplasms (NENs). Especially [131I]MIBG and [177Lu]Lu-DOTA-TATE are routinely used for the treatment of a subset of NENs, including pheochromocytomas, paragangliomas and gastroenteropancreatic tumors. Some patients suffering from other forms of NENs, such as medullary thyroid carcinoma or neuroblastoma, were shown to respond to radionuclide therapy; however, no general recommendations exist. Although [131I]MIBG and [177Lu]Lu-DOTA-TATE can delay disease progression and improve quality of life, complete remissions are achieved rarely. Hence, better individually tailored combination regimes are required. This review summarizes currently applied radionuclide therapies in the context of NENs and informs about recent advances in the development of theranostic agents that might enable targeting subgroups of NENs that previously did not respond to [131I]MIBG or [177Lu]Lu-DOTA-TATE. Moreover, molecular pathways involved in NEN tumorigenesis and progression that mediate features of radioresistance and are particularly related to the stemness of cancer cells are discussed. Pharmacological inhibition of such pathways might result in radiosensitization or general complementary antitumor effects in patients with certain genetic, transcriptomic, or metabolic characteristics. Finally, we provide an overview of approved targeted agents that might be beneficial in combination with radionuclide therapies in the context of a personalized molecular profiling approach.
Collapse
Affiliation(s)
- Susan Richter
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Charlotte Steenblock
- Department of Internal Medicine III, University Clinic Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Alessa Fischer
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ), and University of Zurich (UZH), Zurich, Switzerland
| | - Sandy Lemm
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Dresden, Germany
| | - Christian G. Ziegler
- Department of Internal Medicine III, University Clinic Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- University Hospital Würzburg, Division of Endocrinology and Diabetes, Würzburg, Germany
| | - Nicole Bechmann
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Svenja Nölting
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ), and University of Zurich (UZH), Zurich, Switzerland
- Department of Medicine IV, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Dresden, Germany
| | - Martin Ullrich
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| |
Collapse
|
13
|
Jannin A, Dessein AF, Do Cao C, Vantyghem MC, Chevalier B, Van Seuningen I, Jonckheere N, Coppin L. Metabolism of pancreatic neuroendocrine tumors: what can omics tell us? Front Endocrinol (Lausanne) 2023; 14:1248575. [PMID: 37908747 PMCID: PMC10613989 DOI: 10.3389/fendo.2023.1248575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/27/2023] [Indexed: 11/02/2023] Open
Abstract
Introduction Reprogramming of cellular metabolism is now a hallmark of tumorigenesis. In recent years, research on pancreatic neuroendocrine tumors (pNETs) has focused on genetic and epigenetic modifications and related signaling pathways, but few studies have been devoted to characterizing the metabolic profile of these tumors. In this review, we thoroughly investigate the metabolic pathways in pNETs by analyzing the transcriptomic and metabolomic data available in the literature. Methodology We retrieved and downloaded gene expression profiles from all publicly available gene set enrichments (GSE43797, GSE73338, and GSE117851) to compare the differences in expressed genes based on both the stage and MEN1 mutational status. In addition, we conducted a systematic review of metabolomic data in NETs. Results By combining transcriptomic and metabolomic approaches, we have identified a distinctive metabolism in pNETs compared with controls without pNETs. Our analysis showed dysregulations in the one-carbon, glutathione, and polyamine metabolisms, fatty acid biosynthesis, and branched-chain amino acid catabolism, which supply the tricarboxylic acid cycle. These targets are implicated in pNET cell proliferation and metastasis and could also have a prognostic impact. When analyzing the profiles of patients with or without metastasis, or with or without MEN1 mutation, we observed only a few differences due to the scarcity of published clinical data in the existing research. Consequently, further studies are now necessary to validate our data and investigate these potential targets as biomarkers or therapeutic solutions, with a specific focus on pNETs.
Collapse
Affiliation(s)
- Arnaud Jannin
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer - Heterogeneity Plasticity and Resistance to Therapies, Lille, France
- CHU Lille, Department of Endocrinology, Diabetology, and Metabolism, Lille, France
| | - Anne-Frédérique Dessein
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer - Heterogeneity Plasticity and Resistance to Therapies, Lille, France
| | - Christine Do Cao
- CHU Lille, Department of Endocrinology, Diabetology, and Metabolism, Lille, France
| | | | | | - Isabelle Van Seuningen
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer - Heterogeneity Plasticity and Resistance to Therapies, Lille, France
| | - Nicolas Jonckheere
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer - Heterogeneity Plasticity and Resistance to Therapies, Lille, France
| | - Lucie Coppin
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer - Heterogeneity Plasticity and Resistance to Therapies, Lille, France
| |
Collapse
|
14
|
Safari M, Scotto L, Litman T, Petrukhin LA, Zhu H, Shen M, Robey RW, Hall MD, Fojo T, Bates SE. Novel Therapeutic Strategies Exploiting the Unique Properties of Neuroendocrine Neoplasms. Cancers (Basel) 2023; 15:4960. [PMID: 37894327 PMCID: PMC10605125 DOI: 10.3390/cancers15204960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/02/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Over the last few decades of treatment, the outcomes for at least some subsets of neuroendocrine neoplasms (NENs) have improved. However, the identification of new vulnerabilities for this heterogeneous group of cancers remains a priority. METHODS Using two libraries of compounds selected for potential repurposing, we identified the inhibitors of nicotinamide phosphoribosyltransferase (NAMPT) and histone deacetylases (HDAC) as the agents with the highest activity. We validated the hits in an expanded set of neuroendocrine cell lines and examined the mechanisms of action. RESULTS In Kelly, NH-6, and NCI-H82, which are two neuroblastoma and one small cell lung cancer cell lines, respectively, metabolic studies suggested that cell death following NAMPT inhibition is the result of a reduction in basal oxidative phosphorylation and energy production. NAMPT is the rate-limiting enzyme in the production of NAD+, and in the three cell lines, NAMPT inhibition led to a marked reduction in the ATP and NAD+ levels and the catalytic activity of the citric acid cycle. Moreover, comparative analysis of the mRNA expression in drug-sensitive and -insensitive cell lines found less dependency of the latter on oxidative phosphorylation for their energy requirement. Further, the analysis of HDAC and NAMPT inhibitors administered in combination found marked activity using low sub-lethal concentrations of both agents, suggesting a synergistic effect. CONCLUSION These data suggest NAMPT inhibitors alone or in combination with HDAC inhibitors could be particularly effective in the treatment of neuroendocrine neoplasms.
Collapse
Affiliation(s)
- Maryam Safari
- Division of Hematology/Oncology, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Luigi Scotto
- Division of Hematology/Oncology, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Thomas Litman
- Department of Immunology and Microbiology, University of Copenhagen, 1172 Copenhagen, Denmark
| | - Lubov A. Petrukhin
- Division of Hematology/Oncology, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Hu Zhu
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Rockville, MD 20892, USA
| | - Min Shen
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Rockville, MD 20892, USA
| | - Robert W. Robey
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthew D. Hall
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Rockville, MD 20892, USA
| | - Tito Fojo
- Division of Hematology/Oncology, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
- James J. Peters Bronx Veterans Affairs Medical Center, Bronx, NY 10468, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Susan E. Bates
- Division of Hematology/Oncology, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
- James J. Peters Bronx Veterans Affairs Medical Center, Bronx, NY 10468, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
15
|
Kumar S, Senapati S, Bhattacharya N, Bhattacharya A, Maurya SK, Husain H, Bhatti JS, Pandey AK. Mechanism and recent updates on insulin-related disorders. World J Clin Cases 2023; 11:5840-5856. [PMID: 37727490 PMCID: PMC10506040 DOI: 10.12998/wjcc.v11.i25.5840] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/06/2023] [Accepted: 08/07/2023] [Indexed: 09/01/2023] Open
Abstract
Insulin, a small protein with 51 amino acids synthesized by pancreatic β-cells, is crucial to sustain glucose homeostasis at biochemical and molecular levels. Numerous metabolic dysfunctions are related to insulin-mediated altered glucose homeostasis. One of the significant pathophysiological conditions linked to the insulin associated disorder is diabetes mellitus (DM) (type 1, type 2, and gestational). Insulin resistance (IR) is one of the major underlying causes of metabolic disorders despite its association with several physiological conditions. Metabolic syndrome (MS) is another pathophysiological condition that is associated with IR, hypertension, and obesity. Further, several other pathophysiological disorders/diseases are associated with the insulin malfunctioning, which include polycystic ovary syndrome, neuronal disorders, and cancer. Insulinomas are an uncommon type of pancreatic β-cell-derived neuroendocrine tumor that makes up 2% of all pancreatic neoplasms. Literature revealed that different biochemical events, molecular signaling pathways, microRNAs, and microbiota act as connecting links between insulin disorder and associated pathophysiology such as DM, insuloma, neurological disorder, MS, and cancer. In this review, we focus on the insulin-related disorders and the underlying mechanisms associated with the pathophysiology.
Collapse
Affiliation(s)
- Shashank Kumar
- Department of Biochemistry, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Sabyasachi Senapati
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Neetu Bhattacharya
- Department of Zoology, Dyal Singh College, University of Delhi, New Delhi 110003, India
| | - Amit Bhattacharya
- Department of Zoology, Ramjas College, University of Delhi, New Delhi 110007, India
| | | | - Hadiya Husain
- Department of Zoology, University of Lucknow, Lucknow 226007, India
| | - Jasvinder Singh Bhatti
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Abhay Kumar Pandey
- Department of Biochemistry, University of Allahabad, Allahabad (Prayagraj) 211002, India
| |
Collapse
|
16
|
Yang C, Cao F, He Y. An Immune-Related Gene Signature for Predicting Survival and Immunotherapy Efficacy in Esophageal Adenocarcinoma. Med Sci Monit 2023; 29:e940157. [PMID: 37632137 PMCID: PMC10467311 DOI: 10.12659/msm.940157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/30/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Immune checkpoint inhibitor (ICI) therapy has attracted wide attention in the treatment of malignant tumors. This study was designed to build a prognostic model based on immune-related genes for esophageal adenocarcinoma (EAC). MATERIAL AND METHODS The expression of immune-related differentially-expressed genes (IRDEGs) between EAC and normal samples from The Cancer Genome Atlas database was analyzed. Univariate and multivariate Cox regressions were used to identify the prognostic IRDEGs and construct an immune-related gene signature (IRGS) to predict the overall survival (OS) of EAC patients. Then, the molecular mechanisms and immune characteristics were comprehensively analyzed. RESULTS A total of 111 IRDEGs were obtained from the weighted gene co-expression network analysis. Univariate Cox regression analysis showed that 12 IRDEGs (P<0.05 for all) were linked with OS in the EAC patients. Four genes were used to construct the IRGS based on the multivariate Cox regression analysis. Patients in the high-risk group showed worse OS than those in the low-risk group (P<0.001). A high-risk score was related to DNA replication relevant pathways, an increase in mutation rate, and an increase in activated mast cell infiltration. Patients with high-risk scores had lower tumor immune dysfunction and exclusion scores (P<0.001). CONCLUSIONS IRDEGs may be involved in the progression of EAC. The high-risk group is more suitable for immunotherapy, which may provide a reference value for the treatment of clinical EAC patients. Therefore, it is possible to identify the patients who are better suited for ICI therapy.
Collapse
Affiliation(s)
- Chuang Yang
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital of Leipzig, Leipzig, Germany
| | - Feng Cao
- Anhui Medical University, Hefei, Anhui, PR China
| | - Yan He
- Anhui Medical University, Hefei, Anhui, PR China
| |
Collapse
|
17
|
Kiesewetter B, Melhorn P, Macheiner S, Wolff L, Kretschmer-Chott E, Haug A, Mazal P, Raderer M. Does the dose matter? Antiproliferative efficacy and toxicity of everolimus in patients with neuroendocrine tumors - Experiences from a tertiary referral center. J Neuroendocrinol 2023; 35:e13319. [PMID: 37485760 DOI: 10.1111/jne.13319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 05/12/2023] [Accepted: 06/26/2023] [Indexed: 07/25/2023]
Abstract
The mTOR-inhibitor everolimus has been approved for the treatment of advanced neuroendocrine tumors (NETs) but is associated with relevant toxicities in clinical practice. Hence, optimal treatment sequencing and the impact of dose reductions have yet to be clarified. This retrospective analysis assessed patients with advanced, well-differentiated NET treated with everolimus at the Medical University of Vienna. The primary objective was to evaluate the efficacy of everolimus in a real-world cohort. A total of 52 patients treated with everolimus for advanced NET grade 1 (G1) or G2 (or typical or atypical carcinoid) 2010-2021 were included in this analysis. The most common sites of origin were pancreas (44%) and lung (29%). The initial dose was decided by the treating physician based on clinical assessment and 25 patients (48%) each were started at 10 mg/day and 5 mg/day. Median progression-free survival (PFS) following everolimus in the overall cohort was 9.8 months (95% CI: 4.3-15.3), with a statistically significant PFS difference (p = .03) between NET G1/typical carcinoids (42.9 months) and NET G2/atypical carcinoids (8.9 months). PFS was numerically but not significantly shorter in patients treated with a reduced dose (7.5 months vs. 12.4 months, p = .359). Even in this mixed full/half dose cohort, 93% developed treatment-related side effects (mostly grade I, no grade IV), 63% had dose reductions or interruptions, and five stopped due to toxicity. Median survival following treatment was 40.9 months (95% CI: 21.5-60.3) and no difference with regard to dosing was observed (p = .517). These data from an unselected patient cohort show long-term outcomes similar to those reported in the pivotal studies. Comparing everolimus starting dose, median PFS did not significantly differ for patients treated at a lower dose. While this finding is limited by the sample size and warrants prospective verification, initiating therapy at a reduced dose might be practicable and safe in a distinct subset of patients.
Collapse
Affiliation(s)
- Barbara Kiesewetter
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - Philipp Melhorn
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - Simon Macheiner
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - Ladislaia Wolff
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - Elisabeth Kretschmer-Chott
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Alexander Haug
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Peter Mazal
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Markus Raderer
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
18
|
Diamantopoulos LN, Kalligeros M, Halfdanarson TR, Diamantis N, Toumpanakis C. Combination Systemic Therapies in Advanced Well-Differentiated Gastroenteropancreatic Neuroendocrine Tumors (GEP-NETs): A Comprehensive Review of Clinical Trials and Prospective Studies. BIOLOGY 2023; 12:1069. [PMID: 37626955 PMCID: PMC10452098 DOI: 10.3390/biology12081069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 08/27/2023]
Abstract
There is an evolving landscape of systemic combination regimens for patients with advanced well-differentiated gastroenteropancreatic neuroendocrine tumors (GEP-NETs). In this review, we provide a comprehensive outline of the existing clinical trials/prospective studies investigating these combinations. PubMed was searched using key relevant terms to identify articles referring to GEP-NETs and combination treatments. No systematic search of the literature or metanalysis of the data was performed, and we focused on the most recent literature results. Primarily, phase 1 and 2 clinical trials were available, with a smaller number of phase 3 trials, reporting results from combination treatments across a wide range of antiproliferative agents. We identified significant variability in the anti-tumor activity of the reported combinations, with occasional promising results, but only a very small number of practice-changing phase 3 clinical trials. Overall, the peptide receptor radionuclide therapy (PRRT)-based combinations (with chemotherapy, dual PPRT, and targeted agents) and anti-vascular endothelial growth factor (VEGF) agent combinations with standard chemotherapy were found to have favorable results and may be worth investigating in future, larger-scale trials. In contrast, the immune-checkpoint inhibitor-based combinations were found to have limited applicability in advanced, well-differentiated GEP-NETs.
Collapse
Affiliation(s)
- Leonidas N. Diamantopoulos
- Department of Medicine, University of Pittsburgh Medical Center, 200 Lothrop Street, Pittsburgh, PA 15213, USA;
| | - Markos Kalligeros
- Department of Medicine, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA;
| | | | - Nikolaos Diamantis
- Department of Medical Oncology, Royal Free London NHS Foundation Trust and University College London, London WC1E 6BT, UK;
| | - Christos Toumpanakis
- Neuroendocrine Tumor Unit, Centre for Gastroenterology, ENETS Centre of Excellence, Royal Free London NHS Foundation Trust and University College London, London WC1E 6BT, UK
| |
Collapse
|
19
|
Werle SD, Ikonomi N, Lausser L, Kestler AMTU, Weidner FM, Schwab JD, Maier J, Buchholz M, Gress TM, Kestler AMR, Kestler HA. A systems biology approach to define mechanisms, phenotypes, and drivers in PanNETs with a personalized perspective. NPJ Syst Biol Appl 2023; 9:22. [PMID: 37270586 DOI: 10.1038/s41540-023-00283-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/17/2023] [Indexed: 06/05/2023] Open
Abstract
Pancreatic neuroendocrine tumors (PanNETs) are a rare tumor entity with largely unpredictable progression and increasing incidence in developed countries. Molecular pathways involved in PanNETs development are still not elucidated, and specific biomarkers are missing. Moreover, the heterogeneity of PanNETs makes their treatment challenging and most approved targeted therapeutic options for PanNETs lack objective responses. Here, we applied a systems biology approach integrating dynamic modeling strategies, foreign classifier tailored approaches, and patient expression profiles to predict PanNETs progression as well as resistance mechanisms to clinically approved treatments such as the mammalian target of rapamycin complex 1 (mTORC1) inhibitors. We set up a model able to represent frequently reported PanNETs drivers in patient cohorts, such as Menin-1 (MEN1), Death domain associated protein (DAXX), Tuberous Sclerosis (TSC), as well as wild-type tumors. Model-based simulations suggested drivers of cancer progression as both first and second hits after MEN1 loss. In addition, we could predict the benefit of mTORC1 inhibitors on differentially mutated cohorts and hypothesize resistance mechanisms. Our approach sheds light on a more personalized prediction and treatment of PanNET mutant phenotypes.
Collapse
Affiliation(s)
- Silke D Werle
- Institute of Medical Systems Biology, Ulm University, 89081, Ulm, Germany
| | - Nensi Ikonomi
- Institute of Medical Systems Biology, Ulm University, 89081, Ulm, Germany
| | - Ludwig Lausser
- Institute of Medical Systems Biology, Ulm University, 89081, Ulm, Germany
- Faculty of Computer Science, Technische Hochschule Ingolstadt, 85049, Ingolstadt, Germany
| | | | - Felix M Weidner
- Institute of Medical Systems Biology, Ulm University, 89081, Ulm, Germany
| | - Julian D Schwab
- Institute of Medical Systems Biology, Ulm University, 89081, Ulm, Germany
| | - Julia Maier
- Institute of Medical Systems Biology, Ulm University, 89081, Ulm, Germany
- Institute of Pathology, University Hospital Ulm, 89081, Ulm, Germany
| | - Malte Buchholz
- Department of Gastroenterology, Endocrinology and Metabolism, Philipps-University Marburg, 35043, Marburg, Germany
| | - Thomas M Gress
- Department of Gastroenterology, Endocrinology and Metabolism, Philipps-University Marburg, 35043, Marburg, Germany
| | | | - Hans A Kestler
- Institute of Medical Systems Biology, Ulm University, 89081, Ulm, Germany.
| |
Collapse
|
20
|
Liao Y, Cao W, Li Z, Xu X, Zhang Y, Liu Z, Miao J, Zhou Y, Zhen Z, Liu D, Li H, Chai L, Wei Y, Zhang X, Zhang L, Wang J, Tian Y. Gallbladder neuroendocrine carcinoma: A report of two cases and literature review. Oncol Lett 2023; 25:229. [PMID: 37153064 PMCID: PMC10157601 DOI: 10.3892/ol.2023.13815] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/15/2023] [Indexed: 05/09/2023] Open
Abstract
Gallbladder neuroendocrine carcinoma (GB-NEC) is a rare, aggressive neuroendocrine carcinoma that arises from the gallbladder. Patients with GB-NEC usually have a poor prognosis. The present study described two cases diagnosed with GB-NEC and reviewed the literature to improve knowledge of GB-NEC. The present study reported on two cases of GB-NEC in male patients aged 65 and 66 years, respectively. Both patients underwent surgical resection. Postoperative pathology confirmed that one case had mixed adeno-neuroendocrine carcinoma and the other had large cell neuroendocrine carcinoma. In addition, both patients had uneventful recoveries following surgery and received cisplatin-etoposide combination chemotherapy. The present study summarized the two cases and reviewed the literature to improve understanding of GB-NEC. The results revealed that radiological findings of GB-NEC are non-specific. The present study demonstrated that surgical resection was still the most effective therapy and that postoperative adjuvant chemotherapy could markedly improve the prognosis of patients with GB-NEC.
Collapse
Affiliation(s)
- Yong Liao
- Department of Hepatobiliary Surgery, Xingtai People's Hospital of Hebei Medical University, Xingtai, Hebei 054001, P.R. China
| | - Wen Cao
- Department of Neurology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Zhongkang Li
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Xin Xu
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100191, P.R. China
| | - Ye Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Zhihu Liu
- Department of Hepatobiliary Surgery, Xingtai People's Hospital of Hebei Medical University, Xingtai, Hebei 054001, P.R. China
| | - Jie Miao
- Department of Pathology, Xingtai People's Hospital of Hebei Medical University, Xingtai, Hebei 054001, P.R. China
| | - Yang Zhou
- Department of Pathology, Xingtai People's Hospital of Hebei Medical University, Xingtai, Hebei 054001, P.R. China
| | - Zhongguang Zhen
- Department of Hepatobiliary Surgery, Xingtai People's Hospital of Hebei Medical University, Xingtai, Hebei 054001, P.R. China
| | - Dengxiang Liu
- Department of Hepatobiliary Surgery, Xingtai People's Hospital of Hebei Medical University, Xingtai, Hebei 054001, P.R. China
| | - Hui Li
- Department of Hepatobiliary Surgery, Xingtai People's Hospital of Hebei Medical University, Xingtai, Hebei 054001, P.R. China
| | - Lichao Chai
- Department of Nuclear Medicine, Xingtai People's Hospital of Hebei Medical University, Xingtai, Hebei 054001, P.R. China
| | - Yan Wei
- Department of Nuclear Medicine, Xingtai People's Hospital of Hebei Medical University, Xingtai, Hebei 054001, P.R. China
| | - Xiaochong Zhang
- Department of Hepatobiliary Surgery, Xingtai People's Hospital of Hebei Medical University, Xingtai, Hebei 054001, P.R. China
| | - Le Zhang
- Department of Oral Surgery, Hebei Provincial Eye Hospital, Xingtai, Hebei 054001, P.R. China
| | - Jitao Wang
- Department of Hepatobiliary Surgery, Xingtai People's Hospital of Hebei Medical University, Xingtai, Hebei 054001, P.R. China
- Dr Jitao Wang, Department of Hepatobiliary Surgery, Xingtai People's Hospital of Hebei Medical University, Hongxing Street, Xingtai, Hebei 054001, P.R. China, E-mail:
| | - Yanpeng Tian
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Correspondence to: Dr Yanpeng Tian, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, Henan 450052, P.R. China, E-mail:
| |
Collapse
|
21
|
Guo Y, Tian C, Cheng Z, Chen R, Li Y, Su F, Shi Y, Tan H. Molecular and Functional Heterogeneity of Primary Pancreatic Neuroendocrine Tumors and Metastases. Neuroendocrinology 2023; 113:943-956. [PMID: 37232011 PMCID: PMC10614458 DOI: 10.1159/000530968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 04/24/2023] [Indexed: 05/27/2023]
Abstract
INTRODUCTION Treatment response to the standard therapy is low for metastatic pancreatic neuroendocrine tumors (PanNETs) mainly due to the tumor heterogeneity. We investigated the heterogeneity between primary PanNETs and metastases to improve the precise treatment. METHODS The genomic and transcriptomic data of PanNETs were retrieved from the Genomics, Evidence, Neoplasia, Information, Exchange (GENIE), and Gene Expression Omnibus (GEO) database, respectively. Potential prognostic effects of gene mutations enriched in metastases were investigated. Gene set enrichment analysis was performed to investigate the functional difference. Oncology Knowledge Base was interrogated for identifying the targetable gene alterations. RESULTS Twenty-one genes had significantly higher mutation rates in metastases which included TP53 (10.3% vs. 16.9%, p = 0.035) and KRAS (3.7% vs. 9.1%, p = 0.016). Signaling pathways related to cell proliferation and metabolism were enriched in metastases, whereas epithelial-mesenchymal transition (EMT) and TGF-β signaling were enriched in primaries. Gene mutations were highly enriched in metastases that had significant unfavorable prognostic effects included mutation of TP53 (p < 0.001), KRAS (p = 0.001), ATM (p = 0.032), KMT2D (p = 0.001), RB1 (p < 0.001), and FAT1 (p < 0.001). Targetable alterations enriched in metastases included mutation of TSC2 (15.5%), ARID1A (9.7%), KRAS (9.1%), PTEN (8.7%), ATM (6.4%), amplification of EGFR (6.0%), MET (5.5%), CDK4 (5.5%), MDM2 (5.0%), and deletion of SMARCB1 (5.0%). CONCLUSION Metastases exhibited a certain extent of genomic and transcriptomic diversity from primary PanNETs. TP53 and KRAS mutation in primary samples might associate with metastasis and contribute to a poorer prognosis. A high fraction of novel targetable alterations enriched in metastases deserves to be validated in advanced PanNETs.
Collapse
Affiliation(s)
- Yiying Guo
- Department of Integrative Oncology, China-Japan Friendship Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Chao Tian
- Department of Integrative Oncology, China-Japan Friendship Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zixuan Cheng
- Department of Integrative Oncology, China-Japan Friendship Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ruao Chen
- Department of Integrative Oncology, China-Japan Friendship Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yuanliang Li
- Department of Integrative Oncology, China-Japan Friendship Hospital, Beijing, China
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fei Su
- Department of Integrative Oncology, China-Japan Friendship Hospital, Beijing, China
| | - Yanfen Shi
- Department of Pathology, China-Japan Friendship Hospital, Beijing, China
| | - Huangying Tan
- Department of Integrative Oncology, China-Japan Friendship Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Integrative Oncology, China-Japan Friendship Hospital, Beijing University of Chinese Medicine, Beijing, China
- Department of Integrative Oncology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
22
|
van Beek DJ, Verschuur AVD, Brosens LAA, Valk GD, Pieterman CRC, Vriens MR. Status of Surveillance and Nonsurgical Therapy for Small Nonfunctioning Pancreatic Neuroendocrine Tumors. Surg Oncol Clin N Am 2023; 32:343-371. [PMID: 36925190 DOI: 10.1016/j.soc.2022.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Pancreatic neuroendocrine tumors (PNETs) occur in < 1/100,000 patients and most are nonfunctioning (NF). Approximately 5% occur as part of multiple endocrine neoplasia type 1. Anatomic and molecular imaging have a pivotal role in the diagnosis, staging and active surveillance. Surgery is generally recommended for nonfunctional pancreatic neuroendocrine tumors (NF-PNETs) >2 cm to prevent metastases. For tumors ≤2 cm, active surveillance is a viable alternative. Tumor size and grade are important factors to guide management. Assessment of death domain-associated protein 6/alpha-thalassemia/mental retardation X-linked and alternative lengthening of telomeres are promising novel prognostic markers. This review summarizes the status of surveillance and nonsurgical management for small NF-PNETs, including factors that can guide management.
Collapse
Affiliation(s)
- Dirk-Jan van Beek
- Department of Endocrine Surgical Oncology, University Medical Center Utrecht, Internal Mail Number G.04.228, PO Box 85500, Utrecht 3508 GA, the Netherlands
| | - Anna Vera D Verschuur
- Department of Pathology, University Medical Center Utrecht, Internal Mail Number G02.5.26, PO Box 85500, Utrecht 3508 GA, the Netherlands. https://twitter.com/annaveraverschu
| | - Lodewijk A A Brosens
- Department of Pathology, University Medical Center Utrecht, Internal Mail Number G4.02.06, PO Box 85500, Utrecht 3508 GA, the Netherlands
| | - Gerlof D Valk
- Department of Endocrine Oncology, University Medical Center Utrecht, Internal Mail Number Q.05.4.300, PO Box 85500, Utrecht 3508 GA, the Netherlands
| | - Carolina R C Pieterman
- Department of Endocrine Oncology, University Medical Center Utrecht, Internal Mail Number Q.05.4.300, PO Box 85500, Utrecht 3508 GA, the Netherlands.
| | - Menno R Vriens
- Department of Endocrine Surgical Oncology, University Medical Center Utrecht, Internal Mail Number G.04.228, PO Box 85500, Utrecht 3508 GA, the Netherlands
| |
Collapse
|
23
|
Reccia I, Pai M, Kumar J, Spalding D, Frilling A. Tumour Heterogeneity and the Consequent Practical Challenges in the Management of Gastroenteropancreatic Neuroendocrine Neoplasms. Cancers (Basel) 2023; 15:1861. [PMID: 36980746 PMCID: PMC10047148 DOI: 10.3390/cancers15061861] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/10/2023] [Accepted: 03/18/2023] [Indexed: 03/22/2023] Open
Abstract
Tumour heterogeneity is a common phenomenon in neuroendocrine neoplasms (NENs) and a significant cause of treatment failure and disease progression. Genetic and epigenetic instability, along with proliferation of cancer stem cells and alterations in the tumour microenvironment, manifest as intra-tumoural variability in tumour biology in primary tumours and metastases. This may change over time, especially under selective pressure during treatment. The gastroenteropancreatic (GEP) tract is the most common site for NENs, and their diagnosis and treatment depends on the specific characteristics of the disease, in particular proliferation activity, expression of somatostatin receptors and grading. Somatostatin receptor expression has a major role in the diagnosis and treatment of GEP-NENs, while Ki-67 is also a valuable prognostic marker. Intra- and inter-tumour heterogeneity in GEP-NENS, however, may lead to inaccurate assessment of the disease and affect the reliability of the available diagnostic, prognostic and predictive tests. In this review, we summarise the current available evidence of the impact of tumour heterogeneity on tumour diagnosis and treatment of GEP-NENs. Understanding and accurately measuring tumour heterogeneity could better inform clinical decision making in NENs.
Collapse
Affiliation(s)
- Isabella Reccia
- General Surgical and Oncology Unit, Policlinico San Pietro, Via Carlo Forlanini, 24036 Ponte San Pietro, Italy
| | - Madhava Pai
- Division of Surgery, Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0HS, UK
| | - Jayant Kumar
- Division of Surgery, Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0HS, UK
| | - Duncan Spalding
- Division of Surgery, Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0HS, UK
| | - Andrea Frilling
- Division of Surgery, Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0HS, UK
| |
Collapse
|
24
|
Wheless M, Das S. Systemic Therapy for Pancreatic Neuroendocrine Tumors. Clin Colorectal Cancer 2023; 22:34-44. [PMID: 36114085 DOI: 10.1016/j.clcc.2022.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/21/2022] [Accepted: 08/02/2022] [Indexed: 11/03/2022]
Abstract
Patients with metastatic or advanced pancreatic neuroendocrine tumors (NETs) carry poorer prognoses relative to patients with other NETs due to bulkier and often, more proliferative baseline disease. Patients with these tumors also possess more approved treatment options relative to patients with other NETs, making therapeutic sequencing nuanced. As such, defining optimal therapeutic sequencing and developing more potent cytoreductive treatments for patients are significant areas of research need in the field. Herein this review, we discuss the current systemic therapy landscape, our approach to therapeutic sequencing in the clinic and ongoing studies seeking to define optimal sequencing of systemic therapies, and novel therapeutics in development, for patients with pancreatic NETs. We limit the scope of this latter topic to agents with preclinical or clinical rationale over the last 8 years to provide a contemporary view of the drug development landscape and focus primarily on new types of peptide receptor radionuclide therapy, anti-vascular endothelial growth factor receptor tyrosine kinase inhibitors and anti-vascular endothelial growth receptor tyrosine kinase inhibitor plus immunotherapy combinations.
Collapse
Affiliation(s)
- Margaret Wheless
- Vanderbilt University Medical Center, Department of Medicine, Nashville, TN
| | - Satya Das
- Vanderbilt University Medical Center, Department of Medicine, Division of Hematology and Oncology, Nashville, TN.
| |
Collapse
|
25
|
Matrood S, Melms LE, Bartsch DK, Di Fazio P. The Expression of Autophagy-Associated Genes Represents a Valid Footprint for Aggressive Pancreatic Neuroendocrine Neoplasms. Int J Mol Sci 2023; 24:3636. [PMID: 36835048 PMCID: PMC9966877 DOI: 10.3390/ijms24043636] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
Pancreatic neuroendocrine neoplasms (pNEN) are rare and heterogeneous tumors. Previous investigations have shown that autophagy can be a target for cancer therapy. This study aimed to determine the association between the expression of autophagy-associated gene transcripts and clinical parameters in pNEN. In total, 54 pNEN specimens were obtained from our human biobank. The patient characteristics were retrieved from the medical record. RT-qPCR was performed to assess the expression of the autophagic transcripts BECN1, MAP1LC3B, SQSTM1, UVRAG, TFEB, PRKAA1, and PRKAA2 in the pNEN specimens. A Mann-Whitney U test was used to detect differences in the expression of autophagic gene transcripts between different tumor characteristics. This study showed that G1 sporadic pNEN have a higher expression of autophagic genes compared to G2. Lymphatic and distant metastasis occurred significantly more often in pNEN with a decreased expression of the autophagic genes. Within sporadic pNEN, the insulinomas express higher levels of autophagic transcripts than gastrinomas and non-functional pNEN. MEN1-associated pNEN show a higher expression of autophagic genes than sporadic pNEN. In summary, a decreased expression of autophagic transcripts distinguishes metastatic from non-metastatic sporadic pNEN. The significance of autophagy as a molecular marker for prognosis and therapy decisions needs to be further investigated.
Collapse
Affiliation(s)
- Sami Matrood
- Department of Gastroenterology, Endocrinology, Metabolism and Infectiology, Philipps-University Marburg, 35043 Marburg, Germany
| | - Leander Edwin Melms
- Institute for Artificial Intelligence, University Hospital Marburg, Philipps-University Marburg, 35043 Marburg, Germany
| | - Detlef Klaus Bartsch
- Department of Visceral, Thoracic and Vascular Surgery, Philipps-University Marburg, 35043 Marburg, Germany
| | - Pietro Di Fazio
- Department of Visceral, Thoracic and Vascular Surgery, Philipps-University Marburg, 35043 Marburg, Germany
| |
Collapse
|
26
|
Otto R, Detjen KM, Riemer P, Fattohi M, Grötzinger C, Rindi G, Wiedenmann B, Sers C, Leser U. Transcriptomic Deconvolution of Neuroendocrine Neoplasms Predicts Clinically Relevant Characteristics. Cancers (Basel) 2023; 15:cancers15030936. [PMID: 36765893 PMCID: PMC9913692 DOI: 10.3390/cancers15030936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
Pancreatic neuroendocrine neoplasms (panNENs) are a rare yet diverse type of neoplasia whose precise clinical-pathological classification is frequently challenging. Since incorrect classifications can affect treatment decisions, additional tools which support the diagnosis, such as machine learning (ML) techniques, are critically needed but generally unavailable due to the scarcity of suitable ML training data for rare panNENs. Here, we demonstrate that a multi-step ML framework predicts clinically relevant panNEN characteristics while being exclusively trained on widely available data of a healthy origin. The approach classifies panNENs by deconvolving their transcriptomes into cell type proportions based on shared gene expression profiles with healthy pancreatic cell types. The deconvolution results were found to provide a prognostic value with respect to the prediction of the overall patient survival time, neoplastic grading, and carcinoma versus tumor subclassification. The performance with which a proliferation rate agnostic deconvolution ML model could predict the clinical characteristics was found to be comparable to that of a comparative baseline model trained on the proliferation rate-informed MKI67 levels. The approach is novel in that it complements established proliferation rate-oriented classification schemes whose results can be reproduced and further refined by differentiating between identically graded subgroups. By including non-endocrine cell types, the deconvolution approach furthermore provides an in silico quantification of panNEN dedifferentiation, optimizing it for challenging clinical classification tasks in more aggressive panNEN subtypes.
Collapse
Affiliation(s)
- Raik Otto
- Knowledge Management in Bioinformatics, Institute for Computer Science, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
- Correspondence: ; Tel.: +49-030-2093-3086
| | - Katharina M. Detjen
- Department of Hepatology and Gastroenterology, Charité—Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, 13353 Berlin, Germany
| | - Pamela Riemer
- Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Melanie Fattohi
- Knowledge Management in Bioinformatics, Institute for Computer Science, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| | - Carsten Grötzinger
- Department of Hepatology and Gastroenterology, Charité—Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, 13353 Berlin, Germany
| | - Guido Rindi
- Section of Anatomic Pathology, Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
- Anatomic Pathology Unit, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy
| | - Bertram Wiedenmann
- Department of Hepatology and Gastroenterology, Charité—Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, 13353 Berlin, Germany
| | - Christine Sers
- Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Ulf Leser
- Knowledge Management in Bioinformatics, Institute for Computer Science, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| |
Collapse
|
27
|
Sun H, Chen G, Guo B, Lv S, Yuan G. Potential clinical treatment prospects behind the molecular mechanism of alternative lengthening of telomeres (ALT). J Cancer 2023; 14:417-433. [PMID: 36860927 PMCID: PMC9969575 DOI: 10.7150/jca.80097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/25/2022] [Indexed: 02/04/2023] Open
Abstract
Normal somatic cells inevitably experience replicative stress and senescence during proliferation. Somatic cell carcinogenesis can be prevented in part by limiting the reproduction of damaged or old cells and removing them from the cell cycle [1, 2]. However, Cancer cells must overcome the issues of replication pressure and senescence as well as preserve telomere length in order to achieve immortality, in contrast to normal somatic cells [1, 2]. Although telomerase accounts for the bulk of telomere lengthening methods in human cancer cells, there is a non-negligible portion of telomere lengthening pathways that depend on alternative lengthening of telomeres (ALT) [3]. For the selection of novel possible therapeutic targets for ALT-related disorders, a thorough understanding of the molecular biology of these diseases is crucial [4]. The roles of ALT, typical ALT tumor cell traits, the pathophysiology and molecular mechanisms of ALT tumor disorders, such as adrenocortical carcinoma (ACC), are all summarized in this work. Additionally, this research compiles as many of its hypothetically viable but unproven treatment targets as it can (ALT-associated PML bodies (APB), etc.). This review is intended to contribute as much as possible to the development of research, while also trying to provide a partial information for prospective investigations on ALT pathways and associated diseases.
Collapse
Affiliation(s)
- Haolu Sun
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230011, China
| | - Guijuan Chen
- School of Environment and Chemical Engineering, Anhui Vocational and Technical College, Hefei, 230011, China
| | - Baochang Guo
- Rehabilitation Department of Traditional Chinese Medicine, 969 Hospital of the Joint Support Force of the Chinese People's Liberation Army, Hohhot, 010000, China
| | - Shushu Lv
- Department of Pathology, The First Affiliated Hospital of Huzhou University, Huzhou 313000, China
| | - Guojun Yuan
- School of Environment and Chemical Engineering, Anhui Vocational and Technical College, Hefei, 230011, China
| |
Collapse
|
28
|
Fayyaz F, Reardon MF, Byrne L. Insulinoma as a cause of seizure-like activity and spontaneous hypoglycaemia. BMJ Case Rep 2023; 16:e250799. [PMID: 36627134 PMCID: PMC9835887 DOI: 10.1136/bcr-2022-250799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
A woman in her 60s presented to our hospital with recurrent episodes of confusion and double vision with spontaneous recovery to baseline within 10 min. Her initial workup was unremarkable, and she was diagnosed with complex partial seizures and commenced on levetiracetam. The following week, she re-presented with a recurrence of her symptoms, associated with spontaneous hypoglycaemia, with blood glucose levels of 1.9 mmol/L. She was found to have endogenously elevated serum insulin and C peptide levels, which were concomitantly associated with hypoglycaemia. An initial diagnosis of insulinoma was made and she was commenced on diazoxide. MRI and endoscopic ultrasound revealed 16 mm insulinoma in her uncinate process. She underwent surgical resection and remained symptom free at follow-up. This case highlights the importance of blood glucose measurements in patients presenting with neuroglycopenic symptoms and outlines the workup and management of insulinoma.
Collapse
Affiliation(s)
- Fahd Fayyaz
- Medicine, Wexford General Hospital, Wexford, Ireland
| | | | - Luke Byrne
- Cardiology, Tallaght University Hospital, Dublin, Ireland
| |
Collapse
|
29
|
Choi JH, Paik WH. Risk Stratification of Pancreatic Neuroendocrine Neoplasms Based on Clinical, Pathological, and Molecular Characteristics. J Clin Med 2022; 11:7456. [PMID: 36556070 PMCID: PMC9786745 DOI: 10.3390/jcm11247456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Pancreatic neuroendocrine neoplasms consist of heterogeneous diseases. Depending on the novel features detected by various modern technologies, their classification and related prognosis predictions continue to change and develop. The role of traditional clinicopathological prognostic factors, including classification systems, is also being refined, and several attempts have been made to predict a more accurate prognosis through novel serum biomarkers, genetic factors, and epigenetic factors that have been identified through various state-of-the-art molecular techniques with multiomics sequencing. In this review article, the latest research results including the traditional approach to prognostic factors and recent advanced strategies for risk stratification of pancreatic neuroendocrine neoplasms based on clinical, pathological, and molecular characteristics are summarized. Predicting prognosis through multi-factorial assessments seems to be more efficacious, and prognostic factors through noninvasive methods are expected to develop further advances in liquid biopsy in the future.
Collapse
Affiliation(s)
| | - Woo Hyun Paik
- Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
| |
Collapse
|
30
|
Gaspar TB, Lopes JM, Soares P, Vinagre J. An update on genetically engineered mouse models of pancreatic neuroendocrine neoplasms. Endocr Relat Cancer 2022; 29:R191-R208. [PMID: 36197786 DOI: 10.1530/erc-22-0166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/29/2022] [Indexed: 11/09/2022]
Abstract
Pancreatic neuroendocrine neoplasms (PanNENs) are rare and clinically challenging entities. At the molecular level, PanNENs' genetic profile is well characterized, but there is limited knowledge regarding the contribution of the newly identified genes to tumor initiation and progression. Genetically engineered mouse models (GEMMs) are the most versatile tool for studying the plethora of genetic variations influencing PanNENs' etiopathogenesis and behavior over time. In this review, we present the state of the art of the most relevant PanNEN GEMMs available and correlate their findings with the human neoplasms' counterparts. We discuss the historic GEMMs as the most used and with higher translational utility models. GEMMs with Men1 and glucagon receptor gene germline alterations stand out as the most faithful models in recapitulating human disease; RIP-Tag models are unique models of early-onset, highly vascularized, invasive carcinomas. We also include a section of the most recent GEMMs that evaluate pathways related to cell cycle and apoptosis, Pi3k/Akt/mTOR, and Atrx/Daxx. For the latter, their tumorigenic effect is heterogeneous. In particular, for Atrx/Daxx, we will require more in-depth studies to evaluate their contribution; even though they are prevalent genetic events in PanNENs, they have low/inexistent tumorigenic capacity per se in GEMMs. Researchers planning to use GEMMs can find a road map of the main clinical features in this review, presented as a guide that summarizes the chief milestones achieved. We identify pitfalls to overcome, concerning the novel designs and standardization of results, so that future models can replicate human disease more closely.
Collapse
Affiliation(s)
- Tiago Bordeira Gaspar
- i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- Ipatimup - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto, Porto, Portugal
- FMUP - Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - José Manuel Lopes
- i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- Ipatimup - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
- FMUP - Faculdade de Medicina da Universidade do Porto, Porto, Portugal
- Department of Pathology, Centro Hospitalar e Universitário de São João, Porto, Portugal
| | - Paula Soares
- i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- Ipatimup - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
- FMUP - Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - João Vinagre
- i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- Ipatimup - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
- FMUP - Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| |
Collapse
|
31
|
Feng Z, Zhang L, Liu Y, Zhang W. NCAPG2 contributes to the progression of malignant melanoma through regulating proliferation and metastasis. Biochem Cell Biol 2022; 100:473-484. [PMID: 36265182 DOI: 10.1139/bcb-2022-0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Malignant melanoma is a highly aggressive cutaneous neoplasm with increasing incidence worldwide. Non-SMC condensin II complex subunit G2 (NCAPG2) exerts import biological function in the pathogenesis of several tumors. In this study, the functional roles of NCAPG2 knockdown in malignant melanoma were revealed in in vitro and in vivo experiments. In vitro study demonstrated that NCAPG2 depletion could inhibit proliferation and migration and promote apoptosis of malignant melanoma cells. Our in vivo date further confirmed that NCAPG2 knockdown attenuated tumor growth of malignant melanoma. Interestingly, NCAPG2 drove tumor development of malignant melanoma through activating the signal transducer and activator of transcription 3 (STAT3). In conclusion, this study elaborated the tumor-promoting effects of NCAPG2 on malignant melanoma, and NCAPG2 may be a potential therapeutic target for malignant melanoma therapy.
Collapse
Affiliation(s)
- Zhang Feng
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong 250021, China
| | - Linfeng Zhang
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong 250021, China
| | - Yanxin Liu
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong 250021, China
| | - Wei Zhang
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong 250021, China
| |
Collapse
|
32
|
Chang TM, Chu PY, Lin HY, Huang KW, Hung WC, Shan YS, Chen LT, Tsai HJ. PTEN regulates invasiveness in pancreatic neuroendocrine tumors through DUSP19-mediated VEGFR3 dephosphorylation. J Biomed Sci 2022; 29:92. [PMID: 36336681 PMCID: PMC9639322 DOI: 10.1186/s12929-022-00875-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/29/2022] [Indexed: 11/09/2022] Open
Abstract
Background Phosphatase and tensin homolog (PTEN) is a tumor suppressor. Low PTEN expression has been observed in pancreatic neuroendocrine tumors (pNETs) and is associated with increased liver metastasis and poor survival. Vascular endothelial growth factor receptor 3 (VEGFR3) is a receptor tyrosine kinase and is usually activated by binding with vascular endothelial growth factor C (VEGFC). VEGFR3 has been demonstrated with lymphangiogenesis and cancer invasiveness. PTEN is also a phosphatase to dephosphorylate both lipid and protein substrates and VEGFR3 is hypothesized to be a substrate of PTEN. Dual-specificity phosphatase 19 (DUSP19) is an atypical DUSP and can interact with VEGFR3. In this study, we investigated the function of PTEN on regulation of pNET invasiveness and its association with VEGFR3 and DUSP19. Methods PTEN was knocked down or overexpressed in pNET cells to evaluate its effect on invasiveness and its association with VEGFR3 phosphorylation. In vitro phosphatase assay was performed to identify the regulatory molecule on the regulation of VEGFR3 phosphorylation. In addition, immunoprecipitation, and immunofluorescence staining were performed to evaluate the molecule with direct interaction on VEGFR3 phosphorylation. The animal study was performed to validate the results of the in vitro study. Results The invasion and migration capabilities of pNETs were enhanced by PTEN knockdown accompanied with increased VEGFR3 phosphorylation, ERK phosphorylation, and increased expression of epithelial–mesenchymal transition molecules in the cells. The enhanced invasion and migration abilities of pNET cells with PTEN knockdown were suppressed by addition of the VEGFR3 inhibitor MAZ51, but not by the VEGFR3-Fc chimeric protein to neutralize VEGFC. VEGFR3 phosphorylation is responsible for pNET cell invasiveness and is VEGFC-independent. However, an in vitro phosphatase assay failed to show VEGFR3 as a substrate of PTEN. In contrast, DUSP19 was transcriptionally upregulated by PTEN and was shown to dephosphorylate VEGFR3 via direct interaction with VEGFR3 by an in vitro phosphatase assay, immunoprecipitation, and immunofluorescence staining. Increased tumor invasion into peripheral tissues was validated in xenograft mouse model. Tumor invasion was suppressed by treatment with VEGFR3 or MEK inhibitors. Conclusions PTEN regulates pNET invasiveness via DUSP19-mediated VEGFR3 dephosphorylation. VEGFR3 and DUSP19 are potential therapeutic targets for pNET treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12929-022-00875-2.
Collapse
Affiliation(s)
- Tsung-Ming Chang
- grid.59784.370000000406229172National Institute of Cancer Research, National Health Research Institutes, 1F No 367, Sheng-Li Road, Tainan, 70456 Taiwan ,grid.411447.30000 0004 0637 1806Department of Medical Laboratory Science, College of Medical Science and Technology, I-Shou University, Kaohsiung, Taiwan
| | - Pei-Yi Chu
- grid.59784.370000000406229172National Institute of Cancer Research, National Health Research Institutes, 1F No 367, Sheng-Li Road, Tainan, 70456 Taiwan ,grid.452796.b0000 0004 0634 3637Department of Pathology, Show Chwan Memorial Hospital, Changhua, Taiwan ,grid.256105.50000 0004 1937 1063School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan ,grid.260542.70000 0004 0532 3749Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Hui-You Lin
- grid.59784.370000000406229172National Institute of Cancer Research, National Health Research Institutes, 1F No 367, Sheng-Li Road, Tainan, 70456 Taiwan
| | - Kuo-Wei Huang
- grid.59784.370000000406229172National Institute of Cancer Research, National Health Research Institutes, 1F No 367, Sheng-Li Road, Tainan, 70456 Taiwan
| | - Wen-Chun Hung
- grid.59784.370000000406229172National Institute of Cancer Research, National Health Research Institutes, 1F No 367, Sheng-Li Road, Tainan, 70456 Taiwan
| | - Yan-Shen Shan
- grid.64523.360000 0004 0532 3255Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan ,grid.64523.360000 0004 0532 3255Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Li-Tzong Chen
- grid.59784.370000000406229172National Institute of Cancer Research, National Health Research Institutes, 1F No 367, Sheng-Li Road, Tainan, 70456 Taiwan ,grid.64523.360000 0004 0532 3255Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan ,grid.412019.f0000 0000 9476 5696Department of Internal Medicine, Kaohsiung Medical University Hospital, and Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hui-Jen Tsai
- grid.59784.370000000406229172National Institute of Cancer Research, National Health Research Institutes, 1F No 367, Sheng-Li Road, Tainan, 70456 Taiwan ,grid.64523.360000 0004 0532 3255Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan ,grid.412019.f0000 0000 9476 5696Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
33
|
Hu HF, Hu YH, Xu XW, Ye Z, Lou X, Zhang WH, Chen XM, Zhang Y, Yu XJ, Gao HL, Xu JY, Ji SR. Role of Somatostatin Receptor 2 in Nonfunctional Pancreatic Neuroendocrine Tumors: Clinicopathological Analysis of 223 Cases and Whole Exome Sequencing of a Multifocal Case. Pancreas 2022; 51:1404-1410. [PMID: 37099786 DOI: 10.1097/mpa.0000000000002199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
OBJECTIVES Somatostatin receptors are commonly expressed in most pancreatic neuroendocrine tumors (pNETs), a rare type of pancreatic tumors with high heterogeneity. However, the role of somatostatin receptor 2 (SSTR2) has seldom been investigated separately in pNET. This retrospective study aims to evaluate the role of SSTR2 in the clinicopathological features and genomic background of nonfunctional and well-differentiated pNET. METHODS A total of 223 cases of nonfunctional well-differentiated pNET were included, and the correlation between SSTR2 status and clinicopathological outcome was evaluated. In addition, we performed whole exome sequencing in SSTR2-positive and SSTR2-negative pNETs and identified that the 2 lesions harbored different mutational landscapes. RESULTS Negative SSTR2 immunochemistry staining was significantly related to an earlier onset of disease, larger tumor size, advanced stage of American Joint Committee on Cancer, and tumor metastasis in lymph nodes and liver. Under pathological assessment, positive peripheral aggression, vascular invasion, and perineural invasion were markedly increased in SSTR2-negative cases. Moreover, SSTR2-negative patients exhibited significantly worse progression-free survival than SSTR2-positive patients (hazard ratio, 0.23; 95% confidence interval, 0.10-0.53; P = 0.001). CONCLUSIONS Somatostatin receptor 2-negative nonfunctional pNET might represent a subtype of pNET with poor outcomes and evolve from a different genomic background.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xue-Min Chen
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yue Zhang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
| | | | | | - Jun-Yan Xu
- Department of Hepatopancreatobiliary Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | | |
Collapse
|
34
|
Mohindroo C, McAllister F, De Jesus-Acosta A. Genetics of Pancreatic Neuroendocrine Tumors. Hematol Oncol Clin North Am 2022; 36:1033-1051. [PMID: 36154786 DOI: 10.1016/j.hoc.2022.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pancreatic neuroendocrine tumors (pNETs) represent a relatively rare disease; however, the incidence has been increasing during the last 2 decades. Next generation sequencing has greatly increased our understanding of driver mutations in pNETs. Sporadic pNETs have consistently presented with mutations in MEN1, DAXX/ATRX, and genes related to the mammalian target of rapamycin pathway. Inherited pNETs have traditionally been associated with multiple endocrine neoplasia type 1, von Hippel-Lindau syndrome, neurofibromatosis type 1, and tuberous sclerosis complex. The current review expands on the existing knowledge and the relevant updates on the genetics of pNETs.
Collapse
Affiliation(s)
- Chirayu Mohindroo
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 1515 Holcombe, Unit 1360, Houston, TX 77030, USA; Department of Internal Medicine, Sinai Hospital of Baltimore, 2435 W. Belvedere Ave, Ste 56, Baltimore, MD 21215, USA
| | - Florencia McAllister
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 1515 Holcombe, Unit 1360, Houston, TX 77030, USA; Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Clinical Cancer Genetics Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ana De Jesus-Acosta
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, CRB1, 1650 Orleans Street, CRB1 Rm 409, Baltimore, MD 21287.
| |
Collapse
|
35
|
Addressing the Role of Angiogenesis in Patients with Advanced Pancreatic Neuroendocrine Tumors Treated with Everolimus: A Biological Prospective Analysis of Soluble Biomarkers and Clinical Outcomes. Cancers (Basel) 2022; 14:cancers14184471. [PMID: 36139632 PMCID: PMC9497075 DOI: 10.3390/cancers14184471] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
Background: The success of targeted therapies in the treatment of pancreatic neuroendocrine tumors has emphasized the strategy of targeting angiogenesis and the PI3K/AKT/mTOR pathway. However, the major challenge in the targeted era remains the early identification of resistant tumors especially when the efficacy is rarely associated to a clear tumor shrinkage at by imaging assessment. Methods: In this prospective study (NCT02305810) we investigated the predictive and prognostic role of soluble biomarkers of angiogenesis turnover (VEGF, bFGF, VEGFR2, TSP-1) circulating endothelial cells and progenitors, in 43 patients with metastatic panNET receiving everolimus. Results: Among all tested biomarkers, we found a specific subpopulation of circulating cells, CD31+CD140b-, with a significantly increased tumor progression hazard for values less or equal to the first quartile. Conclusion: Our study suggested the evidence that circulating cells might be surrogate biomarkers of angiogenesis activity in patients treated with everolimus and their baseline levels can be correlated with survival. However, further studies are now needed to validate the role of these cells as surrogate markers for the selection of patients to be candidates for antiangiogenic treatments.
Collapse
|
36
|
Xiao Y, Xu G, Cloyd JM, Du S, Mao Y, Pawlik TM. Predicting Novel Drug Candidates for Pancreatic Neuroendocrine Tumors via Gene Signature Comparison and Connectivity Mapping. J Gastrointest Surg 2022; 26:1670-1678. [PMID: 35508682 DOI: 10.1007/s11605-022-05337-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/19/2022] [Indexed: 02/08/2023]
Abstract
INTRODUCTION There is a paucity of effective treatment options for advanced pancreatic neuroendocrine tumors (pNETs). Genome-wide analyses may allow for potential drugs to be identified based on differentially expressed genes (DEGs). METHODS Oligo microarray data of RNA expression profiling of pNETs and normal pancreas tissues were downloaded from the Gene Expression Omnibus. Functional and pathway enrichment information of the DEGs was obtained using the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases. Corresponding homologous proteins were analyzed and potential therapeutic drugs for pNETs were identified using the Connectivity Map and Drug-Gene Interaction Database. RESULTS Assessment of raw data from 12,610 pNET genes demonstrated that 1082 and 380 genes were upregulated and downregulated, respectively, compared with normal pancreas tissue. Upregulated pathways were associated with nitrogen metabolism (i.e., GABAergic synapse, and graft-versus-host disease), whereas downregulated pathways included C-type leptin receptor signaling pathway, pertussis and AMPK signaling pathway. In particular, the protein-protein interaction analysis revealed 10 upregulated hub genes (DYNLL1, GNB5, GNB2, GNG4, GNAI2, GNAI1, HIST2H2BE, NUP107, NUP133, and SNAP25) and 10 downregulated hub genes (CXCL8, F2, CXCL2, GCG, SST, INS, GALR3, CCL20, ADRA2B, and CXCL6). Using the Drug-Gene Interaction Database, candidate drugs for pNETs treatment included 3 EGFR inhibitors (canertinib, erlotinib, WZ-4-145), as well as other cell-signaling pathway inhibitors such as AG-592, acarbose, lonidamine, azacytidine, rottlerin, and HU-211. CONCLUSION Using available genetic atlas data, potential drug candidates for treatment of pNETs were identified based on differentially expressed genes. These results may help focus efforts on identifying targeted agents with therapeutic efficacy to treat patients with pNETs.
Collapse
Affiliation(s)
- Yao Xiao
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Gang Xu
- Department of Liver Surgery and Liver Transplant Center, West China Hospital of Sichuan University, Chengdu, China
| | - Jordan M Cloyd
- Department of Surgery, The Ohio State University Wexner Medical Center and James Cancer Hospital and Solove Research Institute, 395 W. 12th Ave., Suite 670, Columbus, OH, USA
| | - Shunda Du
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yilei Mao
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Timothy M Pawlik
- Department of Surgery, The Ohio State University Wexner Medical Center and James Cancer Hospital and Solove Research Institute, 395 W. 12th Ave., Suite 670, Columbus, OH, USA.
| |
Collapse
|
37
|
Zhang X, Zhong X, Lin X, Li X, Tian H, Chang B, Wang Y, Tong J, Wang N, Li D, Jin X, Huang D, Wang Y, Cui H, Guan L, Li Y. Tuberous Sclerosis Complex With Multiple Organ Tumors: Case Report and Literature Review. Front Oncol 2022; 12:916016. [PMID: 35928867 PMCID: PMC9343591 DOI: 10.3389/fonc.2022.916016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
Pancreatic neuroendocrine neoplasms (PNEN) are tumors that originate from neuroendocrine cells. Only about 1% patients are related to mutation of tuberous sclerosis complex gene. Here, we reported a rare case with involvement of multiple organs and space-occupying lesions. Initially, the patient was thought to have metastasis of a pancreatic tumor. However, the patient was diagnosed as pancreatic neuroendocrine tumors, liver perivascular epithelioid tumors, splenic hamartoma, and renal angiomyolipoma by pathological examination after surgery. We performed genetic mutation detection to identify that tuberous sclerosis complex 2 gene presented with a heterozygous variant. Tuberous sclerosis often presents with widespread tumors, but it is less common to present with pancreatic neuroendocrine tumors and liver perivascular tumors as highlighted in the case. So we analyzed the relationship between TSC gene mutations and related tumors. And we also reviewed the current molecular mechanisms and treatments for tuberous sclerosis complex.
Collapse
Affiliation(s)
- Xinhe Zhang
- Gastroenterology Department, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xinping Zhong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xuyong Lin
- Department of Pathology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xuedan Li
- Radiology Department, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Haoyu Tian
- The 3rd Clinical Department, China Medical University, Shenyang, China
| | - Bing Chang
- Gastroenterology Department, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Ying Wang
- Gastroenterology Department, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jing Tong
- Gastroenterology Department, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Ningning Wang
- Gastroenterology Department, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Dan Li
- Gastroenterology Department, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiuli Jin
- Gastroenterology Department, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Die Huang
- Gastroenterology Department, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yanmeng Wang
- Gastroenterology Department, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Huipeng Cui
- Gastroenterology Department, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Lin Guan
- Gastroenterology Department, The First Affiliated Hospital of China Medical University, Shenyang, China
- *Correspondence: Yiling Li, ; Lin Guan,
| | - Yiling Li
- Gastroenterology Department, The First Affiliated Hospital of China Medical University, Shenyang, China
- *Correspondence: Yiling Li, ; Lin Guan,
| |
Collapse
|
38
|
Cuny T, van Koetsveld PM, Mondielli G, Dogan F, de Herder WW, Barlier A, Hofland LJ. Reciprocal Interactions between Fibroblast and Pancreatic Neuroendocrine Tumor Cells: Putative Impact of the Tumor Microenvironment. Cancers (Basel) 2022; 14:cancers14143481. [PMID: 35884539 PMCID: PMC9321816 DOI: 10.3390/cancers14143481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/16/2022] [Indexed: 02/04/2023] Open
Abstract
Introduction: Pancreatic neuroendocrine neoplasms (PNENs) present with a fibrotic stroma that constitutes the tumor microenvironment (TME). The role played by stromal fibroblasts in the growth of PNENs and their sensitivity to the mTOR inhibitor RAD001 has not yet been established. Methods: We investigated reciprocal interactions between (1) human PNEN cell lines (BON-1/QGP-1) or primary cultures of human ileal neuroendocrine neoplasm (iNEN) or PNEN and (2) human fibroblast cell lines (HPF/HFL-1). Proliferation was assessed in transwell (tw) co-culture or in the presence of serum-free conditioned media (cm), with and without RAD001. Colony formation and migration of BON-1/QGP-1 were evaluated upon incubation with HPFcm. Results: Proliferation of BON-1 and QGP-1 increased in the presence of HFL-1cm, HPFcm, HFL-1tw and HPFtw (BON-1: +46−70% and QGP-1: +42−55%, p < 0.001 vs. controls) and HPFcm significantly increased the number of BON-1 or QGP-1 colonies (p < 0.05). This stimulatory effect was reversed in the presence of RAD001. Likewise, proliferation of human iNEN and PNEN primary cultures increased in the presence of HFL-1 or HPF. Reciprocally, BON-1cm and BONtw stimulated the proliferation of HPF (+90 ± 61% and +55 ± 47%, respectively, p < 0.001 vs. controls), an effect less pronounced with QGP-1cm or QGPtw (+19 to +27%, p < 0.05 vs. controls). Finally, a higher migration potential for BON-1 and QGP-1 was found in the presence of HPFcm (p < 0.001 vs. controls). Conclusions: Fibroblasts in the TME of PNENs represent a target of interest, the stimulatory effect of which over PNENs is mitigated by the mTOR inhibitor everolimus.
Collapse
Affiliation(s)
- Thomas Cuny
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands; (T.C.); (P.M.v.K.); (F.D.); (W.W.d.H.)
- Department of Endocrinology, Hôpital de la Conception, Centre de Référence des Maladies Rares Hypophysaires HYPO, Hôpitaux Universitaires de Marseille, 13005 Marseille, France;
- DiPNET Team, U1251, INSERM, Marseille Medical Genetics, Aix-Marseille Université, CEDEX 05, 13385 Marseille, France;
| | - Peter M. van Koetsveld
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands; (T.C.); (P.M.v.K.); (F.D.); (W.W.d.H.)
| | - Grégoire Mondielli
- DiPNET Team, U1251, INSERM, Marseille Medical Genetics, Aix-Marseille Université, CEDEX 05, 13385 Marseille, France;
| | - Fadime Dogan
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands; (T.C.); (P.M.v.K.); (F.D.); (W.W.d.H.)
| | - Wouter W. de Herder
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands; (T.C.); (P.M.v.K.); (F.D.); (W.W.d.H.)
| | - Anne Barlier
- Department of Endocrinology, Hôpital de la Conception, Centre de Référence des Maladies Rares Hypophysaires HYPO, Hôpitaux Universitaires de Marseille, 13005 Marseille, France;
- DiPNET Team, U1251, INSERM, Marseille Medical Genetics, Aix-Marseille Université, CEDEX 05, 13385 Marseille, France;
- Laboratory of Molecular Biology, Hôpital de la Conception, Hôpitaux Universitaires de Marseille, 13005 Marseille, France
| | - Leo J. Hofland
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands; (T.C.); (P.M.v.K.); (F.D.); (W.W.d.H.)
- Correspondence: ; Tel.: +31-10-703-46-33; Fax: +31-10-703-54-30
| |
Collapse
|
39
|
Li Z, Zhao Y, Zhuang Y, Xu Z, Wu C, Liu P, Hu G, Li G, Chen W, Gao X, Guo X. Effects of N-Acetyl-L-Cysteine on Serum Indices and Hypothalamic AMPK-Related Gene Expression Under Chronic Heat Stress. Front Vet Sci 2022; 9:936250. [PMID: 35782541 PMCID: PMC9242840 DOI: 10.3389/fvets.2022.936250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 05/18/2022] [Indexed: 11/30/2022] Open
Abstract
This study aims to investigate the effect of heat stress on the physiological metabolism of young laying hens and whether N-acetyl-l-cysteine (NAC) can effectively alleviate heat stress. 120 Hy-Line Brown laying hens aged 12 weeks were randomly divided into four groups: the control group (fed on basal diet under thermal neutral condition), HS group (fed on basal diet under heat stress condition), CN group (fed on the basic meal supplemented with 1,000 mg NAC per kg under thermal neutral condition), and HS+N group (fed on the basic meal was supplemented with 1000 mg NAC per kg under heat stress condition). The HS and HS+N groups were exposed to 36 ± 1°C for 10 h/day. The effects of NAC on the changes of serum concentrations of T3, T4, and CORT and hypothalamic gene and protein expressions induced by heat stress were measured. Results showed that heat stress upregulated the contents of T3, T4, and CORT, while NAC reduced the contents of T3, T4, and CORT. In addition, NAC downregulated AgRP expression, while upregulated the expression of POMC. Moreover, the expressions of AMPKα1, LKB1, and CPT1 were inhibited by NAC, while the expressions of AKT1, ACC, GPAT, and PPARα were increased after NAC treatment, and HMGR did not change significantly. Western blot and comprehensive immunofluorescence section of AMPK in the hypothalamus showed that NAC attenuated the activity of AMPK. In conclusion, NAC can enhance the resistance of laying hens to heat stress by alleviating the metabolic disorders of serum T3, T4, and CORT induced by heat stress, inhibiting the activation of the AMPK pathway and regulating the expression of appetite-related genes in the hypothalamus.
Collapse
Affiliation(s)
- Zhengqing Li
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Yulan Zhao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Yu Zhuang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Zheng Xu
- Department of Mathematics and Statistics, Wright State University, Dayton, OH, United States
| | - Cong Wu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Ping Liu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Guyue Li
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Wei Chen
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Xiaona Gao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
- *Correspondence: Xiaona Gao
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
- Xiaoquan Guo
| |
Collapse
|
40
|
Chen M, Mao X, Huang D, Jing J, Zou W, Mao P, Xue M, Yin W, Cheng R, Gao Y, Hu Y, Yuan S, Liu Q. Somatostatin signalling promotes the differentiation of rod photoreceptors in human pluripotent stem cell-derived retinal organoid. Cell Prolif 2022; 55:e13254. [PMID: 35633292 PMCID: PMC9251046 DOI: 10.1111/cpr.13254] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/13/2022] [Accepted: 04/28/2022] [Indexed: 11/29/2022] Open
Abstract
Objectives Stem cell‐derived photoreceptor replacement therapy is a promising strategy for the treatment of retinal degenerative disease. The development of 3D retinal organoids has permitted the production of photoreceptors. However, there is no strategy to enrich a specific photoreceptor subtype due to inadequate knowledge of the molecular mechanism underlying the photoreceptor fate determination. Hence, our aim is to explore the uncharacterized function of somatostatin signalling in human pluripotent stem cell‐derived photoreceptor differentiation. Materials and Methods 3D retinal organoids were achieved from human embryonic stem cell. The published single‐cell RNA‐sequencing datasets of human retinal development were utilized to further investigate the transcriptional regulation of photoreceptor differentiation. The assays of immunofluorescence staining, lentivirus transfection, real‐time quantitative polymerase chain reaction and western blotting were performed. Results We identified that the somatostatin receptor 2 (SSTR2)‐mediated signalling was essential for rod photoreceptor differentiation at the precursor stage. The addition of the cognate ligand somatostatin in human 3D retinal organoids promoted rod photoreceptor differentiation and inhibited cone photoreceptor production. Furthermore, we found that the genesis of rod photoreceptors was modulated by endogenous somatostatin specifically secreted by developing retinal ganglion cells. Conclusions Our study identified SSTR2 signalling as a novel extrinsic regulator for rod photoreceptor fate determination in photoreceptor precursors, which expands the repertoire of functional signalling pathways in photoreceptor development and sheds light on the optimization of the photoreceptor enrichment strategy.
Collapse
Affiliation(s)
- Mingkang Chen
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiying Mao
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Darui Huang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Ophthalmology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, China
| | - Jiaona Jing
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Ophthalmology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Wenjun Zou
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Ophthalmology, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, China
| | - Peiyao Mao
- Department of Ophthalmology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Mengting Xue
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wenjie Yin
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ruiwen Cheng
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Gao
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Youjin Hu
- Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, China
| | - Songtao Yuan
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qinghuai Liu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
41
|
Murayama N, Okamoto K, Nakagawa T, Miyoshi J, Nishida K, Kawaguchi T, Kagemoto K, Kitamura S, Ma B, Miyamoto H, Muguruma N, Yano M, Tsuneyama K, Fujimori T, Sato Y, Takayama T. miR-144-3p/miR-451a promotes lymphovascular invasion through repression of PTEN/p19 in rectal neuroendocrine tumors. J Gastroenterol Hepatol 2022; 37:919-927. [PMID: 35332577 DOI: 10.1111/jgh.15833] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/01/2022] [Accepted: 03/18/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND AIM Although rectal neuroendocrine tumor (NET-G1) have potential metastatic capability, even among small tumors, no predictive biomarker for invasion and metastasis has been reported. We analyzed microRNA (miRNA) expression profiles in rectal NET-G1 tissues with and without lymphovascular invasion (LVI). Moreover, we then investigated their target genes to clarify the mechanism of invasion/metastasis in NET-G1. METHODS miRNA array analysis was performed using seven rectal NET-G1 tissues with LVI and seven without LVI. miRNA expression was confirmed by quantitative real-time PCR. A NET cell line H727 was transfected with miRNA mimic or target gene small interfering RNA, and migration and invasion assays were performed. RESULTS The expression levels of miR-144-3p and miR-451a were significantly higher in NET-G1 with LVI versus without LVI, as determined by miRNA array analysis and RT-qPCR. A significant correlation was observed between miR-144-3p and miR-451a expression levels, strongly suggesting miR144/451 cluster overexpression in NET-G1 with LVI. Bioinformatic analysis of target genes revealed that miR-144-3p and miR-451a directly interact with PTEN and p19 mRNA, respectively. Immunohistochemistry revealed significantly lower expression of PTEN and p19 in NET-G1 tissues with LVI than in those without LVI. The miR-144-3p and miR-451a mimic significantly increased cell migration/invasion capability, respectively. Knockdown of PTEN and p19 induced significant augmentation of cell invasion and migration capability, respectively. CONCLUSIONS Our data suggest that overexpression of miR-144/miR-451 cluster promotes LVI via repression of PTEN and p19 in rectal NET-G1 cells. miR-144/451 cluster may be a novel biomarker for predicting invasion/metastasis in rectal NET-G1.
Collapse
Affiliation(s)
- Noriaki Murayama
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Koichi Okamoto
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Tadahiko Nakagawa
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Jinsei Miyoshi
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Kensei Nishida
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Tomoyuki Kawaguchi
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Kaizo Kagemoto
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Shinji Kitamura
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Beibei Ma
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Hiroshi Miyamoto
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Naoki Muguruma
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Mitsuyasu Yano
- Department of Gastroenterology, Tokushima Prefectural Central Hospital, Tokushima, Japan
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | | | - Yasushi Sato
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Tetsuji Takayama
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
42
|
Havasi A, Sur D, Cainap SS, Lungulescu CV, Gavrilas LI, Cainap C, Vlad C, Balacescu O. Current and New Challenges in the Management of Pancreatic Neuroendocrine Tumors: The Role of miRNA-Based Approaches as New Reliable Biomarkers. Int J Mol Sci 2022; 23:1109. [PMID: 35163032 PMCID: PMC8834851 DOI: 10.3390/ijms23031109] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/10/2022] [Accepted: 01/18/2022] [Indexed: 12/17/2022] Open
Abstract
Pancreatic neuroendocrine tumors (PanNETs) are rare tumors; however, their incidence greatly increases with age, and they occur more frequently among the elderly. They represent 5% of all pancreatic tumors, and despite the fact that low-grade tumors often have an indolent evolution, they portend a poor prognosis in an advanced stages and undifferentiated tumors. Additionally, functional pancreatic neuroendocrine tumors greatly impact quality of life due to the various clinical syndromes that result from abnormal hormonal secretion. With limited therapeutic and diagnostic options, patient stratification and selection of optimal therapeutic strategies should be the main focus. Modest improvements in the management of pancreatic neuroendocrine tumors have been achieved in the last years. Therefore, it is imperative to find new biomarkers and therapeutic strategies to improve patient survival and quality of life, limiting the disease burden. MicroRNAs (miRNAs) are small endogenous molecules that modulate the expression of thousands of genes and control numerous critical processes involved in tumor development and progression. New data also suggest the implication of miRNAs in treatment resistance and their potential as prognostic or diagnostic biomarkers and therapeutic targets. In this review, we discusses the current and new challenges in the management of PanNETs, including genetic and epigenetic approaches. Furthermore, we summarize the available data on miRNAs as potential prognostic, predictive, or diagnostic biomarkers and discuss their function as future therapeutic targets.
Collapse
Affiliation(s)
- Andrei Havasi
- Department of Medical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 400015 Cluj-Napoca, Romania; (A.H.); (C.C.)
- 11th Department of Medical Oncology, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400015 Cluj-Napoca, Romania;
- MedEuropa Radiotherapy Center, 410191 Oradea, Romania
| | - Daniel Sur
- Department of Medical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 400015 Cluj-Napoca, Romania; (A.H.); (C.C.)
- 11th Department of Medical Oncology, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400015 Cluj-Napoca, Romania;
| | - Simona Sorana Cainap
- Department of Mother and Child, Pediatric Cardiology, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400015 Cluj-Napoca, Romania;
| | | | - Laura-Ioana Gavrilas
- Department of Bromatology, Hygiene, Nutrition, University of Medicine and Pharmacy “Iuliu Hatieganu”, 23 Marinescu Street, 400337 Cluj-Napoca, Romania;
| | - Calin Cainap
- Department of Medical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 400015 Cluj-Napoca, Romania; (A.H.); (C.C.)
- 11th Department of Medical Oncology, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400015 Cluj-Napoca, Romania;
| | - Catalin Vlad
- Department of Surgery, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 34–36, Republicii Street, 400015 Cluj-Napoca, Romania;
- Department of Oncology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 8, Victor Babes Street, 400012 Cluj-Napoca, Romania
| | - Ovidiu Balacescu
- 11th Department of Medical Oncology, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400015 Cluj-Napoca, Romania;
- Department of Genetics, Genomics and Experimental Pathology, The Oncology Institute “Prof. Dr. Ion Chiricuta’’, 400015 Cluj-Napoca, Romania
| |
Collapse
|
43
|
Bou Zerdan M, Hamouche R, Bouferraa Y, Chouairy C, Gholam D. Everolimus in poorly differentiated neuroendocrine carcinoma of unknown primary: A case report. SAGE Open Med Case Rep 2022; 10:2050313X221106987. [PMID: 35783669 PMCID: PMC9247284 DOI: 10.1177/2050313x221106987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/26/2022] [Indexed: 12/20/2022] Open
Abstract
Malignancies with unknown primaries contribute to a small yet significant
percentage of overall tumors. Neuroendocrine carcinomas, a rare disease with a
poor prognosis, have been known to present as an unknown primary. Treatment
consists of cytotoxic chemotherapy but given the latter’s high toxicity profile
new treatment options are being explored. In this case report, we describe a
case of a patient with poorly differentiated neuroendocrine carcinoma of unknown
primary treated with compassionate oral everolimus after his refusal of
intravenous chemotherapy.
Collapse
Affiliation(s)
- Maroun Bou Zerdan
- Department of Internal Medicine, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Ramzi Hamouche
- Yale-Waterbury Internal Medicine Residency Program, Waterbury, CT, USA
| | - Youssef Bouferraa
- Department of Internal Medicine, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Camil Chouairy
- Department of Pathology, Saint George Hospital University Medical Center, Beirut, Lebanon
| | - Dany Gholam
- Department of Hematology and Oncology, Saint George Hospital University Medical Center (SGHUMC), Beirut, Lebanon
| |
Collapse
|
44
|
Tulipano G. Integrated or Independent Actions of Metformin in Target Tissues Underlying Its Current Use and New Possible Applications in the Endocrine and Metabolic Disorder Area. Int J Mol Sci 2021; 22:13068. [PMID: 34884872 PMCID: PMC8658259 DOI: 10.3390/ijms222313068] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/18/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022] Open
Abstract
Metformin is considered the first-choice drug for type 2 diabetes treatment. Actually, pleiotropic effects of metformin have been recognized, and there is evidence that this drug may have a favorable impact on health beyond its glucose-lowering activity. In summary, despite its long history, metformin is still an attractive research opportunity in the field of endocrine and metabolic diseases, age-related diseases, and cancer. To this end, its mode of action in distinct cell types is still in dispute. The aim of this work was to review the current knowledge and recent findings on the molecular mechanisms underlying the pharmacological effects of metformin in the field of metabolic and endocrine pathologies, including some endocrine tumors. Metformin is believed to act through multiple pathways that can be interconnected or work independently. Moreover, metformin effects on target tissues may be either direct or indirect, which means secondary to the actions on other tissues and consequent alterations at systemic level. Finally, as to the direct actions of metformin at cellular level, the intracellular milieu cooperates to cause differential responses to the drug between distinct cell types, despite the primary molecular targets may be the same within cells. Cellular bioenergetics can be regarded as the primary target of metformin action. Metformin can perturb the cytosolic and mitochondrial NAD/NADH ratio and the ATP/AMP ratio within cells, thus affecting enzymatic activities and metabolic and signaling pathways which depend on redox- and energy balance. In this context, the possible link between pyruvate metabolism and metformin actions is extensively discussed.
Collapse
Affiliation(s)
- Giovanni Tulipano
- Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| |
Collapse
|
45
|
Egal ESA, Jacenik D, Soares HP, Beswick EJ. Translational challenges in pancreatic neuroendocrine tumor immunotherapy. Biochim Biophys Acta Rev Cancer 2021; 1876:188640. [PMID: 34695532 PMCID: PMC10695297 DOI: 10.1016/j.bbcan.2021.188640] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/19/2021] [Accepted: 10/18/2021] [Indexed: 12/28/2022]
Abstract
Pancreatic neuroendocrine tumors are rare types of pancreatic cancer formed from islet cells of pancreas. Clinical presentation of pancreatic neuroendocrine tumors depends on both tumor progression and hormone secretion status, which generate several complications in both diagnosis and treatment. Despite numerous strategies, treatment of patients with pancreatic neuroendocrine tumors still needs improvement. It is suggested that immune response modulation may be essential in the regulation of pancreatic neuroendocrine tumor progression and patient's symptomology. Accumulating evidence indicates that immunotherapy seems to be a promising treatment option for patients with pancreatic neuroendocrine tumors. Nevertheless, several challenges in pre-clinical and clinical studies are present. This review provides knowledge about microenvironment of pancreatic neuroendocrine tumors including significance of cytokine and chemokine as well as specific immune cell types. Additionally, in vitro and in vivo models of pancreatic neuroendocrine tumors and translational challenges are highlighted.
Collapse
Affiliation(s)
- Erika Said Abu Egal
- Division of Gastroenterology, Department of Internal Medicine, University of Utah, UT, Salt Lake City, United States
| | - Damian Jacenik
- Division of Gastroenterology, Department of Internal Medicine, University of Utah, UT, Salt Lake City, United States; Division of Oncology, Department of Internal Medicine, Huntsman Cancer Institute at the University of Utah, UT, Salt Lake City, United States; Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Heloisa Prado Soares
- Division of Oncology, Department of Internal Medicine, Huntsman Cancer Institute at the University of Utah, UT, Salt Lake City, United States.
| | - Ellen J Beswick
- Division of Gastroenterology, Department of Internal Medicine, University of Utah, UT, Salt Lake City, United States
| |
Collapse
|
46
|
Ciobanu OA, Martin S, Fica S. Perspectives on the diagnostic, predictive and prognostic markers of neuroendocrine neoplasms (Review). Exp Ther Med 2021; 22:1479. [PMID: 34765020 PMCID: PMC8576627 DOI: 10.3892/etm.2021.10914] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/23/2021] [Indexed: 12/15/2022] Open
Abstract
Neuroendocrine neoplasms (NENs) are a heterogeneous group of rare tumors with different types of physiology and prognosis. Therefore, prognostic information, including morphological differentiation, grade, tumor stage and primary location, are invaluable and contribute to the formulation of treatment decisions. Biomarkers that are currently used, including chromogranin A (CgA), serotonin and neuron-specific enolase, are singular parameters that cannot be used to accurately predict variables associated with tumor growth, including proliferation, metabolic rate and metastatic potential. In addition, site-specific biomarkers, such as insulin and gastrin, cannot be applied to all types of NENs. The clinical application of broad-spectrum markers, as it is the case for CgA, remains controversial despite being widely used. Due to limitations of the currently available mono-analyte biomarkers, recent studies were conducted to explore novel parameters for NEN diagnosis, prognosis, therapy stratification and evaluation of treatment response. Identification of prognostic factors for predicting NEN outcome is a critical requirement for the planning of adequate clinical management. Advances in ‘liquid’ biopsies and genomic analysis techniques, including microRNA, circulating tumor DNA or circulating tumor cells and sophisticated biomathematical analysis techniques, such as NETest or molecular image-based biomarkers, are currently under investigation as potentially novel tools for the management of NENs in the future. Despite these recent findings yielding promising observations, further research is necessary. The present review therefore summarizes the existing knowledge and recent advancements in the exploration of biochemical markers for NENs, with focus on gastroenteropancreatic-neuroendocrine tumors.
Collapse
Affiliation(s)
- Oana Alexandra Ciobanu
- Department of Endocrinology and Diabetes, Elias Hospital, 011461 Bucharest, Romania.,Department of Endocrinology, Carol Davila University of Medicine and Pharmacy, 20021 Bucharest, Romania
| | - Sorina Martin
- Department of Endocrinology and Diabetes, Elias Hospital, 011461 Bucharest, Romania.,Department of Endocrinology, Carol Davila University of Medicine and Pharmacy, 20021 Bucharest, Romania
| | - Simona Fica
- Department of Endocrinology and Diabetes, Elias Hospital, 011461 Bucharest, Romania.,Department of Endocrinology, Carol Davila University of Medicine and Pharmacy, 20021 Bucharest, Romania
| |
Collapse
|
47
|
Patterns and predictors of pancreatic neuroendocrine tumor prognosis: Are no two leaves alike? Crit Rev Oncol Hematol 2021; 167:103493. [PMID: 34653597 DOI: 10.1016/j.critrevonc.2021.103493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 02/20/2021] [Accepted: 09/08/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic neuroendocrine tumors (PanNETs) are heterogeneous; thus, individual prognostic prediction is important. Clinicopathological features, like TNM stage, grade, and differentiation, are independent clinical predictors. However, single predictors are insufficient, as patients sharing similar clinicopathological features usually show distinct prognoses. Accordingly, novel nomograms and risk stratifications have been developed for more accurate PanNET prognostic prediction. Moreover, the exploration of molecular mechanisms has identified novel prognostic predictors for PanNET. Multi-analyte assays of molecular biomarkers provide a deeper understanding of PanNET features; however, the priority, and the optimal combination of classic and novel predictors for PanNET prognosis prediction remain unclear. In this review, we summarized the patterns and predictors of PanNET prognosis and discussed their clinical utility; we emphasized that PanNET at different stages have different superior predictor, and that multi-analyte assays are more sensitive than mono-analyte biomarkers. Therefore, combined biomarkers improve the accuracy of surveillance and optimize decision-making in clinical practice.
Collapse
|
48
|
Maharjan CK, Ear PH, Tran CG, Howe JR, Chandrasekharan C, Quelle DE. Pancreatic Neuroendocrine Tumors: Molecular Mechanisms and Therapeutic Targets. Cancers (Basel) 2021; 13:5117. [PMID: 34680266 PMCID: PMC8533967 DOI: 10.3390/cancers13205117] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 12/16/2022] Open
Abstract
Pancreatic neuroendocrine tumors (pNETs) are unique, slow-growing malignancies whose molecular pathogenesis is incompletely understood. With rising incidence of pNETs over the last four decades, larger and more comprehensive 'omic' analyses of patient tumors have led to a clearer picture of the pNET genomic landscape and transcriptional profiles for both primary and metastatic lesions. In pNET patients with advanced disease, those insights have guided the use of targeted therapies that inhibit activated mTOR and receptor tyrosine kinase (RTK) pathways or stimulate somatostatin receptor signaling. Such treatments have significantly benefited patients, but intrinsic or acquired drug resistance in the tumors remains a major problem that leaves few to no effective treatment options for advanced cases. This demands a better understanding of essential molecular and biological events underlying pNET growth, metastasis, and drug resistance. This review examines the known molecular alterations associated with pNET pathogenesis, identifying which changes may be drivers of the disease and, as such, relevant therapeutic targets. We also highlight areas that warrant further investigation at the biological level and discuss available model systems for pNET research. The paucity of pNET models has hampered research efforts over the years, although recently developed cell line, animal, patient-derived xenograft, and patient-derived organoid models have significantly expanded the available platforms for pNET investigations. Advancements in pNET research and understanding are expected to guide improved patient treatments.
Collapse
Affiliation(s)
- Chandra K. Maharjan
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Po Hien Ear
- Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (P.H.E.); (C.G.T.); (J.R.H.)
| | - Catherine G. Tran
- Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (P.H.E.); (C.G.T.); (J.R.H.)
| | - James R. Howe
- Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (P.H.E.); (C.G.T.); (J.R.H.)
| | - Chandrikha Chandrasekharan
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Dawn E. Quelle
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
49
|
Yang KC, Kalloger SE, Aird JJ, Lee MKC, Rushton C, Mungall KL, Mungall AJ, Gao D, Chow C, Xu J, Karasinska JM, Colborne S, Jones SJM, Schrader J, Morin RD, Loree JM, Marra MA, Renouf DJ, Morin GB, Schaeffer DF, Gorski SM. Proteotranscriptomic classification and characterization of pancreatic neuroendocrine neoplasms. Cell Rep 2021; 37:109817. [PMID: 34644566 DOI: 10.1016/j.celrep.2021.109817] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/16/2021] [Accepted: 09/20/2021] [Indexed: 12/13/2022] Open
Abstract
Pancreatic neuroendocrine neoplasms (PNENs) are biologically and clinically heterogeneous. Here, we use a multi-omics approach to uncover the molecular factors underlying this heterogeneity. Transcriptomic analysis of 84 PNEN specimens, drawn from two cohorts, is substantiated with proteomic profiling and identifies four subgroups: Proliferative, PDX1-high, Alpha cell-like and Stromal/Mesenchymal. The Proliferative subgroup, consisting of both well- and poorly differentiated specimens, is associated with inferior overall survival probability. The PDX1-high and Alpha cell-like subgroups partially resemble previously described subtypes, and we further uncover distinctive metabolism-related features in the Alpha cell-like subgroup. The Stromal/Mesenchymal subgroup exhibits molecular characteristics of YAP1/WWTR1(TAZ) activation suggestive of Hippo signaling pathway involvement in PNENs. Whole-exome sequencing reveals subgroup-enriched mutational differences, supported by activity inference analysis, and identifies hypermorphic proto-oncogene variants in 14.3% of sequenced PNENs. Our study reveals differences in cellular signaling axes that provide potential directions for PNEN patient stratification and treatment strategies.
Collapse
Affiliation(s)
- Kevin C Yang
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC V5Z 1L3, Canada; Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Steve E Kalloger
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada; School of Population and Public Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Division of Anatomical Pathology, Vancouver General Hospital, Vancouver, BC V5Z 1M9, Canada; Pancreas Centre BC, Vancouver, BC V5Z 1L8, Canada
| | - John J Aird
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada; Division of Anatomical Pathology, Vancouver General Hospital, Vancouver, BC V5Z 1M9, Canada
| | - Michael K C Lee
- Division of Medical Oncology, BC Cancer, Vancouver, BC V5Z 4E6, Canada
| | - Christopher Rushton
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Karen L Mungall
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC V5Z 1L3, Canada
| | - Andrew J Mungall
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC V5Z 1L3, Canada
| | - Dongxia Gao
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada; Genetic Pathology Evaluation Centre, Vancouver, BC V6H 3Z6, Canada
| | - Christine Chow
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada; Genetic Pathology Evaluation Centre, Vancouver, BC V6H 3Z6, Canada
| | - Jing Xu
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC V5Z 1L3, Canada; Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | | | - Shane Colborne
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC V5Z 1L3, Canada
| | - Steven J M Jones
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC V5Z 1L3, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jörg Schrader
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ryan D Morin
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC V5Z 1L3, Canada; Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Jonathan M Loree
- Division of Medical Oncology, BC Cancer, Vancouver, BC V5Z 4E6, Canada
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC V5Z 1L3, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Daniel J Renouf
- Pancreas Centre BC, Vancouver, BC V5Z 1L8, Canada; Division of Medical Oncology, BC Cancer, Vancouver, BC V5Z 4E6, Canada
| | - Gregg B Morin
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC V5Z 1L3, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - David F Schaeffer
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada; Division of Anatomical Pathology, Vancouver General Hospital, Vancouver, BC V5Z 1M9, Canada; Pancreas Centre BC, Vancouver, BC V5Z 1L8, Canada
| | - Sharon M Gorski
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC V5Z 1L3, Canada; Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada; Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.
| |
Collapse
|
50
|
Young K, Lawlor RT, Ragulan C, Patil Y, Mafficini A, Bersani S, Antonello D, Mansfield D, Cingarlini S, Landoni L, Pea A, Luchini C, Piredda L, Kannan N, Nyamundanda G, Morganstein D, Chau I, Wiedenmann B, Milella M, Melcher A, Cunningham D, Starling N, Scarpa A, Sadanandam A. Immune landscape, evolution, hypoxia-mediated viral mimicry pathways and therapeutic potential in molecular subtypes of pancreatic neuroendocrine tumours. Gut 2021; 70:1904-1913. [PMID: 32883872 PMCID: PMC8458094 DOI: 10.1136/gutjnl-2020-321016] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE A comprehensive analysis of the immune landscape of pancreatic neuroendocrine tumours (PanNETs) was performed according to clinicopathological parameters and previously defined molecular subtypes to identify potential therapeutic vulnerabilities in this disease. DESIGN Differential expression analysis of 600 immune-related genes was performed on 207 PanNET samples, comprising a training cohort (n=72) and two validation cohorts (n=135) from multiple transcriptome profiling platforms. Different immune-related and subtype-related phenotypes, cell types and pathways were investigated using different in silico methods and were further validated using spatial multiplex immunofluorescence. RESULTS The study identified an immune signature of 132 genes segregating PanNETs (n=207) according to four previously defined molecular subtypes: metastasis-like primary (MLP)-1 and MLP-2, insulinoma-like and intermediate. The MLP-1 subtype (26%-31% samples across three cohorts) was strongly associated with elevated levels of immune-related genes, poor prognosis and a cascade of tumour evolutionary events: larger hypoxic and necroptotic tumours leading to increased damage-associated molecular patterns (viral mimicry), stimulator of interferon gene pathway, T cell-inflamed genes, immune checkpoint targets, and T cell-mediated and M1 macrophage-mediated immune escape mechanisms. Multiplex spatial profiling validated significantly increased macrophages in the MLP-1 subtype. CONCLUSION This study provides novel data on the immune microenvironment of PanNETs and identifies MLP-1 subtype as an immune-high phenotype featuring a broad and robust activation of immune-related genes. This study, with further refinement, paves the way for future precision immunotherapy studies in PanNETs to potentially select a subset of MLP-1 patients who may be more likely to respond.
Collapse
Affiliation(s)
- Kate Young
- Division of Molecular Pathology, Institute of Cancer Research, London, UK
- Department of Medicine, Royal Marsden Hospital, London and Surrey, UK
| | - Rita T Lawlor
- ARC-Net Research Centre, University of Verona, Verona, Italy
| | - Chanthirika Ragulan
- Division of Molecular Pathology, Institute of Cancer Research, London, UK
- Centre for Molecular Pathology, Royal Marsden Hospital, London, UK
| | - Yatish Patil
- Division of Molecular Pathology, Institute of Cancer Research, London, UK
| | - Andrea Mafficini
- ARC-Net Research Centre, University of Verona, Verona, Italy
- Department of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy
| | - Samantha Bersani
- ARC-Net Research Centre, University of Verona, Verona, Italy
- Department of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy
| | - Davide Antonello
- General and Pancreatic Surgery Department, Pancreas Institute, University and Hospital Trust of Verona, Verona, Italy
| | - David Mansfield
- Division of Radiotherapy and Imaging, Institute of Cancer Research, London, UK
| | - Sara Cingarlini
- Department of Medicine, Medical Oncology, University and Hospital Trust of Verona, Verona, Italy
| | - Luca Landoni
- General and Pancreatic Surgery Department, Pancreas Institute, University and Hospital Trust of Verona, Verona, Italy
| | - Antonio Pea
- General and Pancreatic Surgery Department, Pancreas Institute, University and Hospital Trust of Verona, Verona, Italy
| | - Claudio Luchini
- ARC-Net Research Centre, University of Verona, Verona, Italy
- Department of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy
| | - Liliana Piredda
- ARC-Net Research Centre, University of Verona, Verona, Italy
| | - Nagarajan Kannan
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Gift Nyamundanda
- Division of Molecular Pathology, Institute of Cancer Research, London, UK
| | | | - Ian Chau
- Department of Medicine, Royal Marsden Hospital, London and Surrey, UK
| | - Bertram Wiedenmann
- Institut für Pathologie, Charite, Campus Virchow-Klinikum, University Medicine, Berlin, Germany
| | - Michele Milella
- Department of Medicine, Medical Oncology, University and Hospital Trust of Verona, Verona, Italy
| | - Alan Melcher
- Division of Radiotherapy and Imaging, Institute of Cancer Research, London, UK
| | - David Cunningham
- Department of Medicine, Royal Marsden Hospital, London and Surrey, UK
| | - Naureen Starling
- Department of Medicine, Royal Marsden Hospital, London and Surrey, UK
| | - Aldo Scarpa
- ARC-Net Research Centre, University of Verona, Verona, Italy
- Department of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy
| | - Anguraj Sadanandam
- Division of Molecular Pathology, Institute of Cancer Research, London, UK
- Centre for Molecular Pathology, Royal Marsden Hospital, London, UK
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|