1
|
Pearson AD, Mueller S, Filbin MG, Grill J, Hawkins C, Jones C, Donoghue M, Drezner N, Weiner S, Russo M, Dun MD, Allen JE, Alonso M, Benaim E, Buenger V, de Rojas T, Desserich K, Fox E, Friend J, Glade Bender J, Hargrave D, Jensen M, Kholmanskikh O, Kieran MW, Knoderer H, Koschmann C, Lesa G, Ligas F, Lipsman N, Ludwinski D, Marshall L, McDonough J, McNicholl AG, Mirsky D, Monje M, Nysom K, Pappo A, Rosenfield A, Scobie N, Slaughter J, Smith M, Souweidane M, Straathof K, Ward L, Weigel B, Zamoryakhin D, Karres D, Vassal G. Paediatric strategy forum for medicinal product development in diffuse midline gliomas in children and adolescents ACCELERATE in collaboration with the European Medicines Agency with participation of the Food and Drug Administration. Eur J Cancer 2025; 217:115230. [PMID: 39854822 DOI: 10.1016/j.ejca.2025.115230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/02/2025] [Accepted: 01/06/2025] [Indexed: 01/27/2025]
Abstract
Fewer than 10 % of children with diffuse midline glioma (DMG) survive 2 years from diagnosis. Radiation therapy remains the cornerstone of treatment and there are no medicinal products with regulatory approval. Although the biology of DMG is better characterized, this has not yet translated into effective treatments. H3K27-alterations initiate the disease but additional drivers are required for malignant growth. Hence, there is an urgent unmet need to develop new multi-modality therapeutic strategies, including alternative methods of drug delivery. ONC201 (DRD2 antagonist and mitochondrial ClpP agonist) is the most widely evaluated investigational drug. Encouraging early data is emerging for CAR T-cells and oncolytic viruses. GD2, B7-H3 and PI3K signalling are ubiquitous targets across all subtypes and therapeutics directed to these targets would potentially benefit the largest number of children. PI3K, ACVR1, MAPK and PDGFRA pathways should be targeted in rational biological combinations. Drug discovery is a very high priority. New specific and potent epigenetic modifiers (PROTACS e.g. SMARCA4 degraders), with blood-brain penetrance are needed. Cancer neuroscience therapeutics are in early development. Overall survival is the preferred regulatory endpoint. However, the evaluation of this can be influenced by the use of re-irradiation at the time of progression. An efficient clinical trial design fit for regulatory purposes for the evaluation of new therapeutics would aid industry and facilitate more efficient therapy development. Challenges in conducting clinical trials such as the need for comparator data and defining endpoints, could be addressed through an international, first-in-child, randomised, complex innovative design trial. To achieve progress: i) drug discovery; ii) new multi-modality, efficient, collaborative, pre-clinical approaches, possibly including artificial intelligence and, iii) efficient clinical trial designs fit for regulatory purposes are required.
Collapse
Affiliation(s)
| | - Sabine Mueller
- Departments of Neurological Surgery, Pediatrics and, Neurology University of California, San Francisco, California, USA. Department of Oncology, University Children's Hospital Zürich, Zürich, Switzerland
| | - Mariella G Filbin
- Broad Institute of Harvard and MIT, Cambridge, MA, USA; Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | | | - Cynthia Hawkins
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Chris Jones
- The Institute of Cancer Research, Sutton, Surrey, UK
| | | | - Nicole Drezner
- US Food and Drug Administration, Silver Springs, MD, USA
| | - Susan Weiner
- ACCELERATE, Europe; Children's Cancer Cause, Washington, DC, USA; Memorial Sloan Kettering Cancer Centre, New York, USA
| | | | - Matthew D Dun
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia; Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, Mark Hughes Foundation for Brain Cancer Research, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | | | - Marta Alonso
- Program of Solid Tumors, Center for the Applied Medical Research, Pamplona, Spain; Department of Pediatrics, Clinica Universidad de Navarra, Pamplona, Center for the Applied Medical Research, Pamplona, Spain
| | | | - Vickie Buenger
- Coalition Against Childhood Cancer (CAC2), Philadelphia, USA
| | | | | | | | | | | | - Darren Hargrave
- University College London Great Ormond Street Institute of Child Health, London, UK
| | | | | | | | | | | | - Giovanni Lesa
- Paediatric Medicines Office, Scientific Evidence Generation Department, Human Division, European Medicines Agency, The Netherlands
| | - Franca Ligas
- Paediatric Medicines Office, Scientific Evidence Generation Department, Human Division, European Medicines Agency, The Netherlands
| | - Nir Lipsman
- Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | | | - Lynley Marshall
- The Institute of Cancer Research, London, UK; The Royal Marsden Hospital, London, UK
| | | | | | - David Mirsky
- University of Colorado, School of Medicine, CO, USA
| | - Michelle Monje
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA, Howard Hughes Medical Institute, Stanford, CA, USA
| | | | | | | | | | | | | | | | - Karin Straathof
- University College London Cancer Institute, Great Ormond Street Biomedical Research Centre, London, UK
| | - Lisa Ward
- DIPG-DMG Research Funding Alliance DDRFA /Tough2gether, Manhattan, KS, USA
| | | | | | - Dominik Karres
- Paediatric Medicines Office, Scientific Evidence Generation Department, Human Division, European Medicines Agency, The Netherlands
| | - Gilles Vassal
- ACCELERATE, Europe; Gustave Roussy Cancer Centre, Paris, France
| |
Collapse
|
2
|
Alqabandi JA, David R, Abdel-Motal UM, ElAbd RO, Youcef-Toumi K. An innovative cellular medicine approach via the utilization of novel nanotechnology-based biomechatronic platforms as a label-free biomarker for early melanoma diagnosis. Sci Rep 2024; 14:30107. [PMID: 39627312 PMCID: PMC11615046 DOI: 10.1038/s41598-024-79154-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 11/06/2024] [Indexed: 12/06/2024] Open
Abstract
Innovative cellular medicine (ICM) is an exponentially emerging field with a promising approach to combating complex and ubiquitous life-threatening diseases such as multiple sclerosis (MS), arthritis, Parkinson's disease, Alzheimer's, heart disease, and cancer. Together with the advancement of nanotechnology and bio-mechatronics, ICM revolutionizes cellular therapy in understanding the essence and nature of the disease initiated at a single-cell level. This paper focuses on the intricate nature of cancer that requires multi-disciplinary efforts to characterize it well in order to achieve the objectives of modern world contemporary medicine in the early detection of the disease at a cellular level and potentially arrest its proliferation mechanism. This justifies the multidisciplinary research backgrounds of the authors of this paper in advancing cellular medicine by bridging the gap between experimental biology and the engineering field. Thus, in pursuing this approach, two novel miniaturized and highly versatile biomechatronic platforms with dedicated operating software and microelectronics are designed, modeled, nanofabricated, and tested in numerous in vitro experiments to investigate a hypothesis and arrive at a proven theorem in carcinogenesis by interrelating cellular contractile force, membrane potential, and cellular morphology for early detection and characterization of melanoma cancer cells. The novelties that flourished within this work are manifested in sixfold: (1) developing a mathematical model that utilizes a Heaviside step function, as well as a pin-force model to compute the contractile force of a living cell, (2) deriving an expression of cell-membrane potential based on Laplace and Fourier Transform and their Inverse Transform functions by encountering Warburg diffusion impedance factor, (3) nano-fabricating novel biomechatronic platforms with associated microelectronics and customized software that extract cellular physics and mechanics, (4) developing a label-free biomarker, (5) arrive at a proved theorem in developing a mathematical expression in relating cancer cell mechanobiology to its biophysics in connection to the stage of the disease, and (6) to the first time in literature, and to the best of the authors' knowledge, discriminating different stages and morphology of cancer cell melanoma based on their cell-membrane potentials, and associated contractile forces that could introduce a new venue of cellular therapeutic modalities, preclinical early cancer diagnosis, and a novel approach in immunotherapy drug development. The proposed innovative technology-based versatile bio-mechatronic platforms shall be extended for future studies, investigating the role of electrochemical signaling of the nervous system in cancer formation that will significantly impact modern oncology by pursuing a targeted immunotherapy approach. This work also provides a robust platform for immunotherapy practitioners in extending the study of cellular biophysics in stalling neural-cancer interactions, of which the FDA-approved chimeric antigen receptor (CAR)-T cell therapies can be enhanced (genetically engineered) in a lab by improving its receptors to capture cancer antigens. This work amplifies the importance of studying neurotransmitters and electrochemical signaling molecules in shaping the immune T-cell function and its effectiveness in arresting cancer proliferation rate (mechanobiology mechanism).
Collapse
Affiliation(s)
- Jassim A Alqabandi
- Mechatronics Research Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.
- Mechatronics in Medicine Laboratory, Imperial College London, London, UK.
- Department of Manufacturing Engineering Technology (Bio-Mechatronics) Department, PAAET, Kuwait, State of Kuwait.
| | - Rhiannon David
- Division of Computational and Systems Medicine (CSM), Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, London, UK
| | - Ussama M Abdel-Motal
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Rawan O ElAbd
- McGill University Health Center, Montreal, QC, Canada
| | - Kamal Youcef-Toumi
- Mechatronics Research Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| |
Collapse
|
3
|
Yadav P, Jain R, Yadav RK. Emerging roles of cancer-associated histone mutations in genomic instabilities. Front Cell Dev Biol 2024; 12:1455572. [PMID: 39439908 PMCID: PMC11494296 DOI: 10.3389/fcell.2024.1455572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/10/2024] [Indexed: 10/25/2024] Open
Abstract
Epigenetic mechanisms often fuel the quick evolution of cancer cells from normal cells. Mutations or aberrant expressions in the enzymes of DNA methylation, histone post-translational modifications, and chromatin remodellers have been extensively investigated in cancer pathogenesis; however, cancer-associated histone mutants have gained momentum in recent decades. Next-generation sequencing of cancer cells has identified somatic recurrent mutations in all the histones (H3, H4, H2A, H2B, and H1) with different frequencies for various tumour types. Importantly, the well-characterised H3K27M, H3G34R/V, and H3K36M mutations are termed as oncohistone mutants because of their wide roles, from defects in cellular differentiation, transcriptional dysregulation, and perturbed epigenomic profiles to genomic instabilities. Mechanistically, these histone mutants impart their effects on histone modifications and/or on irregular distributions of chromatin complexes. Recent studies have identified the crucial roles of the H3K27M and H3G34R/V mutants in the DNA damage response pathway, but their impacts on chemotherapy and tumour progression remain elusive. In this review, we summarise the recent developments in their functions toward genomic instabilities and tumour progression. Finally, we discuss how such a mechanistic understanding can be harnessed toward the potential treatment of tumours harbouring the H3K27M, H3G34R/V, and H3K36M mutations.
Collapse
|
4
|
Guo Y, Li Z, Parsels LA, Wang Z, Parsels JD, Dalvi A, The S, Hu N, Valvo VM, Doherty R, Peterson E, Wang X, Venkataraman S, Agnihotri S, Venneti S, Wahl DR, Green MD, Lawrence TS, Koschmann C, Morgan MA, Zhang Q. H3K27M diffuse midline glioma is homologous recombination defective and sensitized to radiotherapy and NK cell-mediated antitumor immunity by PARP inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.26.609803. [PMID: 39253432 PMCID: PMC11383052 DOI: 10.1101/2024.08.26.609803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Background Radiotherapy (RT) is the primary treatment for diffuse midline glioma (DMG), a lethal pediatric malignancy defined by histone H3 lysine 27-to-methionine (H3K27M) mutation. Based on the loss of H3K27 trimethylation producing broad epigenomic alterations, we hypothesized that H3K27M causes a functional double-strand break (DSB) repair defect that could be leveraged therapeutically with PARP inhibitor and RT for selective radiosensitization and antitumor immune responses. Methods H3K27M isogenic DMG cells and orthotopic brainstem DMG tumors in immune deficient and syngeneic, immune competent mice were used to evaluate the efficacy and mechanisms of PARP1/2 inhibition by olaparib or PARP1 inhibition by AZD9574 with concurrent RT. Results H3K27M mutation caused an HRR defect characterized by impaired RT-induced K63-linked polyubiquitination of histone H1 and inhibition of HRR protein recruitment. H3K27M DMG cells were selectively radiosensitized by olaparib in comparison to isogenic controls, and this effect translated to efficacy in H3K27M orthotopic brainstem tumors. Olaparib and RT induced an innate immune response and induction of NK cell (NKG2D) activating ligands leading to increased NK cell-mediated lysis of DMG tumor cells. In immunocompetent syngeneic orthotopic DMG tumors, either olaparib or AZD9574 in combination with RT enhanced intratumoral NK cell infiltration and activity in association with NK cell-mediated therapeutic responses and favorable activity of AZD9574. Conclusions The HRR deficiency in H3K27M DMG can be therapeutically leveraged with PARP inhibitors to radiosensitize and induce an NK cell-mediated antitumor immune response selectively in H3K27M DMG, supporting the clinical investigation of best-in-class PARP inhibitors with RT in DMG patients. Key points H3K27M DMG are HRR defective and selectively radiosensitized by PARP inhibitor.PARP inhibitor with RT enhances NKG2D ligand expression and NK cell-mediated lysis.NK cells are required for the therapeutic efficacy of PARP inhibitor and RT. Importance of the Study Radiotherapy is the cornerstone of H3K27M-mutant diffuse midline glioma treatment, but almost all patients succumb to tumor recurrence with poor overall survival, underscoring the need for RT-based precision combination therapy. Here, we reveal HRR deficiency as an H3K27M-mediated vulnerability and identify a novel mechanism linking impaired RT-induced histone H1 polyubiquitination and the subsequent RNF168/BRCA1/RAD51 recruitment in H3K27M DMG. This model is supported by selective radiosensitization of H3K27M DMG by PARP inhibitor. Notably, the combination treatment results in NKG2D ligand expression that confers susceptibility to NK cell killing in H3K27M DMG. We also show that the novel brain penetrant, PARP1-selective inhibitor AZD9574 compares favorably to olaparib when combined with RT, prolonging survival in a syngeneic orthotopic model of H3K27M DMG. This study highlights the ability of PARP1 inhibition to radiosensitize and induce an NK cell-mediated antitumor immunity in H3K27M DMG and supports future clinical investigation.
Collapse
|
5
|
Algranati D, Oren R, Dassa B, Fellus-Alyagor L, Plotnikov A, Barr H, Harmelin A, London N, Ron G, Furth N, Shema E. Dual targeting of histone deacetylases and MYC as potential treatment strategy for H3-K27M pediatric gliomas. eLife 2024; 13:RP96257. [PMID: 39093942 PMCID: PMC11296706 DOI: 10.7554/elife.96257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Abstract
Diffuse midline gliomas (DMGs) are aggressive and fatal pediatric tumors of the central nervous system that are highly resistant to treatments. Lysine to methionine substitution of residue 27 on histone H3 (H3-K27M) is a driver mutation in DMGs, reshaping the epigenetic landscape of these cells to promote tumorigenesis. H3-K27M gliomas are characterized by deregulation of histone acetylation and methylation pathways, as well as the oncogenic MYC pathway. In search of effective treatment, we examined the therapeutic potential of dual targeting of histone deacetylases (HDACs) and MYC in these tumors. Treatment of H3-K27M patient-derived cells with Sulfopin, an inhibitor shown to block MYC-driven tumors in vivo, in combination with the HDAC inhibitor Vorinostat, resulted in substantial decrease in cell viability. Moreover, transcriptome and epigenome profiling revealed synergistic effect of this drug combination in downregulation of prominent oncogenic pathways such as mTOR. Finally, in vivo studies of patient-derived orthotopic xenograft models showed significant tumor growth reduction in mice treated with the drug combination. These results highlight the combined treatment with PIN1 and HDAC inhibitors as a promising therapeutic approach for these aggressive tumors.
Collapse
Affiliation(s)
- Danielle Algranati
- Department of Immunology and Regenerative Biology, Weizmann Institute of ScienceRehovotIsrael
| | - Roni Oren
- Department of Veterinary Resources, Weizmann Institute of ScienceRehovotIsrael
| | - Bareket Dassa
- Bioinformatics Unit, Department of Life Sciences Core Facilities, Faculty of Biochemistry, Weizmann Institute of ScienceRehovotIsrael
| | - Liat Fellus-Alyagor
- Department of Veterinary Resources, Weizmann Institute of ScienceRehovotIsrael
| | - Alexander Plotnikov
- Wohl Institute for Drug Discovery of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of ScienceRehovotIsrael
| | - Haim Barr
- Wohl Institute for Drug Discovery of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of ScienceRehovotIsrael
| | - Alon Harmelin
- Department of Veterinary Resources, Weizmann Institute of ScienceRehovotIsrael
| | - Nir London
- Department of Chemical and Structural Biology, Weizmann Institute of ScienceRehovotIsrael
| | - Guy Ron
- Racah Institute of Physics, Hebrew UniversityJerusalemIsrael
| | - Noa Furth
- Department of Immunology and Regenerative Biology, Weizmann Institute of ScienceRehovotIsrael
| | - Efrat Shema
- Department of Immunology and Regenerative Biology, Weizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
6
|
Power EA, Millesi E, Rechberger JS, Daniels DJ. CAR-T cells for H3K27-altered diffuse midline gliomas: where do we stand? Immunotherapy 2024; 16:775-778. [PMID: 39016046 PMCID: PMC11457631 DOI: 10.1080/1750743x.2024.2373043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 06/24/2024] [Indexed: 07/18/2024] Open
Affiliation(s)
- Erica A Power
- Loyola University Chicago Stritch School of Medicine, Maywood, IL60141, USA
| | - Elena Millesi
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Mayo Clinic, Rochester, MN55905, USA
- Research Laboratory of the Division of Plastic & Reconstructive Surgery, Department of Surgery, Medical University of Vienna, Vienna1090, Austria
| | - Julian S Rechberger
- Department of Neurosurgery, Mayo Clinic, Rochester, MN55905, USA
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN55905,USA
| | - David J Daniels
- Department of Neurosurgery, Mayo Clinic, Rochester, MN55905, USA
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN55905,USA
| |
Collapse
|
7
|
Arms LM, Duchatel RJ, Jackson ER, Sobrinho PG, Dun MD, Hua S. Current status and advances to improving drug delivery in diffuse intrinsic pontine glioma. J Control Release 2024; 370:835-865. [PMID: 38744345 DOI: 10.1016/j.jconrel.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
Diffuse midline glioma (DMG), including tumors diagnosed in the brainstem (diffuse intrinsic pontine glioma - DIPG), is the primary cause of brain tumor-related death in pediatric patients. DIPG is characterized by a median survival of <12 months from diagnosis, harboring the worst 5-year survival rate of any cancer. Corticosteroids and radiation are the mainstay of therapy; however, they only provide transient relief from the devastating neurological symptoms. Numerous therapies have been investigated for DIPG, but the majority have been unsuccessful in demonstrating a survival benefit beyond radiation alone. Although many barriers hinder brain drug delivery in DIPG, one of the most significant challenges is the blood-brain barrier (BBB). Therapeutic compounds must possess specific properties to enable efficient passage across the BBB. In brain cancer, the BBB is referred to as the blood-brain tumor barrier (BBTB), where tumors disrupt the structure and function of the BBB, which may provide opportunities for drug delivery. However, the biological characteristics of the brainstem's BBB/BBTB, both under normal physiological conditions and in response to DIPG, are poorly understood, which further complicates treatment. Better characterization of the changes that occur in the BBB/BBTB of DIPG patients is essential, as this informs future treatment strategies. Many novel drug delivery technologies have been investigated to bypass or disrupt the BBB/BBTB, including convection enhanced delivery, focused ultrasound, nanoparticle-mediated delivery, and intranasal delivery, all of which are yet to be clinically established for the treatment of DIPG. Herein, we review what is known about the BBB/BBTB and discuss the current status, limitations, and advances of conventional and novel treatments to improving brain drug delivery in DIPG.
Collapse
Affiliation(s)
- Lauren M Arms
- Therapeutic Targeting Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Paediatric Program, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine & Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Ryan J Duchatel
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Paediatric Program, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine & Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Evangeline R Jackson
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Paediatric Program, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine & Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Pedro Garcia Sobrinho
- Therapeutic Targeting Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Matthew D Dun
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Paediatric Program, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine & Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Susan Hua
- Therapeutic Targeting Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Paediatric Program, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine & Wellbeing, University of Newcastle, Callaghan, NSW, Australia.
| |
Collapse
|
8
|
Schniederjan MJ, Potnis C, Vasudevaraja V, Moser CD, Watson B, Snuderl M, MacDonald T, Rogers BB. DNA Methylation Profiles Are Stable in H3 K27M-Mutant Diffuse Midline Glioma Neurosphere Cell Lines. CHILDREN (BASEL, SWITZERLAND) 2024; 11:492. [PMID: 38671709 PMCID: PMC11049299 DOI: 10.3390/children11040492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/02/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024]
Abstract
Diffuse midline gliomas are among the deadliest human cancers and have had little progress in treatment in the last 50 years. Cell cultures of these tumors have been developed recently, but the degree to which such cultures retain the characteristics of the source tumors is unknown. DNA methylation profiling offers a powerful tool to look at genome-wide epigenetic changes that are biologically meaningful and can help assess the similarity of cultured tumor cells to their in vivo progenitors. Paraffinized diagnostic tissue from three diffuse intrinsic pontine gliomas with H3 K27M mutations was compared with subsequent passages of neurosphere cell cultures from those tumors. Each cell line was passaged 3-4 times and analyzed with DNA methylation arrays and standard algorithms that provided a comparison of diagnostic classification and cluster analysis. All samples tested maintained high classifier scores and clustered within the reference group of H3 K27M-mutant diffuse midline gliomas. There was a gain of 1q in all cell lines, with two cell lines initially manifesting the gain of 1q only during culture. In vitro cell cultures of H3 K27M-mutant gliomas maintain high degrees of similarity in DNA methylation profiles to their source tumor, confirming their fidelity even with some chromosomal changes.
Collapse
Affiliation(s)
- Matthew J. Schniederjan
- Department of Pathology, Children’s Healthcare of Atlanta, Atlanta, GA 30342, USA (B.W.)
- Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Cahil Potnis
- Department of Pathology, Children’s Healthcare of Atlanta, Atlanta, GA 30342, USA (B.W.)
| | - Varshini Vasudevaraja
- Department of Biomedical Informatics, New York University Langone Health, New York, NY 10016, USA;
| | - Catherine D. Moser
- Department of Pathology, Children’s Healthcare of Atlanta, Atlanta, GA 30342, USA (B.W.)
| | - Bethany Watson
- Department of Pathology, Children’s Healthcare of Atlanta, Atlanta, GA 30342, USA (B.W.)
| | - Matija Snuderl
- Department of Neuropathology, New York University Langone Health, New York, NY 10016, USA
| | - Tobey MacDonald
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Beverly B. Rogers
- Department of Pathology, Children’s Healthcare of Atlanta, Atlanta, GA 30342, USA (B.W.)
- Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
9
|
Chou SC, Chen YN, Huang HY, Kuo MF, Wong TT, Kuo SH, Yang SH. Contemporary Management of Pediatric Brainstem Tumors. Adv Tech Stand Neurosurg 2024; 49:231-254. [PMID: 38700687 DOI: 10.1007/978-3-031-42398-7_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2025]
Abstract
Brain tumors are the second most common malignancy in childhood. Around 15-20% of pediatric brain tumors occur in the brainstem. The most common type of brainstem tumor are diffuse tumors in the ventral pons, whereas focal tumors tend to arise from the midbrain, medulla, and dorsal pons. Glioma is the most common pathological entity. Contemporary management consists of surgery, radiotherapy, chemotherapy, and other adjuvant treatment. Surgical options range from biopsy to radical excision. Biopsy can be performed for diagnostic and prognostic purposes, or in the setting of clinical trials, mainly for diffuse intrinsic pontine gliomas. For focal tumors, surgeons need to carefully balance clinical outcomes against possible neurological sequelae in order to achieve maximal safe resection. Radiotherapy is essential for control of high-grade tumors and may be applied to residual or recurrent low-grade tumors. Proton therapy may provide similar efficacy and less neurotoxicity in comparison to conventional photon therapy. Oncological treatment continues to evolve from conventional chemotherapy to targeted therapy, immunotherapy, and other novel treatment methods and holds great potential as adjuvant therapy for pediatric brainstem tumors.
Collapse
Affiliation(s)
- Sheng-Che Chou
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Traumatology, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Ning Chen
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu County, Taiwan
| | - Hsin-Yi Huang
- Department of Pathology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Meng-Fai Kuo
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Tai-Tong Wong
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| | - Sung-Hsin Kuo
- Department of Oncology, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shih-Hung Yang
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
10
|
Al Sharie S, Abu Laban D, Al-Hussaini M. Decoding Diffuse Midline Gliomas: A Comprehensive Review of Pathogenesis, Diagnosis and Treatment. Cancers (Basel) 2023; 15:4869. [PMID: 37835563 PMCID: PMC10571999 DOI: 10.3390/cancers15194869] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Diffuse midline gliomas (DMGs) are a group of aggressive CNS tumors, primarily affecting children and young adults, which have historically been associated with dismal outcomes. As the name implies, they arise in midline structures in the CNS, primarily in the thalamus, brainstem, and spinal cord. In more recent years, significant advances have been made in our understanding of DMGs, including molecular features, with the identification of potential therapeutic targets. We aim to provide an overview of the most recent updates in the field of DMGs, including classification, molecular subtypes, diagnostic techniques, and emerging therapeutic strategies including a review of the ongoing clinical trials, thus providing the treating multidisciplinary team with a comprehensive understanding of the current landscape and potential therapeutic strategies for this devastating group of tumors.
Collapse
Affiliation(s)
- Sarah Al Sharie
- Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan;
| | - Dima Abu Laban
- Department of Radiology, King Hussein Cancer Center, Amman 11941, Jordan;
| | - Maysa Al-Hussaini
- Department of Pathology and Laboratory Medicine, King Hussein Cancer Center, Amman 11941, Jordan
| |
Collapse
|
11
|
Liu C, Kuang S, Wu L, Cheng Q, Gong X, Wu J, Zhang L. Radiotherapy and radio-sensitization in H3 K27M -mutated diffuse midline gliomas. CNS Neurosci Ther 2023. [PMID: 37157237 DOI: 10.1111/cns.14225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND H3K27M mutated diffuse midline gliomas (DMGs) are extremely aggressive and the leading cause of cancer-related deaths in pediatric brain tumors with 5-year survival <1%. Radiotherapy is the only established adjuvant treatment of H3K27M DMGs; however, the radio-resistance is commonly observed. METHODS We summarized current understandings of the molecular responses of H3K27M DMGs to radiotherapy and provide crucial insights into current advances in radiosensitivity enhancement. RESULTS Ionizing radiation (IR) can mainly inhibit tumor cell growth by inducing DNA damage regulated by the cell cycle checkpoints and DNA damage repair (DDR) system. In H3K27M DMGs, the aberrant genetic and epigenetic changes, stemness genotype, and epithelial-mesenchymal transition (EMT) disrupt the cell cycle checkpoints and DDR system by altering the associated regulatory signaling pathways, which leads to the development of radio-resistance. CONCLUSIONS The advances in mechanisms of radio-resistance in H3K27M DMGs promote the potential targets to enhance the sensitivity to radiotherapy.
Collapse
Affiliation(s)
- Chao Liu
- Departments of Oncology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Shuwen Kuang
- Departments of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Lei Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Quan Cheng
- Departments of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xuan Gong
- Departments of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Jun Wu
- Departments of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Longbo Zhang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Departments of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Departments of Neurosurgery, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
12
|
Hart E', Bianco J, Bruin MAC, Derieppe M, Besse HC, Berkhout K, Kie LACJ, Su Y, Hoving EW, Huitema ADR, Ries MG, van Vuurden DG. Radiosensitisation by olaparib through focused ultrasound delivery in a diffuse midline glioma model. J Control Release 2023; 357:287-298. [PMID: 37019285 DOI: 10.1016/j.jconrel.2023.03.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/21/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023]
Abstract
BACKGROUND AND PURPOSE Diffuse midline glioma H3K27-altered (DMG) is an aggressive, inoperable, predominantly paediatric brain tumour. Treatment strategies are limited, resulting in a median survival of only 11 months. Currently, radiotherapy (RT), often combined with temozolomide, is considered the standard of care but remains palliative, highlighting the urgency for new therapies. Radiosensitisation by olaparib, an inhibitor of PARP1 and subsequently PAR-synthesis, is a promising treatment option. We assessed whether PARP1 inhibition enhances radiosensitivity in vitro and in vivo following focused ultrasound mediated blood-brain barrier opening (FUS-BBBO). METHODS Effects of PARP1 inhibition were evaluated in vitro using viability, clonogenic, and neurosphere assays. In vivo olaparib extravasation and pharmacokinetic profiling following FUS-BBBO was measured by LC-MS/MS. Survival benefit of FUS-BBBO combined with olaparib and RT was assessed using a patient-derived xenograft (PDX) DMG mouse model. RESULTS Treatment with olaparib in combination with radiation delayed tumour cell proliferation in vitro through the reduction of PAR. Prolonged exposure of low olaparib concentration was more efficient in delaying cell growth than short exposure of high concentration. FUS-BBBO increased olaparib bioavailability in the pons by 5.36-fold without observable adverse effects. A Cmax of 54.09 μM in blood and 1.39 μM in the pontine region was achieved following administration of 100 mg/kg olaparib. Although RT combined with FUS-BBBO mediated olaparib extravasation delayed local tumour growth, survival benefits were not observed in an in vivo DMG PDX model. CONCLUSIONS Olaparib effectively radiosensitises DMG cells in vitro and reduces primary tumour growth in vivo when combined with RT. Further studies are needed to investigate the therapeutic benefit of olaparib in suitable preclinical PDX models.
Collapse
Affiliation(s)
- E 't Hart
- Princess Maxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - J Bianco
- Princess Maxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands.
| | - M A C Bruin
- Department of Pharmacy and Pharmacology, the Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands
| | - M Derieppe
- Princess Maxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - H C Besse
- Center for Imaging Sciences, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - K Berkhout
- Princess Maxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - L A Chin Joe Kie
- Princess Maxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - Y Su
- Princess Maxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - E W Hoving
- Princess Maxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - A D R Huitema
- Princess Maxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands; Department of Pharmacy and Pharmacology, the Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands; Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - M G Ries
- Center for Imaging Sciences, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - D G van Vuurden
- Princess Maxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| |
Collapse
|
13
|
Parsels LA, Wahl DR, Koschmann C, Morgan MA, Zhang Q. Developing H3K27M mutant selective radiosensitization strategies in diffuse intrinsic pontine glioma. Neoplasia 2023; 37:100881. [PMID: 36724689 PMCID: PMC9918797 DOI: 10.1016/j.neo.2023.100881] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/13/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023]
Abstract
Diffuse intrinsic pontine glioma (DIPG) is a rare but highly lethal pediatric and adolescent tumor located in the pons of the brainstem. DIPGs harbor unique and specific pathological and molecular alterations, such as the hallmark lysine 27-to-methionine (H3K27M) mutation in histone H3, which lead to global changes in the epigenetic landscape and drive tumorigenesis. While fractionated radiotherapy, the current standard of care, improves symptoms and delays tumor progression, DIPGs inevitably recur, and despite extensive efforts chemotherapy-driven radiosensitization strategies have failed to improve survival. Advances in our understanding of the role of epigenetics in the cellular response to radiation-induced DNA damage, however, offer new opportunities to develop combinational therapeutic strategies selective for DIPGs expressing H3K27M. In this review, we provide an overview of preclinical studies that explore potential radiosensitization strategies targeting the unique epigenetic landscape of H3K27M mutant DIPG. We further discuss opportunities to selectively radiosensitize DIPG through strategic inhibition of the radiation-induced DNA damage response. Finally, we discuss the potential for using radiation to induce anti-tumor immune responses that may be potentiated in DIPG by radiosensitizing-therapeutic strategies.
Collapse
Affiliation(s)
- Leslie A Parsels
- Department of Radiation Oncology, Rogel Cancer Center, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, MI, 48109, USA
| | - Daniel R Wahl
- Department of Radiation Oncology, Rogel Cancer Center, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, MI, 48109, USA
| | - Carl Koschmann
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Meredith A Morgan
- Department of Radiation Oncology, Rogel Cancer Center, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, MI, 48109, USA.
| | - Qiang Zhang
- Department of Radiation Oncology, Rogel Cancer Center, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
14
|
Candido MF, Medeiros M, Veronez LC, Bastos D, Oliveira KL, Pezuk JA, Valera ET, Brassesco MS. Drugging Hijacked Kinase Pathways in Pediatric Oncology: Opportunities and Current Scenario. Pharmaceutics 2023; 15:pharmaceutics15020664. [PMID: 36839989 PMCID: PMC9966033 DOI: 10.3390/pharmaceutics15020664] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Childhood cancer is considered rare, corresponding to ~3% of all malignant neoplasms in the human population. The World Health Organization (WHO) reports a universal occurrence of more than 15 cases per 100,000 inhabitants around the globe, and despite improvements in diagnosis, treatment and supportive care, one child dies of cancer every 3 min. Consequently, more efficient, selective and affordable therapeutics are still needed in order to improve outcomes and avoid long-term sequelae. Alterations in kinases' functionality is a trademark of cancer and the concept of exploiting them as drug targets has burgeoned in academia and in the pharmaceutical industry of the 21st century. Consequently, an increasing plethora of inhibitors has emerged. In the present study, the expression patterns of a selected group of kinases (including tyrosine receptors, members of the PI3K/AKT/mTOR and MAPK pathways, coordinators of cell cycle progression, and chromosome segregation) and their correlation with clinical outcomes in pediatric solid tumors were accessed through the R2: Genomics Analysis and Visualization Platform and by a thorough search of published literature. To further illustrate the importance of kinase dysregulation in the pathophysiology of pediatric cancer, we analyzed the vulnerability of different cancer cell lines against their inhibition through the Cancer Dependency Map portal, and performed a search for kinase-targeted compounds with approval and clinical applicability through the CanSAR knowledgebase. Finally, we provide a detailed literature review of a considerable set of small molecules that mitigate kinase activity under experimental testing and clinical trials for the treatment of pediatric tumors, while discuss critical challenges that must be overcome before translation into clinical options, including the absence of compounds designed specifically for childhood tumors which often show differential mutational burdens, intrinsic and acquired resistance, lack of selectivity and adverse effects on a growing organism.
Collapse
Affiliation(s)
- Marina Ferreira Candido
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Mariana Medeiros
- Regional Blood Center, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Luciana Chain Veronez
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - David Bastos
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Karla Laissa Oliveira
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Julia Alejandra Pezuk
- Departament of Biotechnology and Innovation, Anhanguera University of São Paulo, UNIAN/SP, São Paulo 04119-001, SP, Brazil
| | - Elvis Terci Valera
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - María Sol Brassesco
- Departament of Biotechnology and Innovation, Anhanguera University of São Paulo, UNIAN/SP, São Paulo 04119-001, SP, Brazil
- Correspondence: ; Tel.: +55-16-3315-9144; Fax: +55-16-3315-4886
| |
Collapse
|
15
|
Towards Standardisation of a Diffuse Midline Glioma Patient-Derived Xenograft Mouse Model Based on Suspension Matrices for Preclinical Research. Biomedicines 2023; 11:biomedicines11020527. [PMID: 36831063 PMCID: PMC9952880 DOI: 10.3390/biomedicines11020527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/31/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Diffuse midline glioma (DMG) is an aggressive brain tumour with high mortality and limited clinical therapeutic options. Although in vitro research has shown the effectiveness of medication, successful translation to the clinic remains elusive. A literature search highlighted the high variability and lack of standardisation in protocols applied for establishing the commonly used HSJD-DIPG-007 patient-derived xenograft (PDX) model, based on animal host, injection location, number of cells inoculated, volume, and suspension matrices. This study evaluated the HSJD-DIPG-007 PDX model with respect to its ability to mimic human disease progression for therapeutic testing in vivo. The mice received intracranial injections of HSJD-DIPG-007 cells suspended in either PBS or Matrigel. Survival, tumour growth, and metastases were assessed to evaluate differences in the suspension matrix used. After cell implantation, no severe side effects were observed. Additionally, no differences were detected in terms of survival or tumour growth between the two suspension groups. We observed delayed metastases in the Matrigel group, with a significant difference compared to mice with PBS-suspended cells. In conclusion, using Matrigel as a suspension matrix is a reliable method for establishing a DMG PDX mouse model, with delayed metastases formation and is a step forward to obtaining a standardised in vivo PDX model.
Collapse
|
16
|
Dalle Ore C, Coleman C, Gupta N, Mueller S. Advances and Clinical Trials Update in the Treatment of Diffuse Intrinsic Pontine Gliomas. Pediatr Neurosurg 2023; 58:259-266. [PMID: 36642062 PMCID: PMC10664325 DOI: 10.1159/000529099] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/12/2022] [Indexed: 01/14/2023]
Abstract
BACKGROUND Diffuse intrinsic pontine gliomas (DIPGs) are high-grade gliomas (HGGs) that occur primarily in children, and represent a leading cause of death in pediatric patients with brain tumors with a median overall survival of only 8-11 months. SUMMARY While these lesions were previously thought to behave similarly to adult HGG, emerging data have demonstrated that DIPG is a biologically distinct entity from adult HGG frequently driven by mutations in the histone genes H3.3 and H3.1 not found in adult glioma. While biopsy of DIPG was historically felt to confer unacceptable risk of morbidity and mortality, multiple studies have demonstrated that stereotactic biopsy of DIPG is safe, allowing not only for improved understanding of DIPG but also forming the basis for protocols for personalized medicine in DIPG. However, current options for personalized medicine in DIPG are limited by the lack of efficacious targeted therapies for the mutations commonly found in DIPG. Multiple treatment modalities including targeted therapies, immunotherapy, convection-enhanced delivery, and focused ultrasound are in various stages of investigation. KEY MESSAGE Increasing frequency of biopsy for DIPG has identified distinct driving mutations that may serve as therapeutic targets. Novel treatment modalities are under investigation.
Collapse
Affiliation(s)
- Cecilia Dalle Ore
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Christina Coleman
- Division of Hematology/Oncology, Montreal Children's Hospital, McGill University Health Centre, Montreal, Québec, Canada
| | - Nalin Gupta
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
- Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
| | - Sabine Mueller
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
- Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
- Department of Neurology, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
17
|
Li S, Wang C, Chen J, Lan Y, Zhang W, Kang Z, Zheng Y, Zhang R, Yu J, Li W. Signaling pathways in brain tumors and therapeutic interventions. Signal Transduct Target Ther 2023; 8:8. [PMID: 36596785 PMCID: PMC9810702 DOI: 10.1038/s41392-022-01260-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 01/05/2023] Open
Abstract
Brain tumors, although rare, contribute to distinct mortality and morbidity at all ages. Although there are few therapeutic options for brain tumors, enhanced biological understanding and unexampled innovations in targeted therapies and immunotherapies have considerably improved patients' prognoses. Nonetheless, the reduced response rates and unavoidable drug resistance of currently available treatment approaches have become a barrier to further improvement in brain tumor (glioma, meningioma, CNS germ cell tumors, and CNS lymphoma) treatment. Previous literature data revealed that several different signaling pathways are dysregulated in brain tumor. Importantly, a better understanding of targeting signaling pathways that influences malignant behavior of brain tumor cells might open the way for the development of novel targeted therapies. Thus, there is an urgent need for a more comprehensive understanding of the pathogenesis of these brain tumors, which might result in greater progress in therapeutic approaches. This paper began with a brief description of the epidemiology, incidence, risk factors, as well as survival of brain tumors. Next, the major signaling pathways underlying these brain tumors' pathogenesis and current progress in therapies, including clinical trials, targeted therapies, immunotherapies, and system therapies, have been systemically reviewed and discussed. Finally, future perspective and challenges of development of novel therapeutic strategies in brain tumor were emphasized.
Collapse
Affiliation(s)
- Shenglan Li
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Can Wang
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jinyi Chen
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yanjie Lan
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Weichunbai Zhang
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhuang Kang
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yi Zheng
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Rong Zhang
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jianyu Yu
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wenbin Li
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
18
|
Zulfiqar B, Farooq A, Kanwal S, Asghar K. Immunotherapy and targeted therapy for lung cancer: Current status and future perspectives. Front Pharmacol 2022; 13:1035171. [PMID: 36518665 PMCID: PMC9742438 DOI: 10.3389/fphar.2022.1035171] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/11/2022] [Indexed: 08/30/2023] Open
Abstract
Lung cancer has the highest incidence of morbidity and mortality throughout the globe. A large number of patients are diagnosed with lung cancer at the later stages of the disease. This eliminates surgery as an option and places complete dependence on radiotherapy or chemotherapy, and/or a combination of both, to halt disease progression by targeting the tumor cells. Unfortunately, these therapies have rarely proved to be effective, and this necessitates the search for alternative preventive approaches to reduce the mortality rate of lung cancer. One of the effective therapies against lung cancer comprises targeting the tumor microenvironment. Like any other cancer cells, lung cancer cells tend to use multiple pathways to maintain their survival and suppress different immune responses from the host's body. This review comprehensively covers the role and the mechanisms that involve the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in lung adenocarcinoma and methods of treating it by altering the tumor microenvironment. It focuses on the insight and understanding of the lung cancer tumor microenvironment and chemokines, cytokines, and activating molecules that take part in angiogenesis and metastasis. The review paper accounts for the novel and current immunotherapy and targeted therapy available for lung cancer in clinical trials and in the research phases in depth. Special attention is being paid to mark out single or multiple genes that are required for malignancy and survival while developing targeted therapies for lung cancer treatment.
Collapse
Affiliation(s)
- Bilal Zulfiqar
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, Australia
| | - Asim Farooq
- Department of Clinical Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Pakistan
| | - Shahzina Kanwal
- Institute of Molecular Physiology at Shenzhen Bay Laboratory, Shenzhen, China
| | - Kashif Asghar
- Department of Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Pakistan
| |
Collapse
|
19
|
Day CA, Hinchcliffe EH, Robinson JP. H3K27me3 in Diffuse Midline Glioma and Epithelial Ovarian Cancer: Opposing Epigenetic Changes Leading to the Same Poor Outcomes. Cells 2022; 11:cells11213376. [PMID: 36359771 PMCID: PMC9655269 DOI: 10.3390/cells11213376] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/29/2022] Open
Abstract
Histone post-translational modifications modulate gene expression through epigenetic gene regulation. The core histone H3 family members, H3.1, H3.2, and H3.3, play a central role in epigenetics. H3 histones can acquire many post-translational modifications, including the trimethylation of H3K27 (H3K27me3), which represses transcription. Triple methylation of H3K27 is performed by the histone methyltransferase Enhancer of Zeste Homologue 2 (EZH2), a component of the Polycomb Repressive Complex 2. Both global increases and decreases in H3K27me3 have been implicated in a wide range of cancer types. Here, we explore how opposing changes in H3K27me3 contribute to cancer by highlighting its role in two vastly different cancer types; (1) a form of glioma known as diffuse midline glioma H3K27-altered and (2) epithelial ovarian cancer. These two cancers vary widely in the age of onset, sex, associated mutations, and cell and organ type. However, both diffuse midline glioma and ovarian cancer have dysregulation of H3K27 methylation, triggering changes to the cancer cell transcriptome. In diffuse midline glioma, the loss of H3K27 methylation is a primary driving factor in tumorigenesis that promotes glial cell stemness and silences tumor suppressor genes. Conversely, hypermethylation of H3K27 occurs in late-stage epithelial ovarian cancer, which promotes tumor vascularization and tumor cell migration. By using each cancer type as a case study, this review emphasizes the importance of H3K27me3 in cancer while demonstrating that the mechanisms of histone H3 modification and subsequent gene expression changes are not a one-size-fits-all across cancer types.
Collapse
Affiliation(s)
- Charles A. Day
- Hormel Institute, University of Minnesota, Austin, MN 55912, USA
- Mayo Clinic, Rochester, MN 55902, USA
- Correspondence:
| | - Edward H. Hinchcliffe
- Hormel Institute, University of Minnesota, Austin, MN 55912, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - James P. Robinson
- Hormel Institute, University of Minnesota, Austin, MN 55912, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
20
|
Sachdeva P, Ghosh S, Ghosh S, Han S, Banerjee J, Bhaskar R, Sinha JK. Childhood Obesity: A Potential Key Factor in the Development of Glioblastoma Multiforme. LIFE (BASEL, SWITZERLAND) 2022; 12:life12101673. [PMID: 36295107 PMCID: PMC9605119 DOI: 10.3390/life12101673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 12/04/2022]
Abstract
Glioblastoma multiforme (GBM) is a malignant primary tumor type of the central nervous system (CNS). This type of brain tumor is rare and is responsible for 12-15% of all brain tumors. The typical survival rate of GBM is only 12 to 14 months. GBM has a poor and unsatisfactory prognosis despite advances in research and therapeutic interventions via neurosurgery, radiation, and chemotherapy. The molecular heterogeneity, aggressive nature, and occurrence of drug-resistant cancer stem cells in GB restricts the therapeutic efficacy. Interestingly, the CNS tumors in children are the second most usual and persistent type of solid tumor. Since numerous research studies has shown the association between obesity and cancer, childhood obesity is one of the potential reasons behind the development of CNS tumors, including GBM. Obesity in children has almost reached epidemic rates in both developed and developing countries, harming children's physical and mental health. Obese children are more likely to face obesity as adults and develop non-communicable diseases such as diabetes and cardiovascular disease as compared to adults with normal weight. However, the actual origin and cause of obesity are difficult to be pointed out, as it is assumed to be a disorder with numerous causes such as environmental factors, lifestyle, and cultural background. In this narrative review article, we discuss the various molecular and genetic drivers of obesity that can be targeted as potential contributing factors to fight the development of GBM in children.
Collapse
Affiliation(s)
- Punya Sachdeva
- GloNeuro, Sector 107, Vishwakarma Road, Noida 201301, India
| | - Shampa Ghosh
- GloNeuro, Sector 107, Vishwakarma Road, Noida 201301, India
- ICMR—National Institute of Nutrition, Tarnaka, Hyderabad 500007, India
| | - Soumya Ghosh
- GloNeuro, Sector 107, Vishwakarma Road, Noida 201301, India
| | - Sungsoo Han
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea
| | - Juni Banerjee
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Gandhinagar 382426, India
- Correspondence: (J.B.); (R.B.); (J.K.S.)
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea
- Correspondence: (J.B.); (R.B.); (J.K.S.)
| | - Jitendra Kumar Sinha
- GloNeuro, Sector 107, Vishwakarma Road, Noida 201301, India
- Correspondence: (J.B.); (R.B.); (J.K.S.)
| |
Collapse
|
21
|
Di Ruscio V, Del Baldo G, Fabozzi F, Vinci M, Cacchione A, de Billy E, Megaro G, Carai A, Mastronuzzi A. Pediatric Diffuse Midline Gliomas: An Unfinished Puzzle. Diagnostics (Basel) 2022; 12:2064. [PMID: 36140466 PMCID: PMC9497626 DOI: 10.3390/diagnostics12092064] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 08/22/2022] [Indexed: 11/15/2022] Open
Abstract
Diffuse midline glioma (DMG) is a heterogeneous group of aggressive pediatric brain tumors with a fatal prognosis. The biological hallmark in the major part of the cases is H3K27 alteration. Prognosis remains poor, with median survival ranging from 9 to 12 months from diagnosis. Clinical and radiological prognostic factors only partially change the progression-free survival but they do not improve the overall survival. Despite efforts, there is currently no curative therapy for DMG. Radiotherapy remains the standard treatment with only transitory benefits. No chemotherapeutic regimens were found to significantly improve the prognosis. In the new era of a deeper integration between histological and molecular findings, potential new approaches are currently under investigation. The entire international scientific community is trying to target DMG on different aspects. The therapeutic strategies involve targeting epigenetic alterations, such as methylation and acetylation status, as well as identifying new molecular pathways that regulate oncogenic proliferation; immunotherapy approaches too are an interesting point of research in the oncology field, and the possibility of driving the immune system against tumor cells has currently been evaluated in several clinical trials, with promising preliminary results. Moreover, thanks to nanotechnology amelioration, the development of innovative delivery approaches to overcross a hostile tumor microenvironment and an almost intact blood-brain barrier could potentially change tumor responses to different treatments. In this review, we provide a comprehensive overview of available and potential new treatments that are worldwide under investigation, with the intent that patient- and tumor-specific treatment could change the biological inauspicious history of this disease.
Collapse
Affiliation(s)
- Valentina Di Ruscio
- Department of Onco-Hematology, Cell and Gene Therapies, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Giada Del Baldo
- Department of Onco-Hematology, Cell and Gene Therapies, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Francesco Fabozzi
- Department of Onco-Hematology, Cell and Gene Therapies, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
- Department of Pediatrics, University of Rome Tor Vergata, 00165 Rome, Italy
| | - Maria Vinci
- Department of Onco-Hematology, Cell and Gene Therapies, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Antonella Cacchione
- Department of Onco-Hematology, Cell and Gene Therapies, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Emmanuel de Billy
- Department of Onco-Hematology, Cell and Gene Therapies, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Giacomina Megaro
- Department of Onco-Hematology, Cell and Gene Therapies, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Andrea Carai
- Neurosurgery Unit, Department of Neurosciences, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Angela Mastronuzzi
- Department of Onco-Hematology, Cell and Gene Therapies, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
- Faculty of Medicine and Surgery, Saint Camillus International University of Health Sciences, 00131 Rome, Italy
| |
Collapse
|
22
|
Di Nunno V, Franceschi E, Tosoni A, Gatto L, Bartolini S, Brandes AA. Tumor-Associated Microenvironment of Adult Gliomas: A Review. Front Oncol 2022; 12:891543. [PMID: 35875065 PMCID: PMC9301282 DOI: 10.3389/fonc.2022.891543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
The glioma-associated tumor microenvironment involves a multitude of different cells ranging from immune cells to endothelial, glial, and neuronal cells surrounding the primary tumor. The interactions between these cells and glioblastoma (GBM) have been deeply investigated while very little data are available on patients with lower-grade gliomas. In these tumors, it has been demonstrated that the composition of the microenvironment differs according to the isocitrate dehydrogenase status (mutated/wild type), the presence/absence of codeletion, and the expression of specific alterations including H3K27 and/or other gene mutations. In addition, mechanisms by which the tumor microenvironment sustains the growth and proliferation of glioma cells are still partially unknown. Nonetheless, a better knowledge of the tumor-associated microenvironment can be a key issue in the optic of novel therapeutic drug development.
Collapse
Affiliation(s)
- Vincenzo Di Nunno
- Department of Oncology, Azienda Unità Sanitaria Locale (AUSL) Bologna, Bologna, Italy
| | - Enrico Franceschi
- Nervous System Medical Oncology Department, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- *Correspondence: Enrico Franceschi,
| | - Alicia Tosoni
- Nervous System Medical Oncology Department, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Lidia Gatto
- Department of Oncology, Azienda Unità Sanitaria Locale (AUSL) Bologna, Bologna, Italy
| | - Stefania Bartolini
- Nervous System Medical Oncology Department, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Alba Ariela Brandes
- Nervous System Medical Oncology Department, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| |
Collapse
|
23
|
Bisbee C, Campagne O, Gajjar A, Tinkle CL, Stewart CF. Population pharmacokinetics of crenolanib in children and young adults with brain tumors. Cancer Chemother Pharmacol 2022; 89:459-468. [PMID: 35212779 PMCID: PMC8957602 DOI: 10.1007/s00280-022-04412-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/15/2022] [Indexed: 11/02/2022]
Abstract
PURPOSE Crenolanib, an oral inhibitor of platelet-derived growth factor receptor, was evaluated to treat children and young adults with brain tumors. Crenolanib population pharmacokinetics and covariate influence were characterized in this patient population. METHODS Patients enrolled on this phase I study (NCT01393912) received oral crenolanib once daily. Serial single-dose and steady-state serum pharmacokinetic samples were collected and analyzed using a validated LC-ESI-MS/MS method. Population modeling and covariate analysis evaluating demographics, laboratory values, and comedications were performed. The impact of significant covariates on crenolanib exposure was further explored using model simulations. RESULTS Crenolanib serum concentrations were analyzed for 55 patients (2.1-19.2 years-old) and best fitted with a linear two-compartment model, with delayed absorption modeled with a lag time. A typical patient [8-year-old, body surface area (BSA) 1 m2] had an apparent central clearance, volume, and absorption rate of 41 L/h, 54.3 L, and 0.19 /h, respectively. Patients taking acid reducers (histamine H2 antagonists or proton pump inhibitors) concomitantly exhibited about 2- and 1.7-fold lower clearance and volume (p < 0.0001 and p = 0.018, respectively). Crenolanib clearance increased with BSA (p < 0.0001), and absorption rate decreased with age (p < 0.0001). Model simulations showed cotreatment with an acid reducer was the only covariate significantly altering crenolanib exposure and supported the use of BSA-based crenolanib dosages vs flat-dosages for this population. CONCLUSIONS Crenolanib pharmacokinetics were adequately characterized in children and young adults with brain tumors. Despite marked increased drug exposure with acid reducer cotreatment, crenolanib therapy was well tolerated. No dosing adjustments are recommended for this population.
Collapse
Affiliation(s)
- Cora Bisbee
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105-2794, USA
| | - Olivia Campagne
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105-2794, USA
| | - Amar Gajjar
- Division of Neuro-Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Christopher L Tinkle
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Clinton F Stewart
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105-2794, USA.
| |
Collapse
|
24
|
Characterization and clinical relevance of PDGFRA pathway copy number variation gains across human cancers. Mol Genet Genomics 2022; 297:561-571. [PMID: 35212838 PMCID: PMC8960564 DOI: 10.1007/s00438-022-01860-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/22/2022] [Indexed: 12/04/2022]
Abstract
We investigated the copy number variation (CNV) of PDGFRA pathway across all common cancer types as well as its clinical relevance. This study included a total of 10,678 patients with pan-cancerous species involving 33 types of cancers and patient information was obtained from The Cancer Genome Atlas. According to the PDGFRA pathway CNV, all samples were divided into copy number gain (CN gain) group and No CN gain group. The analysis of loss of heterozygosity (LOH) fraction, CNV burden, tumor mutation burden (TMB), and the number of immunogenic mutations were performed, as well as the correlation analysis of PDGFRA pathway CN gain with tumor-related signaling pathways and tumor-infiltrating immune cell subpopulations. The results showed that CN gain of PDGFRA pathway in the cancer patients was associated with significantly shorter overall survival. The CN gain of PDGFRA pathway was identified as a prognostic risk factor for some tumors. CN gain was accompanied by an altered percentage of LOH, CNV burden, TMB, the number of immunogenic mutations were increased and tumor-infiltrating immune cell subpopulations were less. While certain tumor-related signaling pathways, such as hypoxia, cell cycle, DNA repair, and epithelial-mesenchymal transition were more enriched in the CN gain group, quiescence, and inflammation pathways were more enriched in the No CN gain group. In conclusion, PDGFRA pathway CNV gain may be a poor prognostic factor in cancer patients.
Collapse
|
25
|
Splicing is an alternate oncogenic pathway activation mechanism in glioma. Nat Commun 2022; 13:588. [PMID: 35102191 PMCID: PMC8803922 DOI: 10.1038/s41467-022-28253-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 01/14/2022] [Indexed: 12/13/2022] Open
Abstract
High-grade diffuse glioma (HGG) is the leading cause of brain tumour death. While the genetic drivers of HGG have been well described, targeting these has thus far had little impact on survival suggesting other mechanisms are at play. Here we interrogate the alternative splicing landscape of pediatric and adult HGG through multi-omic analyses, uncovering an increased splicing burden compared with normal brain. The rate of recurrent alternative splicing in cancer drivers exceeds their mutation rate, a pattern that is recapitulated in pan-cancer analyses, and is associated with worse prognosis in HGG. We investigate potential oncogenicity by interrogating cancer pathways affected by alternative splicing in HGG; spliced cancer drivers include members of the RAS/MAPK pathway. RAS suppressor neurofibromin 1 is differentially spliced to a less active isoform in >80% of HGG downstream from REST upregulation, activating the RAS/MAPK pathway and reducing glioblastoma patient survival. Overall, our results identify non-mutagenic mechanisms by which cancers activate oncogenic pathways which need to accounted for in personalized medicine approaches. Targeting genetic drivers of high grade diffuse glioma (HGG) has not improved patient survival, suggesting the involvement of other mechanisms. Here, across cancer types, the authors identify increased alternative splicing burden in cancer drivers compared to mutation rate as an alternative mechanism for activation of oncogenic pathways such as RAS/MAPK.
Collapse
|
26
|
Varlet P, Bouffet E, Casanova M, Giangaspero F, Antonelli M, Hargrave D, Ladenstein R, Pearson A, Hawkins C, König FB, Rüschoff J, Schmauch C, Bühnemann C, Garin-Chesa P, Schweifer N, Uttenreuther-Fischer M, Gibson N, Ittrich C, Krämer N, Solca F, Stolze B, Geoerger B. Comprehensive analysis of the ErbB receptor family in pediatric nervous system tumors and rhabdomyosarcoma. Pediatr Blood Cancer 2022; 69:e29316. [PMID: 34546642 DOI: 10.1002/pbc.29316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/05/2021] [Accepted: 08/01/2021] [Indexed: 11/11/2022]
Abstract
BACKGROUND There is a paucity of knowledge regarding pediatric biomarkers, including the relevance of ErbB pathway aberrations in pediatric tumors. We investigated the occurrence of ErbB receptor aberrations across different pediatric malignancies, to identify patterns of ErbB dysregulation and define biomarkers suitable for patient enrichment in clinical studies. PROCEDURE Tissue samples from 297 patients with nervous system tumors and rhabdomyosarcoma were analyzed for immunohistochemical expression or gene amplification of epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2). Exploratory analyses of HER3/HER4 expression, and mRNA expression of ErbB receptors/ligands (NanoString) were performed. Assay validation followed general procedures, with additional validation to address Clinical Laboratory Improvement Amendments (CLIA) requirements. RESULTS In most tumor types, samples with high ErbB receptor expression were found with heterogeneous distribution. We considered increased/aberrant ErbB pathway activation when greater than or equal to two EGFR/HER2 markers were simultaneously upregulated. ErbB pathway dysregulation was identified in ∼20%-30% of samples for most tumor types (medulloblastoma/primitive neuroectodermal tumors 31.1%, high-grade glioma 27.1%, neuroblastoma 22.7%, rhabdomyosarcoma 23.1%, ependymoma 18.8%), 4.2% of diffuse intrinsic pontine gliomas, and no recurrent or refractory low-grade astrocytomas. In medulloblastoma/primitive neuroectodermal tumors and neuroblastoma, this was attributed mainly to high EGFR polysomy/HER2 amplification, whereas EGFR gene amplification was observed in some high-grade glioma samples. EGFR/HER2 overexpression was most prevalent in ependymoma. CONCLUSIONS Overexpression and/or amplification of EGFR/HER2 were identified as potential enrichment biomarkers for clinical trials of ErbB-targeted drugs.
Collapse
Affiliation(s)
- Pascale Varlet
- GHU Psychiatrie et Neurosciences, site Sainte-Anne, service de Neuropathologie, Paris, France
| | - Eric Bouffet
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | - Darren Hargrave
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Ruth Ladenstein
- Department of Paediatrics, St. Anna Children's Cancer Research Institute, Medical University, Vienna, Austria
| | - Andy Pearson
- Paediatric Drug Development, Children and Young People's Unit, Royal Marsden Hospital, London, UK.,Division of Clinical Studies, Institute of Cancer Research, London, UK
| | | | | | | | | | | | - Pilar Garin-Chesa
- Staburo GmbH, Munich, Germany, on behalf of Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Norbert Schweifer
- Staburo GmbH, Munich, Germany, on behalf of Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | | | - Neil Gibson
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Carina Ittrich
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Nicole Krämer
- Staburo GmbH, Munich, Germany, on behalf of Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Flavio Solca
- Boehringer Ingelheim RCV GmbH & Co. KG, Vienna, Austria
| | - Britta Stolze
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Birgit Geoerger
- Gustave Roussy Cancer Center, Department of Pediatric and Adolescent Oncology, INSERM U1015, Université Paris Saclay, Villejuif, France
| |
Collapse
|
27
|
Hayden E, Holliday H, Lehmann R, Khan A, Tsoli M, Rayner BS, Ziegler DS. Therapeutic Targets in Diffuse Midline Gliomas-An Emerging Landscape. Cancers (Basel) 2021; 13:cancers13246251. [PMID: 34944870 PMCID: PMC8699135 DOI: 10.3390/cancers13246251] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Diffuse midline gliomas (DMGs) remain one of the most devastating childhood brain tumour types, for which there is currently no known cure. In this review we provide a summary of the existing knowledge of the molecular mechanisms underlying the pathogenesis of this disease, highlighting current analyses and novel treatment propositions. Together, the accumulation of these data will aid in the understanding and development of more effective therapeutic options for the treatment of DMGs. Abstract Diffuse midline gliomas (DMGs) are invariably fatal pediatric brain tumours that are inherently resistant to conventional therapy. In recent years our understanding of the underlying molecular mechanisms of DMG tumorigenicity has resulted in the identification of novel targets and the development of a range of potential therapies, with multiple agents now being progressed to clinical translation to test their therapeutic efficacy. Here, we provide an overview of the current therapies aimed at epigenetic and mutational drivers, cellular pathway aberrations and tumor microenvironment mechanisms in DMGs in order to aid therapy development and facilitate a holistic approach to patient treatment.
Collapse
Affiliation(s)
- Elisha Hayden
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington 2052, Australia; (E.H.); (H.H.); (R.L.); (A.K.); (M.T.); (B.S.R.)
| | - Holly Holliday
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington 2052, Australia; (E.H.); (H.H.); (R.L.); (A.K.); (M.T.); (B.S.R.)
- School of Women’s and Children’s Health, Faculty of Medicine, University of New South Wales, Kensington 2052, Australia
| | - Rebecca Lehmann
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington 2052, Australia; (E.H.); (H.H.); (R.L.); (A.K.); (M.T.); (B.S.R.)
- School of Women’s and Children’s Health, Faculty of Medicine, University of New South Wales, Kensington 2052, Australia
| | - Aaminah Khan
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington 2052, Australia; (E.H.); (H.H.); (R.L.); (A.K.); (M.T.); (B.S.R.)
| | - Maria Tsoli
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington 2052, Australia; (E.H.); (H.H.); (R.L.); (A.K.); (M.T.); (B.S.R.)
- School of Women’s and Children’s Health, Faculty of Medicine, University of New South Wales, Kensington 2052, Australia
| | - Benjamin S. Rayner
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington 2052, Australia; (E.H.); (H.H.); (R.L.); (A.K.); (M.T.); (B.S.R.)
- School of Women’s and Children’s Health, Faculty of Medicine, University of New South Wales, Kensington 2052, Australia
| | - David S. Ziegler
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington 2052, Australia; (E.H.); (H.H.); (R.L.); (A.K.); (M.T.); (B.S.R.)
- School of Women’s and Children’s Health, Faculty of Medicine, University of New South Wales, Kensington 2052, Australia
- Kids Cancer Centre, Sydney Children’s Hospital, Randwick 2031, Australia
- Correspondence: ; Tel.: +61-2-9382-1730; Fax: +61-2-9382-1789
| |
Collapse
|
28
|
Whitehouse JP, Howlett M, Federico A, Kool M, Endersby R, Gottardo NG. Defining the molecular features of radiation-induced glioma: A systematic review and meta-analysis. Neurooncol Adv 2021; 3:vdab109. [PMID: 34859225 PMCID: PMC8633655 DOI: 10.1093/noajnl/vdab109] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Cranial radiation therapy is essential in treating many pediatric cancers, especially brain tumors; however, its use comes with the risk of developing second malignancies. Cranial radiation-induced gliomas (RIGs) are aggressive high-grade tumors with a dismal prognosis, for which no standard therapy exists. A definitive molecular signature for RIGs has not yet been established. We sought to address this gap by performing a systematic review and meta-analysis of the molecular features of cranial RIGs. Methods A systematic review of the literature was performed according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Articles and case reports that described molecular analyses of cranial radiation-induced high-grade gliomas were identified and evaluated, and data extracted for collation. Results Of 1727 records identified, 31 were eligible, containing 102 unique RIGs with molecular data. The most frequent genetic alterations in RIGs included PDGFRA or TP53 mutations, PDGFRA or CDK4 amplifications, and CDKN2A deletion, along with 1q gain, 1p loss and 13q loss. Of note, mutations in ACVR1, EGFR, H3F3A, HIST1H3B, HIST1H3C, IDH2, SMARCB1 or the TERT promoter were not observed. A comparative analysis revealed that RIGs are molecularly distinct from most other astrocytomas and gliomas and instead align most closely with the pedGBM_RTK1 subgroup of pediatric glioblastoma. Conclusions This comprehensive analysis highlights the major molecular features of RIGs, demonstrates their molecular distinction from many other astrocytomas and gliomas, and reveals potential genetic drivers and therapeutic targets for this currently fatal disease.
Collapse
Affiliation(s)
- Jacqueline P Whitehouse
- Brain Tumour Research Program, Telethon Kids Institute, Nedlands, Western Australia, Australia.,Centre for Child Health Research, University of Western Australia, Nedlands, Western Australia, Australia
| | - Meegan Howlett
- Brain Tumour Research Program, Telethon Kids Institute, Nedlands, Western Australia, Australia.,Centre for Child Health Research, University of Western Australia, Nedlands, Western Australia, Australia
| | - Aniello Federico
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.,Division of Pediatric Neuro-oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Marcel Kool
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.,Division of Pediatric Neuro-oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany.,Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Raelene Endersby
- Brain Tumour Research Program, Telethon Kids Institute, Nedlands, Western Australia, Australia.,Centre for Child Health Research, University of Western Australia, Nedlands, Western Australia, Australia
| | - Nicholas G Gottardo
- Brain Tumour Research Program, Telethon Kids Institute, Nedlands, Western Australia, Australia.,Centre for Child Health Research, University of Western Australia, Nedlands, Western Australia, Australia.,Department of Paediatric and Adolescent Oncology/Haematology, Perth Children's Hospital, Nedlands, Western Australia, Australia
| |
Collapse
|
29
|
Bočkaj I, Martini TEI, de Camargo Magalhães ES, Bakker PL, Meeuwsen-de Boer TGJ, Armandari I, Meuleman SL, Mondria MT, Stok C, Kok YP, Bakker B, Wardenaar R, Seiler J, Broekhuis MJC, van den Bos H, Spierings DCJ, Ringnalda FCA, Clevers H, Schüller U, van Vugt MATM, Foijer F, Bruggeman SWM. The H3.3K27M oncohistone affects replication stress outcome and provokes genomic instability in pediatric glioma. PLoS Genet 2021; 17:e1009868. [PMID: 34752469 PMCID: PMC8604337 DOI: 10.1371/journal.pgen.1009868] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 11/19/2021] [Accepted: 10/07/2021] [Indexed: 12/25/2022] Open
Abstract
While comprehensive molecular profiling of histone H3.3 mutant pediatric high-grade glioma has revealed extensive dysregulation of the chromatin landscape, the exact mechanisms driving tumor formation remain poorly understood. Since H3.3 mutant gliomas also exhibit high levels of copy number alterations, we set out to address if the H3.3K27M oncohistone leads to destabilization of the genome. Hereto, we established a cell culture model allowing inducible H3.3K27M expression and observed an increase in mitotic abnormalities. We also found enhanced interaction of DNA replication factors with H3.3K27M during mitosis, indicating replication defects. Further functional analyses revealed increased genomic instability upon replication stress, as represented by mitotic bulky and ultrafine DNA bridges. This co-occurred with suboptimal 53BP1 nuclear body formation after mitosis in vitro, and in human glioma. Finally, we observed a decrease in ultrafine DNA bridges following deletion of the K27M mutant H3F3A allele in primary high-grade glioma cells. Together, our data uncover a role for H3.3 in DNA replication under stress conditions that is altered by the K27M mutation, promoting genomic instability and potentially glioma development.
Collapse
Affiliation(s)
- Irena Bočkaj
- Department of Ageing Biology/ERIBA, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Tosca E. I. Martini
- Department of Ageing Biology/ERIBA, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Eduardo S. de Camargo Magalhães
- Department of Ageing Biology/ERIBA, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Petra L. Bakker
- Department of Ageing Biology/ERIBA, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Tiny G. J. Meeuwsen-de Boer
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Inna Armandari
- Department of Ageing Biology/ERIBA, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Histology and Cell Biology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Saskia L. Meuleman
- Department of Ageing Biology/ERIBA, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Marin T. Mondria
- Department of Ageing Biology/ERIBA, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Colin Stok
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Yannick P. Kok
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Bjorn Bakker
- Department of Ageing Biology/ERIBA, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - René Wardenaar
- Department of Ageing Biology/ERIBA, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Jonas Seiler
- Department of Ageing Biology/ERIBA, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- iPSC/CRISPR facility, Department of Ageing Biology/ERIBA, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Mathilde J. C. Broekhuis
- Department of Ageing Biology/ERIBA, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- iPSC/CRISPR facility, Department of Ageing Biology/ERIBA, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Hilda van den Bos
- Department of Ageing Biology/ERIBA, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Diana C. J. Spierings
- Department of Ageing Biology/ERIBA, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Femke C. A. Ringnalda
- Princess Máxima Center for Pediatric Oncology, Oncode Institute, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Hans Clevers
- Princess Máxima Center for Pediatric Oncology, Oncode Institute, University Medical Center Utrecht, Utrecht, the Netherlands
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Oncode Institute, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Ulrich Schüller
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marcel A. T. M. van Vugt
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Floris Foijer
- Department of Ageing Biology/ERIBA, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- iPSC/CRISPR facility, Department of Ageing Biology/ERIBA, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Sophia W. M. Bruggeman
- Department of Ageing Biology/ERIBA, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
30
|
McCrea HJ, Ivanidze J, O'Connor A, Hersh EH, Boockvar JA, Gobin YP, Knopman J, Greenfield JP. Intraarterial delivery of bevacizumab and cetuximab utilizing blood-brain barrier disruption in children with high-grade glioma and diffuse intrinsic pontine glioma: results of a phase I trial. J Neurosurg Pediatr 2021; 28:371-379. [PMID: 34359048 DOI: 10.3171/2021.3.peds20738] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 03/09/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Delivery of drugs intraarterially to brain tumors has been demonstrated in adults. In this study, the authors initiated a phase I trial of superselective intraarterial cerebral infusion (SIACI) of bevacizumab and cetuximab in pediatric patients with refractory high-grade glioma (diffuse intrinsic pontine glioma [DIPG] and glioblastoma) to determine the safety and efficacy in this population. METHODS SIACI was used to deliver mannitol (12.5 ml of 20% mannitol) to disrupt the blood-brain barrier (BBB), followed by bevacizumab (15 mg/kg) and cetuximab (200 mg/m2) to target VEGF and EGFR, respectively. Patients with brainstem tumors had a balloon inflated in the distal basilar artery during mannitol infusion. RESULTS Thirteen patients were treated (10 with DIPG and 3 with high-grade glioma). Toxicities included grade I epistaxis (2 patients) and grade I rash (2 patients). There were no dose-limiting toxicities. Of the 10 symptomatic patients, 6 exhibited subjective improvement; 92% showed decreased enhancement on day 1 posttreatment MRI. Of 10 patients who underwent MRI at 1 month, 5 had progressive disease and 5 had stable disease on FLAIR, whereas contrast-enhanced scans demonstrated progressive disease in 4 patients, stable disease in 2, partial response in 2, and complete response in 1. The mean overall survival for the 10 DIPG patients was 519 days (17.3 months), with a mean posttreatment survival of 214.8 days (7.2 months). CONCLUSIONS SIACI of bevacizumab and cetuximab was well tolerated in all 13 children. The authors' results demonstrate safety of this method and warrant further study to determine efficacy. As molecular targets are clarified, novel means of bypassing the BBB, such as intraarterial therapy and convection-enhanced delivery, become more critical. Clinical trial registration no.: NCT01884740 (clinicaltrials.gov).
Collapse
Affiliation(s)
- Heather J McCrea
- 1Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Jana Ivanidze
- 2Department of Radiology, NewYork-Presbyterian Hospital-Weill Cornell Medicine, New York, New York
| | - Ashley O'Connor
- 3Department of Neurosurgery, NewYork-Presbyterian Hospital-Weill Cornell Medicine, New York, New York; and
| | - Eliza H Hersh
- 3Department of Neurosurgery, NewYork-Presbyterian Hospital-Weill Cornell Medicine, New York, New York; and
| | - John A Boockvar
- 4Department of Neurosurgery, Lenox Hill Hospital/Hofstra Northwell School of Medicine, New York, New York
| | - Y Pierre Gobin
- 3Department of Neurosurgery, NewYork-Presbyterian Hospital-Weill Cornell Medicine, New York, New York; and
| | - Jared Knopman
- 3Department of Neurosurgery, NewYork-Presbyterian Hospital-Weill Cornell Medicine, New York, New York; and
| | - Jeffrey P Greenfield
- 3Department of Neurosurgery, NewYork-Presbyterian Hospital-Weill Cornell Medicine, New York, New York; and
| |
Collapse
|
31
|
Cardona HJ, Somasundaram A, Crabtree DM, Gadd SL, Becher OJ. Prenatal overexpression of platelet-derived growth factor receptor A results in central nervous system hypomyelination. Brain Behav 2021; 11:e2332. [PMID: 34480532 PMCID: PMC8553322 DOI: 10.1002/brb3.2332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/01/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Platelet-derived growth factor (PDGF) signaling, through the ligand PDGF-A and its receptor PDGFRA, is important for the growth and maintenance of oligodendrocyte progenitor cells (OPCs) in the central nervous system (CNS). PDGFRA signaling is downregulated prior to OPC differentiation into mature myelinating oligodendrocytes. By contrast, PDGFRA is often genetically amplified or mutated in many types of gliomas, including diffuse midline glioma (DMG) where OPCs are considered the most likely cell-of-origin. The cellular and molecular changes that occur in OPCs in response to unregulated PDGFRA expression, however, are not known. METHODS Here, we created a conditional knock-in (KI) mouse that overexpresses wild type (WT) human PDGFRA (hPDGFRA) in prenatal Olig2-expressing progenitors, and examined in vivo cellular and molecular consequences. RESULTS The KI mice exhibited stunted growth, ataxia, and a severe loss of myelination in the brain and spinal cord. When combined with the loss of p53, a tumor suppressor gene whose activity is decreased in DMG, the KI mice failed to develop tumors but still exhibited hypomyelination. RNA-sequencing analysis revealed decreased myelination gene signatures, indicating a defect in oligodendroglial development. Mice overexpressing PDGFRA in prenatal GFAP-expressing progenitors, which give rise to a broader lineage of cells than Olig2-progenitors, also developed myelination defects. CONCLUSION Our results suggest that embryonic overexpression of hPDGFRA in Olig2- or GFAP-progenitors is deleterious to OPC development and leads to CNS hypomyelination.
Collapse
Affiliation(s)
- Herminio Joey Cardona
- Division of Hematology, Oncology, Neuro-Oncology, and Stem Cell Transplant, Ann & Robert H. Lurie Children's Hospital, Chicago, Illinois, USA
| | - Agila Somasundaram
- Division of Hematology, Oncology, Neuro-Oncology, and Stem Cell Transplant, Ann & Robert H. Lurie Children's Hospital, Chicago, Illinois, USA
| | - Donna M Crabtree
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA.,Office of Clinical Research, Duke University Medical Center, Durham, NC, USA
| | - Samantha L Gadd
- Department of Pathology, Ann & Robert H. Lurie Children's Hospital, Chicago, Illinois, USA
| | - Oren J Becher
- Division of Hematology, Oncology, Neuro-Oncology, and Stem Cell Transplant, Ann & Robert H. Lurie Children's Hospital, Chicago, Illinois, USA.,Department of Pediatrics, Northwestern University, Chicago, Illinois, USA.,Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
32
|
Liao Y, Luo Z, Deng Y, Zhang F, Rao R, Wang J, Xu L, Kumar SS, Sengupta S, DeWire-Schottmiller M, Berry K, Garrett M, Fouladi M, Drissi R, Lu QR. OLIG2 maintenance is not essential for diffuse intrinsic pontine glioma cell line growth but regulates tumor phenotypes. Neuro Oncol 2021; 23:1183-1196. [PMID: 33539525 DOI: 10.1093/neuonc/noab016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Diffuse intrinsic pontine glioma (DIPG) is a pediatric lethal high-grade brainstem glioma with no effective therapies. OLIG2 (oligodendrocyte transcription factor 2) was reported to be critical for the growth of a DIPG cell line CCHMC-DIPG-1. Surprisingly, we found that the CCHMC-DIPG-1 cells express little OLIG2 and exhibit a mesenchymal phenotype, which raised a question regarding the role of OLIG2 in the growth of DIPG cells. METHODS We evaluated the function of OLIG2 in different DIPG cell lines through molecular and genetic approaches and performed transcriptomic and genomic landscape profiling including whole-genome bisulfite sequencing, RNA-seq, ATAC-seq, and ChIP-seq. shRNA-mediated knockdown and CRISPR-Cas9-mediated knockout approaches were utilized to assess OLIG2 functions in DIPG cell growth. RESULTS We found that DIPG cells are phenotypically heterogeneous and exhibit the characteristics of distinct malignant gliomas including proneural, classical, and mesenchymal subtypes. OLIG2 knockdown did not impact the growth of CCHMC-DIPG-1 cells, wherein OLIG2 is epigenetically silenced. Moreover, OLIG2 deletion did not substantially impair OLIG2-expressing proneural-like DIPG growth but led to an upregulation of HIPPO-YAP1 and epidermal growth factor receptor (EGFR) signaling and a tumor phenotype shift. Targeting HIPPO-YAP1 and EGFR signaling in OLIG2-deficient DIPG cells inhibited tumor cell growth. CONCLUSIONS Our data indicate that OLIG2 is dispensable for DIPG growth but regulates the phenotypic switch of DIPG tumor cells. OLIG2 downregulation leads to deregulation of adaptive YAP1 and EGFR signaling. Targeting YAP1 and EGFR pathways inhibits the growth of OLIG2-deficient DIPG cells, pointing to a therapeutic potential by targeting adaptive signaling to treat DIPG tumors with nominal OLIG2 expression.
Collapse
Affiliation(s)
- Yunfei Liao
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Zaili Luo
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Yaqi Deng
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Feng Zhang
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Rohit Rao
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Jiajia Wang
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Lingli Xu
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Shiva Senthil Kumar
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Satarupa Sengupta
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Mariko DeWire-Schottmiller
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Kalen Berry
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Matthew Garrett
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Maryam Fouladi
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Rachid Drissi
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Qing Richard Lu
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
33
|
Price G, Bouras A, Hambardzumyan D, Hadjipanayis CG. Current knowledge on the immune microenvironment and emerging immunotherapies in diffuse midline glioma. EBioMedicine 2021; 69:103453. [PMID: 34157482 PMCID: PMC8220552 DOI: 10.1016/j.ebiom.2021.103453] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 12/29/2022] Open
Abstract
Diffuse midline glioma (DMG) is an incurable malignancy with the highest mortality rate among pediatric brain tumors. While radiotherapy and chemotherapy are the most common treatments, these modalities have limited promise. Due to their diffuse nature in critical areas of the brain, the prognosis of DMG remains dismal. DMGs are characterized by unique phenotypic heterogeneity and histological features. Mutations of H3K27M, TP53, and ACVR1 drive DMG tumorigenesis. Histological artifacts include pseudopalisading necrosis and vascular endothelial proliferation. Mouse models that recapitulate human DMG have been used to study key driver mutations and the tumor microenvironment. DMG consists of a largely immunologically cold tumor microenvironment that lacks immune cell infiltration, immunosuppressive factors, and immune surveillance. While tumor-associated macrophages are the most abundant immune cell population, there is reduced T lymphocyte infiltration. Immunotherapies can stimulate the immune system to find, attack, and eliminate cancer cells. However, it is critical to understand the immune microenvironment of DMG before designing immunotherapies since differences in the microenvironment influence treatment efficacy. To this end, our review aims to overview the immune microenvironment of DMG, discuss emerging insights about the immune landscape that drives disease pathophysiology, and present recent findings and new opportunities for therapeutic discovery.
Collapse
Affiliation(s)
- Gabrielle Price
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai,10 Union Square East, 5th Floor, Suite 5E, New York, NY 10003, USA; Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Alexandros Bouras
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai,10 Union Square East, 5th Floor, Suite 5E, New York, NY 10003, USA; Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dolores Hambardzumyan
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai,10 Union Square East, 5th Floor, Suite 5E, New York, NY 10003, USA; Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Constantinos G Hadjipanayis
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai,10 Union Square East, 5th Floor, Suite 5E, New York, NY 10003, USA; Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
34
|
Douyère M, Chastagner P, Boura C. Neuropilin-1: A Key Protein to Consider in the Progression of Pediatric Brain Tumors. Front Oncol 2021; 11:665634. [PMID: 34277411 PMCID: PMC8281001 DOI: 10.3389/fonc.2021.665634] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022] Open
Abstract
Neuropilins are transmembrane glycoproteins that play important roles in cardiovascular and neuronal development, as well as in immunological system regulations. NRP1 functions as a co-receptor, binding numerous ligands, such as SEMA 3 or VEGF and, by doing so, reinforcing their signaling pathways and can also interface with the cytoplasmic protein synectin. NRP1 is expressed in many cancers, such as brain cancers, and is associated with poor prognosis. The challenge today for patients with pediatric brain tumors is to improve their survival rate while minimizing the toxicity of current treatments. The aim of this review is to highlight the involvement of NRP1 in pediatric brain cancers, focusing essentially on the roles of NRP1 in cancer stem cells and in the regulation of the immune system. For this purpose, recent literature and tumor databases were analyzed to show correlations between NRP1 and CD15 (a stem cancer cells marker), and between NRP1 and PDL1, for various pediatric brain tumors, such as high- and low-grade gliomas, medulloblastomas, and ependymomas. Finally, this review suggests a relevant role for NRP1 in pediatric brain tumors progression and identifies it as a potential diagnostic or therapeutic target to improve survival and life quality of these young patients.
Collapse
Affiliation(s)
| | - Pascal Chastagner
- Université de Lorraine, CNRS, CRAN, Nancy, France.,Service d'Onco-Hématologie Pédiatrique, CHRU-Nancy, Nancy, France
| | - Cédric Boura
- Université de Lorraine, CNRS, CRAN, Nancy, France
| |
Collapse
|
35
|
Michniewicz F, Saletta F, Rouaen JRC, Hewavisenti RV, Mercatelli D, Cirillo G, Giorgi FM, Trahair T, Ziegler D, Vittorio O. Copper: An Intracellular Achilles' Heel Allowing the Targeting of Epigenetics, Kinase Pathways, and Cell Metabolism in Cancer Therapeutics. ChemMedChem 2021; 16:2315-2329. [PMID: 33890721 DOI: 10.1002/cmdc.202100172] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Indexed: 02/06/2023]
Abstract
Copper is an essential transition metal frequently increased in cancer known to strongly influence essential cellular processes. Targeted therapy protocols utilizing both novel and repurposed drug agents initially demonstrate strong efficacy, before failing in advanced cancers as drug resistance develops and relapse occurs. Overcoming this limitation involves the development of strategies and protocols aimed at a wider targeting of the underlying molecular changes. Receptor Tyrosine Kinase signaling pathways, epigenetic mechanisms and cell metabolism are among the most common therapeutic targets, with molecular investigations increasingly demonstrating the strong influence each mechanism exerts on the others. Interestingly, all these mechanisms can be influenced by intracellular copper. We propose that copper chelating agents, already in clinical trial for multiple cancers, may simultaneously target these mechanisms across a wide variety of cancers, serving as an excellent candidate for targeted combination therapy. This review summarizes the known links between these mechanisms, copper, and copper chelation therapy.
Collapse
Affiliation(s)
- Filip Michniewicz
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia
| | - Federica Saletta
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia
| | - Jourdin R C Rouaen
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia
| | - Rehana V Hewavisenti
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Daniele Mercatelli
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Giuseppe Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Federico M Giorgi
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Toby Trahair
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Women's and Children's Health, University of New South Wales, Sydney, Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
| | - David Ziegler
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Women's and Children's Health, University of New South Wales, Sydney, Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Orazio Vittorio
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
36
|
A phase I/II study of bevacizumab, irinotecan and erlotinib in children with progressive diffuse intrinsic pontine glioma. J Neurooncol 2021; 153:263-271. [PMID: 33963476 PMCID: PMC8211596 DOI: 10.1007/s11060-021-03763-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/20/2021] [Indexed: 12/26/2022]
Abstract
INTRODUCTION This study investigates the safety, tolerability, and preliminary efficacy of combined treatment with VEGF inhibitor bevacizumab, topoisomerase I inhibitor irinotecan, and EGFR inhibitor erlotinib in children with progressive diffuse intrinsic pontine glioma (DIPG). METHODS Biweekly bevacizumab (10 mg/kg) and irinotecan (125 mg/m2) were combined with daily erlotinib. Two cohorts received increasing doses of erlotinib (65 and 85 mg/m2) following a 3 + 3 dose-escalation schedule, until disease progression with a maximum of one year. Dose-limiting toxicities (DLT) were monitored biweekly. Secondary progression free survival (sPFS) and overall survival (OS) were determined based on clinical and radiological response measurements. Quality of life (QoL) during treatment was also assessed. RESULTS Between November 2011 and March 2018, nine patients with disease progression after initial radiotherapy were enrolled. Median PFS at start of the study was 7.3 months (range 3.5-10.0). In the first dose cohort, one patient experienced a DLT (grade III acute diarrhea), resulting in enrollment of three additional patients in this cohort. No additional DLTs were observed in consecutive patients receiving up to a maximum dose of 85 mg/m2. Median sPFS was 3.2 months (range 1.0-10.9), and median OS was 13.8 months (range 9.3-33.0). Overall QoL was stable during treatment. CONCLUSIONS Daily erlotinib is safe and well tolerated in doses up to 85 mg/m2 when combined with biweekly bevacizumab and irinotecan in children with progressive DIPG. Median OS of the study patients was longer than known form literature.
Collapse
|
37
|
Baxter PA, Su JM, Onar-Thomas A, Billups CA, Li XN, Poussaint TY, Smith ER, Thompson P, Adesina A, Ansell P, Giranda V, Paulino A, Kilburn L, Quaddoumi I, Broniscer A, Blaney SM, Dunkel IJ, Fouladi M. A phase I/II study of veliparib (ABT-888) with radiation and temozolomide in newly diagnosed diffuse pontine glioma: a Pediatric Brain Tumor Consortium study. Neuro Oncol 2021; 22:875-885. [PMID: 32009149 DOI: 10.1093/neuonc/noaa016] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND A Pediatric Brain Tumor Consortium (PBTC) phase I/II trial of veliparib and radiation followed by veliparib and temozolomide (TMZ) was conducted in children with newly diagnosed diffuse intrinsic pontine glioma (DIPG). The objectives were to: (i) estimate the recommended phase II dose (RP2D) of veliparib with concurrent radiation; (ii) evaluate the pharmacokinetic parameters of veliparib during radiation; (iii) evaluate feasibility of intrapatient TMZ dose escalation; (iv) describe toxicities of protocol therapy; and (v) estimate the overall survival distribution compared with historical series. METHODS Veliparib was given Monday through Friday b.i.d. during radiation followed by a 4-week rest. Patients then received veliparib at 25 mg/m2 b.i.d. and TMZ 135 mg/m2 daily for 5 days every 28 days. Intrapatient dose escalation of TMZ was investigated for patients experiencing minimal toxicity. RESULTS Sixty-six patients (65 eligible) were enrolled. The RP2D of veliparib was 65 mg/m2 b.i.d. with radiation. Dose-limiting toxicities during radiation with veliparib therapy included: grade 2 intratumoral hemorrhage (n = 1), grade 3 maculopapular rash (n = 2), and grade 3 nervous system disorder (generalized neurologic deterioration) (n = 1). Intrapatient TMZ dose escalation during maintenance was not tolerated. Following a planned interim analysis, it was concluded that this treatment did not show a survival benefit compared with PBTC historical controls, and accrual was stopped for futility. The 1- and 2-year overall survival rates were 37.2% (SE 7%) and 5.3% (SE 3%), respectively. CONCLUSION Addition of veliparib to radiation followed by TMZ and veliparib was tolerated but did not improve survival for patients with newly diagnosed DIPG. TRIAL REGISTRATION NCT01514201.
Collapse
Affiliation(s)
- Patricia A Baxter
- Texas Children's Hospital/Baylor College of Medicine, Houston, Texas
| | - Jack M Su
- Texas Children's Hospital/Baylor College of Medicine, Houston, Texas
| | | | | | - Xiao-Nan Li
- Texas Children's Hospital/Baylor College of Medicine, Houston, Texas
| | | | | | - Patrick Thompson
- University of North Carolina Children's Hospital, Chapel Hill, North Carolina
| | - Adekunle Adesina
- Texas Children's Hospital/Baylor College of Medicine, Houston, Texas
| | | | | | - Arnold Paulino
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | | | - Susan M Blaney
- Texas Children's Hospital/Baylor College of Medicine, Houston, Texas
| | - Ira J Dunkel
- Memorial Sloan Kettering Cancer Center, New York, New York
| | | |
Collapse
|
38
|
Chen Z, Peng P, Zhang X, Mania-Farnell B, Xi G, Wan F. Advanced Pediatric Diffuse Pontine Glioma Murine Models Pave the Way towards Precision Medicine. Cancers (Basel) 2021; 13:cancers13051114. [PMID: 33807733 PMCID: PMC7961799 DOI: 10.3390/cancers13051114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/01/2021] [Accepted: 03/01/2021] [Indexed: 12/14/2022] Open
Abstract
Diffuse intrinsic pontine gliomas (DIPGs) account for ~15% of pediatric brain tumors, which invariably present with poor survival regardless of treatment mode. Several seminal studies have revealed that 80% of DIPGs harbor H3K27M mutation coded by HIST1H3B, HIST1H3C and H3F3A genes. The H3K27M mutation has broad effects on gene expression and is considered a tumor driver. Determination of the effects of H3K27M on posttranslational histone modifications and gene regulations in DIPG is critical for identifying effective therapeutic targets. Advanced animal models play critical roles in translating these cutting-edge findings into clinical trial development. Here, we review current molecular research progress associated with DIPG. We also summarize DIPG animal models, highlighting novel genomic engineered mouse models (GEMMs) and innovative humanized DIPG mouse models. These models will pave the way towards personalized precision medicine for the treatment of DIPGs.
Collapse
Affiliation(s)
- Zirong Chen
- Department of Neurological Surgery, Tongji Hospital, Tongji Medical College, Huazhong University Science and Technology, Wuhan 430030, China; (Z.C.); (P.P.); (X.Z.)
| | - Peng Peng
- Department of Neurological Surgery, Tongji Hospital, Tongji Medical College, Huazhong University Science and Technology, Wuhan 430030, China; (Z.C.); (P.P.); (X.Z.)
| | - Xiaolin Zhang
- Department of Neurological Surgery, Tongji Hospital, Tongji Medical College, Huazhong University Science and Technology, Wuhan 430030, China; (Z.C.); (P.P.); (X.Z.)
| | - Barbara Mania-Farnell
- Department of Biological Science, Purdue University Northwest, Hammond, IN 46323, USA;
| | - Guifa Xi
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Correspondence: (G.X.); (F.W.); Tel.: +1-(312)5034296 (G.X.); +86-(027)-8366-5201 (F.W.)
| | - Feng Wan
- Department of Neurological Surgery, Tongji Hospital, Tongji Medical College, Huazhong University Science and Technology, Wuhan 430030, China; (Z.C.); (P.P.); (X.Z.)
- Correspondence: (G.X.); (F.W.); Tel.: +1-(312)5034296 (G.X.); +86-(027)-8366-5201 (F.W.)
| |
Collapse
|
39
|
DeWire M, Erker C, Hummel TR, Chow LML, de Blank P, Salloum R, Pillay-Smiley N, Hoffman L, Gilger E, Gallagher M, Driver L, Meister D, Ward H, Drissi R, Kumar SS, Sengupta S, Kikta B, Meriwether W, Jelinek S, Asher A, Jones B, Leach J, Miles L, Fuller C, Fouladi M. Overcoming barriers to establishing autopsy procurement programs in pediatric patients with central nervous system tumors: a call to develop regional centers. J Neurooncol 2021; 152:107-114. [PMID: 33502679 DOI: 10.1007/s11060-020-03679-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/12/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND While autopsy-repository programs with a variety of pediatric central nervous system (CNS) tumor types are a critical resource for preclinical neuro-oncology research, few exist and there is no published guidance on how to develop one. The goal of this prospective Pediatric Brain Tumor Repository (PBTR) study was to develop such a program at Cincinnati Children's Hospital Medical Center (CCHMC) and then publish the quantitative and experiential data as a guide to support the development of similar programs. METHODS Protocols and infrastructure were established-to educate oncologists and families, establish eligibility, obtain consent, address pre- and post-autopsy logistics (e.g., patient and tissue transportation), process and authenticate tissue samples, and collect and analyze data. RESULTS Of the 129 pediatric CNS tumor patients at CCHMC who died between 2013 and 2018, 109 were eligible for our study. Of these, 74% (81 of 109) were approached for PBTR donation, and 68% (55 of 81) consented. In the final year of the study, approach and consent rates were 93% and 85%, respectively. Median time from death to autopsy (postmortem interval, PMI) was 10 h (range, 1.5-30). In the outpatient setting, PMI increased with distance (from the hospice/home where the patient died to CCHMC). In all patients, PMI appeared to be lower, when consent was obtained more than 24 h before death. CONCLUSIONS Procurement of autopsy specimens need not be a barrier in neuro-oncology research. Regional centers, strict timing-of-consent, patient education, and dedicated staff are all needed to minimize PMI and, thereby, increase the value of the procured tissue for an array of basic and translational research applications.
Collapse
Affiliation(s)
- Mariko DeWire
- Division of Oncology, Department of Pediatrics College of Medicine, Brain Tumor Center, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH, 45229-3026, USA.
| | - Craig Erker
- Division of Hematology/Oncology, Department of Pediatrics, IWK Health Centre and Dalhousie University, Halifax, Nova Scotia, Canada
| | - Trent R Hummel
- Division of Oncology, Department of Pediatrics College of Medicine, Brain Tumor Center, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH, 45229-3026, USA
| | - Lionel M L Chow
- Department of Hematology/Oncology, Dayton Children's Hospital, Dayton, OH, USA
| | - Peter de Blank
- Division of Oncology, Department of Pediatrics College of Medicine, Brain Tumor Center, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH, 45229-3026, USA
| | - Ralph Salloum
- Division of Oncology, Department of Pediatrics College of Medicine, Brain Tumor Center, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH, 45229-3026, USA
| | - Natasha Pillay-Smiley
- Division of Oncology, Department of Pediatrics College of Medicine, Brain Tumor Center, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH, 45229-3026, USA
| | - Lindsey Hoffman
- Department of Hematology/Oncology, Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Elizabeth Gilger
- Division of Oncology, Department of Pediatrics College of Medicine, Brain Tumor Center, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH, 45229-3026, USA
| | - Maureen Gallagher
- Division of Oncology, Department of Pediatrics College of Medicine, Brain Tumor Center, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH, 45229-3026, USA
| | - Lori Driver
- Division of Oncology, Department of Pediatrics College of Medicine, Brain Tumor Center, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH, 45229-3026, USA
| | - Dinah Meister
- Division of Oncology, Department of Pediatrics College of Medicine, Brain Tumor Center, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH, 45229-3026, USA
| | - Heather Ward
- Division of Oncology, Department of Pediatrics College of Medicine, Brain Tumor Center, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH, 45229-3026, USA
| | - Rachid Drissi
- Division of Oncology, Department of Pediatrics College of Medicine, Brain Tumor Center, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH, 45229-3026, USA.,Center for Childhood Cancer & Blood Disorders, Nationwide Children's Hospital, Columbus, OH and The Ohio State University College of Medicine, Columbus, OH, USA
| | - Shiva Senthil Kumar
- Division of Oncology, Department of Pediatrics College of Medicine, Brain Tumor Center, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH, 45229-3026, USA.,Center for Childhood Cancer & Blood Disorders, Nationwide Children's Hospital, Columbus, OH, USA
| | - Satarupa Sengupta
- Division of Oncology, Department of Pediatrics College of Medicine, Brain Tumor Center, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH, 45229-3026, USA.,Division of Research, Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Bridget Kikta
- Division of Oncology, Department of Pediatrics College of Medicine, Brain Tumor Center, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH, 45229-3026, USA
| | - Wanda Meriwether
- Division of Oncology, Department of Pediatrics College of Medicine, Brain Tumor Center, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH, 45229-3026, USA
| | - Susan Jelinek
- Division of Oncology, Department of Pediatrics College of Medicine, Brain Tumor Center, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH, 45229-3026, USA
| | - Anthony Asher
- Division of Oncology, Department of Pediatrics College of Medicine, Brain Tumor Center, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH, 45229-3026, USA
| | - Blaise Jones
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - James Leach
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Lili Miles
- Department of Pathology and Laboratory Medicine, Nemours Children's Health System, Orlando, FL, USA
| | - Christine Fuller
- Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Maryam Fouladi
- Division of Oncology, Department of Pediatrics College of Medicine, Brain Tumor Center, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH, 45229-3026, USA.,Hematology/Oncology &, BMT, Nationwide Children's Hospital, The Ohio State University College of Medicine, ColumbusColumbus, OHOH, USA
| |
Collapse
|
40
|
El-Hashash AHK. Histone H3K27M Mutation in Brain Tumors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1283:43-52. [PMID: 33155136 DOI: 10.1007/978-981-15-8104-5_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Histones form chromatin and play a key role in the regulation of gene expression. As an epigenetic information form, histone modifications such as methylation, phosphorylation, acetylation, and ubiquitination are closely related to the regulation of genes. In the last two decades, cancer scientists discovered that some histone modifications, including acetylation and methylation, are perturbed in cancer diseases. Recurrent histone mutations, which hinder histone methylation and are implicated in oncogenesis, are recently identified in several cancer disease and called oncohistones. Well-known oncohistones, with mutations on both H3.1 and H3.3, include H3K36M in chondroblastoma, H3K27M in glioma, and H3G34 mutations that exist in bone cancers and gliomas. Oncohistone expression can lead to epigenome/transcriptome reprogramming and eventually to oncogenesis. The H3K27M, H3G34V/R, and H3K36M histone mutations can lead to the substitution of amino acid(s) at or near a lysine residue, which is a methylation target. H3K27M characteristically exists in diffuse intrinsic pontine glioma (pediatric DIPG), and its expression can cause a global decrease of the methylation of histone at the lysine residue. Uncovering the molecular mechanisms of H3K27M-driven tumorigenesis has recently led to the identification of some potential therapeutic targets in diffuse intrinsic pontine glioma. In this chapter, we will review and summarize recent studies on the H3K27M-driven tumorigenic mechanisms and properties and the role of H3.1K27M and H3.3K27M oncohistones in brain tumors.
Collapse
Affiliation(s)
- Ahmed H K El-Hashash
- Centre of Stem Cell and Regenerative Medicine, Schools of Medicine and Basic Medicine, The University of Edinburgh-Zhejiang International Campus (UoE-ZJU Institute), Zhejiang, P.R. China.
| |
Collapse
|
41
|
Histone Lysine-to-Methionine Mutation as Anticancer Drug Target. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1283:85-96. [PMID: 33155140 DOI: 10.1007/978-981-15-8104-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Histone modification stands for a vital genetic information form, which shows tight correlation with the modulation of normal physiological activities by genes. Abnormal regulation of histone methylation due to histone modification enzyme changes and histone mutations plays an important role in the development of cancer. Histone mutations, especially H3K27M and H3K36M, have been identified in various cancers such as pediatric DIPG (diffuse intrinsic pontine glioma) and chondroblastoma respectively. "K to M" mutation results overall downregulation of methylation on these lysine residues. Also, "K to M" mutant histones can inhibit the enzymatic activity of the responsible HMT (histone methyltransferase); for instance, SETD2 indicates H3K36 methylation, and Ezh2 represents H3K27 methylation. In-depth analysis of the mechanism of tumor formation triggered by the K to M mutation results in possible targeted therapies. This chapter is going to briefly introduce the mechanism of histone lysine-to-methionine mutation and review the recently identified targeted therapeutic strategies.
Collapse
|
42
|
Epigenetic activation of a RAS/MYC axis in H3.3K27M-driven cancer. Nat Commun 2020; 11:6216. [PMID: 33277484 PMCID: PMC7718276 DOI: 10.1038/s41467-020-19972-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 11/10/2020] [Indexed: 12/20/2022] Open
Abstract
Histone H3 lysine 27 (H3K27M) mutations represent the canonical oncohistone, occurring frequently in midline gliomas but also identified in haematopoietic malignancies and carcinomas. H3K27M functions, at least in part, through widespread changes in H3K27 trimethylation but its role in tumour initiation remains obscure. To address this, we created a transgenic mouse expressing H3.3K27M in diverse progenitor cell populations. H3.3K27M expression drives tumorigenesis in multiple tissues, which is further enhanced by Trp53 deletion. We find that H3.3K27M epigenetically activates a transcriptome, enriched for PRC2 and SOX10 targets, that overrides developmental and tissue specificity and is conserved between H3.3K27M-mutant mouse and human tumours. A key feature of the H3K27M transcriptome is activation of a RAS/MYC axis, which we find can be targeted therapeutically in isogenic and primary DIPG cell lines with H3.3K27M mutations, providing an explanation for the common co-occurrence of alterations in these pathways in human H3.3K27M-driven cancer. Taken together, these results show how H3.3K27M-driven transcriptome remodelling promotes tumorigenesis and will be critical for targeting cancers with these mutations. Histone H3 at lysine 27 (H3K27M) is often mutated in cancer but its role in tumour initiation is unclear. Here, the authors generated a transgenic model expressing H3.3K27M from the Fabp7 gene promoter, demonstrating that H3.3K27M can initiate diverse tumorigesis on its own, acting through a RAS/MYC transcriptomic programme.
Collapse
|
43
|
Hersh DS, Kumar R, Moore KA, Smith LGF, Tinkle CL, Chiang J, Patay Z, Gajjar A, Choudhri AF, Lee-Diaz JA, Vaughn B, Klimo P. Safety and efficacy of brainstem biopsy in children and young adults. J Neurosurg Pediatr 2020; 26:552-562. [PMID: 32736346 DOI: 10.3171/2020.4.peds2092] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/29/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Biopsies of brainstem lesions are performed to establish a diagnosis in the setting of an atypical clinical or radiological presentation, or to facilitate molecular studies. A better understanding of the safety and diagnostic yield of brainstem biopsies would help guide appropriate patient selection. METHODS All patients who underwent biopsy of a brainstem lesion during the period from January 2011 to June 2019 were reviewed. Demographic, radiological, surgical, and outcome data were collected. RESULTS A total of 58 patients underwent 65 brainstem biopsies during the study period. Overall, the median age was 7.6 years (IQR 3.9-14.2 years). Twenty-two of the 65 biopsies (34%) were open, 42 (65%) were stereotactic, and 1 was endoscopic. In 3 cases (5%), a ventriculoperitoneal shunt was placed, and in 9 cases (14%), a posterior fossa decompression was performed during the same operative session as the biopsy. An intraoperative MRI (iMRI) was performed in 28 cases (43%). In 3 of these cases (11%), the biopsy was off target and additional samples were obtained during the same procedure. New neurological deficits were noted in 5 cases (8%), including sensory deficits, ophthalmoparesis/nystagmus, facial weakness, and hearing loss; these deficits persisted in 2 cases and were transient in 3 cases. A pseudomeningocele occurred in 1 patient; no patients developed a CSF leak or infection. In 8 cases (13%) an additional procedure was needed to obtain a diagnosis. CONCLUSIONS Brainstem biopsies are safe and effective. Target selection and approach should be a collaborative effort. iMRI can be used to assess biopsy accuracy in real time, thereby allowing any adjustment if necessary.
Collapse
Affiliation(s)
- David S Hersh
- 1Division of Neurosurgery, Connecticut Children's, Hartford
- 2Department of Surgery, UConn School of Medicine, Farmington, Connecticut
| | - Rahul Kumar
- 3Department of Neurosurgery, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Kenneth A Moore
- 3Department of Neurosurgery, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Luke G F Smith
- 4Department of Neurosurgery, The Ohio State University, Columbus, Ohio; Departments of
| | | | | | | | - Amar Gajjar
- 8Division of Neuro-oncology, St. Jude Children's Research Hospital, Memphis
| | - Asim F Choudhri
- 3Department of Neurosurgery, University of Tennessee Health Science Center, Memphis, Tennessee
- 9Department of Radiology, University of Tennessee Health Science Center, Memphis
- 10Division of Neuroradiology, Le Bonheur Neuroscience Institute, Memphis
- 11Le Bonheur Children's Hospital, Memphis; and
| | - Jorge A Lee-Diaz
- 3Department of Neurosurgery, University of Tennessee Health Science Center, Memphis, Tennessee
- 9Department of Radiology, University of Tennessee Health Science Center, Memphis
- 10Division of Neuroradiology, Le Bonheur Neuroscience Institute, Memphis
- 11Le Bonheur Children's Hospital, Memphis; and
| | | | - Paul Klimo
- 3Department of Neurosurgery, University of Tennessee Health Science Center, Memphis, Tennessee
- 11Le Bonheur Children's Hospital, Memphis; and
- 12Semmes Murphey, Memphis, Tennessee
| |
Collapse
|
44
|
Medved J, Wood WM, van Heyst MD, Sherafat A, Song JY, Sakya S, Wright DL, Nishiyama A. Novel guanidine compounds inhibit platelet-derived growth factor receptor alpha transcription and oligodendrocyte precursor cell proliferation. Glia 2020; 69:792-811. [PMID: 33098183 DOI: 10.1002/glia.23930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 09/22/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023]
Abstract
Oligodendrocyte precursor cells (OPCs), also known as NG2 cells or polydendrocytes, are distributed widely throughout the developing and mature central nervous system. They remain proliferative throughout life and are an important source of myelinating cells in normal and demyelinating brain as well as a source of glioma, the most common type of primary brain tumor with a poor prognosis. OPC proliferation is dependent on signaling mediated by platelet-derived growth factor (PDGF) AA binding to its alpha receptor (PDGFRα). Here, we describe a group of structurally related compounds characterized by the presence of a basic guanidine group appended to an aromatic core that is effective in specifically repressing the transcription of Pdgfra but not the related beta receptor (Pdgfrb) in OPCs. These compounds specifically and dramatically reduced proliferation of OPCs but not that of astrocytes and did not affect signal transduction by PDGFRα. These findings suggest that the compounds could be further developed for potential use in combinatorial treatment strategies for neoplasms with dysregulated PDGFRα function.
Collapse
Affiliation(s)
- Jelena Medved
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA
| | - William M Wood
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA
| | - Michael D van Heyst
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Amin Sherafat
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA
| | - Ju-Young Song
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA.,Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Sagune Sakya
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA.,Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Dennis L Wright
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Akiko Nishiyama
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA.,Institute for Systems Genomics, University of Connecticut, Mansfield, Connecticut, USA.,Connecticut Institute for the Brain and Cognitive Sciences, University of Connecticut, Mansfield, Connecticut, USA
| |
Collapse
|
45
|
Balakrishnan I, Danis E, Pierce A, Madhavan K, Wang D, Dahl N, Sanford B, Birks DK, Davidson N, Metselaar DS, Meel MH, Lemma R, Donson A, Vijmasi T, Katagi H, Sola I, Fosmire S, Alimova I, Steiner J, Gilani A, Hulleman E, Serkova NJ, Hashizume R, Hawkins C, Carcaboso AM, Gupta N, Monje M, Jabado N, Jones K, Foreman N, Green A, Vibhakar R, Venkataraman S. Senescence Induced by BMI1 Inhibition Is a Therapeutic Vulnerability in H3K27M-Mutant DIPG. Cell Rep 2020; 33:108286. [PMID: 33086074 PMCID: PMC7574900 DOI: 10.1016/j.celrep.2020.108286] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 07/05/2020] [Accepted: 09/25/2020] [Indexed: 01/19/2023] Open
Abstract
Diffuse intrinsic pontine glioma (DIPG) is an incurable brain tumor of childhood characterized by histone mutations at lysine 27, which results in epigenomic dysregulation. There has been a failure to develop effective treatment for this tumor. Using a combined RNAi and chemical screen targeting epigenomic regulators, we identify the polycomb repressive complex 1 (PRC1) component BMI1 as a critical factor for DIPG tumor maintenance in vivo. BMI1 chromatin occupancy is enriched at genes associated with differentiation and tumor suppressors in DIPG cells. Inhibition of BMI1 decreases cell self-renewal and attenuates tumor growth due to induction of senescence. Prolonged BMI1 inhibition induces a senescence-associated secretory phenotype, which promotes tumor recurrence. Clearance of senescent cells using BH3 protein mimetics co-operates with BMI1 inhibition to enhance tumor cell killing in vivo.
Collapse
Affiliation(s)
- Ilango Balakrishnan
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA; The Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO, USA
| | - Etienne Danis
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA; The Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO, USA
| | - Angela Pierce
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Krishna Madhavan
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA; The Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO, USA
| | - Dong Wang
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Nathan Dahl
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA; The Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO, USA
| | - Bridget Sanford
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Diane K Birks
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Nate Davidson
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Dennis S Metselaar
- Princess Máxima Center for Pediatric Oncology, Utrecht and Departments of Pediatric Oncology/Hematology, Cancer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Michaël Hananja Meel
- Princess Máxima Center for Pediatric Oncology, Utrecht and Departments of Pediatric Oncology/Hematology, Cancer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Rakeb Lemma
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Andrew Donson
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA; The Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO, USA
| | - Trinka Vijmasi
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA; The Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO, USA
| | - Hiroaki Katagi
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ismail Sola
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Susan Fosmire
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Irina Alimova
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Jenna Steiner
- Departments of Radiology, Radiation Oncology, and Anesthesiology, Colorado Animal Imaging Shared Resource (AISR), University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ahmed Gilani
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Esther Hulleman
- Princess Máxima Center for Pediatric Oncology, Utrecht and Departments of Pediatric Oncology/Hematology, Cancer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Natalie J Serkova
- Departments of Radiology, Radiation Oncology, and Anesthesiology, Colorado Animal Imaging Shared Resource (AISR), University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Rintaro Hashizume
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Cynthia Hawkins
- Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Angel M Carcaboso
- Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, Institut de Recerca Sant Joan de Deu, Barcelona 08950, Spain
| | - Nalin Gupta
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Michelle Monje
- Departments of Neurology, Neurosurgery, Pediatrics, and Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nada Jabado
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada; Department of Pediatrics, McGill University, and The Research Institute of the McGill University Health Center, Montreal, QC H4A 3J1, Canada
| | - Kenneth Jones
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Nicholas Foreman
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA; The Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO, USA
| | - Adam Green
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA; The Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO, USA
| | - Rajeev Vibhakar
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA; The Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO, USA.
| | - Sujatha Venkataraman
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA; The Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO, USA.
| |
Collapse
|
46
|
Radio-Resistance and DNA Repair in Pediatric Diffuse Midline Gliomas. Cancers (Basel) 2020; 12:cancers12102813. [PMID: 33007840 PMCID: PMC7600397 DOI: 10.3390/cancers12102813] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022] Open
Abstract
Malignant gliomas (MG) are among the most prevalent and lethal primary intrinsic brain tumors. Although radiotherapy (RT) is the most effective nonsurgical therapy, recurrence is universal. Dysregulated DNA damage response pathway (DDR) signaling, rampant genomic instability, and radio-resistance are among the hallmarks of MGs, with current therapies only offering palliation. A subgroup of pediatric high-grade gliomas (pHGG) is characterized by H3K27M mutation, which drives global loss of di- and trimethylation of histone H3K27. Here, we review the most recent literature and discuss the key studies dissecting the molecular biology of H3K27M-mutated gliomas in children. We speculate that the aberrant activation and/or deactivation of some of the key components of DDR may be synthetically lethal to H3K27M mutation and thus can open novel avenues for effective therapeutic interventions for patients suffering from this deadly disease.
Collapse
|
47
|
Georgescu MM, Islam MZ, Li Y, Circu ML, Traylor J, Notarianni CM, Kline CN, Burns DK. Global activation of oncogenic pathways underlies therapy resistance in diffuse midline glioma. Acta Neuropathol Commun 2020; 8:111. [PMID: 32680567 PMCID: PMC7367358 DOI: 10.1186/s40478-020-00992-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/18/2022] Open
Abstract
Diffuse midline gliomas (DMGs) are aggressive pediatric brain tumors with dismal prognosis due to therapy-resistant tumor growth and invasion. We performed the first integrated histologic/genomic/proteomic analysis of 21 foci from three pontine DMG cases with supratentorial dissemination. Histone H3.3-K27M was the driver mutation, usually at high variant allele fraction due to recurrent chromosome 1q copy number gain, in combination with germline variants in ATM, FANCM and MYCN genes. Both previously reported and novel recurrent copy number variations and somatic pathogenic mutations in chromatin remodeling, DNA damage response and PI3K/MAPK growth pathways were variably detected, either in multiple or isolated foci. Proteomic analysis showed global upregulation of histone H3, lack of H3-K27 trimethylation, and further impairment of polycomb repressive complex 2 by ASXL1 downregulation. Activation of oncogenic pathways resulted from combined upregulation of N-MYC, SOX2, p65/p50 NF-κB and STAT3 transcription factors, EGFR, FGFR2, PDGFRα/β receptor tyrosine kinases, and downregulation of PHLPP1/2, PTEN and p16/INK4A tumor suppressors. Upregulation of SMAD4, PAI-1, CD44, and c-SRC in multiple foci most likely contributed to invasiveness. This integrated comprehensive analysis revealed a complex spatiotemporal evolution in diffuse intrisic pontine glioma, recommending pontine and cerebellar biopsies for accurate populational genetic characterization, and delineated common signaling pathways and potential therapeutic targets. It also revealed an unsuspected activation of a multitude of oncogenic pathways, including cancer cell reprogramming, explaining the resistance of DMG to current therapies.
Collapse
|
48
|
Tsvankin V, Hashizume R, Katagi H, Herndon JE, Lascola C, Venkatraman TN, Picard D, Burrus B, Becher OJ, Thompson EM. ABC Transporter Inhibition Plus Dexamethasone Enhances the Efficacy of Convection Enhanced Delivery in H3.3K27M Mutant Diffuse Intrinsic Pontine Glioma. Neurosurgery 2020; 86:742-751. [PMID: 31225627 PMCID: PMC7443593 DOI: 10.1093/neuros/nyz212] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/23/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND An impermeable blood-brain barrier and drug efflux via ATP-binding cassette (ABC) transporters such as p-glycoprotein may contribute to underwhelming efficacy of peripherally delivered agents to treat diffuse intrinsic pontine glioma (DIPG). OBJECTIVE To explore the pharmacological augmentation of convection-enhanced delivery (CED) infusate for DIPG. METHODS The efficacy of CED dasatinib, a tyrosine kinase inhibitor, in a transgenic H3.3K27M mutant murine model was assessed. mRNA expression of ABCB1 (p-glycoprotein) was analyzed in 14 tumor types in 274 children. In Vitro viability studies of dasatinib, the p-glycoprotein inhibitor, tariquidar, and dexamethasone were performed in 2 H3.3K27M mutant cell lines. Magnetic resonance imaging (MRI) was used to evaluate CED infusate (gadolinium/dasatinib) distribution in animals pretreated with tariquidar and dexamethasone. Histological assessment of apoptosis was performed. RESULTS Continuous delivery CED dasatinib improved median overall survival (OS) of animals harboring DIPG in comparison to vehicle (39.5 and 28.5 d, respectively; P = .0139). Mean ABCB1 expression was highest in K27M gliomas. In Vitro, the addition of tariquidar and dexamethasone further enhanced the efficacy of dasatinib (P < .001). In Vivo, MRI demonstrated no difference in infusion dispersion between animals pretreated with dexamethasone plus tariquidar prior to CED dasatinib compared to the CED dasatinib. However, tumor apoptosis was the highest in the pretreatment group (P < .001). Correspondingly, median OS was longer in the pretreatment group (49 d) than the dasatinib alone group (39 d) and no treatment controls (31.5 d, P = .0305). CONCLUSION ABC transporter inhibition plus dexamethasone enhances the efficacy of CED dasatinib, resulting in enhanced tumor cellular apoptosis and improved survival in H3.3K27M mutant DIPG.
Collapse
Affiliation(s)
- Vadim Tsvankin
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - Rintaro Hashizume
- Department of Neurosurgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Hiroaki Katagi
- Department of Neurosurgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - James E Herndon
- Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina
| | - Christopher Lascola
- Department of Radiology, Duke University Medical Center, Durham, North Carolina
| | | | - Daniel Picard
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany,Department of Pediatric Neuro-Oncogenomics, German Cancer Consortium and German Cancer Research Center, Heidelberg, Germany
| | - Brainard Burrus
- University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Oren J Becher
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
| | - Eric M Thompson
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina,Duke University Preston Robert Tisch Brain Tumor Center, Durham, North Carolina,Correspondence: Eric M. Thompson, MD, Duke University Medical Center, 2301 Erwin Rd., PO Box 3272, Durham, NC 27710.
| |
Collapse
|
49
|
Aziz-Bose R, Monje M. Diffuse intrinsic pontine glioma: molecular landscape and emerging therapeutic targets. Curr Opin Oncol 2020; 31:522-530. [PMID: 31464759 DOI: 10.1097/cco.0000000000000577] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Diffuse intrinsic pontine glioma (DIPG) is a fatal childhood brainstem malignancy. Despite advances in understanding of the molecular underpinnings of the tumor in the past decade, the dismal prognosis of DIPG has thus far remained unchanged. This review seeks to highlight promising therapeutic targets within three arenas: DIPG cell-intrinsic vulnerabilities, immunotherapeutic approaches to tumor clearance, and microenvironmental dependencies that promote tumor growth. RECENT FINDINGS Promising therapeutic strategies from recent studies include epigenetic modifying agents such as histone deacetylase inhibitors, bromodomain and extra-terminal motif (BET) protein inhibitors, and CDK7 inhibitors. Tumor-specific immunotherapies are emerging. Key interactions between DIPG and normal brain cells are coming to light, and targeting critical microenvironmental mechanisms driving DIPG growth in the developing childhood brain represents a new direction for therapy. SUMMARY Several DIPG treatment strategies are being evaluated in early clinical trials. Ultimately, we suspect that a multifaceted therapeutic approach utilizing cell-intrinsic, microenvironmental, and immunotherapeutic targets will be necessary for eradicating DIPG.
Collapse
Affiliation(s)
| | - Michelle Monje
- Department of Neurology and Neurological Sciences.,Stanford Institute for Stem Cell Biology and Regenerative Medicine.,Stanford Cancer Institute.,Department of Pediatrics.,Department of Psychiatry and Behavioral Sciences.,Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
50
|
Rashed WM, Maher E, Adel M, Saber O, Zaghloul MS. Pediatric diffuse intrinsic pontine glioma: where do we stand? Cancer Metastasis Rev 2020; 38:759-770. [PMID: 31802357 DOI: 10.1007/s10555-019-09824-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pediatric diffuse intrinsic pontine glioma (DIPG) represents approximately 20% of all pediatric CNS tumors. However, disease outcomes are dismal with a median survival of less than 1 year and a 2-year overall survival rate of less than 10%. Despite extensive efforts to improve survival outcomes, progress towards clinical improvement has been largely stagnant throughout the last 4 decades. Focal radiotherapy remains the standard of care with no promising single-agent alternatives and no evidence for improvement with the addition of a long list of systemic therapies. A better understanding of the biology of DIPG, though not easy due to obstacles in obtaining pathological material to study, is promising for the development of specific individualized treatment for this fatal disease. Recent studies have found epigenetic mutations to be successful predictors and prognostic factors for developing future management policies. The aim of this review is to give a global overview about the epidemiology, diagnosis, and treatment of DIPG. We further examine the controversial biopsy and autopsy issue that is unique to DIPG and assess the subsequent impact this issue has on the research efforts and clinical management of DIPG.
Collapse
Affiliation(s)
- Wafaa M Rashed
- Research Department, Children's Cancer Hospital Egypt, Cairo, 57357, Egypt.
| | - Eslam Maher
- Research Department, Children's Cancer Hospital Egypt, Cairo, 57357, Egypt
| | - Mohamed Adel
- Armed Forces College of Medicine (AFCM), Cairo, Egypt
| | - Ossama Saber
- Armed Forces College of Medicine (AFCM), Cairo, Egypt
| | - Mohamed Saad Zaghloul
- Radiotherapy Department, National Cancer Institute, Cairo University & Children's Cancer Hospital, Cairo, 57357, Egypt.
| |
Collapse
|