1
|
Kumjan S, Satayasoontorn K, Lawongsa K, Laoruangroj C. Prognostic outcomes of diffuse large B-cell lymphoma patients with myelocytomatosis oncogene (MYC) and B-cell lymphoma 2 (BCL2) co-expression. J Hematop 2025; 18:8. [PMID: 40097775 DOI: 10.1007/s12308-025-00623-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 03/06/2025] [Indexed: 03/19/2025] Open
Abstract
Double expressor lymphoma (DEL) refers to diffuse large B-cell lymphoma (DLBCL) cases characterized by the overexpression of both MYC and BCL2 proteins, as determined by immunohistochemistry (IHC), without requiring underlying genetic rearrangements. DEL is associated with more aggressive disease behavior and poorer prognosis. This study aimed to assess the impact of DEL on progression-free survival (PFS) and overall survival (OS) compared to non-DEL patients. We conducted a retrospective study at the Hospital, analyzing 177 patients diagnosed with DLBCL between March 2014 and March 2021. Patients were classified as DEL or non-DEL based on immunohistochemical analysis. Survival rates, clinical characteristics, and treatment responses were compared using Kaplan-Meier survival analysis, and multivariable Cox regression was performed to identify independent prognostic factors. Among 177 patients, 113 (63.8%) were DEL and 64 (36.2%) non-DEL. DEL patients had significantly worse outcomes, with a median follow-up of 39.4 months. The 3-year PFS (44.2% vs. 68.8%) and OS (54.9% vs. 81.3%) were significantly lower in DEL (PFS: p < 0.001; OS: p = 0.001). Median PFS in DEL was 19 months. Multivariable analysis confirmed DEL as an independent predictor of worse PFS (HR: 1.488, 95% CI: 1.091-2.03, p = 0.012) and OS (HR: 1.376, 95% CI: 1.011-1.873, p = 0.043). DEL status is strongly linked to poor survival in DLBCL, highlighting the need for targeted therapies beyond R-CHOP. Future research should explore personalized treatment strategies to improve outcomes in this high-risk group.
Collapse
MESH Headings
- Humans
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/mortality
- Lymphoma, Large B-Cell, Diffuse/pathology
- Male
- Female
- Middle Aged
- Proto-Oncogene Proteins c-myc/genetics
- Proto-Oncogene Proteins c-myc/metabolism
- Aged
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Retrospective Studies
- Prognosis
- Adult
- Aged, 80 and over
- Gene Expression Regulation, Neoplastic
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
Collapse
Affiliation(s)
- Supanut Kumjan
- Department of Hematology Medicine, Phramongkutklao Hospital, Bangkok, 10400, Thailand.
| | - Kantang Satayasoontorn
- Department of Pathology, Phramongkutklao Hospital and College of Medicine, Bangkok, 10400, Thailand
| | - Kasidid Lawongsa
- Department of Outpatient and Family Medicine, Phramongkutklao Hospital, Bangkok, 10400, Thailand
| | - Chonlada Laoruangroj
- Department of Hematology Medicine, Phramongkutklao Hospital, Bangkok, 10400, Thailand
| |
Collapse
|
2
|
Zhao J, Wu Y. Prognostic value of the controlling nutritional status (CONUT) score in patients with diffuse large B-cell lymphoma: a meta-analysis. World J Surg Oncol 2025; 23:28. [PMID: 39881386 PMCID: PMC11776244 DOI: 10.1186/s12957-025-03663-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/18/2025] [Indexed: 01/31/2025] Open
Abstract
BACKGROUND The significance of the controlling nutritional status (CONUT) score in predicting the prognostic outcomes of diffuse large B-cell lymphoma (DLBCL) has been widely explored, with conflicting results. Therefore, the present meta-analysis aimed to identify the prognostic significance of the CONUT in DLBCL by aggregating current evidence. METHODS The Web of Science, PubMed, Embase, CNKI and Cochrane Library databases were searched for articles from inception to October 15, 2024. The prognostic value of CONUT for DLBCL was analyzed by determining the pooled hazard ratios (HRs) with 95% confidence intervals (CIs). The Newcastle-Ottawa Scale (NOS) was used to analyze study quality. RESULTS Eight studies including 2687 cases were included in this work. The NOS scores of these studies were 7-9 (median, 8), demonstrating high quality. Our analyses revealed that an elevated CONUT score significantly predicted poor overall survival (OS) (HR = 1.63, 95%CI = 1.29-2.05, p < 0.001) and inferior progression-free survival (PFS) (HR=1.22, 95%CI = 1.12-1.33, p < 0.001) in patients with DLBCL. Further, the elevated CONUT score showed a significant correlation with the following clinicopathological factors in DLBCL: Ann Arbor stage III-IV, Eastern Cooperative Oncology Group Performance Status (ECOG PS) of 2-4, presence of extranodal disease, ≥high intermediate National Comprehensive Cancer Network International Prognostic Index (NCCN IPI), presence of B symptoms, elevated lactose dehydrogenase (LDH) levels, and presence of bone marrow infiltration. CONCLUSIONS An increased CONUT score was dramatically associated with poor OS and PFS in patients with DLBCL, as well as with clinicopathological characteristics representing DLBCL tumor development.
Collapse
Affiliation(s)
- Jinqiang Zhao
- Clinical Laboratory, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Huzhou, Zhejiang, 313000, China
| | - Ying Wu
- Department of Hematology, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Huzhou, Zhejiang, 313000, China.
| |
Collapse
|
3
|
Fernandez JKU, San Juan MD, Fragante EJV, Veloso BJAD, Uy TCF, Castillo MRL, Crisostomo BMP. R-CHOP and Consolidation Radiotherapy for Limited-stage and Low-IPI High-Grade B-Cell Lymphoma with MYC and BCL2 and/or BCL6 rearrangements: a Single-center Case Series and Review of Literature. ACTA MEDICA PHILIPPINA 2025; 59:99-109. [PMID: 39897141 PMCID: PMC11779673 DOI: 10.47895/amp.vi0.8611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
High-Grade B-Cell Lymphoma (HGBCL) with gene rearrangements in MYC and BCL2 and/or BCL6 is an aggressive malignancy usually presenting in advanced stages. Current recommendations suggest the use of regimens more intensive than R-CHOP (rituximab, cyclophosphamide, vincristine, doxorubicin, prednisone), which are based on retrospective studies and single-arm prospective trials that included patients who are mostly in the advanced stage, and did not receive consolidation radiotherapy. The optimal approach and treatment of HGBCL, whether limited-stage (LS) or advanced-stage, remains to be determined. Here we describe the promising outcomes of three patients with LS and low IPI HGBCL with the use of R-CHOP as induction chemotherapy regimen, which was followed by consolidation radiotherapy. Three women, 54-, 60-, and 64-years of age diagnosed to have HGBCL with MYC, and BCL2 and/or BCL6 rearrangements, with Ann Arbor stages I-IIE were included in this case series. All three patients had complete metabolic response to 6 cycles of R-CHOP and was subsequently treated with consolidation involved site radiotherapy (ISRT; total dose 30-36 Gy). Chemotherapy and radiotherapy were tolerated very well. All patients remain to be in remission, with the longest being at 23 months. Outcomes of patients with HGBCL generally remain to be poor, but this may not be the case for patients with limited-stage disease and favorable clinicopathologic risk profile. Nevertheless, the treatment of HGBCL is currently evolving and more studies are needed to determine the ideal approach and preferred chemotherapy regimen. Also, more studies are needed to elucidate the potential role of consolidation radiotherapy in patients with limited-stage HGBCL to improve survival outcomes. Findings of this case series suggest that patients with LS HGBCL may still derive benefit from R-CHOP followed by consolidation ISRT, but prospective trials are needed to confirm this.
Collapse
Affiliation(s)
- Joseff Karl U. Fernandez
- Division of Medical Oncology, Department of Medicine, Philippine General Hospital, University of the Philippines Manila
| | - Michael D. San Juan
- Division of Medical Oncology, Department of Medicine, Philippine General Hospital, University of the Philippines Manila
| | - Edilberto Joaquin V. Fragante
- Division of Radiation Oncology, Department of Radiology, Philippine General Hospital, University of the Philippines Manila
| | | | - Timothy Carl F. Uy
- Department of Laboratories, Philippine General Hospital, University of the Philippines Manila
| | - Michelle Regina L. Castillo
- Division of Radiation Oncology, Department of Radiology, Philippine General Hospital, University of the Philippines Manila
| | | |
Collapse
|
4
|
Lee J, Han MH, Baek DW. Successful Treatment of a Patient Presenting with Simultaneous Diffuse Large B-Cell Lymphoma and Hodgkin Lymphoma: A Case Report. AMERICAN JOURNAL OF CASE REPORTS 2025; 26:e945435. [PMID: 39748486 PMCID: PMC11706436 DOI: 10.12659/ajcr.945435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/22/2024] [Accepted: 11/13/2024] [Indexed: 01/04/2025]
Abstract
BACKGROUND Simultaneously occuring diffuse large B-cell lymphoma (DLBCL) and Hodgkin lymphoma (HL) is extremely rare. Generally, patients with CD20-positive DLBCL receive rituximab, cyclophosphamide, vincristine, doxorubicin, prednisone (R-CHOP) regimen, while those with HL receive brentuximab vedotin, doxorubicin, vinblastine, dacarbazine (A-AVD) regimen as first-line therapy. Establishing a strategy for treating both lymphoma subtypes concurrently is thus very difficult. We report successful treatment of a patient simultaneously diagnosed with advanced DLBCL and HL. CASE REPORT A 20-year-old man visited the Hematology Department of Kyungpook National University Hospital after the diagnosis of germinal center B-cell DLBCL in the kidney and HL (nodular sclerosis type) in the neck lymph node. His DLBCL was classified as Ann Arbor stage IV with an International Prognostic Index score of 4, a high-risk group. Six cycles of R-CHOP therapy were planned, and central nervous system prophylaxis with intrathecalmethotrexate was added because of the high-risk features of central nervous system involvement. After completing 6 cycles of chemotherapy, without significant adverse events (Deauville score of 1), complete remission was confirmed. Then, the patient decided to undergo consolidative autologous stem cell transplantation (auto-SCT). He received busulfan, cyclophosphamide, and etoposide conditioning regimen, after which auto-SCT was conducted in April 2021. After auto-SCT, the patient was undergoing regular check-ups and doing well, without obvious disease relapse or specific symptoms. He maintained a disease-free status for 40 months to date. CONCLUSIONS Our case showed that R-CHOP regimen was effective not only for DLBCL but also for HL. Notably, consolidative upfront auto-SCT should be considered for a deeper response.
Collapse
Affiliation(s)
- Jungmin Lee
- Department of Hematology/Oncology, Kyungpook National University Chilgok Hospital, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Man Hoon Han
- Department of Pathology, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Dong Won Baek
- Department of Hematology/Oncology, Kyungpook National University Chilgok Hospital, School of Medicine, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
5
|
Wu Y, Yuan Q, Shen H, Du K, Shang C, Li Y, Zhang X, Wu J, Gao R, Wang L, Li J, Yin H, Liang J, Xu W. The prognostic significance of MYC/BCL2 double expression in DLBCL in the genetic classification era. Cancer Sci 2025; 116:257-270. [PMID: 39492801 PMCID: PMC11711038 DOI: 10.1111/cas.16377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 11/05/2024] Open
Abstract
Double expression (DE) is a World Health Organization-recognized adverse prognostic factor in diffuse large B-cell lymphoma (DLBCL). However, the prognostic value of DE in the genetic subtyping era and potential mechanisms remain to be explored. We enrolled 246 DLBCL patients diagnosed between December 2021 and September 2023 in a Jiangsu Province Hospital cohort and included 930 DLBCL patients from three published studies in an external cohort. Double-expression DLBCL (DEL) in the external cohort was mainly distributed in the OTHER subtype (42.0%), EZB subtype (28.3%), and MCD subtype (15.0%), whereas the MCD subtype exhibited the highest ratio of DEL. DEL was significantly related to unfavorable overall survival (OS) and progression-free survival (PFS) in DLBCL, but only in EZB and OTHER subtypes that DEL retained remarkably adverse impacts on survivals compared to non-DEL. We explored the prognostic value of clinical and genetic parameters in DEL patients and found only ST2 showed better OS than A53 in DEL patients, whereas the other subtypes showed no significant difference. DEL showed similarities with the MCD subtype in mutation profiles. Furthermore, RNA-sequencing analyses exhibited upregulation in tumor proliferation-related pathways in DEL patients, but downregulation in extracellular matrix organization, T-cell activation and proliferation, type II interferon production, and pathways associated with cell death might contribute to the poor outcomes of DEL patients.
Collapse
Affiliation(s)
- Yi‐Fan Wu
- Department of HematologyThe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| | - Qun‐Hui Yuan
- Department of HematologyThe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| | - Hao‐Rui Shen
- Department of HematologyThe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| | - Kai‐Xin Du
- Department of HematologyThe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| | - Chun‐Yu Shang
- Department of HematologyThe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| | - Yue Li
- Department of HematologyThe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| | - Xin‐Yu Zhang
- Department of HematologyThe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| | - Jia‐Zhu Wu
- Department of HematologyThe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| | - Rui Gao
- Department of EndocrinologyThe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| | - Li Wang
- Department of HematologyThe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| | - Jian‐Yong Li
- Department of HematologyThe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| | - Hua Yin
- Department of HematologyThe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| | - Jin‐Hua Liang
- Department of HematologyThe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| | - Wei Xu
- Department of HematologyThe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| |
Collapse
|
6
|
Alig SK, Chapuy B, Ennishi D, Dunleavy K, Hodson DJ. Evolving molecular classification of aggressive B-cell lymphoma. Histopathology 2025; 86:94-105. [PMID: 39545339 PMCID: PMC11648360 DOI: 10.1111/his.15350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
This review aims to provide an overview of the latest developments in the classification and molecular understanding of aggressive B-cell lymphomas, specifically focusing on diffuse large B-cell lymphoma (DLBCL) and high-grade B-cell lymphoma (HGBL). Advances in molecular techniques have led to novel ways to classify these lymphomas based on clinical, histological, transcriptional, and genetic properties. While these methods have predominantly focused on the malignant compartment, recent studies emphasize the value of profiling the tumour microenvironment for a more comprehensive disease classification. Additionally, the integration of liquid biopsies represents a promising advancement, offering less invasive and dynamic insights into tumour characteristics and treatment response. Although molecular profiles are not yet routinely used to guide therapy, emerging data highlight their potential to predict responses to novel treatments. It is our belief that integrating molecular profiling and liquid biopsies into clinical practice and research now will pave the way for more personalized and effective therapies in the future.
Collapse
MESH Headings
- Humans
- Lymphoma, B-Cell/classification
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/pathology
- Lymphoma, Large B-Cell, Diffuse/classification
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/pathology
- Tumor Microenvironment
- Gene Expression Profiling
- Biomarkers, Tumor/genetics
Collapse
Affiliation(s)
- Stefan K Alig
- Department of Internal Medicine IIILudwig Maximilian University (LMU) HospitalMunichGermany
| | - Björn Chapuy
- Department of Hematology, Oncology and Cancer ImmunologyCharité‐University Medical Center BerlinBerlinGermany
| | - Daisuke Ennishi
- Center for Comprehensive Genomic MedicineOkayama University HospitalOkayamaJapan
| | - Kieron Dunleavy
- Department of HematologyLombardi Comprehensive Cancer CenterWashingtonDCUSA
| | - Daniel J Hodson
- Cambridge Stem Cell Institute and Department of HaematologyUniversity of CambridgeCambridgeUK
| |
Collapse
|
7
|
Roschewski M, Phelan JD, Jaffe ES. Primary large B-cell lymphomas of immune-privileged sites. Blood 2024; 144:2593-2603. [PMID: 38635786 PMCID: PMC11862818 DOI: 10.1182/blood.2023020911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/22/2024] [Accepted: 04/02/2024] [Indexed: 04/20/2024] Open
Abstract
ABSTRACT Diffuse large B-cell lymphoma (DLBCL) encompasses a diverse spectrum of aggressive B-cell lymphomas with remarkable genetic heterogeneity and myriad clinical presentations. Multiplatform genomic analyses of DLBCL have identified oncogenic drivers within genetic subtypes that allow for pathologic subclassification of tumors into discrete entities with shared immunophenotypic, genetic, and clinical features. Robust classification of lymphoid tumors establishes a foundation for precision medicine and enables the identification of novel therapeutic vulnerabilities within biologically homogeneous entities. Most cases of DLBCL involving the central nervous system (CNS), vitreous, and testis exhibit immunophenotypic features suggesting an activated B-cell (ABC) origin. Shared molecular features include frequent comutations of MYD88 (L265P) and CD79B and frequent genetic alterations promoting immune evasion, which are hallmarks of the MCD/C5/MYD88 genetic subtype of DLBCL. Clinically, these lymphomas primarily arise within anatomic sanctuary sites and have a predilection for remaining confined to extranodal sites and strong CNS tropism. Given the shared clinical and molecular features, the umbrella term primary large B-cell lymphoma of immune-privileged sites (IP-LBCL) was proposed. Other extranodal DLBCL involving the breast, adrenal glands, and skin are often ABC DLBCL but are more heterogeneous in their genomic profile and involve anatomic sites that are not considered immune privileged. In this review, we describe the overlapping clinical, pathologic, and molecular features of IP-LBCL and highlight important considerations for diagnosis, staging, and treatment. We also discuss potential therapeutic vulnerabilities of IP-LBCL including sensitivity to inhibitors of Bruton tyrosine kinase, immunomodulatory agents, and immunotherapy.
Collapse
MESH Headings
- Humans
- Lymphoma, Large B-Cell, Diffuse/immunology
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/therapy
- Lymphoma, Large B-Cell, Diffuse/classification
- Lymphoma, Large B-Cell, Diffuse/diagnosis
- Immune Privilege
Collapse
Affiliation(s)
- Mark Roschewski
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - James D. Phelan
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Elaine S. Jaffe
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
8
|
Dabrowska-Iwanicka A, Nowakowski GS. DLBCL: who is high risk and how should treatment be optimized? Blood 2024; 144:2573-2582. [PMID: 37922443 DOI: 10.1182/blood.2023020779] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/05/2023] Open
Abstract
ABSTRACT Diffuse large B-cell lymphoma (DLBCL), not otherwise specified, is the most common subtype of large B-cell lymphoma, with differences in prognosis reflecting heterogeneity in the pathological, molecular, and clinical features. Current treatment standard is based on multiagent chemotherapy, including anthracycline and monoclonal anti-CD20 antibody, which leads to cure in 60% of patients. Recent years have brought new insights into lymphoma biology and have helped refine the risk groups. The results of these studies inspired the design of new clinical trials with targeted therapies and response-adapted strategies and allowed to identify groups of patients potentially benefiting from new agents. This review summarizes recent progress in identifying high-risk patients with DLBCL using clinical and biological prognostic factors assessed at diagnosis and during treatment in the front-line setting, as well as new treatment strategies with the application of targeted agents and immunotherapy, including response-adapted strategies.
Collapse
Affiliation(s)
- Anna Dabrowska-Iwanicka
- Department of Lymphoid Malignancies, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | | |
Collapse
|
9
|
Endo S, Nishimura N, Toyoda K, Komohara Y, Carreras J, Yuki H, Shichijo T, Ueno S, Ueno N, Hirata S, Kawano Y, Nosaka K, Miyaoka M, Nakamura N, Sato A, Ando K, Mitsuya H, Akashi K, Tenen DG, Yasunaga J, Matsuoka M, Okuno Y, Tatetsu H. Decreased PU.1 expression in mature B cells induces lymphomagenesis. Cancer Sci 2024; 115:3890-3901. [PMID: 39321027 PMCID: PMC11611758 DOI: 10.1111/cas.16344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 08/13/2024] [Accepted: 09/01/2024] [Indexed: 09/27/2024] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of lymphoma, accounting for 30% of non-Hodgkin lymphomas. Although comprehensive analysis of genetic abnormalities has led to the classification of lymphomas, the exact mechanism of lymphomagenesis remains elusive. The Ets family transcription factor, PU.1, encoded by Spi1, is essential for the development of myeloid and lymphoid cells. Our previous research illustrated the tumor suppressor function of PU.1 in classical Hodgkin lymphoma and myeloma cells. In the current study, we found that patients with DLBCL exhibited notably reduced PU.1 expression in their lymphoma cells, particularly in the non-germinal center B-cell-like (GCB) subtype. This observation suggests that downregulation of PU.1 may be implicated in DLBCL tumor growth. To further assess PU.1's role in mature B cells in vivo, we generated conditional Spi1 knockout mice using Cγ1-Cre mice. Remarkably, 13 of the 23 knockout mice (56%) showed splenomegaly, lymphadenopathy, or masses, with some having histologically confirmed B-cell lymphomas. In contrast, no wild-type mice developed B-cell lymphoma. In addition, RNA-seq analysis of lymphoma cells from Cγ1-Cre Spi1F/F mice showed high frequency of each monoclonal CDR3 sequence, indicating that these lymphoma cells were monoclonal tumor cells. When these B lymphoma cells were transplanted into immunodeficient recipient mice, all mice died within 3 weeks. Lentiviral-transduced Spi1 rescued 60% of the recipient mice, suggesting that PU.1 has a tumor suppressor function in vivo. Collectively, PU.1 is a tumor suppressor in mature B cells, and decreased PU.1 results in mature B-cell lymphoma development.
Collapse
Affiliation(s)
- Shinya Endo
- Department of Hematology, Rheumatology, and Infectious DiseaseKumamoto University Graduate School of MedicineKumamotoJapan
| | - Nao Nishimura
- Department of Hematology, Rheumatology, and Infectious DiseaseKumamoto University Graduate School of MedicineKumamotoJapan
| | - Kosuke Toyoda
- Department of Hematology, Rheumatology, and Infectious DiseaseKumamoto University Graduate School of MedicineKumamotoJapan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Joaquim Carreras
- Department of PathologyTokai University School of MedicineIseharaJapan
| | - Hiromichi Yuki
- Department of Hematology, Rheumatology, and Infectious DiseaseKumamoto University Graduate School of MedicineKumamotoJapan
| | - Takafumi Shichijo
- Department of Hematology, Rheumatology, and Infectious DiseaseKumamoto University Graduate School of MedicineKumamotoJapan
| | - Shikiko Ueno
- Department of Hematology, Rheumatology, and Infectious DiseaseKumamoto University Graduate School of MedicineKumamotoJapan
| | - Niina Ueno
- Department of Hematology, Rheumatology, and Infectious DiseaseKumamoto University Graduate School of MedicineKumamotoJapan
| | - Shinya Hirata
- Department of Hematology, Rheumatology, and Infectious DiseaseKumamoto University Graduate School of MedicineKumamotoJapan
| | - Yawara Kawano
- Department of Hematology, Rheumatology, and Infectious DiseaseKumamoto University Graduate School of MedicineKumamotoJapan
| | - Kisato Nosaka
- Department of Hematology, Rheumatology, and Infectious DiseaseKumamoto University Graduate School of MedicineKumamotoJapan
| | - Masashi Miyaoka
- Department of PathologyTokai University School of MedicineIseharaJapan
| | - Naoya Nakamura
- Department of PathologyTokai University School of MedicineIseharaJapan
| | - Ai Sato
- Department of Hematology‐OncologyTokai University School of MedicineIseharaJapan
| | - Kiyoshi Ando
- Department of Hematology‐OncologyTokai University School of MedicineIseharaJapan
| | - Hiroaki Mitsuya
- Department of Hematology, Rheumatology, and Infectious DiseaseKumamoto University Graduate School of MedicineKumamotoJapan
| | - Koichi Akashi
- Department of Medicine and Biosystemic ScienceKyushu University Graduate School of MedicineFukuokaJapan
| | - Daniel G. Tenen
- Harvard Medical SchoolHarvard Stem Cell InstituteBostonMassachusettsUSA
- Beth Israel Deaconess Medical CenterBostonMassachusettsUSA
| | - Jun‐ichirou Yasunaga
- Department of Hematology, Rheumatology, and Infectious DiseaseKumamoto University Graduate School of MedicineKumamotoJapan
| | - Masao Matsuoka
- Department of Hematology, Rheumatology, and Infectious DiseaseKumamoto University Graduate School of MedicineKumamotoJapan
| | - Yutaka Okuno
- Department of Hematology, Rheumatology, and Infectious DiseaseKumamoto University Graduate School of MedicineKumamotoJapan
| | - Hiro Tatetsu
- Department of Hematology, Rheumatology, and Infectious DiseaseKumamoto University Graduate School of MedicineKumamotoJapan
| |
Collapse
|
10
|
Barraclough A, Hawkes E, Sehn LH, Smith SM. Diffuse large B-cell lymphoma. Hematol Oncol 2024; 42:e3202. [PMID: 37435781 PMCID: PMC11590043 DOI: 10.1002/hon.3202] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/29/2023] [Accepted: 06/07/2023] [Indexed: 07/13/2023]
Abstract
Large B-cell lymphoma, the prototype of aggressive non-Hodgkin lymphomas, is both the most common lymphoma and accounts for the highest global burden of lymphoma-related deaths. For nearly 4 decades, the goal of treatment has been "cure", first based on CHOP (cyclophosphamide, doxorubicin, vincristine, prednisone), and subsequently with rituximab plus CHOP. However, there is significant clinical, pathologic, and biologic heterogeneity, and not all patients are cured. Understanding and incorporating this biologic heterogeneity into treatment decisions unfortunately is not yet standard of care. Despite this gap, we now have significant advances in frontline, relapsed, and refractory settings. The POLARIX trial shows, for the first time, improved progression-free survival in a prospective randomized phase 3 setting. In the relapsed and refractory settings, there are now many approved agents/regimens, and several bispecific antibodies poised to join the arsenal of options. While chimeric antigen receptor T-cell therapy is discussed in detail elsewhere, it has quickly become an excellent option in the second-line setting and beyond. Unfortunately, special populations such as older adults continue to have poor outcomes and be underrepresented in trials, although a new generation of trials aim to address this disparity. This brief review will highlight the key issues and advances that offer improved outcomes to an increasing portion of patients.
Collapse
Affiliation(s)
- Allison Barraclough
- Department of HaematologyFiona Stanley HospitalPerthWestern AustraliaAustralia
- University of MelbourneMedical SchoolMelbourneVictoriaAustralia
| | - Eliza Hawkes
- Olivia Newton John Cancer Research CentreAustin HealthMelbourneVictoriaAustralia
- Monash University School of Public Health & Preventive MedicineMelbourneVictoriaAustralia
| | - Laurie H. Sehn
- BC Cancer Centre for Lymphoid CancerThe University of British ColumbiaVancouverBritish ColumbiaCanada
| | - Sonali M. Smith
- The University of Chicago MedicineSection of Hematology/OncologyThe University of ChicagoChicagoIllinoisUSA
| |
Collapse
|
11
|
Li Z, Jiang W, Zhou H, Cen H, Zhang M, Lv F, Zhang Q, Sun X, Liu L, Huang Y, Yang H, Gao S, He C, Yang W, Li W, Yu D, Yang Y, Cheng Y, Qian Z, Xiang Y, Guo Q, Xu B, Song Y, Zhang L, Lin L, Shen J, Yan F, Liu H, Zhang D, Wang J, Zhou M, Zhu X, Zhang W, Zhao W, Feng R, Zhang X, Jin J, Zhong M, Zhang M, Wang J, Jing H, Wang Z, Zhao H, Zhu J. Comparison of zuberitamab plus CHOP versus rituximab plus CHOP for the treatment of drug-naïve patients diagnosed with CD20-positive diffuse large B-cell lymphoma: a phase 3 trial. J Immunother Cancer 2024; 12:e008895. [PMID: 39455094 PMCID: PMC11529747 DOI: 10.1136/jitc-2024-008895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND In patients with untreated CD20-positive diffuse large B-cell lymphoma (DLBCL), a phase 3 trial was carried out to evaluate the efficacy and safety of zuberitamab plus CHOP (cyclophosphamide, doxorubicin, vincristine, and prednisone; Hi-CHOP) versus rituximab plus CHOP (R-CHOP) treatment regimens. METHODS In a 2:1 ratio, eligible patients were assigned randomly to receive treatment of six cycles of either 375 mg/m2 zuberitamab or rituximab together with conventional CHOP chemotherapy. The objective response rate (ORR) at C6D50 served as the primary endpoint, and a non-inferiority margin of 10% was established. The secondary endpoints included the complete response (CR) rate at C6D50, duration of response (DOR), progression-free survival (PFS) and event-free survival (EFS) judged by blinded-independent review committee (BIRC), overall survival (OS) and safety outcomes. RESULTS Of the 487 randomized patients, 423 patients including 287 in the Hi-CHOP and 136 in the R-CHOP groups completed the C6D50 assessment. For the full analysis set (FAS) and per-protocol set (PPS), BIRC-assessed ORR at C6D50 for the Hi-CHOP and R-CHOP groups were 83.5% versus 81.4% and 95.3% versus 93.7%, respectively. The non-inferiority was confirmed as the lower limit of the two-sided 95% CI for the intergroup differences of -5.2% and -3.3%; both were >-10% in the FAS and PPS. The BIRC-assessed CR rate of Hi-CHOP was significantly higher in PPS (85.7% vs 77.3%, p=0.038), but comparable in FAS (75.2% vs 67.9%, p=0.092). After a median follow-up of 29.6 months, patients in the Hi-CHOP group had a slight advantage with regard to the DOR (HR 0.74, p=0.173), PFS (HR 0.67, p=0.057), EFS (HR 0.90, p=0.517) and OS (HR 0.60, p=0.059). Patients with the germinal-center B cell-like subtype who received Hi-CHOP exhibited statistically significant improvements in ORR (p=0.034) and CR rate (p=0.038) at C6D50, EFS (p=0.046) and OS (p=0.014). Treatment-emergent adverse event occurrence rates were comparable across groups (all p>0.05). Infusion-related responses occurred more often in the Hi-CHOP group (32.1% vs 19.9%, p=0.006), all of grade 1-3 severity. CONCLUSIONS Zuberitamab (375 mg/m2) plus CHOP was non-inferior to R-CHOP regarding ORR but exhibited a higher CR rate and was well tolerated in CD20-positive, previously untreated Chinese patients with DLBCL. TRIAL REGISTRATION NUMBER Chinese Clinical Trial Registry, ChiCTR2000040602, retrospectively registered.
Collapse
Affiliation(s)
- Zhiming Li
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Wenqi Jiang
- Center of Excellence in Oncology, Guangzhou R&F Hospital, Guangzhou, China
| | - Hui Zhou
- Department of Lymphoma & Hematology, Hunan Cancer Hospital & The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Hong Cen
- Department of Hematology/Oncology and Pediatric Oncology, Guangxi Medical University Affiliated Cancer Hospital, Nanning, China
| | - Mingzhi Zhang
- Department of Medical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fangfang Lv
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Qingyuan Zhang
- Deparment of Mammary and Lymphatic Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xiuhua Sun
- Department of Medical Oncology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Lihong Liu
- Department of Hematology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yunhong Huang
- Department of Lymphoma, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, China
| | - Haiyan Yang
- Department of Lymphoma Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Sujun Gao
- Department of Hematology, The First Hospital of Jilin University, Changchun, China
| | - Chuan He
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Yang
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wenyu Li
- Department of Lymphoma, Guangdong Provincial People's Hospital, Guangdong Academy of Sciences, Guangzhou, China
| | - Ding Yu
- Department of Lymphoma, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Yang
- Department of Lymphoma, Head and Neck Oncology, Fujian Cancer Hospital, Fuzhou, China
| | - Ying Cheng
- Department of Hematology, Jilin Cancer Hospital, Changchun, China
| | - Zhengzi Qian
- Department of Lymphoma, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Ying Xiang
- Department of Hematology and Oncology, Chongqing Cancer Hospital, Chongqing, China
| | - Qunyi Guo
- Department of Hematology and Oncology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Bing Xu
- Department of Hematology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Yuqin Song
- Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Liling Zhang
- Department of Lymphoma, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lie Lin
- Department of Hematology, Hainan General Hospital, Haikou, China
| | - Jianzhen Shen
- Department of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Feng Yan
- Department of Hematology, Third Affiliated Hospital of Suzhou University, First People's Hospital of Changzhou, Changzhou, China
| | - Huilan Liu
- Department of Hematology, Anhui Provincial Hospital, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Donghua Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jishi Wang
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Min Zhou
- Department of Medical Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Xiongpeng Zhu
- Department of Hematology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Weihua Zhang
- Department of Hematology, The First Affiliated Hospital of Shanxi Medical University, Taiyuan, China
| | - Weili Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ru Feng
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaohong Zhang
- Department of Hematology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Meizuo Zhong
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Mei Zhang
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jingbo Wang
- Department of Hematology, Aerospace Central Hospital, Beijing, China
| | - Hongmei Jing
- Department of Hematology, Peking University Third Hospital, Beijing, China
| | - Zhao Wang
- Department of Hematology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hongguo Zhao
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jun Zhu
- Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
12
|
Jin F, He L, Chen Y, Tian W, Liu L, Ge L, Qian W, Xia L, Yang M. Synergistic effect of venetoclax and ibrutinib on ibrutinib-resistant ABC-type DLBCL cells. Braz J Med Biol Res 2024; 57:e13278. [PMID: 39383379 PMCID: PMC11463907 DOI: 10.1590/1414-431x2024e13278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/07/2024] [Indexed: 10/11/2024] Open
Abstract
Despite the widespread use of R-CHOP therapy in diffuse large B-cell lymphoma (DLBCL), the therapeutic efficacy for this disease remains suboptimal, primarily due to the heterogeneity of refractory and/or relapsed diseases. To address this challenge, optimization of DLBCL treatment regimens has focused on the strategy of combining an additional drug "X" with R-CHOP to enhance efficacy. However, the failure of R-CHOP combined with the BTK inhibitor ibrutinib in treating ABC-type DLBCL patients has raised significant concerns regarding ibrutinib resistance. While some studies suggest that venetoclax may synergize with ibrutinib to kill ibrutinib-resistant cells, the underlying mechanisms remain unclear. Our study aimed to validate the enhanced tumor-suppressive effect of combining ibrutinib with venetoclax against ibrutinib-resistant cells and elucidate its potential mechanisms. Our experimental results demonstrated that ibrutinib-resistant cells exhibited significant cytotoxicity to the combination therapy of ibrutinib and venetoclax, inducing cell apoptosis through activation of the mitochondrial pathway and inhibition of aerobic respiration. Furthermore, we validated the inhibitory effect of this combination therapy on tumor growth in in vivo models. Therefore, our study proposes that the combination therapy of ibrutinib and venetoclax is a promising treatment strategy that can be applied in clinical practice for ABC-type DLBCL, offering a new solution to overcome the urgent challenge of ibrutinib resistance.
Collapse
Affiliation(s)
- Fengbo Jin
- Department of Hematopathology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Public Health Clinical Center, Hefei, Anhui, China
| | - Limei He
- Department of Hematopathology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Public Health Clinical Center, Hefei, Anhui, China
| | - Yingying Chen
- Department of Hematopathology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Public Health Clinical Center, Hefei, Anhui, China
| | - Wanlu Tian
- Department of Hematopathology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Public Health Clinical Center, Hefei, Anhui, China
| | - Lixia Liu
- Department of Hematopathology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Public Health Clinical Center, Hefei, Anhui, China
| | - Ling Ge
- Department of Hematopathology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Public Health Clinical Center, Hefei, Anhui, China
| | - Wei Qian
- Department of Hematopathology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Public Health Clinical Center, Hefei, Anhui, China
| | - Leiming Xia
- Department of Hematopathology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Public Health Clinical Center, Hefei, Anhui, China
| | - Mingzhen Yang
- Department of Hematopathology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Public Health Clinical Center, Hefei, Anhui, China
| |
Collapse
|
13
|
Rey-Búa B, Grande C, Sánchez Blanco JJ, Abrisqueta P, Gutiérrez A, Ramírez Páyer Á, Giné E, Zeberio Etxetxipia I, Terol MJ, de la Cruz Vicente F, Andreu R, Ramirez MJ, de la Fuente A, Viguria MC, Peñarrubia MJ, Jiménez-Ubieto A, Montes-Moreno S, López-Guillermo A, Caballero MD, Martín García-Sancho A. Ibrutinib in Combination with R-GemOx in Patients with Relapsed or Refractory Diffuse Large B-cell Lymphoma of Nongerminal Center B-cell-like Type: Phase II Clinical Trial of the Spanish GELTAMO Group. Clin Cancer Res 2024; 30:3704-3714. [PMID: 38900037 DOI: 10.1158/1078-0432.ccr-24-0183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/05/2024] [Accepted: 06/17/2024] [Indexed: 06/21/2024]
Abstract
PURPOSE This phase II clinical trial evaluated the combination of ibrutinib with rituximab, gemcitabine, and oxaliplatin (R-GemOx) in patients with nongerminal center B-cell-like (non-GCB) diffuse large B-cell lymphoma (DLBCL). PATIENTS AND METHODS The IBDCL trial (NCT02692248) included patients with histologic diagnosis of non-GCB DLBCL with relapsed or refractory disease and non-candidates for stem-cell transplantation. Patients received an induction treatment consisting of six or eight cycles of R-GemOx at standard doses every 2 weeks, in combination with ibrutinib (560 mg daily), followed by a maintenance treatment with ibrutinib for a maximum of 2 years. The primary objective was to evaluate the overall response rate after four cycles. RESULTS Sixty-four patients were included, 72% of them refractory to the last regimen. The overall response rate and complete remission rate after the fourth cycle were 53% [95% confidence interval (CI), 41-65] and 34% (95% CI, 24-46), respectively. Twenty-four (37%) patients started maintenance, and 7 (11%) completed the planned 2 years. After a median follow-up of 29.7 months (range: 0.4-48.6), the estimated 2-year progression-free survival and overall survival were 18% (95% CI, 8-28) and 26% (95% CI, 14-37), respectively. The most common grade ≥3 treatment-related adverse events were thrombocytopenia (44%), neutropenia (30%), and anemia (14%). Grade ≥3 infectious and cardiovascular treatment-related adverse events were reported in 6 (9%) and 1 (2%) patient, respectively. CONCLUSIONS Ibrutinib in combination with R-GemOx, followed by ibrutinib maintenance, demonstrated encouraging antitumor activity with durable responses and a manageable toxicity in patients with non-GCB DLBCL.
Collapse
MESH Headings
- Humans
- Adenine/analogs & derivatives
- Adenine/administration & dosage
- Male
- Female
- Piperidines/administration & dosage
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/mortality
- Aged
- Middle Aged
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/adverse effects
- Adult
- Aged, 80 and over
- Deoxycytidine/analogs & derivatives
- Deoxycytidine/administration & dosage
- Deoxycytidine/adverse effects
- Gemcitabine
- Neoplasm Recurrence, Local/drug therapy
- Neoplasm Recurrence, Local/pathology
- Drug Resistance, Neoplasm
- Rituximab/administration & dosage
- Rituximab/adverse effects
- Oxaliplatin/administration & dosage
- Oxaliplatin/adverse effects
- Treatment Outcome
- Spain/epidemiology
- Pyrimidines/administration & dosage
- Pyrimidines/adverse effects
- Pyrimidines/therapeutic use
Collapse
Affiliation(s)
- Beatriz Rey-Búa
- Hematology Department, Hospital Clínico Universitario de Salamanca, IBSAL, CIBERONC, Salamanca, Spain
| | - Carlos Grande
- Hematology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - José J Sánchez Blanco
- Hematology Department, Hospital General Universitario Morales Meseguer, Murcia, Spain
| | - Pau Abrisqueta
- Hematology Department, Hospital Universitario Vall d'Hebron, Barcelona, Spain
| | - Antonio Gutiérrez
- Hematology Department, Hospital Universitario Son Espases, IdISBa, Palma de Mallorca, Spain
| | - Ángel Ramírez Páyer
- Hematology Department, Hospital Universitario Central de Asturias, Asturias, Spain
| | - Eva Giné
- Hematology Department, Hospital Clínic de Barcelona, Barcelona, Spain
| | | | - Maria J Terol
- Hematology Department, Hospital Clínico Valencia, INCLIVA, University of Valencia, Valencia, Spain
| | - Fátima de la Cruz Vicente
- Hematology Department, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBIS)/CSIC/Universidad de Sevilla, Spain
| | - Rafel Andreu
- Hematology Department, Hospital Universitario y Politécnico la Fe, Valencia, Spain
| | - Maria J Ramirez
- Hematology Department, Hospital Especialidades Jerez de la Frontera, Jerez, Spain
| | | | - Maria C Viguria
- Hematology Department, Complejo Hospitalario de Navarra, Spain
| | - María J Peñarrubia
- Hematology Department, Hospital Clínico de Valladolid, Valladolid, Spain
| | - Ana Jiménez-Ubieto
- Hematology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Santiago Montes-Moreno
- Anatomic Pathology Department, Translational Hematopathology Lab, IDIVAL/UNICAN, Santander, Spain
| | | | - María D Caballero
- Hematology Department, Hospital Clínico Universitario de Salamanca, IBSAL, CIBERONC, Salamanca, Spain
- Medicine Department, University of Salamanca, Salamanca, Spain
| | - Alejandro Martín García-Sancho
- Hematology Department, Hospital Clínico Universitario de Salamanca, IBSAL, CIBERONC, Salamanca, Spain
- Medicine Department, University of Salamanca, Salamanca, Spain
| |
Collapse
|
14
|
Shi Y, Xu Y, Shen H, Jin J, Tong H, Xie W. Advances in biology, diagnosis and treatment of DLBCL. Ann Hematol 2024; 103:3315-3334. [PMID: 39017945 PMCID: PMC11358236 DOI: 10.1007/s00277-024-05880-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 07/03/2024] [Indexed: 07/18/2024]
Abstract
Diffuse large B-cell lymphoma (DLBCL), with approximately 150,000 new cases worldwide each year, represent nearly 30% of all cases of non-Hodgkin lymphoma (NHL) and are phenotypically and genetically heterogeneous. A gene-expression profile (GEP) has identified at least three major subtypes of DLBCL, each of which has distinct clinical, biological, and genetic features: activated B-cell (ABC)-like DLBCL, germinal-center B-cell (GCB)-like DLBCL, and unclassified. Different origins are associated with different responses to chemotherapy and targeted agents. Despite DLBCL being a highly heterogeneous disease, more than 60% of patients with DLBCL can be cured after using rituximab combined with cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) to inhibit the growth of cancer cells while targeting the CD20 receptor. In recent decades, the improvement of diagnostic levels has led to a refinement classification of DLBCL and the development of new therapeutic approaches. The objective of this review was to summarize the latest studies examining genetic lesions and therapies for DLBCL.
Collapse
Affiliation(s)
- Yuanfei Shi
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Yi Xu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Huafei Shen
- International Health Care Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Hongyan Tong
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Wanzhuo Xie
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
15
|
Rubinstein PG, Galvez C, Ambinder RF. Hematopoietic stem cell transplantation and cellular therapy in persons living with HIV. Curr Opin Infect Dis 2024; 37:254-263. [PMID: 38820072 DOI: 10.1097/qco.0000000000001022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
PURPOSE OF REVIEW Summarize the latest research of both stem cell transplantation and cellular therapy and present the implications with respect to persons with HIV (PWH), hematologic malignancies, and HIV-1 cure. RECENT FINDINGS Allogeneic (alloSCT) and autologous (autoSCT) stem cell transplantation have been shown to be well tolerated and effective regardless of HIV-1 status. AlloSCT leads to a decrease in the HIV-1 latently infected reservoir orders of magnitude below that achieved with antiretroviral therapy (ART) alone. Utilization of CCR5Δ2/Δ32 donors in an alloSCT has resulted in HIV-1 cures. In the last 12 months, three cases of cure have been published, giving further insight into the conditions required for HIV-1 control. Other advances in the treatment of hematological cancers include chimeric antigen receptor T-cell (CART) therapy, which are active in PWH with lymphoma. SUMMARY Here we discuss the advances in SCT and cellular therapy in PWH and cancer. Additionally, we discuss how these technologies are being utilized to achieve HIV-1 cure.
Collapse
Affiliation(s)
- Paul G Rubinstein
- Section of Hematology/Oncology, Department of Medicine, University of Illinois
- Ruth M. Rothstein CORE Center
- Section of Hematology/Oncology, Department of Medicine, Cook County Health and Hospital Systems (Cook County Hospital), Chicago, Illinois
| | - Carlos Galvez
- Section of Hematology/Oncology, Department of Medicine, University of Illinois
| | - Richard F Ambinder
- Division of Hematologic Malignancies and Bone Marrow Transplantation, Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
16
|
Heeringa TJP, Roscam Abbing RLP, van Leeuwen GAM, van Putte BP, de Bruin AFJ. Masquerade of an emergency: cardiac tamponade as a deceptive presentation of primary cardiac diffuse large b-cell lymphoma-a case report. Eur Heart J Case Rep 2024; 8:ytae266. [PMID: 38966595 PMCID: PMC11223605 DOI: 10.1093/ehjcr/ytae266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/09/2024] [Accepted: 05/23/2024] [Indexed: 07/06/2024]
Abstract
Background Primary cardiac diffuse large B-cell lymphoma (CDLBCL) is an exceptionally rare entity, estimated to represent less than 1% of all primary cardiac tumours. In this case report, we emphasize the diagnostic importance of multimodality imaging and the need for additional procedures, such as tissue biopsy, in a case with a primary cardiac lymphoma presenting with cardiac tamponade. Case summary An 80-year-old male was admitted to the emergency department with a life-threatening tamponade demanding immediate sternotomy. Pre-operative echocardiography unveiled pericardial effusion and a thickened apex. While computed tomography ruled out an aortic dissection, surgery revealed an unexpected vascular-rich mass at the right ventricle and apex, too perilous for biopsy. Post-operative imaging misinterpreted this mass as a benign haematoma. Subsequently, the patient was admitted to the intensive care unit, but after a conservative treatment strategy, the patient died. An autopsy revealed a primary CDLBCL. Discussion This case demonstrates the deceptive nature of primary CDLBCL, often complicated by cardiac tamponade. It underscores the pivotal role of pathologic assessment, even amidst the perils of sternotomy, to determine the origin of abnormal cardiac masses. A heightened awareness among physicians is imperative, for such elusive diagnoses may slip by, with potentially fatal outcomes.
Collapse
Affiliation(s)
- Tijn J P Heeringa
- Department of Cardiothoracic Surgery, University Medical Center Utrecht, 3584 CX, Heidelberglaan 100, Utrecht, The Netherlands
- Julius Center for Health Sciences and Primary Care, Cardiovascular Epidemiology, University Medical Centrer Utrecht, Utrecht University, 3584 CX, Heidelberglaan 100, Utrecht, The Netherlands
| | | | | | - Bart P van Putte
- Department of Cardiothoracic Surgery, St. Antonius Hospital, Nieuwegein, The Netherlands
- Department of Cardiothoracic Surgery, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Anthonius F J de Bruin
- Department of Anesthesiology, Intensive Care and Pain medicine, St. Antonius Hospital, Nieuwegein, The Netherlands
| |
Collapse
|
17
|
Fujii K, Inagaki A, Masaki A, Sugiura M, Suzuki T, Ishida T, Kusumoto S, Iida S, Inagaki H. Nomogram for predicting survival of patients with diffuse large B-cell lymphoma. Ann Hematol 2024; 103:2041-2050. [PMID: 38411628 DOI: 10.1007/s00277-024-05669-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 02/14/2024] [Indexed: 02/28/2024]
Abstract
The international prognostic index (IPI) system has been widely used to predict prognosis in diffuse large B-cell lymphoma (DLBCL). However, this system categorizes DLBCL patients into four risk groups, and cannot optimize individualized prognosis. In addition, other clinicopathological factors, such as molecular aberrations, are not incorporated into the system. To partly overcome these weak points, we developed nomograms to predict individual patient survival. We also incorporated MYD88L265P and CD79BY196 mutations into the nomograms since these mutations are associated with a worse prognosis and their signaling pathways have been highlighted as a therapeutic target. We analyzed 302 DLBCL cases for which multivariate analysis by Cox proportional hazard regression was performed. Nomograms for progression-free survival (PFS) and overall survival (OS) were constructed and assessed by a concordance index (C-index). The nomograms were also evaluated using an open external dataset (n = 187). The MYD88L265P and/or CD79BY196 (MYD88/CD79B) mutation was detected in 62/302 patients. The nomograms incorporating IPI factors exhibited a C-index of 0.738 for PFS and a C-index of 0.765 for OS. The nomograms incorporating IPI factors and the MYD88/CD79B mutation showed a C-index of 0.745 for PFS and a C-index of 0.769 for OS. The nomograms we created were evaluated using an external dataset and were well validated. The present nomograms incorporating IPI factors and the MYD88/CD79B mutation have sufficient discrimination ability, and may effectively predict prognosis in DLBCL patients. The prognostic models we have presented here may help clinicians personalize prognostic assessments and clinical decisions.
Collapse
Affiliation(s)
- Keiichiro Fujii
- Department of Pathology and Molecular Diagnostics, Graduate School of Medical Sciences, Nagoya City University, 1-Kawasumi, Mizuho-Ku, Nagoya, 467-8601, Japan
| | - Atsushi Inagaki
- Department of Hematology and Oncology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
- Nagoya City University West Medical Center, Nagoya, Japan
| | - Ayako Masaki
- Department of Pathology and Molecular Diagnostics, Graduate School of Medical Sciences, Nagoya City University, 1-Kawasumi, Mizuho-Ku, Nagoya, 467-8601, Japan
| | - Mariko Sugiura
- Department of Pathology and Molecular Diagnostics, Graduate School of Medical Sciences, Nagoya City University, 1-Kawasumi, Mizuho-Ku, Nagoya, 467-8601, Japan
| | - Tomotaka Suzuki
- Department of Hematology and Oncology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Takashi Ishida
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shigeru Kusumoto
- Department of Hematology and Oncology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Shinsuke Iida
- Department of Hematology and Oncology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Hiroshi Inagaki
- Department of Pathology and Molecular Diagnostics, Graduate School of Medical Sciences, Nagoya City University, 1-Kawasumi, Mizuho-Ku, Nagoya, 467-8601, Japan.
| |
Collapse
|
18
|
Lee JH, Song G, Lee J, Kang S, Moon KM, Choi Y, Shen J, Noh M, Yang D. Prediction of immunochemotherapy response for diffuse large B-cell lymphoma using artificial intelligence digital pathology. J Pathol Clin Res 2024; 10:e12370. [PMID: 38584594 PMCID: PMC10999948 DOI: 10.1002/2056-4538.12370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/13/2024] [Accepted: 03/04/2024] [Indexed: 04/09/2024]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous and prevalent subtype of aggressive non-Hodgkin lymphoma that poses diagnostic and prognostic challenges, particularly in predicting drug responsiveness. In this study, we used digital pathology and deep learning to predict responses to immunochemotherapy in patients with DLBCL. We retrospectively collected 251 slide images from 216 DLBCL patients treated with rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP), with their immunochemotherapy response labels. The digital pathology images were processed using contrastive learning for feature extraction. A multi-modal prediction model was developed by integrating clinical data and pathology image features. Knowledge distillation was employed to mitigate overfitting on gigapixel histopathology images to create a model that predicts responses based solely on pathology images. Based on the importance derived from the attention mechanism of the model, we extracted histological features that were considered key textures associated with drug responsiveness. The multi-modal prediction model achieved an impressive area under the ROC curve of 0.856, demonstrating significant associations with clinical variables such as Ann Arbor stage, International Prognostic Index, and bulky disease. Survival analyses indicated their effectiveness in predicting relapse-free survival. External validation using TCGA datasets supported the model's ability to predict survival differences. Additionally, pathology-based predictions show promise as independent prognostic indicators. Histopathological analysis identified centroblastic and immunoblastic features to be associated with treatment response, aligning with previous morphological classifications and highlighting the objectivity and reproducibility of artificial intelligence-based diagnosis. This study introduces a novel approach that combines digital pathology and clinical data to predict the response to immunochemotherapy in patients with DLBCL. This model shows great promise as a diagnostic and prognostic tool for clinical management of DLBCL. Further research and genomic data integration hold the potential to enhance its impact on clinical practice, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Jeong Hoon Lee
- Department of RadiologyStanford University School of MedicineStanfordCAUSA
| | - Ga‐Young Song
- Department of Hematology‐OncologyChonnam National University Hwasun HospitalHwasunRepublic of Korea
| | - Jonghyun Lee
- Department of Medical and Digital EngineeringHanyang University College of EngineeringSeoulRepublic of Korea
| | - Sae‐Ryung Kang
- Department of Nuclear MedicineChonnam National University Hwasun Hospital and Medical SchoolHwasun‐gunRepublic of Korea
| | - Kyoung Min Moon
- Division of Pulmonary and Allergy Medicine, Department of Internal MedicineChung‐Ang University Hospital, Chung‐Ang University College of MedicineSeoulRepublic of Korea
- Artificial Intelligence, Ziovision Co., Ltd.ChuncheonRepublic of Korea
| | - Yoo‐Duk Choi
- Department of PathologyChonnam National University Medical SchoolGwangjuRepublic of Korea
| | - Jeanne Shen
- Department of Pathology and Center for Artificial Intelligence in Medicine & ImagingStanford University School of MedicineStanfordCAUSA
| | - Myung‐Giun Noh
- Department of PathologyChonnam National University Medical SchoolGwangjuRepublic of Korea
- Department of PathologySchool of Medicine, Ajou UniversitySuwonRepublic of Korea
| | - Deok‐Hwan Yang
- Department of Hematology‐OncologyChonnam National University Hwasun HospitalHwasunRepublic of Korea
| |
Collapse
|
19
|
Eriksen PRG, de Groot F, Clasen-Linde E, de Nully Brown P, de Groen R, Melchior LC, Maier AD, Minderman M, Vermaat JSP, von Buchwald C, Pals ST, Heegaard S. Sinonasal DLBCL: molecular profiling identifies subtypes with distinctive prognosis and targetable genetic features. Blood Adv 2024; 8:1946-1957. [PMID: 38324724 PMCID: PMC11017287 DOI: 10.1182/bloodadvances.2023011517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/02/2024] [Accepted: 01/25/2024] [Indexed: 02/09/2024] Open
Abstract
ABSTRACT Primary sinonasal diffuse large B-cell lymphoma (PSDLBCL) is a rare lymphoma with a variable prognosis and a unique relapse/dissemination pattern involving the central nervous system and skin. The underlying molecular mechanisms leading to this heterogeneity and progression pattern remain uncharted, hampering patient-tailored treatment. To investigate associated mechanisms, we analyzed clinical data and used immunohistochemistry, gene-expression profiling, cytogenetics, and next-generation sequencing in a cohort of 117 patients with PSDLBCL. The distribution in cell-of-origin (COO) was 68 (58%) activated B-cell (ABC), 44 (38%) germinal center B-cell (GCB), and 5 (4%) unclassifiable. COO was significantly associated with progression-free survival (PFS) and lymphoma-specific mortality (LSM) in both the overall cohort (5-year PFS: ABC, 43% vs GCB, 73%; LSM: ABC, 45% vs GCB, 14%) and in the subgroup of patients receiving immunochemotherapy (5-year PFS: ABC, 55% vs GCB, 85%; LSM: ABC, 28% vs GCB, 0%). ABC lymphomas were mainly MCD class, showing a high prevalence of MYD88 (74%) and CD79B (35%) mutations compared with GCB lymphomas (MYD88 23%; CD79B 10%) (P < .01). The ABC subtype frequently displayed cMYC/BCL2 coexpression (76% vs 18% GCB; P < .001) and HLA-II loss (48% vs 10% GCB; P < .001). PD-L1 expression and copy-number alterations were rare. All lymphomas were Epstein-Barr virus-negative. Our data suggest molecular profiling as a potent tool for detecting prognostic subgroups in PSDLBCL, exposing links to known relapse/dissemination sites. The ABC subgroup's MCD genetic features, shared with lymphomas at other nonprofessional lymphoid sites, make them potential candidates for targeted B-cell and toll-like receptor signaling therapy.
Collapse
Affiliation(s)
- Patrick R. G. Eriksen
- Department of Otorhinolaryngology, Head and Neck Surgery and Audiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Fleur de Groot
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Erik Clasen-Linde
- Department of Pathology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Peter de Nully Brown
- Department of Hematology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Ruben de Groen
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Linea C. Melchior
- Department of Pathology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Andrea D. Maier
- Department of Neurosurgery, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Marthe Minderman
- Department of Pathology and Cancer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Joost S. P. Vermaat
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Christian von Buchwald
- Department of Otorhinolaryngology, Head and Neck Surgery and Audiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Steven T. Pals
- Department of Pathology and Cancer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Steffen Heegaard
- Department of Pathology, Eye Section, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
20
|
Tumuluru S, Godfrey JK, Cooper A, Yu J, Chen X, MacNabb BW, Venkataraman G, Zha Y, Pelzer B, Song J, Duns G, Sworder BJ, Bolen C, Penuel E, Postovalova E, Kotlov N, Bagaev A, Fowler N, Smith SM, Alizadeh AA, Steidl C, Kline J. Integrative genomic analysis identifies unique immune environments associated with immunotherapy response in diffuse large B cell lymphoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.17.576100. [PMID: 38328071 PMCID: PMC10849512 DOI: 10.1101/2024.01.17.576100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Most diffuse large B-cell lymphoma (DLBCL) patients treated with bispecific antibodies (BsAb) or chimeric antigen receptor (CAR) T cells fail to achieve durable treatment responses, underscoring the need for a deeper understanding of mechanisms that regulate the immune environment and response to treatment. Here, an integrative, multi-omic approach was employed to characterize DLBCL immune environments, which effectively segregated DLBCLs into four quadrants - termed DLBCL-immune quadrants (IQ) - defined by cell-of-origin and immune-related gene set expression scores. Recurrent genomic alterations were enriched in each IQ, suggesting that lymphoma cell-intrinsic alterations contribute to orchestrating unique DLBCL immune environments. In relapsed/refractory DLBCL patients, DLBCL-IQ assignment correlated significantly with clinical benefit with the CD20 x CD3 BsAb, mosunetuzumab, but not with CD19-directed CAR T cells. DLBCL-IQ provides a new framework to conceptualize the DLBCL immune landscape and uncovers the differential impact of the endogenous immune environment on outcomes to BsAb and CAR T cell treatment.
Collapse
|
21
|
Cho SF, Yeh TJ, Wang HC, Du JS, Gau YC, Lin YY, Chuang TM, Liu YC, Hsiao HH, Moi SH. Prognostic mutation signature would serve as a potential prognostic predictor in patients with diffuse large B-cell lymphoma. Sci Rep 2024; 14:6161. [PMID: 38485750 PMCID: PMC10940711 DOI: 10.1038/s41598-024-56583-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/08/2024] [Indexed: 03/18/2024] Open
Abstract
The present study aimed to elucidate the prognostic mutation signature (PMS) associated with long-term survival in a diffuse large B-cell lymphoma (DLBCL) cohort. All data including derivation and validation cohorts were retrospectively retrieved from The Cancer Genome Atlas (TCGA) database and whole-exome sequencing (WES) data. The Lasso Cox regression analysis was used to construct the PMS based on WES data, and the PMS was determined using the area under the receiver operating curve (AUC). The predictive performance of eligible PMS was analyzed by time-dependent receiver operating curve (ROC) analyses. After the initial evaluation, a PMS composed of 94 PFS-related genes was constructed. Notably, this constructed PMS accurately predicted the 12-, 36-, and 60-month PFS, with AUC values of 0.982, 0.983, and 0.987, respectively. A higher level of PMS was closely linked to a significantly worse PFS, regardless of the molecular subtype. Further evaluation by forest plot revealed incorporation of international prognostic index or tumor mutational burden into PMS increased the prediction capability for PFS. The drug-gene interaction and pathway exploration revealed the PFS-related genes were associated with DNA damage, TP53, apoptosis, and immune cell functions. In conclusion, this study utilizing a high throughput genetic approach demonstrated that the PMS could serve as a prognostic predictor in DLBCL patients. Furthermore, the identification of the key signaling pathways for disease progression also provides information for further investigation to gain more insight into novel drug-resistant mechanisms.
Collapse
Affiliation(s)
- Shih-Feng Cho
- Division of Hematology & Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Tsung-Jang Yeh
- Division of Hematology & Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Hui-Ching Wang
- Division of Hematology & Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Jeng-Shiun Du
- Division of Hematology & Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Yuh-Ching Gau
- Division of Hematology & Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Yu-Yin Lin
- Health Management Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Tzer-Ming Chuang
- Division of Hematology & Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Yi-Chang Liu
- Division of Hematology & Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Hui-Hua Hsiao
- Division of Hematology & Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Sin-Hua Moi
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| |
Collapse
|
22
|
Munoz J, Deshpande A, Rimsza L, Nowakowski GS, Kurzrock R. Navigating between Scylla and Charybdis: A roadmap to do better than Pola-RCHP in DLBCL. Cancer Treat Rev 2024; 124:102691. [PMID: 38310754 DOI: 10.1016/j.ctrv.2024.102691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 02/06/2024]
Abstract
In treating diffuse large B-cell lymphoma (DLBCL), oncologists have traditionally relied on the chemotherapy backbone of R-CHOP as standard of care. The two dangers that the hematologist must navigate between are the aggressive disease (Charybdis that in the absence of therapy systematically destroys all the ships) and the toxicity of the therapies (Scylla with its six monstrous heads that devours six crew members at a time), and hematologists have to navigate very carefully between both. Therefore, three different strategies were employed with the goal of improving cure rates: de-escalating regimens, escalating regimens, and replacement strategies. With a replacement strategy, a breakthrough in treatment was identified with polatuzumab vedotin (anti-CD79B antibody/drug conjugate) plus R-CHP. However, this regimen still did not achieve the elusive universal cure rate. Fortunately, advances in genomic and molecular technologies have allowed for an improved understanding of the heterogenous molecular nature of the disease to help develop and guide more targeted, precise, and individualized therapies. Additionally, new pharmaceutical technologies have led to the development of novel cellular therapies, such as chimeric antigen receptor (CAR) T-cell therapy, that could be more effective, while maintaining an acceptable safety profile. Thus, we aim to highlight the challenges of DLBCL therapy as well as the need to address therapeutic regimens eventually no longer tethered to a chemotherapy backbone. In the intersection of artificial intelligence and multi-omics (genomics, epigenomics, transcriptomics, proteomics, metabolomics), we propose the need to analyze multidimensional biologic datato launch a decisive attack against DLBCL in a targeted and individualized fashion.
Collapse
Affiliation(s)
- Javier Munoz
- Department of Hematology, Mayo Clinic Arizona, Phoenix, AZ, USA
| | | | - Lisa Rimsza
- Department of Pathology, Mayo Clinic Arizona, Phoenix, AZ, USA
| | - Grzegorz S Nowakowski
- Department of Internal Medicine, Division of Hematology, Mayo Clinic College of Medicine and Mayo Foundation, Rochester, MN, USA
| | - Razelle Kurzrock
- Medical College of Wisconsin, Milwaukee, WI, USA; WIN Consortium, Paris, France; University of Nebraska, Omaha, Nebraska, USA
| |
Collapse
|
23
|
Wada F, Kamijo K, Shimomura Y, Yamashita D, Hara S, Ishikawa T. PD-1 expression on tumour-infiltrating cells is a prognostic factor for relapsed or refractory diffuse large B-cell lymphoma. Immunology 2024; 171:224-234. [PMID: 37904615 DOI: 10.1111/imm.13711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 10/09/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND The tumour microenvironment (TME), which is modulated after immune-chemotherapy, is involved in tumour growth and metastasis. Programmed cell death 1 (PD-1) expressed on tumour-infiltrating non-malignant cells plays an important role in the TME through the PD-1/programmed cell death ligand 1 (PD-L1) signalling pathway. However, its impact in patients with relapsed or refractory (R/R) diffuse large B-cell lymphoma (DLBCL) remains unclear. METHODS We conducted a retrospective study using tissue samples at relapse for patients with R/R DLBCL (n = 45) and evaluated the clinical impact of PD-1 expression on tumour-infiltrating non-malignant cells (microenvironmental PD-1, mPD-1). In addition, corresponding 27 samples at diagnosis were analysed to evaluate the changes in PD-1/PD-L1 expression in the TME after chemotherapy. RESULTS Patients with mPD-1+ DLBCL showed significantly better overall survival compared with patients with mPD-1- DLBCL (hazard ratio, 0.30, p = 0.03). Among patients with mPD-1- DLBCL, those positive for neoplastic or microenvironmental PD-L1 (nPD-L1+ or mPD-L1+ ) showed significantly worse outcomes. Microenvironmental PD-1 and PD-L1 expression has high correlation at relapse, although none was found at diagnosis. CONCLUSION We determined the clinical impact of microenvironmental PD-1 expression and its relationship with neoplastic or microenvironmental expression of PD-L1 in patients with R/R DLBCL. The expression of PD-1 and PD-L1 in the TME dramatically changes during the chemotherapy. Therefore, evaluating TME at relapse, not at diagnosis is useful to predict the outcomes of R/R DLBCL patients.
Collapse
Affiliation(s)
- Fumiya Wada
- Department of Hematology, Kobe City Medical Center General Hospital, Kobe, Japan
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kimimori Kamijo
- Department of Hematology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Yoshimitsu Shimomura
- Department of Hematology, Kobe City Medical Center General Hospital, Kobe, Japan
- Department of Environmental Medicine and Population Science, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Daisuke Yamashita
- Department of Pathology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Shigeo Hara
- Department of Pathology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Takayuki Ishikawa
- Department of Hematology, Kobe City Medical Center General Hospital, Kobe, Japan
| |
Collapse
|
24
|
Cooper A, Tumuluru S, Kissick K, Venkataraman G, Song JY, Lytle A, Duns G, Yu J, Kotlov N, Bagaev A, Hodkinson B, Srinivasan S, Smith SM, Scott DW, Steidl C, Godfrey JK, Kline J. CD5 Gene Signature Identifies Diffuse Large B-Cell Lymphomas Sensitive to Bruton's Tyrosine Kinase Inhibition. J Clin Oncol 2024; 42:467-480. [PMID: 38079587 DOI: 10.1200/jco.23.01574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/29/2023] [Accepted: 09/13/2023] [Indexed: 01/31/2024] Open
Abstract
PURPOSE A genetic classifier termed LymphGen accurately identifies diffuse large B-cell lymphoma (DLBCL) subtypes vulnerable to Bruton's tyrosine kinase inhibitors (BTKis), but is challenging to implement in the clinic and fails to capture all DLBCLs that benefit from BTKi-based therapy. Here, we developed a novel CD5 gene expression signature as a biomarker of response to BTKi-based therapy in DLBCL. METHODS CD5 immunohistochemistry (IHC) was performed on 404 DLBCLs to identify CD5 IHC+ and CD5 IHC- cases, which were subsequently characterized at the molecular level through mutational and transcriptional analyses. A 60-gene CD5 gene expression signature (CD5sig) was constructed using genes differentially expressed between CD5 IHC+ and CD5 IHC- non-germinal center B-cell-like (non-GCB DLBCL) DLBCLs. This CD5sig was applied to external DLBCL data sets, including pretreatment biopsies from patients enrolled in the PHOENIX study (n = 584) to define the extent to which the CD5sig could identify non-GCB DLBCLs that benefited from the addition of ibrutinib to rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP). RESULTS CD5 expression was observed in 12% of non-GCB DLBCLs. CD5+ DLBCLs displayed transcriptional features of B-cell receptor (BCR) activation and were enriched for BCR-activating mutations known to correlate with BTKi sensitivity. However, most CD5+ DLBCLs lacked canonical BCR-activating mutations or were LymphGen-unclassifiable (LymphGen-Other). The CD5sig recapitulated these findings in multiple independent data sets, indicating its utility in identifying DLBCLs with genetic and nongenetic bases for BCR dependence. Supporting this notion, CD5sig+ DLBCLs derived a selective survival advantage from the addition of ibrutinib to R-CHOP in the PHOENIX study, independent of LymphGen classification. CONCLUSION CD5sig is a useful biomarker to identify DLBCLs vulnerable to BTKi-based therapies and complements current biomarker approaches by identifying DLBCLs with genetic and nongenetic bases for BTKi sensitivity.
Collapse
Affiliation(s)
- Alan Cooper
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL
| | - Sravya Tumuluru
- Committee on Cancer Biology, University of Chicago, Chicago, IL
| | - Kyle Kissick
- Department of Pathology, University of Chicago, Chicago, IL
| | | | - Joo Y Song
- Department of Pathology, City of Hope, Duarte, CA
| | - Andrew Lytle
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, BC
| | - Gerben Duns
- Lymphoid Cancer Research, BC Cancer Agency, Vancouver, BC, Canada
| | - Jovian Yu
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL
| | | | | | - Brendan Hodkinson
- Oncology Translational Research, Janssen Research & Development, Spring House, PA
| | - Srimathi Srinivasan
- Oncology Translational Research, Janssen Research & Development, Lower Gwynedd Township, PA
| | - Sonali M Smith
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL
| | - David W Scott
- Lymphoid Cancer Research, BC Cancer Agency, Vancouver, BC, Canada
| | - Christian Steidl
- Lymphoid Cancer Research, BC Cancer Agency, Vancouver, BC, Canada
| | - James K Godfrey
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope, Duarte, CA
| | - Justin Kline
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL
- Committee on Cancer Biology, University of Chicago, Chicago, IL
| |
Collapse
|
25
|
Deng T, Zhang S, Xiao M, Gu J, Huang L, Zhou X. A single-centre, real-world study of BTK inhibitors for the initial treatment of MYD88 mut /CD79B mut diffuse large B-cell lymphoma. Cancer Med 2024; 13:e7005. [PMID: 38457222 PMCID: PMC10923040 DOI: 10.1002/cam4.7005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 01/20/2024] [Accepted: 01/31/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND MCD (MYD88L265P /CD79Bmut ) diffuse large B-cell lymphoma has a poor prognosis. There is no published clinical research conclusion regarding zanubrutinib or orelabrutinib for the initial treatment of MCD DLBCL. AIMS This study aimed to analyse the efficacy and safety of Bruton's tyrosine kinase inhibitor (BTKi) (zanubrutinib or orelabrutinib) therapy for newly diagnosed DLBCL patients with MYD88mut and/or CD79Bmut . MATERIALS AND METHODS Twenty-three newly diagnosed DLBCL patients with MYD88mut and/or CD79Bmut from June 2020 to June 2022 received BTKi combined with rituximab plus cyclophosphamide, doxorubicin, vincristine and prednisone (R-CHOP) or rituximab + lenalidomide (R2 ). A control group of 17 patients with MYD88mut and/or CD79Bmut DLBCL who received the standard R-CHOP therapy was also assessed. We retrospectively analysed clinical characteristics, safety, overall response rate (ORR), complete response (CR) rate and progression-free survival (PFS) of the two groups. RESULTS The main clinical features were a high International Prognostic Index (IPI) score (≥3, 22/40, 55%) and a high rate of extranodal involvement (27/40,67.5%). Among the 23 DLBCL patients, 18 received BTKi + R-CHOP, and five elderly DLBCL patients were treated with BTKi + R2 . Compared with those in the control group (ORR 70.6%, CRR 52.9%, 1-year PFS rate 41.2%), improved ORR, CRR and PFS results were observed in the BTKi + R-CHOP group (100%, 94.4% and 88.9%, p = 0.019, 0.007, and 0.0001). In subgroup analyses based on genetic subtypes, cell origin, dual expression or IPI score, patients in the BTKi + R-CHOP group had better PFS than patients in the control group. In the BTKi + R-CHOP group, no significant difference was found in ORR, CRR and PFS based on subtype analysis, while BTKi-type subgroups exhibited statistically significant differences in 1-year PFS (p = 0.028). There were no significant differences in grade 3-4 haematological toxicity (p = 1) and grade 3-4 non-haematological toxicity (p = 0.49) between the BTKi + R-CHOP and R-CHOP treatment groups. In the BTKi + R2 group, the ORR was 100%, the CRR was 80%, and the 1-year PFS rate was 80%. The incidences of grade 3-4 haematologic toxicity and non-haematological toxicity were both 40%. No bleeding or cardiovascular events of grade 3 or higher occurred in any patients. DISCUSSION The efficacy of BTKi combined with R-CHOP was similar to previous reports, which was significantly better than R-CHOP alone. It is necessary to fully consider that 14 patients in the BTKi + R-CHOP group received a BTKi as maintenance therapy when evaluating efficacy. Meanwhile, the addition of a BTKi may improve the prognosis of non-GCB, DEL or high-IPI-score DLBCL patients with MYD88mut and/or CD79Bmut . In our study, five elderly DLBCL patients with MYD88mut and/or CD79Bmut were achieved better ORR, CRR, PFS than the historical data of R-miniCHOP treatment and Ibrutinib + R2 treatment. However, the efficacy and benefit of BTKis for this type of DLBCL need to be further analysed using a larger sample size. CONCLUSION This study suggests that newly diagnosed DLBCL patients with MYD88mut and/or CD79Bmut may benefit from BTKis according to real-world clinical data.
Collapse
Affiliation(s)
- Ting Deng
- Department of HematologyChongqing Fifth People's HospitalChongqingPR China
| | - Shiyuan Zhang
- Department of HematologyTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiPR China
| | - Min Xiao
- Department of HematologyTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiPR China
| | - Jia Gu
- Department of HematologyTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiPR China
| | - Liang Huang
- Department of HematologyTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiPR China
| | - Xiaoxi Zhou
- Department of HematologyTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiPR China
| |
Collapse
|
26
|
Zhong Q, Chen H, Chen D, Qin Y, He X, Yang Y, Yang J, Liu P, Zhou S, Yang S, Zhou Y, Tang L, Chen C, Shi Y. Development and validation of a novel risk stratification model and a survival rate calculator for diffuse large B-cell lymphoma in the rituximab era: a multi-institutional cohort study. Ann Hematol 2024; 103:211-226. [PMID: 37861735 DOI: 10.1007/s00277-023-05491-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 09/30/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND This study aimed to develop and validate a novel risk stratification model and a web-based survival rate calculator to improve discriminative and predictive accuracy for diffuse large B-cell lymphoma (DLBCL) in the rituximab era. METHODS We retrospectively collected pre-treatment data from 873 primary DLBCL patients who received R-CHOP-based immunochemotherapy regimens at the Cancer Hospital, Chinese Academy of Medical Sciences, from January 1, 2005, to December 31, 2018. An independent cohort of 175 DLBCL patients from Fujian Cancer Hospital was used for external validation. FINDINGS Age, ECOG PS, number of extranodal sites, Ann Arbor stage, bulky disease, and LDH levels were screened to develop the nomogram and web-based survival rate calculator. The C-index of the nomogram in the training, internal validation, and external validation cohorts was 0.761, 0.758, and 0.768, respectively. The risk stratification model generated based on the nomogram effectively stratified patients into three distinct risk groups. K-M survival curves demonstrated that the novel risk stratification model exhibited a superior level of predictive accuracy compared to IPI, R-IPI, and NCCN-IPI both in training and two validation cohorts. Additionally, the area under the curve (AUC) value of the novel model (0.763) for predicting 5-year overall survival rates was higher than those of IPI (0.749), R-IPI (0.725), and NCCN-IPI (0.727) in the training cohort. Similar results were observed in both internal and external validation cohort. CONCLUSIONS In conclusion, we have successfully developed and validated a novel risk stratification model and a web-based survival rate calculator that demonstrated superior discriminative and predictive accuracy compared to IPI, R-IPI, and NCCN-IPI in the rituximab era.
Collapse
Affiliation(s)
- Qiaofeng Zhong
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian Provincial Key Laboratory of Translational Cancer Medicine, 420 Fuma Road, Fuzhou, 350014, China
- Interdisciplinary Institute for Medical Engineering, Fuzhou University, Fuzhou, China
| | - Haizhu Chen
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Daoguang Chen
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, 420 Fuma Road, Fuzhou, 350014, China
| | - Yan Qin
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Xiaohui He
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Yu Yang
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, 420 Fuma Road, Fuzhou, 350014, China
| | - Jianliang Yang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Peng Liu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Shengyu Zhou
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Sheng Yang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Yu Zhou
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Le Tang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Chuanben Chen
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, 420 Fuma Road, Fuzhou, 350014, China.
| | - Yuankai Shi
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
27
|
Ramsower CA, Rosenthal A, Robetorye RS, Mwangi R, Maurer M, Villa D, McDonnell T, Feldman A, Cohen JB, Habermann T, Campo E, Clot G, Bühler MM, Kulis M, Martin-Subero JI, Giné E, Cook JR, Hill B, Raess PW, Beiske KH, Reichart A, Hartmann S, Holte H, Scott D, Rimsza L. Evaluation of clinical parameters and biomarkers in older, untreated mantle cell lymphoma patients receiving bendamustine-rituximab. Br J Haematol 2024; 204:160-170. [PMID: 37881141 PMCID: PMC11315408 DOI: 10.1111/bjh.19153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/27/2023]
Abstract
Mantle cell lymphoma (MCL) is clinically and biologically heterogeneous. While various prognostic features have been proposed, none currently impact therapy selection, particularly in older patients, for whom treatment is primarily dictated by age and comorbidities. Herein, we undertook a comprehensive comparison of clinicopathological features in a cohort of patients 60 years and older, uniformly treated with bendamustine and rituximab, with a median survival of >8 years. The strongest prognostic indicators in this cohort were a high-risk call by a simplified MCL international prognostic index (s-MIPI) (HR: 3.32, 95% CI: 1.65-6.68 compared to low risk), a high-risk call by MCL35 (HR: 10.34, 95% CI: 2.37-45.20 compared to low risk) and blastoid cytology (HR: 4.21, 95% CR: 1.92-9.22 compared to classic). Patients called high risk by both the s-MIPI and MCL35 had the most dismal prognosis (HR: 11.58, 95% CI: 4.10-32.72), while those with high risk by either had a moderate but clinically relevant prognosis (HR: 2.95, 95% CI: 1.49-5.82). A robust assay to assess proliferation, such as MCL35, along with stringent guidelines for cytological evaluation of MCL, in combination with MIPI, may be a strong path to risk-stratify older MCL patients in future clinical trials.
Collapse
Affiliation(s)
| | - Allison Rosenthal
- Division of Hematology and Medical Oncology, Mayo Clinic, Arizona, Phoenix, USA
| | - Ryan S Robetorye
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Phoenix, Arizona, USA
| | - Raphael Mwangi
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Matthew Maurer
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Diego Villa
- Division of Medical Oncology, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Tim McDonnell
- Department of Hematopathology, MD Anderson Cancer Center, Houston, Texas, USA
| | - Andrew Feldman
- Division of Hematopathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Jonathon B Cohen
- Department of Hematology and Medical Oncology, Emory University-Winship Cancer Institute, Atlanta, Georgia, USA
| | | | - Elias Campo
- Lymphoid Neoplasms Program, Institute for Biomedical Research August Pi I Sunyer, Barcelona, Spain
- Laboratory of Pathology, Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain
| | - Guillem Clot
- Lymphoid Neoplasms Program, Institute for Biomedical Research August Pi I Sunyer, Barcelona, Spain
| | - Marco M Bühler
- Lymphoid Neoplasms Program, Institute for Biomedical Research August Pi I Sunyer, Barcelona, Spain
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zürich, Switzerland
| | - Marta Kulis
- Lymphoid Neoplasms Program, Institute for Biomedical Research August Pi I Sunyer, Barcelona, Spain
| | - Jose Ignacio Martin-Subero
- Lymphoid Neoplasms Program, Institute for Biomedical Research August Pi I Sunyer, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, ICREA, Barcelona, Spain
| | - Eva Giné
- Department of Hematology, Hospital Clinic of the University of Barcelona, Barcelona, Spain
| | - James R Cook
- Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Brian Hill
- Department of Hematology and Medical Oncology, Cleveland Clinic-Taussig Cancer Institute, Cleveland, Ohio, USA
| | - Philipp W Raess
- Department of Pathology and Laboratory Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Klaus H Beiske
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Alexander Reichart
- Hematology and Oncology, Medical Office of Dres. Brudler/Reichart, Ausburg, Germany
| | - Sylvia Hartmann
- Dr. Senckenberg Institute of Pathology, Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Harald Holte
- Department of Oncology, Oslo University Hospital, Oslo, Norway
- KG Jebsen Center for B Cell Malignancies, Oslo, Norway
| | - David Scott
- Department of Lymphoid Cancer Research, BC Cancer Centre, Vancouver, British Columbia, Canada
| | - Lisa Rimsza
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Phoenix, Arizona, USA
| |
Collapse
|
28
|
Wei R, Wu Y, Jiang S, Zhang A, Zhang L, Liu L, Wang Y, Zhang M, Mei H, Liu F, Xia L, Cui G, Fang J. Efficacy and safety of Orelabrutinib-based regimens in diffuse large B-cell lymphoma: a single-center retrospective analysis. Clin Exp Med 2023; 23:4609-4621. [PMID: 37925380 PMCID: PMC10725366 DOI: 10.1007/s10238-023-01231-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/24/2023] [Indexed: 11/06/2023]
Abstract
Currently, combining chemotherapy with Bruton tyrosine kinase inhibitors (BTKi) has demonstrated significant effectiveness in treating patients with diffuse large B-cell lymphoma. Orelabrutinib is a second-generation BTK inhibitor, and presently, there have been few reports of Orelabrutinib being used to treat DLBCL. We conducted a retrospective investigation to explore the safety and efficacy of Orelabrutinib in combination with chemotherapy or immunotherapy. The study comprised 19 patients with a median age of 61 years. The overall response rate (ORR) was 89.5% with a complete response (CR) rate of 73.7% and a partial response rate (PR) of 15.8%. The estimated 2-year overall survival (OS) and progression-free survival (PFS) rates were 78.6% (95%CI, 59.8%-100%) and 72.2% (95% CI, 52.4%-99.6%), respectively, with a median follow-up time of 11 months (range 2-24). The most prevalent grade 3 or 4 adverse events (AEs), neutropenia (52.6%), anemia (36.8%), thrombocytopenia (26.3%), febrile neutropenia (26.3%), and lung infection (10.5%), were the most common. Our results reveal that Orelabrutinib is an effective therapy for DLBCL patients. Furthermore, our first investigation of the Orelabrutinib application lays a foundation for larger retrospective studies.
Collapse
Affiliation(s)
- Ruowen Wei
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Yingying Wu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Shan Jiang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Ao Zhang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Lu Zhang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Ling Liu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Yadan Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Min Zhang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Heng Mei
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Fang Liu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Linghui Xia
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Guohui Cui
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Jun Fang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| |
Collapse
|
29
|
Mansoor A, Akhter A, Shabani-Rad MT, Deschenes J, Yilmaz A, Trpkov K, Stewart D. Primary testicular lymphoma demonstrates overexpression of the Wilms tumor 1 gene and different mRNA and miRNA expression profiles compared to nodal diffuse large B-cell lymphoma. Hematol Oncol 2023; 41:828-837. [PMID: 37291944 DOI: 10.1002/hon.3190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 04/30/2023] [Accepted: 05/19/2023] [Indexed: 06/10/2023]
Abstract
Diffuse large B-cell lymphoma (DLBCL) shows a high degree of clinical and biological heterogeneity. Primary testicular lymphoma (PTL) is an extranodal variant of DLBCL associated with a higher risk of recurrence, including contralateral testicles and central nervous system sanctuary sites. Several molecular aberrations, including somatic mutation of MYD88, CD79B, and upregulation of NF-kB, PDL-1, and PDL-2, are thought to contribute to the pathogenesis and poor prognosis of PTL. However, additional biomarkers are needed that may improve the prognosis and help understand the PTL biology and lead to new therapeutic targets. RNA from diagnostic tissue biopsies of the PTL-ABC subtype and matched nodal DLBCL-ABC subtype patients was evaluated by mRNA and miRNA expression. Screening of 730 essential oncogenic genes was performed, and their epigenetic connections were examined using the nCounter PAN-cancer pathway, and Human miRNA assays with the nCounter System (NanoString Technologies). PTL and nodal DLBCL patients were comparable in age, gender, and putative cell of origin (p > 0.05). Wilms tumor 1 (WT1) expression in PTL exceeded that in nodal DLBCL (>6-fold; p = 0.01, FDR <0.01) and WT1 associated pathway genes THBS4, PTPN5, PLA2G2A, and IFNA17 were upregulated in PTL (>2.0-fold, p < 0.01, FDR <0.01). Additionally, miRNAs targeting WT1 (hsa15a-5p, hsa-miR-16-5p, has-miR-361-5p, has-miR-27b-3p, has-miR-199a-5p, has-miR-199b-5p, has-miR-132-3p, and hsa-miR-128-3p) showed higher expression in PTL compared to nodal DLBCL (≥2.0-fold; FDR 0.01). Lower expression of BMP7, LAMB3, GAS1, MMP7, and LAMC2 (>2.0-fold, p < 0.01) was observed in PTL compared to nodal DLBCL. This research revealed higher WT1 expression in PTL relative to nodal DLBCL, suggesting that a specific miRNA subset may target WT1 expression and impact the PI3k/Akt pathway in PTL. Further investigation is needed to explore WT1's biological role in PTL and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Adnan Mansoor
- Department of Pathology & Laboratory Medicine, University of Calgary and Alberta Precision Laboratories (APL), Calgary, Alberta, Canada
| | - Ariz Akhter
- Department of Pathology & Laboratory Medicine, University of Calgary and Alberta Precision Laboratories (APL), Calgary, Alberta, Canada
| | - Meer-Taher Shabani-Rad
- Department of Pathology & Laboratory Medicine, University of Calgary and Alberta Precision Laboratories (APL), Calgary, Alberta, Canada
| | - Jean Deschenes
- Department of Laboratory Medicine & Pathology, University of Alberta, Cross Cancer Institute and Alberta Precision Laboratories (APL), Calgary, Alberta, Canada
| | - Asli Yilmaz
- Department of Pathology & Laboratory Medicine, University of Calgary and Alberta Precision Laboratories (APL), Calgary, Alberta, Canada
| | - Kiril Trpkov
- Department of Pathology & Laboratory Medicine, University of Calgary and Alberta Precision Laboratories (APL), Calgary, Alberta, Canada
| | - Douglas Stewart
- Department of Oncology, University of Calgary, Tom Baker Cancer Centre, Calgary, Alberta, Canada
| |
Collapse
|
30
|
Leich E, Brodtkorb M, Schmidt T, Altenbuchinger M, Lingjærde OC, Lockmer S, Holte H, Nedeva T, Grieb T, Sander B, Sundström C, Spang R, Kimby E, Rosenwald A. Gene expression and copy number profiling of follicular lymphoma biopsies from patients treated with first-line rituximab without chemotherapy. Leuk Lymphoma 2023; 64:1927-1937. [PMID: 37683053 DOI: 10.1080/10428194.2023.2240462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 09/10/2023]
Abstract
The Nordic Lymphoma Study Group has performed two randomized clinical trials with chemotherapy-free first-line treatment (rituximab +/- interferon) in follicular lymphoma (FL), with 73% of patients alive and 38% without any need of chemotherapy after 10.6 years median follow-up. In order to identify predictive markers, that may also serve as therapeutic targets, gene expression- and copy number profiles were obtained from 97 FL patients using whole genome microarrays. Copy number alterations (CNAs) were identified, e.g. by GISTIC. Cox Lasso Regression and Lasso logistic regression were used to determine molecular features predictive of time to next therapy (TTNT). A few molecular changes were associated with TTNT (e.g. increased expression of INPP5B, gains in 12q23/q24), but were not significant after adjusting for multiple testing. Our findings suggest that there are no strong determinants of patient outcome with respect to GE data and CNAs in FL patients treated with a chemotherapy-free regimen (i.e. rituximab +/- interferon).
Collapse
Affiliation(s)
- E Leich
- Institute of Pathology, University of Würzburg, Comprehensive Cancer Center Mainfranken, Würzburg, Germany
| | | | - T Schmidt
- Statistical Bioinformatics, Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - M Altenbuchinger
- Statistical Bioinformatics, Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
- Department of Medical Bioinformatics, University Medical Center Göttingen, Göttingen, Germany
| | - Ole Christian Lingjærde
- Division of Biomedical Informatics, Department of Computer Science, University of Oslo, Norway
| | - S Lockmer
- Division of Hematology, Department of Medicine at Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - H Holte
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - T Nedeva
- Institute of Pathology, University of Würzburg, Comprehensive Cancer Center Mainfranken, Würzburg, Germany
| | - T Grieb
- Institute of Pathology, University of Würzburg, Comprehensive Cancer Center Mainfranken, Würzburg, Germany
| | - B Sander
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
| | - C Sundström
- Department of Pathology, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - R Spang
- Statistical Bioinformatics, Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - E Kimby
- Division of Hematology, Department of Medicine at Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - A Rosenwald
- Institute of Pathology, University of Würzburg, Comprehensive Cancer Center Mainfranken, Würzburg, Germany
| |
Collapse
|
31
|
Tavakkoli M, Barta SK. 2024 Update: Advances in the risk stratification and management of large B-cell lymphoma. Am J Hematol 2023; 98:1791-1805. [PMID: 37647158 DOI: 10.1002/ajh.27075] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/01/2023] [Accepted: 08/14/2023] [Indexed: 09/01/2023]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous disease with varying clinical outcomes. Our understanding of its molecular makeup continues to improve risk stratification, and artificial-intelligence and ctDNA-based analyses have the potential to enhance risk assessment and disease monitoring. R-CHOP and Pola-R-CHP are used in the frontline setting; chimeric antigen receptor therapy (CART) is now the new standard-of-care for most with primary refractory disease; both CART and autologous stem cell transplantation are utilized in the relapsed and refractory setting. In this review, we summarize the classification and management of DLBCL with an emphasis on recent advances in the field.
Collapse
Affiliation(s)
- Montreh Tavakkoli
- Department of Hematology Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stefan K Barta
- Department of Hematology Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
32
|
Rodrigues-Fernandes CI, Martins-Chaves RR, Vitório JG, Duarte-Andrade FF, Pereira TDSF, Soares CD, Moreira VR, Lebron YAR, Santos LVDS, Lange LC, Canuto GAB, Gomes CC, de Macedo AN, Pontes HAR, Burbano RMR, Martins MD, Pires FR, Mesquita RA, Gomez RS, Santos-Silva AR, Lopes MA, Vargas PA, Fonseca FP. The altered metabolic pathways of diffuse large B-cell lymphoma not otherwise specified. Leuk Lymphoma 2023; 64:1771-1781. [PMID: 37462418 DOI: 10.1080/10428194.2023.2234523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 06/27/2023] [Indexed: 11/07/2023]
Abstract
Altered metabolic fingerprints of Diffuse large B-cell lymphoma, not otherwise specified (DLBCL NOS) may offer novel opportunities to identify new biomarkers and improve the understanding of its pathogenesis. This study aimed to investigate the modified metabolic pathways in extranodal, germinal center B-cell (GCB) and non-GCB DLBCL NOS from the head and neck. Formalin-fixed paraffin-embedded (FFPE) tissues from eleven DLBCL NOS classified according to Hans' algorithm using immunohistochemistry, and five normal lymphoid tissues (LT) were analyzed by high-performance liquid chromatography-mass spectrometry-based untargeted metabolomics. Partial Least Squares Discriminant Analysis showed that GCB and non-GCB DLBCL NOS have a distinct metabolomics profile, being the former more similar to normal lymphoid tissues. Metabolite pathway enrichment analysis indicated the following altered pathways: arachidonic acid, tyrosine, xenobiotics, vitamin E metabolism, and vitamin A. Our findings support that GCB and non-GCB DLBCL NOS has a distinct metabolomic profile, in which GCB possibly shares more metabolic similarities with LT than non-GCB DLBCL NOS.
Collapse
Affiliation(s)
- Carla Isabelly Rodrigues-Fernandes
- Department of Oral Diagnosis, Semiology and Pathology Areas, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Roberta Rayra Martins-Chaves
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Jéssica Gardone Vitório
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Filipe Fideles Duarte-Andrade
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Thaís Dos Santos Fontes Pereira
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | | | - Victor Rezende Moreira
- Department of Sanitation and Environmental Engineering, School of Engineering, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Yuri Abner Rocha Lebron
- Department of Sanitation and Environmental Engineering, School of Engineering, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Lucilaine Valéria de Souza Santos
- Department of Sanitation and Environmental Engineering, School of Engineering, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Liséte Celina Lange
- Department of Sanitation and Environmental Engineering, School of Engineering, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Gisele André Baptista Canuto
- Department of Analytical Chemistry, Institute of Chemistry, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | - Carolina Cavaliéri Gomes
- Department of Pathology, Biological Sciences Institute, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Adriana Nori de Macedo
- Department of Chemistry, Exact Sciences Institute, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Hélder Antônio Rebelo Pontes
- Service of Oral Pathology, João de Barros Barreto University Hospital, Federal University of Pará (UFPA), Belém, Brazil
| | | | - Manoela Domingues Martins
- Department of Pathology, School of Dentistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Fábio Ramôa Pires
- Oral Pathology, Dental School, Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil
| | - Ricardo Alves Mesquita
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Ricardo Santiago Gomez
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Alan Roger Santos-Silva
- Department of Oral Diagnosis, Semiology and Pathology Areas, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Márcio Ajudarte Lopes
- Department of Oral Diagnosis, Semiology and Pathology Areas, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Pablo Agustin Vargas
- Department of Oral Diagnosis, Semiology and Pathology Areas, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Felipe Paiva Fonseca
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| |
Collapse
|
33
|
Decruyenaere P, Giuili E, Verniers K, Anckaert J, De Grove K, Van der Linden M, Deeren D, Van Dorpe J, Offner F, Vandesompele J. Exploring the cell-free total RNA transcriptome in diffuse large B-cell lymphoma and primary mediastinal B-cell lymphoma patients as biomarker source in blood plasma liquid biopsies. Front Oncol 2023; 13:1221471. [PMID: 37954086 PMCID: PMC10634215 DOI: 10.3389/fonc.2023.1221471] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/18/2023] [Indexed: 11/14/2023] Open
Abstract
Introduction Diffuse large B-cell lymphoma (DLBCL) and primary mediastinal B-cell lymphoma (PMBCL) are aggressive histological subtypes of non-Hodgkin's lymphoma. Improved understanding of the underlying molecular pathogenesis has led to new classification and risk stratification tools, including the development of cell-free biomarkers through liquid biopsies. The goal of this study was to investigate cell-free RNA (cfRNA) biomarkers in DLBCL and PMBCL patients. Materials and methods Blood plasma samples (n=168) and matched diagnostic formalin-fixed paraffin-embedded (FFPE) tissue samples (n=69) of DLBCL patients, PMBCL patients and healthy controls were collected between 2016-2021. Plasma samples were collected at diagnosis, at interim evaluation, after treatment, and in case of refractory or relapsed disease. RNA was extracted from 200 µl plasma using the miRNeasy serum/plasma kit and from FFPE tissue using the miRNeasy FFPE kit. RNA was subsequently sequenced on a NovaSeq 6000 instrument using the SMARTer Stranded Total RNA-seq pico v3 library preparation kit. Results Higher cfRNA concentrations were demonstrated in lymphoma patients compared to healthy controls. A large number of differentially abundant genes were identified between the cell-free transcriptomes of DLBCL patients, PMBCL patients, and healthy controls. Overlap analyses with matched FFPE samples showed that blood plasma has a unique transcriptomic profile that significantly differs from that of the tumor tissue. As a good concordance between tissue-derived gene expression and the immunohistochemistry Hans algorithm for cell-of-origin (COO) classification was demonstrated in the FFPE samples, but not in the plasma samples, a 64-gene cfRNA classifier was developed that can accurately determine COO in plasma. High plasma levels of a 9-gene signature (BECN1, PRKCB, COPA, TSC22D3, MAP2K3, UQCRHL, PTMAP4, EHD1, NAP1L1 pseudogene) and a 5-gene signature (FTH1P7, PTMAP4, ATF4, FTH1P8, ARMC7) were significantly associated with inferior progression-free and overall survival in DLBCL patients, respectively, independent of the NCCN-IPI score. Conclusion Total RNA sequencing of blood plasma samples allows the analysis of the cell-free transcriptome in DLBCL and PMBCL patients and demonstrates its unexplored potential in identifying diagnostic, cell-of-origin, and prognostic cfRNA biomarkers.
Collapse
Affiliation(s)
- Philippe Decruyenaere
- Department of Hematology, Ghent University Hospital, Ghent, Belgium
- OncoRNALab, Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Edoardo Giuili
- Interuniversity Institute of Bioinformatics in Brussels (IB), Free University of Brussels, Brussels, Belgium
- Department of Biotechnology and Pharmacy, University of Bologna, Bologna, Italy
| | - Kimberly Verniers
- OncoRNALab, Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Jasper Anckaert
- OncoRNALab, Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Katrien De Grove
- Department of Hematology, Ghent University Hospital, Ghent, Belgium
| | | | - Dries Deeren
- Department of Hematology, Algemeen Ziekenhuis (AZ) Delta Roeselare-Menen, Roeselare, Belgium
| | - Jo Van Dorpe
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | - Fritz Offner
- Department of Hematology, Ghent University Hospital, Ghent, Belgium
| | - Jo Vandesompele
- OncoRNALab, Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
34
|
Tavberidze N, Bennett DD, Matson DR. Diffuse Large B-Cell Lymphoma, Not Otherwise Specified (DLBCL NOS) Presenting as Multiple Subcutaneous Nodules: An Unusual Cutaneous Presentation of Systemic Disease. Case Rep Pathol 2023; 2023:2960965. [PMID: 37822715 PMCID: PMC10564572 DOI: 10.1155/2023/2960965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/05/2023] [Accepted: 09/22/2023] [Indexed: 10/13/2023] Open
Abstract
Diffuse large B-cell lymphoma, not otherwise specified (DLBCL NOS) is the most common lymphoid malignancy in the Western world and classically presents as a rapidly enlarging nodal or extranodal mass. Cutaneous involvement by systemic DLBCL NOS is an infrequent clinical presentation, encountered in only 1.5-3.5% of cases, while disseminated cutaneous disease with multiple subcutaneous nodules at the time of diagnosis is unusual and can present a diagnostic challenge. The differential diagnosis when encountering a high-grade B-cell malignancy at a cutaneous site is broad and includes primary cutaneous follicle center lymphoma (PCFCL), primary cutaneous diffuse large B-cell lymphoma, leg type (PCDLBCL-LT), high-grade B-cell lymphoma with MYC and BCL2 rearrangements (HGBCL-MYC/BCL2), and other potential entities which must all be carefully considered before rendering a final diagnosis. In this report, we describe the case of a 69-year-old man who was seen at our hospital due to generalized weakness and was found to have multiple subcutaneous nodules representing disseminated DLBCL NOS. The case was complicated by concurrent monoclonal B-cell lymphocytosis involving the bone marrow.
Collapse
Affiliation(s)
- Nika Tavberidze
- Departement of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Daniel D. Bennett
- Department of Dermatology, University of Wisconsin-Madison, Madison, WI, USA
| | - Daniel R. Matson
- Departement of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
35
|
Oien DB, Sharma S, Hattersley MM, DuPont M, Criscione SW, Prickett L, Goeppert AU, Drew L, Yao Y, Zhang J, Chan HM. BET inhibition targets ABC-DLBCL constitutive B-cell receptor signaling through PAX5. Blood Adv 2023; 7:5108-5121. [PMID: 37184294 PMCID: PMC10477446 DOI: 10.1182/bloodadvances.2022009257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/06/2023] [Accepted: 05/04/2023] [Indexed: 05/16/2023] Open
Abstract
B-cell receptor (BCR) signaling is essential for the diffuse large B-cell lymphoma (DLBCL) subtype that originates from activated B-cells (ABCs). ABC-DLBCL cells are sensitive to Bruton tyrosine kinase intervention. However, patients with relapsed or refractory ABC-DLBCL had overall response rates from 33% to 37% for Bruton tyrosine kinase inhibitors, suggesting the evaluation of combination-based treatment for improved efficacy. We investigated the efficacy and mechanism of the bromodomain and extraterminal motif (BET) inhibitor AZD5153 combined with the Bruton tyrosine kinase inhibitor acalabrutinib in ABC-DLBCL preclinical models. AZD5153 is a bivalent BET inhibitor that simultaneously engages the 2 bromodomains of BRD4. Adding AZD5153 to acalabrutinib demonstrated combination benefits in ABC-DLBCL cell line and patient-derived xenograft models. Differential expression analyses revealed PAX5 transcriptional activity as a novel downstream effector of this drug combination. PAX5 is a transcription factor for BCR signaling genes and may be critical for perpetually active BCR signaling in ABC-DLBCL. Our analyses further indicated significant alterations in BCR, RELB/alternative NF-κB, and toll-like receptor/interferon signaling. Validation of these results mapped a positive-feedback signaling loop regulated by PAX5. We demonstrated that AZD5153 decreased PAX5 expression, whereas acalabrutinib disruption of BCR signaling inhibited PAX5 activation. Furthermore, several interferon levels were decreased by AZD5153 and acalabrutinib in tumors. Adding interferon-beta1 (IFNβ1) to cells treated with acalabrutinib partially rescued PAX5 activation. Our results demonstrate that AZD5153 enhances the efficacy of acalabrutinib through PAX5 and BCR mechanisms that are critical for ABC-DLBCL.
Collapse
Affiliation(s)
- Derek B. Oien
- Research and Early Development, Oncology R&D, AstraZeneca, Boston, MA
| | - Samanta Sharma
- Research and Early Development, Oncology R&D, AstraZeneca, Boston, MA
| | | | - Michelle DuPont
- Research and Early Development, Oncology R&D, AstraZeneca, Boston, MA
| | | | - Laura Prickett
- Research and Early Development, Oncology R&D, AstraZeneca, Boston, MA
| | - Anne U. Goeppert
- Research and Early Development, Oncology R&D, AstraZeneca, Boston, MA
| | - Lisa Drew
- Research and Early Development, Oncology R&D, AstraZeneca, Boston, MA
| | - Yi Yao
- Research and Early Development, Oncology R&D, AstraZeneca, Boston, MA
| | - Jingwen Zhang
- Research and Early Development, Oncology R&D, AstraZeneca, Boston, MA
| | - Ho Man Chan
- Research and Early Development, Oncology R&D, AstraZeneca, Boston, MA
| |
Collapse
|
36
|
Tripodo C, Bertolazzi G, Cancila V, Morello G, Iannitto E. Pseudotemporal ordering of spatial lymphoid tissue microenvironment profiles trails Unclassified DLBCL at the periphery of the follicle. Front Immunol 2023; 14:1207959. [PMID: 37680642 PMCID: PMC10482233 DOI: 10.3389/fimmu.2023.1207959] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/02/2023] [Indexed: 09/09/2023] Open
Abstract
We have established a pseudotemporal ordering for the transcriptional signatures of distinct microregions within reactive lymphoid tissues, namely germinal center dark zones (DZ), germinal center light zones (LZ), and peri-follicular areas (Peri). By utilizing this pseudotime trajectory derived from the functional microenvironments of DZ, LZ, and Peri, we have ordered the transcriptomes of Diffuse Large B-cell Lymphoma cases. The apex of the resulting pseudotemporal trajectory, which is characterized by enrichment of molecular programs fronted by TNFR signaling and inhibitory immune checkpoint overexpression, intercepts a discrete peri-follicular biology. This observation is associated with DLBCL cases that are enriched in the Unclassified/type-3 COO category, raising questions about the potential extra-GC microenvironment imprint of this peculiar group of cases. This report offers a thought-provoking perspective on the relationship between transcriptional profiling of functional lymphoid tissue microenvironments and the evolving concept of the cell of origin in Diffuse Large B-cell Lymphomas.
Collapse
Affiliation(s)
- Claudio Tripodo
- Tumor Immunology Unit, Department of Sciences for Health Promotion and Mother-Child Care "G. D'Alessandro", University of Palermo, Palermo, Italy
- Histopathology Unit, Institute of Molecular Oncology Foundation (IFOM) ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Giorgio Bertolazzi
- Tumor Immunology Unit, Department of Sciences for Health Promotion and Mother-Child Care "G. D'Alessandro", University of Palermo, Palermo, Italy
- Department of Economics, Business, and Statistics, University of Palermo, Palermo, Italy
| | - Valeria Cancila
- Tumor Immunology Unit, Department of Sciences for Health Promotion and Mother-Child Care "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Gaia Morello
- Tumor Immunology Unit, Department of Sciences for Health Promotion and Mother-Child Care "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Emilio Iannitto
- Tumor Immunology Unit, Department of Sciences for Health Promotion and Mother-Child Care "G. D'Alessandro", University of Palermo, Palermo, Italy
- Department of Oncology, Hematology and Bone Marrow Transplants Unit La Maddalena, Palermo, Italy
| |
Collapse
|
37
|
Geng H, Jia S, Zhang Y, Li J, Yang Q, Zeng L, Zong X, Lu Y, Lu S, Zhou J, Li C, Wu D. Efficacy and safety of zanubrutinib plus R-CHOP in treatment of non-GCB DLBCL with extranodal involvement. Front Immunol 2023; 14:1219167. [PMID: 37671152 PMCID: PMC10476090 DOI: 10.3389/fimmu.2023.1219167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/10/2023] [Indexed: 09/07/2023] Open
Abstract
Introduction Treatment with rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) shows poor response rates in non-germinal center B cell-like (non-GCB) diffuse large B-cell lymphoma (DLBCL) patients with multiple extranodal involvement. This study aims to evaluate anti-tumor activity and safety of zanubrutinib with R-CHOP (ZR-CHOP) in treatment naïve non-GCB DLBCL with extranodal involvement. Methods In this single-arm, phase 2, prospective, single-center study, patients with newly diagnosed non-GCB DLBCL with extranodal involvement enrolled between October 2020 to March 2022 received ZR-CHOP for 6 cycles followed by 2 cycles of maintenance treatment with rituximab and zanubrutinib. The primary endpoint included progression-free survival (PFS) in the intent-to-treat (ITT) population whereas the secondary endpoints included overall response rate (ORR), complete response (CR), and duration of response. Further, next-generation sequencing (NGS) was used for detection of different oncogenic mutations closely related to DLBCL pathogenesis. Results From October 2020 to March 2022, 26 patients were enrolled, and 23 of them were evaluated for efficacy after receiving 3 cycles of ZR-CHOP treatment. 1-year PFS and OS were 80.8% and 88.5% respectively while expected PFS and OS for 2-years are 74.0% and 88.5% respectively with median follow-up of 16.7 months and ORR was 91.3% (CR: 82.61%; PR: 8.70%). Oncogenic mutations closely related to DLBCL pathogenesis were assessed in 20 patients using NGS. B-cell receptor and NF-κB pathway gene mutations were detected in 10 patients, which occurred in MYD88 (7/19), CD79B (4/19), CARD11 (5/19), and TNFAIP3 (2/19). Hematological adverse events (AEs) ≥ grade 3 included neutropenia (50%), thrombocytopenia (23.1%), and anemia (7.7%) whereas non-hematological AEs ≥ grade 3 included pulmonary infection (19.2%). Conclusion ZR-CHOP is safe and effective for treating treatment naïve non-GCB DLBCL patients with extranodal involvement. Clinical Trial Registration Clinicaltrials.gov, NCT04835870.
Collapse
Affiliation(s)
- Hongzhi Geng
- National Clinical Research Center for Hematologic Diseases, Suzhou, China
- Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Sixun Jia
- Department of Hematology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Ying Zhang
- National Clinical Research Center for Hematologic Diseases, Suzhou, China
- Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiaqi Li
- National Clinical Research Center for Hematologic Diseases, Suzhou, China
- Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Suzhou University Medical College, Suzhou, China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Qin Yang
- National Clinical Research Center for Hematologic Diseases, Suzhou, China
- Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Liangyu Zeng
- National Clinical Research Center for Hematologic Diseases, Suzhou, China
- Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiangping Zong
- National Clinical Research Center for Hematologic Diseases, Suzhou, China
- Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Suzhou University Medical College, Suzhou, China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yutong Lu
- National Clinical Research Center for Hematologic Diseases, Suzhou, China
- Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Suzhou University Medical College, Suzhou, China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Shuangzhu Lu
- National Clinical Research Center for Hematologic Diseases, Suzhou, China
- Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Suzhou University Medical College, Suzhou, China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Jin Zhou
- National Clinical Research Center for Hematologic Diseases, Suzhou, China
- Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Suzhou University Medical College, Suzhou, China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Caixia Li
- National Clinical Research Center for Hematologic Diseases, Suzhou, China
- Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Suzhou University Medical College, Suzhou, China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Suzhou, China
- Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Suzhou University Medical College, Suzhou, China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| |
Collapse
|
38
|
Mansoor A, Kamran H, Akhter A, Seno R, Torlakovic EE, Roshan TM, Shabani-Rad MT, Elyamany G, Minoo P, Stewart D. Identification of Potential Therapeutic Targets for Plasmablastic Lymphoma Through Gene Expression Analysis: Insights into RAS and Wnt Signaling Pathways. Mod Pathol 2023; 36:100198. [PMID: 37105495 DOI: 10.1016/j.modpat.2023.100198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/20/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023]
Abstract
Plasmablastic lymphoma (PBL) is a rare and aggressive B-cell lymphoma with overlapping characteristics with diffuse large B-cell lymphoma (DLBCL) and multiple myeloma. Hyperactive Wnt signaling derails homeostasis and promotes oncogenesis and chemoresistance in DLBCL and multiple myeloma. Evidence suggests active cross-talk between the Wnt and RAS pathways impacting metastasis in solid cancers in which combined targeted therapies show effective results. Recent genomic studies in PBL demonstrated a high frequency of mutations linked with the RAS signaling pathway. However, the role of RAS and Wnt signaling pathway molecule expression in PBL remained unknown. We examined the expression of Wnt and RAS pathway-related genes in a well-curated cohort of PBL. Because activated B cells are considered immediate precursors of plasmablasts in B cell development, we compared this data with activated B-cell type DLBCL (ABC-DLBCL) patients, employing NanoString transcriptome analysis (770 genes). Hierarchical clustering revealed distinctive differential gene expression between PBL and ABC-DLBCL. Gene set enrichment analysis labeled the RAS signaling pathway as the most enriched (37 genes) in PBL, including upregulating critical genes, such as NRAS, RAF1, SHC1, and SOS1. Wnt pathway genes were also enriched (n = 22) by gene set enrichment analysis. Molecules linked with Wnt signaling activation, such as ligands or targets (FZD3, FZD7, c-MYC, WNT5A, WNT5B, and WNT10B), were elevated in PBL. Our data also showed that, unlike ABC-DLBCL, the deranged Wnt signaling activity in PBL was not linked with hyperactive nuclear factor κB and B-cell receptor signaling. In divergence, Wnt signaling inhibitors (CXXC4, SFRP2, and DKK1) also showed overexpression in PBL. The high expression of RAS signaling molecules reported may indicate linkage with gain-in-function RAS mutations. In addition, high expression of Wnt and RAS signaling molecules may pave pathways to explore benefiting from combined targeted therapies, as reported in solid cancer, to improve prognosis in PBL patients.
Collapse
Affiliation(s)
- Adnan Mansoor
- Department of Pathology & Laboratory Medicine, University of Calgary, and Alberta Precision Laboratories (APL), Calgary, Alberta, Canada.
| | - Hamza Kamran
- Department of Pathology & Laboratory Medicine, University of Calgary, and Alberta Precision Laboratories (APL), Calgary, Alberta, Canada
| | - Ariz Akhter
- Department of Pathology & Laboratory Medicine, University of Calgary, and Alberta Precision Laboratories (APL), Calgary, Alberta, Canada
| | - Rommel Seno
- Department of Pathology & Laboratory Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Emina E Torlakovic
- Department of Pathology & Laboratory Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Tariq Mahmood Roshan
- Department of Pathology & Laboratory Medicine, University of Calgary, and Alberta Precision Laboratories (APL), Calgary, Alberta, Canada
| | - Meer-Taher Shabani-Rad
- Department of Pathology & Laboratory Medicine, University of Calgary, and Alberta Precision Laboratories (APL), Calgary, Alberta, Canada
| | - Ghaleb Elyamany
- Department of Pathology & Laboratory Medicine, University of Calgary, and Alberta Precision Laboratories (APL), Calgary, Alberta, Canada
| | - Parham Minoo
- Department of Pathology & Laboratory Medicine, University of Calgary, and Alberta Precision Laboratories (APL), Calgary, Alberta, Canada
| | - Douglas Stewart
- Department of Oncology, University of Calgary, Tom Baker Cancer Centre, Calgary, Alberta, Canada
| |
Collapse
|
39
|
Chan JY, Somasundaram N, Grigoropoulos N, Lim F, Poon ML, Jeyasekharan A, Yeoh KW, Tan D, Lenz G, Ong CK, Lim ST. Evolving therapeutic landscape of diffuse large B-cell lymphoma: challenges and aspirations. Discov Oncol 2023; 14:132. [PMID: 37466782 PMCID: PMC10361453 DOI: 10.1007/s12672-023-00754-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/13/2023] [Indexed: 07/20/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) represents the commonest subtype of non-Hodgkin lymphoma and encompasses a group of diverse disease entities, each harboring unique molecular and clinico-pathological features. The understanding of the molecular landscape of DLBCL has improved significantly over the past decade, highlighting unique genomic subtypes with implications on targeted therapy. At the same time, several new treatment modalities have been recently approved both in the frontline and relapsed settings, ending a dearth of negative clinical trials that plagued the past decade. Despite that, in the real-world setting, issues like drug accessibility, reimbursement policies, physician and patient preference, as well as questions regarding optimal sequencing of treatment options present difficulties and challenges in day-to-day oncology practice. Here, we review the recent advances in the therapeutic armamentarium of DLBCL and discuss implications on the practice landscape, with a particular emphasis on the context of the healthcare system in Singapore.
Collapse
Affiliation(s)
- Jason Yongsheng Chan
- Division of Medical Oncology, National Cancer Centre Singapore, 30 Hospital Blvd, Singapore, 168583, Singapore.
- Cancer and Stem Cell Biology, Duke-NUS Medical School, National Cancer Centre Singapore, 8 College Road, Singapore, 169857, Singapore.
| | - Nagavalli Somasundaram
- Division of Medical Oncology, National Cancer Centre Singapore, 30 Hospital Blvd, Singapore, 168583, Singapore
- Cancer and Stem Cell Biology, Duke-NUS Medical School, National Cancer Centre Singapore, 8 College Road, Singapore, 169857, Singapore
| | - Nicholas Grigoropoulos
- Cancer and Stem Cell Biology, Duke-NUS Medical School, National Cancer Centre Singapore, 8 College Road, Singapore, 169857, Singapore
- Department of Haematology, Singapore General Hospital, Singapore, Singapore
| | - Francesca Lim
- Cancer and Stem Cell Biology, Duke-NUS Medical School, National Cancer Centre Singapore, 8 College Road, Singapore, 169857, Singapore
- Department of Haematology, Singapore General Hospital, Singapore, Singapore
| | - Michelle Limei Poon
- Department of Haematology, National University Cancer Institute, Singapore, Singapore
| | - Anand Jeyasekharan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore
| | - Kheng Wei Yeoh
- Cancer and Stem Cell Biology, Duke-NUS Medical School, National Cancer Centre Singapore, 8 College Road, Singapore, 169857, Singapore
- Division of Radiation Oncology, National University Cancer Institute, Singapore, Singapore
| | - Daryl Tan
- Mount Elizabeth Novena Hospital, Singapore, Singapore
| | - Georg Lenz
- Department of Medicine A, Department of Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
| | - Choon Kiat Ong
- Cancer and Stem Cell Biology, Duke-NUS Medical School, National Cancer Centre Singapore, 8 College Road, Singapore, 169857, Singapore.
- Lymphoma Genomic Translational Research Laboratory, Cellular and Molecular Research, National Cancer Centre Singapore, Singapore, Singapore.
| | - Soon Thye Lim
- Division of Medical Oncology, National Cancer Centre Singapore, 30 Hospital Blvd, Singapore, 168583, Singapore.
- Cancer and Stem Cell Biology, Duke-NUS Medical School, National Cancer Centre Singapore, 8 College Road, Singapore, 169857, Singapore.
| |
Collapse
|
40
|
Apollonio B, Spada F, Petrov N, Cozzetto D, Papazoglou D, Jarvis P, Kannambath S, Terranova-Barberio M, Amini RM, Enblad G, Graham C, Benjamin R, Phillips E, Ellis R, Nuamah R, Saqi M, Calado DP, Rosenquist R, Sutton LA, Salisbury J, Zacharioudakis G, Vardi A, Hagner PR, Gandhi AK, Bacac M, Claus C, Umana P, Jarrett RF, Klein C, Deutsch A, Ramsay AG. Tumor-activated lymph node fibroblasts suppress T cell function in diffuse large B cell lymphoma. J Clin Invest 2023; 133:e166070. [PMID: 37219943 PMCID: PMC10313378 DOI: 10.1172/jci166070] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 05/09/2023] [Indexed: 05/24/2023] Open
Abstract
Recent transcriptomic-based analysis of diffuse large B cell lymphoma (DLBCL) has highlighted the clinical relevance of LN fibroblast and tumor-infiltrating lymphocyte (TIL) signatures within the tumor microenvironment (TME). However, the immunomodulatory role of fibroblasts in lymphoma remains unclear. Here, by studying human and mouse DLBCL-LNs, we identified the presence of an aberrantly remodeled fibroblastic reticular cell (FRC) network expressing elevated fibroblast-activated protein (FAP). RNA-Seq analyses revealed that exposure to DLBCL reprogrammed key immunoregulatory pathways in FRCs, including a switch from homeostatic to inflammatory chemokine expression and elevated antigen-presentation molecules. Functional assays showed that DLBCL-activated FRCs (DLBCL-FRCs) hindered optimal TIL and chimeric antigen receptor (CAR) T cell migration. Moreover, DLBCL-FRCs inhibited CD8+ TIL cytotoxicity in an antigen-specific manner. Notably, the interrogation of patient LNs with imaging mass cytometry identified distinct environments differing in their CD8+ TIL-FRC composition and spatial organization that associated with survival outcomes. We further demonstrated the potential to target inhibitory FRCs to rejuvenate interacting TILs. Cotreating organotypic cultures with FAP-targeted immunostimulatory drugs and a bispecific antibody (glofitamab) augmented antilymphoma TIL cytotoxicity. Our study reveals an immunosuppressive role of FRCs in DLBCL, with implications for immune evasion, disease pathogenesis, and optimizing immunotherapy for patients.
Collapse
Affiliation(s)
- Benedetta Apollonio
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| | | | | | - Domenico Cozzetto
- BRC Translational Bioinformatics at Guy’s and St. Thomas’s NHS Foundation Trust and King’s College London, London, United Kingdom
- Division of Digestive Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Despoina Papazoglou
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| | - Peter Jarvis
- 5th Surgical Department, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Shichina Kannambath
- BRC Genomics Research Platform at Guy’s and St. Thomas’s NHS Foundation Trust and King’s College London, London, United Kingdom
| | | | - Rose-Marie Amini
- Department of Immunology, Genetics and Pathology, Uppsala University and Hospital, Uppsala, Sweden
| | - Gunilla Enblad
- Department of Immunology, Genetics and Pathology, Uppsala University and Hospital, Uppsala, Sweden
| | - Charlotte Graham
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| | - Reuben Benjamin
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| | - Elisabeth Phillips
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| | | | - Rosamond Nuamah
- BRC Genomics Research Platform at Guy’s and St. Thomas’s NHS Foundation Trust and King’s College London, London, United Kingdom
| | - Mansoor Saqi
- BRC Translational Bioinformatics at Guy’s and St. Thomas’s NHS Foundation Trust and King’s College London, London, United Kingdom
| | - Dinis P. Calado
- Immunity & Cancer Laboratory, Francis Crick Institute, London, United Kingdom
| | - Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Lesley A. Sutton
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Jon Salisbury
- Department of Haematology, King’s College Hospital NHS Foundation Trust, London, United Kingdom
| | | | - Anna Vardi
- Hematology Department and HCT Unit, G. Papanikolaou Hospital, Thessaloniki, Greece
| | | | | | - Marina Bacac
- Roche Innovation Center Zurich, Schlieren, Switzerland
| | | | - Pablo Umana
- Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Ruth F. Jarrett
- MRC–University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | | | | | - Alan G. Ramsay
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| |
Collapse
|
41
|
Maia Neves N, Pestana Lopes A, Carvalho Coelho S, Raimundo A, Mafra MM, Bayão Horta A. Primary Splenic Diffuse Large B-Cell Lymphoma: A Case Report. Eur J Case Rep Intern Med 2023; 10:003932. [PMID: 37455695 PMCID: PMC10348431 DOI: 10.12890/2023_003932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 06/08/2023] [Indexed: 07/18/2023] Open
Abstract
Primary splenic lymphoma (PSL) is a rare disease and an improbable cause of splenomegaly or splenic nodules. On the contrary, splenic secondary involvement as part of an advanced lymphoproliferative disorder is more common. The authors present the case of a 49-year-old woman with a primary splenic diffuse large B-cell lymphoma (PS-DLBCL), in which the absence of other organs' involvement determined an ultrasound-guided biopsy of the spleen to achieve a definitive diagnosis. With this case the authors intend to emphasise the extensive differential diagnosis of splenomegaly, splenic nodules or infiltrates, the usefulness of splenic biopsy in establishing the diagnosis and recall a rare disease, with non-specific presenting symptoms, in which the diagnostic workup is challenging. LEARNING POINTS The differential diagnosis of splenic nodules or infiltrates is vast and challenging, and it includes haematological diseases, systemic infectious diseases but also non-malignant infiltrative diseases.Although some lymphomas frequently present with splenomegaly, this is not the case of DLBCL, with the exception of PS-DLBCL.PS-DLBCL is a very rare pathology, accounting for 1% of all DLBCL and less than 1% of all NHL.
Collapse
Affiliation(s)
- Nuno Maia Neves
- Internal Medicine Department, Hospital da Luz Lisboa, Lisbon, Portugal
| | - Ana Pestana Lopes
- Anatomical Pathology Department, Hospital da Luz Lisboa, Lisbon, Portugal
| | | | - Anabela Raimundo
- Internal Medicine Department, Hospital da Luz Lisboa, Lisbon, Portugal
| | | | | |
Collapse
|
42
|
Jayawant E, Pack A, Clark H, Kennedy E, Ghodke A, Jones J, Pepper C, Pepper A, Mitchell S. NF-κB fingerprinting reveals heterogeneous NF-κB composition in diffuse large B-cell lymphoma. Front Oncol 2023; 13:1181660. [PMID: 37333821 PMCID: PMC10272839 DOI: 10.3389/fonc.2023.1181660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/23/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction Improving treatments for Diffuse Large B-Cell Lymphoma (DLBCL) is challenged by the vast heterogeneity of the disease. Nuclear factor-κB (NF-κB) is frequently aberrantly activated in DLBCL. Transcriptionally active NF-κB is a dimer containing either RelA, RelB or cRel, but the variability in the composition of NF-κB between and within DLBCL cell populations is not known. Results Here we describe a new flow cytometry-based analysis technique termed "NF-κB fingerprinting" and demonstrate its applicability to DLBCL cell lines, DLBCL core-needle biopsy samples, and healthy donor blood samples. We find each of these cell populations has a unique NF-κB fingerprint and that widely used cell-of-origin classifications are inadequate to capture NF-κB heterogeneity in DLBCL. Computational modeling predicts that RelA is a key determinant of response to microenvironmental stimuli, and we experimentally identify substantial variability in RelA between and within ABC-DLBCL cell lines. We find that when we incorporate NF-κB fingerprints and mutational information into computational models we can predict how heterogeneous DLBCL cell populations respond to microenvironmental stimuli, and we validate these predictions experimentally. Discussion Our results show that the composition of NF-κB is highly heterogeneous in DLBCL and predictive of how DLBCL cells will respond to microenvironmental stimuli. We find that commonly occurring mutations in the NF-κB signaling pathway reduce DLBCL's response to microenvironmental stimuli. NF-κB fingerprinting is a widely applicable analysis technique to quantify NF-κB heterogeneity in B cell malignancies that reveals functionally significant differences in NF-κB composition within and between cell populations.
Collapse
|
43
|
Haider Z, Wästerlid T, Spångberg LD, Rabbani L, Jylhä C, Thorvaldsdottir B, Skaftason A, Awier HN, Krstic A, Gellerbring A, Lyander A, Hägglund M, Jeggari A, Rassidakis G, Sonnevi K, Sander B, Rosenquist R, Tham E, Smedby KE. Whole-genome informed circulating tumor DNA analysis by multiplex digital PCR for disease monitoring in B-cell lymphomas: a proof-of-concept study. Front Oncol 2023; 13:1176698. [PMID: 37333831 PMCID: PMC10272573 DOI: 10.3389/fonc.2023.1176698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/02/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction Analyzing liquid biopsies for tumor-specific aberrations can facilitate detection of measurable residual disease (MRD) during treatment and at follow-up. In this study, we assessed the clinical potential of using whole-genome sequencing (WGS) of lymphomas at diagnosis to identify patient-specific structural (SVs) and single nucleotide variants (SNVs) to enable longitudinal, multi-targeted droplet digital PCR analysis (ddPCR) of cell-free DNA (cfDNA). Methods In 9 patients with B-cell lymphoma (diffuse large B-cell lymphoma and follicular lymphoma), comprehensive genomic profiling at diagnosis was performed by 30X WGS of paired tumor and normal specimens. Patient-specific multiplex ddPCR (m-ddPCR) assays were designed for simultaneous detection of multiple SNVs, indels and/or SVs, with a detection sensitivity of 0.0025% for SV assays and 0.02% for SNVs/indel assays. M-ddPCR was applied to analyze cfDNA isolated from serially collected plasma at clinically critical timepoints during primary and/or relapse treatment and at follow-up. Results A total of 164 SNVs/indels were identified by WGS including 30 variants known to be functionally relevant in lymphoma pathogenesis. The most frequently mutated genes included KMT2D, PIM1, SOCS1 and BCL2. WGS analysis further identified recurrent SVs including t(14;18)(q32;q21) (IGH::BCL2), and t(6;14)(p25;q32) (IGH::IRF4). Plasma analysis at diagnosis showed positive circulating tumor DNA (ctDNA) levels in 88% of patients and the ctDNA burden correlated with baseline clinical parameters (LDH and sedimentation rate, p-value <0.01). While clearance of ctDNA levels after primary treatment cycle 1 was observed in 3/6 patients, all patients analyzed at final evaluation of primary treatment showed negative ctDNA, hence correlating with PET-CT imaging. One patient with positive ctDNA at interim also displayed detectable ctDNA (average variant allele frequency (VAF) 6.9%) in the follow-up plasma sample collected 2 years after final evaluation of primary treatment and 25 weeks before clinical manifestation of relapse. Conclusion In summary, we demonstrate that multi-targeted cfDNA analysis, using a combination of SNVs/indels and SVs candidates identified by WGS analysis, provides a sensitive tool for MRD monitoring and can detect lymphoma relapse earlier than clinical manifestation.
Collapse
Affiliation(s)
- Zahra Haider
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Tove Wästerlid
- Department of Medicine, Division of Clinical Epidemiology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Linn Deleskog Spångberg
- Department of Medicine, Division of Clinical Epidemiology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Leily Rabbani
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Cecilia Jylhä
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Birna Thorvaldsdottir
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Aron Skaftason
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Hero Nikdin Awier
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Aleksandra Krstic
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Gellerbring
- Clinical Genomics Stockholm, Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology, Stockholm, Sweden
| | - Anna Lyander
- Clinical Genomics Stockholm, Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology, Stockholm, Sweden
| | - Moa Hägglund
- Clinical Genomics Stockholm, Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology, Stockholm, Sweden
| | - Ashwini Jeggari
- Clinical Genomics Stockholm, Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology, Stockholm, Sweden
| | - Georgios Rassidakis
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Laboratory, Stockholm, Sweden
| | - Kristina Sonnevi
- Department of Medicine, Division of Clinical Epidemiology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Birgitta Sander
- Department of Laboratory Medicine, Division of Pathology and Cancer Diagnostics, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
- Genomic Medicine Center Karolinska, Karolinska University Hospital, Stockholm, Sweden
| | - Emma Tham
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Karin E. Smedby
- Department of Medicine, Division of Clinical Epidemiology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
44
|
Zhu M, Chang Y, Fan H, Shi J, Zhu B, Mai X. Primary pulmonary intravascular large B‑cell lymphoma misdiagnosed as pneumonia: Four case reports and a literature review. Oncol Lett 2023; 25:234. [PMID: 37153040 PMCID: PMC10161321 DOI: 10.3892/ol.2023.13820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/22/2023] [Indexed: 05/09/2023] Open
Abstract
Primary pulmonary intravascular large B-cell lymphoma (IVLBCL) is a rare, malignant extranodal lymphoma. It is difficult to diagnose clinically as it requires a combination of clinical and computed tomography (CT) evaluations, as well as laboratory and pathological examinations. In the present study, 4 cases of primary pulmonary IVLBCL were reviewed. The patients' ages ranged from 60 to 69 years old. Of the 4 patients, 3 developed progressive dyspnea on exertion and intermittent fever. Other symptoms included coughing, chest tightness and weight loss. Laboratory data indicated that all patients had anemia, thrombocytopenia, hypoxemia, a markedly high serum lactate dehydrogenase level, elevated erythrocyte sedimentation rate and increased C-reactive protein. CT demonstrated increased attenuation in bilateral lung parenchyma, especially in the upper lobes, with multiple ground-glass opacities associated with small nodules in these patients. Initially, all 4 patients were misdiagnosed with pneumonia. However, none of them responded to anti-inflammatory treatments. The pathologies of all patients were confirmed using lung biopsy. Only 1 patient received regular combination chemotherapy. Based on the observations of the present study, a standard regimen for lymphoma treatment may result in a notable clinical response.
Collapse
Affiliation(s)
- Mengxia Zhu
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, P.R. China
- Department of Radiology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Ying Chang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Haijian Fan
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Jiong Shi
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Bin Zhu
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, P.R. China
- Department of Radiology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Xiaoli Mai
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, P.R. China
- Department of Radiology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
- Correspondence to: Professor Xiaoli Mai, Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhong Shan Road, Nanjing, Jiangsu 210008, P.R. China, E-mail:
| |
Collapse
|
45
|
Duns G, Winkle M, Chong L, Ennishi D, Morin RD, Diepstra A, Scott DW, Kluiver JL, Steidl C, van den Berg A. Long non-coding RNAs associated with transcriptomic signatures and treatment outcome in diffuse large B-cell lymphoma. Br J Haematol 2023. [PMID: 37190862 DOI: 10.1111/bjh.18870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/29/2023] [Accepted: 05/06/2023] [Indexed: 05/17/2023]
Affiliation(s)
- Gerben Duns
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, British Columbia, Canada
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Melanie Winkle
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Lauren Chong
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Daisuke Ennishi
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ryan D Morin
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Arjan Diepstra
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - David W Scott
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, British Columbia, Canada
| | - Joost L Kluiver
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Christian Steidl
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, British Columbia, Canada
| | - Anke van den Berg
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, The Netherlands
| |
Collapse
|
46
|
Zanoni L, Bezzi D, Nanni C, Paccagnella A, Farina A, Broccoli A, Casadei B, Zinzani PL, Fanti S. PET/CT in Non-Hodgkin Lymphoma: An Update. Semin Nucl Med 2023; 53:320-351. [PMID: 36522191 DOI: 10.1053/j.semnuclmed.2022.11.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 12/15/2022]
Abstract
Non-Hodgkin lymphomas represents a heterogeneous group of lymphoproliferative disorders characterized by different clinical courses, varying from indolent to highly aggressive. 18F-FDG-PET/CT is the current state-of-the-art diagnostic imaging, for the staging, restaging and evaluation of response to treatment in lymphomas with avidity for 18F-FDG, despite it is not routinely recommended for surveillance. PET-based response criteria (using five-point Deauville Score) are nowadays uniformly applied in FDG-avid lymphomas. In this review, a comprehensive overview of the role of 18F-FDG-PET in Non-Hodgkin lymphomas is provided, at each relevant point of patient management, particularly focusing on recent advances on diffuse large B-cell lymphoma and follicular lymphoma, with brief updates also on other histotypes (such as marginal zone, mantle cell, primary mediastinal- B cell lymphoma and T cell lymphoma). PET-derived semiquantitative factors useful for patient stratification and prognostication and emerging radiomics research are also presented.
Collapse
Affiliation(s)
- Lucia Zanoni
- Nuclear Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
| | - Davide Bezzi
- Nuclear Medicine, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Cristina Nanni
- Nuclear Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Andrea Paccagnella
- Nuclear Medicine, Alma Mater Studiorum University of Bologna, Bologna, Italy; Nuclear Medicine Unit, AUSL Romagna, Cesena, Italy
| | - Arianna Farina
- Nuclear Medicine, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Alessandro Broccoli
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli," Bologna, Italy; Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università di Bologna, Bologna, Italy
| | - Beatrice Casadei
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli," Bologna, Italy; Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università di Bologna, Bologna, Italy
| | - Pier Luigi Zinzani
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli," Bologna, Italy; Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università di Bologna, Bologna, Italy
| | - Stefano Fanti
- Nuclear Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Nuclear Medicine, Alma Mater Studiorum University of Bologna, Bologna, Italy
| |
Collapse
|
47
|
Liu P, Zhao M, Lin Y, Jiang X, Xia T, Li Y, Lu Y, Jiang L. Platycodin D induces proliferation inhibition and mitochondrial apoptosis in diffuse large B-cell lymphoma. Exp Hematol 2023:S0301-472X(23)00160-1. [PMID: 37085039 DOI: 10.1016/j.exphem.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 04/23/2023]
Abstract
Patients with diffuse large B-cell lymphoma (DLBCL) have unsatisfactory outcomes especially when relapse occurs after initial chemotherapy. Platycodin D (PD), a triterpenoid saponin isolated from the root of Platycodon grandiflorum (Jacq.) A. DC., has demonstrated potent anti-cancer activities. So far, however, information regarding the effect of PD on malignant lymphoma remains unavailable. In the present study, we showed that PD dose-dependently inhibited the viability of a serial of established DLBCL cell lines representing different molecular subtypes, and their sensitivities to PD were comparable. Mitochondrial dysfunction and subsequent intrinsic apoptosis were induced by PD, as indicated by the loss of mitochondrial membrane potential and the increase in the percentage of Annexin Ⅴ positive cells. Mechanistically, PD treatment downregulated expression levels of anti-apoptotic proteins including MCL-1, BCL-2, and BCL-XL, while upregulated the expression level of pro-apoptotic protein BAK, followed by the cleavage of PARP. Moreover, PD synergistically enhanced the cytotoxicity of BCL-2 inhibitor venetoclax. In a SUDHL-4-derived xenograft mouse model, PD administration significantly constrained the tumor growth without obvious side effects. Therefore, our results provided new insights into the role of PD in lymphoma therapy.
Collapse
Affiliation(s)
- Pu Liu
- Department of Pathology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Mengting Zhao
- Department of Pathology and Pathogenic Biology, and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Ye Lin
- Department of Pathology and Pathogenic Biology, and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Xia Jiang
- Department of Pathology and Pathogenic Biology, and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, Zhejiang, China;; Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Tianhao Xia
- Ningbo Institute of Measurement and Testing (Ningbo Inspection and Testing Center for New Materials), Ningbo, Zhejiang, China
| | - Youhong Li
- Department of Pathology and Pathogenic Biology, and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, Zhejiang, China;; Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Ying Lu
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Lei Jiang
- Department of Pathology and Pathogenic Biology, and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, Zhejiang, China;; Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang, China;.
| |
Collapse
|
48
|
Le Goff E, Blanc-Durand P, Roulin L, Lafont C, Loyaux R, MBoumbae DL, Benmaad I, Claudel A, Poullot E, Robe C, Gricourt G, Aissat A, Copie-Bergman C, Lemonnier F, Gaulard P, Itti E, Haioun C, Delfau-Larue MH. Baseline circulating tumour DNA and total metabolic tumour volume as early outcome predictors in aggressive large B-cell lymphoma. A real-world 112-patient cohort. Br J Haematol 2023. [PMID: 37038217 DOI: 10.1111/bjh.18809] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/12/2023]
Abstract
Approximately 20%-50% of patients with large B-cell lymphoma (LBCL) experience poor outcomes. We aimed to evaluate the combined prognostic value of circulating tumour DNA (ctDNA) and total metabolic tumour volume (TMTV) in LBCL. This observational single-centre study included 112 newly diagnosed LBCL patients, receiving R-CHOP/R-CHOP-like chemotherapies. CtDNA load was calculated following next-generation sequencing of cell-free DNA (cfDNA) using a targeted 40-gene lymphopanel. TMTV was measured using a fully automated artificial intelligence-based method for lymphoma lesion segmentation. CtDNA was detected in cfDNA samples from 95 patients with a median concentration of 3.15 log haploid genome equivalents per mL. TMTV measurements were available for 102 patients. The median TMTV was 501 mL. High ctDNA load (>3.57 log hGE/mL) or high TMTV (>200 mL) were associated with shorter 1-year PFS (44% vs. 83%, p < 0.001 and 64% vs. 97%, p = 0.002, respectively). When combined, three prognostic groups were identified. The shortest PFS was observed when both TMTV and ctDNA load were high (p < 0.001). Even with a short follow up, combining ctDNA load with TMTV improved the risk stratification of patients with aggressive LBCL. In the near future, very high-risk patients could benefit from CAR T-cell therapy or bispecific antibodies as first-line treatments.
Collapse
Affiliation(s)
- Enora Le Goff
- Lymphoid Malignancies Unit, Assistance Publique des Hôpitaux de Paris, HU Henri Mondor, Créteil, France
| | - Paul Blanc-Durand
- Nuclear Medicine Department, Assistance Publique des Hôpitaux de Paris, HU Henri Mondor, Créteil, France
- Paris-Est Créteil University, INSERM, IMRB, F-94010, Créteil, France
| | - Louise Roulin
- Lymphoid Malignancies Unit, Assistance Publique des Hôpitaux de Paris, HU Henri Mondor, Créteil, France
| | - Charlotte Lafont
- Paris-Est Créteil University, INSERM, IMRB, F-94010, Créteil, France
- Public Health Department, Assistance Publique des Hôpitaux de Paris, HU Henri Mondor, Créteil, France
| | - Romain Loyaux
- Hematobiology and Immunobiology Department, Assistance Publique des Hôpitaux de Paris, HU Henri Mondor, Créteil, France
| | - Diana-Laure MBoumbae
- Paris-Est Créteil University, INSERM, IMRB, F-94010, Créteil, France
- Hematobiology and Immunobiology Department, Assistance Publique des Hôpitaux de Paris, HU Henri Mondor, Créteil, France
| | - Ichrafe Benmaad
- Hematobiology and Immunobiology Department, Assistance Publique des Hôpitaux de Paris, HU Henri Mondor, Créteil, France
| | - Alexis Claudel
- Hematobiology and Immunobiology Department, Assistance Publique des Hôpitaux de Paris, HU Henri Mondor, Créteil, France
| | - Elsa Poullot
- Pathology Department, Assistance Publique des Hôpitaux de Paris, HU Henri Mondor, Créteil, France
| | - Cyrielle Robe
- Pathology Department, Assistance Publique des Hôpitaux de Paris, HU Henri Mondor, Créteil, France
| | - Guillaume Gricourt
- Bioinformatics Department, Assistance Publique des Hôpitaux de Paris, HU Henri Mondor, Créteil, France
| | - Abdelrazak Aissat
- Bioinformatics Department, Assistance Publique des Hôpitaux de Paris, HU Henri Mondor, Créteil, France
| | - Christiane Copie-Bergman
- Paris-Est Créteil University, INSERM, IMRB, F-94010, Créteil, France
- Pathology Department, Assistance Publique des Hôpitaux de Paris, HU Henri Mondor, Créteil, France
| | - François Lemonnier
- Lymphoid Malignancies Unit, Assistance Publique des Hôpitaux de Paris, HU Henri Mondor, Créteil, France
- Paris-Est Créteil University, INSERM, IMRB, F-94010, Créteil, France
| | - Philippe Gaulard
- Paris-Est Créteil University, INSERM, IMRB, F-94010, Créteil, France
- Pathology Department, Assistance Publique des Hôpitaux de Paris, HU Henri Mondor, Créteil, France
| | - Emmanuel Itti
- Nuclear Medicine Department, Assistance Publique des Hôpitaux de Paris, HU Henri Mondor, Créteil, France
- Paris-Est Créteil University, INSERM, IMRB, F-94010, Créteil, France
| | - Corinne Haioun
- Lymphoid Malignancies Unit, Assistance Publique des Hôpitaux de Paris, HU Henri Mondor, Créteil, France
- Paris-Est Créteil University, INSERM, IMRB, F-94010, Créteil, France
| | - Marie-Helene Delfau-Larue
- Paris-Est Créteil University, INSERM, IMRB, F-94010, Créteil, France
- Hematobiology and Immunobiology Department, Assistance Publique des Hôpitaux de Paris, HU Henri Mondor, Créteil, France
| |
Collapse
|
49
|
Bewicke-Copley F, Korfi K, Araf S, Hodkinson B, Kumar E, Cummin T, Ashton-Key M, Barrans S, van Hoppe S, Burton C, Elshiekh M, Rule S, Crosbie N, Clear A, Calaminici M, Runge H, Hills RK, Scott DW, Rimsza LM, Menon G, Sha C, Davies JR, Nagano A, Davies A, Painter D, Smith A, Gribben J, Naresh KN, Westhead DR, Okosun J, Steele A, Hodson DJ, Balasubramanian S, Johnson P, Wang J, Fitzgibbon J. Longitudinal expression profiling identifies a poor risk subset of patients with ABC-type diffuse large B-cell lymphoma. Blood Adv 2023; 7:845-855. [PMID: 35947123 PMCID: PMC9986713 DOI: 10.1182/bloodadvances.2022007536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/05/2022] [Accepted: 07/25/2022] [Indexed: 11/20/2022] Open
Abstract
Despite the effectiveness of immuno-chemotherapy, 40% of patients with diffuse large B-cell lymphoma (DLBCL) experience relapse or refractory disease. Longitudinal studies have previously focused on the mutational landscape of relapse but fell short of providing a consistent relapse-specific genetic signature. In our study, we have focused attention on the changes in GEP accompanying DLBCL relapse using archival paired diagnostic/relapse specimens from 38 de novo patients with DLBCL. COO remained stable from diagnosis to relapse in 80% of patients, with only a single patient showing COO switching from activated B-cell-like (ABC) to germinal center B-cell-like (GCB). Analysis of the transcriptomic changes that occur following relapse suggest ABC and GCB relapses are mediated via different mechanisms. We developed a 30-gene discriminator for ABC-DLBCLs derived from relapse-associated genes that defined clinically distinct high- and low-risk subgroups in ABC-DLBCLs at diagnosis in datasets comprising both population-based and clinical trial cohorts. This signature also identified a population of <60-year-old patients with superior PFS and OS treated with ibrutinib-R-CHOP as part of the PHOENIX trial. Altogether this new signature adds to the existing toolkit of putative genetic predictors now available in DLBCL that can be readily assessed as part of prospective clinical trials.
Collapse
Affiliation(s)
- Findlay Bewicke-Copley
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University, London, UK
| | - Koorosh Korfi
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University, London, UK
| | - Shamzah Araf
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University, London, UK
| | - Brendan Hodkinson
- Oncology Translational Research, Janssen Research & Development, Spring House, PA
| | - Emil Kumar
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University, London, UK
| | - Thomas Cummin
- Cancer Research UK Centre, University of Southampton, Southampton, UK
| | - Margaret Ashton-Key
- Cellular Pathology, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Sharon Barrans
- Haematological Malignancy Diagnostic Service, St. James’s Institute of Oncology, Leeds, UK
| | - Suzan van Hoppe
- Haematological Malignancy Diagnostic Service, St. James’s Institute of Oncology, Leeds, UK
| | - Cathy Burton
- Haematological Malignancy Diagnostic Service, St. James’s Institute of Oncology, Leeds, UK
| | - Mohamed Elshiekh
- Cellular & Molecular Pathology, Imperial College NHS Trust & Imperial College London, London, UK
| | - Simon Rule
- Department of Haematology, Derriford Hospital, University of Plymouth, Plymouth, UK
| | - Nicola Crosbie
- Department of Haematology, University Hospitals Plymouth NHS Trust, Plymouth, UK
| | - Andrew Clear
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University, London, UK
| | - Maria Calaminici
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University, London, UK
| | - Hendrik Runge
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Robert K. Hills
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - David W. Scott
- BC Cancer Centre for Lymphoid Cancer and Department of Medicine, University of British Columbia, Vancouver, BC Canada
| | - Lisa M. Rimsza
- Department of Laboratory Medicine and Pathology, Mayo Clinic Arizona, Phoenix AZ
| | - Geetha Menon
- Haemato-Oncology Diagnostic Service, Liverpool Clinical Laboratories, Liverpool, UK
| | - Chulin Sha
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - John R. Davies
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Ai Nagano
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University, London, UK
| | - Andrew Davies
- Cancer Research UK Centre, University of Southampton, Southampton, UK
| | - Daniel Painter
- Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, York, UK
| | - Alexandra Smith
- Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, York, UK
| | - John Gribben
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University, London, UK
| | - Kikkeri N. Naresh
- Cellular & Molecular Pathology, Imperial College NHS Trust & Imperial College London, London, UK
| | - David R. Westhead
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Jessica Okosun
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University, London, UK
| | - Andrew Steele
- Oncology Translational Research, Janssen Research & Development, San Diego, CA
| | - Daniel J. Hodson
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | | | - Peter Johnson
- Cancer Research UK Centre, University of Southampton, Southampton, UK
| | - Jun Wang
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University, London, UK
| | - Jude Fitzgibbon
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University, London, UK
| |
Collapse
|
50
|
Frontzek F, Staiger AM, Wullenkord R, Grau M, Zapukhlyak M, Kurz KS, Horn H, Erdmann T, Fend F, Richter J, Klapper W, Lenz P, Hailfinger S, Tasidou A, Trautmann M, Hartmann W, Rosenwald A, Quintanilla-Martinez L, Ott G, Anagnostopoulos I, Lenz G. Molecular profiling of EBV associated diffuse large B-cell lymphoma. Leukemia 2023; 37:670-679. [PMID: 36604606 PMCID: PMC9991915 DOI: 10.1038/s41375-022-01804-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 01/06/2023]
Abstract
Epstein-Barr virus (EBV) associated diffuse large B-cell lymphoma (DLBCL) represents a rare aggressive B-cell lymphoma subtype characterized by an adverse clinical outcome. EBV infection of lymphoma cells has been associated with different lymphoma subtypes while the precise role of EBV in lymphomagenesis and specific molecular characteristics of these lymphomas remain elusive. To further unravel the biology of EBV associated DLBCL, we present a comprehensive molecular analysis of overall 60 primary EBV positive (EBV+) DLBCLs using targeted sequencing of cancer candidate genes (CCGs) and genome-wide determination of recurrent somatic copy number alterations (SCNAs) in 46 cases, respectively. Applying the LymphGen classifier 2.0, we found that less than 20% of primary EBV + DLBCLs correspond to one of the established molecular DLBCL subtypes underscoring the unique biology of this entity. We have identified recurrent mutations activating the oncogenic JAK-STAT and NOTCH pathways as well as frequent amplifications of 9p24.1 contributing to immune escape by PD-L1 overexpression. Our findings enable further functional preclinical and clinical studies exploring the therapeutic potential of targeting these aberrations in patients with EBV + DLBCL to improve outcome.
Collapse
Affiliation(s)
- Fabian Frontzek
- Department of Medicine A, Department of Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
| | - Annette M Staiger
- Department of Clinical Pathology, Robert Bosch Hospital, Stuttgart, Germany.,Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart and University of Tuebingen, Tuebingen, Germany
| | - Ramona Wullenkord
- Department of Medicine A, Department of Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
| | - Michael Grau
- Department of Medicine A, Department of Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
| | - Myroslav Zapukhlyak
- Department of Medicine A, Department of Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
| | - Katrin S Kurz
- Department of Clinical Pathology, Robert Bosch Hospital, Stuttgart, Germany
| | - Heike Horn
- Department of Clinical Pathology, Robert Bosch Hospital, Stuttgart, Germany.,Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart and University of Tuebingen, Tuebingen, Germany
| | - Tabea Erdmann
- Department of Medicine A, Department of Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
| | - Falko Fend
- Institute of Pathology and Neuropathology, Reference Center for Haematopathology University Hospital, Tübingen Eberhard-Karls-University, Tübingen, Germany
| | - Julia Richter
- Division of Hematophathology, Christian-Albrechts-University, Kiel, Germany
| | - Wolfram Klapper
- Division of Hematophathology, Christian-Albrechts-University, Kiel, Germany
| | - Peter Lenz
- Department of Physics, University of Marburg, Marburg, Germany
| | - Stephan Hailfinger
- Department of Medicine A, Department of Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
| | - Anna Tasidou
- Department of Hematopathology, Evangelismos General Hospital, Athens, Greece
| | - Marcel Trautmann
- Division of Translational Pathology, Gerhard-Domagk-Institute of Pathology, University Hospital Münster, Münster, Germany
| | - Wolfgang Hartmann
- Division of Translational Pathology, Gerhard-Domagk-Institute of Pathology, University Hospital Münster, Münster, Germany
| | | | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology, Reference Center for Haematopathology University Hospital, Tübingen Eberhard-Karls-University, Tübingen, Germany
| | - German Ott
- Department of Clinical Pathology, Robert Bosch Hospital, Stuttgart, Germany.,Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart and University of Tuebingen, Tuebingen, Germany
| | | | - Georg Lenz
- Department of Medicine A, Department of Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany.
| |
Collapse
|