1
|
Sarhangi N, Rouhollah F, Niknam N, Sharifi F, Nikfar S, Larijani B, Patrinos GP, Hasanzad M. Pharmacogenetic DPYD allele variant frequencies: A comprehensive analysis across an ancestrally diverse Iranian population. Daru 2024; 32:715-727. [PMID: 39424756 PMCID: PMC11555172 DOI: 10.1007/s40199-024-00538-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/24/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Cancer treatment has improved over the past decades, but many cancer patients still experience adverse drug reactions (ADRs). Pharmacogenomics (PGx), known as personalized treatment, is a pillar of precision medicine that aims to optimize the efficacy and safety of medications by studying the germline variations. Germline variations in the DPYD lead to significant ADRs. The present cross-sectional study aims to evaluate the allele frequency of the DPYD gene variations in the Iranian population to provide insights into personalized treatment decisions in the Iranian population. METHODS The allele frequency of 51 pharmacogenetic variations in the clinically relevant DPYD was assessed in a representative sample set of 1142 unrelated Iranian individuals and subpopulations of different ethnic groups who were genotyped using the Infinium Global Screening Array-24 BeadChip. RESULTS The genotyping assay revealed eight pharmacogenetic variants including DPYD rs1801265 (c.85T > C; DPYD*9A), rs2297595 (c.496A > G), rs1801158 (c.1601G > A; DPYD*4), rs1801159 (c.1627A > G; DPYD*5), rs1801160 (c.2194G > A; DPYD*6), rs17376848 (c.1896T > C), rs56038477 (c.1236G > A; HapB3), and rs75017182 (c.1129-5923C > G; HapB3) with minor allele frequency (MAF) ≥ 1%. CONCLUSION The results of the study reveal significant genetic variations among Iranian population that could significantly influence clinical decision-making. These variants, with their potential to explain the substantial variability in drug response phenotypes among different populations, shed light on a crucial aspect of pharmacogenomics. These findings not only provide valuable insights but also inspire the design and implementation of future pharmacogenomic clinical trials, motivating further research in this crucial area.
Collapse
Affiliation(s)
- Negar Sarhangi
- Medical Genomics Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, 1916893813, Iran
| | - Fatemeh Rouhollah
- Medical Genomics Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, 1916893813, Iran
| | - Negar Niknam
- Department of Pharmacoeconomics and Pharmaceutical Administration, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
- LifeandMe, Inc., Tehran, 1497719825, Iran
| | - Farshad Sharifi
- Elderly Health Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, 1411713119, Iran
| | - Shekoufeh Nikfar
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, 1411713119, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, 1411713119, Iran
| | - George P Patrinos
- School of Health Sciences, Department of Pharmacy, University of Patras, Patras, Greece
- College of Medicine and Health Sciences, Department of Genetics and Genomics, United Arab Emirates University, Al-Ain, Abu Dhabi, UAE
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain, Abu Dhabi, UAE
| | - Mandana Hasanzad
- Personalized Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, 1411713119, Iran.
| |
Collapse
|
2
|
Thompson JT, Wood DM, Dargan PI. Review of the fluoropyrimidine antidote uridine triacetate. Br J Clin Pharmacol 2024. [PMID: 39468799 DOI: 10.1111/bcp.16319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/30/2024] Open
Abstract
In 2015, the United States Food and Drug Administration (FDA) approved uridine triacetate to treat overdose and severe toxicity of the fluoropyrimidine chemotherapy agents 5-fluorouracil (5-FU) and its oral prodrug capecitabine. Uridine triacetate is as an oral prodrug of uridine that competes with cytotoxic fluoropyrimidine metabolites for incorporation into nucleotides. Two million people worldwide start fluoropyrimidine chemotherapy each year, with 20-30% developing severe or life-threatening adverse effects, often attributable to a genetic predisposition such as dihydropyrimidine dehydrogenase deficiency. Whilst genetic prescreening is recommended prior to starting fluoropyrimidine agents, this only prevents 20-30% of early-onset life-threatening toxicity and so does not obviate the need for an antidote. Initial in-human studies established that uridine triacetate more than doubles the maximum tolerated weekly 5-FU bolus dose. A lack of clinical equipoise meant a placebo-controlled phase III trial was not ethical and so the phase III trials used historical controls. These found that uridine triacetate improved survival in those with fluoropyrimidine overdose and severe toxicity from 16% to 94%, with 34% able to resume chemotherapy within 30 days. Five case reports of delayed fluoropyrimidine toxicity demonstrate improvement following uridine triacetate treatment 120-504 h after last fluoropyrimidine administration, suggesting efficacy beyond the FDA licencing indications. Mechanistically uridine triacetate would be expected to be effective for overdose and severe toxicity of tegafur (a 5-FU prodrug), but there are no published case reports describing this. Uridine triacetate is available internationally through an expanded access scheme and has been available in the UK since 2019 on a named patient basis.
Collapse
Affiliation(s)
- Jack T Thompson
- Clinical Toxicology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - David M Wood
- Clinical Toxicology, Guy's and St Thomas' NHS Foundation Trust, London, UK
- Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Paul I Dargan
- Clinical Toxicology, Guy's and St Thomas' NHS Foundation Trust, London, UK
- Faculty of Life Sciences and Medicine, King's College London, London, UK
| |
Collapse
|
3
|
White C, Kendall G, Millington T, Corcoran B, Paul C, Scott RJ, Ackland S. Evaluation of early fluoropyrimidine toxicity in solid organ cancer patients: a retrospective observational study in Australia. Intern Med J 2024; 54:1506-1514. [PMID: 38963005 DOI: 10.1111/imj.16463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/01/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND Despite common global usage, fluoropyrimidine (FP; 5-flurouracil and capecitabine)-related chemotherapy toxicity is poorly reported in the literature, with serious toxicity ranging from 10% to 40% and early toxicity (within 60 days of exposure) quoted at 14%. Data reflecting the incidence of Grades 3-5 FP-related toxicity in Australian cancer patients is scant, despite the significant impact of toxicity on patients (hospitalisations, intensive care unit (ICU) admissions and even death). AIMS This retrospective audit evaluated Grades 3-5 toxicities in a contemporaneous cohort of 500 patients receiving FP chemotherapies within the Hunter-New England Local Health District from June 2020 to June 2022. Data were extracted from public hospital records and oncology-specific e-records to determine rates of toxicity and associated hospitalisations, intensive care admissions and deaths that occurred within 60 days of first exposure to FP chemotherapy-containing regimens. RESULTS One hundred and fifty incidents of Grades 3-4 toxicity in the first 60 days led to 87 patients presenting to hospital (87/500, 17.4%). The most common serious toxicities were diarrhoea (39.3%), nausea and vomiting (22.7%) and febrile neutropaenia (10%). Four patients were admitted to the ICU, and four patients died of toxicity. Within the first 60 days, 22.2% of patients required treatment delays, 21.4% required dose reductions, and 7.8% of patients ceased treatment because of toxicities. DISCUSSION AND CONCLUSION Our experience reflects international reports and is likely generalisable to the Australian population. These data are a basis to understand the potential benefits of precision medicine strategies such as pharmacogenomic screening to improve patient tolerability and the cost-effectiveness of FP chemotherapy prescribing.
Collapse
Affiliation(s)
- Cassandra White
- University of Newcastle, College of Health, Medicine and Wellbeing, School of Medicine and Public Health, Newcastle, New South Wales, Australia
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
- Medical Oncology, Maitland Hospital, Maitland, New South Wales, Australia
| | - Guy Kendall
- Medical Oncology, Maitland Hospital, Maitland, New South Wales, Australia
| | - Tegan Millington
- Information and Computer Technology Services, Hunter New England Health, Newcastle, New South Wales, Australia
- District Cancer Services, Hunter New England Health, Newcastle, New South Wales, Australia
| | - Bern Corcoran
- District Cancer Services, Hunter New England Health, Newcastle, New South Wales, Australia
| | - Christine Paul
- University of Newcastle, College of Health, Medicine and Wellbeing, School of Medicine and Public Health, Newcastle, New South Wales, Australia
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Rodney J Scott
- University of Newcastle, College of Health, Medicine and Wellbeing, School of Medicine and Public Health, Newcastle, New South Wales, Australia
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
- Department of Molecular Genetics, Pathology North John Hunter Hospital, Newcastle, New South Wales, Australia
| | - Stephen Ackland
- University of Newcastle, College of Health, Medicine and Wellbeing, School of Medicine and Public Health, Newcastle, New South Wales, Australia
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
- Medical Oncology, Lake Macquarie Private Hospital, Newcastle, New South Wales, Australia
| |
Collapse
|
4
|
Hertz DL, Bousman CA, McLeod HL, Monte AA, Voora D, Orlando LA, Crutchley RD, Brown B, Teeple W, Rogers S, Patel JN. Recommendations for pharmacogenetic testing in clinical practice guidelines in the US. Am J Health Syst Pharm 2024; 81:672-683. [PMID: 38652504 DOI: 10.1093/ajhp/zxae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Indexed: 04/25/2024] Open
Abstract
PURPOSE Pharmacogenetic testing can identify patients who may benefit from personalized drug treatment. However, clinical uptake of pharmacogenetic testing has been limited. Clinical practice guidelines recommend biomarker tests that the guideline authors deem to have demonstrated clinical utility, meaning that testing improves treatment outcomes. The objective of this narrative review is to describe the current status of pharmacogenetic testing recommendations within clinical practice guidelines in the US. SUMMARY Guidelines were reviewed for pharmacogenetic testing recommendations for 21 gene-drug pairs that have well-established drug response associations and all of which are categorized as clinically actionable by the Clinical Pharmacogenetics Implementation Consortium. The degree of consistency within and between organizations in pharmacogenetic testing recommendations was assessed. Relatively few clinical practice guidelines that provide a pharmacogenetic testing recommendation were identified. Testing recommendations for HLA-B*57:01 before initiation of abacavir and G6PD before initiation of rasburicase, both of which are included in drug labeling, were mostly consistent across guidelines. Gene-drug pairs with at least one clinical practice guideline recommending testing or stating that testing could be considered included CYP2C19-clopidogrel, CYP2D6-codeine, CYP2D6-tramadol, CYP2B6-efavirenz, TPMT-thiopurines, and NUDT15-thiopurines. Testing recommendations for the same gene-drug pair were often inconsistent between organizations and sometimes inconsistent between different guidelines from the same organization. CONCLUSION A standardized approach to evaluating the evidence of clinical utility for pharmacogenetic testing may increase the inclusion and consistency of pharmacogenetic testing recommendations in clinical practice guidelines, which could benefit patients and society by increasing clinical use of pharmacogenetic testing.
Collapse
Affiliation(s)
- Daniel L Hertz
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI, USA
| | - Chad A Bousman
- Department of Medical Genetics, University of Calgary, Calgary, AB, Canada
| | - Howard L McLeod
- Center for Precision Medicine and Functional Genomics, Utah Tech University, St. George, UT, USA
| | - Andrew A Monte
- Section of Pharmacology & Medical Toxicology, Department of Emergency Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Deepak Voora
- Duke Precision Medicine Program, Department of Medicine, Duke University, Durham, NC, USA
| | - Lori A Orlando
- Department of Medicine, Duke University, Durham, NC, USA
| | - Rustin D Crutchley
- Department of Pharmaceutical Sciences, College of Pharmacy, Manchester University, Fort Wayne, IN, USA
| | | | | | - Sara Rogers
- American Society of Pharmacovigilance, Houston, TX, and Texas A&M Health Science Center, Bryan, TX, USA
| | - Jai N Patel
- Department of Cancer Pharmacology and Pharmacogenomics, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA and Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA
| |
Collapse
|
5
|
Tamraz B, Venook AP. DPYD Pharmacogenetics: To Opt-in or to Opt-out. JCO Oncol Pract 2024; 20:1009-1011. [PMID: 38743915 DOI: 10.1200/op.24.00255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 03/29/2024] [Accepted: 04/05/2024] [Indexed: 05/16/2024] Open
Affiliation(s)
- Bani Tamraz
- Department of Clinical Pharmacy, University of California, San Francisco, San Francisco, CA
| | - Alan P Venook
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
6
|
Chan TH, Zhang JE, Pirmohamed M. DPYD genetic polymorphisms in non-European patients with severe fluoropyrimidine-related toxicity: a systematic review. Br J Cancer 2024; 131:498-514. [PMID: 38886557 PMCID: PMC11300675 DOI: 10.1038/s41416-024-02754-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Pre-treatment DPYD screening is mandated in the UK and EU to reduce the risk of severe and potentially fatal fluoropyrimidine-related toxicity. Four DPYD gene variants which are more prominently found in Europeans are tested. METHODS Our systematic review in patients of non-European ancestry followed PRISMA guidelines to identify relevant articles up to April 2023. Published in silico functional predictions and in vitro functional data were also extracted. We also undertook in silico prediction for all DPYD variants identified. RESULTS In 32 studies, published between 1998 and 2022, 53 DPYD variants were evaluated in patients from 12 countries encompassing 5 ethnic groups: African American, East Asian, Latin American, Middle Eastern, and South Asian. One of the 4 common European DPYD variants, c.1905+1G>A, is also present in South Asian, East Asian and Middle Eastern patients with severe fluoropyrimidine-related toxicity. There seems to be relatively strong evidence for the c.557A>G variant, which is found in individuals of African ancestry, but is not currently included in the UK genotyping panel. CONCLUSION Extending UK pre-treatment DPYD screening to include variants that are present in some non-European ancestry groups will improve patient safety and reduce race and health inequalities in ethnically diverse societies.
Collapse
Affiliation(s)
- Tsun Ho Chan
- Wolfson Centre for Personalised Medicine, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, 1-5 Brownlow Street, Liverpool, L69 3GL, UK
| | - J Eunice Zhang
- Wolfson Centre for Personalised Medicine, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, 1-5 Brownlow Street, Liverpool, L69 3GL, UK
| | - Munir Pirmohamed
- Wolfson Centre for Personalised Medicine, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, 1-5 Brownlow Street, Liverpool, L69 3GL, UK.
| |
Collapse
|
7
|
Díaz-Villamarín X, Martínez-Pérez M, Nieto-Sánchez MT, Ruiz-Tueros G, Fernández-Varón E, Torres-García A, González Astorga B, Blancas I, Iáñez AJ, Cabeza-Barrera J, Morón R. Novel Genetic Variants Explaining Severe Adverse Drug Events after Clinical Implementation of DPYD Genotype-Guided Therapy with Fluoropyrimidines: An Observational Study. Pharmaceutics 2024; 16:956. [PMID: 39065653 PMCID: PMC11280107 DOI: 10.3390/pharmaceutics16070956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Fluoropyrimidines (FPs) are commonly prescribed in many cancer streams. The EMA and FDA-approved drug labels for FPs recommend genotyping the DPYD*2A (rs3918290), *13 (rs55886062), *HapB3 (rs56038477), alleles, and DPYD rs67376798 before treatment starts. We implemented the DPYD genotyping in our daily clinical routine, but we still found patients showing severe adverse drug events (ADEs) to FPs. We studied among these patients the DPYD rs1801265, rs17376848, rs1801159, rs1801160, rs1801158, and rs2297595 as explanatory candidates of the interindividual differences for FP-related toxicities, examining the association with the response to FPs . We also studied the impact of DPYD testing for FP dose tailoring in our clinical practice and characterized the DPYD gene in our population. We found a total acceptance among physicians of therapeutic recommendations translated from the DPYD test, and this dose tailoring does not affect the treatment efficacy. We also found that the DPYD*4 (defined by rs1801158) allele is associated with a higher risk of ADEs (severity grade ≥ 3) in both the univariate (O.R. = 5.66; 95% C.I. = 1.35-23.67; p = 0.014) and multivariate analyses (O.R. = 5.73; 95% C.I. = 1.41-28.77; p = 0.019) among FP-treated patients based on the DPYD genotype. This makes it a candidate variant for implementation in clinical practice.
Collapse
Affiliation(s)
- Xando Díaz-Villamarín
- Instituto de Investigación Biosanitaria de Granada (Ibs.Granada), 18012 Granada, Spain
| | | | | | - Gabriela Ruiz-Tueros
- Instituto de Investigación Biosanitaria de Granada (Ibs.Granada), 18012 Granada, Spain
| | - Emilio Fernández-Varón
- Instituto de Investigación Biosanitaria de Granada (Ibs.Granada), 18012 Granada, Spain
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain
| | - Alicia Torres-García
- Instituto de Investigación Biosanitaria de Granada (Ibs.Granada), 18012 Granada, Spain
| | - Beatriz González Astorga
- Instituto de Investigación Biosanitaria de Granada (Ibs.Granada), 18012 Granada, Spain
- Medical Oncology, Hospital Universitario San Cecilio, 18016 Granada, Spain
| | - Isabel Blancas
- Instituto de Investigación Biosanitaria de Granada (Ibs.Granada), 18012 Granada, Spain
- Medical Oncology, Hospital Universitario San Cecilio, 18016 Granada, Spain
| | - Antonio J. Iáñez
- Hospital Pharmacy, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - José Cabeza-Barrera
- Instituto de Investigación Biosanitaria de Granada (Ibs.Granada), 18012 Granada, Spain
- Hospital Pharmacy, Hospital Universitario San Cecilio, 18016 Granada, Spain
| | - Rocío Morón
- Instituto de Investigación Biosanitaria de Granada (Ibs.Granada), 18012 Granada, Spain
- Hospital Pharmacy, Hospital Universitario San Cecilio, 18016 Granada, Spain
| |
Collapse
|
8
|
Lian J, Liang Y, Wang Y, Chen Y, Li X, Xia L. Rapid detection of the irinotecan-related UGT1A1 & 5-fluorouracil related DPYD polymorphism by asymmetric polymerase chain reaction melting curve analysis. Clin Chim Acta 2024; 561:119761. [PMID: 38848897 DOI: 10.1016/j.cca.2024.119761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND Determination of DPYD and UGT1A1 polymorphisms prior to 5-fluorouracil and irinotecan therapy is crucial for avoiding severe adverse drug effects. Hence, there is a pressing need for accurate and reliable genotyping methods for the most common DPYD and UGT1A1 polymorphisms. In this study, we introduce a novel polymerase chain reaction (PCR) melting curve analysis method for discriminating DPYD c.1236G > A, c.1679 T > G, c.2846A > T, IVS14 + 1G > A and UGT1A1*1, *28, *6 (G71R) genotypes. METHODS Following protocol optimization, this technique was employed to genotype 28 patients, recruited between March 2023 and October 2023, at the First Affiliated Hospital of Xiamen University. These patients included 20 with UGT1A1 *1/*1, 8 with UGT1A1 *1/*28, 4 with UGT1A1 *28/*28, 22 with UGT1A1*6 G/G, 6 with UGT1A1*6 G/A, 4 with UGT1A1*6 A/A, 27 with DPYD(c.1236) G/G, 3 with DPYD(c.1236) G/A, 2 with DPYD(c.1236) A/A, 27 with DPYD(c.1679) T/T, 2 with DPYD(c.1679) T/G, 3 with DPYD(c.1679) G/G, 28 with DPYD(c.2846A/T) A/A, 2 with DPYD(c.2846A/T) A/T, 2 with DPYD(c.2846A/T) T/T, 28 with DPYD(c.IVS14 + 1) G/G, 2 with DPYD(c.IVS14 + 1) G/G, and 2 with DPYD(c.IVS14 + 1) G/G, as well as 3 plasmid standards. Method accuracy was assessed by comparing results with those from Sanger sequencing or Multiplex quantitative PCR(qPCR). Intra- and inter-run precision of melting temperatures (Tms) were calculated to evaluate reliability, and sensitivity was assessed through limit of detection examination. RESULTS The new method accurately identified all genotypes and exhibited higher accuracy than Multiplex qPCR. Intra- and inter-run coefficients of variation for Tms were both ≤1.97 %, with standard deviations ≤0.95 °C. The limit of detection was 0.09 ng/μL of input genomic DNA. CONCLUSION Our developed PCR melting curve analysis offers accurate, reliable, rapid, simple, and cost-effective detection of DPYD and UGT1A1 polymorphisms. Its application can be easily extended to clinical laboratories equipped with a fluorescent PCR platform.
Collapse
Affiliation(s)
- Jiabian Lian
- Center for Precision Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China; Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China; Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Yaoji Liang
- Biochee Biotech Co.,Ltd., Xiamen, 361102, China; Amogene Biotech Co.,Ltd., Xiamen, 361102, China
| | | | - Ying Chen
- Amogene Biotech Co.,Ltd., Xiamen, 361102, China
| | - Xun Li
- Center for Precision Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China; Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China.
| | - Lu Xia
- Center for Precision Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China; Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China; Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China.
| |
Collapse
|
9
|
Tracksdorf T, Smith DM, Pearse S, Cicali EJ, Aquilante CL, Scott SA, Ho TT, Patel JN, Hicks JK, Hertz DL. Strategies for DPYD testing prior to fluoropyrimidine chemotherapy in the US. Support Care Cancer 2024; 32:497. [PMID: 38980476 DOI: 10.1007/s00520-024-08674-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/20/2024] [Indexed: 07/10/2024]
Abstract
PURPOSE Patients with dihydropyrimidine dehydrogenase (DPD) deficiency are at high risk for severe and fatal toxicity from fluoropyrimidine (FP) chemotherapy. Pre-treatment DPYD testing is standard of care in many countries, but not the United States (US). This survey assessed pre-treatment DPYD testing approaches in the US to identify best practices for broader adoption. METHODS From August to October 2023, a 22-item QualtricsXM survey was sent to institutions and clinicians known to conduct pre-treatment DPYD testing and broadly distributed through relevant organizations and social networks. Responses were analyzed using descriptive analysis. RESULTS Responses from 24 unique US sites that have implemented pre-treatment DPYD testing or have a detailed implementation plan in place were analyzed. Only 33% of sites ordered DPYD testing for all FP-treated patients; at the remaining sites, patients were tested depending on disease characteristics or clinician preference. Almost 50% of sites depend on individual clinicians to remember to order testing without the assistance of electronic alerts or workflow reminders. DPYD testing was most often conducted by commercial laboratories that tested for at least the four or five DPYD variants considered clinically actionable. Approximately 90% of sites reported receiving results within 10 days of ordering. CONCLUSION Implementing DPYD testing into routine clinical practice is feasible and requires a coordinated effort among the healthcare team. These results will be used to develop best practices for the clinical adoption of DPYD testing to prevent severe and fatal toxicity in cancer patients receiving FP chemotherapy.
Collapse
Affiliation(s)
- Tabea Tracksdorf
- Deparment of Clinical Pharmacy, University of Michigan College of Pharmacy, 428 Church St, Room 2560C, Ann Arbor, MI, 48109-1065, USA
| | - D Max Smith
- Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
- MedStar Health, Columbia, MD, USA
| | - Skyler Pearse
- Health Behavior and Health Education, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Emily J Cicali
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA
- Center for Pharmacogenomics and Precision Medicine, University of Florida, Gainesville, FL, USA
| | - Christina L Aquilante
- Department of Pharmaceutical Sciences, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO, USA
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Stuart A Scott
- Department of Pathology, Stanford University, Stanford, CA, USA
- Clinical Genomics Laboratory, Stanford Medicine, Palo Alto, CA, USA
| | - Teresa T Ho
- Department of Pathology, Moffitt Cancer Center, Tampa, FL, USA
| | - Jai N Patel
- Department of Cancer Pharmacology and Pharmacogenomics, Atrium Health Levine Cancer Institute, Charlotte, NC, USA
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA
| | - J Kevin Hicks
- Department of Pathology, Moffitt Cancer Center, Tampa, FL, USA
| | - Daniel L Hertz
- Deparment of Clinical Pharmacy, University of Michigan College of Pharmacy, 428 Church St, Room 2560C, Ann Arbor, MI, 48109-1065, USA.
| |
Collapse
|
10
|
Marok FZ, Wojtyniak JG, Selzer D, Dallmann R, Swen JJ, Guchelaar HJ, Schwab M, Lehr T. Personalized Chronomodulated 5-Fluorouracil Treatment: A Physiologically-Based Pharmacokinetic Precision Dosing Approach for Optimizing Cancer Therapy. Clin Pharmacol Ther 2024; 115:1282-1292. [PMID: 38264789 DOI: 10.1002/cpt.3181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/03/2024] [Indexed: 01/25/2024]
Abstract
The discovery of circadian clock genes greatly amplified the study of diurnal variations impacting cancer therapy, transforming it into a rapidly growing field of research. Especially, use of chronomodulated treatment with 5-fluorouracil (5-FU) has gained significance. Studies indicate high interindividual variability (IIV) in diurnal variations in dihydropyrimidine dehydrogenase (DPD) activity - a key enzyme for 5-FU metabolism. However, the influence of individual DPD chronotypes on chronomodulated therapy remains unclear and warrants further investigation. To optimize precision dosing of chronomodulated 5-FU, this study aims to: (i) build physiologically-based pharmacokinetic (PBPK) models for 5-FU, uracil, and their metabolites, (ii) assess the impact of diurnal variation on DPD activity, (iii) estimate individual DPD chronotypes, and (iv) personalize chronomodulated 5-FU infusion rates based on a patient's DPD chronotype. Whole-body PBPK models were developed with PK-Sim(R) and MoBi(R). Sinusoidal functions were used to incorporate variations in enzyme activity and chronomodulated infusion rates as well as to estimate individual DPD chronotypes from DPYD mRNA expression or DPD enzymatic activity. Four whole-body PBPK models for 5-FU, uracil, and their metabolites were established utilizing data from 41 5-FU and 10 publicly available uracil studies. IIV in DPD chronotypes was assessed and personalized chronomodulated administrations were developed to achieve (i) comparable 5-FU peak plasma concentrations, (ii) comparable 5-FU exposure, and (iii) constant 5-FU plasma levels via "noise cancellation" chronomodulated infusion. The developed PBPK models capture the extent of diurnal variations in DPD activity and can help investigate individualized chronomodulated 5-FU therapy through testing alternative personalized dosing strategies.
Collapse
Affiliation(s)
| | - Jan-Georg Wojtyniak
- Clinical Pharmacy, Saarland University, Saarbruecken, Germany
- Dr. Margarete Fischer-Bosch-Institut of Clinical Pharmacology, Stuttgart, Germany
| | - Dominik Selzer
- Clinical Pharmacy, Saarland University, Saarbruecken, Germany
| | - Robert Dallmann
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Jesse J Swen
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, RC Leiden, The Netherlands
| | - Henk-Jan Guchelaar
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, RC Leiden, The Netherlands
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch-Institut of Clinical Pharmacology, Stuttgart, Germany
- Departments of Clinical Pharmacology, and of Biochemistry and Pharmacy, University Tuebingen, Tuebingen, Germany
- Cluster of excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University Tuebingen, Tuebingen, Germany
| | - Thorsten Lehr
- Clinical Pharmacy, Saarland University, Saarbruecken, Germany
| |
Collapse
|
11
|
Nguyen DG, Morris SA, Hamilton A, Kwange SO, Steuerwald N, Symanowski J, Moore DC, Hanson S, Mroz K, Lopes KE, Larck C, Musselwhite L, Kadakia KC, Koya B, Chai S, Osei-Boateng K, Kalapurakal S, Swift K, Hwang J, Patel JN. Real-World Impact of an In-House Dihydropyrimidine Dehydrogenase ( DPYD) Genotype Test on Fluoropyrimidine Dosing, Toxicities, and Hospitalizations at a Multisite Cancer Center. JCO Precis Oncol 2024; 8:e2300623. [PMID: 38935897 PMCID: PMC11371106 DOI: 10.1200/po.23.00623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/07/2024] [Accepted: 04/12/2024] [Indexed: 06/29/2024] Open
Abstract
PURPOSE Fluoropyrimidine-related toxicity and mortality risk increases significantly in patients carrying certain DPYD genetic variants with standard dosing. We implemented DPYD genotyping at a multisite cancer center and evaluated its impact on dosing, toxicity, and hospitalization. METHODS In this prospective observational study, patients receiving (reactive) or planning to receive (pretreatment) fluoropyrimidine-based chemotherapy were genotyped for five DPYD variants as standard practice per provider discretion. The primary end point was the proportion of variant carriers receiving fluoropyrimidine modifications. Secondary end points included mean relative dose intensity, fluoropyrimidine-related grade 3+ toxicities, and hospitalizations. Fisher's exact test compared toxicity and hospitalization rates between pretreatment carriers, reactive carriers, and wild-type patients. Univariable and multivariable logistic regression identified factors associated with toxicity and hospitalization risk. Kaplan-Meier methods estimated time to event of first grade 3+ toxicity and hospitalization. RESULTS Of the 757 patients who received DPYD genotyping (median age 63, 54% male, 74% White, 19% Black, 88% GI malignancy), 45 (5.9%) were heterozygous carriers. Fluoropyrimidine was modified in 93% of carriers who started treatment. In 442 patients with 3-month follow-up, 64%, 31%, and 30% of reactive carriers, pretreatment carriers, and wild-type patients had grade 3+ toxicity, respectively (P = .085); 64%, 25%, and 13% were hospitalized (P < .001). Reactive carriers had 10-fold higher odds of hospitalization compared with wild-type patients (P = .001), whereas no significant difference was noted between pretreatment carriers and wild-type patients. Time-to-event of toxicity and hospitalization were significantly different between genotype groups (P < .001), with reactive carriers having the earliest onset and highest incidence. CONCLUSION DPYD genotyping prompted fluoropyrimidine modifications in most carriers. Pretreatment testing reduced toxicities and hospitalizations compared with reactive testing, thus normalizing the risk to that of wild-type patients, and should be considered standard practice.
Collapse
Affiliation(s)
- D. Grace Nguyen
- Department of Cancer Pharmacology & Pharmacogenomics, Atrium Health Levine Cancer Institute, Charlotte, NC
| | - Sarah A. Morris
- Department of Cancer Pharmacology & Pharmacogenomics, Atrium Health Levine Cancer Institute, Charlotte, NC
| | - Alicia Hamilton
- Molecular Biology and Genomics Core Facility, Atrium Health Levine Cancer Institute, Charlotte, NC
| | - Simeon O. Kwange
- Department of Cancer Pharmacology & Pharmacogenomics, Atrium Health Levine Cancer Institute, Charlotte, NC
| | - Nury Steuerwald
- Molecular Biology and Genomics Core Facility, Atrium Health Levine Cancer Institute, Charlotte, NC
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC
| | - James Symanowski
- Department of Biostatistics and Data Sciences, Atrium Health Levine Cancer Institute, Charlotte, NC
| | - Donald C. Moore
- Department of Pharmacy, Atrium Health Levine Cancer Institute, Charlotte, NC
| | - Sarah Hanson
- Department of Pharmacy, Atrium Health Levine Cancer Institute, Charlotte, NC
| | - Kaitlyn Mroz
- Department of Cancer Pharmacology & Pharmacogenomics, Atrium Health Levine Cancer Institute, Charlotte, NC
| | - Karine E. Lopes
- Department of Cancer Pharmacology & Pharmacogenomics, Atrium Health Levine Cancer Institute, Charlotte, NC
| | - Chris Larck
- Department of Pharmacy, Atrium Health Levine Cancer Institute, Charlotte, NC
| | - Laura Musselwhite
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC
- Department of Solid Tumor Oncology, Atrium Health Levine Cancer Institute, Charlotte, NC
| | - Kunal C. Kadakia
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC
- Department of Solid Tumor Oncology, Atrium Health Levine Cancer Institute, Charlotte, NC
| | - Brinda Koya
- Department of Solid Tumor Oncology, Atrium Health Levine Cancer Institute, Charlotte, NC
| | - Seungjean Chai
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC
- Department of Solid Tumor Oncology, Atrium Health Levine Cancer Institute, Charlotte, NC
| | - Kwabena Osei-Boateng
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC
- Department of Solid Tumor Oncology, Atrium Health Levine Cancer Institute, Charlotte, NC
| | - Sini Kalapurakal
- Department of Solid Tumor Oncology, Atrium Health Levine Cancer Institute, Charlotte, NC
| | - Kristen Swift
- Department of Solid Tumor Oncology, Atrium Health Levine Cancer Institute, Charlotte, NC
| | - Jimmy Hwang
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC
- Department of Solid Tumor Oncology, Atrium Health Levine Cancer Institute, Charlotte, NC
| | - Jai N. Patel
- Department of Cancer Pharmacology & Pharmacogenomics, Atrium Health Levine Cancer Institute, Charlotte, NC
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC
| |
Collapse
|
12
|
Liang Y, Gersch CL, Lehman J, Henry NL, Smith KL, Rae JM, Stearns V, Hertz DL. Attempted replication of pharmacogenetic association of variants in PPP1R14C and CCDC148 with aromatase inhibitor-induced musculoskeletal symptoms. Pharmacogenet Genomics 2024; 34:126-129. [PMID: 38359166 DOI: 10.1097/fpc.0000000000000522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Third-generation aromatase inhibitors (AI) are the standard treatment for patients with hormone receptor positive (HR+) breast cancer. While effective, AI can lead to severe adverse events, including AI-induced musculoskeletal syndrome (AIMSS). Genetic predictors of AIMSS have the potential to personalize AI treatment and improve outcomes. We attempted to replicate results from a previous genome-wide association study that found a lower risk of AIMSS in patients carrying PPP1R14C rs912571 and a higher risk in patients carrying CCDC148 rs79048288. AIMSS data were collected prospectively from patients with HR+ breast cancer prior to starting and after 3 and 6 months of adjuvant AI via the Patient-Reported Outcome Measurement Information System and Functional Assessment of Cancer Therapy-Endocrine Symptom. Germline genotypes for PPP1R14C rs912571 and CCDC148 rs79048288 were tested for a similar association with AIMSS as previously reported via $2 tests. Of the 143 patients with AIMSS and genetics data were included in the analysis. There was no association identified between PPP1R14C rs912571 and AIMSS risk ( P > 0.05). Patients carrying CCDC148 rs79048288 variant alleles had lower AIMSS incidence in a secondary analysis ( P = 0.04); however, this was in the opposite direction of the previous finding. The study did not replicate previously reported associations with AIMSS risk for genetic variants in PPP1R14C and CCDC148 and AIMSS risk. Further research is needed to discover and validate genetic predictors of AIMSS that can be used to personalize treatment in patients with HR+ breast cancer.
Collapse
Affiliation(s)
- Yuqing Liang
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy
| | - Christina L Gersch
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Jennifer Lehman
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - N Lynn Henry
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Karen Lisa Smith
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - James M Rae
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Vered Stearns
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Daniel L Hertz
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy
| |
Collapse
|
13
|
White C, Paul C, Scott RJ, Ackland S. Commentary: The pharmacogenomic landscape of an Indigenous Australian population. Front Pharmacol 2024; 15:1373056. [PMID: 38813104 PMCID: PMC11133678 DOI: 10.3389/fphar.2024.1373056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/03/2024] [Indexed: 05/31/2024] Open
Affiliation(s)
- Cassandra White
- Hunter Medical Research Institute, The University of Newcastle, New Lambton, NSW, Australia
- The University of Newcastle, Callaghan, NSW, Australia
- Maitland Hospital, Metford, NSW, Australia
| | - Christine Paul
- Hunter Medical Research Institute, New Lambton, NSW, Australia
- The University of Newcastle, Callaghan, NSW, Australia
| | - Rodney J Scott
- Hunter Medical Research Institute, New Lambton, NSW, Australia
- The University of Newcastle, Callaghan, NSW, Australia
| | - Stephen Ackland
- Hunter Medical Research Institute, New Lambton, NSW, Australia
- The University of Newcastle, Callaghan, NSW, Australia
- Lake Macquarie Private Hospital, Gateshead, NSW, Australia
| |
Collapse
|
14
|
van Kuilenburg ABP, Pleunis-van Empel MCH, Brouwer RB, Sijben AEJ, Knapen DG, Oude Munnink TH, van Zanden JJ, Janssens-Puister J, Dobritzsch D, Meinsma R, Meijer-Jansen J, van Dooren SJM, Vijzelaar R, Pop A, Salomons GS, Maring JG, Niezen-Koning KE. Lethal Capecitabine Toxicity in Patients With Complete Dihydropyrimidine Dehydrogenase Deficiency Due to Ultra-Rare DPYD Variants. JCO Precis Oncol 2024; 8:e2300599. [PMID: 38709992 DOI: 10.1200/po.23.00599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/14/2023] [Accepted: 03/19/2024] [Indexed: 05/08/2024] Open
Abstract
A DPD deficiency should be considered in case of severe toxicity even in the absence of common risk variants in DPYD.
Collapse
Affiliation(s)
- André B P van Kuilenburg
- Amsterdam University Medical Center, University of Amsterdam, Cancer Center Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Laboratory Genetic Metabolic Diseases, Amsterdam, the Netherlands
| | | | - Rick B Brouwer
- Department of Clinical Chemistry and Laboratory Medicine, Medisch Spectrum Twente, Medlon BV, Enschede, the Netherlands
| | | | - Daan G Knapen
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Thijs H Oude Munnink
- Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | - Jelmer J van Zanden
- Martini Hospital Groningen, Certe Department of Clinical Chemistry, the Netherlands
| | - Jenny Janssens-Puister
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Doreen Dobritzsch
- Department of Chemistry, Uppsala University, Biomedical Center, Uppsala, Sweden
| | - Rutger Meinsma
- Amsterdam University Medical Center, University of Amsterdam, Cancer Center Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Laboratory Genetic Metabolic Diseases, Amsterdam, the Netherlands
| | - Judith Meijer-Jansen
- Amsterdam University Medical Center, University of Amsterdam, Cancer Center Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Laboratory Genetic Metabolic Diseases, Amsterdam, the Netherlands
| | - Silvy J M van Dooren
- Amsterdam University Medical Center, University of Amsterdam, Cancer Center Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Laboratory Genetic Metabolic Diseases, Amsterdam, the Netherlands
| | | | - Ana Pop
- Amsterdam University Medical Center, University of Amsterdam, Cancer Center Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Laboratory Genetic Metabolic Diseases, Amsterdam, the Netherlands
| | - Gajja S Salomons
- Amsterdam University Medical Center, University of Amsterdam, Cancer Center Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Laboratory Genetic Metabolic Diseases, Amsterdam, the Netherlands
| | - Jan Gerard Maring
- Departments of Clinical Pharmacy and Medical Oncology, Isala, Zwolle, the Netherlands
| | - Klary E Niezen-Koning
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
15
|
Lingaratnam S, Shah M, Nicolazzo J, Michael M, Seymour JF, James P, Lazarakis S, Loi S, Kirkpatrick CMJ. A systematic review and meta-analysis of the impacts of germline pharmacogenomics on severe toxicity and symptom burden in adult patients with cancer. Clin Transl Sci 2024; 17:e13781. [PMID: 38700261 PMCID: PMC11067509 DOI: 10.1111/cts.13781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/12/2024] [Accepted: 03/14/2024] [Indexed: 05/05/2024] Open
Abstract
The clinical application of Pharmacogenomics (PGx) has improved patient safety. However, comprehensive PGx testing has not been widely adopted in clinical practice, and significant opportunities exist to further optimize PGx in cancer care. This systematic review and meta-analysis aim to evaluate the safety outcomes of reported PGx-guided strategies (Analysis 1) and identify well-studied emerging pharmacogenomic variants that predict severe toxicity and symptom burden (Analysis 2) in patients with cancer. We searched MEDLINE, EMBASE, CENTRAL, clinicaltrials.gov, and International Clinical Trials Registry Platform from inception to January 2023 for clinical trials or comparative studies evaluating PGx strategies or unconfirmed pharmacogenomic variants. The primary outcomes were severe adverse events (SAE; ≥ grade 3) or symptom burden with pain and vomiting as defined by trial protocols and assessed by trial investigators. We calculated pooled overall relative risk (RR) and 95% confidence interval (95%CI) using random effects models. PROSPERO, registration number CRD42023421277. Of 6811 records screened, six studies were included for Analysis 1, 55 studies for Analysis 2. Meta-analysis 1 (five trials, 1892 participants) showed a lower absolute incidence of SAEs with PGx-guided strategies compared to usual therapy, 16.1% versus 34.0% (RR = 0.72, 95%CI 0.57-0.91, p = 0.006, I2 = 34%). Meta-analyses 2 identified nine medicine(class)-variant pairs of interest across the TYMS, ABCB1, UGT1A1, HLA-DRB1, and OPRM1 genes. Application of PGx significantly reduced rates of SAEs in patients with cancer. Emergent medicine-variant pairs herald further research into the expansion and optimization of PGx to improve systemic anti-cancer and supportive care medicine safety and efficacy.
Collapse
Affiliation(s)
- Senthil Lingaratnam
- Pharmacy DepartmentPeter MacCallum Cancer CentreMelbourneVictoriaAustralia
- Sir Peter MacCallum Department of OncologyUniversity of MelbourneMelbourneVictoriaAustralia
- Monash Institute of Pharmaceutical Sciences, Monash UniversityMelbourneVictoriaAustralia
| | - Mahek Shah
- Faculty of Pharmacy and Pharmaceutical SciencesMonash UniversityMelbourneVictoriaAustralia
| | - Joseph Nicolazzo
- Monash Institute of Pharmaceutical Sciences, Monash UniversityMelbourneVictoriaAustralia
| | - Michael Michael
- Sir Peter MacCallum Department of OncologyUniversity of MelbourneMelbourneVictoriaAustralia
- Department of Medical OncologyPeter MacCallum Cancer CentreMelbourneVictoriaAustralia
| | - John F. Seymour
- Sir Peter MacCallum Department of OncologyUniversity of MelbourneMelbourneVictoriaAustralia
- Department of Clinical HaematologyPeter MacCallum Cancer Centre and Royal Melbourne HospitalMelbourneVictoriaAustralia
| | - Paul James
- Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre and Royal Melbourne HospitalMelbourneVictoriaAustralia
| | - Smaro Lazarakis
- Health Sciences LibraryRoyal Melbourne HospitalMelbourneVictoriaAustralia
| | - Sherene Loi
- Sir Peter MacCallum Department of OncologyUniversity of MelbourneMelbourneVictoriaAustralia
- Division of Cancer ResearchPeter MacCallum Cancer CentreMelbourneVictoriaAustralia
| | - Carl M. J. Kirkpatrick
- Monash Institute of Pharmaceutical Sciences, Monash UniversityMelbourneVictoriaAustralia
| |
Collapse
|
16
|
Perera J, Süsstrunk J, Thurneysen C, Steinemann D. Capecitabine-induced severe adverse events-therapeutic drug monitoring and DPYD-gene analysis are recommended. BMJ Case Rep 2024; 17:e256980. [PMID: 38684357 PMCID: PMC11146389 DOI: 10.1136/bcr-2023-256980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 05/02/2024] Open
Abstract
In this report, two cases of patients with severe adverse events after an adjuvant treatment with capecitabine are described in detail. The first patient suffered from a severe ileocolitis, where ultimately intensive care treatment, total colectomy and ileum resection was necessary. The second patient experienced a toxic enteritis, which could be managed conservatively. Post-therapeutic DPYD genotyping was negative in the former and positive in the latter case. Patients can be categorised in normal, moderate and poor DPYD metabolisers to predict the risk of adverse events of capecitabine treatment. Guidelines in various European countries recommend pretherapeutic DPYD genotyping, whereas it is not recommended by the National Comprehensive Cancer Network in the USA. Irrespective of DPYD genotyping, strict therapeutic drug monitoring is highly recommended to reduce the incidence and severity of adverse events.
Collapse
Affiliation(s)
- Johan Perera
- Faculty of Medicine, University of Basel, Basel-Stadt, Switzerland
| | - Julian Süsstrunk
- Department of Visceral Surgery, Clarunis University Digestive Health Care Center Basel, Basel, Switzerland
| | - Claudio Thurneysen
- Department of Oncology, Saint Clara Hospital Cancer Centre, Basel, Switzerland
| | - Daniel Steinemann
- Department of Visceral Surgery, Clarunis University Digestive Health Care Center Basel, Basel, Switzerland
| |
Collapse
|
17
|
Martin JH, Galettis P, Flynn A, Schneider J. Phenotype versus genotype to optimize cancer dosing in the clinical setting-focus on 5-fluorouracil and tyrosine kinase inhibitors. Pharmacol Res Perspect 2024; 12:e1182. [PMID: 38429945 PMCID: PMC10907881 DOI: 10.1002/prp2.1182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 03/03/2024] Open
Abstract
Cancer medicines often have narrow therapeutic windows; toxicity can be severe and sometimes fatal, but inadequate dose intensity reduces efficacy and survival. Determining the optimal dose for each patient is difficult, with body-surface area used most commonly for chemotherapy and flat dosing for tyrosine kinase inhibitors, despite accumulating evidence of a wide range of exposures in individual patients with many receiving a suboptimal dose with these strategies. Therapeutic drug monitoring (measuring the drug concentration in a biological fluid, usually plasma) (TDM) is an accepted and well validated method to guide dose adjustments for individual patients to improve this. However, implementing TDM in routine care has been difficult outside a research context. The development of genotyping of various proteins involved in drug elimination and activity has gained prominence, with several but not all Guideline groups recommending dose reductions for particular variant genotypes. However, there is increasing concern that dosing recommendations are based on limited data sets and may lead to unnecessary underdosing and increased cancer mortality. This Review discusses the evidence surrounding genotyping and TDM to guide decisions around best practice.
Collapse
Affiliation(s)
- Jennifer H. Martin
- Drug Repurposing and Medicines Research ProgramHunter Medical Research InstituteNew Lambton HeightsNew South WalesAustralia
| | - Peter Galettis
- Drug Repurposing and Medicines Research ProgramHunter Medical Research InstituteNew Lambton HeightsNew South WalesAustralia
| | - Alex Flynn
- Drug Repurposing and Medicines Research ProgramHunter Medical Research InstituteNew Lambton HeightsNew South WalesAustralia
| | - Jennifer Schneider
- Drug Repurposing and Medicines Research ProgramHunter Medical Research InstituteNew Lambton HeightsNew South WalesAustralia
| |
Collapse
|
18
|
Chenchula S, Atal S, Uppugunduri CRS. A review of real-world evidence on preemptive pharmacogenomic testing for preventing adverse drug reactions: a reality for future health care. THE PHARMACOGENOMICS JOURNAL 2024; 24:9. [PMID: 38490995 PMCID: PMC10942860 DOI: 10.1038/s41397-024-00326-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 03/18/2024]
Abstract
Adverse drug reactions (ADRs) are a significant public health concern and a leading cause of hospitalization; they are estimated to be the fourth leading cause of death and increasing healthcare costs worldwide. Carrying a genetic variant could alter the efficacy and increase the risk of ADRs associated with a drug in a target population for commonly prescribed drugs. The use of pre-emptive pharmacogenetic/omic (PGx) testing can improve drug therapeutic efficacy, safety, and compliance by guiding the selection of drugs and/or dosages. In the present narrative review, we examined the current evidence of pre-emptive PGx testing-based treatment for the prevention of ADRs incidence and hospitalization or emergency department visits due to serious ADRs, thus improving patient safety. We then shared our perspective on the importance of preemptive PGx testing in clinical practice for the safe use of medicines and decreasing healthcare costs.
Collapse
Affiliation(s)
- Santenna Chenchula
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), Bhopal, India
| | - Shubham Atal
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), Bhopal, India
| | - Chakradhara Rao S Uppugunduri
- CANSEARCH Research Platform in Pediatric Oncology and Hematology, Department of Pediatrics, Gynecology and Obstetrics, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
19
|
Le Teuff G, Cozic N, Boyer JC, Boige V, Diasio RB, Taieb J, Meulendijks D, Palles C, Schwab M, Deenen M, Largiadèr CR, Marinaki A, Jennings BA, Wettergren Y, Di Paolo A, Gross E, Budai B, Ackland SP, van Kuilenburg ABP, McLeod HL, Milano G, Thomas F, Loriot MA, Kerr D, Schellens JHM, Laurent-Puig P, Shi Q, Pignon JP, Etienne-Grimaldi MC. Dihydropyrimidine dehydrogenase gene variants for predicting grade 4-5 fluoropyrimidine-induced toxicity: FUSAFE individual patient data meta-analysis. Br J Cancer 2024; 130:808-818. [PMID: 38225422 PMCID: PMC10912560 DOI: 10.1038/s41416-023-02517-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/30/2023] [Accepted: 11/23/2023] [Indexed: 01/17/2024] Open
Abstract
BACKGROUND Dihydropyrimidine dehydrogenase (DPD) deficiency is the main known cause of life-threatening fluoropyrimidine (FP)-induced toxicities. We conducted a meta-analysis on individual patient data to assess the contribution of deleterious DPYD variants *2A/D949V/*13/HapB3 (recommended by EMA) and clinical factors, for predicting G4-5 toxicity. METHODS Study eligibility criteria included recruitment of Caucasian patients without DPD-based FP-dose adjustment. Main endpoint was 12-week haematological or digestive G4-5 toxicity. The value of DPYD variants *2A/p.D949V/*13 merged, HapB3, and MIR27A rs895819 was evaluated using multivariable logistic models (AUC). RESULTS Among 25 eligible studies, complete clinical variables and primary endpoint were available in 15 studies (8733 patients). Twelve-week G4-5 toxicity prevalence was 7.3% (641 events). The clinical model included age, sex, body mass index, schedule of FP-administration, concomitant anticancer drugs. Adding *2A/p.D949V/*13 variants (at least one allele, prevalence 2.2%, OR 9.5 [95%CI 6.7-13.5]) significantly improved the model (p < 0.0001). The addition of HapB3 (prevalence 4.0%, 98.6% heterozygous), in spite of significant association with toxicity (OR 1.8 [95%CI 1.2-2.7]), did not improve the model. MIR27A rs895819 was not associated with toxicity, irrespective of DPYD variants. CONCLUSIONS FUSAFE meta-analysis highlights the major relevance of DPYD *2A/p.D949V/*13 combined with clinical variables to identify patients at risk of very severe FP-related toxicity.
Collapse
Affiliation(s)
- Gwénaël Le Teuff
- Service de Biostatistique et d'Epidémiologie, Gustave Roussy, Oncostat U1018 INSERM, labeled Ligue Contre le Cancer, Université Paris-Saclay, Villejuif, France.
| | - Nathalie Cozic
- Service de Biostatistique et d'Epidémiologie, Gustave Roussy, Oncostat U1018 INSERM, labeled Ligue Contre le Cancer, Université Paris-Saclay, Villejuif, France
| | | | - Valérie Boige
- Department of cancer medicine, Gustave-Roussy Cancer Campus, Paris-Saclay and Paris-Sud Universities, Villejuif, France
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Equipe Labellisée Ligue Nationale Contre le Cancer, CNRS SNC, 5096, Paris, France
| | - Robert B Diasio
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Cancer Center, Rochester, MN, USA
| | - Julien Taieb
- Université Paris-Cité, SIRIC CARPEM, Department of Gastroenterology and Digestive Oncology, Georges Pompidou European Hospital, AP-HP, Paris, France
| | - Didier Meulendijks
- Department of Clinical Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Claire Palles
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- Departments of Clinical Pharmacology, and of Biochemistry and Pharmacy, University of Tuebingen, Tuebingen, Germany
- Cluster of Excellence IFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, 72074, Tübingen, Germany
| | - Maarten Deenen
- Department of Clinical Pharmacy, Catharina Hospital, Eindhoven, the Netherlands
| | - Carlo R Largiadèr
- Department of Clinical Chemistry, Bern University Hospital, University of Bern, Inselspital, Bern, Switzerland
| | | | | | | | - Antonello Di Paolo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Eva Gross
- LMU Munich, University Hospital, Campus Grosshadern, Munich, Germany
| | - Barna Budai
- National Institute of Oncology, Budapest, Hungary
| | - Stephen P Ackland
- College of Heath, Medicine and Wellbeing, University of Newcastle, Newcastle, NSW, Australia
| | - André B P van Kuilenburg
- Amsterdam UMC, location University of Amsterdam, Laboratory Genetic Metabolic Diseases, Meibergdreef 9, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Imaging and biomarkers, Amsterdam, The Netherlands
| | - Howard L McLeod
- Intermountain Precision Genomics, Intermountain Healthcare, St George, UT, USA
| | - Gérard Milano
- Oncopharmacology Laboratory, Centre Antoine Lacassagne, Nice, France
| | - Fabienne Thomas
- Institut Claudius Regaud, IUCT-Oncopôle and CRCT, University of Toulouse, Inserm, Toulouse, France
| | - Marie-Anne Loriot
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Equipe Labellisée Ligue Nationale Contre le Cancer, CNRS SNC, 5096, Paris, France
- Hôpital Européen Georges Pompidou, Hôpitaux Universitaires Paris Ouest, Paris, France
| | - David Kerr
- Nuffield Division of Clinical and Laboratory Sciences and University of Oxford, Oxford, UK
| | - Jan H M Schellens
- Department of Clinical Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Pierre Laurent-Puig
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Equipe Labellisée Ligue Nationale Contre le Cancer, CNRS SNC, 5096, Paris, France
- Hôpital Européen Georges Pompidou, Hôpitaux Universitaires Paris Ouest, Paris, France
| | - Qian Shi
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Jean-Pierre Pignon
- Service de Biostatistique et d'Epidémiologie, Gustave Roussy, Oncostat U1018 INSERM, labeled Ligue Contre le Cancer, Université Paris-Saclay, Villejuif, France
| | | |
Collapse
|
20
|
Knikman JE, Lopez-Yurda M, Meulendijks D, Deenen MJ, Schellens JHM, Beijnen J, Cats A, Guchelaar HJ. A Nomogram to Predict Severe Toxicity in DPYD Wild-Type Patients Treated With Capecitabine-Based Anticancer Regimens. Clin Pharmacol Ther 2024; 115:269-277. [PMID: 37957132 DOI: 10.1002/cpt.3100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023]
Abstract
DPYD-guided dosing has improved the safety of fluoropyrimidine-based chemotherapy in recent years. However, severe toxicity remains in ~ 23% of patients not carrying DPYD variant alleles treated with capecitabine. Therefore, we developed a predictive model based on patient-related and treatment-related factors aimed at estimating the risk of developing severe capecitabine-related toxicity. The nomogram was developed using data from two large clinical trials (NCT00838370 and NCT02324452). Patients with cancer carrying a DPYD variant allele (DPYD*2A, c.1236G>A, c.2846A>T, and c.1679T>G) were excluded. Univariable and multivariable logistic regression using predetermined predictors based on previous findings, including age, sex, body surface area, type of treatment regimen, and creatinine levels were used to develop the nomogram. The developed model was internally validated using bootstrap resampling and cross-validation. This model was not externally or clinically validated. A total of 2,147 DPYD wild-type patients with cancer treated with capecitabine-based chemotherapy regimens were included of which complete data of 1,745 patients were available and used for the development of the nomogram. Univariable and multivariable logistic regression showed that age, sex, and type of treatment regimen were strong predictors of severe capecitabine-related toxicity in DPYD wild-type patients. Internal validation demonstrated a concordance index of 0.68 which indicates a good discriminative ability for prediction of severe capecitabine-related toxicity. The developed nomogram includes readily available parameters and may be a helpful tool for clinicians to assess the risk of developing severe capecitabine-related toxicity in patients without known risk DPYD variant alleles treated with capecitabine-based anticancer regimens.
Collapse
Affiliation(s)
- Jonathan E Knikman
- Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Marta Lopez-Yurda
- Biometrics Department, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Didier Meulendijks
- Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Division of Medical Oncology, Department of Clinical Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Late Development Oncology, AstraZeneca, Cambridge, UK
| | - Maarten J Deenen
- Department of Clinical Pharmacy, Catharina Hospital, Eindhoven, The Netherlands
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Jan H M Schellens
- Department of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Jos Beijnen
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Division of Pharmacoepidemiology and Clinical Pharmacology, Department of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Annemieke Cats
- Division of Medical Oncology, Department of Gastrointestinal Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Henk-Jan Guchelaar
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
21
|
Barrett D, Sibalija J, Kim RB. Patients' Experiences of a Precision Medicine Clinic. J Patient Exp 2024; 11:23743735241229384. [PMID: 38313864 PMCID: PMC10836129 DOI: 10.1177/23743735241229384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024] Open
Abstract
The purpose of this study is to provide an overview of patients' experiences using a precision medicine (PM) clinic that conducts pharmacogenomics-based (PGx) testing for adverse drug reactions. The study aimed to identify the features of the clinic valued most by patients and areas for improvement. A paper survey was used to collect data. Survey questions focused on patients' perceptions of the PM testing and the overall clinic experience. Sixty-seven patients completed the survey. Quantitative data were analyzed using SPSS and frequencies were reported. Open-ended responses were coded and organized thematically. Patients reported that the clinic services increased confidence in their medication usage. Feeling respected by staff, receiving education, and quick appointments were highly valued by patients. Suggested areas for improvement included better communication from the clinic to patients, expansion of clinic services, and education for other healthcare providers. The findings demonstrate that patient experience goes beyond the clinical care provided. Current and potential future providers of PM should invest the time and energy to configure their care delivery system to enhance the patient experience.
Collapse
Affiliation(s)
- David Barrett
- Ivey Business School, Western University, London, Canada
| | - Jovana Sibalija
- Faculty of Health Sciences, Western University, London, Canada
| | - Richard B Kim
- Schulich School of Medicine & Dentistry, Western University, London, Canada
| |
Collapse
|
22
|
Larrue R, Fellah S, Hennart B, Sabaouni N, Boukrout N, Van der Hauwaert C, Delage C, Cheok M, Perrais M, Cauffiez C, Allorge D, Pottier N. Integrating rare genetic variants into DPYD pharmacogenetic testing may help preventing fluoropyrimidine-induced toxicity. THE PHARMACOGENOMICS JOURNAL 2024; 24:1. [PMID: 38216550 PMCID: PMC10786722 DOI: 10.1038/s41397-023-00322-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/23/2023] [Accepted: 12/05/2023] [Indexed: 01/14/2024]
Abstract
Variability in genes involved in drug pharmacokinetics or drug response can be responsible for suboptimal treatment efficacy or predispose to adverse drug reactions. In addition to common genetic variations, large-scale sequencing studies have uncovered multiple rare genetic variants predicted to cause functional alterations in genes encoding proteins implicated in drug metabolism, transport and response. To understand the functional importance of rare genetic variants in DPYD, a pharmacogene whose alterations can cause severe toxicity in patients exposed to fluoropyrimidine-based regimens, massively parallel sequencing of the exonic regions and flanking splice junctions of the DPYD gene was performed in a series of nearly 3000 patients categorized according to pre-emptive DPD enzyme activity using the dihydrouracil/uracil ([UH2]/[U]) plasma ratio as a surrogate marker of DPD activity. Our results underscore the importance of integrating next-generation sequencing-based pharmacogenomic interpretation into clinical decision making to minimize fluoropyrimidine-based chemotherapy toxicity without altering treatment efficacy.
Collapse
Affiliation(s)
- Romain Larrue
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000, Lille, France.
- Service de Toxicologie et Génopathies, CHU Lille, F-59000, Lille, France.
| | - Sandy Fellah
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - Benjamin Hennart
- Service de Toxicologie et Génopathies, CHU Lille, F-59000, Lille, France
| | - Naoual Sabaouni
- Service de Toxicologie et Génopathies, CHU Lille, F-59000, Lille, France
| | - Nihad Boukrout
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - Cynthia Van der Hauwaert
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - Clément Delage
- Service de Toxicologie et Génopathies, CHU Lille, F-59000, Lille, France
| | - Meyling Cheok
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - Michaël Perrais
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - Christelle Cauffiez
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - Delphine Allorge
- Service de Toxicologie et Génopathies, CHU Lille, F-59000, Lille, France
| | - Nicolas Pottier
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000, Lille, France
- Service de Toxicologie et Génopathies, CHU Lille, F-59000, Lille, France
| |
Collapse
|
23
|
Glewis S, Lingaratnam S, Krishnasamy M, H Martin J, Tie J, Alexander M, Michael M. Pharmacogenetics testing (DPYD and UGT1A1) for fluoropyrimidine and irinotecan in routine clinical care: Perspectives of medical oncologists and oncology pharmacists. J Oncol Pharm Pract 2024; 30:30-37. [PMID: 37021580 DOI: 10.1177/10781552231167554] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
BACKGROUND Despite robust evidence and international guidelines, to support routine pharmacogenetic (PGx) testing, integration in practice has been limited. This study explored clinicians' views and experiences of pre-treatment DPYD and UGT1A1 gene testing and barriers to and enablers of routine clinical implementation. METHODS A study-specific 17-question survey was emailed (01 February-12 April 2022) to clinicians from the Medical Oncology Group of Australia (MOGA), the Clinical Oncology Society of Australia (COSA) and International Society of Oncology Pharmacy Practitioners (ISOPP). Data were analysed and reported using descriptive statistics. RESULTS Responses were collected from 156 clinicians (78% medical oncologists, 22% pharmacists). Median response rate of 8% (ranged from 6% to 24%) across all organisations. Only 21% routinely test for DPYD and 1% for UGT1A1. For patients undergoing curative/palliative intent treatments, clinicians reported intent to implement genotype-guided dosing by reducing FP dose for DPYD intermediate metabolisers (79%/94%), avoiding FP for DPYD poor metabolisers (68%/90%), and reducing irinotecan dose for UGT1A1 poor metabolisers (84%, palliative setting only). Barriers to implementation included: lack of financial reimbursements (82%) and perceived lengthy test turnaround time (76%). Most Clinicians identified a dedicated program coordinator, i.e., PGx pharmacist (74%) and availability of resources for education/training (74%) as enablers to implementation. CONCLUSION PGx testing is not routinely practised despite robust evidence for its impact on clinical decision making in curative and palliative settings. Research data, education and implementation studies may overcome clinicians' hesitancy to follow guidelines, especially for curative intent treatments, and may overcome other identified barriers to routine clinical implementation.
Collapse
Affiliation(s)
- Sarah Glewis
- Department of Pharmacy, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | | | - Mei Krishnasamy
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- Academic Nursing Unit, Peter MacCallum Cancer Centre, Melbourne, Australia
- VCCC Alliance, Parkville, Australia
| | - Jennifer H Martin
- School of Medicine and Public Health, University of Newcastle, New South Wales, Australia
| | - Jeanne Tie
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
- Personalised Oncology Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Marliese Alexander
- Department of Pharmacy, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Michael Michael
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| |
Collapse
|
24
|
Mushiroda T. [Pharmacogenetic testing for prevention of severe cutaneous adverse drug reactions]. Nihon Yakurigaku Zasshi 2024; 159:90-95. [PMID: 38432925 DOI: 10.1254/fpj.23092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Pharmacogenetic testing benefits patients by predicting drug efficacy and risk of adverse drug reactions (ADRs). Pharmacogenetic biomarkers useful in clinical practice include drug-metabolizing enzyme and drug transporter genes and human leukocyte antigen (HLA) genes. HLA genes, which are important molecules involved in human immunity, have long been analyzed for associations with ADRs, such as skin rash, drug-induced liver injury, and agranulocytosis. HLA is composed of many genes, each of which has dozens of different types (alleles), and many HLA alleles associated with ADRs have been reported. The odds ratios in the association of HLA alleles range from approximately 5 to several thousand, indicating a very large impact on the risk of ADRs. Thus, HLA genetic testing prior to initiation of drug therapy is expected to make a significant contribution to avoiding ADRs, but to demonstrate the clinical utility, it is necessary to prospectively show the effects of medical interventions based on the test results. We conducted the GENCAT study, a prospective, multicenter, single-arm clinical trial to investigate the impact of a therapeutic intervention based on the HLA-A*31:01 test on the incidence of carbamazepine-induced skin rash. HLA-A*31:01-positive patients were treated with an alternative drug such as valproic acid, and the study showed an approximately 60% reduction in the incidence of carbamazepine-induced skin rash. It is expected that the genetic test, which has demonstrated clinical utility, will lead to the establishment of safer and more appropriate stratified medicine by reflecting the information in clinical practice guidelines.
Collapse
|
25
|
Knikman JE, Wilting TA, Lopez-Yurda M, Henricks LM, Lunenburg CATC, de Man FM, Meulendijks D, Nieboer P, Droogendijk HJ, Creemers GJ, Mandigers CMPW, Imholz ALT, Mathijssen RHJ, Portielje JEA, Valkenburg-van Iersel L, Vulink A, van der Poel MHW, Baars A, Swen JJ, Gelderblom H, Schellens JHM, Beijnen JH, Guchelaar HJ, Cats A. Survival of Patients With Cancer With DPYD Variant Alleles and Dose-Individualized Fluoropyrimidine Therapy-A Matched-Pair Analysis. J Clin Oncol 2023; 41:5411-5421. [PMID: 37639651 DOI: 10.1200/jco.22.02780] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/24/2023] [Accepted: 07/11/2023] [Indexed: 08/31/2023] Open
Abstract
PURPOSE DPYD-guided fluoropyrimidine dosing improves patient safety in carriers of DPYD variant alleles. However, the impact on treatment outcome in these patients is largely unknown. Therefore, progression-free survival (PFS) and overall survival (OS) were compared between DPYD variant carriers treated with a reduced dose and DPYD wild-type controls receiving a full fluoropyrimidine dose in a retrospective matched-pair survival analysis. METHODS Data from a prospective multicenter study (ClinicalTrials.gov identifier: NCT02324452) in which DPYD variant carriers received a 25% (c.1236G>A and c.2846A>T) or 50% (DPYD*2A and c.1679T>G) reduced dose and data from DPYD variant carriers treated with a similarly reduced dose of fluoropyrimidines identified during routine clinical care were obtained. Each DPYD variant carrier was matched to three DPYD wild-type controls treated with a standard dose. Survival analyses were performed using Kaplan-Meier estimates and Cox regression. RESULTS In total, 156 DPYD variant carriers and 775 DPYD wild-type controls were available for analysis. Sixty-one c.1236G>A, 25 DPYD*2A, 13 c.2846A>T, and-when pooled-93 DPYD variant carriers could each be matched to three unique DPYD wild-type controls. For pooled DPYD variant carriers, PFS (hazard ratio [HR], 1.23; 95% CI, 1.00 to 1.51; P = .053) and OS (HR, 0.95; 95% CI, 0.75 to 1.51; P = .698) were not negatively affected by DPYD-guided dose individualization. In the subgroup analyses, a shorter PFS (HR, 1.43; 95% CI, 1.10 to 1.86; P = .007) was found in c.1236G>A variant carriers, whereas no differences were found for DPYD*2A and c.2846A>T carriers. CONCLUSION In this exploratory analysis, DPYD-guided fluoropyrimidine dosing does not negatively affect PFS and OS in pooled DPYD variant carriers. Close monitoring with early dose modifications based on toxicity is recommended, especially for c.1236G>A carriers receiving a reduced starting dose.
Collapse
Affiliation(s)
- Jonathan E Knikman
- Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Tycho A Wilting
- Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Marta Lopez-Yurda
- Biometrics Department, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Linda M Henricks
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Carin A T C Lunenburg
- Department of Medical Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Femke M de Man
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Didier Meulendijks
- Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Clinical Pharmacology, Division of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Late Development Oncology, AstraZeneca, Cambridge, UK
| | - Peter Nieboer
- Department of Internal Medicine, Wilhelmina Hospital Assen, Assen, the Netherlands
| | - Helga J Droogendijk
- Department of Internal Medicine, Bravis Hospital, Roosendaal, the Netherlands
| | - Geert-Jan Creemers
- Department of Medical Oncology, Catharina Hospital, Eindhoven, the Netherlands
| | | | | | - Ron H J Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Johanneke E A Portielje
- Department of Medical Oncology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Medical Oncology, Haga Hospital, The Hague, the Netherlands
| | | | - Annelie Vulink
- Department of Medical Oncology, Reinier de Graaf Gasthuis, Delft, the Netherlands
| | | | - Arnold Baars
- Department of Internal Medicine, Hospital Gelderse Vallei, Ede, the Netherlands
| | - Jesse J Swen
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, the Netherlands
| | - Hans Gelderblom
- Department of Medical Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jan H M Schellens
- Department of Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Jos H Beijnen
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Division of Pharmacoepidemiology and Clinical Pharmacology, Department of Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Henk-Jan Guchelaar
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, the Netherlands
| | - Annemieke Cats
- Department of Gastrointestinal Oncology, Division of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| |
Collapse
|
26
|
Peruzzi E, Roncato R, De Mattia E, Bignucolo A, Swen JJ, Guchelaar HJ, Toffoli G, Cecchin E. Implementation of pre-emptive testing of a pharmacogenomic panel in clinical practice: Where do we stand? Br J Clin Pharmacol 2023. [PMID: 37926674 DOI: 10.1111/bcp.15956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/07/2023] Open
Abstract
Adverse drug reactions (ADRs) account for a large proportion of hospitalizations among adults and are more common in multimorbid patients, worsening clinical outcomes and burdening healthcare resources. Over the past decade, pharmacogenomics has been developed as a practical tool for optimizing treatment outcomes by mitigating the risk of ADRs. Some single-gene reactive tests are already used in clinical practice, including the DPYD test for fluoropyrimidines, which demonstrates how integrating pharmacogenomic data into routine care can improve patient safety in a cost-effective manner. The evolution from reactive single-gene testing to comprehensive pre-emptive genotyping panels holds great potential for refining drug prescribing practices. Several implementation projects have been conducted to test the feasibility of applying different genetic panels in clinical practice. Recently, the results of a large prospective randomized trial in Europe (the PREPARE study by Ubiquitous Pharmacogenomics consortium) have provided the first evidence that prospective application of a pre-emptive pharmacogenomic test panel in clinical practice, in seven European healthcare systems, is feasible and yielded a 30% reduction in the risk of developing clinically relevant toxicities. Nevertheless, some important questions remain unanswered and will hopefully be addressed by future dedicated studies. These issues include the cost-effectiveness of applying a pre-emptive genotyping panel, the role of multiple co-medications, the transferability of currently tested pharmacogenetic guidelines among patients of non-European origin and the impact of rare pharmacogenetic variants that are not detected by currently used genotyping approaches.
Collapse
Affiliation(s)
- Elena Peruzzi
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano, Istituti di Ricovero e Cura a Carattere Scientifico, Aviano, Italy
| | - Rossana Roncato
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano, Istituti di Ricovero e Cura a Carattere Scientifico, Aviano, Italy
- Department of Medicine, University of Udine, Udine, Italy
| | - Elena De Mattia
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano, Istituti di Ricovero e Cura a Carattere Scientifico, Aviano, Italy
| | - Alessia Bignucolo
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano, Istituti di Ricovero e Cura a Carattere Scientifico, Aviano, Italy
| | - Jesse J Swen
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Henk-Jan Guchelaar
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano, Istituti di Ricovero e Cura a Carattere Scientifico, Aviano, Italy
| | - Erika Cecchin
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano, Istituti di Ricovero e Cura a Carattere Scientifico, Aviano, Italy
| |
Collapse
|
27
|
Fragoulakis V, Roncato R, Bignucolo A, Patrinos GP, Toffoli G, Cecchin E, Mitropoulou C. Cost-utility analysis and cross-country comparison of pharmacogenomics-guided treatment in colorectal cancer patients participating in the U-PGx PREPARE study. Pharmacol Res 2023; 197:106949. [PMID: 37802427 DOI: 10.1016/j.phrs.2023.106949] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/10/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
OBJECTIVES A cost-utility analysis was conducted to evaluate pharmacogenomic (PGx)-guided treatment compared to the standard-of-care intervention among patients diagnosed with colorectal cancer (CRC) in Italy. METHODS Data derived from a prospective, open-label, block randomized clinical trial, as a part of the largest PGx study worldwide (355 patients in both arms) were used. Mortality was used as the primary health outcome to estimate life years (LYs) gained in treatment arms within a survival analysis context. PGx-guided treatment was based on established drug-gene interactions between capecitabine, 5-fluorouracil and irinotecan with DPYD and/or UGT1A1 genomic variants. Utility values for the calculation of Quality Adjusted Life Year (QALY) was based on Visual Analog Scale (VAS) score. Missing data were imputed via the Multiple Imputation method and linear interpolation, when possible, while censored cost data were corrected via the Replace-From-The-Right algorithm. The Incremental Cost-Effectiveness Ratio (ICER) was calculated for QALYs. Raw data were bootstrapped 5000 times in order to produce 95% Confidence Intervals based on non-parametric percentile method and to construct a cost-effectiveness acceptability curve. Cost differences for study groups were investigated via a generalized linear regression model analysis. Total therapy cost per patient reflected all resources expended in the management of any adverse events, including medications, diagnostics tests, devices, surgeries, the utilization of intensive care units, and wards. RESULTS The total cost of the study arm was estimated at €380 (∼ US$416; 95%CI: 195-596) compared to €565 (∼ US$655; 95%CI: 340-724) of control arm while the mean survival in study arm was estimated at 1.58 (+0.25) LYs vs 1.50 (+0.26) (Log Rank test, X2 = 4.219, df=1, p-value=0.04). No statistically significant difference was found in QALYs. ICER was estimated at €13418 (∼ US$14695) per QALY, while the acceptability curve indicated that when the willingness-to-pay was under €5000 (∼ US$5476), the probability of PGx being cost-effective overcame 70%. The most frequent adverse drug event in both groups was neutropenia of severity grade 3 and 4, accounting for 82.6% of total events in the study arm and 65.0% in the control arm. Apart from study arm, smoking status, Body-Mass-Index and Cumulative Actionability were also significant predictors of total cost. Subgroup analysis conducted in actionable patients (7.9% of total patients) indicated that PGx-guided treatment was a dominant option over its comparator with a probability greater than 92%. In addition, a critical literature review was conducted, and these findings are in line with those reported in other European countries. CONCLUSION PGx-guided treatment strategy may represent a cost-saving option compared to the existing conventional therapeutic approach for colorectal cancer patient management in the National Health Service of Italy.
Collapse
Affiliation(s)
| | | | | | - George P Patrinos
- Laboratory of Pharmacogenomics and Individualized Therapy, Department of Pharmacy, University of Patras School of Health Sciences, Patras, Greece; Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al‑Ain, Abu Dhabi, United Arab Emirates; Zayed Center for Health Sciences, United Arab Emirates University, Al‑Ain, Abu Dhabi, United Arab Emirates
| | | | - Erika Cecchin
- Centro di Riferimento Oncologico (CRO), Aviano, Italy
| | - Christina Mitropoulou
- The Golden Helix Foundation, London, UK; Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al‑Ain, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
28
|
Hertz DL, Smith DM, Scott SA, Patel JN, Hicks JK. Response to the FDA Decision Regarding DPYD Testing Prior to Fluoropyrimidine Chemotherapy. Clin Pharmacol Ther 2023; 114:768-779. [PMID: 37350752 DOI: 10.1002/cpt.2978] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/31/2023] [Indexed: 06/24/2023]
Abstract
Fluoropyrimidine (FP) chemotherapy is associated with severe, life-threatening toxicities, particularly among patients who carry deleterious germline variants in the DPYD gene. Pretreatment DPYD testing is standard of care throughout most of Europe; however, it has not been recommended in clinical practice guidelines in the United States. Due to increased risk of severe toxicity, a Citizen's Petition asked the US Food and Drug Administration (FDA) to update language in FP drug labels to recommend DPYD testing as part of a boxed warning and recommend FP dose reduction in patients carrying deleterious germline variants. In response, the FDA updated the capecitabine package insert to inform patients about the toxicity risk and test availability and consider DPYD testing. However, the FDA did not include a testing recommendation or requirement, or a boxed warning. Additionally, the FDA did not recommend FP dose adjustment in DPYD variant carriers. This review provides a critical assessment of the DPYD-FP pharmacogenetic association using the FDA's previously published Pharmacogenetic Pyramid, demonstrating that the evidence is compelling for recommending DPYD testing prior to FP treatment. Additionally, the FDA's stated concerns about recommending DPYD testing and DPYD-guided FP dose adjustment are addressed and discussed in the context of the FDA's other genetic testing and dose adjustment recommendations. We call on the FDA to follow our European counterparts in recommending DPYD testing and genotype-based dose adjustment to ensure patients with cancer receive safe and effective FP chemotherapy.
Collapse
Affiliation(s)
- Daniel L Hertz
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, Michigan, USA
| | - D Max Smith
- Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
- MedStar Health, Columbia, Maryland, USA
| | - Stuart A Scott
- Department of Pathology, Stanford University, Stanford, California, USA
- Clinical Genomics Laboratory, Stanford Medicine, Palo Alto, California, USA
| | - Jai N Patel
- Department of Cancer Pharmacology and Pharmacogenomics, Levine Cancer Institute, Atrium Health, Charlotte, North Carolina, USA
| | - J Kevin Hicks
- Department of Individualized Cancer Management, Moffitt Cancer Center, Tampa, Florida, USA
| |
Collapse
|
29
|
Pinheiro M, Peixoto A, Rocha P, Santos C, Escudeiro C, Veiga I, Porto M, Guerra J, Barbosa A, Pinto C, Arinto P, Resende A, Teixeira MR. Implementation of upfront DPYD genotyping with a low-cost and high-throughput assay to guide fluoropyrimidine treatment in cancer patients. Pharmacogenet Genomics 2023; 33:165-171. [PMID: 37611150 DOI: 10.1097/fpc.0000000000000505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
OBJECTIVES Genetic variants in the dihydropyrimidine dehydrogenase (DPYD ) gene are associated with reduced dihydropyrimidine dehydrogenase enzyme activity and can cause severe fluoropyrimidine-related toxicity. We assessed the frequency of the four most common and well-established DPYD variants associated with fluoropyrimidine toxicity and implemented a relatively low-cost and high-throughput genotyping assay for their detection. METHODS This study includes 457 patients that were genotyped for the DPYD c.1129-5923C>G, c.1679T>G, c.1905 + 1G>A and c.2846A>T variants, either by Sanger sequencing or kompetitive allele specific PCR (KASP) technology. Of these, 172 patients presented toxicity during treatment with fluoropyrimidines (post-treatment group), and 285 were tested before treatment (pretreatment group). RESULTS Heterozygous DPYD variants were identified in 7.4% of the entire series of 457 patients, being the c.2846A>T the most frequent variant. In the post-treatment group, 15.7% of the patients presented DPYD variants, whereas only 2.5% of the patients in the pretreatment group presented a variant. The KASP assays designed in this study presented 100% genotype concordance with the results obtained by Sanger sequencing. CONCLUSIONS The combined assessment of the four DPYD variants in our population increases the identification of patients at high risk for developing fluoropyrimidine toxicity, supporting the upfront routine implementation of DPYD variant genotyping. Furthermore, the KASP genotyping assay described in this study presents a rapid turnaround time and relatively low cost, making upfront DPYD screening feasible in clinical practice.
Collapse
Affiliation(s)
- Manuela Pinheiro
- Cancer Genetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center
| | - Ana Peixoto
- Cancer Genetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center
- Department of Laboratory Genetics, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center, Porto, Portugal
| | - Patrícia Rocha
- Cancer Genetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center
- Department of Laboratory Genetics, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center, Porto, Portugal
| | - Catarina Santos
- Cancer Genetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center
- Department of Laboratory Genetics, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center, Porto, Portugal
| | - Carla Escudeiro
- Cancer Genetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center
- Department of Laboratory Genetics, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center, Porto, Portugal
| | - Isabel Veiga
- Cancer Genetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center
- Department of Laboratory Genetics, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center, Porto, Portugal
| | - Miguel Porto
- Cancer Genetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center
| | - Joana Guerra
- Cancer Genetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center
| | - Ana Barbosa
- Cancer Genetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center
- Department of Laboratory Genetics, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center, Porto, Portugal
| | - Carla Pinto
- Cancer Genetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center
- Department of Laboratory Genetics, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center, Porto, Portugal
| | - Patrícia Arinto
- Cancer Genetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center
| | - Adriana Resende
- Cancer Genetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center
| | - Manuel R Teixeira
- Cancer Genetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center
- Department of Laboratory Genetics, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| |
Collapse
|
30
|
Morris SA, Moore DC, Musselwhite LW, Lopes KE, Hamilton A, Steuerwald N, Hanson SL, Larck C, Swift K, Smith M, Kadakia KC, Chai S, Hwang JJ, Patel JN. Addressing barriers to increased adoption of DPYD genotyping at a large multisite cancer center. Am J Health Syst Pharm 2023; 80:1342-1349. [PMID: 37235983 DOI: 10.1093/ajhp/zxad117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Indexed: 05/28/2023] Open
Abstract
PURPOSE To describe the implementation of an in-house genotyping program to detect genetic variants linked to impaired dihydropyrimidine dehydrogenase (DPD) metabolism at a large multisite cancer center, including barriers to implementation and mechanisms to overcome barriers to facilitate test adoption. SUMMARY Fluoropyrimidines, including fluorouracil and capecitabine, are commonly used chemotherapy agents in the treatment of solid tumors, such as gastrointestinal cancers. DPD is encoded by the DPYD gene, and individuals classified as DPYD intermediate and poor metabolizers due to certain genetic variations in DPYD can experience reduced fluoropyrimidine clearance and an increased risk of fluoropyrimidine-related adverse events. Although pharmacogenomic guidelines provide evidence-based recommendations for DPYD genotype-guided dosing, testing has not been widely adopted in the United States for numerous reasons, including limited education/awareness of clinical utility, lack of testing recommendations by oncology professional organizations, testing cost, lack of accessibility to a comprehensive in-house test and service, and prolonged test turnaround time. Based on stakeholder feedback regarding barriers to testing, we developed an in-house DPYD test and workflow to facilitate testing in multiple clinic locations at Levine Cancer Institute. Across 2 gastrointestinal oncology clinics from March 2020 through June 2022, 137 patients were genotyped, and 13 (9.5%) of those patients were heterozygous for a variant and identified as DPYD intermediate metabolizers. CONCLUSION Implementation of DPYD genotyping at a multisite cancer center was feasible due to operationalization of workflows to overcome traditional barriers to testing and engagement from all stakeholders, including physicians, pharmacists, nurses, and laboratory personnel. Future directions to scale and sustain testing in all patients receiving a fluoropyrimidine across all Levine Cancer Institute locations include electronic medical record integration (eg, interruptive alerts), establishment of a billing infrastructure, and further refinement of workflows to improve the rate of pretreatment testing.
Collapse
Affiliation(s)
- Sarah A Morris
- Department of Cancer Pharmacology & Pharmacogenomics, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| | - Donald C Moore
- Department of Pharmacy, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| | - Laura W Musselwhite
- Department of Solid Tumor Oncology, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| | - Karine Eboli Lopes
- Department of Cancer Pharmacology & Pharmacogenomics, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| | - Alicia Hamilton
- Molecular Biology and Genomics Core Facility, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| | - Nury Steuerwald
- Molecular Biology and Genomics Core Facility, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| | - Sarah L Hanson
- Department of Pharmacy, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| | - Chris Larck
- Department of Pharmacy, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| | - Kristen Swift
- Department of Solid Tumor Oncology, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| | - Mathew Smith
- Molecular Biology and Genomics Core Facility, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| | - Kunal C Kadakia
- Department of Solid Tumor Oncology, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| | - Seungjean Chai
- Department of Solid Tumor Oncology, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| | - Jimmy J Hwang
- Department of Solid Tumor Oncology, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| | - Jai N Patel
- Department of Cancer Pharmacology & Pharmacogenomics, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| |
Collapse
|
31
|
Wu A, Anderson H, Hughesman C, Young S, Lohrisch C, Ross CJD, Carleton BC. Implementation of pharmacogenetic testing in oncology: DPYD-guided dosing to prevent fluoropyrimidine toxicity in British Columbia. Front Pharmacol 2023; 14:1257745. [PMID: 37745065 PMCID: PMC10515725 DOI: 10.3389/fphar.2023.1257745] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/29/2023] [Indexed: 09/26/2023] Open
Abstract
Background: Fluoropyrimidine toxicity is often due to variations in the gene (DPYD) encoding dihydropyrimidine dehydrogenase (DPD). DPYD genotyping can be used to adjust doses to reduce the likelihood of fluoropyrimidine toxicity while maintaining therapeutically effective drug levels. Methods: A multiplex QPCR assay was locally developed to allow genotyping for six DPYD variants. The test was offered prospectively for all patients starting on fluoropyrimidines at the BC Cancer Centre in Vancouver and then across B.C., Canada as well as retrospectively for patients suspected to have had an adverse reaction to therapy. Dose adjustments were made for variant carriers. The incidence of toxicity in the first three cycles was compared between DPYD variant allele carriers and non-variant carriers. Subsequent to an initial implementation phase, this test was made available province-wide. Results: In 9 months, 186 patients were tested and 14 were found to be heterozygous variant carriers. Fluoropyrimidine-related toxicity was higher in DPYD variant carriers. Of 127 non-variant carriers who have completed chemotherapy, 18 (14%) experienced severe (grade ≥3, Common Terminology Criteria for Adverse Events version 5.0). Of note, 22% (3 patients) of the variant carriers experienced severe toxicity even after DPYD-guided dose reductions. For one of these carriers who experienced severe thrombocytopenia within the first week, DPYD testing likely prevented lethal toxicity. In DPYD variant carriers who tolerate reduced doses, a later 25% increase led to chemotherapy discontinuation. As a result, a recommendation was made to clinicians based on available literature and expert opinion specifying that variant carriers who tolerated two cycles without toxicity can have a dose escalation of only 10%. Conclusion: DPYD-guided dose reductions were a feasible and acceptable method of preventing severe toxicity in DPYD variant carriers. Even with dose reductions, there were variant carriers who still experienced severe fluoropyrimidine toxicity, highlighting the importance of adhering to guideline-recommended dose reductions. Following the completion of the pilot phase of this study, DPYD genotyping was made available province-wide in British Columbia.
Collapse
Affiliation(s)
- Angela Wu
- Department of Experimental Medicine, University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Helen Anderson
- Medical Oncology, BC Cancer, Provincial Health Services Authority, Vancouver, BC, Canada
| | - Curtis Hughesman
- Cancer Genetics and Genomics Laboratory, BC Cancer, Provincial Health Services Authority, Vancouver, BC, Canada
| | - Sean Young
- Cancer Genetics and Genomics Laboratory, BC Cancer, Provincial Health Services Authority, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Caroline Lohrisch
- Medical Oncology, BC Cancer, Provincial Health Services Authority, Vancouver, BC, Canada
| | - Colin J. D. Ross
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Bruce C. Carleton
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Division of Translational Therapeutics, Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Therapeutic Evaluation Unit, Provincial Health Services Authority, Vancouver, BC, Canada
| |
Collapse
|
32
|
Fariman SA, Jahangard Rafsanjani Z, Hasanzad M, Niksalehi K, Nikfar S. Upfront DPYD Genotype-Guided Treatment for Fluoropyrimidine-Based Chemotherapy in Advanced and Metastatic Colorectal Cancer: A Cost-Effectiveness Analysis. Value Health Reg Issues 2023; 37:71-80. [PMID: 37329861 DOI: 10.1016/j.vhri.2023.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/26/2023] [Accepted: 04/29/2023] [Indexed: 06/19/2023]
Abstract
OBJECTIVES Fluoropyrimidines are the most widely used chemotherapy drugs for advanced and metastatic colorectal cancer (CRC). Individuals with certain DPYD gene variants are exposed to an increased risk of severe fluoropyrimidine-related toxicities. This study aimed to evaluate the cost-effectiveness of preemptive DPYD genotyping to guide fluoropyrimidine therapy in patients with advanced or metastatic CRC. METHODS Overall survival of DPYD wild-type patients who received a standard dose and variant carriers treated with a reduced dose were analyzed by parametric survival models. A decision tree and a partitioned survival analysis model with a lifetime horizon were designed, taking the Iranian healthcare perspective. Input parameters were extracted from the literature or expert opinion. To address parameter uncertainty, scenario and sensitivity analyses were also performed. RESULTS Compared with no screening, the genotype-guided treatment strategy was cost-saving ($41.7). Nevertheless, due to a possible reduction in the survival of patients receiving reduced-dose regimens, it was associated with fewer quality-adjusted life-years (9.45 vs 9.28). In sensitivity analyses, the prevalence of DPYD variants had the most significant impact on the incremental cost-effectiveness ratio. The genotyping strategy would remain cost-saving, as long as the genotyping cost is < $49 per test. In a scenario in which we assumed equal efficacy for the 2 strategies, genotyping was the dominant strategy, associated with less costs (∼$1) and more quality-adjusted life-years (0.1292). CONCLUSIONS DPYD genotyping to guide fluoropyrimidine treatment in patients with advanced or metastatic CRC is cost-saving from the perspective of the Iranian health system.
Collapse
Affiliation(s)
- Soroush Ahmadi Fariman
- Department of Pharmacoeconomics and Pharmaceutical administration, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mandana Hasanzad
- Medical Genomics Research Center, Tehran University of Medical Sciences, Tehran, Iran; Personalized Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Kimia Niksalehi
- Department of Pharmacoeconomics and Pharmaceutical administration, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Shekoufeh Nikfar
- Department of Pharmacoeconomics and Pharmaceutical administration, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
33
|
Koleva-Kolarova R, Vellekoop H, Huygens S, Versteegh M, Mölken MRV, Szilberhorn L, Zelei T, Nagy B, Wordsworth S, Tsiachristas A. Budget impact and transferability of cost-effectiveness of DPYD testing in metastatic breast cancer in three health systems. Per Med 2023; 20:357-374. [PMID: 37577962 DOI: 10.2217/pme-2022-0133] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The cost-effectiveness and budget impact of introducing extended DPYD testing prior to fluoropyrimidine-based chemotherapy in metastatic breast cancer patients in the UK, The Netherlands and Hungary were examined. DPYD testing with ToxNav© was cost-effective in all three countries. In the UK and The Netherlands, the ToxNav strategy led to more quality-adjusted life years and fewer costs to the health systems compared with no genetic testing and standard dosing of capecitabine/5-fluorouracil. In Hungary, the ToxNav strategy produced more quality-adjusted life years at a higher cost compared with no testing and standard dose. The ToxNav strategy was found to offer budget savings in the UK and in The Netherlands, while in Hungary it resulted in additional budget costs.
Collapse
Affiliation(s)
| | - Heleen Vellekoop
- Institute for Medical Technology Assessment, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Simone Huygens
- Institute for Medical Technology Assessment, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Matthijs Versteegh
- Institute for Medical Technology Assessment, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Maureen Rutten-van Mölken
- Institute for Medical Technology Assessment, Erasmus University Rotterdam, Rotterdam, The Netherlands
- Erasmus School of Health Policy & Management, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - László Szilberhorn
- Syreon Research Institute, Budapest, Hungary
- Eötvös Loránd University, Budapest, Hungary
| | - Tamás Zelei
- Syreon Research Institute, Budapest, Hungary
| | - Balázs Nagy
- Syreon Research Institute, Budapest, Hungary
| | - Sarah Wordsworth
- Health Economics Research Centre, University of Oxford, Oxford, UK
- National Institute for Health Research Oxford Biomedical Research Centre, Oxford, UK
| | - Apostolos Tsiachristas
- Health Economics Research Centre, University of Oxford, Oxford, UK
- National Institute for Health Research Oxford Biomedical Research Centre, Oxford, UK
| |
Collapse
|
34
|
Koleva-Kolarova R, Vellekoop H, Huygens S, Versteegh M, Mölken MRV, Szilberhorn L, Zelei T, Nagy B, Wordsworth S, Tsiachristas A. Cost-effectiveness of extended DPYD testing before fluoropyrimidine chemotherapy in metastatic breast cancer in the UK. Per Med 2023; 20:339-355. [PMID: 37665240 DOI: 10.2217/pme-2022-0099] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The aim of this study was to evaluate the cost-effectiveness of ToxNav©, a multivariant genetic test, to screen for DPYD followed by personalized chemotherapy dosing for metastatic breast cancer in the UK compared with no testing followed by standard dose, standard of care. In the main analysis, ToxNav was dominant over standard of care, producing 0.19 additional quality-adjusted life years and savings of £78,000 per patient over a lifetime. The mean additional quality-adjusted life years per person from 1000 simulations was 0.23 savings (95% CI: 0.22-0.24) at £99,000 (95% CI: £95-102,000). Varying input parameters independently by range of 20% was unlikely to change the results in the main analysis. The probabilistic sensitivity analysis showed ~97% probability of the ToxNav strategy to be dominant.
Collapse
Affiliation(s)
| | - Heleen Vellekoop
- Institute for Medical Technology Assessment, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Simone Huygens
- Institute for Medical Technology Assessment, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Matthijs Versteegh
- Institute for Medical Technology Assessment, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Maureen Rutten-van Mölken
- Institute for Medical Technology Assessment, Erasmus University Rotterdam, Rotterdam, The Netherlands
- Erasmus School of Health Policy & Management, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - László Szilberhorn
- Syreon Research Institute, Budapest, Hungary
- Faculty of Social Sciences, Eötvös Loránd University, Budapest, Hungary
| | - Tamás Zelei
- Syreon Research Institute, Budapest, Hungary
| | - Balázs Nagy
- Syreon Research Institute, Budapest, Hungary
| | - Sarah Wordsworth
- Health Economics Research Centre, University of Oxford, Oxford, UK
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Oxford, UK
| | - Apostolos Tsiachristas
- Health Economics Research Centre, University of Oxford, Oxford, UK
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Oxford, UK
| |
Collapse
|
35
|
Padmanabhan S, du Toit C, Dominiczak AF. Cardiovascular precision medicine - A pharmacogenomic perspective. CAMBRIDGE PRISMS. PRECISION MEDICINE 2023; 1:e28. [PMID: 38550953 PMCID: PMC10953758 DOI: 10.1017/pcm.2023.17] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/24/2023] [Accepted: 06/12/2023] [Indexed: 05/16/2024]
Abstract
Precision medicine envisages the integration of an individual's clinical and biological features obtained from laboratory tests, imaging, high-throughput omics and health records, to drive a personalised approach to diagnosis and treatment with a higher chance of success. As only up to half of patients respond to medication prescribed following the current one-size-fits-all treatment strategy, the need for a more personalised approach is evident. One of the routes to transforming healthcare through precision medicine is pharmacogenomics (PGx). Around 95% of the population is estimated to carry one or more actionable pharmacogenetic variants and over 75% of adults over 50 years old are on a prescription with a known PGx association. Whilst there are compelling examples of pharmacogenomic implementation in clinical practice, the case for cardiovascular PGx is still evolving. In this review, we shall summarise the current status of PGx in cardiovascular diseases and look at the key enablers and barriers to PGx implementation in clinical practice.
Collapse
Affiliation(s)
- Sandosh Padmanabhan
- BHF Glasgow Cardiovascular Research Centre, School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Clea du Toit
- BHF Glasgow Cardiovascular Research Centre, School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Anna F. Dominiczak
- BHF Glasgow Cardiovascular Research Centre, School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| |
Collapse
|
36
|
Peeters SL, Deenen MJ, Thijs AM, Hulshof EC, Mathijssen RH, Gelderblom H, Guchelaar HJ, Swen JJ. UGT1A1 genotype-guided dosing of irinotecan: time to prioritize patient safety. Pharmacogenomics 2023; 24:435-439. [PMID: 37470120 DOI: 10.2217/pgs-2023-0096] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023] Open
Abstract
Tweetable abstract Pretreatment UGT1A1 genotyping and a 70% irinotecan dose intensity in poor metabolizers is safe, feasible, cost-effective and essential for safe irinotecan treatment in cancer patients. It is time to update guidelines to swiftly enable the implementation of UGT1A1 genotype-guided irinotecan dosing in routine oncology care.
Collapse
Affiliation(s)
- Sofía Lj Peeters
- Department of Clinical Pharmacy, Catharina Hospital, Michelangelolaan 2, 5623 EJ Eindhoven, The Netherlands
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Maarten J Deenen
- Department of Clinical Pharmacy, Catharina Hospital, Michelangelolaan 2, 5623 EJ Eindhoven, The Netherlands
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Anna Mj Thijs
- Department of Medical Oncology, Catharina Hospital, Michelangelolaan 2, 5623 EJ Eindhoven, The Netherlands
| | - Emma C Hulshof
- Department of Clinical Pharmacy, Catharina Hospital, Michelangelolaan 2, 5623 EJ Eindhoven, The Netherlands
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Ron Hj Mathijssen
- Department of Medical Oncology, Erasmus University Medical Centre, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Hans Gelderblom
- Department of Medical Oncology, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Henk-Jan Guchelaar
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Jesse J Swen
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
37
|
Baker SD, Bates SE, Brooks GA, Dahut WL, Diasio RB, El-Deiry WS, Evans WE, Figg WD, Hertz DL, Hicks JK, Kamath S, Kasi PM, Knepper TC, McLeod HL, O'Donnell PH, Relling MV, Rudek MA, Sissung TM, Smith DM, Sparreboom A, Swain SM, Walko CM. DPYD Testing: Time to Put Patient Safety First. J Clin Oncol 2023; 41:2701-2705. [PMID: 36821823 PMCID: PMC10414691 DOI: 10.1200/jco.22.02364] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/02/2022] [Accepted: 01/17/2023] [Indexed: 02/25/2023] Open
Affiliation(s)
- Sharyn D. Baker
- College of Pharmacy, The Ohio State University, Columbus, OH
| | - Susan E. Bates
- Herbert Irving Comprehensive Cancer Center, Columbia University, Irving Medical Center, New York, NY
| | | | | | | | | | | | - William D. Figg
- Clinical Pharmacology Program, National Cancer Institute, Bethesda, MD
| | - Dan L. Hertz
- College of Pharmacy, University of Michigan, Ann Arbor, MI
| | - J. Kevin Hicks
- Department of Individualized Cancer Management, Moffitt Cancer Center, Tampa, FL
| | - Suneel Kamath
- Cleveland Clinic, Lerner College of Medicine, Cleveland, OH
| | | | - Todd C. Knepper
- Department of Individualized Cancer Management, Moffitt Cancer Center, Tampa, FL
| | | | | | | | | | | | - D. Max Smith
- Georgetown Lombardi Comprehensive Cancer Center and MedStar Health, Georgetown University, Washington, DC
| | - Alex Sparreboom
- College of Pharmacy, The Ohio State University, Columbus, OH
| | - Sandra M. Swain
- Georgetown Lombardi Comprehensive Cancer Center and MedStar Health, Georgetown University, Washington, DC
| | - Christine M. Walko
- Department of Individualized Cancer Management, Moffitt Cancer Center, Tampa, FL
| |
Collapse
|
38
|
Kabbani D, Akika R, Wahid A, Daly AK, Cascorbi I, Zgheib NK. Pharmacogenomics in practice: a review and implementation guide. Front Pharmacol 2023; 14:1189976. [PMID: 37274118 PMCID: PMC10233068 DOI: 10.3389/fphar.2023.1189976] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/03/2023] [Indexed: 06/06/2023] Open
Abstract
Considerable efforts have been exerted to implement Pharmacogenomics (PGx), the study of interindividual variations in DNA sequence related to drug response, into routine clinical practice. In this article, we first briefly describe PGx and its role in improving treatment outcomes. We then propose an approach to initiate clinical PGx in the hospital setting. One should first evaluate the available PGx evidence, review the most relevant drugs, and narrow down to the most actionable drug-gene pairs and related variant alleles. This is done based on data curated and evaluated by experts such as the pharmacogenomics knowledge implementation (PharmGKB) and the Clinical Pharmacogenetics Implementation Consortium (CPIC), as well as drug regulatory authorities such as the US Food and Drug Administration (FDA) and European Medicinal Agency (EMA). The next step is to differentiate reactive point of care from preemptive testing and decide on the genotyping strategy being a candidate or panel testing, each of which has its pros and cons, then work out the best way to interpret and report PGx test results with the option of integration into electronic health records and clinical decision support systems. After test authorization or testing requirements by the government or drug regulators, putting the plan into action involves several stakeholders, with the hospital leadership supporting the process and communicating with payers, the pharmacy and therapeutics committee leading the process in collaboration with the hospital laboratory and information technology department, and healthcare providers (HCPs) ordering the test, understanding the results, making the appropriate therapeutic decisions, and explaining them to the patient. We conclude by recommending some strategies to further advance the implementation of PGx in practice, such as the need to educate HCPs and patients, and to push for more tests' reimbursement. We also guide the reader to available PGx resources and examples of PGx implementation programs and initiatives.
Collapse
Affiliation(s)
- Danya Kabbani
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Reem Akika
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ahmed Wahid
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Ann K. Daly
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ingolf Cascorbi
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Nathalie Khoueiry Zgheib
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
39
|
Hochster HS. Routine DPYD Genetic Testing. J Clin Oncol 2023; 41:2119-2120. [PMID: 36763913 DOI: 10.1200/jco.22.02805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/12/2023] [Indexed: 02/12/2023] Open
Affiliation(s)
- Howard S Hochster
- Howard S. Hochster, MD, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, Rutgers-CINJ, Clinical Research, New Brunswick, NJ
| |
Collapse
|
40
|
Doornhof KR, van der Linden PD, Boeke GM, Willemsen AECAB, Daskapan A. Dihydropyrimidine dehydrogenase phenotype in peripheral blood mononuclear cells is related to adverse events of fluoropyrimidine-therapy. Eur J Clin Pharmacol 2023; 79:493-501. [PMID: 36757428 DOI: 10.1007/s00228-023-03466-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 02/02/2023] [Indexed: 02/10/2023]
Abstract
PURPOSE The primary objective of this study was to determine if dihydropyrimidine dehydrogenase (DPD) activity measured in peripheral blood mononuclear cells (PBMCs) is related to adverse events during fluoropyrimidine therapy. METHODS A retrospective cohort study was conducted. The study population included 481 patients who received fluoropyrimidine treatment and for whom relevant patient characteristics were known and adverse events were noted in the electronic health records. Factors besides DPD phenotype that could affect the incidence of adverse events were corrected for using log regression. These log regression models were used to identify an association between the DPD phenotype measured in PBMCs and adverse events. RESULTS Patients with a decreased DPD activity measured in PBMCs suffered more adverse events. Results from log regression data show that this effect remains significant after correcting for dosage, chemotherapy regimen and relevant patient characteristics. CONCLUSION A significant correlation was found between reduced DPD enzyme activity in PBMCs and adverse events. The findings in this paper support further exploring DPD phenotyping as a method for preventing fluoropyrimidine-related adverse events. Further assessment of DPD phenotyping will require clinical validation in a prospective study.
Collapse
Affiliation(s)
- K R Doornhof
- Department of Clinical Pharmacy, Tergooi Medical Center, Hilversum, The Netherlands
| | - P D van der Linden
- Department of Clinical Pharmacy, Tergooi Medical Center, Hilversum, The Netherlands
| | - G M Boeke
- Department of Clinical Pharmacy, Tergooi Medical Center, Hilversum, The Netherlands
| | - A E C A B Willemsen
- Department of Internal Medicine, Tergooi Medical Center, Hilversum, The Netherlands
| | - A Daskapan
- Department of Clinical Pharmacy, Tergooi Medical Center, Hilversum, The Netherlands.
| |
Collapse
|
41
|
de With M, Sadlon A, Cecchin E, Haufroid V, Thomas F, Joerger M, van Schaik RHN, Mathijssen RHJ, Largiadèr CR. Implementation of dihydropyrimidine dehydrogenase deficiency testing in Europe. ESMO Open 2023; 8:101197. [PMID: 36989883 PMCID: PMC10163157 DOI: 10.1016/j.esmoop.2023.101197] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND The main cause for fluoropyrimidine-related toxicity is deficiency of the metabolizing enzyme dihydropyrimidine dehydrogenase (DPD). In 2020, the European Medicines Agency (EMA) recommended two methods for pre-treatment DPD deficiency testing in clinical practice: phenotyping using endogenous uracil concentration or genotyping for DPYD risk variant alleles. This study assessed the DPD testing implementation status in Europe before (2019) and after (2021) the release of the EMA recommendations. METHODS The survey was conducted from 16 March 2022 to 31 July 2022. An electronic form with seven closed and three open questions was e-mailed to 251 professionals with DPD testing expertise of 34 European countries. A descriptive analysis was conducted. RESULTS We received 79 responses (31%) from 23 countries. Following publication of the EMA recommendations, 87% and 75% of the countries reported an increase in the amount of genotype and phenotype testing, respectively. Implementation of novel local guidelines was reported by 21 responders (27%). Countries reporting reimbursement of both tests increased in 2021, and only four (18%) countries reported no coverage for any testing type. In 2019, major implementation drivers were 'retrospective assessment of fluoropyrimidine-related toxicity' (39%), and in 2021, testing was driven by 'publication of guidelines' (40%). Although the major hurdles remained the same after EMA recommendations-'lack of reimbursement' (26%; 2019 versus 15%; 2021) and 'lack of recognizing the clinical relevance by medical oncologists' (25%; 2019 versus 8%; 2021)-the percentage of specialists citing these decreased. Following EMA recommendations, 25% of responders reported no hurdles at all in the adoption of the new testing practice in the clinics. CONCLUSIONS The EMA recommendations have supported the implementation of DPD deficiency testing in Europe. Key factors for successful implementation were test reimbursement and clear clinical guidelines. Further efforts to improve the oncologists' awareness of the clinical relevance of DPD testing in clinical practice are needed.
Collapse
Affiliation(s)
- M de With
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands; Department of Clinical Chemistry, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - A Sadlon
- Department of Clinical Chemistry, Inselspital, Bern University Hospital & University of Bern, INO F, Bern, Switzerland
| | - E Cecchin
- Department Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - V Haufroid
- Louvain Center for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium; Department of Clinical Chemistry, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - F Thomas
- Institut Claudius Regaud, IUCT-Oncopole and CRCT, University of Toulouse, Inserm, Toulouse, France
| | - M Joerger
- Department of Internal Medicine, Klinik für Medizinische Onkologie & Hämatologie, Kantonsspital, St.Gallen, Switzerland
| | - R H N van Schaik
- Department of Clinical Chemistry, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - R H J Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - C R Largiadèr
- Department of Clinical Chemistry, Inselspital, Bern University Hospital & University of Bern, INO F, Bern, Switzerland.
| |
Collapse
|
42
|
Afolabi BL, Mazhindu T, Zedias C, Borok M, Ndlovu N, Masimirembwa C. Pharmacogenetics and Adverse Events in the Use of Fluoropyrimidine in a Cohort of Cancer Patients on Standard of Care Treatment in Zimbabwe. J Pers Med 2023; 13:jpm13040588. [PMID: 37108974 PMCID: PMC10141018 DOI: 10.3390/jpm13040588] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Fluoropyrimidines are commonly used in the treatment of colorectal cancer. They are, however, associated with adverse events (AEs), of which gastrointestinal, myelosuppression and palmar-plantar erythrodysesthesia are the most common. Clinical guidelines are used for fluoropyrimidine dosing based on dihydropyrimidine dehydrogenase (DPYD) genetic polymorphism and have been shown to reduce these AEs in patients of European ancestry. This study aimed to evaluate, for the first time, the clinical applicability of these guidelines in a cohort of cancer patients on fluoropyrimidine standard of care treatment in Zimbabwe. DNA was extracted from whole blood and used for DPYD genotyping. Adverse events were monitored for six months using the Common Terminology Criteria for AEs (CTCAE) v.5.0. None of the 150 genotyped patients was a carrier of any of the pathogenic variants (DPYD*2A, DPYD*13, rs67376798, or rs75017182). However, severe AEs were high (36%) compared to those reported in the literature from other populations. There was a statistically significant association between BSA (p = 0.0074) and BMI (p = 0.0001) with severe global AEs. This study has shown the absence of the currently known actionable DPYD variants in the Zimbabwean cancer patient cohort. Therefore, the current pathogenic variants in the guidelines might not be feasible for all populations hence the call for modification of the current DPYD guidelines to include minority populations for the benefit of all diverse patients.
Collapse
|
43
|
Baiardi G, Clavarezza M, Stella M, Casazza S, De Censi A, Mattioli F. Precision fluoropyrimidines dosing in a compound heterozygous variant carrier of the DPYD gene: a case report. Cancer Chemother Pharmacol 2023; 91:435-439. [PMID: 36890284 DOI: 10.1007/s00280-023-04515-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/24/2023] [Indexed: 03/10/2023]
Abstract
BACKGROUND Fluoropyrimidines (FPs) form still nowadays the backbone of chemotherapic schemes in colorectal cancer (CRC). Inter-patient variability of the toxicity profile of FPs may be partially accounted for by variable expression of dihydropyrimidine dehydrogenase (DPD). DPD rate activity is genetically determined by its extremely polymorphic coding gene DPYD. In spite of pharmacogenetic guideline-directed-dosing of FPs based regimens treating carrier of multiple variants of DPYD gene remains still challenging. CASE PRESENTATION We present a case of a 48-year-old Caucasian man, compound heterozygous variant carrier of the DPYD gene (HapB3 and c.2194G>A) who had a diagnosis of adenocarcinoma of the left colon and was safely treated with a pharmacogenetic-guided 25% dose reduction of the standard CAP adjuvant treatment. Compound heterozygosis may have been responsible for an earlier over exposure to CAP resulting into low-grade toxicity with an anticipated median time to toxicity of the c.2194G>A variant to the 4th vs. 6th cycles. Some haplotypes of DPYD variants may have an advantage in terms of survival compared to wild-type patients. Our patient may also have benefitted from compound heterozygosis, as shown by no evidence of disease (NED) at 6-month follow-up. CONCLUSION Pharmacogenetic-guided dosing of DPYD intermediate metabolizer compound heterozygous HapB3 and c.2194G>A variant carries should be managed by a multidisciplinary team with a dose reduction ranging from 25 to 50% to maintain effectiveness and close clinical monitoring for early detection of ADRs.
Collapse
Affiliation(s)
- Giammarco Baiardi
- Clinical Pharmacology Unit, Ente Ospedaliero Ospedali Galliera, Mura Delle Cappuccine 14, 16128, Genoa, Italy. .,Pharmacology & Toxicology Unit, Department of Internal Medicine, University of Genoa, Viale Benedetto XV 2, 16132, Genoa, Italy.
| | - Matteo Clavarezza
- Medical Oncology Unit, Ente Ospedaliero Ospedali Galliera, Mura Delle Cappuccine 14, 16128, Genoa, Italy
| | - Manuela Stella
- Clinical Pharmacology Unit, Ente Ospedaliero Ospedali Galliera, Mura Delle Cappuccine 14, 16128, Genoa, Italy.,Pharmacology & Toxicology Unit, Department of Internal Medicine, University of Genoa, Viale Benedetto XV 2, 16132, Genoa, Italy
| | - Stefania Casazza
- Pathology Unit, Ente Ospedaliero Ospedali Galliera, Mura Delle Cappuccine 14, 16128, Genoa, Italy
| | - Andrea De Censi
- Medical Oncology Unit, Ente Ospedaliero Ospedali Galliera, Mura Delle Cappuccine 14, 16128, Genoa, Italy
| | - Francesca Mattioli
- Clinical Pharmacology Unit, Ente Ospedaliero Ospedali Galliera, Mura Delle Cappuccine 14, 16128, Genoa, Italy.,Pharmacology & Toxicology Unit, Department of Internal Medicine, University of Genoa, Viale Benedetto XV 2, 16132, Genoa, Italy
| |
Collapse
|
44
|
de With M, van Doorn L, Maasland DC, Mulder TAM, Oomen-de Hoop E, Mostert B, Homs MYV, El Bouazzaoui S, Mathijssen RHJ, van Schaik RHN, Bins S. Capecitabine-induced hand-foot syndrome: A pharmacogenetic study beyond DPYD. Biomed Pharmacother 2023; 159:114232. [PMID: 36630849 DOI: 10.1016/j.biopha.2023.114232] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/05/2023] [Accepted: 01/08/2023] [Indexed: 01/11/2023] Open
Abstract
AIM OF THE STUDY Occurrence of hand-foot syndrome (HFS) during capecitabine treatment often results in treatment interruptions (26 %) or treatment discontinuation (17 %), and can severely decrease quality of life. In this study, we investigated whether single nucleotide polymorphisms (SNPs) in genes involved in capecitabine metabolism - other than DPYD - are associated with an increased risk for capecitabine-induced HFS. METHODS Patients treated with capecitabine according to standard of care were enrolled after providing written informed consent for genotyping purposes. Prospectively collected blood samples were used to extract genomic DNA, which was subsequently genotyped for SNPs in CES1, CES2 and CDA. SNPs and clinical baseline factors that were univariably associated with HFS with P ≤ 0.10, were tested in a multivariable model using logistic regression. RESULTS Of the 446 patients eligible for analysis, 146 (32.7 %) developed HFS, of whom 77 patients (17.3 %) experienced HFS ≥ grade 2. In the multivariable model, CES1 1165-33 C>A (rs2244613, minor allele frequency 19 %) and CDA 266 + 242 A>G (rs10916825, minor allele frequency 35 %) variant allele carriers were at higher risk of HFS ≥ grade 2 (OR 1.888; 95 %CI 1.075-3.315; P = 0.027 and OR 1.865; 95 %CI 1.087-3.200; P = 0.024, respectively). CONCLUSIONS We showed that CES1 1165-33 C>A and CDA 266 + 242 A>G are significantly associated with HFS grade 2 and grade 3 in patients treated with capecitabine. Prospective studies should assess whether this increased risk can be mitigated in carriers of these SNPs, when pre-emptive genotyping is being followed by dose adjustment or by alternative treatment by a fluoropyrimidine that is not substrate to CES1, such as S1.
Collapse
Affiliation(s)
- Mirjam de With
- Dep. of Medical Oncology, Erasmus MC Cancer Institute, Dr Molewaterplein 40, 3015 GD Rotterdam, the Netherlands; Dep. of Clinical Chemistry, Erasmus University Medical Center, Dr Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - Leni van Doorn
- Dep. of Medical Oncology, Erasmus MC Cancer Institute, Dr Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - Demi C Maasland
- Dep. of Medical Oncology, Erasmus MC Cancer Institute, Dr Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - Tessa A M Mulder
- Dep. of Clinical Chemistry, Erasmus University Medical Center, Dr Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - Esther Oomen-de Hoop
- Dep. of Medical Oncology, Erasmus MC Cancer Institute, Dr Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - Bianca Mostert
- Dep. of Medical Oncology, Erasmus MC Cancer Institute, Dr Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - Marjolein Y V Homs
- Dep. of Medical Oncology, Erasmus MC Cancer Institute, Dr Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - Samira El Bouazzaoui
- Dep. of Clinical Chemistry, Erasmus University Medical Center, Dr Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - Ron H J Mathijssen
- Dep. of Medical Oncology, Erasmus MC Cancer Institute, Dr Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - Ron H N van Schaik
- Dep. of Clinical Chemistry, Erasmus University Medical Center, Dr Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - Sander Bins
- Dep. of Medical Oncology, Erasmus MC Cancer Institute, Dr Molewaterplein 40, 3015 GD Rotterdam, the Netherlands.
| |
Collapse
|
45
|
Etienne-Grimaldi MC, Pallet N, Boige V, Ciccolini J, Chouchana L, Barin-Le Guellec C, Zaanan A, Narjoz C, Taieb J, Thomas F, Loriot MA. Current diagnostic and clinical issues of screening for dihydropyrimidine dehydrogenase deficiency. Eur J Cancer 2023; 181:3-17. [PMID: 36621118 DOI: 10.1016/j.ejca.2022.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022]
Abstract
Fluoropyrimidine drugs (FP) are the backbone of many chemotherapy protocols for treating solid tumours. The rate-limiting step of fluoropyrimidine catabolism is dihydropyrimidine dehydrogenase (DPD), and deficiency in DPD activity can result in severe and even fatal toxicity. In this review, we survey the evidence-based pharmacogenetics and therapeutic recommendations regarding DPYD (the gene encoding DPD) genotyping and DPD phenotyping to prevent toxicity and optimize dosing adaptation before FP administration. The French experience of mandatory DPD-deficiency screening prior to initiating FP is discussed.
Collapse
Affiliation(s)
| | - Nicolas Pallet
- Department of Clinical Chemistry, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France; Université de Paris, INSERM UMRS1138, Centre de Recherche des Cordeliers, F-75006 Paris, France
| | - Valérie Boige
- Université de Paris, INSERM UMRS1138, Centre de Recherche des Cordeliers, F-75006 Paris, France; Department of Cancer Medicine, Institut Gustave Roussy, Villejuif, France
| | - Joseph Ciccolini
- SMARTc, CRCM INSERM U1068, Université Aix-Marseille, Marseille, France; Laboratory of Pharmacokinetics and Toxicology, Hôpital Universitaire La Timone, F-13385 Marseille, France; COMPO, CRCM INSERM U1068-Inria, Université Aix-Marseille, Marseille, France
| | - Laurent Chouchana
- Regional Center of Pharmacovigilance, Department of Pharmacology, Hôpital Cochin, Assistance Publique-Hopitaux de Paris, Université de Paris, Paris, France; French Pharmacovigilance Network, France
| | - Chantal Barin-Le Guellec
- Laboratory of Biochemistry and Molecular Biology, Centre Hospitalo-uinversitaire de Tours, Tours, France; INSERM U1248, IPPRITT, University of Limoges, Limoges, France
| | - Aziz Zaanan
- Department of Gastroenterology and Digestive Oncology, Hôpital Européen Georges Pompidou, Paris University; Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Céline Narjoz
- Department of Clinical Chemistry, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France; Université de Paris, INSERM UMRS1138, Centre de Recherche des Cordeliers, F-75006 Paris, France
| | - Julien Taieb
- SIRIC CARPEM, Université de Paris; Fédération Francophone de Cancérologie Digestive (FFCD), Assistance Publique-Hôpitaux de Paris, Department of Gastroenterology and Digestive Oncology, Hôpital Européen Georges Pompidou, Paris, France
| | - Fabienne Thomas
- Laboratory of Pharmacology, Institut Claudius Regaud, IUCT-Oncopole and CRCT, INSERM UMR1037, Université Paul Sabatier, Toulouse, France
| | - Marie-Anne Loriot
- Department of Clinical Chemistry, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France; Université de Paris, INSERM UMRS1138, Centre de Recherche des Cordeliers, F-75006 Paris, France.
| | | |
Collapse
|
46
|
Knikman JE, Rosing H, Guchelaar HJ, Cats A, Beijnen JH. Assay performance and stability of uracil and dihydrouracil in clinical practice. Cancer Chemother Pharmacol 2023; 91:257-266. [PMID: 36905444 DOI: 10.1007/s00280-023-04518-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/25/2023] [Indexed: 03/12/2023]
Abstract
PURPOSE Measurement of endogenous uracil (U) is increasingly being used as a dose-individualization method in the treatment of cancer patients with fluoropyrimidines. However, instability at room temperature (RT) and improper sample handling may cause falsely increased U levels. Therefore we aimed to study the stability of U and dihydrouracil (DHU) to ensure proper handling conditions. METHODS Stability of U and DHU in whole blood, serum, and plasma at RT (up to 24 h) and long-term stability (≥ 7 days) at - 20 °C were studied in samples from 6 healthy individuals. U and DHU levels of patients were compared using standard serum tubes (SSTs) and rapid serum tubes (RSTs). The performance of our validated UPLC-MS/MS assay was assessed over a period of 7 months. RESULTS U and DHU levels significantly increased at RT in whole blood and serum after blood sampling with increases of 12.7 and 47.6% after 2 h, respectively. A significant difference (p = 0.0036) in U and DHU levels in serum was found between SSTs and RSTs. U and DHU were stable at - 20 °C at least 2 months in serum and 3 weeks in plasma. Assay performance assessment fulfilled the acceptance criteria for system suitability, calibration standards, and quality controls. CONCLUSION A maximum of 1 h at RT between sampling and processing is recommended to ensure reliable U and DHU results. Assay performance tests showed that our UPLC-MS/MS method was robust and reliable. Additionally, we provided a guideline for proper sample handling, processing and reliable quantification of U and DHU.
Collapse
Affiliation(s)
- Jonathan E Knikman
- Division of Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - Hilde Rosing
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Henk-Jan Guchelaar
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Annemieke Cats
- Department of Gastroenterology and Hepatology, Division of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jos H Beijnen
- Division of Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
47
|
Jansen ME, Rigter T, Fleur TMC, Souverein PC, Verschuren WMM, Vijverberg SJ, Swen JJ, Rodenburg W, Cornel MC. Predictive Value of SLCO1B1 c.521T>C Polymorphism on Observed Changes in the Treatment of 1136 Statin-Users. Genes (Basel) 2023; 14:456. [PMID: 36833383 PMCID: PMC9957000 DOI: 10.3390/genes14020456] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Pharmacogenomic testing is a method to prevent adverse drug reactions. Pharmacogenomics could be relevant to optimize statin treatment, by identifying patients at high risk for adverse drug reactions. We aim to investigate the clinical validity and utility of pre-emptive pharmacogenomics screening in primary care, with SLCO1B1 c.521T>C as a risk factor for statin-induced adverse drug reactions. The focus was on changes in therapy as a proxy for adverse drug reactions observed in statin-users in a population-based Dutch cohort. In total, 1136 statin users were retrospectively genotyped for the SLCO1B1 c.521T>C polymorphism (rs4149056) and information on their statin dispensing was evaluated as cross-sectional research. Approximately half of the included participants discontinued or switched their statin treatment within three years. In our analyses, we could not confirm an association between the SLCO1B1 c.521T>C genotype and any change in statin therapy or arriving at a stable dose sooner in primary care. To be able to evaluate the predictive values of SLCO1B1 c.521T>C genotype on adverse drug reactions from statins, prospective data collection of actual adverse drug reactions and reasons to change statin treatment should be facilitated.
Collapse
Affiliation(s)
- Marleen E. Jansen
- Department of Clinical Genetics, Amsterdam Public Health Research Institute, Personalized Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Section Community Genetics, 1081 HV Amsterdam, The Netherlands
- Centre for Health Protection, National Institute for Public Health and the Environment, 3721 MA Bilthoven, The Netherlands
| | - Tessel Rigter
- Department of Clinical Genetics, Amsterdam Public Health Research Institute, Personalized Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Section Community Genetics, 1081 HV Amsterdam, The Netherlands
- Centre for Health Protection, National Institute for Public Health and the Environment, 3721 MA Bilthoven, The Netherlands
| | - Thom M. C. Fleur
- Department of Clinical Genetics, Amsterdam Public Health Research Institute, Personalized Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Section Community Genetics, 1081 HV Amsterdam, The Netherlands
- Division of Pharmacoepidemiology & Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3508 TB Utrecht, The Netherlands
| | - Patrick C. Souverein
- Division of Pharmacoepidemiology & Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3508 TB Utrecht, The Netherlands
| | - W. M. Monique Verschuren
- Centre for Nutrition, Prevention and Health Services, National Institute for Public Health and the Environment, 3721 MA Bilthoven, The Netherlands
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, 3508 GA Utrecht, The Netherlands
| | - Susanne J. Vijverberg
- Department of Pulmonary Medicine and Amsterdam Public Health Research Institute, Personalized Medicine, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Jesse J. Swen
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Centre, 2300 RC Leiden, The Netherlands
| | - Wendy Rodenburg
- Centre for Health Protection, National Institute for Public Health and the Environment, 3721 MA Bilthoven, The Netherlands
| | - Martina C. Cornel
- Department of Clinical Genetics, Amsterdam Public Health Research Institute, Personalized Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Section Community Genetics, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
48
|
Lumish M, Thackray J, Do RKG, Caudle KE, Amstutz U, Schwab M, Diasio RB, Jarnagin WR, Cercek A. Precision Management of a Patient With Dihydropyrimidine Dehydrogenase Deficiency and Liver-Predominant Metastatic Rectal Cancer Using Hepatic Arterial Floxuridine. JCO Precis Oncol 2023; 7:e2200442. [PMID: 36848609 PMCID: PMC10166539 DOI: 10.1200/po.22.00442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/30/2022] [Accepted: 12/09/2022] [Indexed: 03/01/2023] Open
Affiliation(s)
- Melissa Lumish
- Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jennifer Thackray
- Department of Pharmacy, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Kelly E. Caudle
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital Memphis, TN
| | - Ursula Amstutz
- Department of Clinical Chemistry, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Matthias Schwab
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- Department of Clinical Pharmacology, University Hospital, Tübingen, Germany
- Departments of Clinical Pharmacology, and of Biochemistry and Pharmacy, University Hospital, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180), “Image-Guided and Functionally Instructed Tumor Therapies,” University of Tuebingen, Tuebingen, Germany
| | - Robert B. Diasio
- Department of Molecular Pharmacology and Experimental Therapeutics and Mayo Clinic Cancer Center, Mayo Clinic, Rochester, MN
| | | | - Andrea Cercek
- Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
49
|
Lešnjaković L, Ganoci L, Bilić I, Šimičević L, Mucalo I, Pleština S, Božina N. DPYD genotyping and predicting fluoropyrimidine toxicity: where do we stand? Pharmacogenomics 2023; 24:93-106. [PMID: 36636997 DOI: 10.2217/pgs-2022-0135] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Fluoropyrimidines (FPs) are antineoplastic drugs widely used in the treatment of various solid tumors. Nearly 30% of patients treated with FP chemotherapy experience severe FP-related toxicity, and in some cases, toxicity can be fatal. Patients with reduced activity of DPD, the main enzyme responsible for the breakdown of FP, are at an increased risk of experiencing severe FP-related toxicity. While European regulatory agencies and clinical societies recommend pre-treatment DPD deficiency screening for patients starting treatment with FPs, this is not the case with American ones. Pharmacogenomic guidelines issued by several pharmacogenetic organizations worldwide recommend testing four DPD gene (DPYD) risk variants, but these can predict only a proportion of toxicity cases. New evidence on additional common DPYD polymorphisms, as well as identification and functional characterization of rare DPYD variants, could partially address the missing heritability of DPD deficiency and FP-related toxicity.
Collapse
Affiliation(s)
- Lucija Lešnjaković
- Department of Oncology, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Lana Ganoci
- Division of Pharmacogenomics and Therapy Individualization, Department of Laboratory Diagnostics, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Ivan Bilić
- Department of Oncology, University Hospital Centre Zagreb, Zagreb, Croatia.,School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Livija Šimičević
- Division of Pharmacogenomics and Therapy Individualization, Department of Laboratory Diagnostics, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Iva Mucalo
- Centre for Applied Pharmacy, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Stjepko Pleština
- Department of Oncology, University Hospital Centre Zagreb, Zagreb, Croatia.,School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Nada Božina
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
50
|
Morris SA, Alsaidi AT, Verbyla A, Cruz A, Macfarlane C, Bauer J, Patel JN. Cost Effectiveness of Pharmacogenetic Testing for Drugs with Clinical Pharmacogenetics Implementation Consortium (CPIC) Guidelines: A Systematic Review. Clin Pharmacol Ther 2022; 112:1318-1328. [PMID: 36149409 PMCID: PMC9828439 DOI: 10.1002/cpt.2754] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/17/2022] [Indexed: 01/31/2023]
Abstract
The objective of this study was to evaluate the evidence on cost-effectiveness of pharmacogenetic (PGx)-guided treatment for drugs with Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines. A systematic review was conducted using multiple biomedical literature databases from inception to June 2021. Full articles comparing PGx-guided with nonguided treatment were included for data extraction. Quality of Health Economic Studies (QHES) was used to assess robustness of each study (0-100). Data are reported using descriptive statistics. Of 108 studies evaluating 39 drugs, 77 (71%) showed PGx testing was cost-effective (CE) (N = 48) or cost-saving (CS) (N = 29); 21 (20%) were not CE; 10 (9%) were uncertain. Clopidogrel had the most articles (N = 23), of which 22 demonstrated CE or CS, followed by warfarin (N = 16), of which 7 demonstrated CE or CS. Of 26 studies evaluating human leukocyte antigen (HLA) testing for abacavir (N = 8), allopurinol (N = 10), or carbamazepine/phenytoin (N = 8), 15 demonstrated CE or CS. Nine of 11 antidepressant articles demonstrated CE or CS. The median QHES score reflected high-quality studies (91; range 48-100). Most studies evaluating cost-effectiveness favored PGx testing. Limited data exist on cost-effectiveness of preemptive and multigene testing across disease states.
Collapse
Affiliation(s)
- Sarah A. Morris
- Department of Cancer Pharmacology and PharmacogenomicsLevine Cancer Institute, Atrium HealthCharlotteNorth CarolinaUSA
| | | | - Allison Verbyla
- Health Economics and Outcomes Research, Department of BiostatisticsLevine Cancer Institute, Atrium HealthCharlotteNorth CarolinaUSA
| | - Adilen Cruz
- Health Economics and Outcomes Research, Department of BiostatisticsLevine Cancer Institute, Atrium HealthCharlotteNorth CarolinaUSA
| | | | - Joseph Bauer
- Health Economics and Outcomes Research, Department of BiostatisticsLevine Cancer Institute, Atrium HealthCharlotteNorth CarolinaUSA
| | - Jai N. Patel
- Department of Cancer Pharmacology and PharmacogenomicsLevine Cancer Institute, Atrium HealthCharlotteNorth CarolinaUSA
| |
Collapse
|