1
|
Karami Fath M, Najafiyan B, Morovatshoar R, Khorsandi M, Dashtizadeh A, Kiani A, Farzam F, Kazemi KS, Nabi Afjadi M. Potential promising of synthetic lethality in cancer research and treatment. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:1403-1431. [PMID: 39305329 DOI: 10.1007/s00210-024-03444-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/08/2024] [Indexed: 02/14/2025]
Abstract
Cancer is a complex disease driven by multiple genetic changes, including mutations in oncogenes, tumor suppressor genes, DNA repair genes, and genes involved in cancer metabolism. Synthetic lethality (SL) is a promising approach in cancer research and treatment, where the simultaneous dysfunction of specific genes or pathways causes cell death. By targeting vulnerabilities created by these dysfunctions, SL therapies selectively kill cancer cells while sparing normal cells. SL therapies, such as PARP inhibitors, WEE1 inhibitors, ATR and ATM inhibitors, and DNA-PK inhibitors, offer a distinct approach to cancer treatment compared to conventional targeted therapies. Instead of directly inhibiting specific molecules or pathways, SL therapies exploit genetic or molecular vulnerabilities in cancer cells to induce selective cell death, offering benefits such as targeted therapy, enhanced treatment efficacy, and minimized harm to healthy tissues. SL therapies can be personalized based on each patient's unique genetic profile and combined with other treatment modalities to potentially achieve synergistic effects. They also broaden the effectiveness of treatment across different cancer types, potentially overcoming drug resistance and improving patient outcomes. This review offers an overview of the current understanding of SL mechanisms, advancements, and challenges, as well as the preclinical and clinical development of SL. It also discusses new directions and opportunities for utilizing SL in targeted therapy for anticancer treatment.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Behnam Najafiyan
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Morovatshoar
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mahdieh Khorsandi
- Department of Biotechnology, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Arash Kiani
- Student Research Committee, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Farnoosh Farzam
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Kimia Sadat Kazemi
- Faculty of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
2
|
Xu M, Cao C, Wu P, Huang X, Ma D. Advances in cervical cancer: current insights and future directions. Cancer Commun (Lond) 2025; 45:77-109. [PMID: 39611440 PMCID: PMC11833674 DOI: 10.1002/cac2.12629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/05/2024] [Accepted: 11/10/2024] [Indexed: 11/30/2024] Open
Abstract
In alignment with the World Health Organization's strategy to eliminate cervical cancer, substantial progress has been made in the treatment of this malignancy. Cervical cancer, largely driven by human papillomavirus (HPV) infection, is considered preventable and manageable because of its well-established etiology. Advancements in precision screening technologies, such as DNA methylation triage, HPV integration detection, liquid biopsies, and artificial intelligence-assisted diagnostics, have augmented traditional screening methods such as HPV nucleic acid testing and cytology. Therapeutic strategies aimed at eradicating HPV and reversing precancerous lesions have been refined as pivotal measures for disease prevention. The controversy surrounding surgery for early-stage cervical cancer revolves around identifying optimal candidates for minimally invasive and conservative procedures without compromising oncological outcomes. Recent clinical trials have yielded promising results for the development of systemic therapies for advanced cervical cancer. Immunotherapies, such as immune checkpoint inhibitors (ICIs), antibody-drug conjugates (ADCs), and targeted therapy have demonstrated significant effectiveness, marking a substantial advancement in cervical cancer management. Various combination therapies have been validated, and ongoing trials aim to enhance outcomes through the development of novel drugs and optimized combination regimens. The prospect of eradicating cervical cancer as the first malignancy to be eliminated is now within reach. In this review, we provide a comprehensive overview of the latest scientific insights, with a particular focus on precision managements for various stages of cervical disease, and explore future research directions in cervical cancer.
Collapse
Affiliation(s)
- Miaochun Xu
- Department of Obstetrics and GynecologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiP. R. China
- National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiP. R. China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Canhui Cao
- National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiP. R. China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiP. R. China
- Department of Gynecologic OncologyTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Peng Wu
- Department of Obstetrics and GynecologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiP. R. China
- National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiP. R. China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Xiaoyuan Huang
- National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiP. R. China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiP. R. China
- Department of Gynecologic OncologyTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Ding Ma
- National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiP. R. China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiP. R. China
- Department of Gynecologic OncologyTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiP. R. China
| |
Collapse
|
3
|
Yano K, Kato M, Endo S, Igarashi T, Wada R, Kohno T, Zimmermann A, Dahmen H, Zenke FT, Shiotani B. PARP inhibition-associated heterochromatin confers increased DNA replication stress and vulnerability to ATR inhibition in SMARCA4-deficient cells. Cell Death Discov 2025; 11:31. [PMID: 39875375 PMCID: PMC11775187 DOI: 10.1038/s41420-025-02306-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/18/2024] [Accepted: 01/16/2025] [Indexed: 01/30/2025] Open
Abstract
DNA replication stress (RS), a prevalent feature of various malignancies, arises from both genetic mutations and genotoxic exposure. Elevated RS levels increase the vulnerability of cancer cells to ataxia telangiectasia and Rad3-related kinase inhibitors (ATRis). Here, we screened for DNA damage response inhibitors that enhance ATRi-induced cytotoxicity using SWI/SNF complex-deficient cells and identified a potent synergy between ATRi and poly(ADP-ribose) polymerase inhibitor (PARPi), particularly in SMARCA4-deficient cells. PARP inhibition triggers chromatin changes, namely elevated histone H3 at lysine 9 di-methylation (H3K9me2), a hallmark of facultative heterochromatin, increasing dependence on ATR activity for replication fork progression and cell survival. Interestingly, SMARCA4 deficient cells, intrinsically vulnerable to replication stress, exhibited exacerbated DNA damage upon combined ATRi and PARPi treatment in a Mre11- and Mus81-mediated manner. In vivo, combined treatment with intermittent ATRi and continuous PARPi showed greater inhibition of tumor growth than ATRi alone in SMARCA4-deficient lung adenocarcinoma xenograft models. These findings demonstrate that PARPi-induced heterochromatin amplifies RS and ATRi susceptibility, providing a potential rationale for therapeutic strategies targeting SMARCA4-deficient tumors.
Collapse
Affiliation(s)
- Kimiyoshi Yano
- Laboratory of Genome Stress Signaling, National Cancer Center Research Institute, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Cellular and Molecular Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima-city, Hiroshima, 734-8553, Japan
| | - Megumi Kato
- Laboratory of Genome Stress Signaling, National Cancer Center Research Institute, Chuo-ku, Tokyo, 104-0045, Japan
- Department of NCC Cancer Science, Health Sciences and Biomedical Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Syoju Endo
- Laboratory of Genome Stress Signaling, National Cancer Center Research Institute, Chuo-ku, Tokyo, 104-0045, Japan
- Department of NCC Cancer Science, Division of Integrative Molecular Biomedicine, Biomedical Sciences and Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Taichi Igarashi
- Laboratory of Genome Stress Signaling, National Cancer Center Research Institute, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Biosciences, School of Science, Kitasato University, Minami-ku, Sagamihara-city, Kanagawa, 252-0373, Japan
| | - Ryoga Wada
- Laboratory of Genome Stress Signaling, National Cancer Center Research Institute, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Center Research Institute, Chuo-ku, Tokyo, 104-0045, Japan
| | - Astrid Zimmermann
- Research Unit Oncology, The healthcare business of Merck KGaA, Frankfurter Str. 250, 64293, Darmstadt, Germany
| | - Heike Dahmen
- Research Unit Oncology, The healthcare business of Merck KGaA, Frankfurter Str. 250, 64293, Darmstadt, Germany
| | - Frank T Zenke
- Research Unit Oncology, The healthcare business of Merck KGaA, Frankfurter Str. 250, 64293, Darmstadt, Germany
| | - Bunsyo Shiotani
- Laboratory of Genome Stress Signaling, National Cancer Center Research Institute, Chuo-ku, Tokyo, 104-0045, Japan.
- Department of Genome Stress Signaling, Institute of Medical Science, Tokyo Medical University, Shinjuku-ku, Tokyo, 160-0023, Japan.
| |
Collapse
|
4
|
Krishnamurthy A, Wang H, Rhee JC, Davar D, Moy RH, Ratner L, Christner SM, Holleran JL, Deppas J, Sclafani C, Schmitz JC, Gore S, Chu E, Bakkenist CJ, Beumer JH, Villaruz LC. Phase I trial of ATR inhibitor elimusertib with FOLFIRI in advanced or metastatic gastrointestinal malignancies (ETCTN 10406). Cancer Chemother Pharmacol 2025; 95:27. [PMID: 39841295 DOI: 10.1007/s00280-024-04745-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/19/2024] [Indexed: 01/23/2025]
Abstract
BACKGROUND ATR is an apical DDR kinase activated at damaged replication forks. Elimusertib is an oral ATR inhibitor and potentiates irinotecan in human colorectal cancer models. METHODS To establish dose and tolerability of elimusertib with FOLFIRI, a Bayesian Optimal Interval trial design was pursued. Starting elimusertib dose was 20 mg BID days 1, 2, 15 and 16 every 28-day cycle, combined with irinotecan (150 mg/m2) and 5-FU (2000 mg/m2). RESULTS The trial was stopped after 10 accruals, with four DLT across 4 dose levels including grade 3 febrile neutropenia, mucositis, nausea, vomiting and grade 4 neutropenia. The most common grade 3/4 adverse events were neutropenia, leukopenia, lymphopenia and mucositis. Based on significant toxicities the trial was stopped. PK data for 5-FU and irinotecan were unremarkable and did not account for DLTs. Among the six response evaluable patients, four had stable disease as their best response. Median PFS was 7 months. A first case of ATRi chemotherapy combination related AML (t-AML) was observed. CONCLUSIONS The combination of elimusertib with FOLFIRI was associated with intolerable toxicity. Combination of ATR kinases with chemotherapies that target DNA replication may be associated with significant myelotoxicity. Ongoing ATRi trials should monitor for t-AML. CLINICALTRIALS GOV ID NCT04535401.
Collapse
Grants
- UM1CA186690 NCI, USA
- UM1CA186690 NCI, USA
- UM1CA186690 NCI, USA
- U24CA247643 NCI, USA
- U24CA247643 NCI, USA
- UM1CA186690 NCI, USA
- UM1CA186690 NCI, USA
- R01CA266172 NCI, USA
- U24CA247643 NCI, USA
- UM1CA186690 NCI, USA
Collapse
Affiliation(s)
- Anuradha Krishnamurthy
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Division of Hematology/Oncology, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hong Wang
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - John C Rhee
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Diwakar Davar
- Division of Hematology/Oncology, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ryan H Moy
- Department of Medicine, Division of Hematology/Oncology, Columbia University Irving Medical Center, New York, NY, USA
| | - Lee Ratner
- Division of Oncology, Washington University School of Medicine, St Louis, MO, USA
| | - Susan M Christner
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Julianne L Holleran
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Joshua Deppas
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Carina Sclafani
- Department of Radiation Oncology, School of Medicine, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - John C Schmitz
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Steve Gore
- Investigational Drug Branch, Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| | - Edward Chu
- Montefiore Einstein Cancer Canter, Bronx, NY, USA
| | - Christopher J Bakkenist
- Department of Radiation Oncology, School of Medicine, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jan H Beumer
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
- University of Pittsburgh Cancer Institute, Hillman Research Pavilion, Room G27E, 5117 Centre Avenue, Pittsburgh, PA, 15213-1863, USA.
| | - Liza C Villaruz
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Division of Hematology/Oncology, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
5
|
Nair JR, Huang TT, Sunkara A, Pruitt MR, Ibanez KR, Chiang CY, Cheng KCC, Wilson K, Cardillo TM, Hofsess S, Lee JM. Distinct effects of sacituzumab govitecan and berzosertib on DNA damage response in ovarian cancer. iScience 2024; 27:111283. [PMID: 39628575 PMCID: PMC11613210 DOI: 10.1016/j.isci.2024.111283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/10/2024] [Accepted: 10/25/2024] [Indexed: 12/06/2024] Open
Abstract
Antibody-drug conjugates (ADCs) have become an important class of anticancer drugs in solid tumors including drug-resistant gynecologic malignancies. TROP2 is a cell surface antigen that is highly expressed in ovarian carcinoma (OC) but minimally expressed in normal ovarian tissues. In this study, we aimed to identify how TROP2-specific ADC, sacituzumab govitecan (SG), modulates DNA damage response pathways in drug-resistant OC. We found that SG induces G2/M arrest, increases RPA1 foci, and decreases replication fork speed, resulting in replication stress in TROP2-positive cells while these were less evident in TROP2-negative cells. In OC in vitro and in vivo models, SN-38 sensitivity and TROP2 expression play key roles in response to either ATR inhibitor or SG alone, or in combination. Additionally, inhibition of translesion DNA synthesis enhances SG and PARP inhibitor (PARPi) sensitivity in PARPi-resistant OC cells. These findings provide mechanistic insights for clinical development of SG in drug-resistant OC.
Collapse
Affiliation(s)
- Jayakumar R. Nair
- Women’s Malignancies Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Tzu-Ting Huang
- Women’s Malignancies Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Anu Sunkara
- Women’s Malignancies Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Margaret R. Pruitt
- Women’s Malignancies Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Kristen R. Ibanez
- Women’s Malignancies Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Chih-Yuan Chiang
- Functional Genomics Laboratory, National Center for Advancing Translational Sciences, NIH, Rockville, MD, USA
| | - Ken Chih-Chien Cheng
- Functional Genomics Laboratory, National Center for Advancing Translational Sciences, NIH, Rockville, MD, USA
| | - Kelli Wilson
- Functional Genomics Laboratory, National Center for Advancing Translational Sciences, NIH, Rockville, MD, USA
| | | | - Scott Hofsess
- Gilead Sciences, Inc., 333 Lakeside Dr., Foster City, CA 94404, USA
| | - Jung-Min Lee
- Women’s Malignancies Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
6
|
Henklewska M, Pawlak A, Obmińska-Mrukowicz B. Targeting ATR Kinase as a Strategy for Canine Lymphoma and Leukaemia Treatment. Vet Comp Oncol 2024; 22:602-612. [PMID: 39300906 DOI: 10.1111/vco.13014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
Ataxia telangiectasia and Rad3-related (ATR) kinase is one of the main regulators of cell response to DNA damage and replication stress. Effectiveness of ATR targeting in human cancers has been confirmed in preclinical studies and ATR inhibitors are currently developed clinically in human oncology. In the presented study, we tested the anticancer efficacy of ATR inhibitor berzosertib in an in vitro model of canine haematopoietic cancers. Using MTT assay and flow cytometry, we assessed the cytotoxicity of berzosertib in four established canine lymphoma and leukaemia cell lines and compared it with its activity against noncancerous canine cells. Further, we estimated the level of apoptosis in berzosertib-treated cells via flow cytometry and assessed H2AX phosphorylation as a marker of DNA damage using western blot technique. In flow-cytometric analysis, we also evaluated potential synergism between berzosertib and chlorambucil and assessed the influence of berzosertib on cell cycle disturbances induced by the drug. The results demonstrated that berzosertib, even without additional DNA damaging agent, can be effective against canine lymphoma and leukaemia cells at concentrations that were harmless for noncancerous cells, although sensitivity of individual cancer cell lines varied greatly. Cell death occurred through caspase-dependent apoptosis via induction of DNA damage. Berzosertib also acted synergistically with chlorambucil, probably by preventing DNA damage repair as a consequence of S-phase arrest abrogation. In conclusion, ATR inhibition may provide a new therapeutic option for the treatment of canine lymphomas and leukaemias, but further studies are required to determine potential biomarkers of their susceptibility.
Collapse
Affiliation(s)
- Marta Henklewska
- Department of Pharmacology and Toxicology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Aleksandra Pawlak
- Department of Pharmacology and Toxicology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Bożena Obmińska-Mrukowicz
- Department of Pharmacology and Toxicology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
7
|
Heaphy CM, Patel S, Smith K, Wondisford AR, Lynskey ML, O'Sullivan RJ, Fuhrer K, Han X, Seethala RR, Liu TC, Cao D, Ertunc O, Zheng Q, Stojanova M, Zureikat AH, Paniccia A, Lee K, Ongchin MC, Pingpank JF, Zeh HJ, Hogg ME, Geller D, Marsh JW, Brand RE, Chennat JS, Das R, Fasanella KE, Gabbert C, Khalid A, McGrath K, Lennon AM, Sarkaria S, Singh H, Slivka A, Hsu D, Zhang JY, Nacev BA, Nikiforova MN, Wald AI, Vaddi N, De Marzo AM, Singhi AH, Bell PD, Singhi AD. Detection of Alternative Lengthening of Telomeres via Chromogenic In Situ Hybridization for the Prognostication of PanNETs and Other Neoplasms. Mod Pathol 2024; 38:100651. [PMID: 39522643 DOI: 10.1016/j.modpat.2024.100651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/10/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Molecular studies have shown alternative lengthening to telomeres (ALT) to be an important prognostic biomarker of shorter relapse-free survival (RFS) for patients with pancreatic neuroendocrine tumors (PanNETs) and other neoplasms. However, the preferred method of detecting ALT in tissue is by fluorescence in situ hybridization (FISH), which has several clinical limitations. These issues necessitate the creation of a chromogenic ALT assay that can be easily implemented into routine practice. A chromogenic in situ hybridization (CISH) assay was developed using genetically modified osteosarcoma cell lines, 20 normal pancreata, 20 ALT-positive PanNETs, and 20 ALT-negative PanNETs. Thereafter, it was validated on a multiinstitutional cohort of 360 surgically resected PanNETs and correlated with multiple clinicopathologic features, RFS, and FISH results. Separately, 109 leiomyosarcomas (LMS) were evaluated by both CISH and FISH, and, similarly, the prognostic significance of ALT status was assessed. Upon optimization, ALT-CISH was identified in 112 of 360 (31%) primary PanNETs and was 100% concordant with FISH testing. ALT correlated with several adverse prognostic findings and distant metastasis (all P < .004). The 5-year RFS for patients with ALT-positive PanNETs was 35% as compared with 94% for ALT-negative PanNETs. By multivariate analysis, ALT was an independent prognostic factor for shorter RFS. Similarly, ALT was associated with shorter RFS in patients with LMS and, analogous to PanNETs, a negative, independent prognostic factor. ALT-CISH was developed and validated in not only PanNETs but also sarcomas, specifically LMS. CISH testing has multiple advantages over FISH that facilitate its widespread clinical use in the detection of ALT and prognostication of patients with diverse neoplasms.
Collapse
Affiliation(s)
- Christopher M Heaphy
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts.
| | - Simmi Patel
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Katelyn Smith
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Anne R Wondisford
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michelle L Lynskey
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Roderick J O'Sullivan
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kimberly Fuhrer
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Xiaoli Han
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Raja R Seethala
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Ta-Chiang Liu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Dengfeng Cao
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Onur Ertunc
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Qizhi Zheng
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Marija Stojanova
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Amer H Zureikat
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Alessandro Paniccia
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Kenneth Lee
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Melanie C Ongchin
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - James F Pingpank
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Herbert J Zeh
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Melissa E Hogg
- Department of Surgery, NorthShore University Health System, Evanston, Illinois
| | - David Geller
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - James Wallis Marsh
- Department of Surgery, West Virginia University Health Sciences Center, Morgantown, West Virginia
| | - Randall E Brand
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Jennifer S Chennat
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Rohit Das
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Kenneth E Fasanella
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Charles Gabbert
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Asif Khalid
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Kevin McGrath
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Anne Marie Lennon
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Savreet Sarkaria
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Harkirat Singh
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Adam Slivka
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Dennis Hsu
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Janie Y Zhang
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Benjamin A Nacev
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Marina N Nikiforova
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Abigail I Wald
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Neel Vaddi
- Drexel University, Philadelphia, Pennsylvania
| | - Angelo M De Marzo
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Anju H Singhi
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Phoenix D Bell
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Aatur D Singhi
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.
| |
Collapse
|
8
|
Moosavi F, Hassani B, Nazari S, Saso L, Firuzi O. Targeting DNA damage response in pancreatic ductal adenocarcinoma: A review of preclinical and clinical evidence. Biochim Biophys Acta Rev Cancer 2024; 1879:189185. [PMID: 39326802 DOI: 10.1016/j.bbcan.2024.189185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is associated with one of the most unfavorable prognoses across all malignancies. In this review, we investigate the role of inhibitors targeting crucial regulators of DNA damage response (DDR) pathways, either as single treatments or in combination with chemotherapeutic agents and targeted therapies in PDAC. The most prominent clinical benefit of PARP inhibitors' monotherapy is related to the principle of synthetic lethality in individuals harboring BRCA1/2 and other DDR gene mutations as predictive biomarkers. Moreover, induction of BRCAness with inhibitors of RTKs, including VEGFR and c-MET and their downstream signaling pathways, RAS/RAF/MEK/ERK and PI3K/AKT/mTOR in order to expand the application of PARP inhibitors in patients without DDR mutations, has also been addressed. Other DDR-targeting agents beyond PARP inhibitors, including inhibitors of ATM, ATR, CHEK1/2, and WEE1 have also demonstrated their potential in preclinical models of PDAC and may hold promise in future studies.
Collapse
Affiliation(s)
- Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahareh Hassani
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Somayeh Nazari
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
9
|
Federica G, Michela C, Giovanna D. Targeting the DNA damage response in cancer. MedComm (Beijing) 2024; 5:e788. [PMID: 39492835 PMCID: PMC11527828 DOI: 10.1002/mco2.788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 11/05/2024] Open
Abstract
DNA damage response (DDR) pathway is the coordinated cellular network dealing with the identification, signaling, and repair of DNA damage. It tightly regulates cell cycle progression and promotes DNA repair to minimize DNA damage to daughter cells. Key proteins involved in DDR are frequently mutated/inactivated in human cancers and promote genomic instability, a recognized hallmark of cancer. Besides being an intrinsic property of tumors, DDR also represents a unique therapeutic opportunity. Indeed, inhibition of DDR is expected to delay repair, causing persistent unrepaired breaks, to interfere with cell cycle progression, and to sensitize cancer cells to several DNA-damaging agents, such as radiotherapy and chemotherapy. In addition, DDR defects in cancer cells have been shown to render these cells more dependent on the remaining pathways, which could be targeted very specifically (synthetic lethal approach). Research over the past two decades has led to the synthesis and testing of hundreds of small inhibitors against key DDR proteins, some of which have shown antitumor activity in human cancers. In parallel, the search for synthetic lethality interaction is broadening the use of DDR inhibitors. In this review, we discuss the state-of-art of ataxia-telangiectasia mutated, ataxia-telangiectasia-and-Rad3-related protein, checkpoint kinase 1, Wee1 and Polθ inhibitors, highlighting the results obtained in the ongoing clinical trials both in monotherapy and in combination with chemotherapy and radiotherapy.
Collapse
Affiliation(s)
- Guffanti Federica
- Laboratory of Preclinical Gynecological OncologyDepartment of Experimental OncologyIstituto di Ricerche Farmacologiche Mario Negri IRCCSMilanItaly
| | - Chiappa Michela
- Laboratory of Preclinical Gynecological OncologyDepartment of Experimental OncologyIstituto di Ricerche Farmacologiche Mario Negri IRCCSMilanItaly
| | - Damia Giovanna
- Laboratory of Preclinical Gynecological OncologyDepartment of Experimental OncologyIstituto di Ricerche Farmacologiche Mario Negri IRCCSMilanItaly
| |
Collapse
|
10
|
Wang J, Yang J, Narang A, He J, Wolfgang C, Li K, Zheng L. Consensus, debate, and prospective on pancreatic cancer treatments. J Hematol Oncol 2024; 17:92. [PMID: 39390609 PMCID: PMC11468220 DOI: 10.1186/s13045-024-01613-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/25/2024] [Indexed: 10/12/2024] Open
Abstract
Pancreatic cancer remains one of the most aggressive solid tumors. As a systemic disease, despite the improvement of multi-modality treatment strategies, the prognosis of pancreatic cancer was not improved dramatically. For resectable or borderline resectable patients, the surgical strategy centered on improving R0 resection rate is consensus; however, the role of neoadjuvant therapy in resectable patients and the optimal neoadjuvant therapy of chemotherapy with or without radiotherapy in borderline resectable patients were debated. Postoperative adjuvant chemotherapy of gemcitabine/capecitabine or mFOLFIRINOX is recommended regardless of the margin status. Chemotherapy as the first-line treatment strategy for advanced or metastatic patients included FOLFIRINOX, gemcitabine/nab-paclitaxel, or NALIRIFOX regimens whereas 5-FU plus liposomal irinotecan was the only standard of care second-line therapy. Immunotherapy is an innovative therapy although anti-PD-1 antibody is currently the only agent approved by for MSI-H, dMMR, or TMB-high solid tumors, which represent a very small subset of pancreatic cancers. Combination strategies to increase the immunogenicity and to overcome the immunosuppressive tumor microenvironment may sensitize pancreatic cancer to immunotherapy. Targeted therapies represented by PARP and KRAS inhibitors are also under investigation, showing benefits in improving progression-free survival and objective response rate. This review discusses the current treatment modalities and highlights innovative therapies for pancreatic cancer.
Collapse
Affiliation(s)
- Junke Wang
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Jie Yang
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Amol Narang
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Jin He
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Christopher Wolfgang
- Department of Surgery, New York University School of Medicine and NYU-Langone Medical Center, New York, NY, USA
| | - Keyu Li
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, 610041, Sichuan, China.
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St, Baltimore, MD, 21287, USA.
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| | - Lei Zheng
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St, Baltimore, MD, 21287, USA.
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- The Multidisciplinary Gastrointestinal Cancer Laboratories Program, the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| |
Collapse
|
11
|
Lu H, Klopp‐Schulze L, Mukker JK, Li D, Kuroki Y, Bolleddula J, Terranova N, Goteti K, Gao W, Strotmann R, Dong J, Venkatakrishnan K. Asia-inclusive drug development leveraging principles of ICH E5 and E17 guidelines: Case studies illustrating quantitative clinical pharmacology as a foundational enabler. Clin Transl Sci 2024; 17:e70050. [PMID: 39445632 PMCID: PMC11500040 DOI: 10.1111/cts.70050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/17/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024] Open
Abstract
With the International Conference on Harmonization of Technical Requirements for Pharmaceuticals for Human Use (ICH) E17 guidelines in effect from 2018, the design of Asia-inclusive multiregional clinical trials (MRCTs) has been streamlined, thereby enabling efficient simultaneous global development. Furthermore, with the recent regulatory reforms in China and its drug administration joining the ICH as a full regulatory member, early participation of China in the global clinical development of novel investigational drugs is now feasible. This would also allow for inclusion of the region in the geographic footprint of pivotal MRCTs leveraging principles of the ICH E5 and E17. Herein, we describe recent case examples of model-informed Asia-inclusive global clinical development in the EMD Serono portfolio, as applied to the ataxia telangiectasia and Rad3-related inhibitors, tuvusertib and berzosertib (oncology), the toll-like receptor 7/8 antagonist, enpatoran (autoimmune diseases), the mesenchymal-epithelial transition factor inhibitor tepotinib (oncology), and the antimetabolite cladribine (neuroimmunological disease). Through these case studies, we illustrate pragmatic approaches to ethnic sensitivity assessments and the application of a model-informed drug development toolkit including population pharmacokinetic/pharmacodynamic modeling and pharmacometric disease progression modeling and simulation to enable early conduct of Asia-inclusive MRCTs. These examples demonstrate the value of a Totality of Evidence approach where every patient's data matter for de-risking ethnic sensitivity to inter-population variations in drug- and disease-related intrinsic and extrinsic factors, enabling inclusive global development strategies and timely evidence generation for characterizing benefit/risk of the proposed dosage in Asian populations.
Collapse
Affiliation(s)
- Hong Lu
- Merck Serono (Beijing) Pharmaceutical R&D Co., Ltd.BeijingChina
| | | | | | - Dandan Li
- Merck Serono (Beijing) Pharmaceutical R&D Co., Ltd.BeijingChina
| | | | | | - Nadia Terranova
- Ares Trading S.A. (an Affiliate of Merck KGaA, Darmstadt, Germany)LausanneSwitzerland
| | - Kosalaram Goteti
- EMD Serono Research and Development Institute Inc.BillericaMassachusettsUSA
| | - Wei Gao
- EMD Serono Research and Development Institute Inc.BillericaMassachusettsUSA
| | | | - Jennifer Dong
- EMD Serono Research and Development Institute Inc.BillericaMassachusettsUSA
| | | |
Collapse
|
12
|
Hu X, Yi H, Cheng H, Zhao Y, Zhang D, Li J, Ruan J, Zhang J, Lu X. Multiple Heterogeneous Networks Representation With Latent Space for Synthetic Lethality Prediction. IEEE Trans Nanobioscience 2024; 23:564-571. [PMID: 39150817 DOI: 10.1109/tnb.2024.3444922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2024]
Abstract
Computational synthetic lethality (SL) method has become a promising strategy to identify SL gene pairs for targeted cancer therapy and cancer medicine development. Feature representation for integrating various biological networks is crutial to improve the identification performance. However, previous feature representation, such as matrix factorization and graph neural network, projects gene features onto latent variables by keeping a specific geometric metric. There is a lack of models of gene representational latent space with considerating multiple dimentionalities correlation and preserving latent geometric structures in both sample and feature spaces. Therefore, we propose a novel method to model gene Latent Space using matrix Tri-Factorization (LSTF) to obtain gene representation with embedding variables resulting from the potential interpretation of synthetic lethality. Meanwhile, manifold subspace regularization is applied to the tri-factorization to capture the geometrical manifold structure in the latent space with gene PPI functional and GO semantic embeddings. Then, SL gene pairs are identified by the reconstruction of the associations with gene representations in the latent space. The experimental results illustrate that LSTF is superior to other state-of-the-art methods. Case study demonstrate the effectiveness of the predicted SL associations.
Collapse
|
13
|
Taniguchi H, Chakraborty S, Takahashi N, Banerjee A, Caeser R, Zhan YA, Tischfield SE, Chow A, Nguyen EM, Villalonga ÁQ, Manoj P, Shah NS, Rosario S, Hayatt O, Qu R, de Stanchina E, Chan J, Mukae H, Thomas A, Rudin CM, Sen T. ATR inhibition activates cancer cell cGAS/STING-interferon signaling and promotes antitumor immunity in small-cell lung cancer. SCIENCE ADVANCES 2024; 10:eado4618. [PMID: 39331709 PMCID: PMC11430494 DOI: 10.1126/sciadv.ado4618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 08/23/2024] [Indexed: 09/29/2024]
Abstract
Patients with small-cell lung cancer (SCLC) have poor prognosis and typically experience only transient benefits from combined immune checkpoint blockade (ICB) and chemotherapy. Here, we show that inhibition of ataxia telangiectasia and rad3 related (ATR), the primary replication stress response activator, induces DNA damage-mediated micronuclei formation in SCLC models. ATR inhibition in SCLC activates the stimulator of interferon genes (STING)-mediated interferon signaling, recruits T cells, and augments the antitumor immune response of programmed death-ligand 1 (PD-L1) blockade in mouse models. We demonstrate that combined ATR and PD-L1 inhibition causes improved antitumor response than PD-L1 alone as the second-line treatment in SCLC. This study shows that targeting ATR up-regulates major histocompatibility class I expression in preclinical models and SCLC clinical samples collected from a first-in-class clinical trial of ATR inhibitor, berzosertib, with topotecan in patients with relapsed SCLC. Targeting ATR represents a transformative vulnerability of SCLC and is a complementary strategy to induce STING-interferon signaling-mediated immunogenicity in SCLC.
Collapse
Affiliation(s)
- Hirokazu Taniguchi
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Subhamoy Chakraborty
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nobuyuki Takahashi
- Department of Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, USA
| | - Avisek Banerjee
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rebecca Caeser
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yingqian A. Zhan
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sam E. Tischfield
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrew Chow
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Evelyn M. Nguyen
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Álvaro Quintanal Villalonga
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Parvathy Manoj
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nisargbhai S. Shah
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Samantha Rosario
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Omar Hayatt
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rui Qu
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joseph Chan
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Program for Computational and Systems Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hiroshi Mukae
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Anish Thomas
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, USA
| | - Charles M. Rudin
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Triparna Sen
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
14
|
Qian J, Liao G, Chen M, Peng RW, Yan X, Du J, Huang R, Pan M, Lin Y, Gong X, Xu G, Zheng B, Chen C, Yang Z. Advancing cancer therapy: new frontiers in targeting DNA damage response. Front Pharmacol 2024; 15:1474337. [PMID: 39372203 PMCID: PMC11449873 DOI: 10.3389/fphar.2024.1474337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/10/2024] [Indexed: 10/08/2024] Open
Abstract
Genomic instability is a core characteristic of cancer, often stemming from defects in DNA damage response (DDR) or increased replication stress. DDR defects can lead to significant genetic alterations, including changes in gene copy numbers, gene rearrangements, and mutations, which accumulate over time and drive the clonal evolution of cancer cells. However, these vulnerabilities also present opportunities for targeted therapies that exploit DDR deficiencies, potentially improving treatment efficacy and patient outcomes. The development of PARP inhibitors like Olaparib has significantly improved the treatment of cancers with DDR defects (e.g., BRCA1 or BRCA2 mutations) based on synthetic lethality. This achievement has spurred further research into identifying additional therapeutic targets within the DDR pathway. Recent progress includes the development of inhibitors targeting other key DDR components such as DNA-PK, ATM, ATR, Chk1, Chk2, and Wee1 kinases. Current research is focused on optimizing these therapies by developing predictive biomarkers for treatment response, analyzing mechanisms of resistance (both intrinsic and acquired), and exploring the potential for combining DDR-targeted therapies with chemotherapy, radiotherapy, and immunotherapy. This article provides an overview of the latest advancements in targeted anti-tumor therapies based on DDR and their implications for future cancer treatment strategies.
Collapse
Affiliation(s)
- Jiekun Qian
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Cardiothoracic Surgery, Fujian Medical University, Fuzhou, China
| | - Guoliang Liao
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Clinical Research Center for Thoracic Tumors of Fujian Province, Fuzhou, China
| | - Maohui Chen
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Clinical Research Center for Thoracic Tumors of Fujian Province, Fuzhou, China
| | - Ren-Wang Peng
- Division of General Thoracic Surgery, Department of BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Xin Yan
- Department of Cardiac Medical Center Nursing, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jianting Du
- Fujian Key Laboratory of Cardiothoracic Surgery, Fujian Medical University, Fuzhou, China
- Clinical Research Center for Thoracic Tumors of Fujian Province, Fuzhou, China
| | - Renjie Huang
- Fujian Key Laboratory of Cardiothoracic Surgery, Fujian Medical University, Fuzhou, China
- Clinical Research Center for Thoracic Tumors of Fujian Province, Fuzhou, China
| | - Maojie Pan
- Fujian Key Laboratory of Cardiothoracic Surgery, Fujian Medical University, Fuzhou, China
- Clinical Research Center for Thoracic Tumors of Fujian Province, Fuzhou, China
| | - Yuxing Lin
- Fujian Key Laboratory of Cardiothoracic Surgery, Fujian Medical University, Fuzhou, China
- Clinical Research Center for Thoracic Tumors of Fujian Province, Fuzhou, China
| | - Xian Gong
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Clinical Research Center for Thoracic Tumors of Fujian Province, Fuzhou, China
| | - Guobing Xu
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Clinical Research Center for Thoracic Tumors of Fujian Province, Fuzhou, China
| | - Bin Zheng
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Cardiothoracic Surgery, Fujian Medical University, Fuzhou, China
| | - Chun Chen
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Clinical Research Center for Thoracic Tumors of Fujian Province, Fuzhou, China
| | - Zhang Yang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Clinical Research Center for Thoracic Tumors of Fujian Province, Fuzhou, China
| |
Collapse
|
15
|
Zhang J, Zeng X, Guo Q, Sheng Z, Chen Y, Wan S, Zhang L, Zhang P. Small cell lung cancer: emerging subtypes, signaling pathways, and therapeutic vulnerabilities. Exp Hematol Oncol 2024; 13:78. [PMID: 39103941 DOI: 10.1186/s40164-024-00548-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 07/27/2024] [Indexed: 08/07/2024] Open
Abstract
Small cell lung cancer (SCLC) is a recalcitrant cancer characterized by early metastasis, rapid tumor growth and poor prognosis. In recent decades, the epidemiology, initiation and mutation characteristics of SCLC, as well as abnormal signaling pathways contributing to its progression, have been widely studied. Despite extensive investigation, fewer drugs have been approved for SCLC. Recent advancements in multi-omics studies have revealed diverse classifications of SCLC that are featured by distinct characteristics and therapeutic vulnerabilities. With the accumulation of SCLC samples, different subtypes of SCLC and specific treatments for these subtypes were further explored. The identification of different molecular subtypes has opened up novel avenues for the treatment of SCLC; however, the inconsistent and uncertain classification of SCLC has hindered the translation from basic research to clinical applications. Therefore, a comprehensives review is essential to conclude these emerging subtypes and related drugs targeting specific therapeutic vulnerabilities within abnormal signaling pathways. In this current review, we summarized the epidemiology, risk factors, mutation characteristics of and classification, related molecular pathways and treatments for SCLC. We hope that this review will facilitate the translation of molecular subtyping of SCLC from theory to clinical application.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China.
| | - Xiaoping Zeng
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Qiji Guo
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Zhenxin Sheng
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Yan Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Shiyue Wan
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Lele Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Peng Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China.
| |
Collapse
|
16
|
Deppas JJ, Kiesel BF, Guo J, Parise RA, Clump DA, D'Argenio DZ, Bakkenist CJ, Beumer JH. Non-linear IV pharmacokinetics of the ATR inhibitor berzosertib (M6620) in mice. Cancer Chemother Pharmacol 2024; 94:271-283. [PMID: 38743253 PMCID: PMC11390321 DOI: 10.1007/s00280-024-04675-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/02/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND The Ataxia Telangiectasia and Rad3-related (ATR) protein complex is an apical initiator of DNA damage response pathways. Several ATR inhibitors (ATRi) are in clinical development including berzosertib (formerly M6620, VX-970). Although clinical studies have examined plasma pharmacokinetics (PK) in humans, little is known regarding dose/exposure relationships and tissue distribution. To understand these concepts, we extensively characterized the PK of berzosertib in mouse plasma and tissues. METHODS A highly sensitive LC-MS/MS method was utilized to quantitate berzosertib in plasma and tissues. Dose proportionality was assessed in female BALB/c mice following single IV doses (2, 6, 20 or 60 mg/kg). A more extensive PK study was conducted in tumor-bearing mice following a single IV dose of 20 mg/kg to evaluate distribution to tissues. PK parameters were calculated by non-compartmental analysis (NCA). A compartmental model was developed to describe the PK behavior of berzosertib. Plasma protein binding was determined in vitro. RESULTS Increased doses of berzosertib were associated with less than proportional increases in early plasma concentrations and greater than proportional increase in tissue exposure, attributable to saturation of plasma protein binding. Berzosertib extensively distributed into bone marrow, tumor, thymus, and lymph nodes, however; brain and spinal cord exposure was less than plasma. CONCLUSION The nonlinear PK of berzosertib displayed here can be attributed to saturation of plasma protein binding and occurred at concentrations close to those observed in clinical trials. Our results will help to understand preclinical pharmacodynamic and toxicity data and to inform optimal dosing and deployment of berzosertib.
Collapse
Affiliation(s)
- Joshua J Deppas
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, University of Pittsburgh, Room G27e 5117 Centre Ave, Pittsburgh, PA, 15213, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brian F Kiesel
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, University of Pittsburgh, Room G27e 5117 Centre Ave, Pittsburgh, PA, 15213, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jianxia Guo
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, University of Pittsburgh, Room G27e 5117 Centre Ave, Pittsburgh, PA, 15213, USA
| | - Robert A Parise
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, University of Pittsburgh, Room G27e 5117 Centre Ave, Pittsburgh, PA, 15213, USA
| | - D Andy Clump
- Department of Radiation Oncology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - David Z D'Argenio
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Christopher J Bakkenist
- Department of Radiation Oncology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jan H Beumer
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, University of Pittsburgh, Room G27e 5117 Centre Ave, Pittsburgh, PA, 15213, USA.
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA.
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
17
|
Wankhede D, Grover S, Hofman P. SMARCA4 alterations in non-small cell lung cancer: a systematic review and meta-analysis. J Clin Pathol 2024; 77:457-463. [PMID: 38702192 DOI: 10.1136/jcp-2024-209394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024]
Abstract
AIMS A mutation in the SMARCA4 gene which encodes BRG1, a common catalytic subunit of switch/sucrose non-fermentable chromatin-remodelling complexes, plays a vital role in carcinogenesis. SMARCA4 mutations are present in approximately 10% of non-small cell lung cancers (NSCLC), making it a crucial gene in NSCLC, but with varying prognostic associations. To explore this, we conducted a systematic review and meta-analysis on the prognostic significance of SMARCA4 mutations in NSCLC. METHODS Electronic database search was performed from inception to December 2022. Study characteristics and prognostic data were extracted from each eligible study. Depending on heterogeneity, pooled HR and 95% CI were derived using the random-effects or fixed-effects models. RESULTS 8 studies (11 cohorts) enrolling 8371 patients were eligible for inclusion. Data on overall survival (OS) and progression-free survival (PFS) were available from 8 (10 cohorts) and 1 (3 cohorts) studies, respectively. Comparing SMARCA4-mutated NSCLC patients with SMARCA4-wild-type NSCLC patients, the summary HRs for OS and PFS were 1.49 (95% CI 1.18 to 1.87; I2=84%) and 3.97 (95% CI 1.32 to 11.92; I2=79%), respectively. The results from the trim-and-fill method for publication bias and sensitivity analysis were inconsistent with the primary analyses. Three studies reported NSCLC prognosis for category I and II mutations separately; category I was significantly associated with OS. CONCLUSION Our findings suggest that SMARCA4 mutation negatively affects NSCLC OS and PFS. The prognostic effects of SMARCA4-co-occurring mutations and the predictive role of SMARCA4 mutation status in immunotherapy require further exploration.
Collapse
Affiliation(s)
- Durgesh Wankhede
- German Cancer Research Center, Heidelberg, Germany
- Faculty of Medicine, Univeristy of Heidelberg, Heidelberg, Germany
| | - Sandeep Grover
- Center for Human Genetics, Universitatsklinikum Giessen und Marburg - Standort Marburg, Marburg, Germany
| | - Paul Hofman
- Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, University Côte d'Azur, Nice, France
- Hospital-Integrated Biobank BB-0033-00025, Pasteur Hospital, Nice, France
- University Hospital Federation OncoAge, CHU de Nice, University Côte d'Azur, Nice, France
| |
Collapse
|
18
|
Wang S, Qi Y, Zhao R, Pan Z, Li B, Qiu W, Zhao S, Guo X, Ni S, Li G, Xue H. Copy number gain of FAM131B-AS2 promotes the progression of glioblastoma by mitigating replication stress. Neuro Oncol 2024; 26:1027-1041. [PMID: 38285005 PMCID: PMC11145449 DOI: 10.1093/neuonc/noae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND Glioblastoma (GBM) is characterized by chromosome 7 copy number gains, notably 7q34, potentially contributing to therapeutic resistance, yet the underlying oncogenes have not been fully characterized. Pertinently, the significance of long noncoding RNAs (lncRNAs) in this context has gained attention, necessitating further exploration. METHODS FAM131B-AS2 was quantified in GBM samples and cells using qPCR. Overexpression and knockdown of FAM131B-AS2 in GBM cells were used to study its functions in vivo and in vitro. The mechanisms of FAM131B-AS2 were studied using RNA-seq, qPCR, Western blotting, RNA pull-down, coimmunoprecipitation assays, and mass spectrometry analysis. The phenotypic changes that resulted from FAM131B-AS2 variation were evaluated through CCK8 assay, EdU assay, comet assay, and immunofluorescence. RESULTS Our analysis of 149 primary GBM patients identified FAM131B-AS2, a lncRNA located in the 7q34 region, whose upregulation predicts poor survival. Mechanistically, FAM131B-AS2 is a crucial regulator of the replication stress response, stabilizing replication protein A1 through recruitment of ubiquitin-specific peptidase 7 and activating the ataxia telangiectasia and rad3-related protein kinase pathway to protect single-stranded DNA from breakage. Furthermore, FAM131B-AS2 overexpression inhibited CD8+ T-cell infiltration, while FAM131B-AS2 inhibition activated the cGAS-STING pathway, increasing lymphocyte infiltration and improving the response to immune checkpoint inhibitors. CONCLUSIONS FAM131B-AS2 emerges as a promising indicator for adjuvant therapy response and could also be a viable candidate for combined immunotherapies against GBMs.
Collapse
Affiliation(s)
- Shaobo Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Yanhua Qi
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Rongrong Zhao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Ziwen Pan
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Boyan Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Wei Qiu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Shulin Zhao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Xiaofan Guo
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Department of Neurology, Loma Linda University Health, Loma Linda, California, USA
| | - Shilei Ni
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Gang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Hao Xue
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| |
Collapse
|
19
|
Wang Y, Qiu H, Lin R, Hong W, Lu J, Ling H, Sun X, Yang C. Advancements in the Understanding of Small-Cell Neuroendocrine Cervical Cancer: Where We Stand and What Lies Ahead. J Pers Med 2024; 14:462. [PMID: 38793044 PMCID: PMC11122604 DOI: 10.3390/jpm14050462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/04/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Small-cell neuroendocrine cervical carcinoma (SCNCC) is a rare yet aggressive gynecological malignancy associated with dismal clinical outcomes. Its rarity has led to a limited number of retrospective studies and an absence of prospective research, posing significant challenges for evidence-based treatment approaches. As a result, most gynecologic oncology centers have limited experience with this tumor, emphasizing the urgent need for a comprehensive review and summary. This article systematically reviews the pathogenesis, immunohistochemical and molecular characteristics, prognostic factors, and clinical management of gynecologic SCNCC. We specifically focused on reviewing the distinct genomic characteristics of SCNCC identified via next-generation sequencing technologies, including loss of heterozygosity (LOH), somatic mutations, structural variations (SVs), and microRNA alterations. The identification of these actionable genomic events offers promise for discovering new molecular targets for drug development and enhancing therapeutic outcomes. Additionally, we delve deeper into key clinical challenges, such as determining the optimal treatment modality between chemoradiation and surgery for International Federation of Gynecology and Obstetrics (FIGO) stage I phase patients within a precision stratification framework, as well as the role of targeted therapy within the homologous recombination (HR) pathway, immune checkpoint inhibitors (ICIs), and prophylactic cranial irradiation (PCI) in the management of SCNCC. Finally, we anticipate the utilization of multiple SCNCC models, including cancer tissue-originated spheroid (CTOS) lines and patient-derived xenografts (PDXs), to decipher driver events and develop individualized therapeutic strategies for clinical application.
Collapse
Affiliation(s)
- Yan Wang
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou First People’s Hospital, Hangzhou 310006, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Hui Qiu
- Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Rongjie Lin
- Department of Radiotherapy, West China Xiamen Hospital of Sichuan University, Xiamen 361021, China
| | - Weiwei Hong
- Department of Medical Oncology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Jiahao Lu
- Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Huan Ling
- Department of Ultrasound in Gynecology and Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xiaoge Sun
- Department of Radiation Oncology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 750306, China
| | - Chunxu Yang
- Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| |
Collapse
|
20
|
Alfayomy AM, Ashry R, Kansy AG, Sarnow AC, Erdmann F, Schmidt M, Krämer OH, Sippl W. Design, synthesis, and biological characterization of proteolysis targeting chimera (PROTACs) for the ataxia telangiectasia and RAD3-related (ATR) kinase. Eur J Med Chem 2024; 267:116167. [PMID: 38308949 DOI: 10.1016/j.ejmech.2024.116167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/12/2024] [Accepted: 01/21/2024] [Indexed: 02/05/2024]
Abstract
The Ataxia telangiectasia and RAD3-related (ATR) kinase is a key regulator of DNA replication stress responses and DNA-damage checkpoints. Several potent and selective ATR inhibitors are reported and four of them are currently in clinical trials in combination with radio- or chemotherapy. Based on the idea of degrading target proteins rather than inhibiting them, we designed, synthesized and biologically characterized a library of ATR-targeted proteolysis targeting chimera (PROTACs). Among the synthesized compounds, the lenalidomide-based PROTAC 42i was the most promising. In pancreatic and cervix cancer cells cancer cells, it reduced ATR to 40 % of the levels in untreated cells. 42i selectively degraded ATR through the proteasome, dependent on the E3 ubiquitin ligase component cereblon, and without affecting the associated kinases ATM and DNA-PKcs. 42i may be a promising candidate for further optimization and biological characterization in various cancer cells.
Collapse
Affiliation(s)
- Abdallah M Alfayomy
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120, Halle (Saale), Germany; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut, 71524, Egypt
| | - Ramy Ashry
- Department of Toxicology, University Medical Center, Johannes Gutenberg-University Mainz, 55131, Mainz, Germany; Department of Oral Pathology, Faculty of Dentistry, Mansoura University, Mansoura, 35516, Egypt
| | - Anita G Kansy
- Department of Toxicology, University Medical Center, Johannes Gutenberg-University Mainz, 55131, Mainz, Germany
| | - Anne-Christin Sarnow
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Frank Erdmann
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Matthias Schmidt
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Oliver H Krämer
- Department of Toxicology, University Medical Center, Johannes Gutenberg-University Mainz, 55131, Mainz, Germany.
| | - Wolfgang Sippl
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120, Halle (Saale), Germany.
| |
Collapse
|
21
|
Khamidullina AI, Abramenko YE, Bruter AV, Tatarskiy VV. Key Proteins of Replication Stress Response and Cell Cycle Control as Cancer Therapy Targets. Int J Mol Sci 2024; 25:1263. [PMID: 38279263 PMCID: PMC10816012 DOI: 10.3390/ijms25021263] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024] Open
Abstract
Replication stress (RS) is a characteristic state of cancer cells as they tend to exchange precision of replication for fast proliferation and increased genomic instability. To overcome the consequences of improper replication control, malignant cells frequently inactivate parts of their DNA damage response (DDR) pathways (the ATM-CHK2-p53 pathway), while relying on other pathways which help to maintain replication fork stability (ATR-CHK1). This creates a dependency on the remaining DDR pathways, vulnerability to further destabilization of replication and synthetic lethality of DDR inhibitors with common oncogenic alterations such as mutations of TP53, RB1, ATM, amplifications of MYC, CCNE1 and others. The response to RS is normally limited by coordination of cell cycle, transcription and replication. Inhibition of WEE1 and PKMYT1 kinases, which prevent unscheduled mitosis entry, leads to fragility of under-replicated sites. Recent evidence also shows that inhibition of Cyclin-dependent kinases (CDKs), such as CDK4/6, CDK2, CDK8/19 and CDK12/13 can contribute to RS through disruption of DNA repair and replication control. Here, we review the main causes of RS in cancers as well as main therapeutic targets-ATR, CHK1, PARP and their inhibitors.
Collapse
Affiliation(s)
- Alvina I. Khamidullina
- Laboratory of Molecular Oncobiology, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334 Moscow, Russia; (A.I.K.); (Y.E.A.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334 Moscow, Russia
| | - Yaroslav E. Abramenko
- Laboratory of Molecular Oncobiology, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334 Moscow, Russia; (A.I.K.); (Y.E.A.)
| | - Alexandra V. Bruter
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334 Moscow, Russia
| | - Victor V. Tatarskiy
- Laboratory of Molecular Oncobiology, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334 Moscow, Russia; (A.I.K.); (Y.E.A.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334 Moscow, Russia
| |
Collapse
|
22
|
Sartori G, Tarantelli C, Spriano F, Gaudio E, Cascione L, Mascia M, Barreca M, Arribas AJ, Licenziato L, Golino G, Ferragamo A, Pileri S, Damia G, Zucca E, Stathis A, Politz O, Wengner AM, Bertoni F. The ATR inhibitor elimusertib exhibits anti-lymphoma activity and synergizes with the PI3K inhibitor copanlisib. Br J Haematol 2024; 204:191-205. [PMID: 38011941 DOI: 10.1111/bjh.19218] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/29/2023]
Abstract
The DNA damage response (DDR) is the cellular process of preserving an intact genome and is often deregulated in lymphoma cells. The ataxia telangiectasia and Rad3-related (ATR) kinase is a crucial factor of DDR in the response to DNA single-strand breaks. ATR inhibitors are agents that have shown considerable clinical potential in this context. We characterized the activity of the ATR inhibitor elimusertib (BAY 1895344) in a large panel of lymphoma cell lines. Furthermore, we evaluated its activity combined with the clinically approved PI3K inhibitor copanlisib in vitro and in vivo. Elimusertib exhibits potent anti-tumour activity across various lymphoma subtypes, which is associated with the expression of genes related to replication stress, cell cycle regulation and, as also sustained by CRISPR Cas9 experiments, CDKN2A loss. In several tumour models, elimusertib demonstrated widespread anti-tumour activity stronger than ceralasertib, another ATR inhibitor. This activity is present in both DDR-proficient and DDR-deficient lymphoma models. Furthermore, a combination of ATR and PI3K inhibition by treatment with elimusertib and copanlisib has in vitro and in vivo anti-tumour activity, providing a potential new treatment option for lymphoma patients.
Collapse
Affiliation(s)
- Giulio Sartori
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Chiara Tarantelli
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Filippo Spriano
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Eugenio Gaudio
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Luciano Cascione
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Michele Mascia
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Marilia Barreca
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Alberto J Arribas
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Luca Licenziato
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Gaetanina Golino
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Adele Ferragamo
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Stefano Pileri
- Division of Diagnostic Haematopathology, European Institute of Oncology, Milan, Italy
| | - Giovanna Damia
- Laboratory of Molecular Pharmacology, Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| | - Emanuele Zucca
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
- Oncology Institute of Southern Switzerland, EOC, Bellinzona, Switzerland
| | - Anastasios Stathis
- Oncology Institute of Southern Switzerland, EOC, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, USI, Lugano, Switzerland
| | - Oliver Politz
- Bayer AG, Pharmaceuticals, Research & Development, Berlin, Germany
| | - Antje M Wengner
- Bayer AG, Pharmaceuticals, Research & Development, Berlin, Germany
| | - Francesco Bertoni
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
- Oncology Institute of Southern Switzerland, EOC, Bellinzona, Switzerland
| |
Collapse
|
23
|
Zhang H, Kreis J, Schelhorn SE, Dahmen H, Grombacher T, Zühlsdorf M, Zenke FT, Guan Y. Mapping combinatorial drug effects to DNA damage response kinase inhibitors. Nat Commun 2023; 14:8310. [PMID: 38097586 PMCID: PMC10721915 DOI: 10.1038/s41467-023-44108-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/22/2023] [Indexed: 12/17/2023] Open
Abstract
One fundamental principle that underlies various cancer treatments, such as traditional chemotherapy and radiotherapy, involves the induction of catastrophic DNA damage, leading to the apoptosis of cancer cells. In our study, we conduct a comprehensive dose-response combination screening focused on inhibitors that target key kinases involved in the DNA damage response (DDR): ATR, ATM, and DNA-PK. This screening involves 87 anti-cancer agents, including six DDR inhibitors, and encompasses 62 different cell lines spanning 12 types of tumors, resulting in a total of 17,912 combination treatment experiments. Within these combinations, we analyze the most effective and synergistic drug pairs across all tested cell lines, considering the variations among cancers originating from different tissues. Our analysis reveals inhibitors of five DDR-related pathways (DNA topoisomerase, PLK1 kinase, p53-inducible ribonucleotide reductase, PARP, and cell cycle checkpoint proteins) that exhibit strong combinatorial efficacy and synergy when used alongside ATM/ATR/DNA-PK inhibitors.
Collapse
Affiliation(s)
- Hanrui Zhang
- Department of Computational Medicine and Bioinformatics, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | | | | | | | - Yuanfang Guan
- Department of Computational Medicine and Bioinformatics, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA.
- Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
24
|
Li J, Lu X, Jiang K, Tang D, Sun F, Ruan J. Latent space feature representation on multiple biological network for synthetic lethality interaction prediction. 2023 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM) 2023:1236-1241. [DOI: 10.1109/bibm58861.2023.10385727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Jinxin Li
- Hunan University,College of Computer Science and Electronic Engineering,Changsha
| | - Xinguo Lu
- Hunan University,College of Computer Science and Electronic Engineering,Changsha
| | - Kaibao Jiang
- Hunan University,College of Computer Science and Electronic Engineering,Changsha
| | - Daoxu Tang
- Hunan University,College of Computer Science and Electronic Engineering,Changsha
| | - Fengxu Sun
- Hunan University,College of Computer Science and Electronic Engineering,Changsha
| | - Jingjing Ruan
- Hunan University,College of Computer Science and Electronic Engineering,Changsha
| |
Collapse
|
25
|
Schnoell J, Sparr C, Al-Gboore S, Haas M, Brkic FF, Kadletz-Wanke L, Heiduschka G, Jank BJ. The ATR inhibitor berzosertib acts as a radio- and chemosensitizer in head and neck squamous cell carcinoma cell lines. Invest New Drugs 2023; 41:842-850. [PMID: 37934325 PMCID: PMC10663216 DOI: 10.1007/s10637-023-01408-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 10/31/2023] [Indexed: 11/08/2023]
Abstract
Alterations in the DNA damage response play a crucial role in radio- and chemoresistance of neoplastic cells. Activation of the Ataxia telangiectasia and Rad3-related (ATR) pathway is an important DNA damage response mechanism in head and neck squamous cell carcinoma (HNSCC). Berzosertib, a selective ATR inhibitor, shows promising radio- and chemosensitizing effects in preclinical studies and is well tolerated in clinical studies. The aim of this study was to elucidate the effect of berzosertib treatment in combination with radiation and cisplatin in HNSCC. The HNSCC cell lines Cal-27 and FaDu were treated with berzosertib alone and in combination with radiation or cisplatin. Cell viability and clonogenic survival were evaluated. The effect of combination treatment was evaluated with the SynergyFinder or combination index. Apoptosis was assessed via measurement of caspase 3/7 activation and migration was evaluated using a wound healing assay. Berzosertib treatment decreased cell viability in a dose-dependent manner and increased apoptosis. The IC50 of berzosertib treatment after 72 h was 0.25-0.29 µM. Combination with irradiation treatment led to a synergistic increase in radiosensitivity and a synergistic or additive decrease in colony formation. The combination of berzosertib and cisplatin decreased cell viability in a synergistic manner. Additionally, berzosertib inhibited migration at high doses. Berzosertib displays a cytotoxic effect in HNSCC at clinically relevant doses. Further evaluation of combination treatment with irradiation and cisplatin is strongly recommended in HNSCC patients as it may hold the potential to overcome treatment resistance, reduce treatment doses and thus mitigate adverse events.
Collapse
Affiliation(s)
- Julia Schnoell
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Carmen Sparr
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Sega Al-Gboore
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Markus Haas
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Faris F Brkic
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Lorenz Kadletz-Wanke
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Gregor Heiduschka
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria.
| | - Bernhard J Jank
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
26
|
Viktorsson K, Rieckmann T, Fleischmann M, Diefenhardt M, Hehlgans S, Rödel F. Advances in molecular targeted therapies to increase efficacy of (chemo)radiation therapy. Strahlenther Onkol 2023; 199:1091-1109. [PMID: 37041372 PMCID: PMC10673805 DOI: 10.1007/s00066-023-02064-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/19/2023] [Indexed: 04/13/2023]
Abstract
Recent advances in understanding the tumor's biology in line with a constantly growing number of innovative technologies have prompted characterization of patients' individual malignancies and may display a prerequisite to treat cancer at its patient individual tumor vulnerability. In recent decades, radiation- induced signaling and tumor promoting local events for radiation sensitization were explored in detail, resulting the development of novel molecular targets. A multitude of pharmacological, genetic, and immunological principles, including small molecule- and antibody-based targeted strategies, have been developed that are suitable for combined concepts with radiation (RT) or chemoradiation therapy (CRT). Despite a plethora of promising experimental and preclinical findings, however, so far, only a very limited number of clinical trials have demonstrated a better outcome and/or patient benefit when RT or CRT are combined with targeted agents. The current review aims to summarize recent progress in molecular therapies targeting oncogenic drivers, DNA damage and cell cycle response, apoptosis signaling pathways, cell adhesion molecules, hypoxia, and the tumor microenvironment to impact therapy refractoriness and to boost radiation response. In addition, we will discuss recent advances in nanotechnology, e.g., RNA technologies and protein-degrading proteolysis-targeting chimeras (PROTACs) that may open new and innovative ways to benefit from molecular-targeted therapy approaches with improved efficacy.
Collapse
Affiliation(s)
- Kristina Viktorsson
- Department of Oncology/Pathology, Karolinska Institutet, Visionsgatan 4, 17164, Solna, Sweden
| | - Thorsten Rieckmann
- Department of Radiation Oncology, University Medical Center Hamburg Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
- Department of Otolaryngology, University Medical Center Hamburg Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Maximilian Fleischmann
- Department of Radiotherapy and Oncology, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), University of Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Markus Diefenhardt
- Department of Radiotherapy and Oncology, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), University of Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Stephanie Hehlgans
- Department of Radiotherapy and Oncology, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Franz Rödel
- Department of Radiotherapy and Oncology, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany.
- Frankfurt Cancer Institute (FCI), University of Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.
- German Cancer Consortium (DKTK) partner site: Frankfurt, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|
27
|
Takahashi N, Hao Z, Villaruz LC, Zhang J, Ruiz J, Petty WJ, Mamdani H, Riess JW, Nieva J, Pachecho JM, Fuld AD, Shum E, Chauhan A, Nichols S, Shimellis H, McGlone J, Sciuto L, Pinkiert D, Graham C, Shelat M, Kattappuram R, Abel M, Schroeder B, Upadhyay D, Krishnamurthy M, Sharma AK, Kumar R, Malin J, Schultz CW, Goyal S, Redon CE, Pommier Y, Aladjem MI, Gore SD, Steinberg SM, Vilimas R, Desai P, Thomas A. Berzosertib Plus Topotecan vs Topotecan Alone in Patients With Relapsed Small Cell Lung Cancer: A Randomized Clinical Trial. JAMA Oncol 2023; 9:1669-1677. [PMID: 37824137 PMCID: PMC10570917 DOI: 10.1001/jamaoncol.2023.4025] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/14/2023] [Indexed: 10/13/2023]
Abstract
Importance Patients with relapsed small cell lung cancer (SCLC), a high replication stress tumor, have poor prognoses and few therapeutic options. A phase 2 study showed antitumor activity with the addition of the ataxia telangiectasia and Rad3-related kinase inhibitor berzosertib to topotecan. Objective To investigate whether the addition of berzosertib to topotecan improves clinical outcomes for patients with relapsed SCLC. Design, Setting, and Participants Between December 1, 2019, and December 31, 2022, this open-label phase 2 randomized clinical trial recruited 60 patients with SCLC and relapse after 1 or more prior therapies from 16 US cancer centers. Patients previously treated with topotecan were not eligible. Interventions Eligible patients were randomly assigned to receive topotecan alone (group 1), 1.25 mg/m2 intravenously on days 1 through 5, or with berzosertib (group 2), 210 mg/m2 intravenously on days 2 and 5, in 21-day cycles. Randomization was stratified by tumor sensitivity to first-line platinum-based chemotherapy. Main Outcomes and Measures The primary end point was progression-free survival (PFS) in the intention-to-treat population. Secondary end points included overall survival (OS) in the overall population and among patients with platinum-sensitive or platinum-resistant tumors. The PFS and OS for each treatment group were estimated using the Kaplan-Meier method. The log-rank test was used to compare PFS and OS between the 2 groups, and Cox proportional hazards models were used to estimate the treatment hazard ratios (HRs) and the corresponding 2-sided 95% CI. Results Of 60 patients (median [range] age, 59 [34-79] years; 33 [55%] male) included in this study, 20 were randomly assigned to receive topotecan alone and 40 to receive a combination of topotecan with berzosertib. After a median (IQR) follow-up of 21.3 (18.1-28.3) months, there was no difference in PFS between the 2 groups (median, 3.0 [95% CI, 1.2-5.1] months for group 1 vs 3.9 [95% CI, 2.8-4.6] months for group 2; HR, 0.80 [95% CI, 0.46-1.41]; P = .44). Overall survival was significantly longer with the combination therapy (5.4 [95% CI, 3.2-6.8] months vs 8.9 [95% CI, 4.8-11.4] months; HR, 0.53 [95% CI, 0.29-0.96], P = .03). Adverse event profiles were similar between the 2 groups (eg, grade 3 or 4 thrombocytopenia, 11 of 20 [55%] vs 20 of 40 [50%], and any grade nausea, 9 of 20 [45%] vs 14 of 40 [35%]). Conclusions and Relevance In this randomized clinical trial, treatment with berzosertib plus topotecan did not improve PFS compared with topotecan therapy alone among patients with relapsed SCLC. However, the combination treatment significantly improved OS. Trial Registration ClinicalTrials.gov Identifier: NCT03896503.
Collapse
Affiliation(s)
- Nobuyuki Takahashi
- National Cancer Institute, Center for Cancer Research, Bethesda, Maryland
- National Cancer Center Hospital East, Kashiwa, Japan
| | - Zhonglin Hao
- Division of Medical Oncology, University of Kentucky College of Medicine, Lexington
| | - Liza C. Villaruz
- Division of Hematology/Oncology, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Jun Zhang
- Division of Medical Oncology, University of Kansas Medical Center, Kansas City, Kansas
| | - Jimmy Ruiz
- Hematology and Oncology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - W. Jeffrey Petty
- Hematology and Oncology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Hirva Mamdani
- Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, Michigan
| | | | - Jorge Nieva
- Norris Cancer Center, University of Southern California, Los Angeles
| | | | - Alexander D. Fuld
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Elaine Shum
- Laura and Isaac Perlmutter Cancer Center, New York, New York
| | - Aman Chauhan
- Division of Medical Oncology, University of Kentucky College of Medicine, Lexington
| | - Samantha Nichols
- National Cancer Institute, Center for Cancer Research, Bethesda, Maryland
| | - Hirity Shimellis
- National Cancer Institute, Center for Cancer Research, Bethesda, Maryland
| | - Jessie McGlone
- National Cancer Institute, Center for Cancer Research, Bethesda, Maryland
| | - Linda Sciuto
- National Cancer Institute, Center for Cancer Research, Bethesda, Maryland
| | - Danielle Pinkiert
- National Cancer Institute, Center for Cancer Research, Bethesda, Maryland
| | - Chante Graham
- National Cancer Institute, Center for Cancer Research, Bethesda, Maryland
| | - Meenakshi Shelat
- National Cancer Institute, Center for Cancer Research, Bethesda, Maryland
| | - Robbie Kattappuram
- National Cancer Institute, Center for Cancer Research, Bethesda, Maryland
| | - Melissa Abel
- National Cancer Institute, Center for Cancer Research, Bethesda, Maryland
| | - Brett Schroeder
- National Cancer Institute, Center for Cancer Research, Bethesda, Maryland
| | - Deep Upadhyay
- National Cancer Institute, Center for Cancer Research, Bethesda, Maryland
| | | | - Ajit Kumar Sharma
- National Cancer Institute, Center for Cancer Research, Bethesda, Maryland
| | - Rajesh Kumar
- National Cancer Institute, Center for Cancer Research, Bethesda, Maryland
| | - Justin Malin
- National Cancer Institute, Center for Cancer Research, Bethesda, Maryland
| | | | - Shubhank Goyal
- National Cancer Institute, Center for Cancer Research, Bethesda, Maryland
| | | | - Yves Pommier
- National Cancer Institute, Center for Cancer Research, Bethesda, Maryland
| | - Mirit I. Aladjem
- National Cancer Institute, Center for Cancer Research, Bethesda, Maryland
| | - Steven D. Gore
- National Cancer Institute, Center for Cancer Research, Bethesda, Maryland
| | - Seth M. Steinberg
- National Cancer Institute, Center for Cancer Research, Bethesda, Maryland
| | - Rasa Vilimas
- National Cancer Institute, Center for Cancer Research, Bethesda, Maryland
| | - Parth Desai
- National Cancer Institute, Center for Cancer Research, Bethesda, Maryland
| | - Anish Thomas
- National Cancer Institute, Center for Cancer Research, Bethesda, Maryland
| |
Collapse
|
28
|
Du Y, Luo L, Xu X, Yang X, Yang X, Xiong S, Yu J, Liang T, Guo L. Unleashing the Power of Synthetic Lethality: Augmenting Treatment Efficacy through Synergistic Integration with Chemotherapy Drugs. Pharmaceutics 2023; 15:2433. [PMID: 37896193 PMCID: PMC10610204 DOI: 10.3390/pharmaceutics15102433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Cancer is the second leading cause of death in the world, and chemotherapy is one of the main methods of cancer treatment. However, the resistance of cancer cells to chemotherapeutic drugs has always been the main reason affecting the therapeutic effect. Synthetic lethality has emerged as a promising approach to augment the sensitivity of cancer cells to chemotherapy agents. Synthetic lethality (SL) refers to the specific cell death resulting from the simultaneous mutation of two non-lethal genes, which individually allow cell survival. This comprehensive review explores the classification of SL, screening methods, and research advancements in SL inhibitors, including Poly (ADP-ribose) polymerase (PARP) inhibitors, Ataxia telangiectasia and Rad3-related (ATR) inhibitors, WEE1 G2 checkpoint kinase (WEE1) inhibitors, and protein arginine methyltransferase 5 (PRMT5) inhibitors. Emphasizing their combined use with chemotherapy drugs, we aim to unveil more effective treatment strategies for cancer patients.
Collapse
Affiliation(s)
- Yajing Du
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (Y.D.); (L.L.); (X.X.); (X.Y.)
| | - Lulu Luo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (Y.D.); (L.L.); (X.X.); (X.Y.)
| | - Xinru Xu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (Y.D.); (L.L.); (X.X.); (X.Y.)
| | - Xinbing Yang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (Y.D.); (L.L.); (X.X.); (X.Y.)
| | - Xueni Yang
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (X.Y.); (S.X.)
| | - Shizheng Xiong
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (X.Y.); (S.X.)
| | - Jiafeng Yu
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China;
| | - Tingming Liang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (Y.D.); (L.L.); (X.X.); (X.Y.)
| | - Li Guo
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (X.Y.); (S.X.)
| |
Collapse
|
29
|
Chao A, Wu RC, Lin CY, Chang TC, Lai CH. Small cell neuroendocrine carcinoma of the cervix: From molecular basis to therapeutic advances. Biomed J 2023; 46:100633. [PMID: 37467967 PMCID: PMC10522988 DOI: 10.1016/j.bj.2023.100633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/02/2023] [Accepted: 07/13/2023] [Indexed: 07/21/2023] Open
Abstract
Small cell neuroendocrine carcinoma of the cervix (SCNECC) is an uncommon but aggressive uterine malignancy, the cause of which is generally associated with human papillomavirus (HPV) infection. A lack of clinical trials and evidence-based treatment guidelines poses therapeutic challenges to this rare tumor. At present, published data remain limited to case series and case reports. While clinical management has traditionally followed those of small cell neuroendocrine (SCNE) lung cancer relying on surgery, chemoradiation, and systemic chemotherapy, the prognosis remains dismal. Immune checkpoint inhibitors (ICIs), such as monoclonal antibodies that target programmed death-1 (PD-1) or programmed death-ligand 1 (PD-L1), atezolizumab and durvalumab have proven effective in extensive-stage SCNE lung cancer. Moreover, pembrolizumab has also proven beneficial effects when added onto chemotherapy in metastatic and recurrent HPV-associated non-SCNE cervical cancer. It holds promise to use ICIs in combination with chemoradiation to improve the clinical outcomes of patients with SCNECC. Future advances in our understanding of SCNECC biology - associated with the study of its genomic and molecular aberrations as well as knowledge from SCNE of lung and other extrapulmonary sites- would be helpful in discovering new molecular targets for drug development. Collaborative efforts and establishment of a SCNECC-specific biobank will be essential to achieve this goal.
Collapse
Affiliation(s)
- Angel Chao
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Gynecologic Cancer Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ren-Chin Wu
- Gynecologic Cancer Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Department of Pathology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chiao-Yun Lin
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Gynecologic Cancer Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ting-Chang Chang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Gynecologic Cancer Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chyong-Huey Lai
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Gynecologic Cancer Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
30
|
Abel ML, Takahashi N, Peer C, Redon CE, Nichols S, Vilimas R, Lee MJ, Lee S, Shelat M, Kattappuram R, Sciuto L, Pinkiert D, Graham C, Butcher D, Karim B, Kumar Sharma A, Malin J, Kumar R, Schultz CW, Goyal S, del Rivero J, Krishnamurthy M, Upadhyay D, Schroeder B, Sissung T, Tyagi M, Kim J, Pommier Y, Aladjem M, Raffeld M, Figg WD, Trepel J, Xi L, Desai P, Thomas A. Targeting Replication Stress and Chemotherapy Resistance with a Combination of Sacituzumab Govitecan and Berzosertib: A Phase I Clinical Trial. Clin Cancer Res 2023; 29:3603-3611. [PMID: 37227187 PMCID: PMC10524218 DOI: 10.1158/1078-0432.ccr-23-0536] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/06/2023] [Accepted: 05/03/2023] [Indexed: 05/10/2023]
Abstract
PURPOSE Despite promising preclinical studies, toxicities have precluded combinations of chemotherapy and DNA damage response (DDR) inhibitors. We hypothesized that tumor-targeted chemotherapy delivery might enable clinical translation of such combinations. PATIENTS AND METHODS In a phase I trial, we combined sacituzumab govitecan, antibody-drug conjugate (ADC) that delivers topoisomerase-1 inhibitor SN-38 to tumors expressing Trop-2, with ataxia telangiectasia and Rad3-related (ATR) inhibitor berzosertib. Twelve patients were enrolled across three dose levels. RESULTS Treatment was well tolerated, with improved safety over conventional chemotherapy-based combinations, allowing escalation to the highest dose. No dose-limiting toxicities or clinically relevant ≥grade 4 adverse events occurred. Tumor regressions were observed in 2 patients with neuroendocrine prostate cancer, and a patient with small cell lung cancer transformed from EGFR-mutant non-small cell lung cancer. CONCLUSIONS ADC-based delivery of cytotoxic payloads represents a new paradigm to increase efficacy of DDR inhibitors. See related commentary by Berg and Choudhury, p. 3557.
Collapse
Affiliation(s)
- Melissa L. Abel
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Nobuyuki Takahashi
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
- Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Cody Peer
- Clinical Pharmacology Program, National Cancer Institute, NIH, Bethesda MD, USA
| | - Christophe E. Redon
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Samantha Nichols
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Rasa Vilimas
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Min-Jung Lee
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Sunmin Lee
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Meenakshi Shelat
- Pharmacy Department, National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - Robbie Kattappuram
- Pharmacy Department, National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - Linda Sciuto
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Danielle Pinkiert
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Chante Graham
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Donna Butcher
- Molecular Histopathology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Baktiar Karim
- Molecular Histopathology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Ajit Kumar Sharma
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Justin Malin
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Rajesh Kumar
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Christopher W. Schultz
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Shubhank Goyal
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Jaydira del Rivero
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Manan Krishnamurthy
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Deep Upadhyay
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Brett Schroeder
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Tristan Sissung
- Clinical Pharmacology Program, National Cancer Institute, NIH, Bethesda MD, USA
| | - Manoj Tyagi
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Jung Kim
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Yves Pommier
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Mirit Aladjem
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Mark Raffeld
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | | | - Jane Trepel
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Liqiang Xi
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Parth Desai
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Anish Thomas
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
31
|
Berg SA, Choudhury AD. Mutual ATRaction: Assessing Synergy of Berzosertib with Sacituzumab Govitecan. Clin Cancer Res 2023; 29:3557-3559. [PMID: 37439710 DOI: 10.1158/1078-0432.ccr-23-1422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/19/2023] [Accepted: 07/05/2023] [Indexed: 07/14/2023]
Abstract
A phase I trial of the novel combination of the ataxia telangiectasia and Rad3-related inhibitor berzosertib plus the antibody-drug conjugate sacituzumab govitecan in patients with heavily pretreatment tumors demonstrated some antitumor activity and no dose-limiting toxicities. This represents a new treatment paradigm that will be further explored in a phase II setting. See related article by Abel et al., p. 3603.
Collapse
Affiliation(s)
- Stephanie A Berg
- Dana-Farber Cancer Institute, Lank Center for Genitourinary Oncology, Boston MA
| | - Atish D Choudhury
- Dana-Farber Cancer Institute, Lank Center for Genitourinary Oncology, Boston MA
| |
Collapse
|
32
|
Schultz CW, Zhang Y, Elmeskini R, Zimmermann A, Fu H, Murai Y, Wangsa D, Kumar S, Takahashi N, Atkinson D, Saha LK, Lee C, Elenbaas B, Desai P, Sebastian R, Sharma AK, Abel M, Schroeder B, Krishnamurthy M, Kumar R, Roper N, Aladjem M, Zenke FT, Ohler ZW, Pommier Y, Thomas A. ATR inhibition augments the efficacy of lurbinectedin in small-cell lung cancer. EMBO Mol Med 2023; 15:e17313. [PMID: 37491889 PMCID: PMC10405061 DOI: 10.15252/emmm.202217313] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/12/2023] [Accepted: 06/19/2023] [Indexed: 07/27/2023] Open
Abstract
Small-cell lung cancer (SCLC) is the most lethal type of lung cancer. Specifically, MYC-driven non-neuroendocrine SCLC is particularly resistant to standard therapies. Lurbinectedin was recently approved for the treatment of relapsed SCLC, but combinatorial approaches are needed to increase the depth and duration of responses to lurbinectedin. Using high-throughput screens, we found inhibitors of ataxia telangiectasia mutated and rad3 related (ATR) as the most effective agents for augmenting lurbinectedin efficacy. First-in-class ATR inhibitor berzosertib synergized with lurbinectedin in multiple SCLC cell lines, organoid, and in vivo models. Mechanistically, ATR inhibition abrogated S-phase arrest induced by lurbinectedin and forced cell cycle progression causing mitotic catastrophe and cell death. High CDKN1A/p21 expression was associated with decreased synergy due to G1 arrest, while increased levels of ERCC5/XPG were predictive of increased combination efficacy. Importantly, MYC-driven non-neuroendocrine tumors which are resistant to first-line therapies show reduced CDKN1A/p21 expression and increased ERCC5/XPG indicating they are primed for response to lurbinectedin-berzosertib combination. The combination is being assessed in a clinical trial NCT04802174.
Collapse
Affiliation(s)
- Christopher W Schultz
- Developmental Therapeutics Branch, Center for Cancer ResearchNational Cancer Institute, National Institutes of HealthBethesdaMDUSA
| | - Yang Zhang
- Developmental Therapeutics Branch, Center for Cancer ResearchNational Cancer Institute, National Institutes of HealthBethesdaMDUSA
| | - Rajaa Elmeskini
- Center for Advanced Preclinical Research, Leidos Biomedical Research, IncFrederick National Laboratory for Cancer ResearchFrederickMDUSA
| | - Astrid Zimmermann
- Translational Innovation Platform OncologyMerck KGaA, Biopharma R&DDarmstadtGermany
| | - Haiqing Fu
- Developmental Therapeutics Branch, Center for Cancer ResearchNational Cancer Institute, National Institutes of HealthBethesdaMDUSA
| | - Yasuhisa Murai
- Developmental Therapeutics Branch, Center for Cancer ResearchNational Cancer Institute, National Institutes of HealthBethesdaMDUSA
| | - Darawalee Wangsa
- Genetics Branch, Center for Cancer ResearchNational Cancer Institute, National Institutes of HealthBethesdaMDUSA
| | - Suresh Kumar
- Developmental Therapeutics Branch, Center for Cancer ResearchNational Cancer Institute, National Institutes of HealthBethesdaMDUSA
| | - Nobuyuki Takahashi
- Developmental Therapeutics Branch, Center for Cancer ResearchNational Cancer Institute, National Institutes of HealthBethesdaMDUSA
- Medical Oncology BranchNational Center for Global Health and MedicineTokyoJapan
| | - Devon Atkinson
- Center for Advanced Preclinical Research, Leidos Biomedical Research, IncFrederick National Laboratory for Cancer ResearchFrederickMDUSA
| | - Liton Kumar Saha
- Developmental Therapeutics Branch, Center for Cancer ResearchNational Cancer Institute, National Institutes of HealthBethesdaMDUSA
| | - Chien‐Fei Lee
- Translational Innovation Platform OncologyEMD Serono Research and Development Institute Inc., Biopharma R&DBillericaMAUSA
| | - Brian Elenbaas
- Translational Innovation Platform OncologyEMD Serono Research and Development Institute Inc., Biopharma R&DBillericaMAUSA
| | - Parth Desai
- Developmental Therapeutics Branch, Center for Cancer ResearchNational Cancer Institute, National Institutes of HealthBethesdaMDUSA
| | - Robin Sebastian
- Developmental Therapeutics Branch, Center for Cancer ResearchNational Cancer Institute, National Institutes of HealthBethesdaMDUSA
| | - Ajit Kumar Sharma
- Developmental Therapeutics Branch, Center for Cancer ResearchNational Cancer Institute, National Institutes of HealthBethesdaMDUSA
| | - Melissa Abel
- Developmental Therapeutics Branch, Center for Cancer ResearchNational Cancer Institute, National Institutes of HealthBethesdaMDUSA
| | - Brett Schroeder
- Developmental Therapeutics Branch, Center for Cancer ResearchNational Cancer Institute, National Institutes of HealthBethesdaMDUSA
| | - Manan Krishnamurthy
- Developmental Therapeutics Branch, Center for Cancer ResearchNational Cancer Institute, National Institutes of HealthBethesdaMDUSA
| | - Rajesh Kumar
- Developmental Therapeutics Branch, Center for Cancer ResearchNational Cancer Institute, National Institutes of HealthBethesdaMDUSA
| | - Nitin Roper
- Developmental Therapeutics Branch, Center for Cancer ResearchNational Cancer Institute, National Institutes of HealthBethesdaMDUSA
| | - Mirit Aladjem
- Developmental Therapeutics Branch, Center for Cancer ResearchNational Cancer Institute, National Institutes of HealthBethesdaMDUSA
| | - Frank T Zenke
- Translational Innovation Platform OncologyMerck KGaA, Biopharma R&DDarmstadtGermany
| | - Zoe Weaver Ohler
- Center for Advanced Preclinical Research, Leidos Biomedical Research, IncFrederick National Laboratory for Cancer ResearchFrederickMDUSA
| | - Yves Pommier
- Developmental Therapeutics Branch, Center for Cancer ResearchNational Cancer Institute, National Institutes of HealthBethesdaMDUSA
| | - Anish Thomas
- Developmental Therapeutics Branch, Center for Cancer ResearchNational Cancer Institute, National Institutes of HealthBethesdaMDUSA
| |
Collapse
|
33
|
Zhang Q, Li J, Chen Z, Jiang K, Yang K, Huang F, Huang A, Zhang X, Zhang J, Wang H. VE-822 upregulates the deubiquitinase OTUD1 to stabilize FHL1 to inhibit the progression of lung adenocarcinoma. Cell Oncol (Dordr) 2023; 46:1001-1014. [PMID: 36929488 DOI: 10.1007/s13402-023-00793-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND The deubiquitinase ovarian tumor domain-containing 1 (OTUD1) has been considered as a tumor suppressor in many tumors, but there is minimal research on the role of OTUD1 in lung adenocarcinoma (LUAD) pathogenesis. METHODS Bioinformatics analyses and western blot were applied for investigating OTUD1 expression in lung cancer and the drug that upregulated OTUD1. Kaplan-Meier analysis with log-rank test was used for survival analyses. IP-MS and co-IP were performed for identifying potential protein interactions with OTUD1. In vitro and in vivo assays were used for exploring the function of OTUD1 during the progression of LUAD. RESULTS OTUD1 was dramatically downregulated in tumors and cell lines of human lung cancer. OTUD1 inhibited proliferation and migration of lung cancer cells in vitro. Moreover, OTUD1 inhibited growth of xenografts in nude mice and formation of primary lung tumors in urethane-induced lung cancer model. Mechanistically, we showed that OTUD1 deubiquitinated and stabilized FHL1. Furthermore, we listed and identified VE-822 as a candidate agonist for OTUD1. VE-822 inhibited proliferation of lung adenocarcinoma both in vitro and in vivo. CONCLUSION These results indicated that the deubiquitinase OTUD1, which was upregulated by VE-822, inhibited the progression of LUAD in vitro and in vivo by deubiquitinating and stabilizing FHL1.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jinglei Li
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zihan Chen
- Department of Medical Genetics, Basic School of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ke Jiang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kunyu Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Fang Huang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ai Huang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaodong Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jinxiang Zhang
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Hui Wang
- Department of Medical Genetics, Basic School of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
34
|
Dexheimer TS, Coussens NP, Silvers T, Wright J, Morris J, Doroshow JH, Teicher BA. Multicellular Complex Tumor Spheroid Response to DNA Repair Inhibitors in Combination with DNA-damaging Drugs. CANCER RESEARCH COMMUNICATIONS 2023; 3:1648-1661. [PMID: 37637936 PMCID: PMC10452929 DOI: 10.1158/2767-9764.crc-23-0193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/20/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023]
Abstract
Multicellular spheroids comprised of malignant cells, endothelial cells, and mesenchymal stem cells served as an in vitro model of human solid tumors to investigate the potentiation of DNA-damaging drugs by pharmacologic modulation of DNA repair pathways. The DNA-damaging drugs, topotecan, trabectedin, and temozolomide were combined with varied inhibitors of DNA damage response enzymes including PARP (olaparib or talazoparib), ATM (ataxia telangiectasia mutated; AZD-1390), ATR (ataxia telangiectasia and Rad3-related protein; berzosertib or elimusertib), and DNA-PK (DNA-dependent protein kinase; nedisertib or VX-984). A range of clinically achievable concentrations were tested up to the clinical Cmax, if known. Mechanistically, the types of DNA damage induced by temozolomide, topotecan, and trabectedin are distinct, which was apparent from the response of spheroids to combinations with various DNA repair inhibitors. Although most combinations resulted in additive cytotoxicity, synergistic activity was observed for temozolomide combined with PARP inhibitors as well as combinations of the ATM inhibitor AZD-1390 with either topotecan or trabectedin. These findings might provide guidance for the selection of anticancer agent combinations worthy of further investigation. Significance Clinical efficacy of DNA-damaging anticancer drugs can be influenced by the DNA damage response in tumor cells. The potentiation of DNA-damaging drugs by pharmacologic modulation of DNA repair pathways was assessed in multicellular tumor spheroids. Although most combinations demonstrated additive cytotoxicity, synergistic cytotoxicity was observed for several drug combinations.
Collapse
Affiliation(s)
- Thomas S Dexheimer
- Molecular Pharmacology Laboratories, Applied and Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Nathan P Coussens
- Molecular Pharmacology Laboratories, Applied and Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Thomas Silvers
- Molecular Pharmacology Laboratories, Applied and Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - John Wright
- Division of Cancer Treatment and Diagnosis, NCI, Rockville, Maryland
| | - Joel Morris
- Division of Cancer Treatment and Diagnosis, NCI, Rockville, Maryland
| | - James H Doroshow
- Division of Cancer Treatment and Diagnosis, NCI, Rockville, Maryland
| | - Beverly A Teicher
- Division of Cancer Treatment and Diagnosis, NCI, Rockville, Maryland
| |
Collapse
|
35
|
Zhang C, Zhang C, Wang K, Wang H. Orchestrating smart therapeutics to achieve optimal treatment in small cell lung cancer: recent progress and future directions. J Transl Med 2023; 21:468. [PMID: 37452395 PMCID: PMC10349514 DOI: 10.1186/s12967-023-04338-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023] Open
Abstract
Small cell lung cancer (SCLC) is a recalcitrant malignancy with elusive mechanism of pathogenesis and dismal prognosis. Over the past decades, platinum-based chemotherapy has been the backbone treatment for SCLC. However, subsequent chemoresistance after initial effectiveness urges researchers to explore novel therapeutic targets of SCLC. Recent years have witnessed significant improvements in targeted therapy in SCLC. New molecular candidates such as Ataxia telangiectasia and RAD3-related protein (ATR), WEE1, checkpoint kinase 1 (CHK1) and poly-ADP-ribose polymerase (PARP) have shown promising therapeutic utility in SCLC. While immune checkpoint inhibitor (ICI) has emerged as an indispensable treatment modality for SCLC, approaches to boost efficacy and reduce toxicity as well as selection of reliable biomarkers for ICI in SCLC have remained elusive and warrants our further investigation. Given the increasing importance of precision medicine in SCLC, optimal subtyping of SCLC using multi-omics have gradually applied into clinical practice, which may identify more drug targets and better tailor treatment strategies to each individual patient. The present review summarizes recent progress and future directions in SCLC. In addition to the emerging new therapeutics, we also focus on the establishment of predictive model for early detection of SCLC. More importantly, we also propose a multi-dimensional model in the prognosis of SCLC to ultimately attain the goal of accurate treatment of SCLC.
Collapse
Affiliation(s)
- Chenyue Zhang
- Department of Integrated Therapy, Fudan University Shanghai Cancer Center, Shanghai Medical College, Shanghai, China
| | - Chenxing Zhang
- Department of Nephrology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kai Wang
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Haiyong Wang
- Department of Internal Medicine-Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Number 440, Ji Yan Road, Jinan, China.
| |
Collapse
|
36
|
Yu X, Zhu L, Wang T, Li L, Liu J, Che G, Zhou Q. Enhancing the anti-tumor response by combining DNA damage repair inhibitors in the treatment of solid tumors. Biochim Biophys Acta Rev Cancer 2023; 1878:188910. [PMID: 37172653 DOI: 10.1016/j.bbcan.2023.188910] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/12/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
The anti-cancer efficacy of anti-malignancy therapies is related to DNA damage. However, DNA damage-response mechanisms can repair DNA damage, failing anti-tumor therapy. The resistance to chemotherapy, radiotherapy, and immunotherapy remains a clinical challenge. Thus, new strategies to overcome these therapeutic resistance mechanisms are needed. DNA damage repair inhibitors (DDRis) continue to be investigated, with polyadenosine diphosphate ribose polymerase inhibitors being the most studied inhibitors. Evidence of their clinical benefits and therapeutic potential in preclinical studies is growing. In addition to their potential as a monotherapy, DDRis may play an important synergistic role with other anti-cancer therapies or in reversing acquired treatment resistance. Here we review the impact of DDRis on solid tumors and the potential value of combinations of different treatment modalities with DDRis for solid tumors.
Collapse
Affiliation(s)
- Xianzhe Yu
- Lung Cancer Institute/Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China; Department of Gastrointestinal Surgery, Chengdu Second People's Hospital, No. 10 Qinyun Nan Street, Chengdu 610041, Sichuan Province, People's Republic of China
| | - Lingling Zhu
- Lung Cancer Institute/Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China
| | - Ting Wang
- Lung Cancer Institute/Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China
| | - Lu Li
- Lung Cancer Institute/Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China
| | - Jiewei Liu
- Lung Cancer Institute/Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China.
| | - Guowei Che
- Lung Cancer Institute/Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China.
| | - Qinghua Zhou
- Lung Cancer Institute/Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China.
| |
Collapse
|
37
|
Duan Y, Zhuang L, Xu Y, Cheng H, Xia J, Lu T, Chen Y. Design, synthesis, and biological evaluation of pyrido[3,2-d]pyrimidine derivatives as novel ATR inhibitors. Bioorg Chem 2023; 136:106535. [PMID: 37086581 DOI: 10.1016/j.bioorg.2023.106535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/30/2023] [Accepted: 04/07/2023] [Indexed: 04/24/2023]
Abstract
Targeting ataxia telangiectasia mutated and Rad3-related (ATR) kinase is being pursued as a new therapeutic strategy for the treatment of advanced solid tumor with specific DNA damage response deficiency. Herein, we report a series of pyrido[3,2-d]pyrimidine derivatives with potent ATR inhibitory activity through structure-based drug design. Among them, the representative compound 10q exhibited excellent potency against ATR in both biochemical and cellular assays. More importantly, 10q exhibited good liver microsomes stability in different species and also showed moderate inhibitory activity against HT-29 cells in combination treatment with the ATM inhibitor AZD1390. Thus, this work provides a promising lead compound against ATR for further study.
Collapse
Affiliation(s)
- Yunxin Duan
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Lili Zhuang
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Yerong Xu
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Haodong Cheng
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Jiawei Xia
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Tao Lu
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China.
| | - Yadong Chen
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China.
| |
Collapse
|
38
|
Yano K, Shiotani B. Emerging strategies for cancer therapy by ATR inhibitors. Cancer Sci 2023. [PMID: 37189251 DOI: 10.1111/cas.15845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/19/2023] [Accepted: 04/29/2023] [Indexed: 05/17/2023] Open
Abstract
DNA replication stress (RS) causes genomic instability and vulnerability in cancer cells. To counteract RS, cells have evolved various mechanisms involving the ATR kinase signaling pathway, which regulates origin firing, cell cycle checkpoints, and fork stabilization to secure the fidelity of replication. However, ATR signaling also alleviates RS to support cell survival by driving RS tolerance, thereby contributing to therapeutic resistance. Cancer cells harboring genetic mutations and other changes that disrupt normal DNA replication increase the risk of DNA damage and the levels of RS, conferring addiction to ATR activity for sustainable replication and susceptibility to therapeutic approaches using ATR inhibitors (ATRis). Therefore, clinical trials are currently being conducted to evaluate the efficacy of ATRis as monotherapies or in combination with other drugs and biomarkers. In this review, we discuss recent advances in the elucidation of the mechanisms by which ATR functions in the RS response and its therapeutic relevance when utilizing ATRis.
Collapse
Affiliation(s)
- Kimiyoshi Yano
- Laboratory of Genome Stress Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Bunsyo Shiotani
- Laboratory of Genome Stress Signaling, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
39
|
Moliner L, Zhang B, Lamberti G, Ardizzoni A, Byers LA, Califano R. Novel therapeutic strategies for recurrent SCLC. Crit Rev Oncol Hematol 2023; 186:104017. [PMID: 37150311 DOI: 10.1016/j.critrevonc.2023.104017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/25/2023] [Accepted: 05/04/2023] [Indexed: 05/09/2023] Open
Abstract
Therapeutic options for patients with relapsed SCLC are limited, and the prognosis in this setting remains poor. While clinical outcomes for frontline treatment have modestly improved with the introduction of immunotherapy, treatment in the second-line setting persists almost unchanged. In this review, current treatment options and recent advances in molecular biology are described. Emerging therapeutic options in this setting and potential strategies to improve clinical outcomes of these patients are also addressed.
Collapse
Affiliation(s)
- Laura Moliner
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, M20 4BX, UK
| | - Bingnan Zhang
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Giuseppe Lamberti
- Department of Specialized, Experimental and Diagnostic Medicine, University of Bologna, Bologna, 40138, Italy
| | - Andrea Ardizzoni
- Department of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, 40138, Italy
| | - Lauren A Byers
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Raffaele Califano
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, M20 4BX, UK; Division of Cancer Sciences, The University of Manchester, Manchester, M13 9NT, UK.
| |
Collapse
|
40
|
Li Y, Wang X, Hou X, Ma X. Could Inhibiting the DNA Damage Repair Checkpoint Rescue Immune-Checkpoint-Inhibitor-Resistant Endometrial Cancer? J Clin Med 2023; 12:jcm12083014. [PMID: 37109350 PMCID: PMC10144486 DOI: 10.3390/jcm12083014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/23/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Endometrial cancer (EC) is increasingly undermining female health worldwide, with poor survival rates for advanced or recurrent/metastatic diseases. The application of immune checkpoint inhibitors (ICIs) has opened a window of opportunity for patients with first-line therapy failure. However, there is a subset of patients with endometrial cancer who remain insensitive to immunotherapy alone. Therefore, it is necessary to develop new therapeutic agents and further explore reliable combinational strategies to optimize the efficacy of immunotherapy. DNA damage repair (DDR) inhibitors as novel targeted drugs are able to generate genomic toxicity and induce cell death in solid tumors, including EC. Recently, growing evidence has demonstrated the DDR pathway modulates innate and adaptive immunity in tumors. In this review, we concentrate on the exploration of the intrinsic correlation between DDR pathways, especially the ATM-CHK2-P53 pathway and the ATR-CHK1-WEE1 pathway, and oncologic immune response, as well as the feasibility of adding DDR inhibitors to ICIs for the treatment of patients with advanced or recurrent/metastatic EC. We hope that this review will offer some beneficial references to the investigation of immunotherapy and provide a reasonable basis for "double-checkpoint inhibition" in EC.
Collapse
Affiliation(s)
- Yinuo Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiangyu Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xin Hou
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiangyi Ma
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
41
|
Concannon K, Morris BB, Gay CM, Byers LA. Combining targeted DNA repair inhibition and immune-oncology approaches for enhanced tumor control. Mol Cell 2023; 83:660-680. [PMID: 36669489 PMCID: PMC9992136 DOI: 10.1016/j.molcel.2022.12.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/08/2022] [Accepted: 12/27/2022] [Indexed: 01/20/2023]
Abstract
Targeted therapy and immunotherapy have revolutionized cancer treatment. However, the ability of cancer to evade the immune system remains a major barrier for effective treatment. Related to this, several targeted DNA-damage response inhibitors (DDRis) are being tested in the clinic and have been shown to potentiate anti-tumor immune responses. Seminal studies have shown that these agents are highly effective in a pan-cancer class of tumors with genetic defects in key DNA repair genes such as BRCA1/2, BRCA-related genes, ataxia telangiectasia mutated (ATM), and others. Here, we review the molecular consequences of targeted DDR inhibition, from tumor cell death to increased engagement of the anti-tumor immune response. Additionally, we discuss mechanistic and clinical rationale for pairing targeted DDRis with immunotherapy for enhanced tumor control. We also review biomarkers for patient selection and promising new immunotherapy approaches poised to form the foundation of next-generation DDRi and immunotherapy combinations.
Collapse
Affiliation(s)
- Kyle Concannon
- Department of Hematology/Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Benjamin B Morris
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Carl M Gay
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lauren A Byers
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
42
|
Heyza JR, Ekinci E, Lindquist J, Lei W, Yunker C, Vinothkumar V, Rowbotham R, Polin L, Snider N, Van Buren E, Watza D, Back J, Chen W, Mamdani H, Schwartz A, Turchi J, Bepler G, Patrick S. ATR inhibition overcomes platinum tolerance associated with ERCC1- and p53-deficiency by inducing replication catastrophe. NAR Cancer 2023; 5:zcac045. [PMID: 36644397 PMCID: PMC9832712 DOI: 10.1093/narcan/zcac045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/30/2022] [Accepted: 12/16/2022] [Indexed: 01/13/2023] Open
Abstract
ERCC1/XPF is a heterodimeric DNA endonuclease critical for repair of certain chemotherapeutic agents. We recently identified that ERCC1- and p53-deficient lung cancer cells are tolerant to platinum-based chemotherapy. ATR inhibition synergistically re-stored platinum sensitivity to platinum tolerant ERCC1-deficient cells. Mechanistically we show this effect is reliant upon several functions of ATR including replication fork protection and altered cell cycle checkpoints. Utilizing an inhibitor of replication protein A (RPA), we further demonstrate that replication fork protection and RPA availability are critical for platinum-based drug tolerance. Dual treatment led to increased formation of DNA double strand breaks and was associated with chromosome pulverization. Combination treatment was also associated with increased micronuclei formation which were capable of being bound by the innate immunomodulatory factor, cGAS, suggesting that combination platinum and ATR inhibition may also enhance response to immunotherapy in ERCC1-deficient tumors. In vivo studies demonstrate a significant effect on tumor growth delay with combination therapy compared with single agent treatment. Results of this study have led to the identification of a feasible therapeutic strategy combining ATR inhibition with platinum and potentially immune checkpoint blockade inhibitors to overcome platinum tolerance in ERCC1-deficient, p53-mutant lung cancers.
Collapse
Affiliation(s)
- Joshua R Heyza
- Department of Oncology, Wayne State University and Karmanos Cancer Institute, Detroit, MI, USA
| | - Elmira Ekinci
- Department of Oncology, Wayne State University and Karmanos Cancer Institute, Detroit, MI, USA
| | - Jacob Lindquist
- Department of Oncology, Wayne State University and Karmanos Cancer Institute, Detroit, MI, USA
| | - Wen Lei
- Department of Oncology, Wayne State University and Karmanos Cancer Institute, Detroit, MI, USA
| | - Christopher Yunker
- Department of Oncology, Wayne State University and Karmanos Cancer Institute, Detroit, MI, USA
| | - Vilvanathan Vinothkumar
- Department of Oncology, Wayne State University and Karmanos Cancer Institute, Detroit, MI, USA
| | - Rachelle Rowbotham
- Department of Oncology, Wayne State University and Karmanos Cancer Institute, Detroit, MI, USA
| | - Lisa Polin
- Department of Oncology, Wayne State University and Karmanos Cancer Institute, Detroit, MI, USA
| | - Natalie G Snider
- Department of Oncology, Wayne State University and Karmanos Cancer Institute, Detroit, MI, USA
| | - Eric Van Buren
- Department of Oncology, Wayne State University and Karmanos Cancer Institute, Detroit, MI, USA
| | - Donovan Watza
- Department of Oncology, Wayne State University and Karmanos Cancer Institute, Detroit, MI, USA
| | - Jessica B Back
- Department of Oncology, Wayne State University and Karmanos Cancer Institute, Detroit, MI, USA
| | - Wei Chen
- Department of Oncology, Wayne State University and Karmanos Cancer Institute, Detroit, MI, USA
| | - Hirva Mamdani
- Department of Oncology, Wayne State University and Karmanos Cancer Institute, Detroit, MI, USA
| | - Ann G Schwartz
- Department of Oncology, Wayne State University and Karmanos Cancer Institute, Detroit, MI, USA
| | - John J Turchi
- Departments of Medicine and Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- NERx Biosciences, Indianapolis, IN, USA
| | - Gerold Bepler
- Department of Oncology, Wayne State University and Karmanos Cancer Institute, Detroit, MI, USA
| | - Steve M Patrick
- Department of Oncology, Wayne State University and Karmanos Cancer Institute, Detroit, MI, USA
| |
Collapse
|
43
|
Li Y, Li L, Fu H, Yao Q, Wang L, Lou L. Combined inhibition of PARP and ATR synergistically potentiates the antitumor activity of HER2-targeting antibody-drug conjugate in HER2-positive cancers. Am J Cancer Res 2023; 13:161-175. [PMID: 36777513 PMCID: PMC9906070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 01/08/2023] [Indexed: 02/14/2023] Open
Abstract
The therapeutic management of various HER2-positive malignancies involves the use of HER2-targeted antibody-drug conjugates (ADCs). The primary mechanism of action of ADCs is the release of cytotoxic chemicals, which leads to single- or double-strand DNA breaks and cell death. Since both endogenous and exogenous sources of DNA damage are unavoidable, cells have evolved DNA damage-repair mechanisms. Therefore, combining inhibitors of DNA damage repair and HER2-targeted ADCs may be a practical strategy for treating HER2-positive cancers. Effects of the HER2-targeted ADC, DS-8201, in combination with PARPi (AZD2281), a DNA damage repair inhibitor that targets poly(ADP-ribose) polymerase, and ATRi (BAY1895344), which inhibits the serine/threonine kinase ATR, were determined by assessing cell-growth inhibition, apoptosis and cell-cycle arrest, as well as using in vivo pharmacodynamic studies. Combined use of AZD2281 and BAY1895344 synergistically potentiated the inhibitory effects of DS-8201 on the growth of HER2-positive cancer cells, inducing DNA damage and apoptosis, but had no effect on HER2-negative MDA-MB-231 breast cancer cells. Our data demonstrate that DS-8201 and DNA damage repair inhibitors together have synergistic anticancer effects in NCI-N87 xenograft models, effects that may reflect upregulation of γ-H2AX protein in tumor tissues. Collectively, our results indicate that the combination of DS-8201, BAY1895344, and AZD2281 exerts significant synergistic antitumor activity, suggesting that DNA damage-repair inhibitors in combination with HER2-targeted ADCs is a potential approach for treating HER2-positive malignancies, offering a promising strategy for future clinical applications.
Collapse
Affiliation(s)
- Yongpeng Li
- School of Chinese Materia Media, Nanjing University of Chinese Medicine138 Xianlin Road, Nanjing 210023, Jiangsu, China,Shanghai Institute of Materia Media, Chinese Academy of Sciences555 Zuchongzhi Road, Shanghai 201203, China
| | - Lin Li
- Shanghai Institute of Materia Media, Chinese Academy of Sciences555 Zuchongzhi Road, Shanghai 201203, China,University of Chinese Academy of SciencesNo. 19A Yuquan Road, Beijing 100049, China
| | - Haoyu Fu
- Shanghai Institute of Materia Media, Chinese Academy of Sciences555 Zuchongzhi Road, Shanghai 201203, China
| | - Qing Yao
- Shanghai Institute of Materia Media, Chinese Academy of Sciences555 Zuchongzhi Road, Shanghai 201203, China
| | - Lei Wang
- Shanghai Institute of Materia Media, Chinese Academy of Sciences555 Zuchongzhi Road, Shanghai 201203, China
| | - Liguang Lou
- School of Chinese Materia Media, Nanjing University of Chinese Medicine138 Xianlin Road, Nanjing 210023, Jiangsu, China,Shanghai Institute of Materia Media, Chinese Academy of Sciences555 Zuchongzhi Road, Shanghai 201203, China,University of Chinese Academy of SciencesNo. 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
44
|
da Costa AABA, Chowdhury D, Shapiro GI, D'Andrea AD, Konstantinopoulos PA. Targeting replication stress in cancer therapy. Nat Rev Drug Discov 2023; 22:38-58. [PMID: 36202931 PMCID: PMC11132912 DOI: 10.1038/s41573-022-00558-5] [Citation(s) in RCA: 147] [Impact Index Per Article: 73.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2022] [Indexed: 02/06/2023]
Abstract
Replication stress is a major cause of genomic instability and a crucial vulnerability of cancer cells. This vulnerability can be therapeutically targeted by inhibiting kinases that coordinate the DNA damage response with cell cycle control, including ATR, CHK1, WEE1 and MYT1 checkpoint kinases. In addition, inhibiting the DNA damage response releases DNA fragments into the cytoplasm, eliciting an innate immune response. Therefore, several ATR, CHK1, WEE1 and MYT1 inhibitors are undergoing clinical evaluation as monotherapies or in combination with chemotherapy, poly[ADP-ribose]polymerase (PARP) inhibitors, or immune checkpoint inhibitors to capitalize on high replication stress, overcome therapeutic resistance and promote effective antitumour immunity. Here, we review current and emerging approaches for targeting replication stress in cancer, from preclinical and biomarker development to clinical trial evaluation.
Collapse
Affiliation(s)
| | - Dipanjan Chowdhury
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Geoffrey I Shapiro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Alan D D'Andrea
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA, USA.
| | | |
Collapse
|
45
|
Zhang J, Liu P, Chen J, Yao D, Liu Q, Zhang J, Zhang HW, Leung ELH, Yao XJ, Liu L. Upgrade of chrysomycin A as a novel topoisomerase II inhibitor to curb KRAS-mutant lung adenocarcinoma progression. Pharmacol Res 2023; 187:106565. [PMID: 36414124 DOI: 10.1016/j.phrs.2022.106565] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/13/2022] [Accepted: 11/18/2022] [Indexed: 11/20/2022]
Abstract
A primary strategy employed in cancer therapy is the inhibition of topoisomerase II (Topo II), implicated in cell survival. However, side effects and adverse reactions restrict the utilization of Topo II inhibitors. Thus, investigations focus on the discovery of novel compounds that are capable of inhibiting the Topo II enzyme and feature safer toxicological profiles. Herein, we upgrade an old antibiotic chrysomycin A from Streptomyces sp. 891 as a compelling Topo II enzyme inhibitor. Our results show that chrysomycin A is a new chemical entity. Notably, chrysomycin A targets the DNA-unwinding enzyme Topo II with an efficient binding potency and a significant inhibition of intracellular enzyme levels. Intriguingly, chrysomycin A kills KRAS-mutant lung adenocarcinoma cells and is negligible cytotoxic to normal cells at the cellular level, thus indicating a capability of potential treatment. Furthermore, mechanism studies demonstrate that chrysomycin A inhibits the Topo II enzyme and stimulates the accumulation of reactive oxygen species, thereby inducing DNA damage-mediated cancer cell apoptosis. Importantly, chrysomycin A exhibits excellent control of cancer progression and excellent safety in tumor-bearing models. Our results provide a chemical scaffold for the synthesis of new types of Topo II inhibitors and reveal a novel target for chrysomycin A to meet its further application.
Collapse
Affiliation(s)
- Junmin Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau; School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Pei Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau
| | - Jianwei Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau; School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310000, China
| | - Dahong Yao
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau
| | - Qing Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau
| | - Juanhong Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau; School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China; College of Life Science, Northwest Normal University, Lanzhou 730070, China
| | - Hua-Wei Zhang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310000, China
| | - Elaine Lai-Han Leung
- Cancer Center, Faculty of Health Science, and MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau.
| | - Xiao-Jun Yao
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau.
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau.
| |
Collapse
|
46
|
Salguero C, Valladolid C, Robinson HMR, Smith GCM, Yap TA. Targeting ATR in Cancer Medicine. Cancer Treat Res 2023; 186:239-283. [PMID: 37978140 DOI: 10.1007/978-3-031-30065-3_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
As a key component of the DNA Damage Response, the Ataxia telangiectasia and Rad3-related (ATR) protein is a promising druggable target that is currently widely evaluated in phase I-II-III clinical trials as monotherapy and in combinations with other rational antitumor agents, including immunotherapy, DNA repair inhibitors, chemo- and radiotherapy. Ongoing clinical studies for this drug class must address the optimization of the therapeutic window to limit overlapping toxicities and refine the target population that will most likely benefit from ATR inhibition. With advances in the development of personalized treatment strategies for patients with advanced solid tumors, many ongoing ATR inhibitor trials have been recruiting patients based on their germline and somatic molecular alterations, rather than relying solely on specific tumor subtypes. Although a spectrum of molecular alterations have already been identified as potential predictive biomarkers of response that may sensitize to ATR inhibition, these biomarkers must be analytically validated and feasible to measure robustly to allow for successful integration into the clinic. While several ATR inhibitors in development are poised to address a clinically unmet need, no ATR inhibitor has yet received FDA-approval. This chapter details the underlying rationale for targeting ATR and summarizes the current preclinical and clinical landscape of ATR inhibitors currently in evaluation, as their regulatory approval potentially lies close in sight.
Collapse
Affiliation(s)
- Carolina Salguero
- Department of Investigational Cancer Therapeutics (Phase I Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christian Valladolid
- Department of Investigational Cancer Therapeutics (Phase I Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Helen M R Robinson
- Artios Pharma, The Glenn Berge Building, Babraham Research Campus, Cambridge, UK
| | - Graeme C M Smith
- Artios Pharma, The Glenn Berge Building, Babraham Research Campus, Cambridge, UK
| | - Timothy A Yap
- Department of Investigational Cancer Therapeutics (Phase I Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- The Institute for Applied Cancer Science, and Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, TX, 77030, Houston, USA.
| |
Collapse
|
47
|
Seidel P, Rubarth A, Zodel K, Peighambari A, Neumann F, Federkiel Y, Huang H, Hoefflin R, Adlesic M, Witt C, Hoffmann DJ, Metzger P, Lindemann RK, Zenke FT, Schell C, Boerries M, von Elverfeldt D, Reichardt W, Follo M, Albers J, Frew IJ. ATR represents a therapeutic vulnerability in clear cell renal cell carcinoma. JCI Insight 2022; 7:156087. [PMID: 36413415 PMCID: PMC9869969 DOI: 10.1172/jci.insight.156087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/10/2022] [Indexed: 11/24/2022] Open
Abstract
Metastatic clear cell renal cell carcinomas (ccRCCs) are resistant to DNA-damaging chemotherapies, limiting therapeutic options for patients whose tumors are resistant to tyrosine kinase inhibitors and/or immune checkpoint therapies. Here we show that mouse and human ccRCCs were frequently characterized by high levels of endogenous DNA damage and that cultured ccRCC cells exhibited intact cellular responses to chemotherapy-induced DNA damage. We identify that pharmacological inhibition of the DNA damage-sensing kinase ataxia telangiectasia and Rad3-related protein (ATR) with the orally administered, potent, and selective drug M4344 (gartisertib) induced antiproliferative effects in ccRCC cells. This effect was due to replication stress and accumulation of DNA damage in S phase. In some cells, DNA damage persisted into subsequent G2/M and G1 phases, leading to the frequent accumulation of micronuclei. Daily single-agent treatment with M4344 inhibited the growth of ccRCC xenograft tumors. M4344 synergized with chemotherapeutic drugs including cisplatin and carboplatin and the poly(ADP-ribose) polymerase inhibitor olaparib in mouse and human ccRCC cells. Weekly M4344 plus cisplatin treatment showed therapeutic synergy in ccRCC xenografts and was efficacious in an autochthonous mouse ccRCC model. These studies identify ATR inhibition as a potential novel therapeutic option for ccRCC.
Collapse
Affiliation(s)
- Philipp Seidel
- Department of Internal Medicine I, Hematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - Anne Rubarth
- Department of Internal Medicine I, Hematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - Kyra Zodel
- Department of Internal Medicine I, Hematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - Asin Peighambari
- Department of Internal Medicine I, Hematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - Felix Neumann
- Translational Innovation Platform Oncology and Immuno-Oncology, the Healthcare Business of Merck KGaA, Darmstadt, Germany
| | - Yannick Federkiel
- Department of Internal Medicine I, Hematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - Hsin Huang
- Department of Internal Medicine I, Hematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - Rouven Hoefflin
- Department of Internal Medicine I, Hematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - Mojca Adlesic
- Department of Internal Medicine I, Hematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - Christian Witt
- Department of Internal Medicine I, Hematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - David J. Hoffmann
- Department of Internal Medicine I, Hematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | | | - Ralph K. Lindemann
- Translational Innovation Platform Oncology and Immuno-Oncology, the Healthcare Business of Merck KGaA, Darmstadt, Germany
| | - Frank T. Zenke
- Translational Innovation Platform Oncology and Immuno-Oncology, the Healthcare Business of Merck KGaA, Darmstadt, Germany
| | - Christoph Schell
- Institute for Surgical Pathology, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - Melanie Boerries
- Institute of Medical Bioinformatics and,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Partner Site Freiburg, Freiburg, Germany.,Comprehensive Cancer Center Freiburg (CCCF) and
| | | | - Wilfried Reichardt
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Partner Site Freiburg, Freiburg, Germany.,Medical Physics, Department of Radiology, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - Marie Follo
- Department of Internal Medicine I, Hematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - Joachim Albers
- Translational Innovation Platform Oncology and Immuno-Oncology, the Healthcare Business of Merck KGaA, Darmstadt, Germany
| | - Ian J. Frew
- Department of Internal Medicine I, Hematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Partner Site Freiburg, Freiburg, Germany.,Comprehensive Cancer Center Freiburg (CCCF) and,Medical Physics, Department of Radiology, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| |
Collapse
|
48
|
Evolving DNA repair synthetic lethality targets in cancer. Biosci Rep 2022; 42:232162. [PMID: 36420962 PMCID: PMC9760629 DOI: 10.1042/bsr20221713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/25/2022] Open
Abstract
DNA damage signaling response and repair (DDR) is a critical defense mechanism against genomic instability. Impaired DNA repair capacity is an important risk factor for cancer development. On the other hand, up-regulation of DDR mechanisms is a feature of cancer chemotherapy and radiotherapy resistance. Advances in our understanding of DDR and its complex role in cancer has led to several translational DNA repair-targeted investigations culminating in clinically viable precision oncology strategy using poly(ADP-ribose) polymerase (PARP) inhibitors in breast, ovarian, pancreatic, and prostate cancers. While PARP directed synthetic lethality has improved outcomes for many patients, the lack of sustained clinical response and the development of resistance pose significant clinical challenges. Therefore, the search for additional DDR-directed drug targets and novel synthetic lethality approaches is highly desirable and is an area of intense preclinical and clinical investigation. Here, we provide an overview of the mammalian DNA repair pathways and then focus on current state of PARP inhibitors (PARPi) and other emerging DNA repair inhibitors for synthetic lethality in cancer.
Collapse
|
49
|
Li S, Wang T, Fei X, Zhang M. ATR Inhibitors in Platinum-Resistant Ovarian Cancer. Cancers (Basel) 2022; 14:cancers14235902. [PMID: 36497387 PMCID: PMC9740197 DOI: 10.3390/cancers14235902] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
Platinum-resistant ovarian cancer (PROC) is one of the deadliest types of epithelial ovarian cancer, and it is associated with a poor prognosis as the median overall survival (OS) is less than 12 months. Targeted therapy is a popular emerging treatment method. Several targeted therapies, including those using bevacizumab and poly (ADP-ribose) polymerase inhibitor (PARPi), have been used to treat PROC. Ataxia telangiectasia and RAD3-Related Protein Kinase inhibitors (ATRi) have attracted attention as a promising class of targeted drugs that can regulate the cell cycle and influence homologous recombination (HR) repair. In recent years, many preclinical and clinical studies have demonstrated the efficacy of ATRis in PROC. This review focuses on the anticancer mechanism of ATRis and the progress of research on ATRis for PROC.
Collapse
Affiliation(s)
- Siyu Li
- Department of Medical Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230031, China
- Department of Oncology, Anhui Medical University, Hefei 230031, China
| | - Tao Wang
- Department of Medical Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230031, China
- Department of Oncology, Anhui Medical University, Hefei 230031, China
| | - Xichang Fei
- Department of Medical Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230031, China
- Department of Oncology, Anhui Medical University, Hefei 230031, China
| | - Mingjun Zhang
- Department of Medical Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230031, China
- Department of Oncology, Anhui Medical University, Hefei 230031, China
- Correspondence:
| |
Collapse
|
50
|
Venugopala KN. Targeting the DNA Damage Response Machinery for Lung Cancer Treatment. Pharmaceuticals (Basel) 2022; 15:ph15121475. [PMID: 36558926 PMCID: PMC9781725 DOI: 10.3390/ph15121475] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Lung cancer is considered the most commonly diagnosed cancer and one of the leading causes of death globally. Despite the responses from small-cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC) patients to conventional chemo- and radiotherapies, the current outcomes are not satisfactory. Recently, novel advances in DNA sequencing technologies have started to take off which have provided promising tools for studying different tumors for systematic mutation discovery. To date, a limited number of DDR inhibition trials have been conducted for the treatment of SCLC and NSCLC patients. However, strategies to test different DDR inhibitor combinations or to target multiple pathways are yet to be explored. With the various biomarkers that have either been recently discovered or are the subject of ongoing investigations, it is hoped that future trials would be designed to allow for studying targeted treatments in a biomarker-enriched population, which is defensible for the improvement of prognosis for SCLC and NSCLC patients. This review article sheds light on the different DNA repair pathways and some of the inhibitors targeting the proteins involved in the DNA damage response (DDR) machinery, such as ataxia telangiectasia and Rad3-related protein (ATR), DNA-dependent protein kinase (DNA-PK), and poly-ADP-ribose polymerase (PARP). In addition, the current status of DDR inhibitors in clinical settings and future perspectives are discussed.
Collapse
Affiliation(s)
- Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 4000, South Africa
| |
Collapse
|