1
|
Ram AK, Vats A, Bhatia A, Kumar Y. Evolving Concepts in Etiology of Biliary Atresia: Insights and Perspectives from India. Fetal Pediatr Pathol 2025:1-23. [PMID: 40181637 DOI: 10.1080/15513815.2025.2477704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 03/01/2025] [Accepted: 03/04/2025] [Indexed: 04/05/2025]
Abstract
Introduction: Biliary atresia (BA) is a potentially fatal newborn cholestatic disease. It is a rapidly advancing fibro-obliterative cholangiopathy that leads to liver failure and death if not treated early. The well-known multihit hypothesis proposes that viral or chemical disruption to the biliary epithelium triggers an immune-mediated inflammatory response, resulting in fibrosis and blockage of the intra and extrahepatic biliary systems. Methods: In recent years, several papers have noticed an upsurge in many aspects of BA, particularly its etiopathogenesis, which has opened a vista of various probable mechanisms currently being examined. This review brings them together with an emphasis on reflecting current scientific views for those interested in this illness. Conclusions: Among the different etiological factors proposed for BA, viruses and immune-mediated injury are the strongest contenders as contributors to the disease onset and pathogenesis.
Collapse
Affiliation(s)
- Anil Kumar Ram
- Department of Pathology, University of Kansas Medical Center, Kansas City, USA
| | - Akshit Vats
- Department of Immunopathology, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | - Alka Bhatia
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | - Yashwant Kumar
- Department of Immunopathology, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| |
Collapse
|
2
|
Liu F, Lui VCH, Wu Z, Blakeley PD, Tang CSM, Tam PKH, Wong KKY, Chung PHY. Animal and organoid models to elucidate the anti-fibrotic effect of steroid on biliary atresia. Pediatr Surg Int 2024; 40:214. [PMID: 39102048 PMCID: PMC11300555 DOI: 10.1007/s00383-024-05798-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/25/2024] [Indexed: 08/06/2024]
Abstract
PURPOSE We performed animal and organoid study to evaluate the anti-fibrotic effect of steroid on biliary atresia (BA) and the underlying patho-mechanism. METHODS BA animal models were created by inoculation of mice on post-natal day 1 with rhesus rotavirus (RRV). They received either 20 µl phosphate-buffered saline (PBS) or steroid from day 21 to day 34. On day 34, their serum samples were collected for hormonal markers. Necrosis, fibrosis and CK 19 expression in the liver were evaluated. Liver organoids were developed and their morphology as well as bulk RNA sequencing data were analyzed. RESULTS Twenty-four mice developed BA features after RRV injection and were equally divided into steroid and PBS groups. On day 34, the weight gain of steroid group increased significantly than PBS group (p < 0.0001). All mice in the PBS group developed liver fibrosis but only one mouse in the steroid group did. Serum bilirubin and liver parenchymal enzymes were significantly lower in steroid group. The morphology of liver organoids were different between the two groups. A total of 6359 differentially expressed genes were found between steroid group and PBS group. CONCLUSION Based on our findings obtained from RRV-induced BA animal and organoid models, steroid has the potential to mitigate liver fibrosis in BA.
Collapse
Affiliation(s)
- Fangran Liu
- Department of Surgery, School of Clinical Medicine, Queen Mary Hospital, The University of Hong Kong, 102 Pokfulam Road, Hong Kong SAR, China
| | - Vincent Chi Hang Lui
- Department of Surgery, School of Clinical Medicine, Queen Mary Hospital, The University of Hong Kong, 102 Pokfulam Road, Hong Kong SAR, China
- Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong SAR, China
| | - Zhongluan Wu
- Department of Surgery, School of Clinical Medicine, Queen Mary Hospital, The University of Hong Kong, 102 Pokfulam Road, Hong Kong SAR, China
| | - Paul David Blakeley
- Department of Surgery, School of Clinical Medicine, Queen Mary Hospital, The University of Hong Kong, 102 Pokfulam Road, Hong Kong SAR, China
| | - Clara Sze Man Tang
- Department of Surgery, School of Clinical Medicine, Queen Mary Hospital, The University of Hong Kong, 102 Pokfulam Road, Hong Kong SAR, China
- Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong SAR, China
| | - Paul Kwong Hang Tam
- Faculty of Medicine, Macau University of Science and Technology, Macau SAR, China
| | - Kenneth Kak Yuen Wong
- Department of Surgery, School of Clinical Medicine, Queen Mary Hospital, The University of Hong Kong, 102 Pokfulam Road, Hong Kong SAR, China
| | - Patrick Ho Yu Chung
- Department of Surgery, School of Clinical Medicine, Queen Mary Hospital, The University of Hong Kong, 102 Pokfulam Road, Hong Kong SAR, China.
| |
Collapse
|
3
|
Temple H, Donnelly B, Mohanty SK, Mowery S, Poling HM, Pasula R, Hartman S, Singh A, Mourya R, Bondoc A, Meller J, Jegga AG, Oyama K, McNeal M, Spearman P, Tiao G. Specific binding sites on Rhesus rotavirus capsid protein dictate the method of endocytosis inducing the murine model of biliary atresia. Am J Physiol Gastrointest Liver Physiol 2024; 327:G267-G283. [PMID: 38860860 PMCID: PMC11687966 DOI: 10.1152/ajpgi.00308.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/17/2024] [Accepted: 05/28/2024] [Indexed: 06/12/2024]
Abstract
Biliary atresia (BA) is the leading indication for pediatric liver transplantation. Rhesus rotavirus (RRV)-induced murine BA develops an obstructive cholangiopathy that mirrors the human disease. We have previously demonstrated the "SRL" motif on RRV's VP4 protein binds to heat shock cognate 70 protein (Hsc70) facilitating entry into cholangiocytes. In this study, we analyzed how binding to Hsc70 affects viral endocytosis, intracellular trafficking, and uniquely activates the signaling pathway that induces murine BA. Inhibition of clathrin- and dynamin-mediated endocytosis in cholangiocytes following infection demonstrated that blocking dynamin decreased the infectivity of RRV, whereas clathrin inhibition had no effect. Blocking early endosome trafficking resulted in decreased viral titers of RRV, whereas late endosome inhibition had no effect. After infection, TLR3 expression and p-NF-κB levels increased in cholangiocytes, leading to increased release of CXCL9 and CXCL10. Infected mice knocked out for TLR3 had decreased levels of CXCL9 and CXCL10, resulting in reduced NK cell numbers. Human patients with BA experienced an increase in CXCL10 levels, suggesting this as a possible pathway leading to biliary obstruction. Viruses that use Hsc70 for cell entry exploit a clathrin-independent pathway and traffic to the early recycling endosome uniquely activating NF-κB through TLR3, leading to the release of CXCL9 and CXCL10 and inducing NK cell recruitment. These results define how the "SRL" peptide found on RRV's VP4 protein modulates viral trafficking, inducing the host response leading to bile duct obstruction.NEW & NOTEWORTHY In this study, we have determined that the presence of the "SRL" peptide on RRV alters its method of endocytosis and intracellular trafficking through viral binding to heat shock cognate 70 protein. This initiates an inflammatory pathway that stimulates the release of cytokines associated with biliary damage and obstruction.
Collapse
Affiliation(s)
- Haley Temple
- Department of Pediatric and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
| | - Bryan Donnelly
- Department of Pediatric and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
| | - Sujit K Mohanty
- Southeast Poultry Research Laboratory, United States National Poultry Research Center, United States Department of Agriculture, Athens, Georgia, United States
| | - Sarah Mowery
- Department of Pediatric and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
| | - Holly M Poling
- Department of Pediatric and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
| | - Rajamouli Pasula
- Department of Pediatric and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
| | - Stephen Hartman
- Department of Pediatric and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
| | - Akaljot Singh
- Department of Pediatric and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
| | - Reena Mourya
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
| | - Alexander Bondoc
- Department of Pediatric and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
| | - Jaroslaw Meller
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, Ohio, United States
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
| | - Anil G Jegga
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
| | - Kei Oyama
- Department of Pediatric and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
| | - Monica McNeal
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
| | - Paul Spearman
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
| | - Greg Tiao
- Department of Pediatric and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
| |
Collapse
|
4
|
Hepatic Ly6C Lo Non-Classical Monocytes Have Increased Nr4a1 (Nur77) in Murine Biliary Atresia. J Clin Med 2022; 11:jcm11185290. [PMID: 36142937 PMCID: PMC9504567 DOI: 10.3390/jcm11185290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 11/17/2022] Open
Abstract
Biliary atresia (BA) is a rapidly progressive perinatal inflammatory disease, resulting in liver failure. Hepatic Ly6CLo non-classical monocytes promote the resolution of perinatal liver inflammation during rhesus rotavirus-mediated (RRV) BA in mice. In this study, we aim to investigate the effects of inflammation on the transcription factor Nr4a1, a known regulator of non-classical monocytes. Nr4a1-GFP reporter mice were injected with PBS for control or RRV within 24 h of delivery to induce perinatal liver inflammation. GFP expression on myeloid immune populations in the liver and bone marrow (BM) was quantified 3 and 14 days after injection using flow cytometry. Statistical significance was determined using a student’s t-test and ANOVA, with a p-value < 0.05 for significance. Our results demonstrate that non-classical monocytes in the neonatal liver exhibit the highest mean fluorescence intensity (MFI) of Nr4a1 (Ly6CLo MFI 6344 vs. neutrophils 3611 p < 0.001; macrophages 2782; p < 0.001; and Ly6CHi classical monocytes 4485; p < 0.0002). During inflammation, hepatic Ly6CLo non-classical monocytes showed a significant increase in Nr4a1 expression intensity from 6344 to 7600 (p = 0.012), while Nr4a1 expression remained unchanged on the other myeloid populations. These findings highlight the potential of using Nr4a1 as a regulator of neonatal hepatic Ly6CLo non-classical monocytes to mitigate perinatal liver inflammation.
Collapse
|
5
|
Pal N, Joy PS, Sergi CM. Biliary Atresia Animal Models: Is the Needle in a Haystack? Int J Mol Sci 2022; 23:7838. [PMID: 35887185 PMCID: PMC9324346 DOI: 10.3390/ijms23147838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 02/06/2023] Open
Abstract
Biliary atresia (BA) is a progressive fibro-obliterative process with a variable degree of inflammation involving the hepatobiliary system. Its consequences are incalculable for the patients, the affected families, relatives, and the healthcare system. Scientific communities have identified a rate of about 1 case per 10,000-20,000 live births, but the percentage may be higher, considering the late diagnoses. The etiology is heterogeneous. BA, which is considered in half of the causes leading to orthotopic liver transplantation, occurs in primates and non-primates. To consolidate any model, (1) more transport and cell membrane studies are needed to identify the exact mechanism of noxa-related hepatotoxicity; (2) an online platform may be key to share data from pilot projects and new techniques; and (3) the introduction of differentially expressed genes may be useful in investigating the liver metabolism to target the most intricate bilio-toxic effects of pharmaceutical drugs and toxins. As a challenge, such methodologies are still limited to very few centers, making the identification of highly functional animal models like finding a "needle in a haystack". This review compiles models from the haystack and hopes that a combinatorial search will eventually be the root for a successful pathway.
Collapse
Affiliation(s)
- Nutan Pal
- Jefferson Graduate School of Biomedical Sciences, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Parijat S. Joy
- Department of Internal Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA;
| | - Consolato M. Sergi
- Anatomic Pathology Division, Department of Laboratory Medicine and Pathology, Children’s Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Lab. Medicine and Pathology, Stollery Children’s Hospital, University of Alberta, Edmonton, AB T6G 2B7, Canada
| |
Collapse
|
6
|
Sun P, Xiao M, Chen H, Zhong Z, Jiang H, Feng X, Luo Z. A joint transcriptional regulatory network and protein activity inference analysis identifies clinically associated master regulators for biliary atresia. Front Pediatr 2022; 10:1050326. [PMID: 36440333 PMCID: PMC9691841 DOI: 10.3389/fped.2022.1050326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/26/2022] [Indexed: 11/13/2022] Open
Abstract
Biliary atresia (BA) is a devastating cholangiopathy in neonate. Transcription factors (TFs), a type of master regulators in biological processes and diseases, have been implicated in pathogenesis of BA. However, a global view of TFs and how they link to clinical presentations remain explored. Here, we perform a joint transcriptional regulatory network and protein activity inference analysis in order to investigate transcription factor activity in BA. By integration of three independent human BA liver transcriptome datasets, we identify 22 common master regulators, with 14 activated- and 8 repressed TFs. Gene targets of activated TFs are enriched in biological processes of SMAD, NF-kappaB and TGF-beta, while those of repressed TFs are related to lipid metabolism. Mining the clinical association of TFs, we identify inflammation-, fibrosis- and survival associated TFs. In particular, ZNF14 is predictive of poor survival and advanced live fibrosis. Supporting this observation, ZNF14 is positively correlated with T helper cells, cholangiocytes and hepatic stellate cells. In sum, our analysis reveals key clinically associated master regulators for BA.
Collapse
Affiliation(s)
- Panpan Sun
- Department of Pediatric Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.,Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Manhuan Xiao
- Department of Pediatric Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.,Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Huadong Chen
- Department of Pediatric Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhihai Zhong
- Department of Pediatric Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hong Jiang
- Department of Pediatric Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xuyang Feng
- Department of Pediatric Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.,Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhenhua Luo
- Department of Pediatric Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.,Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
7
|
RRV-induced biliary atresia in neonatal mice involves CD8 + T lymphocyte killer cells and the Notch signaling pathway. Genes Genomics 2021; 43:1289-1299. [PMID: 34410624 DOI: 10.1007/s13258-021-01153-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/11/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Persistent inflammation induced by viral infection may contribute to the pathogenesis of biliary atresia (BA). Moreover, CD4+ helper cells and CD8+ killer cells are the main effector cells involved in BA and intrahepatic bile duct injuries. OBJECTIVE Thus, we aimed to explore the dynamics of inflammatory cell infiltration and inflammation-regulated pathways in liver-specific inflammatory responses. METHODS Neonatal Balb/C mice were intraperitoneally infected with 1 × 106 PFU rhesus rotavirus (RRV; BA + group), 1 × 105 PFU RRV (BA- group), or DMEM (control group). Mice were sacrificed 7 or 14 days post-infection and their bile ducts, livers, and spleen-derived tissues were examined via H & E staining. The number of CD4+T lymphocytes helper cells (CD4+Th), CD8+T lymphocytes killer cells (CD8+Tc), natural killer (NK) cells, and macrophages (Mac) in the liver and spleen were quantified by flow cytometry. The expression of inflammatory genes was analyzed via a PCR-array. Western blotting was conducted to quantify the protein expression of Notch receptor active fragments (NICD). Finally, some mice were injected with DAPT (a γ-secretase inhibitor) 12 h post-infection followed by analysis of liver and bile duct tissues after 14 days. RESULTS The numbers of CD4+Th cells were increased in the livers of BA- mice after 14 days (P < 0.05). After RRV infection, the number of CD8+Tc, CD4+Th, NK, and Mac were increased in the livers of BA + mice after 7 and 14 days. Notably, NK cell numbers remained elevated in the BA + group, but the number of Mac first increased and then decreased in both the treatment groups. PCR-array analyses indicated that the expression of many genes related to T cell proliferation and differentiation significantly increased in the livers of BA. The most upregulated gene was Jagged2 (20.34-fold). Increased NICD (Notch receptor active fragments) protein expression was found in the BA + group. Finally, DAPT injection could reduce inflammation, CD8+Tc infiltration, NICD expression, and bile duct damage after RRV infection. We found that CD8+Tc played the most important role in damaging bile ducts and promoting BA. CONCLUSION The DAPT-based intervention could reduce expression of CD8+Tc and bile duct damage in BA mouse livers post-RRV infection. We believe that the Notch signaling pathway regulates CD8+Tc functions and inflammatory dynamics in BA mouse livers.
Collapse
|
8
|
Nomden M, Beljaars L, Verkade HJ, Hulscher JBF, Olinga P. Current Concepts of Biliary Atresia and Matrix Metalloproteinase-7: A Review of Literature. Front Med (Lausanne) 2020; 7:617261. [PMID: 33409288 PMCID: PMC7779410 DOI: 10.3389/fmed.2020.617261] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/02/2020] [Indexed: 12/20/2022] Open
Abstract
Biliary atresia (BA) is a rare cholangiopathy of infancy in which the bile ducts obliterate, leading to profound cholestasis and liver fibrosis. BA is hypothesized to be caused by a viral insult that leads to over-activation of the immune system. Patients with BA are surgically treated with a Kasai portoenterostomy (KPE), which aims to restore bile flow from the liver to the intestines. After KPE, progressive liver fibrosis is often observed in BA patients, even despite surgical success and clearance of their jaundice. The innate immune response is involved during the initial damage to the cholangiocytes and further differentiation of the adaptive immune response into a T-helper 1 cell (Th1) response. Multiple studies have shown that there is continuing elevation of involved cytokines that can lead to the progressive liver fibrosis. However, the mechanism by which the progressive injury occurs is not fully elucidated. Recently, matrix metalloproteinase-7 (MMP-7) has been investigated to be used as a biomarker to diagnose BA. MMPs are involved in extracellular matrix (ECM) turnover, but also have non-ECM related functions. The role of MMP-7 and other MMPs in liver fibrosis is just starting to be elucidated. Multiple studies have shown that serum MMP-7 measurements are able to accurately diagnose BA in a cohort of cholestatic patients while hepatic MMP-7 expression correlated with BA-related liver fibrosis. While the mechanism by which MMP-7 can be involved in the pathophysiology of BA is unclear, MMP-7 has been investigated in other fibrotic pathologies such as renal and idiopathic pulmonary fibrosis. MMP-7 is involved in Wnt/β-catenin signaling, reducing cell-to-cell contact by shedding of E-cadherin, amplifying inflammation and fibrosis via osteopontin (OPN) and TNF-α while it also appears to play a role in induction of angiogenesis This review aims to describe the current understandings of the pathophysiology of BA. Subsequently, we describe how MMP-7 is involved in other pathologies, such as renal and pulmonary fibrosis. Then, we propose how MMP-7 can potentially be involved in BA. By doing this, we aim to describe the putative role of MMP-7 as a prognostic biomarker in BA and to provide possible new therapeutic and research targets that can be investigated in the future.
Collapse
Affiliation(s)
- Mark Nomden
- Divison of Pediatric Surgery, Department of Surgery, University of Groningen, Groningen, Netherlands
| | - Leonie Beljaars
- Division of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
| | - Henkjan J Verkade
- Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Jan B F Hulscher
- Divison of Pediatric Surgery, Department of Surgery, University of Groningen, Groningen, Netherlands
| | - Peter Olinga
- Division of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
| |
Collapse
|
9
|
Malik A, Thanekar U, Mourya R, Shivakumar P. Recent developments in etiology and disease modeling of biliary atresia: a narrative review. ACTA ACUST UNITED AC 2020; 3. [PMID: 33615212 PMCID: PMC7891552 DOI: 10.21037/dmr-20-97] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Biliary atresia (BA) is a rare but severe fibroinflammatory disease of the extrahepatic and the intrahepatic bile ducts. Without prompt interventions, BA has fatal outcomes and is the most common indicator for pediatric liver transplantation (LTx). While the mainstay of treatment involves surgically correcting the extrahepatic biliary obstruction via Kasai hepato-portoenterostomy (KHPE), activation of a multitude of biological pathways and yet-to-be-determined etiology in BA continue to foster liver inflammation, cirrhosis and need for LTx. However, important caveats still exist in our understandings of the biliary pathophysiology, the rapidity of liver fibrosis and progression to liver failure, largely due to limited knowledge of the triggers of biliary injury and the inability to accurately model human BA. Although inconclusive, a large body of existing literature points to a potential viral infection in the early peri- or postnatal period as triggers of epithelial injury that perpetuates the downstream biliary disease. Further confounding this issue, are the lack of in-vivo and in-vitro models to efficiently recapitulate the cardinal features of BA, primarily liver fibrosis. To overcome these barriers in BA research, new directions in recent years have enabled (I) identification of additional triggers of biliary injury linked mostly to environmental toxins, (II) development of models to investigate liver fibrogenesis, and (III) translational research using patient-derived organoids. Here, we discuss recent advances that undoubtedly will stimulate future efforts investigating these new and exciting avenues towards mechanistic and drug discovery efforts and disease-preventive measures. The implications of these emerging scientific investigations and disease modeling in severe fibrosing cholangiopathies like BA are enormous and contribute substantially in our understandings of this rare but deadly disease. These findings are also expected to facilitate expeditious identification of translationally targetable pathways and bring us one step closer in treating an infant with BA, a population highly vulnerable to life-long liver related complications.
Collapse
Affiliation(s)
- Astha Malik
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Unmesha Thanekar
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Reena Mourya
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Pranavkumar Shivakumar
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
10
|
The synthetic toxin biliatresone causes biliary atresia in mice. J Transl Med 2020; 100:1425-1435. [PMID: 32681026 DOI: 10.1038/s41374-020-0467-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 11/08/2022] Open
Abstract
Exposure to environmental toxins may be responsible for biliary atresia. The focus of this study was to investigate the effect of biliatresone on the development of the hepatobiliary system in mice. We successfully synthesized biliatresone with a purity of 98% and confirmed its biliary toxicity. Exposure to high doses of biliatresone caused abortion or death in pregnant mice. Neonatal mice injected with biliatresone developed clinical signs of biliary obstruction, and dysplasia or the absence of extrahepatic biliary tract lumen, which confirmed the occurrence of biliary atresia. In the portal tract of biliary atresia mice, signs of infiltration of inflammatory cells and liver fibrosis were observed. The signature of extrahepatic biliary gene expression in these mice mainly involved the cell adhesion process, and hepatic RNA-seq was highly linked to transcriptional evidence of oxidative stress. When compared with the control group, hepatic glutathione levels were markedly reduced after biliatresone injection. Taken together, these data confirm that biliatresone causes severe developmental abnormalities of the hepatobiliary system in mice. Furthermore, decreased levels of glutathione may play a mechanistic role in the pathogenesis of liver fibrosis in biliatresone-induced experimental biliary atresia.
Collapse
|
11
|
Mohamedaly S, Alkhani A, Nijagal A. The relative abundance of monocyte subsets determines susceptibility to perinatal hepatic inflammation. JOURNAL OF CLINICAL & CELLULAR IMMUNOLOGY 2020; 11:602. [PMID: 36304699 PMCID: PMC9603689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The devastating consequences of perinatal liver inflammation contribute to a pressing need to develop therapeutics for the diseases that underly this condition. Biliary atresia (BA) is a perinatal inflammatory disease of the liver that results in obliterative cholangiopathy and rapidly progresses to liver failure, requiring transplantation. The ability to develop targeted therapies requires an understanding of the immune mechanisms that mitigate perinatal liver inflammation. This article reviews our recent findings demonstrating that in a murine model of perinatal hepatic inflammation, Ly6cLo non-classical monocytes express a pro-reparative transcriptomic profile and that the relative abundance of Ly6cLo monocytes promotes resolution of perinatal liver inflammation, rendering neonatal pups resistant to disease. We also examine the lineage relationship between monocyte subsets, reviewing data that suggests classical monocytes are a precursor for non-classical monocytes, and the alternative possibility that separate progenitors exist for each subset. Although a precursor-product relationship between classical and non-classical monocytes might exist in certain environments, we argue that they may also arise from separate progenitors, which is evident by sustained Ly6cLo non-classical monocyte expansion when Ly6cHi monocytes are absent. An improved understanding of monocyte subsets and their developmental trajectories during perinatal hepatic inflammation will provide insight into how therapies directed at controlling monocyte function may help alleviate the devastating consequences of diseases like BA.
Collapse
Affiliation(s)
| | | | - Amar Nijagal
- ‡ Corresponding Author: Amar Nijagal, MD, Assistant Professor of Surgery, Division of Pediatric Surgery, 513 Parnassus Avenue, HSW 1652, Campus Box 0570, University of CA, San Francisco, San Francisco, CA 94143-0570, Office: 415-476-4086; Fax: 415-476-2314,
| |
Collapse
|
12
|
Fried S, Gilboa D, Har-Zahav A, Lavrut PM, Du Y, Karjoo S, Russo P, Shamir R, Wells RG, Waisbourd-Zinman O. Extrahepatic cholangiocyte obstruction is mediated by decreased glutathione, Wnt and Notch signaling pathways in a toxic model of biliary atresia. Sci Rep 2020; 10:7599. [PMID: 32371929 PMCID: PMC7200694 DOI: 10.1038/s41598-020-64503-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/02/2020] [Indexed: 12/13/2022] Open
Abstract
Biliary atresia is a neonatal liver disease with extrahepatic bile duct obstruction and progressive liver fibrosis. The etiology and pathogenesis of the disease are unknown. We previously identified a plant toxin, biliatresone, responsible for biliary atresia in naturally-occurring animal models, that causes cholangiocyte destruction in in-vitro models. Decreases in reduced glutathione (GSH) mimic the effects of biliatresone, and agents that replenish cellular GSH ameliorate the effects of the toxin. The goals of this study were to define signaling pathways downstream of biliatresone that lead to cholangiocyte destruction and to determine their relationship to GSH. Using cholangiocyte culture and 3D cholangiocyte spheroid cultures, we found that biliatresone and decreases in GSH upregulated RhoU/Wrch1, a Wnt signaling family member, which then mediated an increase in Hey2 in the NOTCH signaling pathway, causing downregulation of the transcription factor Sox17. When these genes were up- or down-regulated, the biliatresone effect on spheroids was phenocopied, resulting in lumen obstruction. Biopsies of patients with biliary atresia demonstrated increased RhoU/Wrch1 and Hey2 expression in cholangiocytes. We present a novel pathway of cholangiocyte injury in a model of biliary atresia, which is relevant to human BA and may suggest potential future therapeutics.
Collapse
Affiliation(s)
- Sophia Fried
- Institute for Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Dafna Gilboa
- Institute for Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Adi Har-Zahav
- Institute for Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | | | - Yu Du
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Sara Karjoo
- Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Pierre Russo
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Raanan Shamir
- Institute for Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Rebecca G Wells
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Orith Waisbourd-Zinman
- Institute for Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center of Israel, Petach Tikva, Israel. .,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel. .,Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, United States.
| |
Collapse
|
13
|
Ly6c Lo non-classical monocytes promote resolution of rhesus rotavirus-mediated perinatal hepatic inflammation. Sci Rep 2020; 10:7165. [PMID: 32346042 PMCID: PMC7188847 DOI: 10.1038/s41598-020-64158-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/11/2020] [Indexed: 12/02/2022] Open
Abstract
Perinatal hepatic inflammation can have devastating consequences. Monocytes play an important role in the initiation and resolution of inflammation, and their diverse functions can be attributed to specific cellular subsets: pro-inflammatory or classical monocytes (Ly6cHi) and pro-reparative or non-classical monocytes (Ly6cLo). We hypothesized that inherent differences in Ly6cHi classical monocytes and Ly6cLo non-classical monocytes determine susceptibility to perinatal hepatic inflammation in late gestation fetuses and neonates. We found an anti-inflammatory transcriptional profile expressed by Ly6cLo non-classical monocytes, and a physiologic abundance of these cells in the late gestation fetal liver. Unlike neonatal pups, late gestation fetuses proved to be resistant to rhesus rotavirus (RRV) mediated liver inflammation. Furthermore, neonatal pups were rendered resistant to RRV-mediated liver injury when Ly6cLo non-classical monocytes were expanded. Pharmacologic inhibition of Ly6cLo non-classical monocytes in this setting restored susceptibility to RRV-mediated disease. These data demonstrate that Ly6cLo monocytes promote resolution of perinatal liver inflammation in the late gestation fetus, where there is a physiologic expansion of non-classical monocytes, and in the neonatal liver upon experimental expansion of these cells. Therapeutic strategies directed towards enhancing Ly6cLo non-classical monocyte function may mitigate the detrimental effects of perinatal liver inflammation.
Collapse
|
14
|
Ortiz-Perez A, Donnelly B, Temple H, Tiao G, Bansal R, Mohanty SK. Innate Immunity and Pathogenesis of Biliary Atresia. Front Immunol 2020; 11:329. [PMID: 32161597 PMCID: PMC7052372 DOI: 10.3389/fimmu.2020.00329] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/10/2020] [Indexed: 12/12/2022] Open
Abstract
Biliary atresia (BA) is a devastating fibro-inflammatory disease characterized by the obstruction of extrahepatic and intrahepatic bile ducts in infants that can have fatal consequences, when not treated in a timely manner. It is the most common indication of pediatric liver transplantation worldwide and the development of new therapies, to alleviate the need of surgical intervention, has been hindered due to its complexity and lack of understanding of the disease pathogenesis. For that reason, significant efforts have been made toward the development of experimental models and strategies to understand the etiology and disease mechanisms and to identify novel therapeutic targets. The only characterized model of BA, using a Rhesus Rotavirus Type A infection of newborn BALB/c mice, has enabled the identification of key cellular and molecular targets involved in epithelial injury and duct obstruction. However, the establishment of an unleashed chronic inflammation followed by a progressive pathological wound healing process remains poorly understood. Like T cells, macrophages can adopt different functional programs [pro-inflammatory (M1) and resolutive (M2) macrophages] and influence the surrounding cytokine environment and the cell response to injury. In this review, we provide an overview of the immunopathogenesis of BA, discuss the implication of innate immunity in the disease pathogenesis and highlight their suitability as therapeutic targets.
Collapse
Affiliation(s)
- Ana Ortiz-Perez
- Department of Biomaterials Science and Technology, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, Netherlands
| | - Bryan Donnelly
- Department of Pediatric and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Haley Temple
- Department of Pediatric and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Greg Tiao
- Department of Pediatric and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Ruchi Bansal
- Department of Biomaterials Science and Technology, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, Netherlands
| | - Sujit Kumar Mohanty
- Department of Pediatric and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
15
|
Biliary Atresia as a Disease Starting In Utero: Implications for Treatment, Diagnosis, and Pathogenesis. J Pediatr Gastroenterol Nutr 2019; 69:396-403. [PMID: 31335837 PMCID: PMC6942669 DOI: 10.1097/mpg.0000000000002450] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Biliary atresia (BA) is the most common reason for pediatric liver transplant. BA's varied presentation, natural history, and treatment with the Kasai portoenterostomy have been well described; however, when BA starts relative to birth has not been clearly defined. In this review, we discuss laboratory, imaging, and clinical data which suggest that most if not all forms of BA may start before birth. This early onset has implications in terms of delivering treatments earlier and identifying possible factors underlying BA's etiology.
Collapse
|
16
|
Lertudomphonwanit C, Mourya R, Fei L, Zhang Y, Gutta S, Yang L, Bove KE, Shivakumar P, Bezerra JA. Large-scale proteomics identifies MMP-7 as a sentinel of epithelial injury and of biliary atresia. Sci Transl Med 2018; 9:9/417/eaan8462. [PMID: 29167395 DOI: 10.1126/scitranslmed.aan8462] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 10/20/2017] [Indexed: 12/24/2022]
Abstract
Biliary atresia is a progressive infantile cholangiopathy of complex pathogenesis. Although early diagnosis and surgery are the best predictors of treatment response, current diagnostic approaches are imprecise and time-consuming. We used large-scale, quantitative serum proteomics at the time of diagnosis of biliary atresia and other cholestatic syndromes (serving as disease controls) to identify biomarkers of disease. In a discovery cohort of 70 subjects, the lead biomarker was matrix metalloproteinase-7 (MMP-7), which retained high distinguishing features for biliary atresia in two validation cohorts. Notably, the diagnostic performance reached 95% when MMP-7 was combined with γ-glutamyltranspeptidase (GGT), a marker of cholestasis. Using human tissue and an experimental model of biliary atresia, we found that MMP-7 is primarily expressed by cholangiocytes, released upon epithelial injury, and promotes the experimental disease phenotype. Thus, we propose that serum MMP-7 (alone or in combination with GGT) is a diagnostic biomarker for biliary atresia and may serve as a therapeutic target.
Collapse
Affiliation(s)
- Chatmanee Lertudomphonwanit
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center and the Department of Pediatrics of the University of Cincinnati College of Medicine, Cincinnati, OH 45229-3031, USA.,Division of Gastroenterology and Hepatology, Department of Pediatrics, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Reena Mourya
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center and the Department of Pediatrics of the University of Cincinnati College of Medicine, Cincinnati, OH 45229-3031, USA
| | - Lin Fei
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center and the Department of Pediatrics of the University of Cincinnati College of Medicine, Cincinnati, OH 45229-3031, USA
| | - Yue Zhang
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center and the Department of Pediatrics of the University of Cincinnati College of Medicine, Cincinnati, OH 45229-3031, USA
| | - Sridevi Gutta
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center and the Department of Pediatrics of the University of Cincinnati College of Medicine, Cincinnati, OH 45229-3031, USA
| | - Li Yang
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center and the Department of Pediatrics of the University of Cincinnati College of Medicine, Cincinnati, OH 45229-3031, USA.,Division of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kevin E Bove
- Division of Pathology, Cincinnati Children's Hospital Medical Center and the Department of Pediatrics of the University of Cincinnati College of Medicine, Cincinnati, OH 45229-3031, USA
| | - Pranavkumar Shivakumar
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center and the Department of Pediatrics of the University of Cincinnati College of Medicine, Cincinnati, OH 45229-3031, USA
| | - Jorge A Bezerra
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center and the Department of Pediatrics of the University of Cincinnati College of Medicine, Cincinnati, OH 45229-3031, USA.
| |
Collapse
|
17
|
Lei J, Chai Y, Xiao J, Hu H, Liu Z, Xiao Y, Yi L, Huang J, Xiang T, Zhang S. Antifibrotic potential of bone marrow‑derived mesenchymal stem cells in biliary atresia mice. Mol Med Rep 2018; 18:3983-3988. [PMID: 30106103 DOI: 10.3892/mmr.2018.9353] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 07/27/2018] [Indexed: 11/06/2022] Open
Abstract
Biliary atresia (BA) is a rare and severe disease that affects infants where a fibroinflammatory process destroys the bile ducts, leading to fibrosis and biliary cirrhosis, and mortality if untreated. Bone marrow‑derived mesenchymal stem cells (BMMSCs) have been considered as a promising therapy in fibrotic diseases. The aim of the present was to investigate the anti‑fibrotic roles of BMMSC transplantation in a BA mouse model. Mouse BA models were established by Rhesus rotavirus administration to neonatal mice. The results revealed that the liver enzyme and bilirubin metabolism levels, and the levels of the oxidative stress marker malondialdehyde (MDA) and the fibrosis marker were all increased in the BA model, while the liver tissue levels of superoxide dismutase and glutathione peroxidase were reduced. The hematoxylin and eosin and Masson's trichrome staining revealed severe liver fibrosis and collagen accumulation in BA livers. However, these indicators were all reversed once the BA mice were administered the BMMSC inoculation. In conclusion, the present study demonstrated the anti‑fibrotic potential of BMMSCs in BA mice, which may provide a novel approach to ameliorate the fibrotic response in BA patients.
Collapse
Affiliation(s)
- Jun Lei
- Department of General Surgery, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Yong Chai
- Department of General Surgery, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Juhua Xiao
- Department of Ultrasound, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Huakun Hu
- Department of General Surgery, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Zhiqiang Liu
- Department of General Surgery, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Yu Xiao
- Department of General Surgery, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Lijun Yi
- Department of General Surgery, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Jinshi Huang
- Department of General Surgery, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Tianxin Xiang
- Department of Infectious Disease, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Shouhua Zhang
- Department of General Surgery, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
18
|
Petersen C, Madadi-Sanjani O. Role of viruses in biliary atresia: news from mice and men. Innov Surg Sci 2018; 3:101-106. [PMID: 31579773 PMCID: PMC6604572 DOI: 10.1515/iss-2018-0009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 03/20/2018] [Indexed: 11/15/2022] Open
Abstract
Biliary atresia (BA) is still an enigmatic disease of unknown etiology and cryptic pathomechanism. Despite the fact that BA is rated among rare diseases, it represents the most frequent indication for pediatric liver transplantation. Although every effort is made to elucidate the origin of the ongoing deterioration of liver function, no breakthrough has so far been achieved, which switches the surgical but symptomatic therapy to a cause-oriented approach. The nowadays leading hypothesis focuses on hepatotropic virus as a triggering agent for an autoimmunological self-limiting inflammatory process along the entire biliary tree. The present review highlights the current state of research on the factor "viruses in biliary atresia" in both patients undergoing the Kasai procedure and the virus-induced BA mouse model.
Collapse
Affiliation(s)
- Claus Petersen
- Department of Pediatric Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany, Phone: +49 511 532 9240, Fax: +49 511 532 9059
| | | |
Collapse
|
19
|
Berntsen NL, Fosby B, Valestrand L, Tan C, Reims HM, Schrumpf E, Karlsen TH, Line PD, Melum E. Establishment of a surgical bile duct injection technique giving direct access to the bile ducts for studies of the murine biliary tree. Am J Physiol Gastrointest Liver Physiol 2018; 314:G349-G359. [PMID: 29212771 DOI: 10.1152/ajpgi.00124.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cholangiopathies are progressive disorders with largely unknown pathoetiology and limited treatment options. We aimed to develop a novel surgical technique with direct access to the bile ducts that would complement existing mouse models of cholestasis, biliary inflammation, and fibrosis and present a new route of administration for testing of potential treatment strategies. We developed a surgical technique to access the murine biliary tree by injection of different solvents through catheterization of the gall bladder with simultaneous clamping of the common bile duct. To demonstrate the applicability of the technique, we injected either phosphate-buffered saline or dimethyl sulfoxide in concentrations of 50 or 65% and compared these groups with sham-operated mice. The surgery was optimized to achieve a mortality rate close to 0. There were no significant changes in pain, activity level, or mortality from the day of the surgery until euthanization for any groups. Injection of phosphate-buffered saline or 50% dimethyl sulfoxide was generally well-tolerated, whereas 65% dimethyl sulfoxide led to higher weight loss, an increase of serum alanine transaminase, and histological portal inflammation. There were no signs of inflammation in the gut. We have developed a bile duct injection technique that is well-tolerated, easily reproducible, and that may complement existing models of cholangiopathies. Direct access to the bile ducts without causing harm to the hepatobiliary or intestinal tissue may be valuable in future studies of normal biliary physiology and different pathophysiological mechanisms of disease and to test novel therapeutic strategies. NEW & NOTEWORTHY To evaluate tolerability of the bile duct to injection of both polar and nonpolar compounds, we established a novel biliary injection technique. This technique is well-tolerated, easily reproducible, and with direct access to the bile ducts for studies of the murine biliary tree. The bile duct injection technique may complement existing animal models and be a valuable tool in future studies of normal biliary physiology or pathophysiology and to test novel therapeutic strategies.
Collapse
Affiliation(s)
- Natalie Lie Berntsen
- Norwegian Primary Sclerosing Cholangitis Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet , Oslo , Norway.,Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital , Oslo , Norway.,K.G. Jebsen Inflammation Research Centre, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo , Oslo , Norway
| | - Bjarte Fosby
- Norwegian Primary Sclerosing Cholangitis Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet , Oslo , Norway.,Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet , Oslo , Norway
| | - Laura Valestrand
- Norwegian Primary Sclerosing Cholangitis Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet , Oslo , Norway.,Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital , Oslo , Norway.,K.G. Jebsen Inflammation Research Centre, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo , Oslo , Norway
| | - Corey Tan
- Norwegian Primary Sclerosing Cholangitis Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet , Oslo , Norway
| | - Henrik M Reims
- Department of Pathology, Oslo University Hospital Rikshospitalet , Oslo , Norway
| | - Elisabeth Schrumpf
- Norwegian Primary Sclerosing Cholangitis Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet , Oslo , Norway.,Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital , Oslo , Norway.,K.G. Jebsen Inflammation Research Centre, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo , Oslo , Norway
| | - Tom Hemming Karlsen
- Norwegian Primary Sclerosing Cholangitis Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet , Oslo , Norway.,Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital , Oslo , Norway.,K.G. Jebsen Inflammation Research Centre, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo , Oslo , Norway.,Section for Gastroenterology, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet , Oslo , Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo , Oslo , Norway
| | - Pål-Dag Line
- Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet , Oslo , Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo , Oslo , Norway
| | - Espen Melum
- Norwegian Primary Sclerosing Cholangitis Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet , Oslo , Norway.,Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital , Oslo , Norway.,K.G. Jebsen Inflammation Research Centre, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo , Oslo , Norway.,Section for Gastroenterology, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet , Oslo , Norway
| |
Collapse
|
20
|
Kilgore A, Mack CL. Update on investigations pertaining to the pathogenesis of biliary atresia. Pediatr Surg Int 2017; 33:1233-1241. [PMID: 29063959 PMCID: PMC5894874 DOI: 10.1007/s00383-017-4172-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/05/2017] [Indexed: 12/14/2022]
Abstract
Biliary atresia is a devastating biliary disease of neonates that results in liver transplantation for the vast majority. The etiology of biliary atresia is unknown and is likely multifactorial, with components of genetic predisposition, environmental trigger and autoimmunity contributing to disease pathogenesis. This review highlights recent work related to investigations of disease pathogenesis in biliary atresia.
Collapse
Affiliation(s)
- Alexandra Kilgore
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of Colorado School of Medicine, Digestive Health Institute, Children’s Hospital Colorado, Aurora, CO 80045, USA
| | - Cara L. Mack
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of Colorado School of Medicine, Digestive Health Institute, Children’s Hospital Colorado, Aurora, CO 80045, USA
| |
Collapse
|
21
|
Abstract
AIM OF STUDY The diagnosis of biliary atresia (BA) remains challenging and delay can lead to significant morbidity with time to surgery a key factor in determining outcome. Prematurity may impact on outcome potentially delaying diagnosis. We sought to assess whether the premature BA infants (PBA) have a delayed time to surgery and as such, worse outcomes? METHODS Review of a single-centre prospectively maintained database. Prematurity was defined as delivery < 37/40 gestation. PBA was compared with date-matched term biliary atresia controls on a 2:1 basis. Primary outcomes were clearance of jaundice (< 20 μmol/L) and native liver survival. A retrospective assessment of liver fibrosis was made on biopsies at diagnosis and at Kasai portoenterostomy (KPE) in both premature and term cohorts. Data are quoted as median (range) unless indicated. A P value of ≤ 0.05 was considered statistically significant. RESULTS 21 (female n = 14, 67%) premature infants with BA were treated in the period Jan. 1988-Dec. 2016 and compared with 41 contemporaneous term BA controls. Median gestation was 33 (29-36) weeks and birth weight 1930 (948-4230)g. Twin pregnancy (n = 10) was the leading cause for prematurity and significantly higher than the controls (48 vs. 0%; P < 0.0001). Maternal co-morbidity was high (n = 10, 48%) including pre-eclampsia (19%) and diabetes (14%). Liver biopsy was performed in 19 (90%) patients (all diagnostic) at a median of 57 (4-266) days. Delayed diagnosis (> 50 days) was seen in n = 13 but not associated with parenteral nutrition use (46 vs. 33%, P = 0.59) or phototherapy (50 vs. 83%, P = 0.19). Both BASM (33 vs. 7.5%; P = 0.01) and duodenal atresia (19 vs. 0%; P = 0.01) were seen more frequently in the PBA cohort. Mean fibrosis scores (Ishak) from diagnostic biopsies were lower in the premature group than the control group (2.71 vs. 3.53, P = 0.043) indicating less fibrosis but this equalized by time of subsequent KPE (P = 0.17). Primary surgery was Kasai portoenterostomy (n = 20) at an older median age than controls (65 vs. 56 days; P = 0.06). Liver transplantation was the primary procedure in one late-presenting child. There was an increased but non-significant clearance of jaundice in the PBA group [n = 12/20 (60%) vs 20/41 (48%); P = 0.23] post-KPE. Native liver survival and true survival were not different (P = 0.58 and 0.23). CONCLUSIONS PBA infants have similar outcomes to term infants, despite delayed diagnosis and higher frequency of the syndromic form. The high incidence of discordant twins supports the theory that epigenetic modifications could contribute to the pathogenesis of BA. LEVEL OF EVIDENCE IIIc Retrospective Matched Cohort Study.
Collapse
Affiliation(s)
- Natalie Durkin
- Department of Paediatric Surgery, King’s College Hospital, London, SE5 9RS UK
| | - Maesha Deheragoda
- Institute of Liver Studies, King’s College Hospital, London, SE5 9RS UK
| | - Mark Davenport
- Department of Paediatric Surgery, King’s College Hospital, London, SE5 9RS UK
| |
Collapse
|
22
|
Harada K. Sclerosing and obstructive cholangiopathy in biliary atresia: mechanisms and association with biliary innate immunity. Pediatr Surg Int 2017; 33:1243-1248. [PMID: 29039048 DOI: 10.1007/s00383-017-4154-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/05/2017] [Indexed: 12/13/2022]
Abstract
Biliary atresia (BA) is histologically characterized by a progressive, sclerosing cholangitis and the obstruction of extrahepatic bile ducts. In terms of the etiology and pathogenesis of BA, several viral infections consisting of dsRNA, including Reoviridae, have been implicated. Human biliary epithelial cells (BECs) possess an innate immune system consisting of Toll-like receptors (TLRs). BECs have negative regulatory mechanisms of TLR tolerance to avoid an excessive inflammatory response to lipopolysaccharide (LPS), a TLR4 ligand; however, they lack the tolerance to poly(I:C) (a synthetic analog of viral dsRNA), a TLR3 ligand. Treatment with poly(I:C) induces the expression of the apoptosis-inducer TNF-related apoptosis-inducing ligand (TRAIL), along with the antiviral molecule IFN-β1, and reduces the viability of BECs by enhancing apoptosis. In response, surviving BECs increase their expression of various markers, including basic FGF [an epithelial-mesenchymal transition (EMT)-inducer], S100A4 (a mesenchymal marker), and Snail (a transcriptional factor), and decrease that of epithelial markers such as CK19 and E-cadherin before undergoing EMT. Extrahepatic bile ducts in BA infants frequently show a lack of epithelial markers and an aberrant expression of vimentin, in addition to the enhancement of TRAIL and apoptosis. dsRNA viruses may directly induce apoptosis and EMT in human BECs as a result of the biliary innate immune response, supporting the notion that Reoviridae infections may be directly associated with the pathogenesis of cholangiopathies in BA.
Collapse
Affiliation(s)
- Kenichi Harada
- Department of Human Pathology, Kanazawa University Graduate School of Medicine, Kanazawa, 920-8640, Japan.
| |
Collapse
|
23
|
Abstract
Biliary atresia (BA) is a rare disease of unknown origin and unsatisfying outcome. Single, multicenter and national evaluations of epidemiological and outcome data on BA have been periodically published over the course of decades. However, the diversity of the registered parameters and outcome measures impede comparability and cumulative analysis of these very worthwhile studies. Taking into account the fact that BA is a good example of translational research and transition of patients from pediatric surgery and hepatology to transplant surgery and hepatology in general, the interdisciplinary community should make every effort to develop a common platform upon which further activities are conducted. Extending this topic to BA-related diseases might increase the acceptance of research studies and enhance the effectiveness of any recommendations outlined therein. The use of the Internet-based communication platform and registry on http://www.bard-online.com represents the first step in this direction, and the database should be viewed as a helpful tool that guides further activities.
Collapse
Affiliation(s)
- Claus Petersen
- Department of Pediatric Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hanover, Germany.
| |
Collapse
|
24
|
Abstract
Rotavirus infections are a leading cause of severe, dehydrating gastroenteritis in children <5 years of age. Despite the global introduction of vaccinations for rotavirus over a decade ago, rotavirus infections still result in >200,000 deaths annually, mostly in low-income countries. Rotavirus primarily infects enterocytes and induces diarrhoea through the destruction of absorptive enterocytes (leading to malabsorption), intestinal secretion stimulated by rotavirus non-structural protein 4 and activation of the enteric nervous system. In addition, rotavirus infections can lead to antigenaemia (which is associated with more severe manifestations of acute gastroenteritis) and viraemia, and rotavirus can replicate in systemic sites, although this is limited. Reinfections with rotavirus are common throughout life, although the disease severity is reduced with repeat infections. The immune correlates of protection against rotavirus reinfection and recovery from infection are poorly understood, although rotavirus-specific immunoglobulin A has a role in both aspects. The management of rotavirus infection focuses on the prevention and treatment of dehydration, although the use of antiviral and anti-emetic drugs can be indicated in some cases.
Collapse
|
25
|
A Point Mutation in the Rhesus Rotavirus VP4 Protein Generated through a Rotavirus Reverse Genetics System Attenuates Biliary Atresia in the Murine Model. J Virol 2017; 91:JVI.00510-17. [PMID: 28515290 DOI: 10.1128/jvi.00510-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 05/08/2017] [Indexed: 12/25/2022] Open
Abstract
Rotavirus infection is one of the most common causes of diarrheal illness in humans. In neonatal mice, rhesus rotavirus (RRV) can induce biliary atresia (BA), a disease resulting in inflammatory obstruction of the extrahepatic biliary tract and intrahepatic bile ducts. We previously showed that the amino acid arginine (R) within the sequence SRL (amino acids 445 to 447) in the RRV VP4 protein is required for viral binding and entry into biliary epithelial cells. To determine if this single amino acid (R) influences the pathogenicity of the virus, we generated a recombinant virus with a single amino acid mutation at this site through a reverse genetics system. We demonstrated that the RRV mutant (RRVVP4-R446G) produced less symptomatology and replicated to lower titers both in vivo and in vitro than those seen with wild-type RRV, with reduced binding in cholangiocytes. Our results demonstrate that a single amino acid change in the RRV VP4 gene influences cholangiocyte tropism and reduces pathogenicity in mice.IMPORTANCE Rotavirus is the leading cause of diarrhea in humans. Rhesus rotavirus (RRV) can also lead to biliary atresia (a neonatal human disease) in mice. We developed a reverse genetics system to create a mutant of RRV (RRVVP4-R446G) with a single amino acid change in the VP4 protein compared to that of wild-type RRV. In vitro, the mutant virus had reduced binding and infectivity in cholangiocytes. In vivo, it produced fewer symptoms and lower mortality in neonatal mice, resulting in an attenuated form of biliary atresia.
Collapse
|
26
|
Animal models of biliary injury and altered bile acid metabolism. Biochim Biophys Acta Mol Basis Dis 2017; 1864:1254-1261. [PMID: 28709963 DOI: 10.1016/j.bbadis.2017.06.027] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/28/2017] [Accepted: 06/30/2017] [Indexed: 12/14/2022]
Abstract
In the last 25years, a number of animal models, mainly rodents, have been generated with the goal to mimic cholestatic liver injuries and, thus, to provide in vivo tools to investigate the mechanisms of biliary repair and, eventually, to test the efficacy of innovative treatments. Despite fundamental limitations applying to these models, such as the distinct immune system and the different metabolism regulating liver homeostasis in rodents when compared to humans, multiple approaches, such as surgery (bile duct ligation), chemical-induced (3,5-diethoxycarbonyl-1,4-dihydrocollidine, DDC, α-naphthylisothiocyanate, ANIT), viral infections (Rhesus rotavirustype A, RRV-A), and genetic manipulation (Mdr2, Cftr, Pkd1, Pkd2, Prkcsh, Sec63, Pkhd1) have been developed. Overall, they have led to a range of liver phenotypes recapitulating the main features of biliary injury and altered bile acid metabolisms, such as ductular reaction, peribiliary inflammation and fibrosis, obstructive cholestasis and biliary dysgenesis. Although with a limited translability to the human setting, these mouse models have provided us with the ability to probe over time the fundamental mechanisms promoting cholestatic disease progression. Moreover, recent studies from genetically engineered mice have unveiled 'core' pathways that make the cholangiocyte a pivotal player in liver repair. In this review, we will highlight the main phenotypic features, the more interesting peculiarities and the different drawbacks of these mouse models. This article is part of a Special Issue entitled: Cholangiocytes in Health and Disease edited by Jesus Banales, Marco Marzioni, Nicholas LaRusso and Peter Jansen.
Collapse
|
27
|
Pham DH, Zhang C, Yin C. Using zebrafish to model liver diseases-Where do we stand? CURRENT PATHOBIOLOGY REPORTS 2017; 5:207-221. [PMID: 29098121 DOI: 10.1007/s40139-017-0141-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Purpose of Review The liver is the largest internal organ and performs both exocrine and endocrine function that is necessary for survival. Liver failure is among the leading causes of death and represents a major global health burden. Liver transplantation is the only effective treatment for end-stage liver diseases. Animal models advance our understanding of liver disease etiology and hold promise for the development of alternative therapies. Zebrafish has become an increasingly popular system for modeling liver diseases and complements the rodent models. Recent Findings The zebrafish liver contains main cell types that are found in mammalian liver and exhibits similar pathogenic responses to environmental insults and genetic mutations. Zebrafish have been used to model neonatal cholestasis, cholangiopathies, such as polycystic liver disease, alcoholic liver disease, and non-alcoholic fatty liver disease. It also provides a unique opportunity to study the plasticity of liver parenchymal cells during regeneration. Summary In this review, we summarize the recent work of building zebrafish models of liver diseases. We highlight how these studies have brought new knowledge of disease mechanisms. We also discuss the advantages and challenges of using zebrafish to model liver diseases.
Collapse
Affiliation(s)
- Duc-Hung Pham
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA
| | - Changwen Zhang
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA
| | - Chunyue Yin
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA
| |
Collapse
|
28
|
Lobeck I, Donnelly B, Dupree P, Mahe MM, McNeal M, Mohanty SK, Tiao G. Rhesus rotavirus VP6 regulates ERK-dependent calcium influx in cholangiocytes. Virology 2016; 499:185-195. [PMID: 27668997 DOI: 10.1016/j.virol.2016.09.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/12/2016] [Accepted: 09/14/2016] [Indexed: 12/24/2022]
Abstract
The Rhesus rotavirus (RRV) induced murine model of biliary atresia (BA) is a useful tool in studying the pathogenesis of this neonatal biliary obstructive disease. In this model, the mitogen associated protein kinase pathway is involved in RRV infection of biliary epithelial cells (cholangiocytes). We hypothesized that extracellular signal-related kinase (ERK) phosphorylation is integral to calcium influx, allowing for viral replication within the cholangiocyte. Utilizing ERK and calcium inhibitors in immortalized cholangiocytes and BALB/c pups, we determined that ERK inhibition resulted in reduced viral yield and subsequent decreased symptomatology in mice. In vitro, the RRV VP6 protein induced ERK phosphorylation, leading to cellular calcium influx. Pre-treatment with an ERK inhibitor or Verapamil resulted in lower viral yields. We conclude that the pathogenesis of RRV-induced murine BA is dependent on the VP6 protein causing ERK phosphorylation and triggering calcium influx allowing replication in cholangiocytes.
Collapse
Affiliation(s)
- Inna Lobeck
- Department of Pediatric and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Bryan Donnelly
- Department of Pediatric and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Phylicia Dupree
- Department of Pediatric and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Maxime M Mahe
- Department of Pediatric and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Monica McNeal
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Sujit K Mohanty
- Department of Pediatric and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Greg Tiao
- Department of Pediatric and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
29
|
Li JT, Wei J, Guo HX, Han JB, Ye N, He HY, Yu TT, Wu YZ. Development of a human rotavirus induced diarrhea model in Chinese mini-pigs. World J Gastroenterol 2016; 22:7135-7145. [PMID: 27610023 PMCID: PMC4988310 DOI: 10.3748/wjg.v22.i31.7135] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 05/26/2016] [Accepted: 06/13/2016] [Indexed: 02/06/2023] Open
Abstract
AIM: To establish a new animal model for the research of human rotavirus (HRV) infection, its pathogenesis and immunity and evaluation of potential vaccines.
METHODS: 5-d, 30-d and 60-d-old Chinese mini-pigs, Guizhou and Bamma, were inoculated with a single oral dose of attenuated strain Wa, G1, G3 of HRV, and PBS (control), respectively, and fecal samples of pigs from 0 to 7 d post infection (DPI) were collected individually. Enzyme linked immunosorbent assay was used to detect HRV antigen in feces. The HRV was tested by real-time PCR (RT-PCR). The sections of the intestinal tissue were stained with hematoxylin and eosin to observe the morphologic variation by microscopy. Immunofluorescence was used to determine the HRV in intestinal tissue. HRV particles in cells of the ileum were observed by electron micrography.
RESULTS: When inoculated with HRV, mini-pigs younger than 30 d developed diarrhea in an age-dependent manner and shed HRV antigen of the same inoculum, as demonstrated by RT-PCR. Histopathological changes were observed in HRV inoculated mini-pigs including small intestinal cell tumefaction and necrosis. HRV that was distributed in the small intestine was restricted to the top part of the villi on the internal wall of the ileum, which was observed by immunofluorescence and transmission electron microscopy. Virus particles were observed in Golgi like follicles in HRV-infected neonatal mini-pigs. Guizhou mini-pigs were more sensitive to HRV than Bamma with respect to RV antigen shedding and clinical diarrhea.
CONCLUSION: These results indicate that we have established a mini-pig model of HRV induced diarrhea. Our findings are useful for the understanding of the pathogenic mechanisms of HRV infection.
Collapse
|
30
|
Lorent K, Gong W, Koo KA, Waisbourd-Zinman O, Karjoo S, Zhao X, Sealy I, Kettleborough RN, Stemple DL, Windsor PA, Whittaker SJ, Porter JR, Wells RG, Pack M. Identification of a plant isoflavonoid that causes biliary atresia. Sci Transl Med 2016; 7:286ra67. [PMID: 25947162 DOI: 10.1126/scitranslmed.aaa1652] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Biliary atresia (BA) is a rapidly progressive and destructive fibrotic disorder of unknown etiology affecting the extrahepatic biliary tree of neonates. Epidemiological studies suggest that an environmental factor, such as a virus or toxin, is the cause of the disease, although none have been definitively established. Several naturally occurring outbreaks of BA in Australian livestock have been associated with the ingestion of unusual plants by pregnant animals during drought conditions. We used a biliary secretion assay in zebrafish to isolate a previously undescribed isoflavonoid, biliatresone, from Dysphania species implicated in a recent BA outbreak. This compound caused selective destruction of the extrahepatic, but not intrahepatic, biliary system of larval zebrafish. A mutation that enhanced biliatresone toxicity mapped to a region of the zebrafish genome that has conserved synteny with an established human BA susceptibility locus. The toxin also caused loss of cilia in neonatal mouse extrahepatic cholangiocytes in culture and disrupted cell polarity and monolayer integrity in cholangiocyte spheroids. Together, these findings provide direct evidence that BA could be initiated by perinatal exposure to an environmental toxin.
Collapse
Affiliation(s)
- Kristin Lorent
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Weilong Gong
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kyung A Koo
- Department of Biological Sciences, University of the Sciences, Philadelphia, PA 19104, USA
| | - Orith Waisbourd-Zinman
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA. Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Sara Karjoo
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Xiao Zhao
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ian Sealy
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Ross N Kettleborough
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Derek L Stemple
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Peter A Windsor
- Faculty of Veterinary Science, University of Sydney, Camden, New South Wales 2570, Australia
| | - Stephen J Whittaker
- Hume Livestock Health and Pest Authority, Albury, New South Wales 2640, Australia
| | - John R Porter
- Department of Biological Sciences, University of the Sciences, Philadelphia, PA 19104, USA
| | - Rebecca G Wells
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Michael Pack
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
31
|
Walther A, Mohanty SK, Donnelly B, Coots A, Lages CS, Lobeck I, Dupree P, Meller J, McNeal M, Sestak K, Tiao G. Rhesus rotavirus VP4 sequence-specific activation of mononuclear cells is associated with cholangiopathy in murine biliary atresia. Am J Physiol Gastrointest Liver Physiol 2015. [PMID: 26206856 PMCID: PMC4572408 DOI: 10.1152/ajpgi.00079.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Biliary atresia (BA), a neonatal obstructive cholangiopathy, remains the most common indication for pediatric liver transplantation in the United States. In the murine model of BA, Rhesus rotavirus (RRV) VP4 surface protein determines biliary duct tropism. In this study, we investigated how VP4 governs induction of murine BA. Newborn mice were injected with 16 strains of rotavirus and observed for clinical symptoms of BA and mortality. Cholangiograms were performed to confirm bile duct obstruction. Livers and bile ducts were harvested 7 days postinfection for virus titers and histology. Flow cytometry assessed mononuclear cell activation in harvested cell populations from the liver. Cytotoxic NK cell activity was determined by the ability of NK cells to kill noninfected cholangiocytes. Of the 16 strains investigated, the 6 with the highest homology to the RRV VP4 (>87%) were capable of infecting bile ducts in vivo. Although the strain Ro1845 replicated to a titer similar to RRV in vivo, it caused no symptoms or mortality. A Ro1845 reassortant containing the RRV VP4 induced all BA symptoms, with a mortality rate of 89%. Flow cytometry revealed that NK cell activation was significantly increased in the disease-inducing strains and these NK cells demonstrated a significantly higher percentage of cytotoxicity against noninfected cholangiocytes. Rotavirus strains with >87% homology to RRV's VP4 were capable of infecting murine bile ducts in vivo. Development of murine BA was mediated by RRV VP4-specific activation of mononuclear cells, independent of viral titers.
Collapse
Affiliation(s)
- Ashley Walther
- 1Department of Pediatric and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio;
| | - Sujit K. Mohanty
- 1Department of Pediatric and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio;
| | - Bryan Donnelly
- 1Department of Pediatric and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio;
| | - Abigail Coots
- 1Department of Pediatric and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio;
| | - Celine S. Lages
- 2Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio;
| | - Inna Lobeck
- 1Department of Pediatric and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio;
| | - Phylicia Dupree
- 1Department of Pediatric and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio;
| | - Jaroslaw Meller
- 3Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio;
| | - Monica McNeal
- 4Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; and
| | - Karol Sestak
- 5Tulane National Primate Research Center and Tulane University School of Medicine, Covington, Louisiana
| | - Greg Tiao
- Department of Pediatric and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio;
| |
Collapse
|
32
|
Iordanskaia T, Malesevic M, Fischer G, Pushkarsky T, Bukrinsky M, Nadler EP. Targeting Extracellular Cyclophilins Ameliorates Disease Progression in Experimental Biliary Atresia. Mol Med 2015. [PMID: 26225831 DOI: 10.2119/molmed.2015.00076] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Biliary atresia (BA) is a devastating liver disease of unknown etiology affecting children generally within the first 3 months of life. The disease is manifested by inflammation and subsequent obstruction of the extrahepatic bile ducts, fibrosis and liver failure. The mechanisms responsible for disease pathogenesis are not fully understood, but a number of factors controlled by the SMAD signaling pathway have been implicated. In this study, we investigated the role of a known proinflammatory factor, extracellular cyclophilin A (CypA), in the pathogenesis of biliary atresia using the rhesus rotavirus (RRV) murine model. We used a unique cyclosporine A derivative, MM284, which does not enter cells and therefore inactivates exclusively extracellular cyclophilins, as a potential treatment. We demonstrated that levels of CypA in plasma of RRV-infected mice were increased significantly, and that treatment of mice with MM284 prior to or one day after disease initiation by RRV infection significantly improved the status of mice with experimental BA: weight gain was restored, bilirubinuria was abrogated, liver infiltration by inflammatory cells was reduced and activation of the SMAD pathway and SMAD-controlled fibrosis mediators and tissue inhibitor of metalloproteinases (TIMP)-4 and matrix metalloproteinase (MMP)-7 was alleviated. Furthermore, treatment of human hepatic stellate cells with recombinant cyclophilin recapitulated SMAD2/3 activation, which was also suppressed by MM284 treatment. Our data provide the first evidence that extracellular cyclophilins activate the SMAD pathway and promote inflammation in experimental BA, and suggest that MM284 may be a promising therapeutic agent for treating BA and possibly other intrahepatic chronic disorders.
Collapse
Affiliation(s)
- Tatiana Iordanskaia
- Division of Pediatric Surgery, Children's National Medical Center, Washington, District of Columbia, United States of America
| | - Miroslav Malesevic
- Institute of Biochemistry, Martin Luther-University Halle-Wittenberg, Halle, Germany
| | - Gunter Fischer
- Max-Planck-Institute for Biophysical Chemistry Gottingen, Halle, Germany
| | - Tatiana Pushkarsky
- George Washington University School of Medicine and Health Sciences, Department of Microbiology, Immunology and Tropical Medicine Washington, District of Columbia, United States of America
| | - Michael Bukrinsky
- George Washington University School of Medicine and Health Sciences, Department of Microbiology, Immunology and Tropical Medicine Washington, District of Columbia, United States of America
| | - Evan P Nadler
- Division of Pediatric Surgery, Children's National Medical Center, Washington, District of Columbia, United States of America
| |
Collapse
|
33
|
Chung-Davidson YW, Yeh CY, Li W. The Sea Lamprey as an Etiological Model for Biliary Atresia. BIOMED RESEARCH INTERNATIONAL 2015; 2015:832943. [PMID: 26101777 PMCID: PMC4460204 DOI: 10.1155/2015/832943] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 05/17/2015] [Indexed: 12/14/2022]
Abstract
Biliary atresia (BA) is a progressive, inflammatory, and fibrosclerosing cholangiopathy in infants that results in obstruction of both extrahepatic and intrahepatic bile ducts. It is the most common cause for pediatric liver transplantation. In contrast, the sea lamprey undergoes developmental BA with transient cholestasis and fibrosis during metamorphosis, but emerges as a fecund adult with steatohepatitis and fibrosis in the liver. In this paper, we present new histological evidence and compare the sea lamprey to existing animal models to highlight the advantages and possible limitations of using the sea lamprey to study the etiology and compensatory mechanisms of BA and other liver diseases. Understanding the signaling factors and genetic networks underlying lamprey BA can provide insights into BA etiology and possible targets to prevent biliary degeneration and to clear fibrosis. In addition, information from lamprey BA can be used to develop adjunct treatments for patients awaiting or receiving surgical treatments. Furthermore, the cholestatic adult lamprey has unique adaptive mechanisms that can be used to explore potential treatments for cholestasis and nonalcoholic steatohepatitis (NASH).
Collapse
Affiliation(s)
- Yu-Wen Chung-Davidson
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824, USA
| | - Chu-Yin Yeh
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Weiming Li
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824, USA
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
34
|
Squires JE, Shivakumar P, Mourya R, Bessho K, Walters S, Bezerra JA. Natural killer cells promote long-term hepatobiliary inflammation in a low-dose rotavirus model of experimental biliary atresia. PLoS One 2015; 10:e0127191. [PMID: 25992581 PMCID: PMC4437784 DOI: 10.1371/journal.pone.0127191] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 04/12/2015] [Indexed: 01/27/2023] Open
Abstract
Biliary atresia is a rapidly progressive obstructive cholangiopathy of infants. Mechanistic studies in the mouse model of Rhesus rotavirus (RRV)-induced biliary atresia have linked the importance of effector lymphocytes to the pathogenesis of extrahepatic bile duct (EHBD) injury and obstruction in experimental biliary atresia; however, studies of the progressive liver injury have been limited by early death of newborn mice. Here, we aimed to determine 1) if a lower inoculum of RRV induces obstruction of EHBDs while allowing for ongoing liver inflammation, and 2) if NK cells regulate intrahepatic injury. The administration of 0.25x106 fluorescence forming units of RRV induced an obstructive extrahepatic cholangiopathy, but allowed for restoration of the duct epithelium, increased survival, and the development of a progressive intrahepatic inflammatory injury with molecular and cellular signatures equivalent to the traditional infectious model. Investigating the mechanisms of liver injury, we found that NK cell depletion at the onset of jaundice decreased liver inflammation, suppressed the expression of fibrosis and inflammation/immunity genes, lowered plasma ALT and bilirubin and improved survival.
Collapse
Affiliation(s)
- James E. Squires
- Department of Pediatrics of the University of Cincinnati College of Medicine, the Division of Gastroenterology, Hepatology and Nutrition and the Pediatric Liver Care Center of Cincinnati Children’s Hospital Medical Center; Cincinnati, Ohio, United States of America
| | - Pranavkumar Shivakumar
- Department of Pediatrics of the University of Cincinnati College of Medicine, the Division of Gastroenterology, Hepatology and Nutrition and the Pediatric Liver Care Center of Cincinnati Children’s Hospital Medical Center; Cincinnati, Ohio, United States of America
| | - Reena Mourya
- Department of Pediatrics of the University of Cincinnati College of Medicine, the Division of Gastroenterology, Hepatology and Nutrition and the Pediatric Liver Care Center of Cincinnati Children’s Hospital Medical Center; Cincinnati, Ohio, United States of America
| | | | - Stephanie Walters
- Department of Pediatrics of the University of Cincinnati College of Medicine, the Division of Gastroenterology, Hepatology and Nutrition and the Pediatric Liver Care Center of Cincinnati Children’s Hospital Medical Center; Cincinnati, Ohio, United States of America
| | - Jorge A. Bezerra
- Department of Pediatrics of the University of Cincinnati College of Medicine, the Division of Gastroenterology, Hepatology and Nutrition and the Pediatric Liver Care Center of Cincinnati Children’s Hospital Medical Center; Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
35
|
Leukocyte-derived IFN-α/β and epithelial IFN-λ constitute a compartmentalized mucosal defense system that restricts enteric virus infections. PLoS Pathog 2015; 11:e1004782. [PMID: 25849543 PMCID: PMC4388470 DOI: 10.1371/journal.ppat.1004782] [Citation(s) in RCA: 176] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 03/03/2015] [Indexed: 12/16/2022] Open
Abstract
Epithelial cells are a major port of entry for many viruses, but the molecular networks which protect barrier surfaces against viral infections are incompletely understood. Viral infections induce simultaneous production of type I (IFN-α/β) and type III (IFN-λ) interferons. All nucleated cells are believed to respond to IFN-α/β, whereas IFN-λ responses are largely confined to epithelial cells. We observed that intestinal epithelial cells, unlike hematopoietic cells of this organ, express only very low levels of functional IFN-α/β receptors. Accordingly, after oral infection of IFN-α/β receptor-deficient mice, human reovirus type 3 specifically infected cells in the lamina propria but, strikingly, did not productively replicate in gut epithelial cells. By contrast, reovirus replicated almost exclusively in gut epithelial cells of IFN-λ receptor-deficient mice, suggesting that the gut mucosa is equipped with a compartmentalized IFN system in which epithelial cells mainly respond to IFN-λ that they produce after viral infection, whereas other cells of the gut mostly rely on IFN-α/β for antiviral defense. In suckling mice with IFN-λ receptor deficiency, reovirus replicated in the gut epithelium and additionally infected epithelial cells lining the bile ducts, indicating that infants may use IFN-λ for the control of virus infections in various epithelia-rich tissues. Thus, IFN-λ should be regarded as an autonomous virus defense system of the gut mucosa and other epithelial barriers that may have evolved to avoid unnecessarily frequent triggering of the IFN-α/β system which would induce exacerbated inflammation. Virus-induced interferon consists of two distinct families of molecules, IFN-α/β and IFN-λ. IFN-α/β family members are key antiviral molecules that confer protection against a large number of viruses infecting a wide variety of cell types. By contrast, IFN-λ responses are largely confined to epithelial cells due to highly restricted expression of the cognate receptor. Interestingly, virus resistance of the gut epithelium is not dependent on IFN-α/β but rather relies on IFN-λ, questioning the prevailing view that receptors for IFN-α/β are expressed ubiquitously. Here we demonstrate that the IFN-α/β system is unable to compensate for IFN-λ deficiency during infections with epitheliotropic viruses because intestinal epithelial cells do not express functional receptors for IFN-α/β. We further demonstrate that virus-infected intestinal epithelial cells are potent producers of IFN-λ, indicating that the gut mucosa possesses a compartmentalized IFN system in which epithelial cells predominantly respond to IFN-λ, whereas other cells of the gut mainly rely on IFN-α/β for antiviral defense. We suggest that IFN-λ may have evolved as an autonomous virus defense system of the gut mucosa to avoid unnecessarily frequent triggering of the IFN-α/β system which, due to its potent activity on immune cells, would induce exacerbated inflammation.
Collapse
|
36
|
Suemizu H, Nakamura K, Kawai K, Higuchi Y, Kasahara M, Fujimoto J, Tanoue A, Nakamura M. Hepatocytes buried in the cirrhotic livers of patients with biliary atresia proliferate and function in the livers of urokinase-type plasminogen activator-NOG mice. Liver Transpl 2014; 20:1127-37. [PMID: 24838399 PMCID: PMC4314701 DOI: 10.1002/lt.23916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 05/10/2014] [Indexed: 01/12/2023]
Abstract
The pathogenesis of biliary atresia (BA), which leads to end-stage cirrhosis in most patients, has been thought to inflame and obstruct the intrahepatic and extrahepatic bile ducts. BA is not believed to be caused by abnormalities in parenchymal hepatocytes. However, there has been no report of a detailed analysis of hepatocytes buried in the cirrhotic livers of patients with BA. Therefore, we evaluated the proliferative potential of these hepatocytes in immunodeficient, liver-injured mice [the urokinase-type plasminogen activator (uPA) transgenic NOD/Shi-scid IL2rγnull (NOG); uPA-NOG strain]. We succeeded in isolating viable hepatocytes from the livers of patients with BA who had various degrees of fibrosis. The isolated hepatocytes were intrasplenically transplanted into the livers of uPA-NOG mice. The hepatocytes of only 3 of the 9 BA patients secreted detectable amounts of human albumin in sera when they were transplanted into mice. However, human leukocyte antigen-positive hepatocyte colonies were detected in 7 of the 9 mice with hepatocyte transplants from patients with BA. We demonstrated that hepatocytes buried in the cirrhotic livers of patients with BA retained their proliferative potential. A liver that was reconstituted with hepatocytes from patients with BA was shown to be a functioning human liver with a drug-metabolizing enzyme gene expression pattern that was representative of mature human liver and biliary function, as ascertained by fluorescent dye excretion into the bile canaliculi. These results imply that removing the primary etiology via an earlier portoenterostomy may increase the quantity of functionally intact hepatocytes remaining in a cirrhotic liver and may contribute to improved outcomes.
Collapse
Affiliation(s)
- Hiroshi Suemizu
- Biomedical Research Department, Central Institute for Experimental AnimalsKanagawa, Japan,Address reprint requests to Hiroshi Suemizu, Ph.D., Biomedical Research Department, Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-Ku, Kawasaki, Kanagawa 210-0821, Japan. Telephone: +81-44-201-8530; FAX: +81-44-201-8541 or +81-44-201-8511; E-mail: or
| | - Kazuaki Nakamura
- Department of Pharmacology, National Center for Child Health and DevelopmentTokyo, Japan
| | - Kenji Kawai
- Pathology Research Department, Central Institute for Experimental AnimalsKanagawa, Japan
| | - Yuichiro Higuchi
- Biomedical Research Department, Central Institute for Experimental AnimalsKanagawa, Japan
| | - Mureo Kasahara
- Department of Transplant Surgery, National Center for Child Health and DevelopmentTokyo, Japan
| | - Junichiro Fujimoto
- Clinical Research Center, National Center for Child Health and DevelopmentTokyo, Japan
| | - Akito Tanoue
- Department of Pharmacology, National Center for Child Health and DevelopmentTokyo, Japan
| | - Masato Nakamura
- Department of Pathology and Regenerative Medicine, Tokai University School of MedicineKanagawa, Japan
| |
Collapse
|
37
|
High-dose IgG therapy mitigates bile duct-targeted inflammation and obstruction in a mouse model of biliary atresia. Pediatr Res 2014; 76:72-80. [PMID: 24727948 PMCID: PMC4062601 DOI: 10.1038/pr.2014.46] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 09/27/2013] [Indexed: 01/22/2023]
Abstract
BACKGROUND A proposed etiology of biliary atresia (BA) entails a virus-induced, progressive immune-mediated injury of the biliary system. Intravenous Ig (IVIg) has demonstrated clinical benefit in several inflammatory diseases. The aim of this study was to determine the therapeutic effects of high-dose IgG treatment in the rhesus rotavirus (RRV)-induced mouse model of BA. METHODS Newborn mice were infected with RRV, and jaundiced mice were given high-dose IgG or albumin control. Survival, histology, direct bilirubin, liver immune cell subsets, and cytokine production were analyzed. RESULTS There was no difference in overall survival between RRV-infected groups, however high-dose IgG resulted in decreased bilirubin, bile duct inflammation, and increased extrahepatic bile duct patency. High-dose IgG decreased vascular cell adhesion molecule-1, resulting in limited migration of immune cells to portal tracts. High-dose IgG significantly decreased CD4(+) T cell production of interleukin (IL)-2, interferon (IFN)-γ, and tumor necrosis factor (TNF)-α and CD8(+) T cell production of IFN-γ, as well as increased levels of regulatory T cells. CONCLUSION High-dose IgG therapy in murine BA dramatically decreased Th1 cell-mediated inflammation and biliary obstruction. This study lends support for consideration of IVIg clinical trials in infants with BA, to diminish the progressive intrahepatic bile duct injury.
Collapse
|
38
|
Evidences and consequences of extra-intestinal spread of rotaviruses in humans and animals. Virusdisease 2014; 25:186-94. [PMID: 25674584 DOI: 10.1007/s13337-014-0197-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 01/16/2014] [Indexed: 10/25/2022] Open
Abstract
Rotavirus is recognized as one of the main diarrheal pathogens in young children and animals. The prevailing central dogma of rotavirus infection states that the infection is confined in the gastrointestinal tract. However, increasing evidences indicate that rotavirus infection is systemic. Clinical case reports of systemic manifestations to rotavirus infection in children has continued to accumulate over the past years. The use of animal models provided pathological and molecular evidences for extra-intestinal infection of rotaviruses. The mechanism correlated with the extra-intestinal spread of rotavirus infection from the intestine is through cell-free and cell-associated viremia. The extent of the extra-intestinal spread of rotavirus infection has not yet been fully elucidated; whether it can only affect a limited number of organs and tissues or capable of involving the body as a whole. Moreover, the influence of systemic rotavirus infections remains to be determined. In this review, combination of previous and new data are outlined to help in better understanding of the extra-intestinal infections of rotaviruses.
Collapse
|
39
|
Bessho K, Shanmukhappa K, Sheridan R, Shivakumar P, Mourya R, Walters S, Kaimal V, Dilbone E, Jegga AG, Bezerra JA. Integrative genomics identifies candidate microRNAs for pathogenesis of experimental biliary atresia. BMC SYSTEMS BIOLOGY 2013; 7:104. [PMID: 24138927 PMCID: PMC3819657 DOI: 10.1186/1752-0509-7-104] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 09/26/2013] [Indexed: 12/23/2022]
Abstract
Background Biliary atresia is a fibroinflammatory obstruction of extrahepatic bile duct that leads to end-stage liver disease in children. Despite advances in understanding the pathogenesis of biliary atresia, very little is known about the role of microRNAs (miRNAs) in onset and progression of the disease. In this study, we aimed to investigate the entire biliary transcriptome to identify miRNAs with potential role in the pathogenesis of bile duct obstruction. Results By profiling the expression levels of miRNA in extrahepatic bile ducts and gallbladder (EHBDs) from a murine model of biliary atresia, we identified 14 miRNAs whose expression was suppressed at the times of duct obstruction and atresia (≥2 fold suppression, P < 0.05, FDR 5%). Next, we obtained 2,216 putative target genes of the 14 miRNAs using in silico target prediction algorithms. By integrating this result with a genome-wide gene expression analysis of the same tissue (≥2 fold increase, P < 0.05, FDR 5%), we identified 26 potential target genes with coordinate expression by the 14 miRNAs. Functional analysis of these target genes revealed a significant relevance of miR-30b/c, -133a/b, -195, -200a, -320 and −365 based on increases in expression of at least 3 target genes in the same tissue and 1st-to-3rd tier links with genes and gene-groups regulating organogenesis and immune response. These miRNAs showed higher expression in EHBDs above livers, a unique expression in cholangiocytes and the subepithelial compartment, and were downregulated in a cholangiocyte cell line after RRV infection. Conclusions Integrative genomics reveals functional relevance of miR-30b/c, -133a/b, -195, -200a, -320 and −365. The coordinate expression of miRNAs and target genes in a temporal-spatial fashion suggests a regulatory role of these miRNAs in pathogenesis of experimental biliary atresia.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jorge A Bezerra
- Cincinnati Children's Hospital Medical Center and Departments of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
40
|
Okamura A, Harada K, Nio M, Nakanuma Y. Interleukin-32 production associated with biliary innate immunity and proinflammatory cytokines contributes to the pathogenesis of cholangitis in biliary atresia. Clin Exp Immunol 2013; 173:268-75. [PMID: 23607494 DOI: 10.1111/cei.12103] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2013] [Indexed: 12/27/2022] Open
Abstract
Biliary atresia (BA) is thought to be associated with infections by viruses such as Reoviridae and is characterized histologically by fibrosclerosing cholangitis with proinflammatory cytokine-mediated inflammation. Interleukin (IL)-32 affects the continuous inflammation by increasing the production of proinflammatory cytokines. In this study, the role of IL-32 in the cholangitis of BA was examined. Immunohistochemistry for IL-32 and caspase 1 was performed using 21 samples of extrahepatic bile ducts resected from BA patients. Moreover, using cultured human biliary epithelial cells (BECs), the expression of IL-32 and its induction on stimulation with a Toll-like receptor [(TLR)-3 ligand (poly(I:C)] and proinflammatory cytokines was examined. BECs composing extrahepatic bile ducts showing cholangitis expressed IL-32 in BA, but not in controls. Caspase 1 was expressed constantly on BECs of both BA and control subjects. Furthermore, poly(I:C) and proinflammatory cytokines [(IL-1β, interferon (IFN)-γ and tumour necrosis factor (TNF)-α] induced IL-32 expression strongly in cultured BECs, accompanying the constant expression of TLR-3 and caspase 1. Our results imply that the expression of IL-32 in BECs was found in the damaged bile ducts of BA and induced by biliary innate immunity via TLR-3 and proinflammatory cytokines. These findings suggest that IL-32 is involved initially in the pathogenic mechanisms of cholangitis in BA and also plays an important role in the amplification and continuance of periductal inflammatory reactions. It is therefore tempting to speculate that inhibitors of IL-32 could be useful for attenuating cholangitis in BA.
Collapse
Affiliation(s)
- A Okamura
- Department of Human Pathology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | | | | | | |
Collapse
|
41
|
Petersen C, Davenport M. Aetiology of biliary atresia: what is actually known? Orphanet J Rare Dis 2013; 8:128. [PMID: 23987231 PMCID: PMC3766137 DOI: 10.1186/1750-1172-8-128] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 08/23/2013] [Indexed: 01/27/2023] Open
Abstract
Biliary atresia (BA) is a rare disease of unknown etiology and unpredictable outcome, even when there has been timely diagnosis and exemplary surgery. It has been the commonest indication for liver transplantation during childhood for the past 20 years. Hence much clinical and basic research has been directed at elucidating the origin and pathology of BA. This review summarizes the current clinical variations of BA in humans, its occasional appearance in animals and its various manifestations in the laboratory as an experimental model.
Collapse
Affiliation(s)
- Claus Petersen
- Department of Pediatric Surgery, Hannover Medical School, Carl-Neuberg-Str, 1, 30625 Hannover, Germany.
| | | |
Collapse
|
42
|
Feldman AG, Tucker RM, Fenner EK, Pelanda R, Mack CL. B cell deficient mice are protected from biliary obstruction in the rotavirus-induced mouse model of biliary atresia. PLoS One 2013; 8:e73644. [PMID: 23991203 PMCID: PMC3749125 DOI: 10.1371/journal.pone.0073644] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 07/19/2013] [Indexed: 02/04/2023] Open
Abstract
A leading theory regarding the pathogenesis of biliary atresia (BA) is that bile duct injury is initiated by a virus infection, followed by an autoimmune response targeting bile ducts. In experimental models of autoimmune diseases, B cells have been shown to play an important role. The aim of this study was to determine the role of B cells in the development of biliary obstruction in the Rhesus rotavirus (RRV)-induced mouse model of BA. Wild-type (WT) and B cell-deficient (Ig-α(-/-)) mice received RRV shortly after birth. Ig-α(-/-) RRV-infected mice had significantly increased disease-free survival rate compared to WT RRV-infected BA mice (76.8% vs. 17.5%). In stark contrast to the RRV-infected BA mice, the RRV-infected Ig-α(-/-) mice did not have hyperbilirubinemia or bile duct obstruction. The RRV-infected Ig-α(-/-) mice had significantly less liver inflammation and Th1 cytokine production compared to RRV-infected WT mice. In addition, Ig-α(-/-) mice had significantly increased numbers of regulatory T cells (Tregs) at baseline and after RRV infection compared to WT mice. However, depletion of Tregs in Ig-α(-/-) mice did not induce biliary obstruction, indicating that the expanded Tregs in the Ig-α(-/-) mice were not the sole reason for protection from disease. Conclusion : B cell deficient Ig-α(-/-) mice are protected from biliary obstruction in the RRV-induced mouse model of BA, indicating a primary role of B cells in mediating disease pathology. The mechanism of protection may involve lack of B cell antigen presentation, which impairs T-cell activation and Th1 inflammation. Immune modulators that inhibit B cell function may be a new strategy for treatment of BA.
Collapse
Affiliation(s)
- Amy G Feldman
- Department of Pediatrics, Section of Pediatric Gastroenterology, Children's Hospital, Colorado, Aurora, Colorado, USA.
| | | | | | | | | |
Collapse
|
43
|
Hertel PM, Crawford SE, Bessard BC, Estes MK. Prevention of cholestasis in the murine rotavirus-induced biliary atresia model using passive immunization and nonreplicating virus-like particles. Vaccine 2013; 31:5778-84. [PMID: 23887039 DOI: 10.1016/j.vaccine.2013.07.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 06/28/2013] [Accepted: 07/10/2013] [Indexed: 12/11/2022]
Abstract
Biliary atresia (BA) is a neonatal cholangiopathy of unknown etiology that results in obliteration of bile ducts and is the primary indication for liver transplant in children. A murine model of BA, which involves infecting newborn mice with rhesus rotavirus (RRV) and leads to development of an obstructive cholangiopathy, has provided a model to assess measures to prevent and treat BA. We used this mouse model of RRV-induced BA to determine if passive immunization of pups using maternal immunization [injection of dams with non-replicating rotavirus (RV) virus-like particles (VLPs) or live RRV] or injection of pups with RV immune serum would protect these RRV-infected neonates from developing BA (measured using cholestasis). Parenteral immunization of mouse dams with two formulations of VLPs (containing viral proteins 2/6 or 2/6/7) resulted in a significant increase in serum RV antibody, and pups born to these immunized dams were protected from developing cholestasis following neonatal infection with RRV. Serum RV-specific antibody with titers of ≥400-800 in dams significantly protected pups from developing cholestasis, and a significant trend of increasing protection with high titers was observed (p<0.0001). Cholestatic pups had lower levels of RV serum antibody and higher serum (p<0.01) and liver (p<0.05) RV antigen compared to healthy pups. Passive transfer of low-titer (1600; p<0.05) or high-titer (25,600; p<0.01) RV immune serum to neonatal pups prior to RRV infection also protected them from developing cholestasis. Together, these findings indicate that passively acquired, neutralizing or non-neutralizing RV serum antibody attenuates viral replication and protects pups against disease in the RRV BA model. Early reduction of viral load by clearance with RV-specific antibody is likely a critical determinant of disease in this model.
Collapse
Affiliation(s)
- Paula M Hertel
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | | | |
Collapse
|
44
|
Rotavirus replication in the cholangiocyte mediates the temporal dependence of murine biliary atresia. PLoS One 2013; 8:e69069. [PMID: 23844248 PMCID: PMC3700947 DOI: 10.1371/journal.pone.0069069] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 06/05/2013] [Indexed: 01/15/2023] Open
Abstract
Biliary atresia (BA) is a neonatal disease that results in obliteration of the biliary tree. The murine model of BA, which mirrors the human disease, is based upon infection of newborn mice with rhesus rotavirus (RRV), leading to an obstructive cholangiopathy. The purpose of this study was to characterize the temporal relationship between viral infection and the induction of this model. BALB/c mice were infected with RRV on day of life (DOL) 0, 3, 5, and 7. Groups were characterized as early-infection (infection by DOL 3) or late-infection (infection after DOL 5). Early RRV infection induced symptoms in 95% of pups with a mortality rate of 80%. In contrast, late infection caused symptoms in only 50% of mice, and 100% of pups survived. The clinical findings correlated with histological analysis of extrahepatic biliary trees, cytokine expression, and viral titers. Primary murine cholangiocytes isolated, cultured, and infected with RRV yielded higher titers of infectious virus in those harvested from DOL 2 versus DOL 9 mice. Less interferon alpha and beta was produced in DOL 2 versus DOL 9 RRV infected primary cholangiocytes. Injection of BALB/c interferon alpha/beta receptor knockout (IFN-αβR(-/-)) pups at DOL 7 showed increased symptoms (79%) and mortality (46%) when compared to late infected wild type mice. In conclusion, the degree of injury sustained by relatively immature cholangiocytes due to more robust RRV replication correlated with more severe clinical manifestations of cholangiopathy and higher mortality. Interferon alpha production by cholangiocytes appears to play a regulatory role. These findings confirm a temporal dependence of RRV infection in murine BA and begin to define a pathophysiologic role of the maturing cholangiocyte.
Collapse
|
45
|
Walther AE, Mohanty SK, Donnelly B, Coots A, McNeal M, Tiao GM. Role of myeloid differentiation factor 88 in Rhesus rotavirus-induced biliary atresia. J Surg Res 2013; 184:322-9. [PMID: 23768919 DOI: 10.1016/j.jss.2013.05.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 05/08/2013] [Accepted: 05/09/2013] [Indexed: 01/03/2023]
Abstract
BACKGROUND Biliary atresia (BA) is a unique neonatal disease resulting from inflammatory and fibrosing obstruction of the extrahepatic biliary tree. Previous studies have demonstrated the critical role of innate immunity and the Th1 response to activated inflammatory cells and overexpressed cytokines in the pathogenesis of BA. Myeloid differentiation factor 88 (MyD88) is a critical adaptor molecule that has been shown to play a crucial role in immunity. We investigated the role of MyD88 in the inflammatory response and development of cholangiopathy in murine BA. METHODS MyD88 knockout (MyD88(-/-)) and wild-type (WT) BALB/c pups were injected with Rhesus rotavirus or saline on day 1 of life. The mice were monitored for clinical symptoms of BA, including jaundice, acholic stools, bilirubinuria, and death. The liver and extrahepatic bile ducts were harvested for histologic evaluation and the quantification of viral content, determination of cytokine expression, and detection of inflammatory cells. RESULTS Rhesus rotavirus infection produced symptoms in 100% of both MyD88(-/-) and WT pups, with survival of 18% of WT and 0% of MyD88(-/-) mice. Histologic analysis demonstrated bile duct obstruction in both MyD88(-/-) and WT mice. Viral titers obtained 7 d after infection and expression of interferon-γ and tumor necrosis factor-α at day 3, 5, 8, and 12 after infection revealed no significant differences between the WT and MyD88(-/-) mice. Flow cytometry demonstrated similar levels of activated CD8+ T cells and natural killer cells. CONCLUSIONS The pathogenesis of murine BA is independent of the MyD88 signaling inflammatory pathway, suggesting alternative mechanisms are crucial in the induction of the model.
Collapse
Affiliation(s)
- Ashley E Walther
- Department of Pediatric and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
Biliary atresia (BA) is an infantile obstructive cholangiopathy of unknown etiology with suboptimal therapy, which is responsible for 40 to 50% of all pediatric liver transplants. Although the etiology of bile duct injury in BA in unknown, it is postulated that a pre- or perinatal viral infection initiates cholangiocyte apoptosis and release of antigens that trigger a Th1 immune response that leads to further bile duct injury, inflammation, and obstructive fibrosis. Humoral immunity and activation of the innate immune system may also play key roles in this process. Moreover, recent investigations from the murine BA model and human data suggest that regulatory T cells and genetic susceptibility factors may orchestrate autoimmune mechanisms. What controls the coordination of these events, why the disease only occurs in the first few months of life, and why a minority of infants with perinatal viral infections develop BA are remaining questions to be answered.
Collapse
Affiliation(s)
- Cara L. Mack
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of Colorado School of Medicine, and Digestive Health Institute, Children's Hospital Colorado, Aurora, Colorado
| | - Amy G. Feldman
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of Colorado School of Medicine, and Digestive Health Institute, Children's Hospital Colorado, Aurora, Colorado
| | - Ronald J. Sokol
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of Colorado School of Medicine, and Digestive Health Institute, Children's Hospital Colorado, Aurora, Colorado
| |
Collapse
|
47
|
Coots A, Donnelly B, Mohanty SK, McNeal M, Sestak K, Tiao G. Rotavirus infection of human cholangiocytes parallels the murine model of biliary atresia. J Surg Res 2012; 177:275-81. [PMID: 22785360 DOI: 10.1016/j.jss.2012.05.082] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 05/10/2012] [Accepted: 05/30/2012] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Biliary atresia (BA) is the leading indication for liver transplantation in the pediatric population. The murine model of BA supports a viral etiology, because infection of neonatal mice with rhesus rotavirus (RRV) results in biliary obstruction. Viral infection targets the biliary epithelium and development of the model is viral strain dependent. No study has yet determined whether human cholangiocytes are also susceptible to rotaviral infection. We established an in vitro human model using an immortalized human cholangiocyte cell line and primary human cholangiocytes obtained from explanted livers to determine human cholangiocyte susceptibility to rotavirus infection. METHODS Replication and binding assays were performed on immortalized mouse (mCL) and human (H69) cells using six different strains of rotavirus. Primary human cholangiocytes were isolated from cadaveric livers, characterized in culture, and infected with RRV, which causes BA in mice, and another simian strain, TUCH, which does not cause BA in mice. RESULTS Immortalized mouse and human cholangiocytes demonstrated similar patterns of infectivity and binding with different strains of rotavirus. Both cell lines produced a significantly higher viral yield with RRV infection than with the other strains tested. In primary human cholangiocytes, which maintained their epithelial characteristics, as demonstrated by cytokeratin staining, RRV replicated to a yield 1000-fold higher than TUCH. CONCLUSIONS Both immortalized and primary human cholangiocytes are susceptible to RRV infection in a fashion similar to murine cholangiocytes. These novel findings suggest rotavirus infection could have a potential role in the pathogenesis of human BA.
Collapse
Affiliation(s)
- Abigail Coots
- Department of Pediatric and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | | | | | | | | | | |
Collapse
|
48
|
Saxena V, Shivakumar P, Sabla G, Mourya R, Chougnet C, Bezerra JA. Dendritic cells regulate natural killer cell activation and epithelial injury in experimental biliary atresia. Sci Transl Med 2012; 3:102ra94. [PMID: 21957172 DOI: 10.1126/scitranslmed.3002069] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Biliary atresia is the most common cholangiopathy of childhood. During infancy, an idiopathic activation of the neonatal immune system targets the biliary epithelium, obstructs bile ducts, and disrupts the anatomic continuity between the liver and the intestine. Here, we use a model of virus-induced biliary atresia in newborn mice to trace the initiating pathogenic disease mechanisms to resident plasmacytoid (pDCs) and conventional (cDCs) dendritic cells. We found pDCs to be the most abundant DC population in the livers of newborn mice, and we observed pDCs in the livers of infants at the time of diagnosis. In the livers of newborn mice, cDCs spontaneously overexpressed the costimulatory molecule CD80 soon after birth, and pDCs produced the cytokine interleukin-15 (IL-15) in response to a virus insult. Both subtypes of primed DCs were required for the proliferation of T lymphocytes and the activation of natural killer cells. Disruption of this cellular network by depletion of pDCs or blockade of IL-15 signaling in mice in vivo prevented epithelial injury, maintained anatomic continuity of the bile duct, and promoted long-term survival. These findings identify cellular triggers of biliary injury and have implications for future therapies to block the progression of biliary atresia and liver disease.
Collapse
Affiliation(s)
- Vijay Saxena
- Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3039, USA
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
Biliary innate immunity is involved in the pathogenesis of cholangiopathies in cases of biliary disease. Cholangiocytes possess Toll-like receptors (TLRs) which recognize pathogen-associated molecular patterns (PAMPs) and play a pivotal role in the innate immune response. Tolerance to bacterial PAMPs such as lipopolysaccharides is also important to maintain homeostasis in the biliary tree, but tolerance to double-stranded RNA (dsRNA) is not found. Moreover, in primary biliary cirrhosis (PBC) and biliary atresia, biliary innate immunity is closely associated with the dysregulation of the periductal cytokine milieu and the induction of biliary apoptosis and epithelial-mesenchymal transition (EMT), forming in disease-specific cholangiopathy. Biliary innate immunity is associated with the pathogenesis of various cholangiopathies in biliary diseases as well as biliary defense systems.
Collapse
|
50
|
Harpavat S, Finegold MJ, Karpen SJ. Patients with biliary atresia have elevated direct/conjugated bilirubin levels shortly after birth. Pediatrics 2011; 128:e1428-33. [PMID: 22106076 PMCID: PMC3387898 DOI: 10.1542/peds.2011-1869] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVES Healthy infants are thought to acquire biliary atresia (BA) in the first weeks of life. Because those diagnosed earlier have better outcomes, we were interested in determining the earliest time BA could be detected. We started by examining the immediate postnatal period, hypothesizing that newborns would not yet have acquired disease and still have normal direct/conjugated bilirubin (DB/CB) levels. PATIENTS AND METHODS Newborn DB/CB levels were obtained retrospectively from birth hospitals. Subjects with BA were born between 2007 and 2010 and cared for at Texas Children's Hospital. Those with BA splenic malformation syndrome or born prematurely were excluded. Control subjects were term newborns who later never developed neonatal liver disease. RESULTS Of the 61 subjects with BA, 56% had newborn DB/CB levels measured. All DB/CB levels exceeded laboratory norms and rose over time. At 24 to 48 hours of life, subjects with BA had mean DB levels significantly higher than those of controls (1.4 ± 0.43 vs. 0.19 ± 0.075 mg/dL, P < .0001), even while their mean total bilirubin (TB) levels remained below phototherapy limits. Finally, despite the elevated DB/CB levels, the majority of patients (79%) had normal DB:TB ratios ≤ 0.2. CONCLUSIONS Patients with BA have elevated DB/CB levels shortly after birth. To detect affected infants earlier and improve outcomes, the results suggest two possibilities: (1) screen all newborns for elevated DB/CB levels, rather than just those who appear jaundiced; and then (2) follow all newborns with elevated DB/CB levels, rather than just those with DB:TB ratios >0.2.
Collapse
Affiliation(s)
- Sanjiv Harpavat
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, and
| | - Milton J. Finegold
- Department of Pathology, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas
| | - Saul J. Karpen
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, and
| |
Collapse
|