1
|
Tain YL, Hsu CN. Preterm Birth and Kidney Health: From the Womb to the Rest of Life. CHILDREN (BASEL, SWITZERLAND) 2024; 11:1213. [PMID: 39457178 PMCID: PMC11506578 DOI: 10.3390/children11101213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024]
Abstract
Chronic kidney disease (CKD) is a widespread condition often resulting from multiple factors, including maternal influences. These risk factors not only heighten the likelihood of developing CKD but increase the risk of a preterm birth. Adverse events during nephrogenesis can disrupt kidney development, leading to a reduced number of nephrons. As survival rates for preterm infants improve, more individuals are living into adulthood, thereby elevating their risk of CKD later in life. This review aims to explore the connections between preterm birth, kidney development, and the increased risk of CKD, while proposing practical solutions for the future through a multidisciplinary approach. We examine human studies linking preterm birth to negative kidney outcomes, summarize animal models demonstrating kidney programming and reduced nephron numbers, and consolidate knowledge on common mechanisms driving kidney programming. Additionally, we discuss factors in the postnatal care environment that may act as secondary insults contributing to CKD risk, such as acute kidney injury (AKI), the use of nephrotoxic drugs, preterm nutrition, and catch-up growth. Finally, we outline recommendations for action, emphasizing the importance of avoiding modifiable risk factors and implementing early CKD screening for children born preterm. Together, we can ensure that advancements in kidney health keep pace with improvements in preterm care.
Collapse
Affiliation(s)
- You-Lin Tain
- Division of Pediatric Nephrology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
2
|
Hao X, Long X, Fan L, Gou J, Liu Y, Fu Y, Zhao H, Xie X, Wang D, Liang G, Ye Y, Wang J, Li S, Zeng C. Prenatal LPS leads to increases in RAS expression within the PVN and overactivation of sympathetic outflow in offspring rats. Hypertens Res 2024; 47:2363-2376. [PMID: 38969805 PMCID: PMC11374713 DOI: 10.1038/s41440-024-01754-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 07/07/2024]
Abstract
The renin-angiotensin system (RAS) and the sympathetic nervous system (SNS) are two major blood pressure-regulating systems. The link between the renal and cerebral RAS axes was provided by reflex activation of renal afferents and efferent sympathetic nerves. There is a self-sustaining enhancement of the brain and the intrarenal RAS. In this study, prenatal exposure to lipopolysaccharide (LPS) led to increased RAS activity in the paraventricular nucleus (PVN) and overactivation of sympathetic outflow, accompanied by increased production of reactive oxygen species (ROS) and disturbances between inhibitory and excitatory neurons in PVN. The AT1 receptor blocker losartan and α2 adrenergic receptor agonist clonidine in the PVN significantly decreased renal sympathetic nerve activity (RSNA) and synchronously reduced systolic blood pressure. Prenatal LPS stimulation caused H3 acetylation at H3K9 and H3K14 in the PVN, which suggested that epigenetic changes are involved in transmitting the prenatal adverse stimulative information to the next generation. Additionally, melatonin treatment during pregnancy reduced RAS activity and ROS levels in the PVN; balanced the activity of inhibitory and excitatory neurons in the PVN; increased urine sodium secretion; reduced RSNA and blood pressure. In conclusion, prenatal LPS leads to increased RAS expression within the PVN and overactivation of the sympathetic outflow, thereby contributing to hypertension in offspring rats. Melatonin is expected to be a promising agent for preventing prenatal LPS exposure-induced hypertension.
Collapse
Affiliation(s)
- Xueqin Hao
- Department of human Anatomy and Histoembryology, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan, China
- Department of Anesthesiology, the First affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan, China
| | - Xueting Long
- Department of human Anatomy and Histoembryology, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Lingling Fan
- Department of Physiology, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Jijia Gou
- Department of human Anatomy and Histoembryology, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Yuchao Liu
- Department of human Anatomy and Histoembryology, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Yifan Fu
- Department of human Anatomy and Histoembryology, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Huijuan Zhao
- Department of human Anatomy and Histoembryology, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Xiaojuan Xie
- Department of Anesthesiology, the First affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan, China
| | - Dongmei Wang
- Department of Microbiology, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Gaofeng Liang
- Department of Pathology, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Yujia Ye
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China.
| | - Jing Wang
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China.
| | - Sanqiang Li
- Department of Biochemistry, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan, China.
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
3
|
Oulerich Z, Sferruzzi-Perri AN. Early-life exposures and long-term health: adverse gestational environments and the programming of offspring renal and vascular disease. Am J Physiol Renal Physiol 2024; 327:F21-F36. [PMID: 38695077 DOI: 10.1152/ajprenal.00383.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 06/21/2024] Open
Abstract
According to the Developmental Origins of Health and Disease hypothesis, exposure to certain environmental influences during early life may be a key determinant of fetal development and short- and long-term offspring health. Indeed, adverse conditions encountered during the fetal, perinatal, and early childhood stages can alter normal development and growth, as well as put the offspring at elevated risk of developing long-term health conditions in adulthood, including chronic kidney disease and cardiovascular diseases. Of relevance in understanding the mechanistic basis of these long-term health conditions are previous findings showing low glomerular number in human intrauterine growth restriction and low birth weight-indicators of a suboptimal intrauterine environment. In different animal models, the main suboptimal intrauterine conditions studied relate to maternal dietary manipulations, poor micronutrient intake, prenatal ethanol exposure, maternal diabetes, glucocorticoid and chemical exposure, hypoxia, and placental insufficiency. These studies have demonstrated changes in kidney structure, glomerular endowment, and expression of key genes and signaling pathways controlling endocrine, excretion, and filtration function of the offspring. This review aims to summarize those studies to uncover the effects and mechanisms by which adverse gestational environments impact offspring renal and vascular health in adulthood. This is important for identifying agents and interventions that can prevent and mitigate the long-term consequences of an adverse intrauterine environment on the subsequent generation.NEW & NOTEWORTHY Human data and experimental animal data show that suboptimal environments during fetal development increase the risk of renal and vascular diseases in adult-life. This is related to permanent changes in kidney structure, function, and expression of genes and signaling pathways controlling filtration, excretion, and endocrine function. Uncovering the mechanisms by which offspring renal development and function is impacted is important for identifying ways to mitigate the development of diseases that strain health care services worldwide.
Collapse
Affiliation(s)
- Zoé Oulerich
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- Agro Paris Tech, Université Paris-Saclay, Paris, France
| | - Amanda N Sferruzzi-Perri
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
4
|
Sze Y, Brunton PJ. How is prenatal stress transmitted from the mother to the fetus? J Exp Biol 2024; 227:jeb246073. [PMID: 38449331 DOI: 10.1242/jeb.246073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Prenatal stress programmes long-lasting neuroendocrine and behavioural changes in the offspring. Often this programming is maladaptive and sex specific. For example, using a rat model of maternal social stress in late pregnancy, we have demonstrated that adult prenatally stressed male, but not prenatally stressed female offspring display heightened anxiety-like behaviour, whereas both sexes show hyperactive hypothalamo-pituitary-adrenal (HPA) axis responses to stress. Here, we review the current knowledge of the mechanisms underpinning dysregulated HPA axis responses, including evidence supporting a role for reduced neurosteroid-mediated GABAergic inhibitory signalling in the brains of prenatally stressed offspring. How maternal psychosocial stress is signalled from the mother to the fetuses is unclear. Direct transfer of maternal glucocorticoids to the fetuses is often considered to mediate the programming effects of maternal stress on the offspring. However, protective mechanisms including attenuated maternal stress responses and placental 11β-hydroxysteroid dehydrogenase-2 (which inactivates glucocorticoids) should limit materno-fetal glucocorticoid transfer during pregnancy. Moreover, a lack of correlation between maternal stress, circulating maternal glucocorticoid levels and circulating fetal glucocorticoid levels is reported in several studies and across different species. Therefore, here we interrogate the evidence for a role for maternal glucocorticoids in mediating the effects of maternal stress on the offspring and consider the evidence for alternative mechanisms, including an indirect role for glucocorticoids and the contribution of changes in the placenta in signalling the stress status of the mother to the fetus.
Collapse
Affiliation(s)
- Ying Sze
- Centre for Discovery Brain Sciences, Hugh Robson Building, University of Edinburgh, George Square, Edinburgh EH8 9XD, UK
| | - Paula J Brunton
- Centre for Discovery Brain Sciences, Hugh Robson Building, University of Edinburgh, George Square, Edinburgh EH8 9XD, UK
- Zhejiang University-University of Edinburgh Joint Institute, Haining, Zhejiang 314400, P.R. China
| |
Collapse
|
5
|
Starr MC, Barreto E, Charlton J, Vega M, Brophy PD, Ray Bignall ON, Sutherland SM, Menon S, Devarajan P, Akcan Arikan A, Basu R, Goldstein S, Soranno DE. Advances in pediatric acute kidney injury pathobiology: a report from the 26th Acute Disease Quality Initiative (ADQI) conference. Pediatr Nephrol 2024; 39:941-953. [PMID: 37792076 PMCID: PMC10817846 DOI: 10.1007/s00467-023-06154-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/08/2023] [Accepted: 08/29/2023] [Indexed: 10/05/2023]
Abstract
BACKGROUND In the past decade, there have been substantial advances in our understanding of the pathobiology of pediatric acute kidney injury (AKI). In particular, animal models and studies focused on the relationship between kidney development, nephron number, and kidney health have identified a number of heterogeneous pathophysiologies underlying AKI. Despite this progress, gaps remain in our understanding of the pathobiology of pediatric AKI. METHODS During the 26th Acute Disease Quality Initiative (ADQI) Consensus conference, a multidisciplinary group of experts discussed the evidence and used a modified Delphi process to achieve consensus on recommendations for opportunities to advance translational research in pediatric AKI. The current state of research understanding as well as gaps and opportunities for advancement in research was discussed, and recommendations were summarized. RESULTS Consensus was reached that to improve translational pediatric AKI advancements, diverse teams spanning pre-clinical to epidemiological scientists must work in concert together and that results must be shared with the community we serve with patient involvement. Public and private research support and meaningful partnerships with adult research efforts are required. Particular focus is warranted to investigate the pediatric nuances of AKI, including the effect of development as a biological variable on AKI incidence, severity, and outcomes. CONCLUSIONS Although AKI is common and associated with significant morbidity, the biologic basis of the disease spectrum throughout varying nephron developmental stages remains poorly understood. An incomplete understanding of factors contributing to kidney health, the diverse pathobiologies underlying AKI in children, and the historically siloed approach to research limit advances in the field. The recommendations outlined herein identify gaps and outline a strategic approach to advance the field of pediatric AKI via multidisciplinary translational research.
Collapse
Affiliation(s)
- Michelle C Starr
- Department of Pediatrics, Division of Nephrology, Indiana University School of Medicine, Riley Hospital for Children, 1044 W. Walnut Street, Indianapolis, IN, 46202, USA
- Pediatric and Adolescent Comparative Effectiveness Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Erin Barreto
- Department of Pharmacy, Mayo Clinic, Rochester, MN, USA
| | - Jennifer Charlton
- Department of Pediatrics, Division of Nephrology, University of Virginia, Charlottesville, VA, USA
| | - Molly Vega
- Renal and Apheresis Services, Texas Children's Hospital, Houston, TX, USA
| | - Patrick D Brophy
- Department of Pediatrics, Golisano Children's Hospital, University of Rochester, Rochester, NY, USA
| | - O N Ray Bignall
- Department of Pediatrics, Division of Nephrology and Hypertension, Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus, OH, USA
| | - Scott M Sutherland
- Department of Pediatrics, Division of Nephrology, Stanford University School of Medicine, Stanford, CA, USA
| | - Shina Menon
- Division of Pediatric Nephrology, Seattle Children's Hospital and University of Washington, Seattle, WA, USA
| | - Prasad Devarajan
- Department of Pediatrics, Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - Ayse Akcan Arikan
- Department of Pediatrics, Divisions of Critical Care and Nephrology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - Rajit Basu
- Department of Pediatrics, Division of Critical Care, Northwestern University, Chicago, IL, USA
| | - Stuart Goldstein
- Department of Pediatrics, Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - Danielle E Soranno
- Department of Pediatrics, Division of Nephrology, Indiana University School of Medicine, Riley Hospital for Children, 1044 W. Walnut Street, Indianapolis, IN, 46202, USA.
- Department of Bioengineering, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
6
|
Elberling F, Spulber S, Bose R, Keung HY, Ahola V, Zheng Z, Ceccatelli S. Sex Differences in Long-term Outcome of Prenatal Exposure to Excess Glucocorticoids-Implications for Development of Psychiatric Disorders. Mol Neurobiol 2023; 60:7346-7361. [PMID: 37561236 PMCID: PMC10657788 DOI: 10.1007/s12035-023-03522-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 07/18/2023] [Indexed: 08/11/2023]
Abstract
Exposure to prenatal insults, such as excess glucocorticoids (GC), may lead to pathological outcomes, including neuropsychiatric disorders. The aim of the present study was to investigate the long-term effects of in utero exposure to the synthetic GC analog dexamethasone (Dex) in adult female offspring. We monitored spontaneous activity in the home cage under a constant 12 h/12 h light/dark cycle, as well as the changes following a 6-h advance of dark onset (phase shift). For comparison, we re-analysed data previously recorded in males. Dex-exposed females were spontaneously more active, and the activity onset re-entrained slower than in controls. In contrast, Dex-exposed males were less active, and the activity onset re-entrained faster than in controls. Following the phase shift, control females displayed a transient reorganisation of behaviour in light and virtually no change in dark, while Dex-exposed females showed limited variations from baseline in both light and dark, suggesting weaker photic entrainment. Next, we ran bulk RNA-sequencing in the suprachiasmatic nucleus (SCN) of Dex and control females. SPIA pathway analysis of ~ 2300 differentially expressed genes identified significantly downregulated dopamine signalling, and upregulated glutamate and GABA signalling. We selected a set of candidate genes matching the behaviour alterations and found consistent differential regulation for ~ 73% of tested genes in SCN and hippocampus tissue samples. Taken together, our data highlight sex differences in the outcome of prenatal exposure to excess GC in adult mice: in contrast to depression-like behaviour in males, the phenotype in females, defined by behaviour and differential gene expression, is consistent with ADHD models.
Collapse
Affiliation(s)
- Frederik Elberling
- Department of Neuroscience, Karolinska Institutet, Biomedicum, Solnavägen 9, 171 77, Stockholm, Sweden
| | - Stefan Spulber
- Department of Neuroscience, Karolinska Institutet, Biomedicum, Solnavägen 9, 171 77, Stockholm, Sweden.
| | - Raj Bose
- Department of Neuroscience, Karolinska Institutet, Biomedicum, Solnavägen 9, 171 77, Stockholm, Sweden
| | - Hoi Yee Keung
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, 15W Science and Technology W Ave, Sha Tin, Hong Kong Special Administrative Region, People's Republic of China
| | - Virpi Ahola
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, 15W Science and Technology W Ave, Sha Tin, Hong Kong Special Administrative Region, People's Republic of China
| | - Zongli Zheng
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, 15W Science and Technology W Ave, Sha Tin, Hong Kong Special Administrative Region, People's Republic of China
| | - Sandra Ceccatelli
- Department of Neuroscience, Karolinska Institutet, Biomedicum, Solnavägen 9, 171 77, Stockholm, Sweden
| |
Collapse
|
7
|
Malatiali SA, Kilarkaje N, Al‐Bader M. Maternal dexamethasone exposure does not affect glucose tolerance but alters renal haemodynamics in F 1 rats in a sex-dependent manner. Endocrinol Diabetes Metab 2023; 6:e450. [PMID: 37723884 PMCID: PMC10638624 DOI: 10.1002/edm2.450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/06/2023] [Accepted: 09/02/2023] [Indexed: 09/20/2023] Open
Abstract
INTRODUCTION Prenatal programming with dexamethasone increases the risk of the development of hyperglycaemia and insulin resistance, leading to diabetes in adulthood. Dexamethasone also causes a decline in renal glomerular filtration in the adult offspring. Sodium-glucose cotransporter-2 (SGLT2) plays a significant role in regulating blood glucose and renal haemodynamics in diabetic patients. However, the role of SGLT2 in dexamethasone-induced programming and the putative sex-dependent effects on the changes named earlier is unknown. Therefore, this study aimed to investigate the impact of maternal dexamethasone treatment on glucose tolerance, insulin sensitivity, renal perfusion and renal function in adult male and female offspring and the possible contribution of SGLT2 to these changes. METHODS AND RESULTS Pregnant Sprague Dawley rats (F0 ) were treated with either vehicle or dexamethasone (0.2 mg/kg ip) from gestation Day 15 to 20. F1 males and F1 females were randomly selected from each mother at 4 months of age. There was no change in serum Na+ , Na+ excretion rate, glucose tolerance or insulin sensitivity in F1 male or female rats. However, dexamethasone caused significant glomerular hypertrophy and decreases in CSinistrin and CPAH indicating decreased glomerular filtration rate and renal plasma flow, respectively, in dexamethasone-treated F1 male but not female rats. Dexamethasone did not affect SGLT2 mRNA or protein expression in F1 males or females. CONCLUSION We conclude that dexamethasone-mediated prenatal programming of glomerular volume, renal function and haemodynamics is sex-dependent, occurring only in adult male offspring.
Collapse
Affiliation(s)
- Slava A. Malatiali
- Department of Physiology, College of MedicineKuwait UniversitySafatKuwait
| | | | - Maie Al‐Bader
- Department of Physiology, College of MedicineKuwait UniversitySafatKuwait
| |
Collapse
|
8
|
Mascioli I, Iapadre G, Ingrosso D, Donato GD, Giannini C, Salpietro V, Chiarelli F, Farello G. Brain and eye involvement in McCune-Albright Syndrome: clinical and translational insights. Front Endocrinol (Lausanne) 2023; 14:1092252. [PMID: 37274327 PMCID: PMC10235602 DOI: 10.3389/fendo.2023.1092252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/10/2023] [Indexed: 06/06/2023] Open
Abstract
McCune-Albright Syndrome (MAS) is a rare mosaic (post-zygotic) genetic disorder presenting with a broad continuum clinical spectrum. MAS arises from somatic, activating mutations in the GNAS gene, which induces a dysregulated Gsα-protein signaling in several tissues and an increased production of intracellular cyclic adenosine monophosphate (cAMP). Overall, MAS is a rare disorder affecting less than 1/100,000 children and, for this reason, data establishing genotype-phenotype correlations remain limited. Affected individuals clinically present with a variable combination of fibrous dysplasia of bone (FD), extra-skeletal manifestations (including cafeí-au-lait spots) and precocious puberty which might also be associated to broad hyperfunctioning endocrinopathies, and also gastrointestinal and cardiological involvement. Central nervous system (CNS) and eye involvement in MAS are among the less frequently described complications and remain largely uncharacterized. These rare complications mainly include neurodevelopmental abnormalities (e.g., delayed motor development, cognitive and language impairment), CNS anomalies (e.g., Chiari malformation type I) and a wide array of ophthalmological abnormalities often associated with vision loss. The pathophysiological mechanisms underlying abnormal neurological development have not been yet fully elucidated. The proposed mechanisms include a deleterious impact of chronically dysregulated Gsα-protein signaling on neurological function, or a secondary (damaging) effect of (antenatal and/or early postnatal) hypercortisolism on early pre- and post-natal CNS development. In this Review, we summarize the main neurological and ophthalmological features eventually associated with the MAS spectrum, also providing a detailed overview of the potential pathophysiological mechanisms underlying these clinical complications.
Collapse
Affiliation(s)
- Ilaria Mascioli
- Department of Pediatrics, University of Chieti, Chieti, Italy
| | - Giulia Iapadre
- Department of Pediatrics, University of L’Aquila, L’Aquila, Italy
| | | | - Giulio Di Donato
- Department of Pediatrics, University of L’Aquila, L’Aquila, Italy
| | - Cosimo Giannini
- Department of Pediatrics, University of Chieti, Chieti, Italy
| | | | | | - Giovanni Farello
- Department of Pediatrics, University of L’Aquila, L’Aquila, Italy
| |
Collapse
|
9
|
Manfellotto D, Cortinovis M, Perico N, Remuzzi G. Low birth weight, nephron number and chronic kidney disease. ITALIAN JOURNAL OF MEDICINE 2022. [DOI: 10.4081/itjm.2022.1538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Chronic kidney diseases have a significant impact on morbidity and mortality worldwide. Low birth weight, fetal growth restriction and prematurity are indicators of fetal growth and development disorders associated with a congenital reduction in nephron number, which predisposes to an increased risk for chronic kidney disease. On an individual basis, a small nephron number at birth is not always enough to determine the onset of chronic kidney disease, but it decreases the ability of the kidneys to resist any insults to renal tissue that may occur later in life, such as exposure to nephrotoxic drugs or episodes of acute kidney injury. The high incidence of low birth weight and preterm birth globally suggests that, at the population level, the impact of alterations in fetal development on the subsequent onset of chronic kidney disease could be significant. The implementation of strategies aimed at reducing the incidence of prematurity, fetal growth restriction, as well as other conditions that lead to low birth weight and a reduced nephron number at birth, provides an opportunity to prevent the development of chronic kidney disease in adulthood. For these purposes the coordinated intervention of several specialists, including obstetricians, gynecologists, neonatologists, nephrologists, and family doctors, is necessary. Such strategies can be particularly useful in resource-poor countries, which are simultaneously burdened by maternal, fetal and child malnutrition; poor health; epidemics caused by communicable diseases; and little access to screening and primary care.
Collapse
|
10
|
Ensminger DC, Wheeler ND, Al Makki R, Eads KN, Ashley NT. Contrasting effects of sleep fragmentation and angiotensin-II treatment upon pro-inflammatory responses of mice. Sci Rep 2022; 12:14763. [PMID: 36042284 PMCID: PMC9427781 DOI: 10.1038/s41598-022-19166-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/25/2022] [Indexed: 11/30/2022] Open
Abstract
Disordered sleep promotes inflammation in brain and peripheral tissues, but the mechanisms that regulate these responses are poorly understood. One hypothesis is that activation of the sympathetic nervous system (SNS) from sleep loss elevates blood pressure to promote vascular sheer stress leading to inflammation. As catecholamines produced from SNS activation can directly regulate inflammation, we pharmacologically altered blood pressure using an alternative approach-manipulation of the renin-angiotensin system (RAS). Male C57BL6/J mice were treated with angiotensin or captopril to elevate and reduce blood pressure, respectively and then exposed to 24-h of sleep fragmentation (SF) or allowed to sleep (control). Pro- and anti-inflammatory cytokine gene expression and as endothelial adhesion gene expression as well as serum glucocorticoids (corticosterone) were measured. RAS manipulation elevated cytokines and endothelial adhesion expression in heart and aorta while SF increased cytokine expression in peripheral tissues, but not brain. However, there were interactive effects of angiotensin-II and SF upon cytokine gene expression in hippocampus and hypothalamus, but not prefrontal cortex. SF, but not RAS manipulation, elevated serum corticosterone concentration. These findings highlight the contrasting effects of RAS manipulation and SF, implying that inflammation from SF is acting on different pathways that are largely independent of RAS manipulation.
Collapse
Affiliation(s)
- David C Ensminger
- Department of Biology, Western Kentucky University, Bowling Green, KY, USA.
- Department of Biological Sciences, San José State University, San Jose, CA, USA.
| | - Nicholas D Wheeler
- Department of Biology, Western Kentucky University, Bowling Green, KY, USA
- College of Veterinary Medicine, Mississippi State University, Starkville, MS, USA
| | - Reem Al Makki
- Department of Biological Sciences, San José State University, San Jose, CA, USA
| | - Kristen N Eads
- School of Physician Assistant Studies, Lipscomb University, Nashville, TN, USA
| | - Noah T Ashley
- Department of Biology, Western Kentucky University, Bowling Green, KY, USA
| |
Collapse
|
11
|
Claahsen - van der Grinten HL, Speiser PW, Ahmed SF, Arlt W, Auchus RJ, Falhammar H, Flück CE, Guasti L, Huebner A, Kortmann BBM, Krone N, Merke DP, Miller WL, Nordenström A, Reisch N, Sandberg DE, Stikkelbroeck NMML, Touraine P, Utari A, Wudy SA, White PC. Congenital Adrenal Hyperplasia-Current Insights in Pathophysiology, Diagnostics, and Management. Endocr Rev 2022; 43:91-159. [PMID: 33961029 PMCID: PMC8755999 DOI: 10.1210/endrev/bnab016] [Citation(s) in RCA: 187] [Impact Index Per Article: 93.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Indexed: 11/19/2022]
Abstract
Congenital adrenal hyperplasia (CAH) is a group of autosomal recessive disorders affecting cortisol biosynthesis. Reduced activity of an enzyme required for cortisol production leads to chronic overstimulation of the adrenal cortex and accumulation of precursors proximal to the blocked enzymatic step. The most common form of CAH is caused by steroid 21-hydroxylase deficiency due to mutations in CYP21A2. Since the last publication summarizing CAH in Endocrine Reviews in 2000, there have been numerous new developments. These include more detailed understanding of steroidogenic pathways, refinements in neonatal screening, improved diagnostic measurements utilizing chromatography and mass spectrometry coupled with steroid profiling, and improved genotyping methods. Clinical trials of alternative medications and modes of delivery have been recently completed or are under way. Genetic and cell-based treatments are being explored. A large body of data concerning long-term outcomes in patients affected by CAH, including psychosexual well-being, has been enhanced by the establishment of disease registries. This review provides the reader with current insights in CAH with special attention to these new developments.
Collapse
Affiliation(s)
| | - Phyllis W Speiser
- Cohen Children’s Medical Center of NY, Feinstein Institute, Northwell Health, Zucker School of Medicine, New Hyde Park, NY 11040, USA
| | - S Faisal Ahmed
- Developmental Endocrinology Research Group, School of Medicine Dentistry & Nursing, University of Glasgow, Glasgow, UK
| | - Wiebke Arlt
- Institute of Metabolism and Systems Research (IMSR), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Department of Endocrinology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Richard J Auchus
- Division of Metabolism, Endocrinology, and Diabetes, Departments of Internal Medicine and Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Henrik Falhammar
- Department of Molecular Medicine and Surgery, Karolinska Intitutet, Stockholm, Sweden
- Department of Endocrinology, Karolinska University Hospital, Stockholm, Sweden
| | - Christa E Flück
- Pediatric Endocrinology, Diabetology and Metabolism, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Leonardo Guasti
- Centre for Endocrinology, William Harvey Research Institute, Bart’s and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Angela Huebner
- Division of Paediatric Endocrinology and Diabetology, Department of Paediatrics, Universitätsklinikum Dresden, Technische Universität Dresden, Dresden, Germany
| | - Barbara B M Kortmann
- Radboud University Medical Centre, Amalia Childrens Hospital, Department of Pediatric Urology, Nijmegen, The Netherlands
| | - Nils Krone
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Deborah P Merke
- National Institutes of Health Clinical Center and the Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Walter L Miller
- Department of Pediatrics, Center for Reproductive Sciences, and Institute for Human Genetics, University of California, San Francisco, CA 94143, USA
| | - Anna Nordenström
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
- Pediatric Endocrinology, Karolinska University Hospital, Stockholm, Sweden
| | - Nicole Reisch
- Medizinische Klinik IV, Klinikum der Universität München, Munich, Germany
| | - David E Sandberg
- Department of Pediatrics, Susan B. Meister Child Health Evaluation and Research Center, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Philippe Touraine
- Department of Endocrinology and Reproductive Medicine, Center for Rare Endocrine Diseases of Growth and Development, Center for Rare Gynecological Diseases, Hôpital Pitié Salpêtrière, Sorbonne University Medicine, Paris, France
| | - Agustini Utari
- Division of Pediatric Endocrinology, Department of Pediatrics, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
| | - Stefan A Wudy
- Steroid Research & Mass Spectrometry Unit, Laboratory of Translational Hormone Analytics, Division of Paediatric Endocrinology & Diabetology, Justus Liebig University, Giessen, Germany
| | - Perrin C White
- Division of Pediatric Endocrinology, UT Southwestern Medical Center, Dallas TX 75390, USA
| |
Collapse
|
12
|
Imasawa T, Claverol S, Lacombe D, Amoedo ND, Rossignol R. Proteomic Study of Low-Birth-Weight Nephropathy in Rats. Int J Mol Sci 2021; 22:10294. [PMID: 34638634 PMCID: PMC8508940 DOI: 10.3390/ijms221910294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 02/06/2023] Open
Abstract
The hyperfiltration theory has been used to explain the mechanism of low birth weight (LBW)-related nephropathy. However, the molecular changes in the kidney proteome have not been defined in this disease, and early biomarkers are lacking. We investigated the molecular pathogenesis of LBW rats obtained by intraperitoneal injection of dexamethasone into pregnant animals. Normal-birth-weight (NBW) rats were used as controls. When the rats were four weeks old, the left kidneys were removed and used for comprehensive label-free proteomic studies. Following uninephrectomy, all rats were fed a high-salt diet until 9 weeks of age. Differences in the molecular composition of the kidney cortex were observed at the early step of LBW nephropathy pathogenesis. Untargeted quantitative proteomics showed that proteins involved in energy metabolism, such as oxidative phosphorylation (OXPHOS), the TCA cycle, and glycolysis, were specifically downregulated in the kidneys of LBW rats at four weeks. No pathological changes were detected at this early stage. Pathway analysis identified NEFL2 (NRF2) and RICTOR as potential upstream regulators. The search for biomarkers identified components of the mitochondrial respiratory chain, namely, ubiquinol-cytochrome c reductase complex subunits (UQCR7/11) and ATP5I/L, two components of mitochondrial F1FO-ATP synthase. These findings were further validated by immunohistology. At later stages of the disease process, the right kidneys revealed an increased frequency of focal segmental glomerulosclerosis lesions, interstitial fibrosis and tubular atrophy. Our findings revealed proteome changes in LBW rat kidneys and revealed a strong downregulation of specific mitochondrial respiratory chain proteins, such as UQCR7.
Collapse
Affiliation(s)
- Toshiyuki Imasawa
- Kidney Center, National Hospital Organization Chiba-Higashi National Hospital, Chiba 260-8712, Japan
- Rare Diseases, Genetics and Metabolism, University of Bordeaux, INSERM U1211, 33000 Bordeaux, France;
- Department of Biology and Medical Sciences, University of Bordeaux, 33000 Bordeaux, France;
| | - Stéphane Claverol
- Department of Biology and Medical Sciences, University of Bordeaux, 33000 Bordeaux, France;
- Functional Genomics Center, Proteomics Department, University of Bordeaux, 33000 Bordeaux, France
| | - Didier Lacombe
- Rare Diseases, Genetics and Metabolism, University of Bordeaux, INSERM U1211, 33000 Bordeaux, France;
- Department of Biology and Medical Sciences, University of Bordeaux, 33000 Bordeaux, France;
| | | | - Rodrigue Rossignol
- Rare Diseases, Genetics and Metabolism, University of Bordeaux, INSERM U1211, 33000 Bordeaux, France;
- Department of Biology and Medical Sciences, University of Bordeaux, 33000 Bordeaux, France;
- CELLOMET, CHU Pellegrin, 33300 Bordeaux, France;
| |
Collapse
|
13
|
Srivastava T, Joshi T, Heruth DP, Rezaiekhaligh MH, Garola RE, Zhou J, Boinpelly VC, Ali MF, Alon US, Sharma M, Vanden Heuvel GB, Mahajan P, Priya L, Jiang Y, McCarthy ET, Savin VJ, Sharma R, Sharma M. A mouse model of prenatal exposure to Interleukin-6 to study the developmental origin of health and disease. Sci Rep 2021; 11:13260. [PMID: 34168254 PMCID: PMC8225793 DOI: 10.1038/s41598-021-92751-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Systemic inflammation in pregnant obese women is associated with 1.5- to 2-fold increase in serum Interleukin-6 (IL-6) and newborns with lower kidney/body weight ratio but the role of IL-6 in increased susceptibility to chronic kidney (CKD) in adult progeny is not known. Since IL-6 crosses the placental barrier, we administered recombinant IL-6 (10 pg/g) to pregnant mice starting at mid-gestation yielded newborns with lower body (p < 0.001) and kidney (p < 0.001) weights. Histomorphometry indicated decreased nephrogenic zone width (p = 0.039) with increased numbers of mature glomeruli (p = 0.002) and pre-tubular aggregates (p = 0.041). Accelerated maturation in IL-6 newborns was suggested by early expression of podocyte-specific protein podocin in glomeruli, increased 5-methyl-cytosine (LC–MS analysis for CpG DNA methylation) and altered expression of certain genes of cell-cycle and apoptosis (RT-qPCR array-analysis). Western blotting showed upregulated pJAK2/pSTAT3. Thus, treating dams with IL-6 as a surrogate provides newborns to study effects of maternal systemic inflammation on future susceptibility to CKD in adulthood.
Collapse
Affiliation(s)
- Tarak Srivastava
- Section of Nephrology, Children's Mercy Hospital and University of Missouri at Kansas City, 2401 Gillham Road, Kansas City, MO, 64108, USA. .,Midwest Veterans' Biomedical Research Foundation (MVBRF), Kansas City, MO, USA. .,Department of Oral and Craniofacial Sciences, University of Missouri at Kansas City-School of Dentistry, Kansas City, MO, USA.
| | - Trupti Joshi
- Department of Health Management and Informatics and MU Informatics Institute, University of Missouri, Columbia, MO, USA.,Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA.,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.,MU Data Science and Informatics Institute, University of Missouri, Columbia, MO, USA
| | - Daniel P Heruth
- Children's Mercy Research Institute, Children's Mercy Hospital and University of Missouri at Kansas City, Kansas City, MO, USA
| | - Mohammad H Rezaiekhaligh
- Section of Nephrology, Children's Mercy Hospital and University of Missouri at Kansas City, 2401 Gillham Road, Kansas City, MO, 64108, USA
| | - Robert E Garola
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospital and University of Missouri at Kansas City, Kansas City, MO, USA
| | - Jianping Zhou
- Midwest Veterans' Biomedical Research Foundation (MVBRF), Kansas City, MO, USA.,Kansas City VA Medical Center, Kansas City, MO, USA
| | - Varun C Boinpelly
- Midwest Veterans' Biomedical Research Foundation (MVBRF), Kansas City, MO, USA.,Kansas City VA Medical Center, Kansas City, MO, USA
| | - Mohammed Farhan Ali
- Section of Nephrology, Children's Mercy Hospital and University of Missouri at Kansas City, 2401 Gillham Road, Kansas City, MO, 64108, USA
| | - Uri S Alon
- Section of Nephrology, Children's Mercy Hospital and University of Missouri at Kansas City, 2401 Gillham Road, Kansas City, MO, 64108, USA
| | - Madhulika Sharma
- Department of Internal Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Gregory B Vanden Heuvel
- Department of Biomedical Sciences, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, USA
| | - Pramod Mahajan
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy and Health Sciences, Drake University, Des Moines, IA, USA
| | - Lakshmi Priya
- Section of Nephrology, Children's Mercy Hospital and University of Missouri at Kansas City, 2401 Gillham Road, Kansas City, MO, 64108, USA
| | - Yuexu Jiang
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA.,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Ellen T McCarthy
- Department of Internal Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Virginia J Savin
- Kansas City VA Medical Center, Kansas City, MO, USA.,Department of Internal Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Ram Sharma
- Kansas City VA Medical Center, Kansas City, MO, USA
| | - Mukut Sharma
- Midwest Veterans' Biomedical Research Foundation (MVBRF), Kansas City, MO, USA.,Kansas City VA Medical Center, Kansas City, MO, USA.,Department of Internal Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
14
|
Costa G, Spulber S, Paci E, Casu MA, Ceccatelli S, Simola N, Morelli M. In utero exposure to dexamethasone causes a persistent and age-dependent exacerbation of the neurotoxic effects and glia activation induced by MDMA in dopaminergic brain regions of C57BL/6J mice. Neurotoxicology 2021; 83:1-13. [PMID: 33338551 DOI: 10.1016/j.neuro.2020.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/03/2020] [Accepted: 12/04/2020] [Indexed: 12/22/2022]
Abstract
Clinical and preclinical evidence indicates that prenatal exposure to glucocorticoids may induce detrimental effects in the offspring, including reduction in fetal growth and alterations in the CNS. On this basis, the present study investigated whether in utero exposure to high levels of glucocorticoids is a risk factor that may lead to an exacerbation of the central noxious effects induced by psychoactive drugs consumed later in life. To this end, pregnant C57BL6/J dams were treated with dexamethasone (DEX, 0.05 mg/kg per day) from gestational day 14 until delivery. Thereafter, the male offspring were evaluated to ascertain the magnitude of dopaminergic damage, astrogliosis and microgliosis elicited in the nigrostriatal tract by the amphetamine-related drug 3,4--methylenedioxymethamphetamine (MDMA, 4 × 20 mg/kg, 2 h apart, sacrificed 48 h later) administered at either adolescence or adulthood. Immunohistochemistry was performed in the substantia nigra pars compacta (SNc) and striatum, to evaluate dopaminergic degeneration by measuring tyrosine hydroxylase (TH), as well as astrogliosis and microgliosis by measuring glial fibrillary acidic protein (GFAP) and ionized calcium-binding adapter molecule 1 (IBA-1), respectively. Moreover, immunohistochemistry was used to ascertain the co-localization of IBA-1 with either the pro-inflammatory interleukin (IL) IL-1β or the anti-inflammatory IL IL-10, in order to determine the microglial phenotype. In utero administration of DEX induced dopaminergic damage by decreasing the density of TH-positive fibers in the striatum, although only in adult mice. MDMA administration induced dopaminergic damage and glia activation in the nigrostriatal tract of adolescent and adult mice. Mice exposed to DEX in utero and treated with MDMA later in life showed a more pronounced loss of dopaminergic neurons (adolescent mice) and astrogliosis (adolescent and adult mice) in the SNc, compared with control mice. These results suggest that prenatal exposure to glucocorticoids may induce an age-dependent and persistent increase in the susceptibility to central toxicity of amphetamine-related drugs used later in life.
Collapse
Affiliation(s)
- Giulia Costa
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy.
| | - Stefan Spulber
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Elena Paci
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Maria Antonietta Casu
- National Research Council of Italy, Institute of Translational Pharmacology, UOS of Cagliari, Scientific and Technological Park of Sardinia POLARIS, Pula, Italy
| | - Sandra Ceccatelli
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Nicola Simola
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy
| | - Micaela Morelli
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy; National Research Council of Italy, Neuroscience Institute, Cagliari, Italy
| |
Collapse
|
15
|
Cardiovascular effects of prenatal stress-Are there implications for cerebrovascular, cognitive and mental health outcome? Neurosci Biobehav Rev 2019; 117:78-97. [PMID: 31708264 DOI: 10.1016/j.neubiorev.2018.05.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/21/2018] [Accepted: 05/22/2018] [Indexed: 01/17/2023]
Abstract
Prenatal stress programs offspring cognitive and mental health outcome. We reviewed whether prenatal stress also programs cardiovascular dysfunction which potentially modulates cerebrovascular, cognitive and mental health disorders. We focused on maternal stress and prenatal glucocorticoid (GC) exposure which have different programming effects. While maternal stress induced cortisol is mostly inactivated by the placenta, synthetic GCs freely cross the placenta and have different receptor-binding characteristics. Maternal stress, particularly anxiety, but not GC exposure, has adverse effects on maternal-fetal circulation throughout pregnancy, probably by co-activation of the maternal sympathetic nervous system, and by raising fetal catecholamines. Both effects may impair neurodevelopment. Experimental data also suggest that severe maternal stress and GC exposure during early and mid-gestation may increase the risk for cardiovascular disorders. Human data are scarce and especially lacking for older age. Programming mechanisms include aberrations in cardiac and kidney development, and functional changes in the renin-angiotensin-aldosterone-system, stress axis and peripheral and coronary vasculature. Adequate experimental or human studies examining the consequences for cerebrovascular, cognitive and mental disorders are unavailable.
Collapse
|
16
|
Spulber S, Conti M, Elberling F, Raciti M, Borroto-Escuela DO, Fuxe K, Ceccatelli S. Desipramine restores the alterations in circadian entrainment induced by prenatal exposure to glucocorticoids. Transl Psychiatry 2019; 9:263. [PMID: 31624238 PMCID: PMC6797805 DOI: 10.1038/s41398-019-0594-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/09/2019] [Accepted: 09/24/2019] [Indexed: 11/16/2022] Open
Abstract
Alterations in circadian rhythms are closely linked to depression, and we have shown earlier that progressive alterations in circadian entrainment precede the onset of depression in mice exposed in utero to excess glucocorticoids. The aim of this study was to investigate whether treatment with the noradrenaline reuptake inhibitor desipramine (DMI) could restore the alterations in circadian entrainment and prevent the onset of depression-like behavior. C57Bl/6 mice were exposed to dexamethasone (DEX-synthetic glucocorticoid analog, 0.05 mg/kg/day) between gestational day 14 and delivery. Male offspring aged 6 months (mo) were treated with DMI (10 mg/kg/day in drinking water) for at least 21 days before behavioral testing. We recorded spontaneous activity using the TraffiCage™ system and found that DEX mice re-entrained faster than controls after an abrupt advance in light-dark cycle by 6 h, while DMI treatment significantly delayed re-entrainment. Next we assessed the synchronization of peripheral oscillators with the central clock (located in the suprachiasmatic nucleus-SCN), as well as the mechanisms required for entrainment. We found that photic entrainment of the SCN was apparently preserved in DEX mice, but the expression of clock genes in the hippocampus was not synchronized with the light-dark cycle. This was associated with downregulated mRNA expression for arginine vasopressin (AVP; the main molecular output entraining peripheral clocks) in the SCN, and for glucocorticoid receptor (GR; required for the negative feedback loop regulating glucocorticoid secretion) in the hippocampus. DMI treatment restored the mRNA expression of AVP in the SCN and enhanced GR-mediated signaling by upregulating GR expression and nuclear translocation in the hippocampus. Furthermore, DMI treatment at 6 mo prevented the onset of depression-like behavior and the associated alterations in neurogenesis in 12-mo-old DEX mice. Taken together, our data indicate that DMI treatment enhances GR-mediated signaling and restores the synchronization of peripheral clocks with the SCN and support the hypothesis that altered circadian entrainment is a modifiable risk factor for depression.
Collapse
Affiliation(s)
- Stefan Spulber
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Mirko Conti
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | - Marilena Raciti
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Sandra Ceccatelli
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
17
|
McCann-Crosby B, Placencia FX, Adeyemi-Fowode O, Dietrich J, Franciskovich R, Gunn S, Axelrad M, Tu D, Mann D, Karaviti L, Sutton VR. Challenges in Prenatal Treatment with Dexamethasone. PEDIATRIC ENDOCRINOLOGY REVIEWS : PER 2019; 16:186-193. [PMID: 30371037 DOI: 10.17458/per.vol16.2018.mcpa.dexamethasone] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Classic congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency causes elevated androgen levels, which can lead to virilization of female external genitalia. Prenatal dexamethasone treatment has been shown to be effective in preventing virilization of external genitalia when started prior to 7-9 weeks of gestation in females with classic CAH. However, CAH cannot be diagnosed prenatally until the end of the first trimester. Treating pregnant women with a fetus at risk of developing classic CAH exposes a significant proportion of fetuses unnecessarily, because only 1 in 8 would benefit from treatment. Consequently, prenatal dexamethasone treatment has been met with much controversy due to the potential adverse outcomes when exposed to high-dose steroids in utero. Here, we review the short- and long-term outcomes for fetuses and pregnant women exposed to dexamethasone treatment, the ethical considerations that must be taken into account, and current practice recommendations.
Collapse
Affiliation(s)
- Bonnie McCann-Crosby
- Division of Pediatric Endocrinology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA, E-mail:
| | - Frank Xavier Placencia
- Section of Neonatology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA
| | - Oluyemisi Adeyemi-Fowode
- Division of Pediatric and Adolescent Gynecology, Department of Obstetrics and Gynecology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA
| | - Jennifer Dietrich
- Division of Pediatric and Adolescent Gynecology, Department of Obstetrics and Gynecology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA
| | - Rachel Franciskovich
- Department of Molecular and Human Genetics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA
| | - Sheila Gunn
- Division of Pediatric Endocrinology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA
| | - Marni Axelrad
- Division of Psychology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA
| | - Duong Tu
- Division of Pediatric Urology, Department of Surgery, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA
| | - David Mann
- Department of Anesthesiology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA
| | | | | |
Collapse
|
18
|
Simpson JL, Rechitsky S. Prenatal genetic testing and treatment for congenital adrenal hyperplasia. Fertil Steril 2019; 111:21-23. [PMID: 30611408 DOI: 10.1016/j.fertnstert.2018.11.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 11/28/2018] [Indexed: 11/18/2022]
Abstract
Couples at risk for autosomal recessive congenital adrenal hyperplasia often request anticipatory guidance and genetic counseling. Initially, hormones in amniotic fluid were measured to distinguish affected female fetuses from unaffected fetuses. With the molecular era, more-targeted approaches became possible. Prenatal genetic diagnosis via amniocentesis or chorionic villus sampling was used to determine the need for continuing fetal therapy (dexamethasone), allowing cessation if the fetus was unaffected. Newer methods now allow diagnosis earlier in gestation, further shortening the treatment time for unaffected female fetuses who will not develop genital ambiguity. Preimplantation genetic testing permits transfer only of an unaffected female or male fetus. Analysis of maternal cell-free DNA based on quantitative differences in the amount of allele parental DNA permits affected pregnancies to be differentiated from unaffected pregnancies.
Collapse
Affiliation(s)
- Joe Leigh Simpson
- Department of Biomedical Engineering, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida.
| | - Svetlana Rechitsky
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida; Reproductive Genetic Innovations, LLC, Northbrook, Illinois
| |
Collapse
|
19
|
Brain KL, Allison BJ, Niu Y, Cross CM, Itani N, Kane AD, Herrera EA, Skeffington KL, Botting KJ, Giussani DA. Intervention against hypertension in the next generation programmed by developmental hypoxia. PLoS Biol 2019; 17:e2006552. [PMID: 30668572 PMCID: PMC6342530 DOI: 10.1371/journal.pbio.2006552] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 11/29/2018] [Indexed: 02/07/2023] Open
Abstract
Evidence derived from human clinical studies and experimental animal models shows a causal relationship between adverse pregnancy and increased cardiovascular disease in the adult offspring. However, translational studies isolating mechanisms to design intervention are lacking. Sheep and humans share similar precocial developmental milestones in cardiovascular anatomy and physiology. We tested the hypothesis in sheep that maternal treatment with antioxidants protects against fetal growth restriction and programmed hypertension in adulthood in gestation complicated by chronic fetal hypoxia, the most common adverse consequence in human pregnancy. Using bespoke isobaric chambers, chronically catheterized sheep carrying singletons underwent normoxia or hypoxia (10% oxygen [O2]) ± vitamin C treatment (maternal 200 mg.kg-1 IV daily) for the last third of gestation. In one cohort, the maternal arterial blood gas status, the value at which 50% of the maternal hemoglobin is saturated with oxygen (P50), nitric oxide (NO) bioavailability, oxidative stress, and antioxidant capacity were determined. In another, naturally delivered offspring were raised under normoxia until early adulthood (9 months). Lambs were chronically instrumented and cardiovascular function tested in vivo. Following euthanasia, femoral arterial segments were isolated and endothelial function determined by wire myography. Hypoxic pregnancy induced fetal growth restriction and fetal oxidative stress. At adulthood, it programmed hypertension by enhancing vasoconstrictor reactivity and impairing NO-independent endothelial function. Maternal vitamin C in hypoxic pregnancy improved transplacental oxygenation and enhanced fetal antioxidant capacity while increasing NO bioavailability, offsetting constrictor hyper-reactivity and replenishing endothelial function in the adult offspring. These discoveries provide novel insight into mechanisms and interventions against fetal growth restriction and adult-onset programmed hypertension in an animal model of complicated pregnancy in a species of similar temporal developmental milestones to humans.
Collapse
Affiliation(s)
- Kirsty L. Brain
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Beth J. Allison
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Youguo Niu
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- Cambridge Cardiovascular Strategic Research Initiative, Cambridge, United Kingdom
| | - Christine M. Cross
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Nozomi Itani
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Andrew D. Kane
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Emilio A. Herrera
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Katie L. Skeffington
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Kimberley J. Botting
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- Cambridge Cardiovascular Strategic Research Initiative, Cambridge, United Kingdom
| | - Dino A. Giussani
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- Cambridge Cardiovascular Strategic Research Initiative, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
20
|
Brennan LJ, Goulopoulou S, Bourque SL. Prenatal therapeutics and programming of cardiovascular function. Pharmacol Res 2018; 139:261-272. [PMID: 30458216 DOI: 10.1016/j.phrs.2018.11.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/15/2018] [Accepted: 11/15/2018] [Indexed: 01/08/2023]
Abstract
Cardiovascular diseases (CVD) are a leading cause of mortality worldwide. Despite recognizing the importance of risk factors in dictating CVD susceptibility and onset, patient treatment remains a challenging endeavor. Increasingly, the benefits of prevention and mitigation of risk factors earlier in life are being acknowledged. The developmental origins of health and disease posits that insults during specific periods of development can influence long-term health outcomes; this occurs because the developing organism is highly plastic, and hence vulnerable to environmental perturbations. By extension, targeted therapeutics instituted during critical periods of development may confer long-term protection, and thus reduce the risk of CVD in later life. This review provides a brief overview of models of developmental programming, and then discusses the impact of perinatal therapeutic interventions on long-term cardiovascular function in the offspring. The discussion focuses on bioactive food components, as well as pharmacological agents currently approved for use in pregnancy; in short, those agents most likely to be used in pregnancy and early childhood.
Collapse
Affiliation(s)
- Lesley J Brennan
- Department of Anesthesiology & Pain Medicine, Pharmacology, and Pediatrics, Women and Children's Health Research Institute, University of Alberta, Canada.
| | - Styliani Goulopoulou
- Department of Physiology and Anatomy, University of North Texas Health Science Center, United States.
| | - Stephane L Bourque
- Department of Anesthesiology & Pain Medicine, Pharmacology, and Pediatrics, Women and Children's Health Research Institute, University of Alberta, Canada.
| |
Collapse
|
21
|
The Effect of Prenatal Stress on Auditory Brainstem Responses in Rat Pups. HEALTH SCOPE 2018. [DOI: 10.5812/jhealthscope.55019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Baum M. Role of renal sympathetic nerve activity in prenatal programming of hypertension. Pediatr Nephrol 2018; 33:409-419. [PMID: 27001053 DOI: 10.1007/s00467-016-3359-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 02/15/2016] [Accepted: 02/18/2016] [Indexed: 12/30/2022]
Abstract
Prenatal insults, such as maternal dietary protein deprivation and uteroplacental insufficiency, lead to small for gestational age (SGA) neonates. Epidemiological studies from many different parts of the world have shown that SGA neonates are at increased risk for hypertension and early death from cardiovascular disease as adults. Animal models, including prenatal administration of dexamethasone, uterine artery ligation and maternal dietary protein restriction, result in SGA neonates with fewer nephrons than controls. These models are discussed in this educational review, which provides evidence that prenatal insults lead to altered sodium transport in multiple nephron segments. The factors that could result in increased sodium transport are discussed, focusing on new information that there is increased renal sympathetic nerve activity that may be responsible for augmented renal tubular sodium transport. Renal denervation abrogates the hypertension in programmed rats but has no effect on control rats. Other potential factors that could cause hypertension in programmed rats, such as the renin-angiotensin system, are also discussed.
Collapse
Affiliation(s)
- Michel Baum
- Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Building, Dallas, TX, 75390-9063, USA. .,Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA.
| |
Collapse
|
23
|
Mansuri A, Elmaghrabi A, Alhamoud I, Legan SK, Gattineni J, Baum M. Transient enalapril attenuates the reduction in glomerular filtration rate in prenatally programmed rats. Physiol Rep 2018; 5:5/8/e13266. [PMID: 28438986 PMCID: PMC5408291 DOI: 10.14814/phy2.13266] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 04/04/2017] [Indexed: 01/09/2023] Open
Abstract
A maternal low‐protein diet has been shown to program hypertension and a reduction in glomerular filtration rate in adult offspring. This study examined the effect of continuous administration of enalapril in the drinking water and transient administration of enalapril administered from 21 to 42 days of age on blood pressure and glomerular filtration rate (GFR) in male rats whose mothers were fed a 20% protein diet (control) or a 6% protein diet (programmed) during the last half of pregnancy. After birth all rats were fed a 20% protein diet. Programmed rats (maternal 6% protein diet) were hypertensive at 15 months of age compared to control rats and both continuous and transient administration of enalapril had no effect on blood pressure on control offspring, but normalized the blood pressure of programmed offspring. GFR was 3.2 ± 0.1 mL/min in the control group and 1.7 ± 0.1 mL/min in the programmed rats at 17 months of age (P < 0.001). The GFR was 3.0 ± 0.1 mL/min in the control and 2.7 ± 0.1 mL/min in the programmed group that received continuous enalapril in their drinking water showing that enalapril can prevent the decrease in GFR in programmed rats. Transient administration of enalapril had no effect on GFR in the control group (3.2 ± 0.1 mL/min) and prevented the decrease in GFR in the programmed group (2.9 ± 0.1 mL/min). In conclusion, transient exposure to enalapril for 3 weeks after weaning can prevent the hypertension and decrease in GFR in prenatal programmed rats.
Collapse
Affiliation(s)
- Asifhusen Mansuri
- Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Ayah Elmaghrabi
- Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Issa Alhamoud
- Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Susan K Legan
- Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Jyothsna Gattineni
- Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Michel Baum
- Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas .,Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| |
Collapse
|
24
|
Tain YL, Chan SHH, Chan JYH. Biochemical basis for pharmacological intervention as a reprogramming strategy against hypertension and kidney disease of developmental origin. Biochem Pharmacol 2018; 153:82-90. [PMID: 29309755 DOI: 10.1016/j.bcp.2018.01.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/04/2018] [Indexed: 02/08/2023]
Abstract
The concept of "developmental origins of health and disease" (DOHaD) stipulates that both hypertension and kidney disease may take origin from early-life insults. The DOHaD concept also offers reprogramming strategies aiming at shifting therapeutic interventions from adulthood to early life, even before clinical symptoms are evident. Based on those two concepts, this review will present the evidence for the existence of, and the programming mechanisms in, kidney developmental programming that may lead to hypertension and kidney disease. This will be followed by potential pharmacological interventions that may serve as a reprogramming strategy to counter the rising epidemic of hypertension and kidney disease. We point out that before patients could benefit from this strategy, the most pressing issue is for the growing body of evidence from animal studies in support of pharmacological intervention as a reprogramming strategy to long-term protect against hypertension and kidney disease of developmental origins to be validated clinically and the critical window, drug dose, dosing regimen, and therapeutic duration identified.
Collapse
Affiliation(s)
- You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan.
| | - Samuel H H Chan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan.
| | - Julie Y H Chan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan.
| |
Collapse
|
25
|
Li X, Zhang M, Pan X, Xu Z, Sun M. “Three Hits” Hypothesis for Developmental Origins of Health and Diseases in View of Cardiovascular Abnormalities. Birth Defects Res 2017; 109:744-757. [PMID: 28509412 DOI: 10.1002/bdr2.1037] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 03/24/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Xiang Li
- Institute for Fetology; First Hospital of Soochow University; Suzhou China
| | - Mengshu Zhang
- Institute for Fetology; First Hospital of Soochow University; Suzhou China
| | - Xinghua Pan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences
- Key Laboratory of Biochip Technology in Guangdong province; Southern Medical University; Guangzhou China
- Department of Genetics; Yale University School of Medicine; New Haven Connecticut
| | - Zhice Xu
- Institute for Fetology; First Hospital of Soochow University; Suzhou China
| | - Miao Sun
- Institute for Fetology; First Hospital of Soochow University; Suzhou China
| |
Collapse
|
26
|
Abstract
Hypertension and chronic kidney disease (CKD) have a significant impact on global morbidity and mortality. The Low Birth Weight and Nephron Number Working Group has prepared a consensus document aimed to address the relatively neglected issue for the developmental programming of hypertension and CKD. It emerged from a workshop held on April 2, 2016, including eminent internationally recognized experts in the field of obstetrics, neonatology, and nephrology. Through multidisciplinary engagement, the goal of the workshop was to highlight the association between fetal and childhood development and an increased risk of adult diseases, focusing on hypertension and CKD, and to suggest possible practical solutions for the future. The recommendations for action of the consensus workshop are the results of combined clinical experience, shared research expertise, and a review of the literature. They highlight the need to act early to prevent CKD and other related noncommunicable diseases later in life by reducing low birth weight, small for gestational age, prematurity, and low nephron numbers at birth through coordinated interventions. Meeting the current unmet needs would help to define the most cost-effective strategies and to optimize interventions to limit or interrupt the developmental programming cycle of CKD later in life, especially in the poorest part of the world.
Collapse
|
27
|
Su Y, Bi J, Pulgar VM, Chappell MC, Rose JC. Antenatal betamethasone attenuates the angiotensin-(1-7)-Mas receptor-nitric oxide axis in isolated proximal tubule cells. Am J Physiol Renal Physiol 2017; 312:F1056-F1062. [PMID: 28228403 DOI: 10.1152/ajprenal.00593.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/25/2017] [Accepted: 02/01/2017] [Indexed: 01/11/2023] Open
Abstract
We previously reported a sex-specific effect of antenatal treatment with betamethasone (Beta) on sodium (Na+) excretion in adult sheep whereby treated males but not females had an attenuated natriuretic response to angiotensin-(1-7) [Ang-(1-7)]. The present study determined the Na+ uptake and nitric oxide (NO) response to low-dose Ang-(1-7) (1 pM) in renal proximal tubule cells (RPTC) from adult male and female sheep antenatally exposed to Beta or vehicle. Data were expressed as percentage of basal uptake or area under the curve for Na+ or percentage of control for NO. Male Beta RPTC exhibited greater Na+ uptake than male vehicle cells (433 ± 28 vs. 330 ± 26%; P < 0.05); however, Beta exposure had no effect on Na+ uptake in the female cells (255 ± 16 vs. 255 ± 14%; P > 0.05). Ang-(1-7) significantly inhibited Na+ uptake in RPTC from vehicle male (214 ± 11%) and from both vehicle (190 ± 14%) and Beta (209 ± 11%) females but failed to attenuate Na+ uptake in Beta male cells. Beta exposure also abolished stimulation of NO by Ang-(1-7) in male but not female RPTC. Both the Na+ and NO responses to Ang-(1-7) were blocked by Mas receptor antagonist d-Ala7-Ang-(1-7). We conclude that the tubular Ang-(1-7)-Mas-NO pathway is attenuated in males and not females by antenatal Beta exposure. Moreover, since primary cultures of RPTC retain both the sex and Beta-induced phenotype of the adult kidney in vivo they appear to be an appropriate cell model to examine the effects of fetal programming on Na+ handling by the renal tubules.
Collapse
Affiliation(s)
- Yixin Su
- Department of Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Jianli Bi
- Department of Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Victor M Pulgar
- Department of Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, North Carolina; .,Center of Research for Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, North Carolina; and.,Hypertension and Vascular Research Center, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Mark C Chappell
- Hypertension and Vascular Research Center, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - James C Rose
- Department of Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, North Carolina.,Center of Research for Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, North Carolina; and
| |
Collapse
|
28
|
Tain YL, Hsu CN. Developmental Origins of Chronic Kidney Disease: Should We Focus on Early Life? Int J Mol Sci 2017; 18:ijms18020381. [PMID: 28208659 PMCID: PMC5343916 DOI: 10.3390/ijms18020381] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/24/2017] [Accepted: 02/03/2017] [Indexed: 12/20/2022] Open
Abstract
Chronic kidney disease (CKD) is becoming a global burden, despite recent advances in management. CKD can begin in early life by so-called "developmental programming" or "developmental origins of health and disease" (DOHaD). Early-life insults cause structural and functional changes in the developing kidney, which is called renal programming. Epidemiological and experimental evidence supports the proposition that early-life adverse events lead to renal programming and make subjects vulnerable to developing CKD and its comorbidities in later life. In addition to low nephron endowment, several mechanisms have been proposed for renal programming. The DOHaD concept opens a new window to offset the programming process in early life to prevent the development of adult kidney disease, namely reprogramming. Here, we review the key themes on the developmental origins of CKD. We have particularly focused on the following areas: evidence from human studies support fetal programming of kidney disease; insight from animal models of renal programming; hypothetical mechanisms of renal programming; alterations of renal transcriptome in response to early-life insults; and the application of reprogramming interventions to prevent the programming of kidney disease.
Collapse
Affiliation(s)
- You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan.
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
29
|
Qi XZ, Li DL, Tu X, Song CG, Ling F, Wang GX. Preliminary study on the relationship between dexamethasone and pathogen susceptibility on crucian carp (Carassius auratus). FISH & SHELLFISH IMMUNOLOGY 2016; 59:18-24. [PMID: 27744057 DOI: 10.1016/j.fsi.2016.10.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 09/12/2016] [Accepted: 10/10/2016] [Indexed: 06/06/2023]
Abstract
Dexamethasone, a known immunosuppressant, can inhibit the immune response and increase the amount of pathogen in body, but the role of dexamethasone affecting susceptibility of crucian carp (Carassius auratus) to pathogen is unclear. The effects of dexamethasone on susceptibility of crucian carp to Aeromonas hydrophila were investigated in this study. The fish were divided into four groups randomly and injected intraperitoneally by dexamethasone for 0 day (group D), 3 days (group C), 6 days (group B), and 9 days (group A), respectively. The serum lysozyme activity was significantly declined in group A, B and C. Relative immune gene expression such as il-1β, cxcl-8, tnfα and crp in kidney were down-regulation compared to group D. After that crucian carp were infected with A. hydrophila, crucian carp treated by dexamethasone had higher mortality (group A 95%, group B 76%, group C 31%) when compared to group D (4% mortality); the amount of pathogen in was significantly increased (P < 0.05) in liver, kidney and spleen of fish in group A-C compared to group D. These results implicated that higher susceptibility caused by dexamethasone may be induced by the decrease of lysozyme activity and the down-regulation of some immune genes.
Collapse
Affiliation(s)
- Xiao-Zhou Qi
- Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China
| | - Dong-Liang Li
- Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China
| | - Xiao Tu
- Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China
| | - Chen-Guang Song
- Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China
| | - Fei Ling
- Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China.
| | - Gao-Xue Wang
- Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China.
| |
Collapse
|
30
|
Holemans K, Aerts L, Van Assche FA. Fetal Growth Restriction and Consequences for the Offspring in Animal Models. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/s1071-55760300134-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- K. Holemans
- Department of Obstetrics and Gynaecology, Katholieke Universiteit Leuven, Leuven, Belgium; UZ Gasthuisberg, Department of Obstetrics and Gynaecology, Herestraat 49, B-3000 Leuven, Belgium
| | | | - F. A. Van Assche
- Department of Obstetrics and Gynaecology, Katholieke Universiteit Leuven, Leuven, Belgium
| |
Collapse
|
31
|
McDonald TJ, Franko KL, Brown JM, Jenkins SL, Nathanielsz PW, Nijland MJ. Betamethasone in the Last Week of Pregnancy Causes Fetal Growth Rtardation but Not Adult Hypertension in Rats. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/s1071-55760300151-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- T J. McDonald
- Laboratory for Pregnancy and Newborn Research, Department of Obstetrics and Gynecology, New York University School of Medicine, New York, New York
| | | | | | | | | | - M. J. Nijland
- Laboratory for Pregnancy and Newborn Research, Department of Obstetrics and Gynecology, New York University School of Medicine, New York, New York
| |
Collapse
|
32
|
Argeri R, Nishi EE, Volpini RA, Palma BD, Tufik S, Gomes GN. Sleep restriction during pregnancy and its effects on blood pressure and renal function among female offspring. Physiol Rep 2016; 4:4/16/e12888. [PMID: 27796270 PMCID: PMC5002907 DOI: 10.14814/phy2.12888] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 07/11/2016] [Indexed: 12/15/2022] Open
Abstract
The influence of sleep restriction (SR) during pregnancy on blood pressure and renal function among female adult offspring was investigated. Pregnant Wistar rats were distributed into control and SR groups. The SR was performed between the 14th and 20th days of pregnancy (multiple platforms method for 20 h/day). At 2 months of age, half of the offspring from both groups were subjected to an ovariectomy (ovx), and the other half underwent sham surgery. The groups were as follows: control sham (Csham), control ovx (Covx), SR sham (SRsham), and SR ovx (SRovx). Renal function markers and systolic blood pressure (BPi, indirect method) were evaluated at 4, 6, and 8 months. Subsequently, the rats were euthanized, kidneys were removed, and processed for morphological analyses of glomerular area (GA), number of glomeruli per mm3 (NG), and kidney mass (KM). Increased BPi was observed in the Covx, SRsham, and SRovx groups compared to Csham at all ages. Increased plasma creatinine concentration and decreased creatinine clearance were observed in the SRsham and SRovx groups compared to the Csham and Covx groups. The SRovx group showed higher BPi and reduced creatinine clearance compared to all other groups. The SRovx group showed reduced values of GA and KM, as well as increased NG, macrophage infiltration, collagen deposit, and ACE1 expression at the renal cortex. Therefore, SR during pregnancy might be an additional risk factor for developing renal dysfunction and increasing BP in female adult offspring. The absence of female hormones exacerbates the changes caused by SR.
Collapse
Affiliation(s)
- Rogério Argeri
- Department of Physiology, Escola Paulista de Medicina - UNIFESP, São Paulo, Brazil
| | - Erika E Nishi
- Department of Physiology, Escola Paulista de Medicina - UNIFESP, São Paulo, Brazil
| | - Rildo A Volpini
- Department of Psychobiology, Escola Paulista de Medicina - UNIFESP, São Paulo, Brazil
| | - Beatriz D Palma
- Basic Research Laboratory - LIM12, Nephrology - Faculty of Medicine, USP, São Paulo, São Paulo, Brazil.,Centro Universitário São Camilo, São Paulo, Brazil
| | - Sergio Tufik
- Basic Research Laboratory - LIM12, Nephrology - Faculty of Medicine, USP, São Paulo, São Paulo, Brazil
| | - Guiomar N Gomes
- Department of Physiology, Escola Paulista de Medicina - UNIFESP, São Paulo, Brazil
| |
Collapse
|
33
|
Wang YP, Chen X, Zhang ZK, Cui HY, Wang P, Wang Y. Increased renal apoptosis and reduced renin-angiotensin system in fetal growth restriction. J Renin Angiotensin Aldosterone Syst 2016; 17:17/3/1470320316654810. [PMID: 27534427 PMCID: PMC5843940 DOI: 10.1177/1470320316654810] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 04/05/2016] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE The purpose of the study was to characterize changes in apoptosis and the renin-angiotensin system (RAS) in fetal growth restriction (FGR). MATERIALS AND METHOD Fetuses were collected from patients who visited our hospital to either terminate or abort their pregnancy. Kidneys of fetuses which suffered with FGR, (n=11) at gestational age of 33.4±0.5 weeks and those from non-FGR (n=12) at gestational age of 34.3±0.9 weeks were collected. TUNEL, Bax and Bcl-2 staining were examined. The number of nephrons was also counted. Both protein and mRNA levels of renin and angiotensinogen were analyzed. Ultrasound was applied to measure fetus parameters including biparietal diameter, head circumference, circumference of abdomen, and femur length. RESULTS The number of nephrons was positively correlated with fetal weight at termination. Kidneys in the FGR group presented more apoptotic cells than those in the non-FGR group. Renin and angiotensinogen both decreased in the FGR group. Ultrasound revealed that biparietal diameter, abdomen circumference, femur length, and birth weight were all reduced in the FGR group compared with the non-FGR group. Kidney size was also restricted in the FGR group as indicated by ultrasound. CONCLUSION Renal apoptosis might contribute to the reduction of nephrons, and ultrasound plays a vital role in early diagnosis of developmental origins of health and disease (DOHAD).
Collapse
Affiliation(s)
- Yan P Wang
- Department of Obstetrics, Tianjin Central Hospital of Gynecology and Obstetrics, China
| | - Xu Chen
- Department of Obstetrics, Tianjin Central Hospital of Gynecology and Obstetrics, China
| | - Zhi K Zhang
- Department of Obstetrics, Tianjin Central Hospital of Gynecology and Obstetrics, China
| | - Hong Y Cui
- Department of Obstetrics, Tianjin Central Hospital of Gynecology and Obstetrics, China
| | - Peng Wang
- Department of Obstetrics, Tianjin Central Hospital of Gynecology and Obstetrics, China
| | - Yue Wang
- Department of Obstetrics, Tianjin Central Hospital of Gynecology and Obstetrics, China
| |
Collapse
|
34
|
Denic A, Lieske JC, Chakkera HA, Poggio ED, Alexander MP, Singh P, Kremers WK, Lerman LO, Rule AD. The Substantial Loss of Nephrons in Healthy Human Kidneys with Aging. J Am Soc Nephrol 2016; 28:313-320. [PMID: 27401688 DOI: 10.1681/asn.2016020154] [Citation(s) in RCA: 258] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 05/18/2016] [Indexed: 01/28/2023] Open
Abstract
Nephron number may be an important determinant of kidney health but has been difficult to study in living humans. We evaluated 1638 living kidney donors at Mayo Clinic (MN and AZ sites) and Cleveland Clinic. We obtained cortical volumes of both kidneys from predonation computed tomography scans. At the time of kidney transplant, we obtained and analyzed the sections of a biopsy specimen of the cortex to determine the density of both nonsclerotic and globally sclerotic glomeruli; the total number of glomeruli was estimated from cortical volume×glomerular density. Donors 18-29 years old had a mean 990,661 nonsclerotic glomeruli and 16,614 globally sclerotic glomeruli per kidney, which progressively decreased to 520,410 nonsclerotic glomeruli per kidney and increased to 141,714 globally sclerotic glomeruli per kidney in donors 70-75 years old. Between the youngest and oldest age groups, the number of nonsclerotic glomeruli decreased by 48%, whereas cortical volume decreased by only 16% and the proportion of globally sclerotic glomeruli on biopsy increased by only 15%. Clinical characteristics that independently associated with fewer nonsclerotic glomeruli were older age, shorter height, family history of ESRD, higher serum uric acid level, and lower measured GFR. The incomplete representation of nephron loss with aging by either increased glomerulosclerosis or by cortical volume decline is consistent with atrophy and reabsorption of globally sclerotic glomeruli and hypertrophy of remaining nephrons. In conclusion, lower nephron number in healthy adults associates with characteristics reflective of both lower nephron endowment at birth and subsequent loss of nephrons.
Collapse
Affiliation(s)
| | | | - Harini A Chakkera
- Division of Nephrology and Hypertension, Mayo Clinic, Scottsdale, Arizona; and
| | | | | | | | - Walter K Kremers
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota
| | | | | |
Collapse
|
35
|
Denic A, Lieske JC, Chakkera HA, Poggio ED, Alexander MP, Singh P, Kremers WK, Lerman LO, Rule AD. The Substantial Loss of Nephrons in Healthy Human Kidneys with Aging. J Am Soc Nephrol 2016. [PMID: 27401688 DOI: 10.1681/asn.201602154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Nephron number may be an important determinant of kidney health but has been difficult to study in living humans. We evaluated 1638 living kidney donors at Mayo Clinic (MN and AZ sites) and Cleveland Clinic. We obtained cortical volumes of both kidneys from predonation computed tomography scans. At the time of kidney transplant, we obtained and analyzed the sections of a biopsy specimen of the cortex to determine the density of both nonsclerotic and globally sclerotic glomeruli; the total number of glomeruli was estimated from cortical volume×glomerular density. Donors 18-29 years old had a mean 990,661 nonsclerotic glomeruli and 16,614 globally sclerotic glomeruli per kidney, which progressively decreased to 520,410 nonsclerotic glomeruli per kidney and increased to 141,714 globally sclerotic glomeruli per kidney in donors 70-75 years old. Between the youngest and oldest age groups, the number of nonsclerotic glomeruli decreased by 48%, whereas cortical volume decreased by only 16% and the proportion of globally sclerotic glomeruli on biopsy increased by only 15%. Clinical characteristics that independently associated with fewer nonsclerotic glomeruli were older age, shorter height, family history of ESRD, higher serum uric acid level, and lower measured GFR. The incomplete representation of nephron loss with aging by either increased glomerulosclerosis or by cortical volume decline is consistent with atrophy and reabsorption of globally sclerotic glomeruli and hypertrophy of remaining nephrons. In conclusion, lower nephron number in healthy adults associates with characteristics reflective of both lower nephron endowment at birth and subsequent loss of nephrons.
Collapse
Affiliation(s)
| | | | - Harini A Chakkera
- Division of Nephrology and Hypertension, Mayo Clinic, Scottsdale, Arizona; and
| | | | | | | | - Walter K Kremers
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota
| | | | | |
Collapse
|
36
|
Abstract
Hypertension is a risk factor for cardiovascular disease, the leading cause of death worldwide. Although multiple factors contribute to the pathogenesis of hypertension, studies by Dr David Barker reporting an inverse relationship between birth weight and blood pressure led to the hypothesis that slow growth during fetal life increased blood pressure and the risk for cardiovascular disease in later life. It is now recognized that growth during infancy and childhood, in addition to exposure to adverse influences during fetal life, contributes to the developmental programming of increased cardiovascular risk. Numerous epidemiological studies support the link between influences during early life and later cardiovascular health; experimental models provide proof of principle and indicate that numerous mechanisms contribute to the developmental origins of chronic disease. Sex has an impact on the severity of cardiovascular risk in experimental models of developmental insult. Yet, few studies examine the influence of sex on blood pressure and cardiovascular health in low-birth weight men and women. Fewer still assess the impact of ageing on sex differences in programmed cardiovascular risk. Thus, the aim of the present review is to highlight current data about sex differences in the developmental programming of blood pressure and cardiovascular disease.
Collapse
|
37
|
Bivol S, Owen SJ, Rose'Meyer RB. Glucocorticoid-induced changes in glucocorticoid receptor mRNA and protein expression in the human placenta as a potential factor for altering fetal growth and development. Reprod Fertil Dev 2016; 29:RD15356. [PMID: 26844822 DOI: 10.1071/rd15356] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 12/21/2015] [Indexed: 12/30/2022] Open
Abstract
Glucocorticoids (GCs) control essential metabolic processes in virtually every cell in the body and play a vital role in the development of fetal tissues and organ systems. The biological actions of GCs are mediated via glucocorticoid receptors (GRs), the cytoplasmic transcription factors that regulate the transcription of genes involved in placental and fetal growth and development. Several experimental studies have demonstrated that fetal exposure to high maternal GC levels early in gestation is associated with adverse fetal outcomes, including low birthweight, intrauterine growth restriction and anatomical and structural abnormalities that may increase the risk of cardiovascular, metabolic and neuroendocrine disorders in adulthood. The response of the fetus to GCs is dependent on gender, with female fetuses becoming hypersensitive to changes in GC levels whereas male fetuses develop GC resistance in the environment of high maternal GCs. In this paper we review GR function and the physiological and pathological effects of GCs on fetal development. We propose that GC-induced changes in the placental structure and function, including alterations in the expression of GR mRNA and protein levels, may play role in inhibiting in utero fetal growth.
Collapse
|
38
|
Antolic A, Feng X, Wood CE, Richards EM, Keller-Wood M. Increased maternal nighttime cortisol concentrations in late gestation alter glucose and insulin in the neonatal lamb. Physiol Rep 2015; 3:3/9/e12548. [PMID: 26371232 PMCID: PMC4600389 DOI: 10.14814/phy2.12548] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Previous studies in our laboratory have shown that a modest chronic increase in maternal cortisol concentrations impairs maternal glucose metabolism and increases the incidence of perinatal stillbirth. The dramatic outcomes prevented our ability to study the effects of maternal hypercortisolemia on neonatal growth, glucose metabolism, and hypothalamo–pituitary–adrenal axis response. Therefore, we developed a model in which pregnant ewes are infused for 12 h/day at 0.5 mg·kg–1·day–1 from day 115 of gestation until delivery (˜145), elevating nighttime plasma cortisol concentrations. This pattern of elevation of cortisol mimics that in patients with elevated evening cortisol concentrations, as in Cushing’s syndrome or chronic depression. Plasma cortisol, glucose, insulin, and electrolytes were measured during pregnancy and postpartum in control and cortisol-infused ewes and their postnatal lambs for the first 14 days after delivery. Neonatal growth and plasma ACTH, aldosterone, renin activity, and electrolytes, and organ weights at 14 days of age were also measured. Infusion of cortisol increased maternal plasma cortisol during pregnancy but not postpartum, and did not alter neonatal ACTH or cortisol. Although maternal glucose and insulin concentrations were not changed by the maternal infusion of cortisol, neonatal plasma glucose was increased and plasma insulin was decreased compared to those in the control group. Neonatal ponderal index and kidney weight were reduced, left ventricular wall thickness was increased, and plasma sodium and creatinine were increased after maternal cortisol infusion. These results suggest that excess maternal cortisol concentrations in late gestation alter growth, glucose and insulin regulation, and organ maturation in the neonate.
Collapse
Affiliation(s)
- Andrew Antolic
- Department of Pharmacodynamics, University of Florida, Gainesville, Florida
| | - Xiaodi Feng
- Department of Pharmacodynamics, University of Florida, Gainesville, Florida
| | - Charles E Wood
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
| | - Elaine M Richards
- Department of Pharmacodynamics, University of Florida, Gainesville, Florida
| | | |
Collapse
|
39
|
Spulber S, Conti M, DuPont C, Raciti M, Bose R, Onishchenko N, Ceccatelli S. Alterations in circadian entrainment precede the onset of depression-like behavior that does not respond to fluoxetine. Transl Psychiatry 2015; 5:e603. [PMID: 26171984 PMCID: PMC5068723 DOI: 10.1038/tp.2015.94] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 06/03/2015] [Accepted: 06/04/2015] [Indexed: 12/17/2022] Open
Abstract
Growing evidence links adverse prenatal conditions to mood disorders. We investigated the long-term behavioral alterations induced by prenatal exposure to excess glucocorticoids (dexamethasone--DEX). At 12 months, but not earlier, DEX-exposed mice displayed depression-like behavior and impaired hippocampal neurogenesis, not reversible by the antidepressant fluoxetine (FLX). Concomitantly, we observed arrhythmic glucocorticoid secretion and absent circadian oscillations in hippocampal clock gene expression. Analysis of spontaneous activity showed progressive alterations in circadian entrainment preceding depression. Circadian oscillations in clock gene expression (measured by means of quantitative PCR) were also attenuated in skin fibroblasts before the appearance of depression. Interestingly, circadian entrainment is not altered in a model of depression (induced by methylmercury prenatal exposure) that responds to FLX. Altogether, our results suggest that alterations in circadian entrainment of spontaneous activity, and possibly clock gene expression in fibroblasts, may predict the onset of depression and the response to FLX in patients.
Collapse
Affiliation(s)
- S Spulber
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden,Department of Neuroscience, Karolinska Institutet, Retzius väg 8, 17177 Stockholm, Sweden. E-mail: or
| | - M Conti
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - C DuPont
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - M Raciti
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - R Bose
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - N Onishchenko
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - S Ceccatelli
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden,Department of Neuroscience, Karolinska Institutet, Retzius väg 8, 17177 Stockholm, Sweden. E-mail: or
| |
Collapse
|
40
|
Tomat AL, Salazar FJ. Mechanisms involved in developmental programming of hypertension and renal diseases. Gender differences. Horm Mol Biol Clin Investig 2015; 18:63-77. [PMID: 25390003 DOI: 10.1515/hmbci-2013-0054] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 10/25/2013] [Indexed: 01/24/2023]
Abstract
BACKGROUND A substantial body of epidemiological and experimental evidence suggests that a poor fetal and neonatal environment may "program" susceptibility in the offspring to later development of cardiovascular, renal and metabolic diseases. MATERIALS AND METHODS This review focuses on current knowledge from the available literature regarding the mechanisms linking an adverse developmental environment with an increased risk for cardiovascular, renal and metabolic diseases in adult life. Moreover, this review highlights important sex-dependent differences in the adaptation to developmental insults. RESULTS Developmental programming of several diseases is secondary to changes in different mechanisms inducing important alterations in the normal development of several organs that lead to significant changes in birth weight. The different diseases occurring as a consequence of an adverse environment during development are secondary to morphological and functional cardiovascular and renal changes, to epigenetic changes and to an activation of several hormonal and regulatory systems, such as angiotensin II, sympathetic activity, nitric oxide, COX2-derived metabolites, oxidative stress and inflammation. The important sex-dependent differences in the developmental programming of diseases seem to be partly secondary to the effects of sex hormones. Recent studies have shown that the progression of these diseases is accelerated during aging in both sexes. CONCLUSIONS The cardiovascular, renal and metabolic diseases during adult life that occur as a consequence of several insults during fetal and postnatal periods are secondary to multiple structural and functional changes. Future studies are needed in order to prevent the origin and reduce the incidence and consequences of developmental programmed diseases.
Collapse
|
41
|
Abstract
Prenatal treatment of congenital adrenal hyperplasia by administering dexamethasone to a woman presumed to be carrying an at-risk fetus remains a controversial experimental treatment. Review of data from animal experimentation and human trials indicates that dexamethasone cannot be considered safe for the fetus. In animals, prenatal dexamethasone decreases birth weight, affects renal, pancreatic beta cell and brain development, increases anxiety and predisposes to adult hypertension and hyperglycemia. In human studies, prenatal dexamethasone is associated with orofacial clefts, decreased birth weight, poorer verbal working memory, and poorer self-perception of scholastic and social competence. Numerous medical societies have cautioned that prenatal treatment of adrenal hyperplasia with dexamethasone is not appropriate for routine clinical practice and should only be done in Institutional Review Board approved, prospective clinical research settings with written informed consent. The data indicate that this treatment is inconsistent with the classic medical ethical maxim to 'first do no harm'.
Collapse
Affiliation(s)
- Walter L Miller
- Department of Pediatrics and Center for Reproductive Sciences, University of California, San Francisco, San Francisco CA 94143-0556, USA.
| |
Collapse
|
42
|
Abstract
Since their introduction more than forty years ago, antenatal glucocorticoids have become a cornerstone in the management of preterm birth and have been responsible for substantial reductions in neonatal mortality and morbidity. Clinical trials conducted over the past decade have shown that these benefits may be increased further through administration of repeat doses of antenatal glucocorticoids in women at ongoing risk of preterm and in those undergoing elective cesarean at term. At the same time, a growing body of experimental animal evidence and observational data in humans has linked fetal overexposure to maternal glucocorticoids with increased risk of cardiovascular, metabolic and other disorders in later life. Despite these concerns, and somewhat surprisingly, there has been little evidence to date from randomized trials of longer-term harm from clinical doses of synthetic glucocorticoids. However, with wider clinical application of antenatal glucocorticoid therapy there has been greater need to consider the potential for later adverse effects. This paper reviews current evidence for the short- and long-term health effects of antenatal glucocorticoids and discusses the apparent discrepancy between data from randomized clinical trials and other studies.
Collapse
|
43
|
Lima ILB, Rodrigues AFAC, Bergamaschi CT, Campos RR, Hirata AE, Tufik S, Xylaras BDP, Visniauskas B, Chagas JR, Gomes GN. Chronic sleep restriction during pregnancy--repercussion on cardiovascular and renal functioning of male offspring. PLoS One 2014; 9:e113075. [PMID: 25405471 PMCID: PMC4236130 DOI: 10.1371/journal.pone.0113075] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 10/19/2014] [Indexed: 12/21/2022] Open
Abstract
Changes in the maternal environment can induce fetal adaptations that result in the progression of chronic diseases in the offspring. The objective of the present study was to evaluate the effects of maternal chronic sleep restriction on blood pressure, renal function and cardiac baroreflex response on male offspring at adult age. Female 3-month-old Wistar rats were divided in two experimental groups: control (C) and chronic sleep restricted (CSR). Pregnancy was confirmed by vaginal smear. Chronic sleep restricted females were subjected to sleep restriction by the multiple platform technique for 20 h daily, between the 1st and 20th day of pregnancy. After birth, the litters were reduced to 6 rats per mother, and were designated as offspring from control (OC) and offspring from chronic sleep restricted (OCSR). Indirect blood pressure (BPi – tail cuff) was measured by plethysmography in male offspring at 3 months old. Following, the renal function and cardiac baroreflex response were analyzed. Values of BPi in OCSR were significantly higher compared to OC [OC: 127±2.6 (19); OCSR: 144±2.5 (17) mmHg]. The baroreflex sensitivity to the increase of blood pressure was reduced in OCSR [Slope: OC: −2.6±0.15 (9); OCRS: −1.6±0.13 (9)]. Hypothalamic activity of ACE2 was significantly reduced in OCSR compared to OC [OC: 97.4±15 (18); OSR: 60.2±3.6 (16) UAF/min/protein mg]. Renal function alteration was noticed by the increase in glomerular filtration rate (GFR) observed in OCSR [OC: 6.4±0.2 (10); OCSR: 7.4±0.3 (7)]. Chronic sleep restriction during pregnancy caused in the offspring hypertension, altered cardiac baroreflex response, reduced ACE-2 activity in the hypothalamus and renal alterations. Our data suggest that the reduction of sleeping time along the pregnancy is able to modify maternal homeostasis leading to functional alterations in offspring.
Collapse
Affiliation(s)
- Ingrid L. B. Lima
- Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| | | | - Cássia T. Bergamaschi
- Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| | - Ruy R. Campos
- Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| | - Aparecida E. Hirata
- Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| | - Sergio Tufik
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| | - Beatriz D. P. Xylaras
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| | - Bruna Visniauskas
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| | - Jair R. Chagas
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, SP, Brasil
- Departamento de Biociências, Universidade Federal de São Paulo, Santos, SP, Brasil
| | - Guiomar N. Gomes
- Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo, SP, Brasil
- * E-mail:
| |
Collapse
|
44
|
Abstract
The normal development of the kidney may be affected by several factors, including abnormalities in placental function, resulting in fetal growth restriction, exposure to maternal disease states, including hypertension and diabetes, antenatal steroids, chorioamnionitis, and preterm delivery. After preterm birth, several further insults may occur that may influence nephrogenesis and renal health, including exposure to nephrotoxic medications, postnatal growth failure, and obesity after growth restriction. In this review article, common clinical neonatal scenarios are used to highlight these renal risk factors, and the animal and human evidence on which these risk factors are based are discussed.
Collapse
Affiliation(s)
- Megan Sutherland
- Department of Anatomy and Developmental Biology, Monash University, Level 3, Boulevard 76, Wellington Road, Clayton, Victoria 3800, Australia
| | - Dana Ryan
- Department of Anatomy and Developmental Biology, Monash University, Level 3, Boulevard 76, Wellington Road, Clayton, Victoria 3800, Australia
| | - M Jane Black
- Department of Anatomy and Developmental Biology, Monash University, Level 3, Boulevard 76, Wellington Road, Clayton, Victoria 3800, Australia
| | - Alison L Kent
- Department of Neonatology, Centenary Hospital for Women and Children, Canberra Hospital, PO Box 11, Woden 2606, Australian Capital Territory, Australia; Australian National University Medical School, Canberra 2601, Australian Capital Territory, Australia.
| |
Collapse
|
45
|
Berglund D, MacDonald D, Jackson S, Spong R, Issa N, Kukla A, Reule S, Weber M, Matas AJ, Ibrahim HN. Low birthweight and risk of albuminuria in living kidney donors. Clin Transplant 2014; 28:361-7. [PMID: 24547690 PMCID: PMC4393643 DOI: 10.1111/ctr.12321] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2014] [Indexed: 12/15/2022]
Abstract
Low birthweight is linked to hypertension, chronic kidney disease and even end-stage renal disease. We hypothesized that living kidney donors born with lower birthweight may be at increased risk of hypertension, albuminuria, or reduced GFR beyond what is typical following uninephrectomy. Two hundred fifty-seven living kidney donors who donated at the University of Minnesota between 1967 and 2005 underwent iohexol GFR and urinary albumin excretion measurements. Predictors of iohexol GFR <60 mL/min/1.73 m(2), albuminuria, and hypertension were examined using logistic regression. Predictors examined include age at GFR measurement, time since donation, BMI, gender, serum creatinine level (at donation and GFR measurement), systolic and diastolic blood pressure, race, and birthweight. The latter was obtained through self-report and verified through birth certificates and family members. Older age, higher BMI, and time from donation were associated with reduced GFR. Older age and higher BMI were also associated with hypertension. Birthweight was not associated with GFR <60 mL/min/1.73 m(2): OR=0.70, 95% CI (0.28, 1.74), p = 0.45 or hypertension: OR=0.92, 95% CI (0.46, 1.84), p = 0.82 but was associated with albuminuria: OR=0.37, 95% CI (0.15, 0.92), p = 0.03. These data further strengthen the link between low birthweight and potential adverse renal outcomes.
Collapse
Affiliation(s)
- Danielle Berglund
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Paixão AD, Alexander BT. How the kidney is impacted by the perinatal maternal environment to develop hypertension. Biol Reprod 2013; 89:144. [PMID: 24227755 DOI: 10.1095/biolreprod.113.111823] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Environmental conditions during perinatal development such as maternal undernutrition, maternal glucocorticoids, placental insufficiency, and maternal sodium overload can program changes in renal Na(+) excretion leading to hypertension. Experimental studies indicate that fetal exposure to an adverse maternal environment may reduce glomerular filtration rate by decreasing the surface area of the glomerular capillaries. Moreover, fetal responses to environmental insults during early life that contribute to the development of hypertension may include increased expression of tubular apical or basolateral membrane Na(+) transporters and increased production of renal superoxide leading to enhanced Na(+) reabsorption. This review will address the role of these potential renal mechanisms in the fetal programming of hypertension in experimental models induced by maternal undernutrition, fetal exposure to glucocorticoids, placental insufficiency, and maternal sodium overload in the rat.
Collapse
Affiliation(s)
- Ana D Paixão
- Department of Physiology and Pharmacology, Center of Biological Sciences, Federal University of Pernambuco, Recife, Brazil
| | | |
Collapse
|
47
|
Acute kidney injury in a single neonatal intensive care unit in Turkey. World J Pediatr 2013; 9:323-9. [PMID: 24235066 DOI: 10.1007/s12519-012-0371-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 08/15/2012] [Indexed: 10/26/2022]
Abstract
BACKGROUND Although advances in perinatal medicine have increased the survival rates of critically ill neonates, acute kidney injury (AKI) is still one of the major causes of mortality and morbidity in neonatal intensive care units. This study aimed to determine the prevalence of AKI and analyze demographic data and risk factors associated with the mortality or morbidity. METHODS Of 1992 neonates hospitalized between January 2009 and January 2011, 168 with AKI were reviewed in the study. The diagnosis of AKI was based on plasma creatinine level >1.5 mg/dL, which persists for more than 24 hours or increases more than 0.3 mg/dL per day after the first 48 hours of birth while showing normal maternal renal function. RESULTS The prevalence of AKI was 8.4%. The common cause of AKI was respiratory distress syndrome, followed by sepsis, asphyxia, dehydration, congenital anomalies of the urinary tract, congenital heart disease, and medication. The prevalence of AKI in neonates with birth weight lower than 1500 g was about three-fold higher than in those with birth weight higher than 1500 g (P<0.05). Pregnancy-induced hypertension, preterm prolonged rupture of membranes, and administration of antenatal corticosteroid were associated with increased risk of AKI (P<0.05). Umbilical vein catheterization, mechanical ventilation and ibuprofen therapy for patent ductus arteriosus closure were found to be associated with AKI (P<0.05). The overall mortality rate was 23.8%. Multivariate analysis revealed that birth weight less than 1500 g, mechanical ventilation, bronchopulmonary dysplasia, anuria, and dialysis were the risk factors for the mortality of infants with AKI. CONCLUSIONS Prenatal factors and medical devices were significantly associated with AKI. Early detection of risk factors can reduce the mortality of AKI patients.
Collapse
|
48
|
Gunta SS, Mak RH. Is obesity a risk factor for chronic kidney disease in children? Pediatr Nephrol 2013; 28:1949-56. [PMID: 23150030 DOI: 10.1007/s00467-012-2353-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 10/04/2012] [Accepted: 10/05/2012] [Indexed: 12/13/2022]
Abstract
There is a rapid increase worldwide in the prevalence of obesity in adults and children. Obesity is not only a comorbidity for chronic kidney disease (CKD) but may also be a risk factor for CKD. Epidemiological correlations and pathophysiological changes have been observed associating obesity with CKD. Low birth weight may be associated with both obesity and low nephron mass, leading to CKD later in life. Elevated levels of adipokines, such as leptin and adiponectin, in obesity may be factors in CKD pathogenesis and progression. Furthermore, various other factors, such as hypertension, increased cardiovascular morbidity, insulin resistance, dyslipidemia, and lipotoxicity, may play significant roles in the pathogenesis of CKD in obesity. Reduction in obesity, which is a potentially modifiable risk factor, might help decrease the burden of CKD in the population. Apart from individualized options, community-based interventions have the potential to create a strong impact in this condition.
Collapse
Affiliation(s)
- Sujana S Gunta
- Division of Pediatric Nephrology, Rady Children's Hospital San Diego, University of California, San Diego, 9500 Gilman Drive. MC 0634, La Jolla, CA 92093-0634, USA
| | | |
Collapse
|
49
|
Amar M, Shama IA, Enaia A, Hind A, Hager A. Effects of Various Levels of Oral Doses Dexamethasone (Al-nagma) Abused as Cosmetic by Sudanese Women on Wistar Rats. JOURNAL OF MEDICAL SCIENCES 2013. [DOI: 10.3923/jms.2013.432.438] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
50
|
Singh RR, Cuffe JSM, Moritz KM. Short- and long-term effects of exposure to natural and synthetic glucocorticoids during development. Clin Exp Pharmacol Physiol 2013; 39:979-89. [PMID: 22971052 DOI: 10.1111/1440-1681.12009] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
1.Glucocorticoids (GCs) are necessary for fetal development, but clinical and experimental studies suggest that excess exposure may be detrimental to health in both the short and longer term. 2.Exposure of the fetus to synthetic GCs can occur if the mother has a medical condition requiring GC therapy (e.g. asthma) or if she threatens to deliver her baby prematurely. Synthetic GCs can readily cross the placenta and treatment is beneficial, at least in the short term, for maternal health and fetal survival. 3.Maternal stress during pregnancy can raise endogenous levels of the natural GC cortisol. A significant proportion of the cortisol is inactivated by the placental 'GC barrier'. However, exposure to severe stress during pregnancy can result in increased risk of miscarriage, low birth weight and behavioural deficits in children. 4.Animal studies have shown that excess exposure to both synthetic and natural GCs can alter normal organ development, including that of the heart, brain and kidney. The nature and severity of the organ impairment is dependent upon the timing of exposure and, in some cases, the type of GC used and the sex of the fetus. 5.In animal models, exposure to elevated GCs during pregnancy has been associated with adult-onset diseases, including elevated blood pressure, impaired cardiac and vascular function and altered metabolic function.
Collapse
Affiliation(s)
- Reetu R Singh
- School of Biomedical Sciences, The University of Queensland, St Lucia, Qld., Australia
| | | | | |
Collapse
|