1
|
Primiani CT, Lee JK, O’Brien CE, Chen MW, Perin J, Kulikowicz E, Santos P, Adams S, Lester B, Rivera-Diaz N, Olberding V, Niedzwiecki MV, Ritzl EK, Habela CW, Liu X, Yang ZJ, Koehler RC, Martin LJ. Hypothermic Protection in Neocortex Is Topographic and Laminar, Seizure Unmitigating, and Partially Rescues Neurons Depleted of RNA Splicing Protein Rbfox3/NeuN in Neonatal Hypoxic-Ischemic Male Piglets. Cells 2023; 12:2454. [PMID: 37887298 PMCID: PMC10605428 DOI: 10.3390/cells12202454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023] Open
Abstract
The effects of hypothermia on neonatal encephalopathy may vary topographically and cytopathologically in the neocortex with manifestations potentially influenced by seizures that alter the severity, distribution, and type of neuropathology. We developed a neonatal piglet survival model of hypoxic-ischemic (HI) encephalopathy and hypothermia (HT) with continuous electroencephalography (cEEG) for seizures. Neonatal male piglets received HI-normothermia (NT), HI-HT, sham-NT, or sham-HT treatments. Randomized unmedicated sham and HI piglets underwent cEEG during recovery. Survival was 2-7 days. Normal and pathological neurons were counted in different neocortical areas, identified by cytoarchitecture and connectomics, using hematoxylin and eosin staining and immunohistochemistry for RNA-binding FOX-1 homolog 3 (Rbfox3/NeuN). Seizure burden was determined. HI-NT piglets had a reduced normal/total neuron ratio and increased ischemic-necrotic/total neuron ratio relative to sham-NT and sham-HT piglets with differing severities in the anterior and posterior motor, somatosensory, and frontal cortices. Neocortical neuropathology was attenuated by HT. HT protection was prominent in layer III of the inferior parietal cortex. Rbfox3 immunoreactivity distinguished cortical neurons as: Rbfox3-positive/normal, Rbfox3-positive/ischemic-necrotic, and Rbfox3-depleted. HI piglets had an increased Rbfox3-depleted/total neuron ratio in layers II and III compared to sham-NT piglets. Neuronal Rbfox3 depletion was partly rescued by HT. Seizure burdens in HI-NT and HI-HT piglets were similar. We conclude that the neonatal HI piglet neocortex has: (1) suprasylvian vulnerability to HI and seizures; (2) a limited neuronal cytopathological repertoire in functionally different regions that engages protective mechanisms with HT; (3) higher seizure burden, insensitive to HT, that is correlated with more panlaminar ischemic-necrotic neurons in the somatosensory cortex; and (4) pathological RNA splicing protein nuclear depletion that is sensitive to HT. This work demonstrates that HT protection of the neocortex in neonatal HI is topographic and laminar, seizure unmitigating, and restores neuronal depletion of RNA splicing factor.
Collapse
Affiliation(s)
- Christopher T. Primiani
- Department of Neurology, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA
| | - Jennifer K. Lee
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA; (J.K.L.); (E.K.); (V.O.); (M.V.N.)
| | - Caitlin E. O’Brien
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA; (J.K.L.); (E.K.); (V.O.); (M.V.N.)
| | - May W. Chen
- Department Pediatrics, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA
| | - Jamie Perin
- Department of Biostatistics and Epidemiology, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA
| | - Ewa Kulikowicz
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA; (J.K.L.); (E.K.); (V.O.); (M.V.N.)
| | - Polan Santos
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA; (J.K.L.); (E.K.); (V.O.); (M.V.N.)
| | - Shawn Adams
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA; (J.K.L.); (E.K.); (V.O.); (M.V.N.)
| | - Bailey Lester
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA; (J.K.L.); (E.K.); (V.O.); (M.V.N.)
| | - Natalia Rivera-Diaz
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA; (J.K.L.); (E.K.); (V.O.); (M.V.N.)
| | - Valerie Olberding
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA; (J.K.L.); (E.K.); (V.O.); (M.V.N.)
| | - Mark V. Niedzwiecki
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA; (J.K.L.); (E.K.); (V.O.); (M.V.N.)
| | - Eva K. Ritzl
- Department of Neurology, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA
| | - Christa W. Habela
- Department of Neurology, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA
| | - Xiuyun Liu
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA; (J.K.L.); (E.K.); (V.O.); (M.V.N.)
| | - Zeng-Jin Yang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA; (J.K.L.); (E.K.); (V.O.); (M.V.N.)
| | - Raymond C. Koehler
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA; (J.K.L.); (E.K.); (V.O.); (M.V.N.)
| | - Lee J. Martin
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA; (J.K.L.); (E.K.); (V.O.); (M.V.N.)
- Department of Pathology, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA
- The Pathobiology Graduate Training Program, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA
| |
Collapse
|
2
|
Skwarzynska D, Sun H, Kasprzak I, Sharma S, Williamson J, Kapur J. Glycolytic lactate production supports status epilepticus in experimental animals. Ann Clin Transl Neurol 2023; 10:1873-1884. [PMID: 37632130 PMCID: PMC10578888 DOI: 10.1002/acn3.51881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/27/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
OBJECTIVE Status epilepticus (SE) requires rapid intervention to prevent cerebral injury and mortality. The ketogenic diet, which bypasses glycolysis, is a promising remedy for patients with refractory SE. We tested the role of glycolytic lactate production in sustaining SE. METHODS Extracellular lactate and glucose concentration during a seizure and SE in vivo was measured using lactate and glucose biosensors. A lactate dehydrogenase inhibitor, oxamate, blocked pyruvate to lactate conversion during SE. Video-EEG recordings evaluated seizure duration, severity, and immunohistochemistry was used to determine neuronal loss. Genetically encoded calcium indicator GCaMP7 was used to study the effect of oxamate on CA1 pyramidal neurons in vitro. Spontaneous excitatory postsynaptic currents (sEPSCs) were recorded from CA1 neurons to study oxamate's impact on neurotransmission. RESULTS The extracellular glucose concentration dropped rapidly during seizures, and lactate accumulated in the extracellular space. Inhibition of pyruvate to lactate conversion with oxamate terminated SE in mice. There was less neuronal loss in treated compared to control mice. Oxamate perfusion decreased tonic and phasic neuronal activity of GCaMP7-expressing CA1 pyramidal neurons in vitro. Oxamate application reduced the frequency, but not amplitude of sEPSCs recorded from CA1 neurons, suggesting an effect on the presynaptic glutamatergic neurotransmission. INTERPRETATION A single seizure and SE stimulate lactate production. Diminishing pyruvate to lactate conversion with oxamate terminated SE and reduced associated neuronal death. Oxamate reduced neuronal excitability and excitatory neurotransmission at the presynaptic terminal. Glycolytic lactate production sustains SE and is an attractive therapeutic target.
Collapse
Affiliation(s)
- Daria Skwarzynska
- Neuroscience Graduate ProgramUniversity of VirginiaCharlottesvilleVirginia22908USA
| | - Huayu Sun
- Department of NeurologyUniversity of VirginiaCharlottesvilleVirginia22908USA
| | - Izabela Kasprzak
- Department of NeurologyUniversity of VirginiaCharlottesvilleVirginia22908USA
| | - Supriya Sharma
- Department of NeurologyUniversity of VirginiaCharlottesvilleVirginia22908USA
| | - John Williamson
- Department of NeurologyUniversity of VirginiaCharlottesvilleVirginia22908USA
| | - Jaideep Kapur
- Department of NeurologyUniversity of VirginiaCharlottesvilleVirginia22908USA
- UVA Brain InstituteUniversity of VirginiaCharlottesvilleVirginia22908USA
| |
Collapse
|
3
|
Andelius TCK, Bøgh N, Pedersen MV, Omann C, Andersen M, Andersen HB, Hjortdal VE, Pedersen M, Rasmussen MB, Kyng KJ, Henriksen TB. Early changes in cerebral metabolism after perinatal hypoxia-ischemia: a study in normothermic and hypothermic piglets. Front Pediatr 2023; 11:1167396. [PMID: 37325341 PMCID: PMC10264796 DOI: 10.3389/fped.2023.1167396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction Hypoxic ischemic encephalopathy (HIE) after a perinatal insult is a dynamic process that evolves over time. Therapeutic hypothermia (TH) is standard treatment for severe to moderate HIE. There is a lack of evidence on the temporal change and interrelation of the underlying mechanisms that constitute HIE under normal and hypothermic conditions. We aimed to describe early changes in intracerebral metabolism after a hypoxic-ischemic insult in piglets treated with and without TH and in controls. Methods Three devices were installed into the left hemisphere of 24 piglets: a probe measuring intracranial pressure, a probe measuring blood flow and oxygen tension, and a microdialysis catheter measuring lactate, glucose, glycerol, and pyruvate. After a standardized hypoxic ischemic insult, the piglets were randomized to either TH or normothermia. Results Glycerol, a marker of cell lysis, increased immediately after the insult in both groups. There was a secondary increase in glycerol in normothermic piglets but not in piglets treated with TH. Intracerebral pressure, blood flow, oxygen tension, and extracellular lactate remained stable during the secondary increase in glycerol. Conclusion This exploratory study depicted the development of the pathophysiological mechanisms in the hours following a perinatal hypoxic-ischemic insult with and without TH and controls.
Collapse
Affiliation(s)
- Ted C. K. Andelius
- Department of Pediatrics, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Nikolaj Bøgh
- The MR Research Centre, Aarhus University, Aarhus, Denmark
| | - Mette V. Pedersen
- Department of Pediatrics, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Camilla Omann
- Department of Cardiothoracic and Vascular Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Mads Andersen
- Department of Pediatrics, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Hannah B. Andersen
- Department of Pediatrics, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Vibeke E. Hjortdal
- Department of Cardiothoracic and Vascular Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Michael Pedersen
- Comparative Medicine Lab, Aarhus University Hospital, Aarhus, Denmark
| | - Martin B. Rasmussen
- Department of Pediatrics, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Kasper J. Kyng
- Department of Pediatrics, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Tine B. Henriksen
- Department of Pediatrics, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
4
|
Cai M, Wang H, Song H, Yang R, Wang L, Xue X, Sun W, Hu J. Lactate Is Answerable for Brain Function and Treating Brain Diseases: Energy Substrates and Signal Molecule. Front Nutr 2022; 9:800901. [PMID: 35571940 PMCID: PMC9099001 DOI: 10.3389/fnut.2022.800901] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
Research to date has provided novel insights into lactate's positive role in multiple brain functions and several brain diseases. Although notable controversies and discrepancies remain, the neurobiological role and the metabolic mechanisms of brain lactate have now been described. A theoretical framework on the relevance between lactate and brain function and brain diseases is presented. This review begins with the source and route of lactate formation in the brain and food; goes on to uncover the regulatory effect of lactate on brain function; and progresses to gathering the application and concentration variation of lactate in several brain diseases (diabetic encephalopathy, Alzheimer's disease, stroke, traumatic brain injury, and epilepsy) treatment. Finally, the dual role of lactate in the brain is discussed. This review highlights the biological effect of lactate, especially L-lactate, in brain function and disease studies and amplifies our understanding of past research.
Collapse
Affiliation(s)
- Ming Cai
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Hongbiao Wang
- Department of Physical Education, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Haihan Song
- Central Lab, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Ruoyu Yang
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Liyan Wang
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Xiangli Xue
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Wanju Sun
- Central Lab, Shanghai Pudong New Area People's Hospital, Shanghai, China
- *Correspondence: Wanju Sun
| | - Jingyun Hu
- Central Lab, Shanghai Pudong New Area People's Hospital, Shanghai, China
- Jingyun Hu
| |
Collapse
|
5
|
Zhou KQ, McDouall A, Drury PP, Lear CA, Cho KHT, Bennet L, Gunn AJ, Davidson JO. Treating Seizures after Hypoxic-Ischemic Encephalopathy-Current Controversies and Future Directions. Int J Mol Sci 2021; 22:ijms22137121. [PMID: 34281174 PMCID: PMC8268683 DOI: 10.3390/ijms22137121] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 12/20/2022] Open
Abstract
Seizures are common in newborn infants with hypoxic-ischemic encephalopathy and are highly associated with adverse neurodevelopmental outcomes. The impact of seizure activity on the developing brain and the most effective way to manage these seizures remain surprisingly poorly understood, particularly in the era of therapeutic hypothermia. Critically, the extent to which seizures exacerbate brain injury or merely reflect the underlying evolution of injury is unclear. Current anticonvulsants, such as phenobarbital and phenytoin have poor efficacy and preclinical studies suggest that most anticonvulsants are associated with adverse effects on the developing brain. Levetiracetam seems to have less potential neurotoxic effects than other anticonvulsants but may not be more effective. Given that therapeutic hypothermia itself has significant anticonvulsant effects, randomized controlled trials of anticonvulsants combined with therapeutic hypothermia, are required to properly determine the safety and efficacy of these drugs. Small clinical studies suggest that prophylactic phenobarbital administration may improve neurodevelopmental outcomes compared to delayed administration; however, larger high-quality studies are required to confirm this. In conclusion, there is a distinct lack of high-quality evidence for whether and to what extent neonatal seizures exacerbate brain damage after hypoxia-ischemia and how best to manage them in the era of therapeutic hypothermia.
Collapse
|
6
|
Lee JK, Santos PT, Chen MW, O'Brien CE, Kulikowicz E, Adams S, Hardart H, Koehler RC, Martin LJ. Combining Hypothermia and Oleuropein Subacutely Protects Subcortical White Matter in a Swine Model of Neonatal Hypoxic-Ischemic Encephalopathy. J Neuropathol Exp Neurol 2021; 80:182-198. [PMID: 33212486 DOI: 10.1093/jnen/nlaa132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Neonatal hypoxia-ischemia (HI) causes white matter injury that is not fully prevented by therapeutic hypothermia. Adjuvant treatments are needed. We compared myelination in different piglet white matter regions. We then tested whether oleuropein (OLE) improves neuroprotection in 2- to 4-day-old piglets randomized to undergo HI or sham procedure and OLE or vehicle administration beginning at 15 minutes. All groups received overnight hypothermia and rewarming. Injury in the subcortical white matter, corpus callosum, internal capsule, putamen, and motor cortex gray matter was assessed 1 day later. At baseline, piglets had greater subcortical myelination than in corpus callosum. Hypothermic HI piglets had scant injury in putamen and cerebral cortex. However, hypothermia alone did not prevent the loss of subcortical myelinating oligodendrocytes or the reduction in subcortical myelin density after HI. Combining OLE with hypothermia improved post-HI subcortical white matter protection by preserving myelinating oligodendrocytes, myelin density, and oligodendrocyte markers. Corpus callosum and internal capsule showed little HI injury after hypothermia, and OLE accordingly had minimal effect. OLE did not affect putamen or motor cortex neuron counts. Thus, OLE combined with hypothermia protected subcortical white matter after HI. As an adjuvant to hypothermia, OLE may subacutely improve regional white matter protection after HI.
Collapse
Affiliation(s)
- Jennifer K Lee
- From the Department of Anesthesiology and Critical Care Medicine
| | - Polan T Santos
- From the Department of Anesthesiology and Critical Care Medicine
| | - May W Chen
- Division of Neonatology, Department of Pediatrics
| | | | - Ewa Kulikowicz
- From the Department of Anesthesiology and Critical Care Medicine
| | - Shawn Adams
- From the Department of Anesthesiology and Critical Care Medicine
| | - Henry Hardart
- From the Department of Anesthesiology and Critical Care Medicine
| | | | - Lee J Martin
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
7
|
Ahmad-Molaei L, Pourhamzeh M, Ahadi R, Khodagholi F, Hassanian-Moghaddam H, Haghparast A. Time-Dependent Changes in the Serum Levels of Neurobiochemical Factors After Acute Methadone Overdose in Adolescent Male Rat. Cell Mol Neurobiol 2020; 41:1635-1649. [DOI: 10.1007/s10571-020-00931-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/20/2020] [Indexed: 12/20/2022]
|
8
|
Abstract
Therapeutic hypothermia is the only treatment currently recommended for moderate or severe encephalopathy of hypoxic‒ischaemic origin in term neonates. Though the effects of hypothermia on human physiology have been explored for many decades, much of the data comes from animal or adult studies; the latter originally after accidental hypothermia, followed by application of controlled hypothermia after cardiac arrest or trauma, or during cardiopulmonary bypass. Though this work is informative, the effects of hypothermia on neonatal physiology after perinatal asphyxia must be considered in the context of a prolonged hypoxic insult that has already induced a number of significant physiological sequelae. This article reviews the effects of therapeutic hypothermia on respiratory, cardiovascular, and metabolic parameters, including glycaemic control and feeding requirements. The potential pitfalls of blood‒gas analysis and overtreatment of physiological changes in cardiovascular parameters are also discussed. Finally, the effects of hypothermia on drug metabolism are covered, focusing on how the pharmacokinetics, pharmacodynamics, and dosing requirements of drugs frequently used in neonatal intensive care may change during therapeutic hypothermia.
Collapse
|
9
|
Lactate shuttling and lactate use as fuel after traumatic brain injury: metabolic considerations. J Cereb Blood Flow Metab 2014; 34:1736-48. [PMID: 25204393 PMCID: PMC4269761 DOI: 10.1038/jcbfm.2014.153] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 07/31/2014] [Indexed: 11/08/2022]
Abstract
Lactate is proposed to be generated by astrocytes during glutamatergic neurotransmission and shuttled to neurons as 'preferred' oxidative fuel. However, a large body of evidence demonstrates that metabolic changes during activation of living brain disprove essential components of the astrocyte-neuron lactate shuttle model. For example, some glutamate is oxidized to generate ATP after its uptake into astrocytes and neuronal glucose phosphorylation rises during activation and provides pyruvate for oxidation. Extension of the notion that lactate is a preferential fuel into the traumatic brain injury (TBI) field has important clinical implications, and the concept must, therefore, be carefully evaluated before implementation into patient care. Microdialysis studies in TBI patients demonstrate that lactate and pyruvate levels and lactate/pyruvate ratios, along with other data, have important diagnostic value to distinguish between ischemia and mitochondrial dysfunction. Results show that lactate release from human brain to blood predominates over its uptake after TBI, and strong evidence for lactate metabolism is lacking; mitochondrial dysfunction may inhibit lactate oxidation. Claims that exogenous lactate infusion is energetically beneficial for TBI patients are not based on metabolic assays and data are incorrectly interpreted.
Collapse
|
10
|
Contributions of microdialysis to new alternative therapeutics for hepatic encephalopathy. Int J Mol Sci 2013; 14:16184-206. [PMID: 23921686 PMCID: PMC3759906 DOI: 10.3390/ijms140816184] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 07/24/2013] [Accepted: 07/29/2013] [Indexed: 02/07/2023] Open
Abstract
Hepatic encephalopathy (HE) is a common complication of cirrhosis, of largely reversible impairment of brain function occurring in patients with acute or chronic liver failure or when the liver is bypassed by portosystemic shunts. The mechanisms causing this brain dysfunction are still largely unclear. The need to avoid complications caused by late diagnosis has attracted interest to understand the mechanisms underlying neuronal damage in order to find markers that will allow timely diagnosis and to propose new therapeutic alternatives to improve the care of patients. One of the experimental approaches to study HE is microdialysis; this technique allows evaluation of different chemical substances in several organs through the recollection of samples in specific places by semi-permeable membranes. In this review we will discuss the contributions of microdialysis in the understanding of the physiological alterations in human hepatic encephalopathy and experimental models and the studies to find novel alternative therapies for this disease.
Collapse
|
11
|
Jacobson Misbe EN, Richards TL, McPherson RJ, Burbacher TM, Juul SE. Perinatal asphyxia in a nonhuman primate model. Dev Neurosci 2011; 33:210-21. [PMID: 21659720 DOI: 10.1159/000327246] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 03/05/2011] [Indexed: 01/13/2023] Open
Abstract
Perinatal asphyxia is a leading cause of brain injury in neonates, occurring in 2-4 per 1,000 live births, and there are limited treatment options. Because of their similarity to humans, nonhuman primates are ideal for performing preclinical tests of safety and efficacy for neurotherapeutic interventions. We previously developed a primate model of acute perinatal asphyxia using 12-15 min of umbilical cord occlusion. Continuing this research, we have increased cord occlusion time from 15 to 18 min and extended neurodevelopmental follow-up to 9 months. The purpose of this report is to evaluate the increase in morbidity associated with 18 min of asphyxia by comparing indices obtained from colony controls, nonasphyxiated controls and asphyxiated animals. Pigtail macaques were delivered by hysterotomy after 0, 15 or 18 min of cord occlusion, then resuscitated. Over the ensuing 9 months, for each biochemical and physiologic parameters, behavioral and developmental evaluations, and structural and spectroscopic MRI were recorded. At birth, all asphyxiated animals required resuscitation with positive pressure ventilation and exhibited biochemical and clinical characteristics diagnostic of hypoxic-ischemic encephalopathy, including metabolic acidosis and attenuated brain activity. Compared with controls, asphyxiated animals developed long-term physical and cognitive deficits. This preliminary report characterizes the acute and chronic consequences of perinatal asphyxia in a nonhuman primate model, and describes diagnostic imaging tools for quantifying correlates of neonatal brain injury as well as neurodevelopmental tests for evaluating early motor and cognitive outcomes.
Collapse
|
12
|
Chakkarapani E, Dingley J, Liu X, Hoque N, Aquilina K, Porter H, Thoresen M. Xenon enhances hypothermic neuroprotection in asphyxiated newborn pigs. Ann Neurol 2010; 68:330-41. [PMID: 20658563 DOI: 10.1002/ana.22016] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE To investigate whether inhaling 50% xenon during hypothermia (HT) offers better neuroprotection than xenon or HT alone. METHODS Ninety-eight newborn pigs underwent a 45-minute global hypoxic-ischemic insult severe enough to cause permanent brain injury, and 12 pigs underwent sham protocol. Pigs then received intravenous anesthesia and were randomized to 6 treatment groups: (1) normothermia (NT; rectal temperature 38.5 degrees C, n = 18); (2) 18 hours 50% xenon with NT (n = 12); (3) 12 hours HT (rectal temperature 33.5 degrees C, n = 18); (4) 24 hours HT (rectal temperature 33.5 degrees C, n = 17); (5) 18 hours 50% xenon with 12 hours HT (n = 18); and (6) 18 hours 50% xenon with 24 hours HT (n = 17). Fifty percent xenon was administered via a closed circle with 30% oxygen and 20% nitrogen. After 10 hours rewarming, cooled pigs remained normothermic until terminal perfusion fixation at 72 hours. Global and regional brain neuropathology and clinical neurological scores were performed. RESULTS Xenon (p = 0.011) and 12 or 24 hours HT (p = 0.003) treatments offered significant histological global, and regional neuroprotection. Combining xenon with HT yielded an additive neuroprotective effect, as there was no interaction effect (p = 0.54). Combining Xenon with 24 hours HT offered 75% global histological neuroprotection with similarly improved regional neuroprotection: thalamus (100%), brainstem (100%), white matter (86%), basal ganglia (76%), cortical gray matter (74%), cerebellum (73%), and hippocampus (72%). Neurology scores improved in the 24-hour HT and combined xenon HT groups at 72 hours. INTERPRETATION Combining xenon with HT is a promising therapy for severely encephalopathic infants, doubling the neuroprotection offered by HT alone.
Collapse
Affiliation(s)
- Elavazhagan Chakkarapani
- Department of Clinical Sciences at South Bristol, University of Bristol, Bristol, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
13
|
Therapeutic hypothermia for neonatal hypoxic ischaemic encephalopathy. Early Hum Dev 2010; 86:361-7. [PMID: 20570448 DOI: 10.1016/j.earlhumdev.2010.05.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Accepted: 05/07/2010] [Indexed: 01/17/2023]
Abstract
There is now a strong evidence base supporting therapeutic hypothermia for infants with moderate or severe neonatal hypoxic ischaemic encephalopathy. Experimental and clinical data indicate that induced hypothermia reduces cerebral hypoxic ischaemic injury and randomized clinical trials in newborns with hypoxic ischaemic encephalopathy confirm improved neurological outcomes and survival at 18 months of age with therapeutic hypothermia. Studies are on-going to confirm whether these benefits are maintained in later childhood. Efforts are now focused on optimal implementation of therapeutic hypothermia in clinical practice: training in the assessment of severity of encephalopathy; initiation and maintenance of hypothermia before admission to a cooling facility; care of the infant during cooling; and appropriate investigation and follow-up are crucial for optimizing neurological outcomes. The establishment of registries of infants with hypoxic ischaemic encephalopathy and audit are important for guiding clinical practice.
Collapse
|
14
|
Amer-Wåhlin I, Nord A, Bottalico B, Hansson SR, Ley D, Marsál K, Ungerstedt U, Nordström CH. Fetal cerebral energy metabolism and electrocardiogram during experimental umbilical cord occlusion and resuscitation. J Matern Fetal Neonatal Med 2010; 23:158-66. [PMID: 20074023 DOI: 10.3109/14767050903067360] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE The purpose of this experimental study was to elucidate alterations in fetal energy metabolism in relation to ECG changes during extreme fetal asphyxia, postnatal resuscitation and the immediate post-resuscitatory phase. STUDY DESIGN Five near-term fetal sheep were subjected to umbilical cord occlusion until cardiac arrest followed by delivery, resuscitation and postnatal pressure-controlled ventilation. Four sheep served as sham controls and were delivered immediately after ligation of the umbilical cord. Fetal ECG was analysed online for changes of the ST segment. Fetal metabolism was monitored by intracerebral and subcutaneous microdialysis catheters. RESULTS Fetal ECG reacted on cord occlusion with an increase in the T-wave height followed by changes in intracerebral levels of oxidative parameters. Cerebral lactate/pyruvate ratio and glutamate increased to median (range) of 240 (200-744) and 34.0 (22.6-60.5) mmol/l, respectively; both parameters returned to baseline after resuscitation. Cerebral glucose decreased to 0.1 (0.08-0.12) mmol/l after occlusion and increased above baseline upon resuscitation. In subcutaneous tissue as well as blood the increase in lactate occurred with a delay compared to cerebral levels. CONCLUSION The fetal ECG changes related to asphyxia preceded the increase in excitotoxicity as determined by increase in cerebral glutamate during asphyxia. Cerebral lactate increase was superior to subcutaneous lactate increase.
Collapse
Affiliation(s)
- Isis Amer-Wåhlin
- Department of Clinical Sciences Lund, Lund University, Lund, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Darbin O, Risso JJ, Carre E, Lonjon M, Naritoku DK. Metabolic changes in rat striatum following convulsive seizures. Brain Res 2005; 1050:124-9. [PMID: 15963475 DOI: 10.1016/j.brainres.2005.05.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2004] [Revised: 05/11/2005] [Accepted: 05/13/2005] [Indexed: 10/25/2022]
Abstract
Generalized convulsive seizures increase glucose utilization within the brain but their impact on metabolism is not well known. The striatum receives excitatory input from widespread sources in the brain and could potentially reflect energy depletion in the brain resulting from generalized seizures. We utilized multiprobe microdialysis in freely moving rats subjected to maximal electroshock to simultaneously measure glucose, lactate, and pyruvate levels in the interstitial space within striatum and in peripheral subcutaneous tissue. A brief convulsive seizure was associated with marked changes in striatal and peripheral metabolism during the post-ictal state that lasted up to 1 h. There were significant central and peripheral elevations of glucose, pyruvate, and lactate, reflecting increased glucose metabolism. Interestingly, the lactate-to-pyruvate ratio increased significantly in the periphery but remained unchanged in the striatum. Thus, there appears to be brain mechanisms that maintain adequate energy sources and prevent anaerobic shift during the post-ictal state.
Collapse
Affiliation(s)
- Olivier Darbin
- Department of Neurology, Southern Illinois University School of Medicine, PO Box 19637, Springfield, IL 62794-9637, USA
| | | | | | | | | |
Collapse
|
16
|
Tooley JR, Eagle RC, Satas S, Thoresen M. Significant head cooling can be achieved while maintaining normothermia in the newborn piglet. Arch Dis Child Fetal Neonatal Ed 2005; 90:F262-6. [PMID: 15846020 PMCID: PMC1721873 DOI: 10.1136/adc.2003.044305] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Hypothermia has been shown to be neuroprotective in animal models of hypoxia-ischaemia. It is currently being evaluated as a potentially therapeutic option in the management of neonatal hypoxic-ischaemic encephalopathy. However, significant hypothermia has adverse systemic effects. It has also recently been found that the stress of being cold can abolish the neuroprotective effects of hypothermia. It is hypothesised that selective head cooling (SHC) while maintaining normal core temperature would enable local hypothermic neuroprotection while limiting the stress and side effects of hypothermia. OBJECTIVE To determine whether it is possible to induce moderate cerebral hypothermia in the deep brain of the piglet while maintaining the body at normothermia (39 degrees C). METHODS Six piglets (<48 hours old) were anaesthetised, and temperature probes inserted into the brain. Temperature was measured at different depths from the brain surface (21 mm (T(deep brain)) to 7 mm (T(superficial brain))). After a 45 minute global hypoxic-ischaemic insult, each piglet was head cooled for seven hours using a cap circulated with cold water (median 8.9 degrees C (interquartile range 7.5-14)) wrapped around the head. Radiant overhead heating was used to warm the body during cooling. RESULTS During SHC it was possible to cool the brain while maintaining a normal core temperature. The mean (SD) T(deep brain) during the seven hour cooling period was 31.1 (4.9) degrees C while T(rectal) remained stable at 38.8 (0.4) degrees C. The mean T(rectal)-T(deep brain) difference throughout the cooling period was 9.8 (6.1) degrees C. The mean T(skin) required was 40.8 (1.1) degrees C. There was no evidence of skin damage secondary to these skin temperatures. During cooling only one piglet shivered. CONCLUSIONS It is possible to maintain systemic normothermia in piglets while significantly cooling the deeper structures of the brain. This method of cooling may further limit the side effects associated with systemic hypothermia and be feasible for premature infants.
Collapse
Affiliation(s)
- J R Tooley
- Department of Child Health, St Michael's Hospital, Southwell Street, Bristol BS2 8EG, UK
| | | | | | | |
Collapse
|
17
|
Abstract
There are four unresolved clinical issues at bedside with respect to the recognition, differential diagnosis, prognosis, and treatment of infants who present with seizures. There is also an overriding fifth question which bridges these four clinical issues, based on a laboratory researcher's perspective at the "bench". Given the increasing understanding of the neurobiologic and pathophysiologic explanations for seizures in animal models, one must consider the question of whether neonatal seizures cause brain injury or are a surrogate of injury resulting from other etiologies.
Collapse
Affiliation(s)
- Mark S Scher
- Department of Pediatrics, Rainbow Babies and Children's Hospital, Cleveland, Ohio 44106, USA
| |
Collapse
|
18
|
Rathman SC, Blanchard RK, Badinga L, Gregory JF, Eisenschenk S, McMahon RJ. Dietary carbamazepine administration decreases liver pyruvate carboxylase activity and biotinylation by decreasing protein and mRNA expression in rats. J Nutr 2003; 133:2119-24. [PMID: 12840165 DOI: 10.1093/jn/133.7.2119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Clinical data demonstrate that certain antiepileptic drugs including carbamazepine (CBZ) decrease serum biotin concentration 45-50% and increase urine and serum organic acids, which is suggestive of reduced function of biotin-dependent enzymes. However, little is known about biotin-dependent enzyme function at the tissue level in patients undergoing long-term CBZ treatment. We recently established that dietary CBZ administration to rats increases brain lactate and also decreases specific enzymatic activity and the relative abundance of hepatic biotinylated pyruvate carboxylase (PC). To examine the mechanism of altered activity and abundance of biotinylated PC, the effect of orally administered CBZ on hepatic PC protein and mRNA expression was examined in rats consuming a physiologically relevant level of dietary biotin (0.06 mg/kg). Rats were fed 0 or 3.4 g CBZ/kg diet for 28 d, a dose designed to achieve clinically relevant serum CBZ concentrations. Hepatic biotinylated PC and PC activity were significantly reduced by approximately 43 and 30%, respectively, in the drug-treated group. Liver PC protein expression and mRNA were approximately 43 and 35% lower, respectively, in the drug-treated group than in controls. Brain biotinylated PC was significantly lower (29%), whereas specific enzymatic activity was 175% higher in rats consuming the 3.4 g CBZ/kg diet. Brain, but not serum, lactate was significantly higher in rats consuming CBZ. Taken together, the lower PC protein and mRNA expression provide a plausible biochemical mechanism to explain the decreased abundance of biotinylated hepatic PC observed in previous studies.
Collapse
Affiliation(s)
- Sara C Rathman
- Center for Nutritional Sciences, Food Science and Human Nutrition Department, University of Florida, Gainesville, FL 32611, USA
| | | | | | | | | | | |
Collapse
|
19
|
Klaus S, Heringlake M, Gliemroth J, Pagel H, Staubach K, Bahlmann L. Biochemical tissue monitoring during hypoxia and reoxygenation. Resuscitation 2003; 56:299-305. [PMID: 12628561 DOI: 10.1016/s0300-9572(02)00342-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Oxygen deficiency during critical illness may cause profound changes in cellular metabolism and subsequent tissue and organ dysfunction. Clinical treatment in these cases targets rapid reoxygenation to avoid a prolonged impaired synthesis of cellular high-energy phosphates (ATP). However, the effect of this therapeutic intervention on tissue metabolism has not been determined yet. Thus the present study was designed to determine the effects of hypoxia and reoxygenation with either room air or 100% oxygen on variables of interstitial metabolism in different tissues using in vivo microdialysis. Twenty-seven adult, male CD-rats (407-487 g; Ivanovas, Kisslegg, Germany) were studied during general anesthesia. Following preparation and randomization, rats were normoventilated for 45 min (FiO(2) 0.21), followed by induction of hypoxia (FiO(2) 0.1, 40 min) and reoxygenated for 50 min either with FiO(2) 1.0 (group 1, n=10) or FiO(2) 0.21 (group 2, n=10). Control animals (n=7) were ventilated with 21% oxygen during the observation period. Additional to invasive haemodynamic parameters, biochemical tissue monitoring was performed using CMA 20 microdialysis probes, inserted into muscle, subcutaneous space, liver, and the peritoneal cavity allowing analyses of lactate and pyruvate at short intervals. Hypoxia induced a significant reduction in mean arterial pressure (MAP) in group 1 and 2 compared with the control group (P<0.05) without any significant differences between both treatment groups. This was accompanied by a significant increase in blood lactate (10.5+/-3.1 mM (group 1) and 12.3+/-4.1 mM (group 2) vs. 1.5+/-0.3 mM (control); P<0.05) and severe metabolic acidosis (base excess (BE): -18.3+/-5 mM (1) and -17.3+/-7 mM (2) vs. -2.6+/-1.8 mM (control), P<0.05). During hypoxia, the interstitial lacate/pyruvate ratio in groups 1 and 2 increased to 455+/-199% (muscle), 468+/-148% (intraperitoneal), 770+/-218% (hepatic) and 855+/-432% (subcutaneous) (P<0.05 vs. control, respectively). No significant inter-organ or inter-group differences in interstitial dialysates were observed in the treatment groups, neither during hypoxia nor during reoxygenation. Our data suggest, that hypoxia induces comparable metabolic alterations in various tissues and that reoxygenation with 100% oxygen is not superior to 21% oxygen in restoring tissue metabolism after critical hypoxia.
Collapse
Affiliation(s)
- Stephan Klaus
- Department of Anaesthesiology, Medical University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany.
| | | | | | | | | | | |
Collapse
|
20
|
Rubaj A, Zgodziński W, Sieklucka-Dziuba M. The epileptogenic effect of seizures induced by hypoxia: the role of NMDA and AMPA/KA antagonists. Pharmacol Biochem Behav 2003; 74:303-11. [PMID: 12479949 DOI: 10.1016/s0091-3057(02)00998-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Hypoxia of the brain may alter further seizure susceptibility in a different way. In this study, we tried to answer the question how episode of convulsion induced by hypoxia (HS) changes further seizure susceptibility, and how N-methyl-D-aspartic acid (NMDA) and AMPA/KA receptor antagonists influence this process. Adult Albino Swiss mice exposed to hypoxia (5% O(2)) developed clonic/tonic convulsions after about 340 s. Mice which underwent 10 s but not 5 s seizures episode subsequently exhibited significantly increased seizure susceptibility to low doses (equal ED(16)) of bicuculline (BCC) and NMDA during a 3-week observation period. No morphological signs of brain tissue damage were seen in light microscope on the third day after a hypoxia-induced seizure (HS). Learning abilities assessed in passive avoidance test as well as spontaneous alternation were not disturbed after an HS episode. Pretreatment with AMPA/KA receptor antagonist NBQX effectively prolonged latency to HS and given immediately after seizure episode also attenuated subsequent convulsive susceptibility rise, however, NMDA receptor antagonist, MK-801, appeared to be ineffective. These results suggest that a seizure episode induced by hypoxia, depending on its duration, may play an epileptogenic role. The AMPA/KA receptor antagonist prolongs the latency to HS, and given after this episode, prevents the long-term epileptogenic effect.
Collapse
Affiliation(s)
- Andrzej Rubaj
- Department of Cardiology, Medical University of Lublin, Jaczewskiego 8, 20-090 Lublin, Poland.
| | | | | |
Collapse
|
21
|
Rathman SC, Eisenschenk S, McMahon RJ. The abundance and function of biotin-dependent enzymes are reduced in rats chronically administered carbamazepine. J Nutr 2002; 132:3405-10. [PMID: 12421859 DOI: 10.1093/jn/132.11.3405] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The effect of dietary antiepileptic drug administration on the metabolism and function of the water-soluble vitamin biotin was analyzed in a physiologically relevant rat model of biotin nutriture. Administration of carbamazepine (CBZ) in semipurified rat diet at 1.5 and 2.9 g/kg for 19 d did not reduce growth rate or food intake. After this dietary treatment, brain lactic acid and ammonia concentrations were significantly elevated, but no changes in these metabolites occurred in the liver. Urinary biotin excretion was altered and the concentrations of biotin sulfoxides and biocytin in the serum were elevated. Brain biotin was unaffected, but concentrations of bisnorbiotin and biocytin were significantly reduced by dietary administration of CBZ. The relative abundance of hepatic acetyl CoA carboxylase 1 and 2, pyruvate carboxylase (PC), methylcrotonyl CoA carboxylase and propionyl CoA carboxylase was significantly reduced by CBZ, whereas the relative abundance of biotinylated PC was significantly reduced in the brain. In agreement with the carboxylase abundance data, the activity of hepatic PC was significantly reduced in rats consuming CBZ-containing diets. These data demonstrate that administration of the antiepileptic medication CBZ, even with food, reduces the abundance and function of biotin-dependent enzymes in the liver and brain, partially accounting for the metabolic alterations, including organic acidemia, that are observed clinically.
Collapse
Affiliation(s)
- Sara C Rathman
- Center for Nutritional Sciences, Food Science and Human Nutrition Department, Institute of Food and Agricultural Sciences , University of Florida, Gainesville, FL 32611, USA
| | | | | |
Collapse
|
22
|
Correlation between tissue lactate levels and electroencephalogram in evaluating the severity of experimental head trauma. Crit Care Med 2002. [DOI: 10.1097/00003246-200209000-00028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
23
|
Thorngren-Jerneck K, Ley D, Hellström-Westas L, Hernandez-Andrade E, Lingman G, Ohlsson T, Oskarsson G, Pesonen E, Sandell A, Strand SE, Werner O, Marsal K. Reduced postnatal cerebral glucose metabolism measured by PET after asphyxia in near term fetal lambs. J Neurosci Res 2001; 66:844-50. [PMID: 11746410 DOI: 10.1002/jnr.10051] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The effects of fetal asphyxia on cerebral function and development, involve the transition from fetal to neonatal life. Changes in cerebral glucose metabolism may be an early postnatal indicator of fetal asphyxia. The objective is to develop an experimental lamb model involving the transition from fetal to neonatal life and to examine the effect of fetal asphyxia with cerebral hypoxic ischemia on early postnatal cerebral glucose metabolism. Fetal asphyxia was induced by total umbilical cord occlusion in eight near-term fetal lambs (134-138 days) with the ewe under isoflurane-opiate anesthesia. The mean occlusion time until cardiac arrest was 14.5 (4.2) min (SD). Lambs were immediately delivered and standardized resuscitation was instituted after 2 min asystole. At 4 hr postnatal age, [18-F]Fluoro-2-deoxy-glucose (18-FDG) was injected intravenously in eight asphyxiated lambs and in eight controls. Cerebral glucose metabolism was examined by positron emission tomography (PET). As a result the mean arterial blood pressure, acid-base values, blood glucose and serum lactate at 4 hr postnatal age did not differ significantly between lambs subjected to umbilical cord occlusion and controls. EEG was abnormal in all lambs subjected to cord occlusion and normal in the controls at 4 hr postnatal age. Global cerebral metabolic rate (CMRgl) as determined by PET was significantly lower in lambs subjected to cord occlusion mean/median (SD) 22.2/19.6 (8.4) micromol/min/100 g) than in controls mean/median (SD) 37.8/35.9 (6.1); P < 0.01). Global CMRgl is significantly reduced in newborn lambs 4 hr after fetal asphyxia induced by umbilical cord occlusion. A reduction in CMRgl is an early indicator of global hypoxic cerebral ischemia.
Collapse
Affiliation(s)
- K Thorngren-Jerneck
- Department of Pediatrics, University Hospital, Lund University, SE-221 85 Lund, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Thoresen M, Satas S, Løberg EM, Whitelaw A, Acolet D, Lindgren C, Penrice J, Robertson N, Haug E, Steen PA. Twenty-four hours of mild hypothermia in unsedated newborn pigs starting after a severe global hypoxic-ischemic insult is not neuroprotective. Pediatr Res 2001; 50:405-11. [PMID: 11518829 DOI: 10.1203/00006450-200109000-00017] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Three to 12 h of mild hypothermia (HT) starting after hypoxia-ischemia is neuroprotective in piglets that are anesthetized during HT. Newborn infants suffering from neonatal encephalopathy often ventilate spontaneously and are not necessarily sedated. We aimed to test whether mild posthypoxic HT lasting 24 h was neuroprotective if the animals were not sedated. Thirty-nine piglets (median weight 1.6 kg, range 0.8-2.2 kg; median age 24 h, range 7-48 h) were anesthetized and ventilated and subjected to a 45-min hypoxic (FiO(2) approximately 6%) global insult (n = 36) or sham hypoxia (n = 3). On reoxygenation, 18 were maintained normothermic (NT, 39.0 degrees C) for 72 h, and 21 were cooled from 39 (NT) to 35 degrees C (HT) for the first 24 h before NT was resumed (18 experimental, three sham hypoxia). Cardiovascular parameters and intermittent EEG were documented throughout. The brain was perfusion fixed for neuropathology and five main areas examined using light microscopy. The insult severity (duration in minutes of EEG amplitude < 7 microV) was similar in the NT and HT groups, mean +/- SD (28 +/- 7.2 versus 27 +/- 8.6 min), as was the mean FiO(2) (5.9 +/- 0.7 versus 5.8 +/- 0.8%) during the insult. Six NT and seven HT piglets developed posthypoxic seizures that lasted 29 and 30% of the time, respectively. The distribution and degree of injury (0.0-4.0, normal-maximal damage) within the brain (hippocampus, cortex/white matter, cerebellum, basal ganglia, thalamus) were similar in the NT and HT groups (overall score, mean +/- SD, 2.3 +/- 1.5 versus 2.4 +/- 1.3) as was the EEG background amplitude at 3 h (13 +/- 3.5 versus 10 +/- 3.3 microV). The HT animals shivered and were more active. The sham control group (n = 3) shivered but had normal physiology and neuropathology. Plasma cortisol was significantly higher in the HT group during the HT period, 766 +/- 277 versus 244 +/- 144 microM at 24 h. Mild postinsult HT for 24 h was not neuroprotective in unsedated piglets and did not reduce the number of animals that developed posthypoxic seizures. Cortisol reached 3 times the NT value at the end of HT. We speculate that the stress of shivering and feeling cold interfered with the previously shown neuroprotective effect of HT. Research on the appropriateness of sedation during clinical HT is urgent.
Collapse
Affiliation(s)
- M Thoresen
- Department of Experimental Medicine, Ullevål Hospital, Oslo, Norway.
| | | | | | | | | | | | | | | | | | | |
Collapse
|