1
|
Nowrouzian FL, Lumingkit K, Gio-Batta M, Jaén-Luchoro D, Thordarson T, Elfvin A, Wold AE, Adlerberth I. Tracing Staphylococcus capitis and Staphylococcus epidermidis strains causing septicemia in extremely preterm infants to the skin, mouth, and gut microbiota. Appl Environ Microbiol 2025; 91:e0098024. [PMID: 39692500 PMCID: PMC11784025 DOI: 10.1128/aem.00980-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 11/25/2024] [Indexed: 12/19/2024] Open
Abstract
Coagulase-negative staphylococci (CoNS) comprise about 50 species, some of which cause septicemia in preterm neonates. CoNS establish early on the skin and in the oral and gut microbiota, from where they may spread to the bloodstream. The colonization pattern preceding septicemia is not well-defined. Forty-two extremely preterm neonates (≤28 + 0 gestational weeks) were followed from birth to 2 months with regular sampling and culturing of the skin and oral and gut microbiota. Blood samples were drawn upon clinical suspicion of septicemia and cultured. CoNS species were identified using matrix-assisted laser-desorption ionization time of flight mass spectrometry (MALDI-TOF). Random amplified polymorphic DNA was used for strain typing, and strains were characterized regarding biofilm production and virulence gene carriage. CoNS blood isolates underwent whole genome sequencing. Staphylococcus epidermidis represented 72% of the CoNS isolates on skin or mucous membranes, followed by Staphylococcus capitis (13%) and Staphylococcus haemolyticus (7%). CoNS septicemia was diagnosed in nine infants, yielding 11 septicemia isolates: seven S. capitis and four S. epidermidis, of which nine were further analyzed. The S. capitis septicemia isolates belonged to the NRCS-A clone. Two-thirds of the septicemia strains were traced back to the commensal microbiota. Colonization of the oral cavity by S. capitis was significantly associated with CoNS septicemia development, although the blood-borne S. capitis strains were more commonly found on the skin than in the mouth prior to invasion. Biofilm production was not associated with septicemia. Our results implicate CoNS colonization as a step that precedes septicemia in preterm neonates. Early colonization of the oral cavity by S. capitis may represent a particular risk. IMPORTANCE Septicemia is a major cause of morbidity in preterm infants. Coagulase-negative staphylococci (CoNS) can colonize skin, oral cavity, and intestines and are a common cause of septicemia in this group. The relation between CoNS colonization pattern at the species and strain level and septicemia has scarcely been studied. We mapped colonization of the skin, oral cavity, and intestines by CoNS species in extremely preterm infants and speciated and strain-typed the skin, mucosal, and blood isolates. Two-thirds of the CoNS septicemia blood strains, including a majority of S. capitis strains belonging to the NRCS-A clone, were tracked to the commensal microbiota. We demonstrated that CoNS species differ in their colonization patterns, whereby S. capitis was primarily a skin colonizer. However, its colonization of the oral cavity was enhanced among infants developing septicemia. Our study provides a starting point for further explorations of the relationship between CoNS colonization and septicemia in preterm infants.
Collapse
Affiliation(s)
- Forough L. Nowrouzian
- Institute of Biomedicine, Department of Infectious Diseases,The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kirth Lumingkit
- Institute of Biomedicine, Department of Infectious Diseases,The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Monica Gio-Batta
- Institute of Biomedicine, Department of Infectious Diseases,The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Daniel Jaén-Luchoro
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Thordur Thordarson
- Institute of Clinical Science, Department of Pediatrics, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Pediatrics, Sahlgrenska University Hospital, The Queen Silvia Children's Hospital, Gothenburg, Sweden
| | - Anders Elfvin
- Institute of Clinical Science, Department of Pediatrics, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Pediatrics, Sahlgrenska University Hospital, The Queen Silvia Children's Hospital, Gothenburg, Sweden
| | - Agnes E. Wold
- Institute of Biomedicine, Department of Infectious Diseases,The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ingegerd Adlerberth
- Institute of Biomedicine, Department of Infectious Diseases,The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
2
|
Piewngam P, Otto M. Staphylococcus aureus colonisation and strategies for decolonisation. THE LANCET. MICROBE 2024; 5:e606-e618. [PMID: 38518792 PMCID: PMC11162333 DOI: 10.1016/s2666-5247(24)00040-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 03/24/2024]
Abstract
Staphylococcus aureus is a leading cause of death by infectious diseases worldwide. Treatment of S aureus infections is difficult due to widespread antibiotic resistance, necessitating alternative approaches and measures for prevention of infection. Because S aureus infections commonly arise from asymptomatic colonisation, decolonisation is considered a key approach for their prevention. Current decolonisation procedures include antibiotic-based and antiseptic-based eradication of S aureus from the nose and skin. However, despite the widespread implementation and partial success of such measures, S aureus infection rates remain worrisome, and resistance to decolonisation agents is on the rise. In this Review we outline the epidemiology and mechanisms of S aureus colonisation, describe how colonisation underlies infection, and discuss current and novel approaches for S aureus decolonisation, with a focus on the latest findings on probiotic strategies and the intestinal S aureus colonisation site.
Collapse
Affiliation(s)
- Pipat Piewngam
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, US National Institutes of Health, Bethesda, MD, USA
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, US National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
3
|
Nowrouzian FL, Stadler LS, Östblom A, Lindberg E, Lina G, Adlerberth I, Wold AE. Staphylococcus aureus sequence type (ST) 45, ST30, and ST15 in the gut microbiota of healthy infants - persistence and population counts in relation to ST and virulence gene carriage. Eur J Clin Microbiol Infect Dis 2023; 42:267-276. [PMID: 36689019 PMCID: PMC9899187 DOI: 10.1007/s10096-022-04539-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/14/2022] [Indexed: 01/24/2023]
Abstract
Staphylococcus aureus colonizes the anterior nares, and also the gut, particularly in infants. S. aureus is divided into lineages, termed clonal complexes (CCs), which comprise closely related sequence types (STs). While CC30 and CC45 predominate among nasal commensals, their prevalence among gut-colonizing S. aureus is unknown. Here, 67 gut commensal S. aureus strains from 49 healthy Swedish infants (aged 3 days to 12 months) were subjected to multi-locus sequence typing. The STs of these strains were related to their virulence gene profiles, time of persistence in the microbiota, and fecal population counts. Three STs predominated: ST45 (22% of the strains); ST15 (21%); and ST30 (18%). In a logistic regression, ST45 strains showed higher fecal population counts than the others, independent of virulence gene carriage. The lower fecal counts of ST15 were linked to the carriage of fib genes (encoding fibrinogen-binding proteins), while those of ST30 were linked to fib and sea (enterotoxin A) carriage. While only 11% of the ST15 and ST30 strains were acquired after 2 months of age, this was true of 53% of the ST45 strains (p = 0.008), indicating that the former may be less fit for establishment in a more mature microbiota. None of the ST45 strains was transient (persisting < 3 weeks), and persistent ST45 strains colonized for significantly longer periods than persistent strains of other STs (mean, 34 vs 22 weeks, p = 0.04). Our results suggest that ST45 strains are well-adapted for commensal gut colonization in infants, reflecting yet-unidentified traits of these strains.
Collapse
Affiliation(s)
- Forough L Nowrouzian
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Guldhedsgatan 10, S-413 46, Gothenburg, Sweden.
| | - Liselott Svensson Stadler
- Culture Collection University of Gothenburg, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Microbiology, Dahlgren's University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Anna Östblom
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Guldhedsgatan 10, S-413 46, Gothenburg, Sweden
| | - Erika Lindberg
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Guldhedsgatan 10, S-413 46, Gothenburg, Sweden
| | - Gerard Lina
- Centre National de Référence Des Staphylocoques, Hospices Civils de Lyon, CIRI, Université Lyon1, INSERM U1111, CNRS-UMR 5308, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Ingegerd Adlerberth
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Guldhedsgatan 10, S-413 46, Gothenburg, Sweden
| | - Agnes E Wold
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Guldhedsgatan 10, S-413 46, Gothenburg, Sweden
| |
Collapse
|
4
|
Alsultan A, Walton G, Andrews SC, Clarke SR. Staphylococcus aureus FadB is a dehydrogenase that mediates cholate resistance and survival under human colonic conditions. MICROBIOLOGY (READING, ENGLAND) 2023; 169. [PMID: 36947574 DOI: 10.1099/mic.0.001314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Staphylococcus aureus is a common colonizer of the human gut and in doing so it must be able to resist the actions of the host's innate defences. Bile salts are a class of molecules that possess potent antibacterial activity that control growth. Bacteria that colonize and survive in that niche must be able to resist the action of bile salts, but the mechanisms by which S. aureus does so are poorly understood. Here we show that FadB is a bile-induced oxidoreductase which mediates bile salt resistance and when heterologously expressed in Escherichia coli renders them resistant. Deletion of fadB attenuated survival of S. aureus in a model of the human distal colon.
Collapse
Affiliation(s)
- Amjed Alsultan
- School of Biological Sciences, University of Reading, Whiteknights, Reading, RG6 6EX, UK
- Present address: Department of Internal and Preventive Medicine, College of Veterinary Medicine, University of Al-qadisiyah, Aldewanyiah, Iraq
| | - Gemma Walton
- Food Microbial Sciences Unit, Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, RG6 6AP, UK
| | - Simon C Andrews
- School of Biological Sciences, University of Reading, Whiteknights, Reading, RG6 6EX, UK
| | - Simon R Clarke
- School of Biological Sciences, University of Reading, Whiteknights, Reading, RG6 6EX, UK
| |
Collapse
|
5
|
Bacterial Carriage of Genes Encoding Fibronectin-Binding Proteins Is Associated with Long-Term Persistence of Staphylococcus aureus in the Nasal and Gut Microbiota of Infants. Appl Environ Microbiol 2021; 87:e0067121. [PMID: 34020939 PMCID: PMC8276802 DOI: 10.1128/aem.00671-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Staphylococcus aureus can colonize both the anterior nares and the gastrointestinal tract. However, colonization at these sites in the same individuals has not been studied, and the traits that facilitate colonization and persistence at these sites have not been compared. Samples from the nostrils and feces collected on 9 occasions from 3 days to 3 years of age in 65 infants were cultured; 54 samples yielded S. aureus. The numbers of nasal and fecal S. aureus strains increased rapidly during the first weeks and were similar at 1 month of age (>40% of infants colonized). Thereafter, nasal carriage declined, while fecal carriage remained high during the first year of life. Individual strains were identified, and their colonization patterns were related to their carriage of genes encoding adhesins and superantigenic toxins. Strains retrieved from both the nose and gut (n = 44) of an infant were 4.5 times more likely to colonize long term (≥3 weeks at both sites) than strains found only in the rectum/feces (n = 56) or only in the nose (n = 32) (P ≤ 0.001). Gut colonization was significantly associated with carriage of the fnbA gene, and long-term colonization at either site was associated with carriage of fnbA and fnbB. In summary, gut colonization by S. aureus was more common than nasal carriage by S. aureus in the studied infants. Gut strains may provide a reservoir for invasive disease in vulnerable individuals. Fibronectin-binding adhesins and other virulence factors may facilitate commensal colonization and confer pathogenic potential. IMPORTANCES. aureus may cause severe infections and frequently colonizes the nose. Nasal carriage of S. aureus increases 3-fold the risk of invasive S. aureus infection. S. aureus is also commonly found in the gut microbiota of infants and young children. However, the relationships between the adhesins and other virulence factors of S. aureus strains and its abilities to colonize the nostrils and gut of infants are not well understood. Our study explores the simultaneous colonization by S. aureus of the nasal and intestinal tracts of newborn infants through 3 years of follow-up. We identify bacterial virulence traits that appear to facilitate persistent colonization of the nose and gut by S. aureus. This expands our current knowledge of the interplay between bacterial commensalism and pathogenicity. Moreover, it may contribute to the development of targeted strategies for combating S. aureus infection.
Collapse
|
6
|
Rabe H, Lundell AC, Sjöberg F, Ljung A, Strömbeck A, Gio-Batta M, Maglio C, Nordström I, Andersson K, Nookaew I, Wold AE, Adlerberth I, Rudin A. Neonatal gut colonization by Bifidobacterium is associated with higher childhood cytokine responses. Gut Microbes 2020; 12:1-14. [PMID: 33274676 PMCID: PMC7747801 DOI: 10.1080/19490976.2020.1847628] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The gut microbiota is a major stimulus for the immune system, and late acquisition of bacteria and/or reduced complexity of the gut flora may delay adaptive immune maturation. However, it is unknown how the gut bacterial colonization pattern in human infants is related to T cell activation during early childhood. We followed 65 Swedish children in the FARMFLORA cohort, from birth up to 3 years of age. In fecal samples collected at several time points during the first year of life, the gut colonization pattern was investigated with the use of both 16S rRNA next generation sequencing (NGS) and culture-based techniques. This was related to production of IL-13, IL-5, IL-6, TNF, IL-1β and IFN-γ by PHA-stimulated fresh mononuclear cells and to proportions of CD4+ T cells that expressed CD45RO at 36 months of age. Both NGS and culture-based techniques showed that colonization by Bifidobacterium at 1 week of age associated with higher production of IL-5, IL-6, IL-13, TNF and IL-1β at 36 months of age. By contrast, gut colonization by Enterococcus, Staphylococcus aureus or Clostridium in early infancy related inversely to induced IL-13, IL-5 and TNF at 3 years of age. Infants with elder siblings produced more cytokines and had a larger fraction of CD45RO+ T cells compared to single children. However, controlling for these factors did not abolish the effect of colonization by Bifidobacterium on immune maturation. Thus, gut colonization in early infancy affects T cell maturation and Bifidobacterium may be especially prone to induce infantile immune maturation.
Collapse
Affiliation(s)
- Hardis Rabe
- Institute of Biomedicine, Department of Infectious Diseases, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden,CONTACT Hardis Rabe Institution of Biomedicine, Department of Infectious Diseases, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Anna-Carin Lundell
- Institute of Medicine, Department of Rheumatology and Inflammation Research, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Fei Sjöberg
- Institute of Biomedicine, Department of Infectious Diseases, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Annika Ljung
- Institute of Biomedicine, Department of Infectious Diseases, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Anna Strömbeck
- Institute of Biomedicine, Department of Microbiology and Immunology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Monica Gio-Batta
- Institute of Biomedicine, Department of Infectious Diseases, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Cristina Maglio
- Institute of Medicine, Department of Rheumatology and Inflammation Research, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Inger Nordström
- Institute of Medicine, Department of Rheumatology and Inflammation Research, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Kerstin Andersson
- Institute of Medicine, Department of Rheumatology and Inflammation Research, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Intawat Nookaew
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Agnes E. Wold
- Institute of Biomedicine, Department of Infectious Diseases, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Ingegerd Adlerberth
- Institute of Biomedicine, Department of Infectious Diseases, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Anna Rudin
- Institute of Medicine, Department of Rheumatology and Inflammation Research, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
7
|
Quin C, Gibson DL. Human behavior, not race or geography, is the strongest predictor of microbial succession in the gut bacteriome of infants. Gut Microbes 2020; 11:1143-1171. [PMID: 32249675 PMCID: PMC7524360 DOI: 10.1080/19490976.2020.1736973] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Colonization of the gastrointestinal tract with microorganisms during infancy represents a critical control point for shaping life-long immune-mediated disease susceptibility. Abnormal colonization or an imbalance of microbes, termed dysbiosis, is implicated in several diseases. Consequently, recent research has aimed at understanding ways to manipulate a dysbiotic microbiome during infancy to resemble a normal, healthy microbiome. However, one of the fundamental issues in microbiome research is characterizing what a "normal" infant microbiome is based on geography, ethnicity and cultural variations. This review provides a comprehensive account of what is currently known about the infant microbiome from a global context. In general, this review shows that the influence of cultural variations in feeding practices, delivery modes and hygiene are the biggest contributors to microbial variability. Despite geography or race, all humans have similar microbial succession during infancy.
Collapse
Affiliation(s)
- Candice Quin
- Department of Biology, University of British Columbia, Kelowna, Canada
| | - Deanna L. Gibson
- Department of Biology, University of British Columbia, Kelowna, Canada,Department of Medicine, University of British Columbia, Kelowna, Canada,CONTACT Deanna L. Gibson Department of Biology, University of British Columbia, Okanagan Campus, ASC 386, 3187 University Way, Kelowna, BCV1V 1V7, Canada
| |
Collapse
|
8
|
Underestimated Risks of Infantile Infectious Disease from the Caregiver's Typical Handling Practices of Infant Formula. Sci Rep 2019; 9:9799. [PMID: 31278304 PMCID: PMC6611816 DOI: 10.1038/s41598-019-46181-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 06/25/2019] [Indexed: 11/11/2022] Open
Abstract
The impact on infant caregiver as a reservoir of pathogens has not been exploited with perspective to powdered infant formula (PIF). Here we reveal novel route of pathogen transfer through hand-spoon-PIF unexpectedly occurred by even typical practices of caregivers, handling of PIF and storage of feeding-spoon in PIF container. Hand-spoon-PIF contamination route was simulated to analyze the transfer and subsequent survival of pathogens. Major pathogens associated with infantile fatal diseases (Cronobacter sakazakii, Salmonella enterica, Staphylococcus aureus) were readily transmitted to PIF from skin (3−6 log CFU/hand) via spoons following long-term survival of transferred pathogens (3 weeks; use-by date of PIF) as the excessive level of infectious dose, highlighting direct onset of diseases. Low bacterial load on skin (ca. 1 log CFU/hand) could prevent cross-contamination of PIF, however, at least 72 h survival of transferred pathogen on spoons demonstrated the probability on re-contamination of PIF. To our knowledge, this is the first study to investigate the cross-contamination of utensils in contact with powdered-foods. Bacterial load on hands is the key determinant of pathogen transfer and the extent of risk are species-dependent. These evidential results redefine risk of caregivers’ practices and facilitate incorporation of cross-contamination into risk-assessment as underestimated route of infection.
Collapse
|
9
|
Copin R, Sause WE, Fulmer Y, Balasubramanian D, Dyzenhaus S, Ahmed JM, Kumar K, Lees J, Stachel A, Fisher JC, Drlica K, Phillips M, Weiser JN, Planet PJ, Uhlemann AC, Altman DR, Sebra R, van Bakel H, Lighter J, Torres VJ, Shopsin B. Sequential evolution of virulence and resistance during clonal spread of community-acquired methicillin-resistant Staphylococcus aureus. Proc Natl Acad Sci U S A 2019; 116:1745-1754. [PMID: 30635416 PMCID: PMC6358666 DOI: 10.1073/pnas.1814265116] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The past two decades have witnessed an alarming expansion of staphylococcal disease caused by community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA). The factors underlying the epidemic expansion of CA-MRSA lineages such as USA300, the predominant CA-MRSA clone in the United States, are largely unknown. Previously described virulence and antimicrobial resistance genes that promote the dissemination of CA-MRSA are carried by mobile genetic elements, including phages and plasmids. Here, we used high-resolution genomics and experimental infections to characterize the evolution of a USA300 variant plaguing a patient population at increased risk of infection to understand the mechanisms underlying the emergence of genetic elements that facilitate clonal spread of the pathogen. Genetic analyses provided conclusive evidence that fitness (manifest as emergence of a dominant clone) changed coincidently with the stepwise emergence of (i) a unique prophage and mutation of the regulator of the pyrimidine nucleotide biosynthetic operon that promoted abscess formation and colonization, respectively, thereby priming the clone for success; and (ii) a unique plasmid that conferred resistance to two topical microbiocides, mupirocin and chlorhexidine, frequently used for decolonization and infection prevention. The resistance plasmid evolved through successive incorporation of DNA elements from non-S. aureus spp. into an indigenous cryptic plasmid, suggesting a mechanism for interspecies genetic exchange that promotes antimicrobial resistance. Collectively, the data suggest that clonal spread in a vulnerable population resulted from extensive clinical intervention and intense selection pressure toward a pathogen lifestyle that involved the evolution of consequential mutations and mobile genetic elements.
Collapse
Affiliation(s)
- Richard Copin
- Division of Infectious Diseases and Immunology, Department of Medicine, New York University School of Medicine, New York, NY 10016
| | - William E Sause
- Department of Microbiology, New York University School of Medicine, New York, NY 10016
| | - Yi Fulmer
- Division of Infectious Diseases and Immunology, Department of Medicine, New York University School of Medicine, New York, NY 10016
| | - Divya Balasubramanian
- Department of Microbiology, New York University School of Medicine, New York, NY 10016
| | - Sophie Dyzenhaus
- Department of Microbiology, New York University School of Medicine, New York, NY 10016
| | - Jamil M Ahmed
- Division of Infectious Diseases and Immunology, Department of Medicine, New York University School of Medicine, New York, NY 10016
| | - Krishan Kumar
- Division of Infectious Diseases and Immunology, Department of Medicine, New York University School of Medicine, New York, NY 10016
| | - John Lees
- Department of Microbiology, New York University School of Medicine, New York, NY 10016
| | - Anna Stachel
- Division of Infectious Diseases and Immunology, Department of Medicine, New York University School of Medicine, New York, NY 10016
| | - Jason C Fisher
- Division of Pediatric Surgery, Department of Surgery, New York University School of Medicine, New York, NY 10016
| | - Karl Drlica
- Public Health Research Institute, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers University, Newark, NJ 07103
- Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers University, Newark, NJ 07103
| | - Michael Phillips
- Division of Infectious Diseases and Immunology, Department of Medicine, New York University School of Medicine, New York, NY 10016
| | - Jeffrey N Weiser
- Department of Microbiology, New York University School of Medicine, New York, NY 10016
| | - Paul J Planet
- Department of Pediatric Infectious Disease, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Anne-Catrin Uhlemann
- Division of Infectious Diseases, Department of Medicine, Columbia University Medical Center, New York, NY 10032
| | - Deena R Altman
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY 10029
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Jennifer Lighter
- Division of Pediatric Infectious Diseases, Department of Pediatrics, New York University School of Medicine, New York, NY 10016
| | - Victor J Torres
- Department of Microbiology, New York University School of Medicine, New York, NY 10016;
| | - Bo Shopsin
- Division of Infectious Diseases and Immunology, Department of Medicine, New York University School of Medicine, New York, NY 10016;
- Department of Microbiology, New York University School of Medicine, New York, NY 10016
| |
Collapse
|
10
|
Nowrouzian FL, Ljung A, Nilsson S, Hesselmar B, Adlerberth I, Wold AE. Neonatal gut colonization by Staphylococcus aureus strains with certain adhesins and superantigens is negatively associated with subsequent development of atopic eczema. Br J Dermatol 2019; 180:1481-1488. [PMID: 30474111 DOI: 10.1111/bjd.17451] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND Insufficient early immune stimulation may predispose to atopic disease. Staphylococcus aureus, a skin and gut colonizer, produces the B-cell mitogen protein A and T-cell-activating superantigens. Early gut colonization by S. aureus strains that possess the superantigens encoded by the enterotoxin gene (egc) cluster and elastin-binding protein is negatively associated with development of atopic eczema. OBJECTIVES To investigate (i) whether these findings could be replicated in a second birth cohort, FARMFLORA, and (ii) whether nasal colonization by S. aureus also relates to subsequent atopic eczema development. METHODS Faecal samples and nasal swabs from infants in the FARMFLORA birth cohort (n = 65) were cultured for S. aureus. Individual strains were distinguished by random amplified polymorphic DNA and assessed for adhesin and superantigen gene carriage by polymerase chain reaction. Atopic eczema at 18 months of age was related to nasal and gut S. aureus colonization patterns during the first 2 months of life (well before onset of eczema). RESULTS Staphylococcus aureus colonization per se was unrelated to subsequent eczema development. However, gut S. aureus strains from the infants who subsequently developed atopic eczema less frequently carried the ebp gene, encoding elastin-binding protein, and superantigen genes encoded by egc, compared with strains from children who remained healthy. Nasal colonization by S. aureus was less clearly related to subsequent eczema development. CONCLUSIONS The results precisely replicate our previous observations and may suggest that mucosal colonization by certain S. aureus strains provides immune stimulation that strengthens the epithelial barrier and counteracts the development of atopic eczema.
Collapse
Affiliation(s)
- F L Nowrouzian
- Institution for Biomedicine, Department of Infectious Disease, University of Gothenburg, Gothenburg, Sweden
| | - A Ljung
- Institution for Biomedicine, Department of Infectious Disease, University of Gothenburg, Gothenburg, Sweden
| | - S Nilsson
- Institution for Biomedicine, Department of Infectious Disease, University of Gothenburg, Gothenburg, Sweden
| | - B Hesselmar
- Institution for Biomedicine, Department of Infectious Disease, University of Gothenburg, Gothenburg, Sweden.,Department of Paediatrics, Institution of Clinical Science, University of Gothenburg, Gothenburg, Sweden
| | - I Adlerberth
- Institution for Biomedicine, Department of Infectious Disease, University of Gothenburg, Gothenburg, Sweden
| | - A E Wold
- Institution for Biomedicine, Department of Infectious Disease, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
11
|
Skog O, Korsgren O. Aetiology of type 1 diabetes: Physiological growth in children affects disease progression. Diabetes Obes Metab 2018; 20:775-785. [PMID: 29083510 DOI: 10.1111/dom.13144] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/06/2017] [Accepted: 10/25/2017] [Indexed: 12/16/2022]
Abstract
The prevailing view is that type 1 diabetes (T1D) develops as a consequence of a severe decline in β-cell mass resulting from T-cell-mediated autoimmunity; however, progression from islet autoantibody seroconversion to overt diabetes and finally to total loss of C-peptide production occurs in most affected individuals only slowly over many years or even decades. This slow disease progression should be viewed in relation to the total β-cell mass of only 0.2 to 1.5 g in adults without diabetes. Focal lesions of acute pancreatitis with accumulation of leukocytes, often located around the ducts, are frequently observed in people with recent-onset T1D, and most patients display extensive periductal fibrosis, the end stage of inflammation. An injurious inflammatory adverse event, occurring within the periductal area, may have negative implications for islet neogenesis, dependent on stem cells residing within or adjacent to the ductal epithelium. This could in part prevent the 30-fold increase in β-cell mass that would normally occur during the first 20 years of life. This increase occurs in order to maintain glucose metabolism during the physiological increases in insulin production that are required to balance the 20-fold increase in body weight during childhood and increased insulin resistance during puberty. Failure to expand β-cell mass during childhood would lead to clinically overt T1D and could help to explain the apparently more aggressive form of T1D occurring in growing children when compared with that observed in affected adults.
Collapse
Affiliation(s)
- Oskar Skog
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Olle Korsgren
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
12
|
Denayer S, Delbrassinne L, Nia Y, Botteldoorn N. Food-Borne Outbreak Investigation and Molecular Typing: High Diversity of Staphylococcus aureus Strains and Importance of Toxin Detection. Toxins (Basel) 2017; 9:E407. [PMID: 29261162 PMCID: PMC5744127 DOI: 10.3390/toxins9120407] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/15/2017] [Accepted: 12/16/2017] [Indexed: 02/03/2023] Open
Abstract
Staphylococcus aureus is an important aetiological agent of food intoxications in the European Union as it can cause gastro-enteritis through the production of various staphylococcal enterotoxins (SEs) in foods. Reported enterotoxin dose levels causing food-borne illness are scarce and varying. Three food poisoning outbreaks due to enterotoxin-producing S. aureus strains which occurred in 2013 in Belgium are described. The outbreaks occurred in an elderly home, at a barbecue event and in a kindergarten and involved 28, 18, and six cases, respectively. Various food leftovers contained coagulase positive staphylococci (CPS). Low levels of staphylococcal enterotoxins ranging between 0.015 ng/g and 0.019 ng/g for enterotoxin A (SEA), and corresponding to 0.132 ng/g for SEC were quantified in the food leftovers for two of the reported outbreaks. Molecular typing of human and food isolates using pulsed-field gel electrophoresis (PFGE) and enterotoxin gene typing, confirmed the link between patients and the suspected foodstuffs. This also demonstrated the high diversity of CPS isolates both in the cases and in healthy persons carrying enterotoxin genes encoding emetic SEs for which no detection methods currently exist. For one outbreak, the investigation pointed out to the food handler who transmitted the outbreak strain to the food. Tools to improve staphylococcal food poisoning (SFP) investigations are presented.
Collapse
Affiliation(s)
- Sarah Denayer
- Scientific Service of Food borne Pathogens, Scientific Institute of Public Health (WIV-ISP), 1050 Brussels, Belgium.
| | - Laurence Delbrassinne
- Scientific Service of Food borne Pathogens, Scientific Institute of Public Health (WIV-ISP), 1050 Brussels, Belgium.
| | - Yacine Nia
- Laboratory for Food Safety, Anses, Université Paris-Est, 94701 Maisons-Alfort, France.
| | - Nadine Botteldoorn
- Scientific Service of Food borne Pathogens, Scientific Institute of Public Health (WIV-ISP), 1050 Brussels, Belgium.
| |
Collapse
|
13
|
Jiang B, Wang Y, Feng Z, Xu L, Tan L, Zhao S, Gong Y, Zhang C, Luo X, Li S, Rao X, Peng Y, Xie Z, Hu X. Panton-Valentine Leucocidin (PVL) as a Potential Indicator for Prevalence, Duration, and Severity of Staphylococcus aureus Osteomyelitis. Front Microbiol 2017; 8:2355. [PMID: 29234317 PMCID: PMC5712352 DOI: 10.3389/fmicb.2017.02355] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 11/15/2017] [Indexed: 01/08/2023] Open
Abstract
Staphylococcus aureus is the most common cause of the difficult-to-treat osteomyelitis (OM). To better diagnose and manage S. aureus OM, especially for severe and long duration cases, indicators for risk prediction and severity evaluation are needed. Here, 139 clinical S. aureus isolates from orthopedic infections were divided into OM group (60 isolates from 60 OM patients) and non-OM group (79 isolates from 79 non-OM patients). Molecular types, antimicrobial susceptibility, and virulence factor profiles were evaluated and compared between the two groups to identify potential indicators associated with the prevalence of S. aureus OM. Clinical manifestations and laboratory data were analyzed to identify indicators affecting OM duration and severity. We found that some sequence types were specific to OM infection. The pvl, bbp, and ebps genes were associated with S. aureus OM prevalence. The pvl, bbp, and sei genes were associated with relatively longer OM duration. Panton-Valentine leucocidin (PVL)-positive S. aureus OM presented more serious inflammatory responses. Our results emphasize the significance of PVL in affecting the prevalence, duration, and severity of S. aureus OM. Diagnosing and monitoring PVL-related S. aureus OM may help direct better prognosis and treatment of these patients.
Collapse
Affiliation(s)
- Bei Jiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yinan Wang
- Department of Microbiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Zihan Feng
- Cadet Brigade, Third Military Medical University, Chongqing, China
| | - Lei Xu
- Cadet Brigade, Third Military Medical University, Chongqing, China
| | - Li Tan
- Department of Microbiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Shuang Zhao
- Cadet Brigade, Third Military Medical University, Chongqing, China
| | - Yali Gong
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Cheng Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xiaoqiang Luo
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Shu Li
- Department of Microbiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Xiancai Rao
- Department of Microbiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Yizhi Peng
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Zhao Xie
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xiaomei Hu
- Department of Microbiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| |
Collapse
|
14
|
Dittmann KK, Chaul LT, Lee SHI, Corassin CH, Fernandes de Oliveira CA, Pereira De Martinis EC, Alves VF, Gram L, Oxaran V. Staphylococcus aureus in Some Brazilian Dairy Industries: Changes of Contamination and Diversity. Front Microbiol 2017; 8:2049. [PMID: 29123505 PMCID: PMC5662873 DOI: 10.3389/fmicb.2017.02049] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 10/06/2017] [Indexed: 12/17/2022] Open
Abstract
Staphylococcus aureus, a major food-poisoning pathogen, is a common contaminant in dairy industries worldwide, including in Brazil. We determined the occurrence of S. aureus in five dairies in Brazil over 8 months. Of 421 samples, 31 (7.4%) were positive for S. aureus and prevalence varied from 0 to 63.3% between dairies. Sixty-six isolates from the 31 samples were typed by Multi-Locus Sequence Typing to determine if these isolates were persistent or continuously reintroduced. Seven known sequence types (STs), ST1, ST5, ST30, ST97, ST126, ST188 and ST398, and four new ST were identified, ST3531, ST3540, ST3562 and ST3534. Clonal complex (CC) 1 (including the four new ST), known as an epidemic clone, was the dominant CC. However, there were no indications of persistence of particular ST. The resistance toward 11 antibiotic compounds was assessed. Twelve profiles were generated with 75.8% of strains being sensitive to all antibiotic classes and no Methicillin-resistant S. aureus (MRSA) strains were found. The enterotoxin-encoding genes involved in food-poisoning, e.g., sea, sed, see, and seg were targeted by PCR. The two toxin-encoding genes, sed and see, were not detected. Only three strains (4.5%) harbored seg and two of these also harbored sea. Despite the isolates being Methicillin-sensitive S. aureus (MSSA), the presence of CC1 clones in the processing environment, including some harboring enterotoxin encoding genes, is of concern and hygiene must have high priority to reduce contamination.
Collapse
Affiliation(s)
- Karen K. Dittmann
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Luíza T. Chaul
- Faculty of Pharmacy, Federal University of Goiás, Goiânia, Brazil
| | - Sarah H. I. Lee
- Faculty of Animal Science and Food Engineering, University of São Paulo, Ribeirão Preto, Brazil
| | - Carlos H. Corassin
- Faculty of Animal Science and Food Engineering, University of São Paulo, Ribeirão Preto, Brazil
| | | | | | | | - Lone Gram
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Virginie Oxaran
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
15
|
Abstract
Despite decades of investigation and millions of dollars spent, the cause of sudden infant death syndrome (SIDS) eludes researchers. It is timely therefore to reconsider the reasons for this failure and to explore how research might go forward with better prospects. This review assesses SIDS research in the context of clinicopathological and epidemiological features and determines that only infection attains congruence.
Collapse
|
16
|
Expression of Staphylokinase Gene S. aureus Strains Isolated from Breast Milk and Clinical Outcomes in Breastfed Infants. BIONANOSCIENCE 2017. [DOI: 10.1007/s12668-016-0364-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Nowrouzian FL, Lina G, Hodille E, Lindberg E, Hesselmar B, Saalman R, Adlerberth I, Wold AE. Superantigens and adhesins of infant gut commensal Staphylococcus aureus strains and association with subsequent development of atopic eczema. Br J Dermatol 2016; 176:439-445. [PMID: 27761891 DOI: 10.1111/bjd.15138] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2016] [Indexed: 12/29/2022]
Abstract
BACKGROUND According to the hygiene hypothesis, insufficient immune activation by microbes increases the risk of allergy development. Staphylococcus aureus, which is part of the skin and gut microbiota of infants in Western countries, produces a variety of T-cell-activating enterotoxins, called superantigens. OBJECTIVES To investigate whether early (0-2 months of age) gut colonization by S. aureus strains that carry specific superantigens and adhesins was related to subsequent development of atopic eczema in a Swedish birth cohort. METHODS Staphylococcus aureus was isolated from rectal swabs and cultured quantitatively from faecal samples, with individual strains being tested for carriage of genes for superantigens and adhesins. Atopic eczema was diagnosed at onset of symptoms and at 18 months of age. RESULTS Although the frequency of early gut colonization by S. aureus was not related to subsequent eczema development, the S. aureus strains that were found to colonize those infants who developed atopic eczema were less likely to carry the gene encoding the superantigen SElM (P = 0·008) and the gene for elastin-binding protein (P = 0·03), compared with strains that were isolated from infants who had not developed atopic eczema by 18 months of age. CONCLUSIONS Gut colonization by S. aureus strains carrying a certain combination of superantigen and adhesin genes was negatively associated with subsequent development of atopic eczema. Such strains may provide stimulation and promote maturation of the infant immune system.
Collapse
Affiliation(s)
- F L Nowrouzian
- Institution for Biomedicine, Department of Infectious Disease, University of Gothenburg, Guldhedsgatan 10, S-413 46, Gothenburg, Sweden
| | - G Lina
- Centre National de Référence des Staphylocoques, Hospices Civils de Lyon, CIRI, Université Lyon 1, Inserm U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Lyon, France
| | - E Hodille
- Centre National de Référence des Staphylocoques, Hospices Civils de Lyon, CIRI, Université Lyon 1, Inserm U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Lyon, France
| | - E Lindberg
- Institution for Biomedicine, Department of Infectious Disease, University of Gothenburg, Guldhedsgatan 10, S-413 46, Gothenburg, Sweden
| | - B Hesselmar
- Institution for Biomedicine, Department of Infectious Disease, University of Gothenburg, Guldhedsgatan 10, S-413 46, Gothenburg, Sweden.,Department of Paediatrics, Institution of Clinical Science, University of Gothenburg, Gothenburg, Sweden
| | - R Saalman
- Institution for Biomedicine, Department of Infectious Disease, University of Gothenburg, Guldhedsgatan 10, S-413 46, Gothenburg, Sweden.,Department of Paediatrics, Institution of Clinical Science, University of Gothenburg, Gothenburg, Sweden
| | - I Adlerberth
- Institution for Biomedicine, Department of Infectious Disease, University of Gothenburg, Guldhedsgatan 10, S-413 46, Gothenburg, Sweden
| | - A E Wold
- Institution for Biomedicine, Department of Infectious Disease, University of Gothenburg, Guldhedsgatan 10, S-413 46, Gothenburg, Sweden
| |
Collapse
|
18
|
Claassen-Weitz S, Shittu AO, Ngwarai MR, Thabane L, Nicol MP, Kaba M. Fecal Carriage of Staphylococcus aureus in the Hospital and Community Setting: A Systematic Review. Front Microbiol 2016; 7:449. [PMID: 27242671 PMCID: PMC4861718 DOI: 10.3389/fmicb.2016.00449] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 03/18/2016] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND AND RATIONALE Staphylococcus aureus fecal carriage has been identified as a potential source for nosocomial transmission and a risk factor for disease development. This systematic review determined the overall S. aureus [including methicillin susceptible and resistant S. aureus (MSSA and MRSA)] fecal carriage rates within the community and healthcare settings. METHODOLOGY Peer-reviewed articles indexed in Medline, Scopus, Academic Search Premier, Africa-Wide Information, CINAHL, and Web of Science were identified using applicable and controlled vocabulary through to 11 November 2015. Eligible studies were ascertained by three independent reviewers. Random-effects meta-analyses of proportions were performed to determine S. aureus, MSSA and MRSA fecal carriage rates reported by eligible studies. RESULTS Twenty six studies were included in this review. The pooled estimates for S. aureus, MSSA and MRSA fecal carriage were 26% (95% confidence interval (CI): 16.8-36.3%), 86% (95% confidence interval (CI): 65.9-97.9%) and 10% (95% CI: 0.7-27.0%), respectively. Fecal S. aureus carriage rates increased on average from 10 to 65% during the first 8 weeks of life, followed by an average carriage rate of 64% at 6 months and 46% at 1 year of life. Genotyping techniques were employed mainly in studies conducted in developed countries and comprised largely of gel-based techniques. Six studies reported on the role of S. aureus fecal strains in diarrhea (n = 2) and the risk for acquiring infections (n = 4). Eight of the 26 studies included in this review performed antibiotic susceptibility testing of S. aureus fecal isolates. CONCLUSION This study provides evidence that screening for S. aureus fecal carriage, at least in populations at high risk, could be an effective measure for the prevention of S. aureus transmission and infection in the healthcare and community setting. More well-structured studies need to be conducted and sequence-based genotyping techniques should be employed for the comparison of isolates on a global scale in both developing and developed countries.
Collapse
Affiliation(s)
- Shantelle Claassen-Weitz
- Division of Medical Microbiology, Department of Pathology, Faculty of Health Sciences, University of Cape TownCape Town, South Africa
| | - Adebayo O. Shittu
- Department of Microbiology, Obafemi Awolowo UniversityIle-Ife, Nigeria
| | - Michelle R. Ngwarai
- Division of Medical Microbiology, Department of Pathology, Faculty of Health Sciences, University of Cape TownCape Town, South Africa
| | - Lehana Thabane
- Department of Clinical Epidemiology and Biostatistics, McMaster UniversityHamilton, ON, Canada
| | - Mark P. Nicol
- Division of Medical Microbiology, Department of Pathology, Faculty of Health Sciences, University of Cape TownCape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape TownCape Town, South Africa
- National Health Laboratory Service of South Africa, Groote Schuur HospitalCape Town, South Africa
| | - Mamadou Kaba
- Division of Medical Microbiology, Department of Pathology, Faculty of Health Sciences, University of Cape TownCape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape TownCape Town, South Africa
| |
Collapse
|
19
|
Early Gut Colonization With Lactobacilli and Staphylococcus in Infants: The Hygiene Hypothesis Extended. J Pediatr Gastroenterol Nutr 2016; 62:80-6. [PMID: 26230902 DOI: 10.1097/mpg.0000000000000925] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVES The aim of the present study was to assess the mode of delivery and type-of-feeding impact on gut microbiota. We demonstrated higher fecal bifidobacteria in infants who were breast-fed (BF) or fed formula with prebiotics polydextrose (PDX) and galactooligosaccharides (GOS) versus formula without prebiotics. Here, we tested feces of that cohort for lactobacilli and Staphylococcus aureus, 2 types of bacteria present in breast milk. METHODS In a double-blind, randomized study, 21- to 30-day-old term infants vaginally delivered and exclusively formula-fed received a cow's milk-based formula (control, n = 80) or the same formula with 4 g/L (1:1 ratio) of PDX/GOS (PDX/GOS, n = 77). A reference BF group (n = 71) was included. Stool samples were obtained at baseline and after 30 and 60 days of feeding to assess fecal bacteria by quantitative real-time polymerase chain reaction. RESULTS Pairwise comparisons between baseline-adjusted means log10 colony-forming unit per gram feces of total lactobacilli counts (8.37 in control, 8.46 in PDX/GOS, and 8.42 in BF) showed a significant difference only between PDX/GOS and control at 30 and 60 days combined (P = 0.035), utilizing generalized estimating equations method. Baseline-adjusted odds ratio (OR) of colonization with S aureus was lower in control (OR 0.47, 95% confidence interval 0.22-1.00, P = 0.049) and PDX/GOS (OR 0.44, 95% confidence interval 0.21-0.94, P = 0.03) groups versus the BF group. CONCLUSIONS Bacteria found in breast milk, such as lactobacilli and S aureus can also be found in infant feces. S aureus, traditionally considered harmful, may aid in educating the coevolving immune system. Modifying formula by adding prebiotics may bring gut microbiota closer to that of BF infants in terms of beneficial microbes.
Collapse
|
20
|
Differential profiles of gastrointestinal proteins interacting with peptidoglycans from Lactobacillus plantarum and Staphylococcus aureus. Mol Immunol 2015; 65:77-85. [DOI: 10.1016/j.molimm.2015.01.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 12/24/2014] [Accepted: 01/08/2015] [Indexed: 12/17/2022]
|
21
|
Impacts of enterotoxin gene cluster-encoded superantigens on local and systemic experimental Staphylococcus aureus infections. Eur J Clin Microbiol Infect Dis 2015; 34:1443-9. [PMID: 25864191 DOI: 10.1007/s10096-015-2371-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 03/23/2015] [Indexed: 10/23/2022]
Abstract
Staphylococcus aureus is both a component of the normal skin flora and an important pathogen. It expresses a range of recognized and putative virulence factors, such as enterotoxins with superantigenic properties. Several superantigen genes, i.e., seg, sei, selm, seln, and selo, are encoded by the enterotoxin gene cluster (egc), which is found in the majority of S. aureus isolates. Carriage of egc is associated with fitness of S. aureus in the gut microbiota, but it is not known if it contributes to pathogenicity. We constructed egc+ (functional for the seg, selm, and selo genes) and isogenic egc- S. aureus mutants, and investigated their virulence profiles in murine infection models. No effect of egc was seen in a local skin and soft tissue infection model, but in an invasive infection model, increased weight loss was observed after infection with the egc+ as compared to the egc- mutant. Mortality and arthritis were not affected by egc status. Our data suggest that egc has limited effects on the virulence of S. aureus. It may primarily function as a colonization factor increasing commensal fitness, although it might have some aggravating effects on the infection when the bacteria reach the blood.
Collapse
|
22
|
Staphylococcus aureus MnhF mediates cholate efflux and facilitates survival under human colonic conditions. Infect Immun 2015; 83:2350-7. [PMID: 25824834 DOI: 10.1128/iai.00238-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 03/20/2015] [Indexed: 12/17/2022] Open
Abstract
Resistance to the innate defenses of the intestine is crucial for the survival and carriage of Staphylococcus aureus, a common colonizer of the human gut. Bile salts produced by the liver and secreted into the intestines are one such group of molecules with potent antimicrobial activity. The mechanisms by which S. aureus is able to resist such defenses in order to colonize and survive in the human gut are unknown. Here we show that mnhF confers resistance to bile salts, which can be abrogated by efflux pump inhibitors. MnhF mediates the efflux of radiolabeled cholic acid both in S. aureus and when heterologously expressed in Escherichia coli, rendering them resistant. Deletion of mnhF attenuated the survival of S. aureus in an anaerobic three-stage continuous-culture model of the human colon (gut model), which represents different anatomical areas of the large intestine.
Collapse
|
23
|
Abstract
E. coli's hardiness, versatility, broad palate and ease of handling have made it the most intensively studied and best understood organism on the planet. However, research on E.coli has primarily examined it as a model organism, one that is abstracted from any natural history. But E. coli is far more than just a microbial lab rat. Rather, it is a highly diverse organism with a complex, multi-faceted niche in the wild. Recent studies of 'wild' E. coli have, for example, revealed a great deal about its presence in the environment, its diversity and genomic evolution, as well as its role in the human microbiome and disease. These findings have shed light on aspects of its biology and ecology that pose far-reaching questions and illustrate how an appreciation of E. coli's natural history can expand its value as a model organism.
Collapse
Affiliation(s)
- Zachary D Blount
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, United States; BEACON Center for the Study of Evolution in Action, East Lansing, United States
| |
Collapse
|
24
|
Ingman WV, Glynn DJ, Hutchinson MR. Inflammatory mediators in mastitis and lactation insufficiency. J Mammary Gland Biol Neoplasia 2014; 19:161-7. [PMID: 24961655 DOI: 10.1007/s10911-014-9325-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 06/18/2014] [Indexed: 12/15/2022] Open
Abstract
Mastitis is a common inflammatory disease during lactation that causes reduced milk supply. A growing body of evidence challenges the central role of pathogenic bacteria in mastitis, with disease severity associated with markers of inflammation rather than infection. Inflammation in the mammary gland may be triggered by microbe-associated molecular patterns (MAMPs) as well as danger-associated molecular patterns (DAMPs) binding to pattern recognition receptors such as the toll-like receptors (TLRs) on the surface of mammary epithelial cells and local immune cell populations. Activation of the TLR4 signalling pathway and downstream nuclear factor kappa B (NFkB) is critical to mediating local mammary gland inflammation and systemic immune responses in mouse models of mastitis. However, activation of NFkB also induces epithelial cell apoptosis and reduced milk protein synthesis, suggesting that inflammatory mediators activated during mastitis promote partial involution. Perturbed milk flow, maternal stress and genetic predisposition are significant risk factors for mastitis, and could lead to a heightened TLR4-mediated inflammatory response, resulting in increased susceptibility and severity of mastitis disease in the context of low MAMP abundance. Therefore, heightened host inflammatory signalling may act in concert with pathogenic or commensal bacterial species to cause both the inflammation associated with mastitis and lactation insufficiency. Here, we present an alternate paradigm to the widely held notion that breast inflammation is driven principally by infectious bacterial pathogens, and suggest there may be other therapeutic strategies, apart from the currently utilised antimicrobial agents, that could be employed to prevent and treat mastitis in women.
Collapse
Affiliation(s)
- Wendy V Ingman
- Discipline of Surgery, School of Medicine, The Queen Elizabeth Hospital, University of Adelaide, Woodville, Australia
| | | | | |
Collapse
|
25
|
Schokker D, Zhang J, Zhang LL, Vastenhouw SA, Heilig HGHJ, Smidt H, Rebel JMJ, Smits MA. Early-life environmental variation affects intestinal microbiota and immune development in new-born piglets. PLoS One 2014; 9:e100040. [PMID: 24941112 PMCID: PMC4062469 DOI: 10.1371/journal.pone.0100040] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 05/22/2014] [Indexed: 02/07/2023] Open
Abstract
Background Early-life environmental variation affects gut microbial colonization and immune competence development; however, the timing and additional specifics of these processes are unknown. The impact of early-life environmental variations, as experienced under real life circumstances, on gut microbial colonization and immune development has not been studied extensively so far. We designed a study to investigate environmental variation, experienced early after birth, to gut microbial colonization and intestinal immune development. Methodology/Principal Findings To investigate effects of early-life environmental changes, the piglets of 16 piglet litters were divided into 3 groups per litter and experimentally treated on day 4 after birth. During the course of the experiment, the piglets were kept with their mother sow. Group 1 was not treated, group 2 was treated with an antibiotic, and group 3 was treated with an antibiotic and simultaneously exposed to several routine, but stressful management procedures, including docking, clipping and weighing. Thereafter, treatment effects were measured at day 8 after birth in 16 piglets per treatment group by community-scale analysis of gut microbiota and genome-wide intestinal transcriptome profiling. We observed that the applied antibiotic treatment affected the composition and diversity of gut microbiota and reduced the expression of a large number of immune-related processes. The effect of management procedures on top of the use of an antibiotic was limited. Conclusions/Significance We provide direct evidence that different early-life conditions, specifically focusing on antibiotic treatment and exposure to stress, affect gut microbial colonization and intestinal immune development. This reinforces the notion that the early phase of life is critical for intestinal immune development, also under regular production circumstances.
Collapse
Affiliation(s)
- Dirkjan Schokker
- Animal Breeding and Genomics Centre, Wageningen UR Livestock Research, Lelystad, The Netherlands
- * E-mail:
| | - Jing Zhang
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Ling-li Zhang
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | | | | | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | | | - Mari A. Smits
- Animal Breeding and Genomics Centre, Wageningen UR Livestock Research, Lelystad, The Netherlands
- Infection Biology, Central Veterinary Institute, Lelystad, The Netherlands
| |
Collapse
|
26
|
Park A, Hwang IG, Lee SH, Cho JI, Lee S, Lee H, Yoon Y. Predictive Models to Describe Behavior of S
taphylococcus aureus
in Sweet Pumpkin Salad Under Constant and Dynamic Temperature. J Food Saf 2014. [DOI: 10.1111/jfs.12121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ahreum Park
- Department of Food and Nutrition; Sookmyung Women's University; Seoul 140-742 South Korea
| | - In-Gyun Hwang
- Food Microbiology Division; Food Safety Evaluation Department; National Institute of Food and Drug Safety Evaluation; Ministry of Food and Drug Safety; Chungcheongbuk-do 363-700 South Korea
| | - Soon-Ho Lee
- Food Microbiology Division; Food Safety Evaluation Department; National Institute of Food and Drug Safety Evaluation; Ministry of Food and Drug Safety; Chungcheongbuk-do 363-700 South Korea
| | - Joon-Il Cho
- Food Microbiology Division; Food Safety Evaluation Department; National Institute of Food and Drug Safety Evaluation; Ministry of Food and Drug Safety; Chungcheongbuk-do 363-700 South Korea
| | - Soomin Lee
- Department of Food and Nutrition; Sookmyung Women's University; Seoul 140-742 South Korea
| | - Heeyoung Lee
- Department of Food and Nutrition; Sookmyung Women's University; Seoul 140-742 South Korea
| | - Yohan Yoon
- Department of Food and Nutrition; Sookmyung Women's University; Seoul 140-742 South Korea
| |
Collapse
|
27
|
Nakao A, Ito T, Han X, Lu YJ, Hisata K, Tsujiwaki A, Matsunaga N, Komatsu M, Hiramatsu K, Shimizu T. Intestinal carriage of methicillin-resistant Staphylococcus aureus in nasal MRSA carriers hospitalized in the neonatal intensive care unit. Antimicrob Resist Infect Control 2014; 3:14. [PMID: 24808943 PMCID: PMC4012148 DOI: 10.1186/2047-2994-3-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 04/09/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The current data regarding the correlation between the methicillin-resistant Staphylococcus aureus (MRSA) clones carried in the nasal cavity and digestive tract are inadequate. METHODS MRSA strains were isolated from both the feces and nasal swabs of 21 nasal-MRSA carriers ranging from 10 to 104 days of age treated at the neonatal intensive care units of two hospitals. The molecular epidemiological characteristics of the isolates were determined: multilocus sequence types, spa-types, staphylococcal cassette chromosome mec (SCCmec) types, carriage of four exotoxin genes, and genes contained in commercially available kit. RESULTS The feces of all nasal carriers contained MRSA at levels ranging from 4.0 × 10(2) to 2.8 × 10(8) colony forming units/g feces. The MRSA clones isolated from the feces and the nasal swabs of each patient were the same. Four MRSA clones, clonal complex (CC) 8-SCCmec IVl, CC8-SCCmec IVb, CC1-SCCmec IVa and CC5-SCCmec IIa were identified from 21 patients. All CC8-SCCmec IVl strains and one of three CC5-SCCmec IIa strains carried the toxic shock syndrome toxin gene. CONCLUSIONS The feces of tested MRSA carriers contained the same MRSA clones as the nasal isolates in considerable amounts, suggesting that more careful attention should be paid for the handling of excrement in the case of newborn babies or infants than that of adults.
Collapse
Affiliation(s)
- Akihiro Nakao
- Department of Pediatrics, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Teruyo Ito
- Department of Bacteriology, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan ; Department of Infection Control Science, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Xiao Han
- Department of Infection Control Science, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yu Jie Lu
- Department of Infection Control Science, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Ken Hisata
- Department of Pediatrics, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Atsushi Tsujiwaki
- Department of Pediatrics, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Nobuaki Matsunaga
- Department of Pediatrics, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Mitsutaka Komatsu
- Department of Pediatrics, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Keiichi Hiramatsu
- Department of Bacteriology, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan ; Department of Infection Control Science, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Toshiaki Shimizu
- Department of Pediatrics, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
28
|
Kim BS, Yi H, Chun J, Cha CJ. Genome sequence of type strain of Staphylococcus aureus subsp. aureus. Gut Pathog 2014; 6:6. [PMID: 24628867 PMCID: PMC3985588 DOI: 10.1186/1757-4749-6-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 03/11/2014] [Indexed: 11/20/2022] Open
Abstract
Background Staphylococcus aureus is a pathogen that causes food poisoning and community-associated infection with antibiotic resistance. This species is an indigenous intestinal microbe found in infants and not found in adult intestine. The relatively small genome size and rapid evolution of antibiotic resistance genes in the species have been drawing an increasing attention in public health. To extend our understanding of the species and use the genome data for comparative genomic studies, we sequenced the type strain of S. aureus subsp. aureus DSM 20231T. Results Seventeen contigs were generated using hybrid assembly of sequences derived from the Roche 454 and Illumina systems. The length of the genome sequence was 2,902,619 bases with a G + C content of 32.8%. Among the 2,550 annotated CDSs, 44 CDSs were annotated to antibiotic resistance genes and 13 CDSs were related to methicillin resistance. It is interesting to note that this strain was first isolated in 1884 before methicillin was generally used on patients. Conclusions The present study analyzed the genome sequence of S. aureus subsp. aureus type strain as the reference sequence for comparative genomic analyses of clinical isolates. Methicillin resistance genes found in the genome indicate the presence of antibiotic resistance mechanism prior to the usage of antibiotics. Further comparative genomic studies of methicillin-resistant strains based on this reference genome would help to understand the evolution of resistance mechanism and dissemination of resistance genes.
Collapse
Affiliation(s)
| | | | | | - Chang-Jun Cha
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Republic of Korea.
| |
Collapse
|
29
|
Bröker BM, Holtfreter S, Bekeredjian-Ding I. Immune control of Staphylococcus aureus – Regulation and counter-regulation of the adaptive immune response. Int J Med Microbiol 2014; 304:204-14. [DOI: 10.1016/j.ijmm.2013.11.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
30
|
Lactobacilli regulate Staphylococcus aureus 161:2-induced pro-inflammatory T-cell responses in vitro. PLoS One 2013; 8:e77893. [PMID: 24205015 PMCID: PMC3799733 DOI: 10.1371/journal.pone.0077893] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 09/05/2013] [Indexed: 11/19/2022] Open
Abstract
There seems to be a correlation between early gut microbiota composition and postnatal immune development. Alteration in the microbial composition early in life has been associated with immune mediated diseases, such as autoimmunity and allergy. We have previously observed associations between the presence of lactobacilli and Staphylococcus (S.) aureus in the early-life gut microbiota, cytokine responses and allergy development in children. Consistent with the objective to understand how bacteria modulate the cytokine response of intestinal epithelial cell (IEC) lines and immune cells, we exposed IEC lines (HT29, SW480) to UV-killed bacteria and/or culture supernatants (-sn) from seven Lactobacillus strains and three S. aureus strains, while peripheral blood mononuclear cells (PBMC) and cord blood mononuclear cells (CBMC) from healthy donors were stimulated by bacteria-sn or with bacteria conditioned IEC-sn. Although the overall IEC response to bacterial exposure was characterized by limited sets of cytokine and chemokine production, S. aureus 161:2-sn induced an inflammatory response in the IEC, characterized by CXCL1/GROα and CXCL8/IL-8 production, partly in a MyD88-dependent manner. UV-killed bacteria did not induce a response in the IEC line, and a combination of both UV-killed bacteria and the bacteria-sn had no additive effect to that of the supernatant alone. In PBMC, most of the Lactobacillus-sn and S. aureus-sn strains were able to induce a wide array of cytokines, but only S. aureus-sn induced the T-cell associated cytokines IL-2, IL-17 and IFN-γ, independently of IEC-produced factors, and induced up regulation of CTLA-4 expression and IL-10 production by T-regulatory cells. Notably, S. aureus-sn-induced T-cell production of IFN- γ and IL-17 was down regulated by the simultaneous presence of any of the different Lactobacillus strains, while the IEC CXCL8/IL-8 response was unaltered. Thus these studies present a possible role for lactobacilli in induction of immune cell regulation, although the mechanisms need to be further elucidated.
Collapse
|
31
|
Ramsing BGU, Arpi M, Andersen EA, Knabe N, Mogensen D, Buhl D, Westh H, Ostergaard C. First outbreak with MRSA in a Danish neonatal intensive care unit: risk factors and control procedures. PLoS One 2013; 8:e66904. [PMID: 23825581 PMCID: PMC3692537 DOI: 10.1371/journal.pone.0066904] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 05/10/2013] [Indexed: 11/19/2022] Open
Abstract
Introduction The purpose of the study was to describe demographic and clinical characteristics and outbreak handling of a large methicillin-resistant Staphylococcus aureus (MRSA) outbreak in a neonatal intensive care unit (NICU) in Denmark June 25th–August 8th 2008, and to identify risk factors for MRSA transmission. Methods Data were collected retrospectively from medical records and the Danish Neobase database. All MRSA isolates obtained from neonates, relatives and NICU health care workers (HCW) as well as environmental cultures were typed. Results During the 46 day outbreak period, 102 neonates were admitted to the two neonatal wards. Ninety-nine neonates were subsequently sampled, and 32 neonates (32%) from 25 families were colonized with MRSA (spa-type t127, SCCmec V, PVL negative). Thirteen family members from 11 of those families (44%) and two of 161 HCWs (1%) were colonized with the same MRSA. No one was infected. Five environmental cultures were MRSA positive. In a multiple logistic regression analysis, nasal Continuous Positive Airway Pressure (nCPAP) treatment (p = 0.006) and Caesarean section (p = 0.016) were independent risk factors for MRSA acquisition, whereas days of exposure to MRSA was a risk factors in the unadjusted analysis (p = 0.04). Conclusions MRSA transmission occurs with high frequency in the NICU during hospitalization with unidentified MRSA neonates. Caesarean section and nCPAP treatment were identified as risk factors for MRSA colonization. The MRSA outbreak was controlled through infection control procedures.
Collapse
|
32
|
Indole and 7-benzyloxyindole attenuate the virulence of Staphylococcus aureus. Appl Microbiol Biotechnol 2013; 97:4543-52. [PMID: 23318836 DOI: 10.1007/s00253-012-4674-z] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 12/13/2012] [Accepted: 12/19/2012] [Indexed: 12/29/2022]
Abstract
Human pathogens can readily develop drug resistance due to the long-term use of antibiotics that mostly inhibit bacterial growth. Unlike antibiotics, antivirulence compounds diminish bacterial virulence without affecting cell viability and thus, may not lead to drug resistance. Staphylococcus aureus is a major agent of nosocomial infections and produces diverse virulence factors, such as the yellow carotenoid staphyloxanthin, which promotes resistance to reactive oxygen species (ROS) and the host immune system. To identify novel antivirulence compounds, bacterial signal indole present in animal gut and diverse indole derivatives were investigated with respect to reducing staphyloxanthin production and the hemolytic activity of S. aureus. Treatment with indole or its derivative 7-benzyloxyindole (7BOI) caused S. aureus to become colorless and inhibited its hemolytic ability without affecting bacterial growth. As a result, S. aureus was more easily killed by hydrogen peroxide (H₂O₂) and by human whole blood in the presence of indole or 7BOI. In addition, 7BOI attenuated S. aureus virulence in an in vivo model of nematode Caenorhabditis elegans, which is readily infected and killed by S. aureus. Transcriptional analyses showed that both indole and 7BOI repressed the expressions of several virulence genes such as α-hemolysin gene hla, enterotoxin seb, and the protease genes splA and sspA and modulated the expressions of the important regulatory genes agrA and sarA. These findings show that indole derivatives are potential candidates for use in antivirulence strategies against persistent S. aureus infection.
Collapse
|
33
|
Inhibition of Staphylococcus aureus adherence to Caco-2 cells by lactobacilli and cell surface properties that influence attachment. Anaerobe 2012; 18:508-15. [DOI: 10.1016/j.anaerobe.2012.08.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 07/15/2012] [Accepted: 08/06/2012] [Indexed: 01/16/2023]
|
34
|
Lundell AC, Björnsson V, Ljung A, Ceder M, Johansen S, Lindhagen G, Törnhage CJ, Adlerberth I, Wold AE, Rudin A. Infant B cell memory differentiation and early gut bacterial colonization. THE JOURNAL OF IMMUNOLOGY 2012; 188:4315-22. [PMID: 22490441 DOI: 10.4049/jimmunol.1103223] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Germ-free animal models have demonstrated that commensal bacterial colonization of the intestine induces B cell differentiation and activation. Whether colonization with particular bacterial species or groups is associated with B cell development during early childhood is not known. In a prospective newborn/infant cohort including 65 Swedish children, we examined the numbers and proportions of CD20(+), CD5(+), and CD27(+) B cells in blood samples obtained at several time points during the first 3 y of life using flow cytometry. Fecal samples were collected and cultured quantitatively for major facultative and anaerobic bacteria at 1, 2, 4, and 8 wk of life. We found that the numbers of CD20(+) B cells and CD5(+)CD20(+) B cells reached their highest levels at 4 mo, whereas CD20(+) B cells expressing the memory marker CD27 were most numerous at 18 and 36 mo of age. Using multivariate analysis, we show that early colonization with Escherichia coli and bifidobacteria were associated with higher numbers of CD20(+) B cells that expressed the memory marker CD27 at 4 and 18 mo of age. In contrast, we were unable to demonstrate any relation between bacterial colonization pattern and numbers of CD20(+) or CD5(+)CD20(+) B cells. These results suggest that the intestinal bacterial colonization pattern may affect the B cell maturation also in humans, and that an early gut microbiota including E. coli and bifidobacteria might promote this maturation.
Collapse
Affiliation(s)
- Anna-Carin Lundell
- Department of Rheumatology and Inflammation Research, The Sahlgrenska Academy at University of Gothenburg, 405 30 Göteborg, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Nowrouzian FL, Dauwalder O, Meugnier H, Bes M, Etienne J, Vandenesch F, Lindberg E, Hesselmar B, Saalman R, Strannegård IL, Åberg N, Adlerberth I, Wold AE, Lina G. Adhesin and Superantigen Genes and the Capacity of Staphylococcus aureus to Colonize the Infantile Gut. J Infect Dis 2011; 204:714-21. [DOI: 10.1093/infdis/jir388] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
36
|
The influence of Staphylococcus aureus on gut microbial ecology in an in vitro continuous culture human colonic model system. PLoS One 2011; 6:e23227. [PMID: 21858036 PMCID: PMC3153491 DOI: 10.1371/journal.pone.0023227] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 07/13/2011] [Indexed: 01/16/2023] Open
Abstract
An anaerobic three-stage continuous culture model of the human colon (gut model), which represent different anatomical areas of the large intestine, was used to study the effect of S. aureus infection of the gut on the resident faecal microbiota. Studies on the development of the microbiota in the three vessels were performed and bacteria identified by culture independent fluorescence in situ hybridization (FISH). Furtheremore, short chain fatty acids (SCFA), as principal end products of gut bacterial metabolism, were measured along with a quantitative assessment of the predominant microbiota. During steady state conditions, numbers of S. aureus cells stabilised until they were washed out, but populations of indigenous bacteria were transiently altered; thus S. aureus was able to compromise colonisation resistance by the colonic microbiota. Furthermore, the concentration of butyric acid in the vessel representing the proximal colon was significantly decreased by infection. Thus infection by S. aureus appears to be able to alter the overall structure of the human colonic microbiota and the microbial metabolic profiles. This work provides an initial in vitro model to analyse interactions with pathogens.
Collapse
|
37
|
Li SJ, Hu DL, Maina E, Shinagawa K, Omoe K, Nakane A. Superantigenic activity of toxic shock syndrome toxin-1 is resistant to heating and digestive enzymes. J Appl Microbiol 2011; 110:729-36. [DOI: 10.1111/j.1365-2672.2010.04927.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
38
|
Miron N, Miron MM. Staphylococcal enterotoxin A: a candidate for the amplification of physiological immunoregulatory responses in the gut. Microbiol Immunol 2011; 54:769-77. [PMID: 21091986 DOI: 10.1111/j.1348-0421.2010.00280.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Staphylococcal enterotoxin A (SEA) is one of the bacterial products tested for modulation of unwanted immune responses. Of all the staphylococcal enterotoxins, SEA is the most potent stimulator of T cells. When administered orally, SEA acts as a superantigen (SA), producing unspecific stimulation of intra-epithelial lymphocytes (IELs) in the intestinal mucosa. This stimulation results in amplification of the normal local immunologic responses, which are mainly regulatory. This amplification is based on increased local production of IFN-γ by IELs, which acts on the nearby enterocytes. As a result, the enterocytes produce large amounts of tolerosomes, cellular corpuscles which detach themselves from the basal poles of the enterocytes and contain antigenic peptides that are conditioned to be interpreted as tolerogenic by the gut immune system. Tolerosomes are physiologically produced as a response to dietary peptides; it is already known that enterocytes posses the molecular mechanisms for processing peptides in a similar manner to lymphocytes. The fate of tolerosomes is not precisely known, but it seems that they merge with intestinal dendritic cells, conveying to them the information that orally administered peptides must be interpreted as tolerogens. SEA can stimulate this mechanism, thus favoring the development of tolerance to peptides/proteins administered subsequently via the oral route. This characteristic of SEA might be useful in therapy for regulating immune responses. The present paper reviews the current status of research regarding the impact of SEA on the enteric immune system and its potential use in the treatment of allergic and autoimmune diseases.
Collapse
Affiliation(s)
- Nicolae Miron
- Department of Immunology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj, Romania.
| | | |
Collapse
|
39
|
Li SJ, Hu DL, Maina E, Shinagawa K, Omoe K, Nakane A. Superantigenic activity of toxic shock syndrome toxin-1 is resistant to heating and digestive enzymes. J Appl Microbiol 2011. [DOI: 10.1111/j.1365-2672.2011.04927.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Lindberg E, Adlerberth I, Matricardi P, Bonanno C, Tripodi S, Panetta V, Hesselmar B, Saalman R, Aberg N, Wold AE. Effect of lifestyle factors on Staphylococcus aureus gut colonization in Swedish and Italian infants. Clin Microbiol Infect 2010; 17:1209-15. [PMID: 21073631 DOI: 10.1111/j.1469-0691.2010.03426.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In recent years, Staphylococcus aureus has become a common bowel colonizer in Swedish infants. We aimed to identify host factors that determine such colonization. Stool samples from 100 Italian and 100 Swedish infants were obtained on seven occasions during the first year of life and cultured quantitatively for S. aureus. In a subgroup of infants in each cohort, individual strains were identified by random amplified polymorphic DNA analysis. Colonization at each time-point was related to delivery mode, siblings in family and antibiotic treatment. In total, 66% of the Italian and 78% of the Swedish infants had S. aureus in their stools on at least one time-point (p 0.08) and 4% of Italian and 27% of Swedish infants were positive on at least six of the seven time-points investigated (p 0.0001). Most infants analysed regarding strain carriage harboured a single strain in their microbiota for several months. The S. aureus stool populations in colonized infants decreased from 10(7) to 10(4) colony-forming units/g between 1 week and 1 year of age in both cohorts. In multivariate analysis, the strongest predictor for S. aureus colonization was being born in Sweden (OR 3.4 at 1 week of age, p 0.002). Having (an) elder sibling(s) increased colonization at peak phase (OR 1.8 at 6 months, p 0.047). Antibiotic treatment was more prevalent among Italian infants and correlated negatively with S. aureus colonization at 6 months of age (OR 0.3, p 0.01). To conclude, S. aureus is a more common gut colonizer in Swedish than Italian infants, a fact that could not be attributed to feeding or delivery mode.
Collapse
Affiliation(s)
- E Lindberg
- Department of Infectious Disease/Clinical Bacteriology, University of Gothenburg, Gothenburg, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Highet AR, Goldwater PN. Staphylococcal enterotoxin genes are common inStaphylococcus aureusintestinal flora in Sudden Infant Death Syndrome (SIDS) and live comparison infants. ACTA ACUST UNITED AC 2009; 57:151-5. [DOI: 10.1111/j.1574-695x.2009.00592.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
42
|
Superantigenic Staphylococcus aureus stimulates production of interleukin-17 from memory but not naive T cells. Infect Immun 2009; 78:381-6. [PMID: 19822653 DOI: 10.1128/iai.00724-09] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
T-helper 17 (Th17) cells are characterized by their production of interleukin-17 (IL-17) and have a role in the protection against infections and in certain inflammatory diseases. Humans who lack Th17 cells are more susceptible to Staphylococcus aureus infections compared to individuals having Th17 cells. S. aureus is part of the commensal skin microflora and also colonize the infant gut. To investigate whether UV-killed S. aureus would be more capable of inducing IL-17 than other commensal bacteria, we stimulated mononuclear cells from adults, infants, and newborns with various gram-positive and gram-negative commensal bacteria. IL-17 was produced from adult memory Th17 cells after stimulation with superantigen-producing S. aureus but not nonsuperantigenic S. aureus or other common commensal gut bacteria. Cells from newborns were poor IL-17 producers after stimulation with S. aureus, whereas in some cases IL-17 was secreted from cells isolated from infants at the age of 4 and 18 months. These results suggest that superantigenic S. aureus are particularly efficient in stimulating IL-17 production and that the cytokine is produced from memory T cells.
Collapse
|
43
|
Gries DM, Zemzars TF, Gibson KA, O'Hern E, Iyer M, Myers M, Pultz MJ, Li Y, Donskey CJ. A pilot study to assess frequency of carriage and routes of acquisition of Staphylococcus aureus by healthy infants. Am J Infect Control 2009; 37:598-600. [PMID: 19328594 DOI: 10.1016/j.ajic.2008.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 10/22/2008] [Accepted: 10/22/2008] [Indexed: 10/21/2022]
Abstract
Healthy infants frequently acquire Staphylococcus aureus colonization; however, the modes of transmission are not well defined. In this study, 8 of 23 (35%) infants cultured at age 2 weeks acquired S aureus carriage, but only 1 infant had a family member with nasal carriage of the same clone, suggesting that sources other than colonized family members may account for a significant proportion of cases.
Collapse
|
44
|
Tarkowski A, Collins LV, Jonsson IM, Eriksson K, Sakiniene E, Verdrengh M. Microbial Superantigens as Virulence Factors and Ways to Counteract Their Actions. ACTA ACUST UNITED AC 2009; 35:642-6. [PMID: 14620148 DOI: 10.1080/00365540310016330] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Microbial superantigens represent a group of molecules that is able to cause massive activation of the host immune system. Human diseases originating from superantigen-secreting bacterial agents are characterized by shock, which continues to pose major health problems. Presently, the treatment of superantigen-mediated infections is limited to the administration of antibiotics and handling of the state of shock. However, the development of multiple antibiotic-resistant, superantigen-producing bacterial strains increases the threat of these infections, and prompts researchers to better understand and treat disease states in which exposure to superantigens is at least partly responsible for the outcome. In the past decade, significant understanding has been achieved regarding the molecular mechanisms of superantigen-host interactions. Based on this understanding, a variety of promising strategies directed against superantigens have been developed. In this review, we discuss some of these strategies, as well as the potential for therapeutic applications of superantigens for the benefit of the host.
Collapse
Affiliation(s)
- Andrej Tarkowski
- Department of Rheumatology and Inflammation Research, Göteborg University, Sweden.
| | | | | | | | | | | |
Collapse
|
45
|
Lis E, Korzekwa K, BystroÅ J, Å»arczyÅska A, DÄ
browska A, Molenda J, Bania J. Enterotoxin gene content inStaphylococcus aureusfrom the human intestinal tract. FEMS Microbiol Lett 2009; 296:72-7. [DOI: 10.1111/j.1574-6968.2009.01622.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
46
|
Lundell AC, Hesselmar B, Nordström I, Saalman R, Karlsson H, Lindberg E, Åberg N, Adlerberth I, Wold AE, Rudin A. High circulating immunoglobulin A levels in infants are associated with intestinal toxigenicStaphylococcus aureusand a lower frequency of eczema. Clin Exp Allergy 2009; 39:662-70. [DOI: 10.1111/j.1365-2222.2008.03176.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
47
|
Lönnqvist A, Ostman S, Almqvist N, Hultkrantz S, Telemo E, Wold AE, Rask C. Neonatal exposure to staphylococcal superantigen improves induction of oral tolerance in a mouse model of airway allergy. Eur J Immunol 2009; 39:447-56. [PMID: 19130476 DOI: 10.1002/eji.200838418] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The hygiene hypothesis suggests that lack of microbial stimulation in early infancy may lead to allergy, but it has been difficult to identify particular protective microbial exposures. We have observed that infants colonised in the first week(s) of life with Staphylococcus aureus have lower risk of developing food allergy. As many S. aureus strains produce superantigens with T-cell stimulating properties, we here investigate whether neonatal mucosal exposure to superantigen could influence the capacity to develop oral tolerance and reduce sensitisation and allergy. BALB/c mice were exposed to staphylococcal enterotoxin A (SEA) as neonates and fed with OVA as adults, prior to sensitisation and i.n. OVA challenge. Our results show that SEA pre-treated mice are more efficiently tolerised by OVA feeding, as shown by lower lung-cell infiltration and antigen-specific IgE response in the SEA pre-treated mice, compared with sham-treated mice. This was not due to deletion or anergy of lymphocytes by SEA treatment, because the SEA pre-treated mice that were fed with PBS showed similar inflammatory response as the sham-treated PBS-fed mice. Our results suggest that strong T-cell activation in infancy conditions the mucosal immune system and promotes development of oral tolerance.
Collapse
Affiliation(s)
- Anna Lönnqvist
- Department of Clinical Bacteriology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | | | | | | | | | | | | |
Collapse
|
48
|
Hanson LA, Silfverdal SA. The mother's immune system is a balanced threat to the foetus, turning to protection of the neonate. Acta Paediatr 2009; 98:221-8. [PMID: 19046342 DOI: 10.1111/j.1651-2227.2008.01143.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
UNLABELLED Immunological tolerance by the mother prevents rejection of the foetus, but aberrations may increase risk of abnormalities like spontaneous abortion, or foetal growth restriction. The neonate is normally colonized with mother's gut microflora, mainly composed of protective anaerobes. This least threatening form of microbial colonization of the neonate, is impaired by sectio delivery, but supported by breastfeeding. Mother's transplacental IgG, secretory IgA and other milk components help protect the neonate together with its own slowly expanding immune system. CONCLUSION The mother's immune system tolerates her foetus via several mechanisms. Failure to do so may cause foetal growth retardation, or spontaneous abortion. The mother and the neonate cooperate in preventing infections in the offspring.
Collapse
Affiliation(s)
- Lars A Hanson
- Department of Clinical Immunology, Göteborg University, Göteborg, Sweden
| | | |
Collapse
|
49
|
Emerging Insights into Antibiotic-Associated Diarrhea and Clostridium difficile Infection through the Lens of Microbial Ecology. Interdiscip Perspect Infect Dis 2008; 2008:125081. [PMID: 19277109 PMCID: PMC2649424 DOI: 10.1155/2008/125081] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Accepted: 10/09/2008] [Indexed: 12/26/2022] Open
Abstract
Antibiotics are the main, and often only, clinical intervention for prophylactic and active treatment of bacterial infections in humans. Perhaps it is not surprising that these drugs also shift the composition of commensal bacteria inside our bodies, especially those within the gut microbial community (microbiota). How these dynamics ultimately affect the function of the gut microbiota, however, is not fully appreciated. Likewise, how antibiotic induced changes facilitate the outgrowth and pathogenicity of certain bacterial strains remains largely enigmatic. Here, we discuss the merits of a microbial ecology approach toward understanding a common side effect of antibiotic use, antibiotic-associated diarrhea (AAD), and the opportunistic bacterial infections that sometimes underlie it. As an example, we discuss how this approach is being used to address complex disease dynamics during Clostridium difficile infection.
Collapse
|
50
|
Acton DS, Plat-Sinnige MJT, van Wamel W, de Groot N, van Belkum A. Intestinal carriage of Staphylococcus aureus: how does its frequency compare with that of nasal carriage and what is its clinical impact? Eur J Clin Microbiol Infect Dis 2008; 28:115-27. [PMID: 18688664 DOI: 10.1007/s10096-008-0602-7] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Accepted: 07/11/2008] [Indexed: 10/21/2022]
Abstract
The bacterial species Staphylococcus aureus, including its methicillin-resistant variant (MRSA), finds its primary ecological niche in the human nose, but is also able to colonize the intestines and the perineal region. Intestinal carriage has not been widely investigated despite its potential clinical impact. This review summarizes literature on the topic and sketches the current state of affairs from a microbiological and infectious diseases' perspective. Major findings are that the average reported detection rate of intestinal carriage in healthy individuals and patients is 20% for S. aureus and 9% for MRSA, which is approximately half of that for nasal carriage. Nasal carriage seems to predispose to intestinal carriage, but sole intestinal carriage occurs relatively frequently and is observed in 1 out of 3 intestinal carriers, which provides a rationale to include intestinal screening for surveillance or in outbreak settings. Colonization of the intestinal tract with S. aureus at a young age occurs at a high frequency and may affect the host's immune system. The frequency of intestinal carriage is generally underestimated and may significantly contribute to bacterial dissemination and subsequent risk of infections. Whether intestinal rather than nasal S. aureus carriage is a primary predictor for infections is still ill-defined.
Collapse
Affiliation(s)
- D S Acton
- Mucovax B.V., Niels Bohrweg 11-13, 2333, CA Leiden, The Netherlands.
| | | | | | | | | |
Collapse
|