1
|
Mehta SL, Arruri V, Vemuganti R. Role of transcription factors, noncoding RNAs, epitranscriptomics, and epigenetics in post-ischemic neuroinflammation. J Neurochem 2024; 168:3430-3448. [PMID: 38279529 PMCID: PMC11272908 DOI: 10.1111/jnc.16055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/28/2024]
Abstract
Post-stroke neuroinflammation is pivotal in brain repair, yet persistent inflammation can aggravate ischemic brain damage and hamper recovery. Following stroke, specific molecules released from brain cells attract and activate central and peripheral immune cells. These immune cells subsequently release diverse inflammatory molecules within the ischemic brain, initiating a sequence of events, including activation of transcription factors in different brain cell types that modulate gene expression and influence outcomes; the interactive action of various noncoding RNAs (ncRNAs) to regulate multiple biological processes including inflammation, epitranscriptomic RNA modification that controls RNA processing, stability, and translation; and epigenetic changes including DNA methylation, hydroxymethylation, and histone modifications crucial in managing the genic response to stroke. Interactions among these events further affect post-stroke inflammation and shape the depth of ischemic brain damage and functional outcomes. We highlighted these aspects of neuroinflammation in this review and postulate that deciphering these mechanisms is pivotal for identifying therapeutic targets to alleviate post-stroke dysfunction and enhance recovery.
Collapse
Affiliation(s)
- Suresh L. Mehta
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Vijay Arruri
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
- William S. Middleton Veterans Hospital, Madison, WI, USA
| |
Collapse
|
2
|
Muttathukunnel P, Wälti M, Aboouf MA, Köster-Hegmann C, Haenggi T, Gassmann M, Pannzanelli P, Fritschy JM, Schneider Gasser EM. Erythropoietin regulates developmental myelination in the brain stimulating postnatal oligodendrocyte maturation. Sci Rep 2023; 13:19522. [PMID: 37945644 PMCID: PMC10636124 DOI: 10.1038/s41598-023-46783-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023] Open
Abstract
Myelination is a process tightly regulated by a variety of neurotrophic factors. Here, we show-by analyzing two transgenic mouse lines, one overexpressing EPO selectively in the brain Tg21(PDGFB-rhEPO) and another with targeted removal of EPO receptors (EPORs) from oligodendrocyte progenitor cells (OPC)s (Sox10-cre;EpoRfx/fx mice)-a key function for EPO in regulating developmental brain myelination. Overexpression of EPO resulted in faster postnatal brain growth and myelination, an increased number of myelinating oligodendrocytes, faster axonal myelin ensheathment, and improved motor coordination. Conversely, targeted ablation of EPORs from OPCs reduced the number of mature oligodendrocytes and impaired motor coordination during the second postnatal week. Furthermore, we found that EPORs are transiently expressed in the subventricular zone (SVZ) during the second postnatal week and EPO increases the postnatal expression of essential oligodendrocyte pro-differentiation and pro-maturation (Nkx6.2 and Myrf) transcripts, and the Nfatc2/calcineurin pathway. In contrast, ablation of EPORs from OPCs inactivated the Erk1/2 pathway and reduced the postnatal expression of the transcripts. Our results reveal developmental time windows in which EPO therapies could be highly effective for stimulating oligodendrocyte maturation and myelination.
Collapse
Affiliation(s)
- Paola Muttathukunnel
- Institute of Pharmacology and Toxicology, University of Zürich, 8057, Zürich, Switzerland
- Center for Neuroscience Zurich (ZNZ), Zurich, Switzerland
| | - Michael Wälti
- Institute of Pharmacology and Toxicology, University of Zürich, 8057, Zürich, Switzerland
| | - Mostafa A Aboouf
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zürich, 8057, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057, Zurich, Switzerland
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Christina Köster-Hegmann
- Institute of Pharmacology and Toxicology, University of Zürich, 8057, Zürich, Switzerland
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zürich, 8057, Zurich, Switzerland
| | - Tatjana Haenggi
- Institute of Pharmacology and Toxicology, University of Zürich, 8057, Zürich, Switzerland
| | - Max Gassmann
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zürich, 8057, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057, Zurich, Switzerland
| | - Patrizia Pannzanelli
- Rita Levi Montalcini Center for Brain Repair, University of Turin, 10126, Turin, Italy
| | - Jean-Marc Fritschy
- Institute of Pharmacology and Toxicology, University of Zürich, 8057, Zürich, Switzerland
- Center for Neuroscience Zurich (ZNZ), Zurich, Switzerland
| | - Edith M Schneider Gasser
- Institute of Pharmacology and Toxicology, University of Zürich, 8057, Zürich, Switzerland.
- Center for Neuroscience Zurich (ZNZ), Zurich, Switzerland.
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zürich, 8057, Zurich, Switzerland.
| |
Collapse
|
3
|
Chen H, Ma D, Yue F, Qi Y, Dou M, Cui L, Xing Y. The Potential Role of Hypoxia-Inducible Factor-1 in the Progression and Therapy of Central Nervous System Diseases. Curr Neuropharmacol 2022; 20:1651-1666. [PMID: 34325641 PMCID: PMC9881070 DOI: 10.2174/1570159x19666210729123137] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/19/2021] [Accepted: 07/16/2021] [Indexed: 11/22/2022] Open
Abstract
Hypoxia-inducible factor-1 (HIF-1) is a heterodimer protein composed of an oxygenregulated functional subunit, HIF-1α, and a structural subunit, HIF-1β, belonging to the basic helixloop- helix family. Strict regulation of HIF-1 protein stability and subsequent transcriptional activity involves various molecular interactions and is primarily controlled by post-transcriptional modifications. Hypoxia, owing to impaired cerebral blood flow, has been implicated in a range of central nervous system (CNS) diseases by exerting a deleterious effect on brain function. As a master oxygen- sensitive transcription regulator, HIF-1 is responsible for upregulating a wide spectrum of target genes involved in glucose metabolism, angiogenesis, and erythropoiesis to generate the adaptive response to avoid, or at least minimize, hypoxic brain injury. However, prolonged, severe oxygen deprivation may directly contribute to the role-conversion of HIF-1, namely, from neuroprotection to the promotion of cell death. Currently, an increasing number of studies support the fact HIF-1 is involved in a variety of CNS-related diseases, such as intracranial atherosclerosis, stroke, and neurodegenerative diseases. This review article chiefly focuses on the effect of HIF-1 on the pathogenesis and mechanism of progression of numerous CNS-related disorders by mediating the expression of various downstream genes and extensive biological functional events and presents robust evidence that HIF-1 may represent a potential therapeutic target for CNS-related diseases.
Collapse
Affiliation(s)
- Hongxiu Chen
- Department of Vascular Ultrasonography, Xuanwu Hospital, Capital Medical University, Beijing, China; ,Beijing Diagnostic Center of Vascular Ultrasound, Beijing, China; ,Center of Vascular Ultrasonography, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, 45 Changchun Road, Xicheng District, Beijing, 100053, China; ,Hongxiu Chen and Di Ma contributed equally to this work.
| | - Di Ma
- Department of Neurology, The First Hospital of Jilin University, Changchun, China,Hongxiu Chen and Di Ma contributed equally to this work.
| | - Feixue Yue
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yajie Qi
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Manman Dou
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Liuping Cui
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yingqi Xing
- Department of Vascular Ultrasonography, Xuanwu Hospital, Capital Medical University, Beijing, China; ,Beijing Diagnostic Center of Vascular Ultrasound, Beijing, China; ,Center of Vascular Ultrasonography, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, 45 Changchun Road, Xicheng District, Beijing, 100053, China; ,Address correspondence to this author at the Department of Vascular Ultrasonography, Xuanwu Hospital, Capital Medical University, Beijing Diagnostic Center of Vascular Ultrasound, Center of Vascular Ultrasonography, Beijing Institute of Brain Disorders, 45 Changchun Road, Xicheng District, Beijing, 100053, China; E-mail: This work is recommended by Pro Jiachun Feng, The First Hospital of Jilin University.
| |
Collapse
|
4
|
Senousy MA, Hanafy ME, Shehata N, Rizk SM. Erythropoietin and Bacillus Calmette-Guérin Vaccination Mitigate 3-Nitropropionic Acid-Induced Huntington-like Disease in Rats by Modulating the PI3K/Akt/mTOR/P70S6K Pathway and Enhancing the Autophagy. ACS Chem Neurosci 2022; 13:721-732. [PMID: 35226456 DOI: 10.1021/acschemneuro.1c00523] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Oxidative stress and mitochondrial dysfunction are among the mechanisms expected to explain the pathogenesis of Huntington's disease. Erythropoietin (EPO) and the Bacillus Calmette-Guérin (BCG) vaccine have neuroprotective effects against neurodegenerative diseases; however, the full mechanisms of their action are currently unclear. Here, for the first time, we investigated the neuroprotective effect of BCG vaccination in Huntington-like disease induced by 3-nitropropionic acid (3-NP) and its combination with EPO. Male Wistar rats were randomized into five groups: saline-treated control; 3-NP group (20 mg/kg/day, i.p.) for 7 days; EPO-treated group (5000 IU/kg/day, i.p.) for 14 days after 3-NP administration; live BCG vaccine prophylactic group (5000 cfu/g, i.p.) 10 days prior to 3-NP administration; and live BCG vaccine (5000 cfu/g, i.p.) 10 days before 3-NP administration, followed by EPO treatment (5000 IU/kg/day, i.p.) for 14 days. In a histopathological examination, striatum neurodegeneration was evidenced in the 3-NP injected rats. Administration of 3-NP elevated the levels of p-PI3K, p-Akt, p-mTOR, p-P70S6K, BAX, malondialdehyde, nitric oxide, and cytochrome oxidase while reduced the levels of BCL-2, superoxide dismutase, reduced glutathione, and the autophagy marker microtubule-associated protein light chain 3 in the striatum. EPO and BCG ameliorated the biochemical, histopathological, and behavioral derangements induced by 3-NP, with prominent neuroprotection observed in rats administered the BCG prophylactic combined with EPO treatment. These results highlight the role played by EPO and BCG in the management of 3-NP-induced Huntington-like disease by inhibiting the PI3K/Akt/mTOR/P70S6K pathway and enhancing the autophagy.
Collapse
Affiliation(s)
- Mahmoud A. Senousy
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Mona Essam Hanafy
- Central Administration of Biological and Innovative Products and Clinical Studies, Egyptian Drug Authority, Giza 00202, Egypt
| | - Nahla Shehata
- Central Administration of Biological and Innovative Products and Clinical Studies, Egyptian Drug Authority, Giza 00202, Egypt
| | - Sherine M. Rizk
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
5
|
A Brief Review on Erythropoietin and Mesenchymal Stem Cell Therapies for Paediatric Neurological Disorders. CURRENT STEM CELL REPORTS 2021. [DOI: 10.1007/s40778-021-00189-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
6
|
Zhong Y, Yin B, Ye Y, Dekhel OYAT, Xiong X, Jian Z, Gu L. The bidirectional role of the JAK2/STAT3 signaling pathway and related mechanisms in cerebral ischemia-reperfusion injury. Exp Neurol 2021; 341:113690. [PMID: 33798563 DOI: 10.1016/j.expneurol.2021.113690] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 02/12/2021] [Accepted: 03/07/2021] [Indexed: 02/07/2023]
Abstract
The Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) signaling pathway, a well-conserved and basic intracellular signaling cascade, is mostly inactivated under basal conditions, although it can be phosphorylated under extracellular stimulation; in addition, it can influence the transcription and expression of multiple genes involved in biological processes such as cellular growth, metabolism, differentiation, degradation and angiogenesis. The inflammatory response, apoptosis, oxidative stress and angiogenesis are the main factors involved in the pathogenesis of ischemic stroke. Numerous studies have confirmed that the JAK2/STAT3 axis can be activated rapidly by ischemic stress, which is closely related to the regulation of these important pathological processes. However, different opinions on the specific role of this signaling pathway remain. In this paper, we review and summarize previous studies on the JAK2/STAT3 pathway in ischemic stroke.
Collapse
Affiliation(s)
- Yi Zhong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Bo Yin
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yingze Ye
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Omar Y A T Dekhel
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhihong Jian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
7
|
Hemani S, Lane O, Agarwal S, Yu SP, Woodbury A. Systematic Review of Erythropoietin (EPO) for Neuroprotection in Human Studies. Neurochem Res 2021; 46:732-739. [PMID: 33521906 DOI: 10.1007/s11064-021-03242-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 11/29/2022]
Abstract
Erythropoietin (EPO) is an exciting neurotherapeutic option. Despite its potential, concerns exist regarding the potential for thrombosis and adverse events with EPO administration in normonemic adults. Systematic review of literature using PRISMA guidelines to examine the application and risks of EPO as a treatment option for neuroprotection in normonemic adults. Independent, systematic searches were performed in July 2019. PubMed (1960-2019) and the Cochrane Controlled Trials Register (1960-2019) were screened. Search terms included erythropoietin, neuroprotection, and humans. The PubMed search resulted in the following search strategy: ("erythropoietin" [MeSH Terms] OR "erythropoietin" [All Fields] OR "epoetin alfa" [MeSH Terms] OR ("epoetin" [All Fields] AND "alfa" [All Fields]) OR "epoetin alfa" [All Fields]) AND ("neuroprotection" [MeSH Terms] OR "neuroprotection" [All Fields]) AND "humans" [MeSH Terms]. PubMed, Cochrane Controlled Trials Register, and articles based on prior searches yielded 388 citations. 50 studies were included, comprising of 4351 patients. There were 13 studies that noted adverse effects from EPO. Three attributed serious adverse effects to EPO and complications were statistically significant. Two of these studies related the adverse events to the co-administration of EPO with tPA. Minor adverse effects associated with the EPO group included nausea, pyrexia, headache, generalized weakness and superficial phlebitis. Most published studies focus on spinal cord injury, peri-surgical outcomes and central effects of EPO. We found no studies to date evaluating the role of EPO in post-operative pain. Future trials could evaluate this application in persistent post-surgical pain and in the peri-operative period.
Collapse
Affiliation(s)
- Salman Hemani
- Division of Pain Medicine, Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Olabisi Lane
- Division of Pain Medicine, Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| | - Sunil Agarwal
- Division of Pain Medicine, Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Shan Ping Yu
- Division of Pain Medicine, Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Atlanta Veterans Affairs Healthcare System, Decatur, GA, 30033, USA
| | - Anna Woodbury
- Division of Pain Medicine, Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Atlanta Veterans Affairs Healthcare System, Decatur, GA, 30033, USA
| |
Collapse
|
8
|
Auzmendi J, Puchulu MB, Rodríguez JCG, Balaszczuk AM, Lazarowski A, Merelli A. EPO and EPO-Receptor System as Potential Actionable Mechanism for the Protection of Brain and Heart in Refractory Epilepsy and SUDEP. Curr Pharm Des 2020; 26:1356-1364. [PMID: 32072891 DOI: 10.2174/1381612826666200219095548] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/31/2019] [Indexed: 12/26/2022]
Abstract
The most important activity of erythropoietin (EPO) is the regulation of erythrocyte production by activation of the erythropoietin receptor (EPO-R), which triggers the activation of anti-apoptotic and proliferative responses of erythroid progenitor cells. Additionally, to erythropoietic EPO activity, an antiapoptotic effect has been described in a wide spectrum of tissues. EPO low levels are found in the central nervous system (CNS), while EPO-R is expressed in most CNS cell types. In spite of EPO-R high levels expressed during the hypoxicischemic brain, insufficient production of endogenous cerebral EPO could be the cause of determined circuit alterations that lead to the loss of specific neuronal populations. In the heart, high EPO-R expression in cardiac progenitor cells appears to contribute to myocardial regeneration under EPO stimulation. Several lines of evidence have linked EPO to an antiapoptotic role in CNS and in heart tissue. In this review, an antiapoptotic role of EPO/EPO-R system in both brain and heart under hypoxic conditions, such as epilepsy and sudden death (SUDEP) has been resumed. Additionally, their protective effects could be a new field of research and a novel therapeutic strategy for the early treatment of these conditions and avoid SUDEP.
Collapse
Affiliation(s)
- Jerónimo Auzmendi
- Universidad de Buenos Aire (UBA), Facultad de Farmacia y Bioquimica (FFyB), Instituto de Fisiopatologia y Bioquimica Clínica (INFIBIOC), Junín 956, Ciudad Autonoma de Buenos Aires (CABA), Buenos Aires, Argentina
| | - María B Puchulu
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquimica, Departamento de Ciencias Biologicas, Catedra de Fisiologia, Instituto de Quimica y Metabolismo del Farmaco, CONICET, Ciudad Autonoma de Buenos Aires, Buenos Aires, Argentina
| | - Julio C G Rodríguez
- CENPALAB, Centro Nacional para la Producción de Animales de Laboratorio, La Habana, Cuba
| | - Ana M Balaszczuk
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquimica, Departamento de Ciencias Biologicas, Catedra de Fisiologia, Instituto de Quimica y Metabolismo del Farmaco, CONICET, Ciudad Autonoma de Buenos Aires, Buenos Aires, Argentina
| | - Alberto Lazarowski
- Universidad de Buenos Aire (UBA), Facultad de Farmacia y Bioquimica (FFyB), Instituto de Fisiopatologia y Bioquimica Clínica (INFIBIOC), Junín 956, Ciudad Autonoma de Buenos Aires (CABA), Buenos Aires, Argentina
| | - Amalia Merelli
- Universidad de Buenos Aire (UBA), Facultad de Farmacia y Bioquimica (FFyB), Instituto de Fisiopatologia y Bioquimica Clínica (INFIBIOC), Junín 956, Ciudad Autonoma de Buenos Aires (CABA), Buenos Aires, Argentina
| |
Collapse
|
9
|
Ureña-Guerrero ME, Castañeda-Cabral JL, Rivera-Cervantes MC, Macias-Velez RJ, Jarero-Basulto JJ, Gudiño-Cabrera G, Beas-Zárate C. Neuroprotective and Neurorestorative Effects of Epo and VEGF: Perspectives for New Therapeutic Approaches to Neurological Diseases. Curr Pharm Des 2020; 26:1263-1276. [PMID: 31942853 DOI: 10.2174/1381612826666200114104342] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 11/27/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Erythropoietin (Epo) and vascular endothelial growth factor (VEGF) are two vasoactive molecules with essential trophic effects for brain development. The expression and secretion of both molecules increase in response to neuronal damage and they exert protective and restorative effects, which may also be accompanied by adverse side effects. OBJECTIVE We review the most relevant evidence on the neuroprotective and neurorestorative effects of Epo and VEGF in three of the most frequent neurological disorders, namely, stroke, epilepsy and Alzheimer's disease, to develop new therapeutic approaches. METHODS Several original scientific manuscripts and reviews that have discussed the evidence in critical way, considering both the beneficial and adverse effects of Epo and VEGF in the selected neurological disorders, were analysed. In addition, throughout this review, we propose several considerations to take into account in the design of therapeutic approaches based on Epo and VEGF signalling. RESULTS Although the three selected disorders are triggered by different mechanisms, they evolve through similar processes: excitotoxicity, oxidative stress, neuroinflammation, neuronal death, glial reactivity and vascular remodelling. Epo and VEGF exert neuroprotective and neurorestorative effects by acting on these processes due to their pleiotropism. In general, the evidence shows that both Epo and VEGF reduce neuronal death but that at the vascular level, their effects are contradictory. CONCLUSION Because the Epo and VEGF signalling pathways are connected in several ways, we conclude that more experimental studies, primarily studies designed to thoroughly assess the functional interactions between Epo and VEGF in the brain under both physiological and pathophysiological conditions, are needed.
Collapse
Affiliation(s)
- Mónica E Ureña-Guerrero
- Departamento de Biologia Celular y Molecular, Centro Universitario de Ciencias Biologicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan, Jalisco, Mexico
| | - José L Castañeda-Cabral
- Departamento de Biologia Celular y Molecular, Centro Universitario de Ciencias Biologicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan, Jalisco, Mexico.,Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (CINVESTAV sede Sur), IPN, Ciudad de México, México
| | - Martha C Rivera-Cervantes
- Departamento de Biologia Celular y Molecular, Centro Universitario de Ciencias Biologicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan, Jalisco, Mexico
| | - Rafael J Macias-Velez
- Departamento de Biologia Celular y Molecular, Centro Universitario de Ciencias Biologicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan, Jalisco, Mexico
| | - José J Jarero-Basulto
- Departamento de Biologia Celular y Molecular, Centro Universitario de Ciencias Biologicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan, Jalisco, Mexico
| | - Graciela Gudiño-Cabrera
- Departamento de Biologia Celular y Molecular, Centro Universitario de Ciencias Biologicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan, Jalisco, Mexico
| | - Carlos Beas-Zárate
- Departamento de Biologia Celular y Molecular, Centro Universitario de Ciencias Biologicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan, Jalisco, Mexico
| |
Collapse
|
10
|
Oorschot DE, Sizemore RJ, Amer AR. Treatment of Neonatal Hypoxic-Ischemic Encephalopathy with Erythropoietin Alone, and Erythropoietin Combined with Hypothermia: History, Current Status, and Future Research. Int J Mol Sci 2020; 21:E1487. [PMID: 32098276 PMCID: PMC7073127 DOI: 10.3390/ijms21041487] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/04/2020] [Accepted: 02/16/2020] [Indexed: 02/06/2023] Open
Abstract
Perinatal hypoxic-ischemic encephalopathy (HIE) remains a major cause of morbidity and mortality. Moderate hypothermia (33.5 °C) is currently the sole established standard treatment. However, there are a large number of infants for whom this therapy is ineffective. This inspired global research to find neuroprotectants to potentiate the effect of moderate hypothermia. Here we examine erythropoietin (EPO) as a prominent candidate. Neonatal animal studies show that immediate, as well as delayed, treatment with EPO post-injury, can be neuroprotective and/or neurorestorative. The observed improvements of EPO therapy were generally not to the level of control uninjured animals, however. This suggested that combining EPO treatment with an adjunct therapeutic strategy should be researched. Treatment with EPO plus hypothermia led to less cerebral palsy in a non-human primate model of perinatal asphyxia, leading to clinical trials. A recent Phase II clinical trial on neonatal infants with HIE reported better 12-month motor outcomes for treatment with EPO plus hypothermia compared to hypothermia alone. Hence, the effectiveness of combined treatment with moderate hypothermia and EPO for neonatal HIE currently looks promising. The outcomes of two current clinical trials on neurological outcomes at 18-24 months-of-age, and at older ages, are now required. Further research on the optimal dose, onset, and duration of treatment with EPO, and critical consideration of the effect of injury severity and of gender, are also required.
Collapse
Affiliation(s)
- Dorothy E. Oorschot
- Department of Anatomy, School of Biomedical Sciences, and the Brain Health Research Centre, University of Otago, Dunedin 9054, New Zealand; (R.J.S.); (A.R.A.)
| | | | | |
Collapse
|
11
|
Increased expression of thymic stromal lymphopoietin receptor in a rat model of middle cerebral artery occlusion. Neuroreport 2019; 30:182-187. [PMID: 30676545 PMCID: PMC6380438 DOI: 10.1097/wnr.0000000000001181] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Thymic stromal lymphopoietin (TSLP) is an epithelial cell-derived cytokine expressed in the skin, gut, lungs, and thymus. TSLP triggers dendritic cell-mediated T helper 2 inflammatory responses by formation of a ternary complex consisting of a heterodimer of interleukin-7 (IL-7) receptor α chain (IL-7Rα), TSLP, and the TSLP receptor chain (TSLPR). The present study aimed to investigate the expression of this ternary complex and its interaction with signal transducer and activator of transcription 5 (STAT5) in a ischemic stroke model using middle cerebral artery occlusion. Using immunofluorescence staining, we found that TSLPR was expressed widely in neurons and gliocytes. Using immunoprecipitation analysis, we detected an increased interaction between STAT5 and the ternary complex in the cortex of stroke rats. Moreover, using western blots, we found that expressions of the ternary complex and STAT5 were markedly increased in the cortex of stroke rats compared with the control and sham rats. These results suggest that the formation of the ternary TSLPR : TSLP : IL-7Rα complex may activate STAT5 or a STAT5-related signaling pathway to mediate neuroinflammation in ischemic stroke.
Collapse
|
12
|
Habib P, Stamm AS, Zeyen T, Noristani R, Slowik A, Beyer C, Wilhelm T, Huber M, Komnig D, Schulz JB, Reich A. EPO regulates neuroprotective Transmembrane BAX Inhibitor-1 Motif-containing (TMBIM) family members GRINA and FAIM2 after cerebral ischemia-reperfusion injury. Exp Neurol 2019; 320:112978. [PMID: 31211943 DOI: 10.1016/j.expneurol.2019.112978] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/03/2019] [Accepted: 06/12/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND PURPOSE Transmembrane BAX Inhibitor-1 Motif-containing (TMBIM) family members exert inhibitory activities in apoptosis and necroptosis. FAIM2 (TMBIM-2) is neuroprotective against murine focal ischemia and is regulated by erythropoietin (EPO). Similar to FAIM2, GRINA (TMBIM-3) is predominantly expressed in the brain. The role of GRINA in transient brain ischemia, its potential synergistic effects with FAIM2 and its regulation by EPO treatment were assessed. METHODS We performed transient (30 min) middle cerebral artery occlusion (tMCAo) followed by 72 h of reperfusion in GRINA-deficient (GRINA-/-), FAIM2-deficient (FAIM2-/-), double-deficient (GRINA-/-FAIM2-/-) and wildtype littermates (WT) mice. We administered EPO or saline 0, 24 and 48 h after tMCAo. We subjected primary murine cortical neurons (pMCN) of all mouse strains to oxygen-glucose deprivation (OGD) after GRINA and/or FAIM2 gene transfection. RESULTS Compared to wildtype controls GRINA deficiency led to a similar increase in infarct volumes as FAIM2 deficiency (p < .01). We observed the highest neurological deficits and largest infarct sizes in double-deficient mice. EPO administration upregulated GRINA and FAIM2 mRNA levels in wildtype littermates. EPO decreased infarct sizes and abrogated neurological impairments in wildtype controls. GRINA and/or FAIM2 deficient mice showed increased expression levels of cleaved-caspase 3 and of pro-apoptotic BAX mRNA. Further, caspase 8 was upregulated in FAIM2-/- and caspase 9 in GRINA-/- mice. Overexpression of GRINA and FAIM2 in wildtype and in double deficient pMCN decreased cell death rate after OGD. CONCLUSIONS GRINA and FAIM2 are highly expressed in the brain and convey EPO-mediated neuroprotection after ischemic stroke involving different caspases.
Collapse
Affiliation(s)
- Pardes Habib
- Department of Neurology, Medical School, RWTH Aachen University, Aachen, Germany.
| | - Ann-Sophie Stamm
- Department of Neurology, Medical School, RWTH Aachen University, Aachen, Germany
| | - Thomas Zeyen
- Department of Neurology, Medical School, RWTH Aachen University, Aachen, Germany
| | - Rozina Noristani
- Department of Neurology, Medical School, RWTH Aachen University, Aachen, Germany
| | - Alexander Slowik
- Institute of Neuroanatomy, Medical School, RWTH Aachen University, Aachen, Germany
| | - Cordian Beyer
- Institute of Neuroanatomy, Medical School, RWTH Aachen University, Aachen, Germany
| | - Thomas Wilhelm
- Institute of Biochemistry and Molecular Immunology, Medical School, RWTH Aachen University, Aachen, Germany
| | - Michael Huber
- Institute of Biochemistry and Molecular Immunology, Medical School, RWTH Aachen University, Aachen, Germany
| | - Daniel Komnig
- Department of Neurology, Medical School, RWTH Aachen University, Aachen, Germany
| | - Jörg B Schulz
- Department of Neurology, Medical School, RWTH Aachen University, Aachen, Germany; JARA-BRAIN Institute of Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Arno Reich
- Department of Neurology, Medical School, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
13
|
Zhang YY, Wang K, Liu YE, Wang W, Liu AF, Zhou J, Li C, Zhang YQ, Zhang AP, Lv J, Jiang WJ. Identification of key transcription factors associated with cerebral ischemia‑reperfusion injury based on gene‑set enrichment analysis. Int J Mol Med 2019; 43:2429-2439. [PMID: 31017267 PMCID: PMC6488172 DOI: 10.3892/ijmm.2019.4159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/29/2019] [Indexed: 11/05/2022] Open
Abstract
Cerebral ischemia‑reperfusion injury (CIRI) usually causes detrimental complications following reperfusion therapy in stroke patients. The present study systematically investigated the regulatory mechanism involved in the pathogenesis of CIRI using gene set enrichment analysis of the transient middle cerebral artery occlusion mouse stroke model. The results revealed a total of 13 CIRI‑related transcription factors (TFs), including CCAAT enhancer binding protein b (Cebpb), Cebpa, early growth response‑1, Fos, Rela, Jund, signal transduction and activator of transcription 5a/b, transformation related protein 53, GLI family zinc finger 2 (Gli2), Sp3, TF AP‑2 α (Tfap2a) and spleen focus forming virus proviral integration oncogene (Spi1). To the best of our knowledge, five TFs (Cebpa, Gli2, Sp3, Tfap2a and Spi1) were the first to be reported associated with CIRI in the present study. The five novel CIRI‑related TFs were mainly associated with pathways of inflammation and responses to reperfusion, including the tumor necrosis factor signaling pathway (Gli2, Spi1 and Tfap2a, P=0.0035, 0.0035 and 0.048, respectively), interleuking‑17 signaling pathway (Cebpa, Gli2, Sp3, Spi1 and Tfap2a, P=0.019, 0.047, 0.019, 0.035 and 0.005, respectively) and fluid shear stress and atherosclerosis (Gli2, Sp3, Spi1 and Tfap2a, P=0.047, 0.046, 0.013 and 0.003, respectively). These results may improve understanding of the potential molecular mechanism underlying the pathogenesis of CIRI at the genome‑wide level.
Collapse
Affiliation(s)
- Ying-Ying Zhang
- Department of Vascular Neurosurgery, New Era Stroke Care and Research Institute, The PLA Rocket Force Characteristic Medical Center, Beijing 100088, P.R. China
| | - Kai Wang
- Department of Vascular Neurosurgery, New Era Stroke Care and Research Institute, The PLA Rocket Force Characteristic Medical Center, Beijing 100088, P.R. China
| | - Yun-E Liu
- Department of Vascular Neurosurgery, New Era Stroke Care and Research Institute, The PLA Rocket Force Characteristic Medical Center, Beijing 100088, P.R. China
| | - Wei Wang
- Shanghai Institute of Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, P.R. China
| | - Ao-Fei Liu
- Department of Vascular Neurosurgery, New Era Stroke Care and Research Institute, The PLA Rocket Force Characteristic Medical Center, Beijing 100088, P.R. China
| | - Ji Zhou
- Department of Vascular Neurosurgery, New Era Stroke Care and Research Institute, The PLA Rocket Force Characteristic Medical Center, Beijing 100088, P.R. China
| | - Chen Li
- Department of Vascular Neurosurgery, New Era Stroke Care and Research Institute, The PLA Rocket Force Characteristic Medical Center, Beijing 100088, P.R. China
| | - Yi-Qun Zhang
- Department of Vascular Neurosurgery, New Era Stroke Care and Research Institute, The PLA Rocket Force Characteristic Medical Center, Beijing 100088, P.R. China
| | - Ai-Ping Zhang
- Department of Vascular Neurosurgery, New Era Stroke Care and Research Institute, The PLA Rocket Force Characteristic Medical Center, Beijing 100088, P.R. China
| | - Jin Lv
- Department of Vascular Neurosurgery, New Era Stroke Care and Research Institute, The PLA Rocket Force Characteristic Medical Center, Beijing 100088, P.R. China
| | - Wei-Jian Jiang
- Department of Vascular Neurosurgery, New Era Stroke Care and Research Institute, The PLA Rocket Force Characteristic Medical Center, Beijing 100088, P.R. China
| |
Collapse
|
14
|
Electroacupuncture at GV20 and ST36 Exerts Neuroprotective Effects via the EPO-Mediated JAK2/STAT3 Pathway in Cerebral Ischemic Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:6027421. [PMID: 28848617 PMCID: PMC5564076 DOI: 10.1155/2017/6027421] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 06/02/2017] [Accepted: 07/03/2017] [Indexed: 11/17/2022]
Abstract
Background While electroacupuncture (EA) in cerebral ischemia has been used to promote functional recovery, the underlying mechanism of its protective effect remains poorly understood. Objective We investigated the effects of EA stimulation at GV20 and ST36 to observe the changes in erythropoietin- (EPO-) mediated Janus family tyrosine kinases 2 (JAK2) signal transducers and activators of the transcription 3 (STAT3) cell pathway. Methods Thirty-six specific pathogen-free Sprague-Dawley (SD) male rats were randomly assigned to three groups: the sham-operated group (S group), the middle cerebral artery occlusion (MCAO) group (M group), and the EA group. Neurological deficits were assessed through the Ludmila Belayev 12-score test and 2,3,5-triphenyltetrazolium chloride (TTC) staining was shown. The protein and mRNA expression levels of EPO, the EPO receptor (EpoR), p-JAK2, JAK2, p-STAT3, and STAT3 were examined to explore the EA effect on rats with cerebral ischemic reperfusion injury (CIRI). Results EA significantly decreased infarct size and improved neurological function. Furthermore, target EPO, EpoR, JAK2, and STAT3 mRNA and protein levels significantly increased in the EA group. Conclusions EA exerts a neuroprotective effect, possibly via the regulation of the EPO-mediated JAK2/STAT3 cell pathway and downstream apoptotic pathways in a rat CIRI model.
Collapse
|
15
|
Sheldon RA, Windsor C, Lee BS, Arteaga Cabeza O, Ferriero DM. Erythropoietin Treatment Exacerbates Moderate Injury after Hypoxia-Ischemia in Neonatal Superoxide Dismutase Transgenic Mice. Dev Neurosci 2017; 39:228-237. [PMID: 28445874 DOI: 10.1159/000472710] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 03/27/2017] [Indexed: 02/02/2023] Open
Abstract
The neonatal brain is highly susceptible to oxidative stress as developing endogenous antioxidant mechanisms are overwhelmed. In the neonate, superoxide dismutase (SOD) overexpression worsens hypoxic-ischemic injury due to H2O2 accumulation in the brain. Erythropoietin (EPO) is upregulated in 2 phases after HI, early (4 h) and late (7 days), and exogenous EPO has been effective in reducing the injury, possibly through reducing oxidative stress. We hypothesized that exogenous EPO would limit injury from excess H2O2 seen in SOD1-overexpressing mice, and thus enhance recovery after HI. We first wanted to confirm our previous findings in postnatal day 7 (P7) SOD-tg (CD1) mice using a P9 model of the Vannucci procedure of HI with SOD-tg mice from a different background strain (C57Bl/6), and then determine the efficacy of EPO treatment in this strain and their wild-type (WT) littermates. Thus, mice overexpressing copper/zinc SOD1 were subjected to HI, modified for the P9 mouse, and recombinant EPO (5 U/g) or vehicle (saline) was administered intraperitoneally 3 times: at 0 h, 24 h, and 5 days. Injury was assessed 7 days after HI. In addition, protein expression for EPO and EPO receptor was assessed in the cortex and hippocampus 24 h after HI. With the moderate insult, the SOD-tg mice had greater injury than the WT overall, confirming our previous results, as did the hippocampus and striatum when analyzed separately, but not the cortex or thalamus. EPO treatment worsened injury in SOD-tg overall and in the WT and SOD-tg hippocampus and striatum. With the more severe insult, all groups had greater injury than with the moderate insult, but differences between SOD-tg and WT were no longer observed and EPO treatment had no effect. Increased protein expression of EPO was observed in the cortex of SOD-tg mice given recombinant human EPO compared to SOD-tg given vehicle. This study confirms our previous results showing greater injury with SOD overexpression in the neonatal brain after HI at P7 in a different strain. These results also suggest that EPO treatment cannot ameliorate the damage seen in situations where there is excess H2O2 accumulation, and it may exacerbate injury in settings of extreme oxidative stress.
Collapse
Affiliation(s)
- R Ann Sheldon
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | | | | | | | | |
Collapse
|
16
|
Laouafa S, Perrin-Terrin AS, Jeton F, Elliot-Portal E, Tam R, Bodineau L, Voituron N, Soliz J. Pharmacological, but not genetic, alteration of neural Epo modifies the CO 2/H + central chemosensitivity in postnatal mice. Respir Physiol Neurobiol 2017; 242:73-79. [PMID: 28396201 DOI: 10.1016/j.resp.2017.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/24/2017] [Accepted: 04/05/2017] [Indexed: 11/24/2022]
Abstract
Cerebral erythropoietin (Epo) plays a crucial role for respiratory control in newborn rodents. We showed previously that soluble Epo receptor (sEpoR: an Epo antagonist) reduces basal ventilation and hypoxic hyperventilation at postnatal day 10 (P10) and in adult mice. However, at these ages (P10 and adulthood), Epo had no effect on central chemosensitivity. Nevertheless, it is known that the sensitivity to CO2/H+ during the mammalian respiratory network maturation process is age-dependent. Accordingly, in this study we wanted to test the hypothesis that cerebral Epo is involved in the breathing stimulation induced by the activation of central CO2/H+ chemoreceptors at earlier postnatal ages. To this end, en bloc brainstem-spinal cord preparations were obtained from P4 mice and the fictive breathing response to CO2-induced acidosis or metabolic acidosis was analyzed. This age (P4) was chosen because previous research from our laboratory showed that Epo altered (in a dose- and time-dependent manner) the fictive ventilation elicited in brainstem-spinal cord preparations. Moreover, as it was observed that peripheral chemoreceptors determined the respiratory sensitivity of central chemoreceptors to CO2, the use of this technique restricts our observations to central modulation. Our results did not show differences between preparations from control and transgenic animals (Tg21: overexpressing cerebral Epo; Epo-TAgh: cerebral Epo deficient mice). However, when Tg21 brainstem preparations were incubated for 1h with sEpoR, or with inhibitors of ERK/Akt (thus blocking the activation of the Epo molecular pathway), the fictive breathing response to CO2-induced acidosis was blunted. Our data suggest that variation of the Epo/sEpoR ratio is central to breathing modulation during CO2 challenges, and calls attention to clinical perspectives based on the use of Epo drugs at birth in hypoventilation cases.
Collapse
Affiliation(s)
- Sofien Laouafa
- Université Laval, Faculté de Médecine, Centre de Recherche Institut universitaire de cardiologie et de pneumologie de Québec, Département de Pédiatrie, Québec, QC, Canada; LEHNA, UMR CNRS 5023, Ecologie des Hydrosystèmes Naturels et Anthropisés, Université de Lyon, Université Lyon 1, ENTPE, 6 rue Raphael Dubois, 69622 Villeurbanne, France
| | - Anne-Sophie Perrin-Terrin
- Université Paris 13, Sorbonne Paris Cité, UFR SMBH, Laboratoire "Hypoxie et poumons", EA 2363, 93017 Bobigny, France; Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, F-75013, Paris, France
| | - Florine Jeton
- Université Paris 13, Sorbonne Paris Cité, UFR SMBH, Laboratoire "Hypoxie et poumons", EA 2363, 93017 Bobigny, France
| | - Elizabeth Elliot-Portal
- Université Laval, Faculté de Médecine, Centre de Recherche Institut universitaire de cardiologie et de pneumologie de Québec, Département de Pédiatrie, Québec, QC, Canada; Molecular biology and Biotechnology Institute, Universidad Mayor de San Andres, La Paz, Bolivia
| | - Rose Tam
- Université Laval, Faculté de Médecine, Centre de Recherche Institut universitaire de cardiologie et de pneumologie de Québec, Département de Pédiatrie, Québec, QC, Canada
| | - Laurence Bodineau
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, F-75013, Paris, France
| | - Nicolas Voituron
- Université Paris 13, Sorbonne Paris Cité, UFR SMBH, Laboratoire "Hypoxie et poumons", EA 2363, 93017 Bobigny, France
| | - Jorge Soliz
- Université Laval, Faculté de Médecine, Centre de Recherche Institut universitaire de cardiologie et de pneumologie de Québec, Département de Pédiatrie, Québec, QC, Canada; Molecular biology and Biotechnology Institute, Universidad Mayor de San Andres, La Paz, Bolivia.
| |
Collapse
|
17
|
Cannabidiol reduces brain damage and improves functional recovery in a neonatal rat model of arterial ischemic stroke. Neuropharmacology 2017; 116:151-159. [DOI: 10.1016/j.neuropharm.2016.12.017] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 12/14/2016] [Accepted: 12/19/2016] [Indexed: 12/22/2022]
|
18
|
Abstract
The human brain requires uninterrupted delivery of blood-borne oxygen and nutrients to sustain its function. Focal ischemia, particularly, ischemic stroke, and global ischemia imposed by cardiac arrest disrupt the brain's fuel supply. The resultant ATP depletion initiates a complex injury cascade encompassing intracellular Ca2+ overload, glutamate excitotoxicity, oxido-nitrosative stress, extracellular matrix degradation, and inflammation, culminating in neuronal and astroglial necrosis and apoptosis, neurocognitive deficits, and even death. Unfortunately, brain ischemia has proven refractory to pharmacological intervention. Many promising treatments afforded brain protection in animal models of focal and global ischemia, but failed to improve survival and neurocognitive recovery of stroke and cardiac arrest patients in randomized clinical trials. The culprits are the blood-brain barrier (BBB) that limits transferral of medications to the brain parenchyma, and the sheer complexity of the injury cascade, which presents a daunting array of targets unlikely to respond to monotherapies. Erythropoietin is a powerful neuroprotectant capable of interrupting multiple aspects of the brain injury cascade. Preclinical research demonstrates erythropoietin's ability to suppress glutamate excitotoxicity and intracellular Ca2+ overload, dampen oxidative stress and inflammation, interrupt the apoptotic cascade, and preserve BBB integrity. However, the erythropoietin dosages required to traverse the BBB and achieve therapeutically effective concentrations in the brain parenchyma impose untoward side effects. Recent discoveries that hypoxia induces erythropoietin production within the brain and that neurons, astroglia, and cerebrovascular endothelium harbor membrane erythropoietin receptors, raise the exciting prospect of harnessing endogenous erythropoietin to protect the brain from the ravages of ischemia-reperfusion.
Collapse
Affiliation(s)
- Robert T Mallet
- Institute for Cardiovascular and Metabolic Diseases, University of North Texas Health Science Center, Fort Worth, TX, United States.
| | - Myoung-Gwi Ryou
- Institute for Cardiovascular and Metabolic Diseases, University of North Texas Health Science Center, Fort Worth, TX, United States; Tarleton State University, Fort Worth, TX, United States
| |
Collapse
|
19
|
Iturri P, Bairam A, Soliz J. Efficient breathing at neonatal ages: A sex and Epo-dependent issue. Respir Physiol Neurobiol 2016; 245:89-97. [PMID: 28041993 DOI: 10.1016/j.resp.2016.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 12/02/2016] [Accepted: 12/05/2016] [Indexed: 11/29/2022]
Abstract
During postnatal life, the respiratory control system undergoes intense development and is highly responsive to stimuli emerging from the environment. In fact, interruption of breathing prevents gas exchange and results in systemic hypoxia that, if prolonged, can lead to cardio-respiratory failure or sudden infant death. Moreover, in newborns and infants, respiratory disorders related to neural control dysfunction show significant sexual dimorphism with a higher prevalence in males. To this day, the therapeutic tools available to alleviate these respiratory disorders remain limited. Furthermore, the factors explaining the sexual dimorphism in newborns and during infancy remain unknown. Erythropoietin (Epo) was originally discovered as a cytokine able to increase the production of red blood cells upon conditions of reduced oxygen availability. We now know that Epo is a cytokine also secreted by neurons and astrocytes that protects the brain during trauma or hypoxic stress in a sex dependent manner. In this novel line of research, our previous studies demonstrated at adult ages that cerebral Epo acts as a respiratory stimulant in rodents and humans. These results provided a strong rationale for exploring the role of cerebral Epo in neuronal respiratory control during postnatal development. The objective of this review is to summarize our recent findings showing that cerebral Epo is a potent sex-specific respiratory stimulant at neonatal ages. Keeping in mind that Epo is routinely and safely administrated in newborn humans for anemia and neonatal asphyxia, we predict that our research provides the basis necessary to promote the clinical use of Epo against neonatal respiratory disorders related to neural control dysfunction.
Collapse
Affiliation(s)
- Pablo Iturri
- Centre de Recherche du CHU de Québec, Pavillon St François d'Assise, Département de Pédiatrie, Faculté de Médecine, Université Laval, Québec, QC, Canada; Molecular Biology and Biotechnology Institute, Universidad Mayor de San Andres, La Paz, Bolivia
| | - Aida Bairam
- Centre de Recherche du CHU de Québec, Pavillon St François d'Assise, Département de Pédiatrie, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Jorge Soliz
- Centre de Recherche du CHU de Québec, Pavillon St François d'Assise, Département de Pédiatrie, Faculté de Médecine, Université Laval, Québec, QC, Canada; Molecular Biology and Biotechnology Institute, Universidad Mayor de San Andres, La Paz, Bolivia.
| |
Collapse
|
20
|
Dong W, Xian Y, Yuan W, Huifeng Z, Tao W, Zhiqiang L, Shan F, Ya F, Hongli W, Jinghuan W, Lei Q, Li Z, Hongyi Q. Catalpol stimulates VEGF production via the JAK2/STAT3 pathway to improve angiogenesis in rats' stroke model. JOURNAL OF ETHNOPHARMACOLOGY 2016; 191:169-179. [PMID: 27301615 DOI: 10.1016/j.jep.2016.06.030] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 06/05/2016] [Accepted: 06/08/2016] [Indexed: 05/25/2023]
Abstract
ETHNOBOTANICAL RELEVANCE Catalpol is the main active component of the radix from Rehmannia glutinosa Libosch, which has pleiotropic protective effects in neurodegenerative diseases, ischemic stroke, metabolic disorders and others AIM Catalpol has been shown to have neuroprotective, neurorepair, and angiogenesis effects following ischemic brain injury. However, its molecular mechanisms are still poorly understood. In previous studies, the JAK2/STAT3 signaling pathway was found to play a role in neuroprotection and angiogenesis. This study investigated the role of catalpol in stimulating angiogenesis via the JAK2/STAT3 pathway after permanent focal cerebral ischemia (pMCAO). METHODS Rats were subjected to right middle cerebral artery occlusion through electrocoagulation and were treated with catalpol (5mg/kg), AG490 was also used to inhibit STAT3 phosphorylation (pSTAT3). RESULTS Following stroke, Catalpol improved the neuroethology deficit, increased the cerebral blood flow (CBF) of infarcted brain and upregulated EPO and EPOR. AG490 suppressed the phosphorylation of signal transducer and activator of transcription 3 (STAT3), ultimately inhibited VEGF mRNA expression, which reduced VEGF protein expression and inhibited stroke-induced angiogenesis. However, Catalpol enhanced stroke-induced STAT3 activation and subsequently restored STAT3 activity through the recovery of STAT3 binding to VEGF. Moreover, Catalpol reversed the effect of AG490 on STAT3 activation and nuclear translocation, restored the transcriptional activity of the VEGF promoter by recruiting STAT3 to the VEGF promoter, improved VEGF mRNA and protein expression, increased angiogenesis, reduced the difference in CBF between the infarcted and intact brain and ameliorated the neuroethology behaviors after stroke. CONCLUSION Catalpol affects neuroprotection and angiogenesis via the JAK2/STAT3 signaling pathway, which is mediated by STAT3 activation and VEGF expression. Catalpol may be used as a potential therapeutic drug for stroke.
Collapse
MESH Headings
- Angiogenesis Inducing Agents/pharmacology
- Animals
- Brain/drug effects
- Brain/enzymology
- Brain/pathology
- Brain/physiopathology
- Cerebral Arteries/drug effects
- Cerebral Arteries/enzymology
- Cerebral Arteries/pathology
- Cerebral Arteries/physiopathology
- Cerebrovascular Circulation/drug effects
- Disease Models, Animal
- Erythropoietin/metabolism
- Infarction, Middle Cerebral Artery/drug therapy
- Infarction, Middle Cerebral Artery/enzymology
- Infarction, Middle Cerebral Artery/pathology
- Infarction, Middle Cerebral Artery/physiopathology
- Iridoid Glucosides/pharmacology
- Janus Kinase 2/metabolism
- Male
- Neovascularization, Physiologic/drug effects
- Neuroprotective Agents/pharmacology
- Phosphorylation
- Promoter Regions, Genetic
- Protein Binding
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats, Sprague-Dawley
- Receptors, Erythropoietin/metabolism
- STAT3 Transcription Factor/metabolism
- Signal Transduction/drug effects
- Time Factors
- Transcriptional Activation
- Up-Regulation
- Vascular Endothelial Growth Factor A/genetics
- Vascular Endothelial Growth Factor A/metabolism
Collapse
Affiliation(s)
- Wan Dong
- Department of Emergency, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yang Xian
- Department of Pharmacy, The Seventh People's Hospital of Chengdu, Chengdu 610041, China
| | - Wang Yuan
- College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center for Pharmacological Evaluation, Chongqing 400715, China; Engineering Research Center for Chongqing Pharmaceutical Process and Quality Control, Chongqing 400715, China
| | - Zhu Huifeng
- College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center for Pharmacological Evaluation, Chongqing 400715, China; Engineering Research Center for Chongqing Pharmaceutical Process and Quality Control, Chongqing 400715, China.
| | - Wang Tao
- College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center for Pharmacological Evaluation, Chongqing 400715, China; Engineering Research Center for Chongqing Pharmaceutical Process and Quality Control, Chongqing 400715, China
| | - Liu Zhiqiang
- Department of Pharmacy, The First People's Hospital of Neijiang, Neijiang 641000, China
| | - Feng Shan
- College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center for Pharmacological Evaluation, Chongqing 400715, China; Engineering Research Center for Chongqing Pharmaceutical Process and Quality Control, Chongqing 400715, China
| | - Fu Ya
- College of Chemistry and Chemical Engineering, Chongqing University of Science & Technology, Chongqing 401331, China
| | - Wang Hongli
- College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center for Pharmacological Evaluation, Chongqing 400715, China; Engineering Research Center for Chongqing Pharmaceutical Process and Quality Control, Chongqing 400715, China
| | - Wang Jinghuan
- College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center for Pharmacological Evaluation, Chongqing 400715, China; Engineering Research Center for Chongqing Pharmaceutical Process and Quality Control, Chongqing 400715, China
| | - Qin Lei
- College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center for Pharmacological Evaluation, Chongqing 400715, China; Engineering Research Center for Chongqing Pharmaceutical Process and Quality Control, Chongqing 400715, China
| | - Zou Li
- College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center for Pharmacological Evaluation, Chongqing 400715, China; Engineering Research Center for Chongqing Pharmaceutical Process and Quality Control, Chongqing 400715, China
| | - Qi Hongyi
- College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center for Pharmacological Evaluation, Chongqing 400715, China; Engineering Research Center for Chongqing Pharmaceutical Process and Quality Control, Chongqing 400715, China
| |
Collapse
|
21
|
McAdams RM, Juul SE. Neonatal Encephalopathy: Update on Therapeutic Hypothermia and Other Novel Therapeutics. Clin Perinatol 2016; 43:485-500. [PMID: 27524449 PMCID: PMC4987711 DOI: 10.1016/j.clp.2016.04.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neonatal encephalopathy (NE) is a major cause of neonatal mortality and morbidity. Therapeutic hypothermia (TH) is standard treatment for newborns at 36 weeks of gestation or greater with intrapartum hypoxia-related NE. Term and late preterm infants with moderate to severe encephalopathy show improved survival and neurodevelopmental outcomes at 18 months of age after TH. TH can increase survival without increasing major disability, rates of an IQ less than 70, or cerebral palsy. Neonates with severe NE remain at risk of death or severe neurodevelopmental impairment. This review discusses the evidence supporting TH for term or near term neonates with NE.
Collapse
|
22
|
Pichon A, Jeton F, El Hasnaoui-Saadani R, Hagström L, Launay T, Beaudry M, Marchant D, Quidu P, Macarlupu JL, Favret F, Richalet JP, Voituron N. Erythropoietin and the use of a transgenic model of erythropoietin-deficient mice. HYPOXIA 2016; 4:29-39. [PMID: 27800506 PMCID: PMC5085313 DOI: 10.2147/hp.s83540] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Despite its well-known role in red blood cell production, it is now accepted that erythropoietin (Epo) has other physiological functions. Epo and its receptors are expressed in many tissues, such as the brain and heart. The presence of Epo/Epo receptors in these organs suggests other roles than those usually assigned to this protein. Thus, the aim of this review is to describe the effects of Epo deficiency on adaptation to normoxic and hypoxic environments and to suggest a key role of Epo on main physiological adaptive functions. Our original model of Epo-deficient (Epo-TAgh) mice allowed us to improve our knowledge of the possible role of Epo in O2 homeostasis. The use of anemic transgenic mice revealed Epo as a crucial component of adaptation to hypoxia. Epo-TAgh mice survive well in hypoxic conditions despite low hematocrit. Furthermore, Epo plays a key role in neural control of ventilatory acclimatization and response to hypoxia, in deformability of red blood cells, in cerebral and cardiac angiogenesis, and in neuro- and cardioprotection.
Collapse
Affiliation(s)
- Aurélien Pichon
- Laboratory "Hypoxia and Lung" EA 2363, University Paris 13, Sorbonne Paris Cité, Bobigny Cedex; Laboratory of Excellence GR-Ex, Paris; Laboratory MOVE EA 6314, FSS, Poitiers University, Poitiers, France
| | - Florine Jeton
- Laboratory "Hypoxia and Lung" EA 2363, University Paris 13, Sorbonne Paris Cité, Bobigny Cedex; Laboratory of Excellence GR-Ex, Paris
| | | | - Luciana Hagström
- Laboratório Interdisciplinar de Biociências, Universidade de Brasília, Brasília, Brazil
| | - Thierry Launay
- Unité de Biologie Intégrative des Adaptations à l'Exercice, University Paris Saclay and Genopole , University Sorbonne-Paris-Cité, Paris, France
| | - Michèle Beaudry
- Laboratory "Hypoxia and Lung" EA 2363, University Paris 13, Sorbonne Paris Cité, Bobigny Cedex
| | - Dominique Marchant
- Laboratory "Hypoxia and Lung" EA 2363, University Paris 13, Sorbonne Paris Cité, Bobigny Cedex
| | - Patricia Quidu
- Laboratory "Hypoxia and Lung" EA 2363, University Paris 13, Sorbonne Paris Cité, Bobigny Cedex
| | - Jose-Luis Macarlupu
- High Altitude Unit, Laboratories for Research and Development, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Fabrice Favret
- Laboratory "Mitochondrie, Stress Oxydant et Protection Musculaire" EA 3072, University of Strasbourg, Strasbourg, France
| | - Jean-Paul Richalet
- Laboratory "Hypoxia and Lung" EA 2363, University Paris 13, Sorbonne Paris Cité, Bobigny Cedex; Laboratory of Excellence GR-Ex, Paris
| | - Nicolas Voituron
- Laboratory "Hypoxia and Lung" EA 2363, University Paris 13, Sorbonne Paris Cité, Bobigny Cedex; Laboratory of Excellence GR-Ex, Paris
| |
Collapse
|
23
|
Yao D, Zhang W, He X, Wang J, Jiang K, Zhao Z. Establishment and identification of a hypoxia-ischemia brain damage model in neonatal rats. Biomed Rep 2016; 4:437-443. [PMID: 27073628 DOI: 10.3892/br.2016.610] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 01/25/2016] [Indexed: 11/06/2022] Open
Abstract
The present study was designed to set up a reliable model of severe hypoxia-ischemia brain damage (HIBD) in neonatal rats and several methods were used to identify whether the model was successful. A total of 40 healthy 7-day-old Sprague-Dawley rats were randomly divided into 2 groups: The sham-surgery group (n=18) and the HIBD model group (n=22). The HIBD model was produced according to the traditional Rice method. The rats were anesthetized with ethyl ether. The left common carotid artery (CCA) was exposed, ligated and cut. Following this, the rats were exposed to hypoxia in a normobaric chamber filled with 8% oxygen and 92% nitrogen for 2 h. In the sham-surgery group, the left CCA was exposed but was not ligated, cut or exposed to hypoxia. The neurobehavioral changes of the rats were observed in the 24 h after HIBD. The brains were collected after 72 h to observe the pathological morphological changes of the brain tissue. The behavioral ability and neurobehavioral changes were studied in each group. The water maze test was used for evaluating the learning-memory ability when the rats were 28 days old. Compared with the sham-surgery group, all the HIBD model rats had a lag of motor development. The rats had evident changes in anatomy and Nissl staining, and cognitive impairment was shown through the result of the water maze. Therefore, the model of HIBD in neonatal rats is feasible and provides a reliable model for subsequent studies.
Collapse
Affiliation(s)
- Dan Yao
- Department of Pediatric Health Care, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Weiran Zhang
- Department of Pediatric Health Care, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Xue He
- Department of Pediatric Health Care, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Jinhu Wang
- Department of Pediatric Surgery, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Kewen Jiang
- Department of Neurology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Zhengyan Zhao
- Department of Pediatric Health Care, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
24
|
Lee HJ, Koh SH, Song KM, Seol IJ, Park HK. The Akt/mTOR/p70S6K Pathway Is Involved in the Neuroprotective Effect of Erythropoietin on Hypoxic/Ischemic Brain Injury in a Neonatal Rat Model. Neonatology 2016; 110:93-100. [PMID: 27070481 DOI: 10.1159/000444360] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 02/01/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND The mTOR (mammalian target of rapamycin) signaling pathway is a master regulator of cell growth and proliferation in the nervous system. However, the effects of erythropoietin (EPO) treatment on the mTOR signaling pathway have not been elucidated in neonates with hypoxic/ischemic (H/I) brain injury. OBJECTIVES We investigated the mechanism underlying the neuroprotective effect of EPO by analyzing the mTOR signaling pathway after H/I injury in a neonatal rat model. METHODS Seven-day-old rats were subjected to left carotid artery ligation and hypoxic exposure (8%) for 90 min (H/I). EPO at a dose of either 3,000 U/kg or a vehicle (V) was administered by intraperitoneal injection 0, 24 and 48 h after H/I. At 72 h after H/I (postnatal day 10), 2,3,5-triphenyltetrazolium chloride staining, myelin basic protein (MBP) immunofluorescence staining and Western blot analysis of the Akt/mTOR/p70S6K pathway were performed. Neuromotor behavioral tests included Rotarod challenge and cylinder rearing test 1 performed 3 and 6 weeks after H/I. RESULTS EPO treatment resulted in significant offsetting of MBP depletion ipsilateral (p = 0.001) and contralateral (p = 0.003) to ligation. Western blot analysis showed that the relative immunoreactivity of phosphorylated (p)-Akt, p-mTOR and p-p70S6K ipsilateral to ligation was significantly decreased in the H/I+V group compared with the sham-operated groups. However, EPO treatment significantly upregulated Akt/mTOR/p70S6K signals ipsilateral to ligation compared to the H/I+V group. The behavior tests showed that EPO attenuates long-term impairment in Rotarod challenge and cylinder test performance from 3-6 weeks. CONCLUSION This study demonstrates an underlying mechanism of the mTOR signaling pathway after EPO treatment, which is a potential target for treating H/I-induced brain injury.
Collapse
Affiliation(s)
- Hyun Ju Lee
- Department of Pediatrics, Hanyang University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | |
Collapse
|
25
|
Perinatal brain damage: The term infant. Neurobiol Dis 2015; 92:102-12. [PMID: 26409031 PMCID: PMC4915441 DOI: 10.1016/j.nbd.2015.09.011] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/27/2015] [Accepted: 09/22/2015] [Indexed: 12/21/2022] Open
|
26
|
Yu N, Liu J, Yi G, Ye F, Xiao J, Guo F. DNA methylation is necessary for erythropoietin to improve spatial learning and memory in SAMP8 mice. Exp Gerontol 2015; 69:111-5. [PMID: 26072265 DOI: 10.1016/j.exger.2015.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 05/24/2015] [Accepted: 06/09/2015] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To reveal the role of Dnmts in the improvement of spatial learning and memory induced by erythropoietin (EPO) in SAMP8 mice. METHODS The Morris water maze (MWM) was used to assess spatial learning and memory. Mice were administered by intraperitoneal (i.p.) injection of recombinant human EPO and hippocamppi infusion (IH) of 5-aza-2'-deoxycytidine (5-AZA). The expression of genes Dnmt1, Dnmt3a and Dnmt3b in the hippocampus was detected by real-time qPCR. The level of proteins DNMT1, DNMT3A and DNMT3B was measured by Western blotting. RESULTS Spatial learning and memory in SAMP8 were promoted after i.p. injection of EPO (5000IU/kg/day) and expression of Dnmt3b mRNA and DNMT3B proteins in the hippocampus increased. The improved memory by EPO was blocked after IH 5-AZA. CONCLUSION DNA methylation is necessary for EPO to enhance spatial learning and memory in SAMP8 mice.
Collapse
Affiliation(s)
- Nengwei Yu
- Department of Neurology, Sichuan Provincial People's Hospital, 610072, 32 West Second Section First Ring Road, Chengdu, Sichuan, China.
| | - Jie Liu
- Department of Neurology, Sichuan Provincial People's Hospital, 610072, 32 West Second Section First Ring Road, Chengdu, Sichuan, China.
| | - Gang Yi
- Department of Neurology, Sichuan Provincial People's Hospital, 610072, 32 West Second Section First Ring Road, Chengdu, Sichuan, China.
| | - Fang Ye
- Department of Neurology, Sichuan Provincial People's Hospital, 610072, 32 West Second Section First Ring Road, Chengdu, Sichuan, China.
| | - Jun Xiao
- Department of Neurology, Sichuan Provincial People's Hospital, 610072, 32 West Second Section First Ring Road, Chengdu, Sichuan, China.
| | - Fuqiang Guo
- Department of Neurology, Sichuan Provincial People's Hospital, 610072, 32 West Second Section First Ring Road, Chengdu, Sichuan, China.
| |
Collapse
|
27
|
Wu YW, Gonzalez FF. Erythropoietin: a novel therapy for hypoxic-ischaemic encephalopathy? Dev Med Child Neurol 2015; 57 Suppl 3:34-9. [PMID: 25800490 DOI: 10.1111/dmcn.12730] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/19/2014] [Indexed: 11/27/2022]
Abstract
Perinatal hypoxic-ischaemic encephalopathy (HIE) occurs in 1 to 3 per 1000 term births. HIE is not preventable in most cases, and therapies are limited. Hypothermia improves outcomes and is the current standard of care. Yet, clinical trials suggest that 44-53% of infants who receive hypothermia will die or suffer moderate to severe neurological disability. In this article, we review the preclinical and clinical evidence for erythropoietin (EPO) as a potential novel neuroprotective agent for the treatment of HIE. EPO is a novel neuroprotective agent, with remarkable neuroprotective and neuroregenerative effects in animals. Rodent and primate models of neonatal brain injury support the safety and efficacy of multiple EPO doses for improving histological and functional outcomes after hypoxia-ischaemia. Small clinical trials of EPO in neonates with HIE have also provided evidence supporting safety and preliminary efficacy in humans. There is currently insufficient evidence to support the use of high-dose EPO in newborns with HIE. However, several on-going trials will provide much needed data regarding the safety and efficacy of this potential new therapy when given in conjunction with hypothermia for HIE. Novel neuroprotective therapies are needed to further reduce the rate and severity of neurodevelopmental disabilities resulting from HIE. High-dose EPO is a promising therapy that can be administered in conjunction with hypothermia. However, additional data are needed to determine the safety and efficacy of this adjuvant therapy for HIE.
Collapse
Affiliation(s)
- Yvonne W Wu
- Department of Neurology, University of California, San Francisco, CA, USA; Department of Pediatrics, University of California, San Francisco, CA, USA
| | | |
Collapse
|
28
|
Merchant NM, Azzopardi DV, Edwards AD. Neonatal hypoxic ischaemic encephalopathy: current and future treatment options. Expert Opin Orphan Drugs 2015. [DOI: 10.1517/21678707.2015.1021776] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
29
|
Hralová M, Plaňanská E, Angerová Y, Jadwiszczoková A, Bortelová J, Lippertová-Grünerová M, Marešová D. Effects of a Single Dose of Erythropoietin on Motor Function and Cognition after Focal Brain Ischemia in Adult Rats. Prague Med Rep 2014; 115:5-15. [DOI: 10.14712/23362936.2014.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
We tested the influence of erythropoietin (EPO), a basic cytokine in erythropoiesis regulation, on the process of motor function and cognition after focal brain ischemia induced by a local application of endothelin. Endothelin-1 (ET-1) induced short lasting strong vasoconstriction, with described impact on the structure and on the function of neuronal cells. Neurological description of motor function and Morris water maze test (the swimming test is one of most widely used methods for studying cognitive functions in rodents) were used to study the process of learning and memory in three-month-old male albino Wistar rats (n=52). Both tests were performed one week before, and three weeks after ischemia induction (endothelin application on the cortex in the area of a. cerebri media dx.). Experimental group received i.p. injection of EPO (5,000 IU/kg body weight, 10 min before endothelin application). Control group of animals received one i.p. injection of saline at the dose of 1 ml/kg body weight at the same time. Only sham surgery was performed in the third group of animals. Rats with EPO pretreatment before the experimental lesion exhibited significantly better motor and cognitive function then those with saline injection. No significant changes in the motor and cognitive function were found in the third group of rats (sham operated controls).
Collapse
|
30
|
Rangarajan V, Juul SE. Erythropoietin: emerging role of erythropoietin in neonatal neuroprotection. Pediatr Neurol 2014; 51:481-8. [PMID: 25266611 PMCID: PMC4180944 DOI: 10.1016/j.pediatrneurol.2014.06.008] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 06/09/2014] [Accepted: 06/12/2014] [Indexed: 01/27/2023]
Abstract
BACKGROUND In the last two decades, there has been considerable evolution in understanding the role of erythropoietin in neuroprotection. Erythropoietin has both paracrine and autocrine functions in the brain. Erythropoietin binding results in neurogenesis, oligodendrogenesis, and angiogenesis. Erythropoietin and its receptor are upregulated by exposure to hypoxia and proinflammatory cytokines after brain injury. While erythropoietin aids in recovery of locally injured neuronal cells, it provides negative feedback to glial cells in the penumbra, thereby limiting extension of injury. This forms the rationale for use of recombinant erythropoietin and erythropoietin mimetics in neonatal and adult injury models of stroke, traumatic brain injury, spinal cord injury, intracerebral hemorrhage, and neonatal hypoxic ischemia. METHOD Review of published literature (Pubmed, Medline, and Google scholar). RESULTS Preclinical neuroprotective data are reviewed, and the rationale for proceeding to clinical trials is discussed. Results from phase I/II trials are presented, as are updates on ongoing and upcoming clinical trials of erythropoietin neuroprotection in neonatal populations. CONCLUSIONS The scientific rationale and preclinical data for erythropoietin neuroprotection are promising. Phase II and III clinical trials are currently in process to determine the safety and efficacy of neuroprotective dosing of erythropoietin for extreme prematurity and hypoxic-ischemic encephalopathy in neonates.
Collapse
Affiliation(s)
- Vijayeta Rangarajan
- Division of Neonatology, Department of Pediatrics, University of Washington, Seattle, Washington
| | - Sandra E Juul
- Division of Neonatology, Department of Pediatrics, University of Washington, Seattle, Washington.
| |
Collapse
|
31
|
Activity increase in EpoR and Epo expression by intranasal recombinant human erythropoietin (rhEpo) administration in ischemic hippocampi of adult rats. Neurosci Lett 2014; 583:16-20. [PMID: 25219375 DOI: 10.1016/j.neulet.2014.09.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 08/26/2014] [Accepted: 09/04/2014] [Indexed: 11/22/2022]
Abstract
Erythropoietin in the nervous system is a potential neuroprotective factor for cerebral ischemic damage due to specific-binding to the erythropoietin receptor, which is associated with survival mechanisms. However, the role of its receptor is unclear. Thus, this work assessed whether a low dose (500UI/Kg) of intranasal recombinant human erythropoietin administered 3h after ischemia induced changes in the activation of its receptor at the Tyr456-phosphorylated site in ischemic hippocampi in rats. The results showed that recombinant human erythropoietin after injury maintained cell survival and was associated with an increase in receptor phosphorylation at the Tyr456 site as an initial signaling step, which correlated with a neuroprotective effect.
Collapse
|
32
|
Wang L, Di L, Noguchi CT. Erythropoietin, a novel versatile player regulating energy metabolism beyond the erythroid system. Int J Biol Sci 2014; 10:921-39. [PMID: 25170305 PMCID: PMC4147225 DOI: 10.7150/ijbs.9518] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Accepted: 06/04/2014] [Indexed: 12/12/2022] Open
Abstract
Erythropoietin (EPO), the required cytokine for promoting the proliferation and differentiation of erythroid cells to stimulate erythropoiesis, has been reported to act as a pleiotropic cytokine beyond hematopoietic system. The various activities of EPO are determined by the widespread distribution of its cell surface EPO receptor (EpoR) in multiple tissues including endothelial, neural, myoblasts, adipocytes and other cell types. EPO activity has been linked to angiogenesis, neuroprotection, cardioprotection, stress protection, anti-inflammation and especially the energy metabolism regulation that is recently revealed. The investigations of EPO activity in animals and the expression analysis of EpoR provide more insights on the potential of EPO in regulating energy metabolism and homeostasis. The findings of crosstalk between EPO and some important energy sensors and the regulation of EPO in the cellular respiration and mitochondrial function further provide molecular mechanisms for EPO activity in metabolic activity regulation. In this review, we will summarize the roles of EPO in energy metabolism regulation and the activity of EPO in tissues that are tightly associated with energy metabolism. We will also discuss the effects of EPO in regulating oxidative metabolism and mitochondrial function, the interactions between EPO and important energy regulation factors, and the protective role of EPO from stresses that are related to metabolism, providing a brief overview of previously less appreciated EPO biological function in energy metabolism and homeostasis.
Collapse
Affiliation(s)
- Li Wang
- 1. Faculty of Health Sciences, University of Macau, SAR of People's Republic of China
| | - Lijun Di
- 1. Faculty of Health Sciences, University of Macau, SAR of People's Republic of China
| | - Constance Tom Noguchi
- 2. Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, U.S.A
| |
Collapse
|
33
|
Benders MJ, van der Aa NE, Roks M, van Straaten HL, Isgum I, Viergever MA, Groenendaal F, de Vries LS, van Bel F. Feasibility and safety of erythropoietin for neuroprotection after perinatal arterial ischemic stroke. J Pediatr 2014; 164:481-6.e1-2. [PMID: 24321539 DOI: 10.1016/j.jpeds.2013.10.084] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 09/26/2013] [Accepted: 10/29/2013] [Indexed: 01/19/2023]
Abstract
OBJECTIVE To perform a feasibility and safety study with recombinant human erythropoietin (rhEPO) in neonates with perinatal arterial ischemic stroke. STUDY DESIGN Neonates with a magnetic resonance imaging-confirmed perinatal arterial ischemic stroke (n = 21) were treated with 1000 IU/kg rhEPO immediately after diagnosis and at 24 and 48 hours after the first dose. Repeat magnetic resonance imaging was performed when the patients were 3 months of age. Coagulation and hematologic variables (red blood cells, white blood cells, platelet counts) were performed in the first week after initiation of treatment. We also compared 10 patients who were treated with rhEPO with 10 historic infants with perinatal arterial ischemic stroke matched for the involved arterial branch to investigate whether rhEPO reduces the residual size of the infarction and subsequent brain growth between first and second scan. RESULTS Seizures were a first symptom in 20 of 21 neonates. Heart rate, blood pressure, and coagulation function were in the normal range, as were red blood cells, white blood cells, and platelet counts. In a subgroup of 10 rhEPO-treated neonates, no differences were detected in residual infarction volumes or neurodevelopmental outcome compared with their historical nontreated counterparts. CONCLUSIONS rhEPO in neonates with perinatal arterial ischemic stroke had no adverse effects on red blood cells, white blood cells, platelets counts, or coagulation. rhEPO, 3000 IU/kg in total, given during a 3-day period, appears to be a safe therapy. The beneficial effects remains to be demonstrated in a larger, randomized, double-blind, placebo-controlled trial.
Collapse
Affiliation(s)
- Manon J Benders
- Department of Neonatology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Niek E van der Aa
- Department of Neonatology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Maurice Roks
- Department of Neonatology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Ivana Isgum
- Image Sciences Institute, UMC Utrecht, Utrecht, The Netherlands
| | - Max A Viergever
- Image Sciences Institute, UMC Utrecht, Utrecht, The Netherlands
| | - Floris Groenendaal
- Department of Neonatology, University Medical Center Utrecht, Utrecht, The Netherlands; Image Sciences Institute, UMC Utrecht, Utrecht, The Netherlands
| | - Linda S de Vries
- Department of Neonatology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Frank van Bel
- Department of Neonatology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
34
|
Dang S, Liu X, Fu P, Gong W, Yan F, Han P, Ding Y, Ji X, Luo Y. Neuroprotection by local intra-arterial infusion of erythropoietin after focal cerebral ischemia in rats. Neurol Res 2013; 33:520-8. [DOI: 10.1179/016164111x13007856084287] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
35
|
Gonzalez FF, Larpthaveesarp A, McQuillen P, Derugin N, Wendland M, Spadafora R, Ferriero DM. Erythropoietin increases neurogenesis and oligodendrogliosis of subventricular zone precursor cells after neonatal stroke. Stroke 2013; 44:753-8. [PMID: 23391775 DOI: 10.1161/strokeaha.111.000104] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Stroke is a common cause of neonatal brain injury. The subventricular zone is a lifelong source of newly generated cells in rodents, and erythropoietin (EPO) treatment has shown benefit in different animal models of brain injury. The purpose of this study is to investigate the specific role of exogenous EPO on subventricular zone progenitor cell populations in response to neonatal stroke. METHODS Intraventricular injections of green fluorescent protein (GFP)-expressing lentivirus to label subventricular zone precursor cells were made in postnatal day 1 (P1) Long-Evans rats, which then underwent transient middle cerebral artery occlusion on P7. Middle cerebral artery occlusion and sham rats were treated with either vehicle or EPO (1000 U/kg) at reperfusion, 24 hours, and 7 days later. The density of double-labeled DCx+/GFP+, NeuN+/GFP+, O4+/GFP+, GFAP+/GFP+, as well as single-labeled GFP+ and Ki67+ cells, was calculated to determine cell fate outcome in the striatum at 72 hours and 2 weeks after stroke. RESULTS There was a significant increase in DCx+/GFP+ and NeuN+/GFP+ neurons and O4+/GFP+ oligodendrocyte precursors, with decreased GFAP+/GFP+ astrocytes at both time points in EPO-middle cerebral artery occlusion animals. There was also a significant increase in GFP+ cells and Ki67+ proliferating cells in EPO compared with vehicle-middle cerebral artery occlusion animals. CONCLUSIONS These data suggest that subventricular zone neural progenitor cells proliferate and migrate to the site of injury after neonatal stroke and multiple doses of EPO, with a shift in cell fate toward neurogenesis and oligodendrogliosis at both early and late time points. The contribution of local cell proliferation and neurogenesis remains to be determined.
Collapse
|
36
|
Alexander ML, Hill CA, Rosenkrantz TS, Fitch RH. Evaluation of the therapeutic benefit of delayed administration of erythropoietin following early hypoxic-ischemic injury in rodents. Dev Neurosci 2013; 34:515-24. [PMID: 23328535 DOI: 10.1159/000345645] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 11/06/2012] [Indexed: 11/19/2022] Open
Abstract
Hypoxia-ischemia (HI) and associated brain injuries are seen in premature as well as term infants with birth complications. The resulting impairments involve deficits in many cognitive domains, including language development. Poor rapid auditory processing is hypothesized to be one possible underlying factor leading to subsequent language delays. Mild hypothermia treatment for HI injuries in term infants is widely used as an intervention but can be costly and time consuming. Data suggest that the effectiveness of hypothermia treatment following HI injury declines beyond 6 h following injury. Consequently, the availability of a therapeutic alternative without these limitations could allow doctors to treat HI-injured infants more effectively and thus reduce deleterious cognitive and language outcomes. Evidence from both human studies and animal models of neonatal HI suggests that erythropoietin (Epo), an endogenous cytokine hormone, may be a therapeutic agent that can ameliorate HI brain injury and preserve subsequent cognitive development and function. The current study sought to investigate the therapeutic effectiveness of Epo when administered immediately after HI injury, or delayed at intervals following the injury, in neonatal rodents. Rat pups received an induced HI injury on postnatal day 7, followed by an intraperitoneal injection of Epo (1,000 U/kg) immediately, 60 min, or 180 min following induction of injury. Subjects were tested on rapid auditory processing tasks in juvenile (P38-42) and adult periods (P80-85). Ventricular and cortical size was also measured from post mortem tissue. Results from the current study show a therapeutic benefit of Epo when given immediately following induction of HI injury, with diminished benefit from a 60-min-delayed injection of Epo and no protection following a 180-min-delayed injection. The current data thus show that the effectiveness of a single dose of Epo in ameliorating auditory processing deficits following HI injury decreases precipitously as treatment is delayed following injury. These data may have important implications for experimental human neonatal intervention with Epo.
Collapse
Affiliation(s)
- M L Alexander
- Department of Psychology, University of Connecticut, Storrs, CT 06269-1020, USA.
| | | | | | | |
Collapse
|
37
|
Traudt CM, Juul SE. Erythropoietin as a neuroprotectant for neonatal brain injury: animal models. Methods Mol Biol 2013; 982:113-26. [PMID: 23456865 DOI: 10.1007/978-1-62703-308-4_7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Prematurity and perinatal hypoxia-ischemia are common problems that result in significant neurodevelopmental morbidity and high mortality worldwide. The Vannucci model of unilateral brain injury was developed to model perinatal brain injury due to hypoxia-ischemia. Because the rodent brain is altricial, i.e., it develops postnatally, investigators can model either preterm or term brain injury by varying the age at which injury is induced. This model has allowed investigators to better understand developmental changes that occur in susceptibility of the brain to injury, evolution of brain injury over time, and response to potential neuroprotective treatments. The Vannucci model combines unilateral common carotid artery ligation with a hypoxic insult. This produces injury of the cerebral cortex, basal ganglia, hippocampus, and periventricular white matter ipsilateral to the ligated artery. Varying degrees of injury can be obtained by varying the depth and duration of the hypoxic insult. This chapter details one approach to the Vannucci model and also reviews the neuroprotective effects of erythropoietin (Epo), a neuroprotective treatment that has been extensively investigated using this model and others.
Collapse
Affiliation(s)
- Christopher M Traudt
- Division of Neonatology, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
38
|
Gaddam SK, Cruz J, Robertson C. Erythropoietin and cytoprotective cytokines in experimental traumatic brain injury. Methods Mol Biol 2013; 982:141-62. [PMID: 23456867 DOI: 10.1007/978-1-62703-308-4_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The various biochemical cascades that follow primary brain injury result in secondary brain injury which can adversely affect the clinical outcome. Over the last few years it has been well established that molecules like erythropoietin (Epo) have a neuroprotective role in experimental traumatic brain injury (TBI). Epo is shown to produce this effect by modulating multiple cellular processes, including apoptosis, inflammation, and regulation of cerebral blood flow. Derivatives of Epo, including asialo Epo and carbamylated Epo, have been developed to separate the neuroprotective properties from the erythropoiesis-stimulating activities of Epo which may have adverse effects in clinical situations. Peptides that mimic a portion of the Epo molecule, including Helix B surface peptide and Epotris, have also been developed to isolate the neuroprotective activities. The TBI model in rodents most commonly used to study the effect of Epo and these derivatives in TBI is controlled cortical impact injury, which is a model of focal contusion following a high velocity impact to the parietal cortex. Following TBI, rodents are given Epo or an Epo derivative vs. placebo and the outcome is evaluated in terms of physiological parameters (cerebral blood flow, intracranial pressure, cerebral perfusion pressure), behavioral parameters (motor and memory), and histological parameters (contusion volumes, hippocampus cell counts).
Collapse
|
39
|
Soliz J. Erythropoietin and respiratory control at adulthood and during early postnatal life. Respir Physiol Neurobiol 2013; 185:87-93. [DOI: 10.1016/j.resp.2012.07.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 07/19/2012] [Accepted: 07/20/2012] [Indexed: 01/10/2023]
|
40
|
Dhanushkodi A, Akano EO, Roguski EE, Xue Y, Rao SK, Matta SG, Rex TS, McDonald MP. A single intramuscular injection of rAAV-mediated mutant erythropoietin protects against MPTP-induced parkinsonism. GENES BRAIN AND BEHAVIOR 2012. [PMID: 23190369 DOI: 10.1111/gbb.12001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Erythropoietin (Epo) is neuroprotective in a number of preparations, but can lead to unacceptably high and even lethal hematocrit levels. Recent reports show that modified Epo variants confer neuroprotection in models of glaucoma and retinal degeneration without raising hematocrit. In this study, neuroprotective effects of two Epo variants (EpoR76E and EpoS71E) were assessed in a model of Parkinson's disease. The constructs were packaged in recombinant adeno-associated viral (rAAV) vectors and injected intramuscularly. After 3 weeks, mice received five daily injections of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and were killed 5 weeks later. The MPTP-lesioned mice pretreated with rAAV.eGFP (negative control) exhibited a 7- to 9-Hz tremor and slower latencies to move on a grid test (akinesia). Both of these symptomatic features were absent in mice pretreated with either modified Epo construct. The rAAV.eGFP-treated mice lesioned with MPTP exhibited a 41% reduction in tyrosine hydroxylase (TH)-positive neurons in the substantia nigra. The rAAV.EpoS71E construct did not protect nigral neurons, but neuronal loss in mice pretreated with rAAV.EpoR76E was only half that of rAAV.eGFP controls. Although dopamine levels were normal in all groups, 3,4-dihydroxyphenylacetic acid (DOPAC) was significantly reduced only in MPTP-lesioned mice pretreated with rAAV.eGFP, indicating reduced dopamine turnover. Analysis of TH-positive fibers in the striatum showed normalized density in MPTP-lesioned mice pretreated with rAAV.EpoS71E, suggesting that enhanced sprouting induced by EpoS71E may have been responsible for normal behavior and dopaminergic tone in these mice. These results show that systemically administered rAAV-generated non-erythropoietic Epo may protect against MPTP-induced parkinsonism by a combination of neuroprotection and enhanced axonal sprouting.
Collapse
Affiliation(s)
- A Dhanushkodi
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Wu YW, Bauer LA, Ballard RA, Ferriero DM, Glidden DV, Mayock DE, Chang T, Durand DJ, Song D, Bonifacio SL, Gonzalez FF, Glass HC, Juul SE. Erythropoietin for neuroprotection in neonatal encephalopathy: safety and pharmacokinetics. Pediatrics 2012; 130:683-91. [PMID: 23008465 PMCID: PMC3457622 DOI: 10.1542/peds.2012-0498] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE To determine the safety and pharmacokinetics of erythropoietin (Epo) given in conjunction with hypothermia for hypoxic-ischemic encephalopathy (HIE). We hypothesized that high dose Epo would produce plasma concentrations that are neuroprotective in animal studies (ie, maximum concentration = 6000-10000 U/L; area under the curve = 117000-140000 U*h/L). METHODS In this multicenter, open-label, dose-escalation, phase I study, we enrolled 24 newborns undergoing hypothermia for HIE. All patients had decreased consciousness and acidosis (pH < 7.00 or base deficit ≥ 12), 10-minute Apgar score ≤ 5, or ongoing resuscitation at 10 minutes. Patients received 1 of 4 Epo doses intravenously: 250 (N = 3), 500 (N = 6), 1000 (N = 7), or 2500 U/kg per dose (N = 8). We gave up to 6 doses every 48 hours starting at <24 hours of age and performed pharmacokinetic and safety analyses. RESULTS Patients received mean 4.8 ± 1.2 Epo doses. Although Epo followed nonlinear pharmacokinetics, excessive accumulation did not occur during multiple dosing. At 500, 1000, and 2500 U/kg Epo, half-life was 7.2, 15.0, and 18.7 hours; maximum concentration was 7046, 13780, and 33316 U/L, and total Epo exposure (area under the curve) was 50306, 131054, and 328002 U*h/L, respectively. Drug clearance at a given dose was slower than reported in uncooled preterm infants. No deaths or serious adverse effects were seen. CONCLUSIONS Epo 1000 U/kg per dose intravenously given in conjunction with hypothermia is well tolerated and produces plasma concentrations that are neuroprotective in animals. A large efficacy trial is needed to determine whether Epo add-on therapy further improves outcome in infants undergoing hypothermia for HIE.
Collapse
Affiliation(s)
| | | | | | | | - David V. Glidden
- Epidemiology and Biostatistics, University of California, San Francisco, California
| | | | - Taeun Chang
- Department of Neurology, Children’s National Medical Center, Washington, DC
| | - David J. Durand
- Department of Neonatology, Children’s Hospital Oakland, Oakland, California; and
| | - Dongli Song
- Department of Neonatology, Santa Clara Valley Medical Center, San Jose, California
| | | | | | | | | |
Collapse
|
42
|
Subirós N, Del Barco DG, Coro-Antich RM. Erythropoietin: still on the neuroprotection road. Ther Adv Neurol Disord 2012; 5:161-73. [PMID: 22590480 PMCID: PMC3349080 DOI: 10.1177/1756285611434926] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Acute stroke is one of the major causes of death and disabilities. Since the 1980s many clinical studies have been conducted to evaluate neuroprotective approaches to treat this important brain vascular event. However, to date the only drug approved (recombinant tissue plasminogen activator [rtPA]) represents a thrombolytic, nonneuroprotective approach. An important neuroprotective strategy is based on erythropoietin (EPO). Exogenously administered EPO exhibits neuroprotective effects in numerous animal models, through the activation of anti-apoptotic, anti-oxidant and anti-inflammatory pathways as well as through the stimulation of angiogenic and neurogenic events. The capability of EPO to cross the blood-brain barrier after systemic administration and its effective therapeutic window are advantages for human acute stroke therapy. However, a multicenter stroke trial where recombinant human EPO (rhEPO) was combined with rtPA had negative outcomes. The present paper reviews the EPO neuroprotective strategy and its mechanisms in ischemic stroke and in other human nervous system diseases.
Collapse
Affiliation(s)
- Nelvys Subirós
- Center for Genetic Engineering and Biotechnology, 31 Avenue, P.O. Box 6162, Cubanacán, Playa 10600, Havana, Cuba
| | | | | |
Collapse
|
43
|
Ponce LL, Navarro JC, Ahmed O, Robertson CS. Erythropoietin neuroprotection with traumatic brain injury. ACTA ACUST UNITED AC 2012; 20:31-8. [PMID: 22421507 DOI: 10.1016/j.pathophys.2012.02.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Numerous experimental studies in recent years have suggested that erythropoietin (EPO) is an endogenous mediator of neuroprotection in various central nervous system disorders, including TBI. Many characteristics of EPO neuroprotection that have been defined in TBI experimental models suggest that it is an attractive candidate for a new treatment of TBI. EPO targets multiple mechanisms known to cause secondary injury after TBI, including anti-excitotoxic, antioxidant, anti-edematous, and anti-inflammatory mechanisms. EPO crosses the blood-brain barrier. EPO has a known dose response and time window for neuroprotection and neurorestoration that would be practical in the clinical setting. However, EPO also stimulates erythropoiesis, which can result in thromboembolic complications. Derivatives of EPO which do not bind to the classical EPO receptor (carbamylated EPO) or that have such a brief half-life in the circulation that they do not stimulate erythropoiesis (asialo EPO and neuro EPO) have the neuroprotective activities of EPO without these potential thromboembolic adverse effects associated with EPO administration. Likewise, a peptide based on the structure of the Helix B segment of the EPO molecule that does not bind to the EPO receptor (pyroglutamate Helix B surface peptide) has promise as another alternative to EPO that may provide neuroprotection without stimulating erythropoiesis.
Collapse
Affiliation(s)
- Lucido L Ponce
- Department of Neurosurgery, Baylor College of Medicine, United States
| | | | | | | |
Collapse
|
44
|
Abstract
This article focuses on the use of rEpo, IVIG, and rG-CSF in the NICU. It discusses the most recent studies and the most definitive and clinically relevant evidence, rather than summarizing all published studies. The last section was written for NICU practice groups that choose to use any of these medications and are seeking a consistent approach for doing so. The section provides the author's approach to the use of rEpo, IVIG, and rG-CSF, revealing personal preferences, interpretations, and experiences, and is based on the dictum, "if you are going to use it, use it the same way each time."
Collapse
|
45
|
Erythropoietin in brain development and beyond. ANATOMY RESEARCH INTERNATIONAL 2012; 2012:953264. [PMID: 22567318 PMCID: PMC3335485 DOI: 10.1155/2012/953264] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 10/27/2011] [Accepted: 11/11/2011] [Indexed: 01/17/2023]
Abstract
Erythropoietin is known as the requisite cytokine for red blood cell production. Its receptor, expressed at a high level on erythroid progenitor/precursor cells, is also found on endothelial, neural, and other cell types. Erythropoietin and erythropoietin receptor expression in the developing and adult brain suggest their possible involvement in neurodevelopment and neuroprotection. During ischemic stress, erythropoietin, which is hypoxia inducible, can contribute to brain homeostasis by increasing red blood cell production to increase the blood oxygen carrying capacity, stimulate nitric oxide production to modulate blood flow and contribute to the neurovascular response, or act directly on neural cells to provide neuroprotection as demonstrated in culture and animal models. Clinical studies of erythropoietin treatment in stroke and other diseases provide insight on safety and potential adverse effects and underscore the potential pleiotropic activity of erythropoietin. Herein, we summarize the roles of EPO and its receptor in the developing and adult brain during health and disease, providing first a brief overview of the well-established EPO biology and signaling, its hypoxic regulation, and role in erythropoiesis.
Collapse
|
46
|
Zhao J, Li G, Zhang Y, Su X, Hang C. The potential role of JAK2/STAT3 pathway on the anti-apoptotic effect of recombinant human erythropoietin (rhEPO) after experimental traumatic brain injury of rats. Cytokine 2011; 56:343-50. [PMID: 21843949 DOI: 10.1016/j.cyto.2011.07.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Revised: 07/09/2011] [Accepted: 07/15/2011] [Indexed: 12/11/2022]
Abstract
Previous studies indicate that administration of recombinant human erythropoietin (rhEPO) protects cortical neurons following traumatic brain injury (TBI). The mechanisms of rhEPO's neuroprotection are complex and interacting, including anti-apoptosis. Here we aim to demonstrate the role of janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) pathway on the anti-apoptotic effect of rhEPO in Feeney free falling TBI model. Activation of JAK2/STAT3 in pericontusional cortex was analyzed among rats in Sham, TBI, TBI+rhEPO, TBI+rhEPO+AG490 groups (rhEPO: 5000 U/kg day; JAK2 inhibitor AG490: 5 mg/kg day, intraperitoneal) through Western blotting, electrophoretic mobility shift assay. Bcl-2 and Bcl-xl expression (Q-PCR, Western blotting) and cell apoptosis (TUNEL) in pericontusional cortex were also detected in each group. As a result, we found that TBI could activate JAK2 and STAT3, and increase cell apoptosis in pericontusional cortex. RhEPO enhanced the expression of p-JAK2 and p-STAT3, up-regulated the mRNA and protein levels of Bcl-2 and Bcl-xl, followed by increased cell survival. Moreover, AG490 attenuated rhEPO's neuroprotection by down-regulating rhEPO-induced activation of JAK2/STAT3, and inhibiting Bcl-2 and Bcl-xl. These results suggest the essential role of JAK2/STAT3 pathway on the anti-apoptotic benefit of post-TBI rhEPO treatment.
Collapse
Affiliation(s)
- Jinbing Zhao
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Jiangsu Province, Nanjing 210002, PR China
| | | | | | | | | |
Collapse
|
47
|
Volpe JJ, Kinney HC, Jensen FE, Rosenberg PA. Reprint of "The developing oligodendrocyte: key cellular target in brain injury in the premature infant". Int J Dev Neurosci 2011; 29:565-82. [PMID: 21802506 DOI: 10.1016/j.ijdevneu.2011.07.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Brain injury in the premature infant, a problem of enormous importance, is associated with a high risk of neurodevelopmental disability. The major type of injury involves cerebral white matter and the principal cellular target is the developing oligodendrocyte. The specific phase of the oligodendroglial lineage affected has been defined from study of both human brain and experimental models. This premyelinating cell (pre-OL) is vulnerable because of a series of maturation-dependent events. The pathogenesis of pre-OL injury relates to operation of two upstream mechanisms, hypoxia-ischemia and systemic infection/inflammation, both of which are common occurrences in premature infants. The focus of this review and of our research over the past 15-20 years has been the cellular and molecular bases for the maturation-dependent vulnerability of the pre-OL to the action of the two upstream mechanisms. Three downstream mechanisms have been identified, i.e., microglial activation, excitotoxicity and free radical attack. The work in both experimental models and human brain has identified a remarkable confluence of maturation-dependent factors that render the pre-OL so exquisitely vulnerable to these downstream mechanisms. Most importantly, elucidation of these factors has led to delineation of a series of potential therapeutic interventions, which in experimental models show marked protective properties. The critical next step, i.e., clinical trials in the living infant, is now on the horizon.
Collapse
Affiliation(s)
- Joseph J Volpe
- Department of Neurology, Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
48
|
Volpe JJ, Kinney HC, Jensen FE, Rosenberg PA. The developing oligodendrocyte: key cellular target in brain injury in the premature infant. Int J Dev Neurosci 2011; 29:423-40. [PMID: 21382469 DOI: 10.1016/j.ijdevneu.2011.02.012] [Citation(s) in RCA: 257] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 02/10/2011] [Accepted: 02/27/2011] [Indexed: 01/16/2023] Open
Abstract
Brain injury in the premature infant, a problem of enormous importance, is associated with a high risk of neurodevelopmental disability. The major type of injury involves cerebral white matter and the principal cellular target is the developing oligodendrocyte. The specific phase of the oligodendroglial lineage affected has been defined from study of both human brain and experimental models. This premyelinating cell (pre-OL) is vulnerable because of a series of maturation-dependent events. The pathogenesis of pre-OL injury relates to operation of two upstream mechanisms, hypoxia-ischemia and systemic infection/inflammation, both of which are common occurrences in premature infants. The focus of this review and of our research over the past 15-20 years has been the cellular and molecular bases for the maturation-dependent vulnerability of the pre-OL to the action of the two upstream mechanisms. Three downstream mechanisms have been identified, i.e., microglial activation, excitotoxicity and free radical attack. The work in both experimental models and human brain has identified a remarkable confluence of maturation-dependent factors that render the pre-OL so exquisitely vulnerable to these downstream mechanisms. Most importantly, elucidation of these factors has led to delineation of a series of potential therapeutic interventions, which in experimental models show marked protective properties. The critical next step, i.e., clinical trials in the living infant, is now on the horizon.
Collapse
Affiliation(s)
- Joseph J Volpe
- Department of Neurology, Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
49
|
Dizon MLV, Maa T, Kessler JA. The bone morphogenetic protein antagonist noggin protects white matter after perinatal hypoxia-ischemia. Neurobiol Dis 2011; 42:318-26. [PMID: 21310236 DOI: 10.1016/j.nbd.2011.01.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 01/04/2011] [Accepted: 01/28/2011] [Indexed: 10/18/2022] Open
Abstract
Hypoxia-ischemia (HI) in the neonate leads to white matter injury and subsequently cerebral palsy. We find that expression of bone morphogenetic protein 4 (BMP4) increases in the neonatal mouse brain after unilateral common carotid artery ligation followed by hypoxia. Since signaling by the BMP family of factors is a potent inhibitor of oligodendroglial differentiation, we tested the hypothesis that antagonism of BMP signaling would prevent loss of oligodendroglia (OL) and white matter in a mouse model of perinatal HI. Perinatal HI was induced in transgenic mice in which the BMP antagonist noggin is overexpressed during oligodendrogenesis (pNSE-Noggin). Following perinatal HI, pNSE-Noggin mice had more oligodendroglial progenitor cells (OPCs) and more mature OL compared to wild type (WT) animals. The increase in OPC numbers did not result from proliferation but rather from increased differentiation from precursor cells. Immunofluorescence studies showed preservation of white matter in lesioned pNSE-Noggin mice compared to lesioned WT animals. Further, following perinatal HI, the pNSE-Noggin mice were protected from gait deficits. Together these findings indicate that the BMP-inhibitor noggin protects from HI-induced loss of oligodendroglial lineage cells and white matter as well as loss of motor function.
Collapse
Affiliation(s)
- Maria L V Dizon
- Division of Neonatology, Department of Pediatrics, Northwestern University Feinberg School of Medicine, 303 E Chicago Ave Ward 10-231, Chicago, IL 60611, USA.
| | | | | |
Collapse
|
50
|
Xiong T, Qu Y, Mu D, Ferriero D. Erythropoietin for neonatal brain injury: opportunity and challenge. Int J Dev Neurosci 2011; 29:583-91. [DOI: 10.1016/j.ijdevneu.2010.12.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 12/03/2010] [Accepted: 12/30/2010] [Indexed: 02/04/2023] Open
Affiliation(s)
- Tao Xiong
- Department of PediatricsWest China Second University HospitalSichuan UniversityChengduChina
- Department of Newborn MedicineAffiliated Hospital of Luzhou Medical CollegeLuzhouChina
| | - Yi Qu
- Department of PediatricsWest China Second University HospitalSichuan UniversityChengduChina
| | - Dezhi Mu
- Department of PediatricsWest China Second University HospitalSichuan UniversityChengduChina
- Department of NeurologyNewborn Brain Research InstituteUniversity of CaliforniaSan FranciscoCAUSA
| | - Donna Ferriero
- Department of NeurologyNewborn Brain Research InstituteUniversity of CaliforniaSan FranciscoCAUSA
- Department of PediatricsUniversity of CaliforniaSan FranciscoCAUSA
| |
Collapse
|