1
|
Yu T, Chen D, Qi H, Lin L, Tang Y. Resolvins protect against diabetes-induced colonic oxidative stress, barrier dysfunction, and associated diarrhea via the HO-1 pathway. Biofactors 2024; 50:967-979. [PMID: 38485285 DOI: 10.1002/biof.2049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 12/26/2023] [Indexed: 10/04/2024]
Abstract
Diabetes is associated with increased oxidative stress, leading to altered tight junction formation and increased apoptosis in colonic epithelial cells. These changes may lead to intestinal barrier dysfunction and corresponding gastrointestinal symptoms in patients with diabetes, including diarrhea. The aim of this study was to characterize the effect and mechanism of Resolvin D1 (RvD1) on diabetes-induced oxidative stress and barrier disruption in the colon. Mice with streptozotocin-induced diabetes were treated with RvD1 for 2 weeks, then evaluated for stool frequency, stool water content, gut permeability, and colonic transepithelial electrical resistance as well as production of reactive oxygen species (ROS), apoptosis, and expression of tight junction proteins Zonula Occludens 1 (ZO-1) and occludin. The same parameters were assessed in human colonoid cultures subjected to elevated glucose. We found that RvD1 treatment did not affect blood glucose, but normalized stool water content and prevented intestinal barrier dysfunction, epithelial oxidative stress, and apoptosis. RvD1 also restored ZO-1 and occludin expression in diabetic mice. RvD1 treatment increased phosphorylation of Akt and was accompanied by a 3.5-fold increase in heme oxygenase-1 (HO-1) expression in the epithelial cells. The protective effects of RvD1 were blocked by ZnPP, a competitive inhibitor of HO-1. Similar findings were observed in RvD1-treated human colonoid cultures subjected to elevated glucose. In conclusion, Oxidative stress in diabetes results in mucosal barrier dysfunction, contributing to the development of diabetic diarrhea. Resolvins prevent ROS-mediated mucosal injury and protect gut barrier function by intracellular PI3K/Akt activation and subsequent HO-1 upregulation in intestinal epithelial cells. These actions result in normalizing stool frequency and stool water content in diabetic mice, suggesting that resolvins may be useful in the treatment of diabetic diarrhea.
Collapse
Affiliation(s)
- Ting Yu
- Department of Gastroenterology, The First Affiliated Hospital with Nanjing Medical University, Jiangsu Province, China
| | - Die Chen
- Department of Gastroenterology, The First Affiliated Hospital with Nanjing Medical University, Jiangsu Province, China
| | - Hongyan Qi
- Department of Gastroenterology, The First Affiliated Hospital with Nanjing Medical University, Jiangsu Province, China
| | - Lin Lin
- Department of Gastroenterology, The First Affiliated Hospital with Nanjing Medical University, Jiangsu Province, China
| | - Yurong Tang
- Department of Gastroenterology, The First Affiliated Hospital with Nanjing Medical University, Jiangsu Province, China
| |
Collapse
|
2
|
Pires CL, Moreno MJ. Improving the Accuracy of Permeability Data to Gain Predictive Power: Assessing Sources of Variability in Assays Using Cell Monolayers. MEMBRANES 2024; 14:157. [PMID: 39057665 PMCID: PMC11278619 DOI: 10.3390/membranes14070157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/05/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024]
Abstract
The ability to predict the rate of permeation of new compounds across biological membranes is of high importance for their success as drugs, as it determines their efficacy, pharmacokinetics, and safety profile. In vitro permeability assays using Caco-2 monolayers are commonly employed to assess permeability across the intestinal epithelium, with an extensive number of apparent permeability coefficient (Papp) values available in the literature and a significant fraction collected in databases. The compilation of these Papp values for large datasets allows for the application of artificial intelligence tools for establishing quantitative structure-permeability relationships (QSPRs) to predict the permeability of new compounds from their structural properties. One of the main challenges that hinders the development of accurate predictions is the existence of multiple Papp values for the same compound, mostly caused by differences in the experimental protocols employed. This review addresses the magnitude of the variability within and between laboratories to interpret its impact on QSPR modelling, systematically and quantitatively assessing the most common sources of variability. This review emphasizes the importance of compiling consistent Papp data and suggests strategies that may be used to obtain such data, contributing to the establishment of robust QSPRs with enhanced predictive power.
Collapse
Affiliation(s)
- Cristiana L. Pires
- Coimbra Chemistry Center—Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal
- Chemistry Department, Faculty of Science and Technology, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Maria João Moreno
- Coimbra Chemistry Center—Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal
- Chemistry Department, Faculty of Science and Technology, University of Coimbra, 3004-535 Coimbra, Portugal
| |
Collapse
|
3
|
Dubois N, Muñoz-Garcia J, Heymann D, Renodon-Cornière A. High glucose exposure drives intestinal barrier dysfunction by altering its morphological, structural and functional properties. Biochem Pharmacol 2023; 216:115765. [PMID: 37619641 DOI: 10.1016/j.bcp.2023.115765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/07/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
High dietary glucose consumption and hyperglycemia can result in chronic complications. Several studies suggest that high glucose (HG) induces dysfunction of the intestinal barrier. However, the precise changes remain unclear. In our study, we used in vitro models composed of Caco-2 and/or HT29-MTX cells in both monoculture and co-culture to assess the effects of long-term HG exposure on the morphological, structural, and functional properties of the intestinal barrier. Cells were grown in medium containing normal physiologic glucose (NG, 5.5 mM) or a clinically relevant HG (25 mM) concentration until 21 days. Results demonstrated that HG induced morphological changes, with the layers appearing denser and less organized than under physiological conditions, which is in accordance with the increased migration capacity of Caco-2 cells and proliferation properties of HT29-MTX cells. Although we mostly observed a small decrease in mRNA and protein expressions of three junction proteins (ZO-1, OCLN and E-cad) in both Caco-2 and HT29-MTX cells cultured in HG medium, confocal microscopy showed that HG induced a remarkable reduction in their immunofluorescence intensity, triggering disruption of their associated structural network. In addition, we highlighted that HG affected different functionalities (permeability, mucus production and alkaline phosphatase activity) of monolayers with Caco-2 and HT29-MTX cells. Interestingly, these alterations were stronger in co-culture than in monoculture, suggesting a cross-relationship between enterocytes and goblet cells. Controlling hyperglycemia remains a major therapeutical method for reducing damage to the intestinal barrier and improving therapies.
Collapse
Affiliation(s)
- Nolwenn Dubois
- Institut de Cancérologie de l'Ouest, Tumor Heterogeneity and Precision Medicine Laboratory, 44805 Saint-Herblain, France
| | - Javier Muñoz-Garcia
- Nantes Université, CNRS, US2B, UMR 6286, F-44322 Nantes, France; Institut de Cancérologie de l'Ouest, Tumor Heterogeneity and Precision Medicine Laboratory, 44805 Saint-Herblain, France
| | - Dominique Heymann
- Nantes Université, CNRS, US2B, UMR 6286, F-44322 Nantes, France; Institut de Cancérologie de l'Ouest, Tumor Heterogeneity and Precision Medicine Laboratory, 44805 Saint-Herblain, France; The University of Sheffield, Dept of Oncology and Metabolism, S102RX Sheffield, UK
| | - Axelle Renodon-Cornière
- Nantes Université, CNRS, US2B, UMR 6286, F-44322 Nantes, France; Institut de Cancérologie de l'Ouest, Tumor Heterogeneity and Precision Medicine Laboratory, 44805 Saint-Herblain, France.
| |
Collapse
|
4
|
Williams J, Siramshetty V, Nguyễn ÐT, Padilha EC, Kabir M, Yu KR, Wang AQ, Zhao T, Itkin M, Shinn P, Mathé EA, Xu X, Shah P. Using in vitro ADME data for lead compound selection: An emphasis on PAMPA pH 5 permeability and oral bioavailability. Bioorg Med Chem 2022; 56:116588. [PMID: 35030421 PMCID: PMC9843724 DOI: 10.1016/j.bmc.2021.116588] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/13/2021] [Accepted: 12/19/2021] [Indexed: 01/19/2023]
Abstract
Membrane permeability plays an important role in oral drug absorption. Caco-2 and Madin-Darby Canine Kidney (MDCK) cell culture systems have been widely used for assessing intestinal permeability. Since most drugs are absorbed passively, Parallel Artificial Membrane Permeability Assay (PAMPA) has gained popularity as a low-cost and high-throughput method in early drug discovery when compared to high-cost, labor intensive cell-based assays. At the National Center for Advancing Translational Sciences (NCATS), PAMPA pH 5 is employed as one of the Tier I absorption, distribution, metabolism, and elimination (ADME) assays. In this study, we have developed a quantitative structure activity relationship (QSAR) model using our ∼6500 compound PAMPA pH 5 permeability dataset. Along with ensemble decision tree-based methods such as Random Forest and eXtreme Gradient Boosting, we employed deep neural network and a graph convolutional neural network to model PAMPA pH 5 permeability. The classification models trained on a balanced training set provided accuracies ranging from 71% to 78% on the external set. Of the four classifiers, the graph convolutional neural network that directly operates on molecular graphs offered the best classification performance. Additionally, an ∼85% correlation was obtained between PAMPA pH 5 permeability and in vivo oral bioavailability in mice and rats. These results suggest that data from this assay (experimental or predicted) can be used to rank-order compounds for preclinical in vivo testing with a high degree of confidence, reducing cost and attrition as well as accelerating the drug discovery process. Additionally, experimental data for 486 compounds (PubChem AID: 1645871) and the best models have been made publicly available (https://opendata.ncats.nih.gov/adme/).
Collapse
Affiliation(s)
- Jordan Williams
- National Center for Advancing Translational Sciences (NCATS), 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Vishal Siramshetty
- National Center for Advancing Translational Sciences (NCATS), 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Ðắc-Trung Nguyễn
- National Center for Advancing Translational Sciences (NCATS), 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Elias Carvalho Padilha
- National Center for Advancing Translational Sciences (NCATS), 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Md Kabir
- National Center for Advancing Translational Sciences (NCATS), 9800 Medical Center Drive, Rockville, Maryland 20850, United States,The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, United States
| | - Kyeong-Ri Yu
- National Center for Advancing Translational Sciences (NCATS), 9800 Medical Center Drive, Rockville, Maryland 20850, United States,Department of Surgery, Virginia Commonwealth University Health Systems, 1200 E Broad St, Richmond, Virginia 23298, United States
| | - Amy Q. Wang
- National Center for Advancing Translational Sciences (NCATS), 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Tongan Zhao
- National Center for Advancing Translational Sciences (NCATS), 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Misha Itkin
- National Center for Advancing Translational Sciences (NCATS), 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Paul Shinn
- National Center for Advancing Translational Sciences (NCATS), 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Ewy A. Mathé
- National Center for Advancing Translational Sciences (NCATS), 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Xin Xu
- National Center for Advancing Translational Sciences (NCATS), 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Pranav Shah
- National Center for Advancing Translational Sciences (NCATS), 9800 Medical Center Drive, Rockville, Maryland 20850, United States,Corresponding Author: Pranav Shah,
| |
Collapse
|
5
|
Xu X, Zhao W, Ye Y, Cui W, Dong L, Yao Y, Li K, Han J, Liu W. Novel Nanoliposome Codelivered DHA and Anthocyanidin: Characterization, In Vitro Infant Digestibility, and Improved Cell Uptake. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9395-9406. [PMID: 34344151 DOI: 10.1021/acs.jafc.1c02817] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
There are still many challenges in understanding the absorption and transport mechanism of liposomes in the gastrointestinal tract of infants, especially for liposome-coentrapped two or more substances. In this study, novel docosahexaenoic acid (DHA)-anthocyanidin-codelivery liposomes (DA-LPs) were fabricated and characterized, and their digestive and absorptive behaviors were evaluated using the in vitro infant digestive method combined with the Caco-2 cell model. The liposomal bilayer structure remained intact with the particles aggregated in simulated infant gastric fluid, while their phospholipid membrane underwent enzymatic lipolysis under simulated intestinal conditions. Compared to single substance-loaded liposomes (DHA- or anthocyanidin-loaded liposomes), the digested DA-LPs showed better cell viability, higher cellular uptake and membrane fluidity, and lower reactive oxygen species (ROS). It can be concluded that DA-LPs are promising carriers for simultaneously transporting hydrophobic and hydrophilic molecules and may be beneficial for improving nutrient absorption and alleviating intestinal stress oxidation.
Collapse
Affiliation(s)
- Xiankang Xu
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Weixue Zhao
- Meitek Company Limited, Qingdao 266400, China
| | - Yiru Ye
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Weining Cui
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Lu Dong
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yixin Yao
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Kexuan Li
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Jianzhong Han
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Weilin Liu
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| |
Collapse
|
6
|
Food (Matrix) Effects on Bioaccessibility and Intestinal Permeability of Major Olive Antioxidants. Foods 2020; 9:foods9121831. [PMID: 33317079 PMCID: PMC7764665 DOI: 10.3390/foods9121831] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND olive pomace extract (OPE) is a rich source of health promoting polyphenols (hydroxytyrosol (HTS) and tyrosol (TS)) and can be used as a nutraceutical ingredient of dietary supplements and functional foods. Its adequate bioavailability is a prerequisite for excreting biological activity and can be significantly and specifically affected by different food matrices. METHODS in order to investigate food effects on polyphenol bioaccessibility, OPE was co-digested with different foods according to internationally harmonized in vitro digestibility method. Impact of particular nutrients on HTS and TS permeability was assessed on Caco-2 cell monolayer. RESULTS HTS and TS bioaccessibility and transepithelial permeability can be significantly affected by foods (nutrients), especially by casein and certain types of dietary fiber. Those effects are polyphenol-and nutrient-specific and are achieved either through complexation in gastrointestinal lumen and/or through direct effects of nutrients on intestinal monolayer. CONCLUSIONS obtained results emphasize the significance and complexity of polyphenol interactions within the food matrix and the necessity of individual investigational approaches with respect to particular food/nutrient and interacting phenolic compounds.
Collapse
|
7
|
Malik M, Subedi S, Marques CNH, Mahler GJ. Bacteria Remediate the Effects of Food Additives on Intestinal Function in an in vitro Model of the Gastrointestinal Tract. Front Nutr 2020; 7:131. [PMID: 32903413 PMCID: PMC7434930 DOI: 10.3389/fnut.2020.00131] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/07/2020] [Indexed: 12/14/2022] Open
Abstract
As the site of nutrient absorption, the small intestine is continuously exposed to preservatives and additives present in consumed food. While the effects of diet on the lower gastrointestinal tract are widely studied, the effects of food additives on the small intestinal epithelium and microbiota are less clearly understood. The goal of this work was to develop and establish a physiologically relevant model of the upper gastrointestinal tract to study the complex interactions between food additives, individual bacterial species, and intestinal function. To achieve this, an in vitro model incorporating simulated digestion, human intestinal epithelial cells, and the commensal, Gram-positive Lactobacillus rhamnosus, or the opportunistic, Gram-negative Escherichia coli was developed. This model was used to assess intestinal permeability and alkaline phosphatase activity following exposure to high glucose (HG), salt, emulsifier (TWEEN 20), food (milk chocolate candies) or chemical grade titanium dioxide nanoparticles (TiO2-NP), and food (whole wheat bread) or chemical grade gluten. It was found that HG increased intestinal permeability, the presence of bacteria remediated the negative effects of HG on intestinal permeability, and a decrease in permeability and IAP activity was observed with increasing concentration of TWEEN 20 both in the presence and absence of bacteria. While L. rhamnosus influenced the activity of intestinal alkaline phosphatase and tight junction protein distribution, E. coli produced indole to reinstate intestinal permeability. The source of TiO2 and gluten led to altered impacts on permeability and IAP activity. The growth of E. coli and L. rhamnosus was found to depend on the type of food additive used. Overall, the presence of bacteria in the in vitro model influenced the effects of food additives on intestinal function, suggesting a complex association between diet and upper GI microbiota. This model provides a method to study small intestinal function and host-microbe interactions in vitro in both healthy and diseased conditions.
Collapse
Affiliation(s)
- Mridu Malik
- Department of Biomedical Engineering, Binghamton University, Binghamton, NY, United States.,Binghamton Biofilm Research Center, Binghamton University, Binghamton, NY, United States
| | - Sanjeena Subedi
- Department of Mathematical Sciences, Binghamton University, Binghamton, NY, United States
| | - Cláudia N H Marques
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, NY, United States.,Department of Biological Sciences, Binghamton University, Binghamton, NY, United States
| | - Gretchen J Mahler
- Department of Biomedical Engineering, Binghamton University, Binghamton, NY, United States.,Binghamton Biofilm Research Center, Binghamton University, Binghamton, NY, United States
| |
Collapse
|
8
|
Lambadiari V, Korakas E, Tsimihodimos V. The Impact of Dietary Glycemic Index and Glycemic Load on Postprandial Lipid Kinetics, Dyslipidemia and Cardiovascular Risk. Nutrients 2020; 12:E2204. [PMID: 32722053 PMCID: PMC7468809 DOI: 10.3390/nu12082204] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 02/07/2023] Open
Abstract
Many recent studies have acknowledged postprandial hypetriglyceridemia as a distinct risk factor for cardiovascular disease. This dysmetabolic state is the result of the hepatic overproduction of very low-density lipoproteins (VLDLs) and intestinal secretion of chylomicrons (CMs), which leads to highly atherogenic particles and endothelial inflammation. Postprandial lipid metabolism does not only depend on consumed fat but also on the other classes of nutrients that a meal contains. Various mechanisms through which carbohydrates exacerbate lipidemia have been identified, especially for fructose, which stimulates de novo lipogenesis. Glycemic index and glycemic load, despite their intrinsic limitations, have been used as markers of the postprandial glucose and insulin response, and their association with metabolic health and cardiovascular events has been extensively studied with contradictory results. This review aims to discuss the importance and pathogenesis of postprandial hypertriglyceridemia and its association with cardiovascular disease. Then, we describe the mechanisms through which carbohydrates influence lipidemia and, through a brief presentation of the available clinical studies on glycemic index/glycemic load, we discuss the association of these indices with atherogenic dyslipidemia and address possible concerns and implications for everyday practice.
Collapse
Affiliation(s)
- Vaia Lambadiari
- Second Department of Internal Medicine and Research Institute, University General Hospital Attikon, 124 62 Haidari, Greece;
| | - Emmanouil Korakas
- Second Department of Internal Medicine and Research Institute, University General Hospital Attikon, 124 62 Haidari, Greece;
| | - Vasilios Tsimihodimos
- Department of Internal Medicine, School of Medicine, University of Ioannina, 451 10 Ioannina, Greece;
| |
Collapse
|
9
|
Eleraky NE, Swarnakar NK, Mohamed DF, Attia MA, Pauletti GM. Permeation-Enhancing Nanoparticle Formulation to Enable Oral Absorption of Enoxaparin. AAPS PharmSciTech 2020; 21:88. [PMID: 32016650 DOI: 10.1208/s12249-020-1618-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/26/2019] [Indexed: 11/30/2022] Open
Abstract
This study tests the hypothesis that association complexes formed between enoxaparin and cetyltrimethylammonium bromide (CTAB) augment permeation across the gastrointestinal mucosa due to improved encapsulation of this hydrophilic macromolecule within biocompatible poly (lactide-co-glycolide, PLGA RG 503) nanoparticles. When compared with free enoxaparin, association with CTAB increased drug encapsulation efficiency within PLGA nanoparticles from 40.3 ± 3.4 to 99.1 ± 1.0%. Drug release from enoxaparin/CTAB PLGA nanoparticles was assessed in HBSS, pH 7.4 and FASSIFV2, pH 6.5, suggesting effective protection of PLGA-encapsulated enoxaparin from unfavorable intestinal conditions. The stability of the enoxaparin/CTAB ion pair complex was pH-dependent, resulting in more rapid dissociation under simulated plasma conditions (i.e., pH 7.4) than in the presence of a mild acidic gastrointestinal environment (i.e., pH 6.5). The intestinal flux of enoxaparin complexes across in vitro Caco-2 cell monolayers was greater when encapsulated within PLGA nanoparticles. Limited changes in transepithelial transport of PLGA-encapsulated enoxaparin complexes in the presence of increasing CTAB concentrations suggest a significant contribution of size-dependent passive diffusion as the predominant transport mechanism facilitating intestinal absorption. Graphical abstract.
Collapse
|
10
|
Tong Y, Zhang Q, Shi W, Wang J. Mechanisms of oral absorption improvement for insoluble drugs by the combination of phospholipid complex and SNEDDS. Drug Deliv 2019; 26:1155-1166. [PMID: 31736393 PMCID: PMC6882455 DOI: 10.1080/10717544.2019.1686086] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 10/22/2019] [Accepted: 10/24/2019] [Indexed: 12/21/2022] Open
Abstract
In the present study, a water insoluble drug named silybin was encapsulated into self-nanoemulsifying drug delivery system (SNEDDS) following the preparation of silybin-phospholipid complex (SB-PC), then several methods were carried out to characterize SB-PC-SNEDDS and elucidate its mechanisms to improve the oral absorption of SB. Using a dynamic in vitro digestion model, the lipolysis of SB-PC-SNEDDS was proved to be mainly related with the property of its lipid excipients. SB-PC-SNEDDS could significantly enhance the transport of SB across Caco-2 cells, which may partly attribute to the increased cell membrane fluidity and the loss of tight junction according to the analysis results of fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene (DPH) and tight junction protein (ZO-1). The result of in situ perfusion showed the intestinal absorption of SB from high to low was SB-PC-SNEDDS, SB-PC, and SB. The extent of lymphatic transport of SB-PC and SB-PC-SNEDDS via the mesenteric duct was 12.2 and 22.7 folds of that of SB, respectively. In the lymph duct cannulated rats, the relative bioavailability (Fr) of SB-PC and SB-PC-SEDDS compared to SB was 1265.9% and 1802.5%, respectively. All the above results provided mechanistic support for oral absorption improvement of water insoluble drugs by the combination of PC and SNEDDS.
Collapse
Affiliation(s)
- Yingpeng Tong
- School of Advanced Study, Institute of Natural Medicine and Health Product, Taizhou University, Taizhou, China
- Department of Pharmaceutics, School of Pharmacy, Ministry of Education, Fudan University & Key Laboratory of Smart Drug Delivery, Shanghai, China
| | - Qin Zhang
- Department of Pharmaceutics, School of Pharmacy, Ministry of Education, Fudan University & Key Laboratory of Smart Drug Delivery, Shanghai, China
| | - Wen Shi
- Department of Pharmaceutics, School of Pharmacy, Ministry of Education, Fudan University & Key Laboratory of Smart Drug Delivery, Shanghai, China
| | - Jianxin Wang
- School of Advanced Study, Institute of Natural Medicine and Health Product, Taizhou University, Taizhou, China
- Department of Pharmaceutics, School of Pharmacy, Ministry of Education, Fudan University & Key Laboratory of Smart Drug Delivery, Shanghai, China
- Institute of Integrative Medicine, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Ikarashi N, Nagoya C, Kon R, Kitaoka S, Kajiwara S, Saito M, Kawabata A, Ochiai W, Sugiyama K. Changes in the Expression of Aquaporin-3 in the Gastrointestinal Tract Affect Drug Absorption. Int J Mol Sci 2019; 20:ijms20071559. [PMID: 30925715 PMCID: PMC6479729 DOI: 10.3390/ijms20071559] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 02/07/2023] Open
Abstract
Aquaporin-3 (AQP3) plays an important role in water transport in the gastrointestinal (GI) tract. In this study, we conducted a Caco-2 cell permeability assay to examine how changes in the expression and function of AQP3 affect the rate at which a drug is absorbed via passive transport in the GI tract. When the function of AQP3 was inhibited by mercuric chloride or phloretin, there was no change in warfarin permeability. In contrast, when the expression of AQP3 protein was decreased by prostaglandin E₂ (PGE₂) treatment, warfarin permeability increased to approximately twice the control level, and membrane fluidity increased by 15%. In addition, warfarin permeability increased to an extent comparable to that after PGE₂ treatment when cell membrane fluidity was increased by 10% via boric acid/EDTA treatment. These findings suggest the possibility that the increased drug absorption under decreased AQP3 expression was attributable to increased membrane fluidity. The results of this study demonstrate that the rate of water transport has little effect on drug absorption. However, our findings also indicate that although AQP3 and other similar transmembrane proteins do not themselves transport drugs, changes in their expression levels can cause changes in cell membrane fluidity, thus affecting drug absorption rates.
Collapse
Affiliation(s)
- Nobutomo Ikarashi
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.
| | - Chika Nagoya
- Department of Clinical Pharmacokinetics, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.
| | - Risako Kon
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.
| | - Satoshi Kitaoka
- Department of Clinical Pharmacokinetics, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.
| | - Sayuri Kajiwara
- Department of Clinical Pharmacokinetics, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.
| | - Masayo Saito
- Department of Clinical Pharmacokinetics, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.
| | - Akane Kawabata
- Department of Clinical Pharmacokinetics, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.
| | - Wataru Ochiai
- Department of Clinical Pharmacokinetics, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.
| | - Kiyoshi Sugiyama
- Department of Functional Molecular Kinetics, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.
| |
Collapse
|
12
|
Pereira MT, Malik M, Nostro JA, Mahler GJ, Musselman LP. Effect of dietary additives on intestinal permeability in both Drosophila and a human cell co-culture. Dis Model Mech 2018; 11:dmm034520. [PMID: 30504122 PMCID: PMC6307910 DOI: 10.1242/dmm.034520] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 10/06/2018] [Indexed: 12/13/2022] Open
Abstract
Increased intestinal barrier permeability has been correlated with aging and disease, including type 2 diabetes, Crohn's disease, celiac disease, multiple sclerosis and irritable bowel syndrome. The prevalence of these ailments has risen together with an increase in industrial food processing and food additive consumption. Additives, including sugar, metal oxide nanoparticles, surfactants and sodium chloride, have all been suggested to increase intestinal permeability. We used two complementary model systems to examine the effects of food additives on gut barrier function: a Drosophila in vivo model and an in vitro human cell co-culture model. Of the additives tested, intestinal permeability was increased most dramatically by high sugar. High sugar also increased feeding but reduced gut and overall animal size. We also examined how food additives affected the activity of a gut mucosal defense factor, intestinal alkaline phosphatase (IAP), which fluctuates with bacterial load and affects intestinal permeability. We found that high sugar reduced IAP activity in both models. Artificial manipulation of the microbiome influenced gut permeability in both models, revealing a complex relationship between the two. This study extends previous work in flies and humans showing that diet can play a role in the health of the gut barrier. Moreover, simple models can be used to study mechanisms underlying the effects of diet on gut permeability and function.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Matthew T Pereira
- Department of Biological Sciences, Binghamton University, Binghamton, New York 13902, USA
| | - Mridu Malik
- Department of Biomedical Engineering, Binghamton University, Binghamton, New York 13902, USA
| | - Jillian A Nostro
- Department of Biological Sciences, Binghamton University, Binghamton, New York 13902, USA
| | - Gretchen J Mahler
- Department of Biomedical Engineering, Binghamton University, Binghamton, New York 13902, USA
| | | |
Collapse
|
13
|
Investigation of the influence of high glucose on molecular and genetic responses: an in vitro study using a human intestine model. GENES AND NUTRITION 2018; 13:11. [PMID: 29736189 PMCID: PMC5928582 DOI: 10.1186/s12263-018-0602-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 04/06/2018] [Indexed: 01/09/2023]
Abstract
Background Dietary glucose consumption has increased worldwide. Long-term high glucose intake contributes to the development of obesity and type 2 diabetes mellitus (T2DM). Obese people tend to eat glucose-containing foods, which can lead to an addiction to glucose, increased glucose levels in the blood and intestine lumen, and exposure of intestinal enterocytes to high dietary glucose. Recent studies have documented a role for enterocytes in glucose sensing. However, the molecular and genetic relationship between high glucose levels and intestinal enterocytes has not been determined. We aimed to identify relevant target genes and molecular pathways regulated by high glucose in a well-established in vitro epithelial cell culture model of the human intestinal system (Caco-2 cells). Methods Cells were grown in a medium containing 5.5 and 25 mM glucose in a bicameral culture system for 21 days to mimic the human intestine. Transepithelial electrical resistance was used to control monolayer formation and polarization of the cells. Total RNA was isolated, and genome-wide mRNA expression profiles were determined. Molecular pathways were analyzed using the DAVID bioinformatics program. Gene expression levels were confirmed by quantitative reverse transcription polymerase chain reaction (RT-qPCR). Results Microarray gene expression data demonstrated that 679 genes (297 upregulated, 382 downregulated) were affected by high glucose treatment. Bioinformatics analysis indicated that intracellular protein export (p = 0.0069) and ubiquitin-mediated proteolysis (p = 0.024) pathways were induced, whereas glycolysis/gluconeogenesis (p < 0.0001), pentose phosphate (p = 0.0043), and fructose-mannose metabolism (p = 0.013) pathways were downregulated, in response to high glucose. Microarray analysis of gene expression showed that high glucose significantly induced mRNA expression levels of thioredoxin-interacting protein (TXNIP, p = 0.0001) and lipocalin 15 (LCN15, p = 0.0016) and reduced those of ATP-binding cassette, sub-family A member 1 (ABCA1, p = 0.0004), and iroquois homeobox 3 (IRX3, p = 0.0001). Conclusions To our knowledge, this is the first investigation of high glucose-regulated molecular responses in an intestinal enterocyte model. Our findings identify new target genes that may be important in the intestinal glucose absorption and metabolism during high glucose consumption.
Collapse
|
14
|
Abd El-Hamid BN, Swarnakar NK, Soliman GM, Attia MA, Pauletti GM. High payload nanostructured lipid carriers fabricated with alendronate/polyethyleneimine ion complexes. Int J Pharm 2017; 535:148-156. [PMID: 29104057 DOI: 10.1016/j.ijpharm.2017.10.064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/30/2017] [Accepted: 10/31/2017] [Indexed: 12/20/2022]
Abstract
Oral bioavailability of the anti-osteoporotic drug alendronate (AL) is limited to ≤ 1% due to unfavorable physicochemical properties. To augment absorption across the gastrointestinal mucosa, an ion pair complex between AL and polyethyleneimine (PEI) was formed and incorporated into nanostructured lipid carriers (NLCs) using a modified solvent injection method. When compared to free AL, ion pairing with PEI increased drug encapsulation efficiency in NLCs from 10% to 87%. Drug release from NLCs measured in vitro using fasted state simulated intestinal fluid, pH 6.5 (FaSSIF-V2) was significantly delayed after PEI complexation. Stability of AL/PEI was pH-dependent resulting in 10-fold faster dissociation of AL in FaSSIF-V2 than measured at pH 7.4. Intestinal permeation properties estimated in vitro across Caco-2 cell monolayers revealed a 3-fold greater flux of AL encapsulated as hydrophobic ion complex in NLCs when compared to AL solution (Papp = 8.43 ± 0.14 × 10-6 cm/s and vs. 2.76 ± 0.42 × 10-6 cm/s). Cellular safety of AL/PEI-containing NLCs was demonstrated up to an equivalent AL concentration of 2.5 mM. These results suggest that encapsulation of AL/PEI in NLCs appears a viable drug delivery strategy for augmenting oral bioavailability of this clinically relevant bisphosphonate drug and, simultaneously, increase gastrointestinal safety.
Collapse
Affiliation(s)
- Basma N Abd El-Hamid
- James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267 USA; Pharmaceutics Department, Faculty of Pharmacy, Assiut University, Assiut 71526 Egypt
| | - Nitin K Swarnakar
- James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267 USA
| | - Ghareb M Soliman
- Pharmaceutics Department, Faculty of Pharmacy, Assiut University, Assiut 71526 Egypt
| | - Mohamed A Attia
- Pharmaceutics Department, Faculty of Pharmacy, Assiut University, Assiut 71526 Egypt
| | - Giovanni M Pauletti
- James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267 USA.
| |
Collapse
|
15
|
Kigen G, Edwards G. Drug-transporter mediated interactions between anthelminthic and antiretroviral drugs across the Caco-2 cell monolayers. BMC Pharmacol Toxicol 2017; 18:20. [PMID: 28468637 PMCID: PMC5415745 DOI: 10.1186/s40360-017-0129-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 02/28/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Drug interactions between antiretroviral drugs (ARVs) and anthelminthic drugs, ivermectin (IVM) and praziquantel (PZQ) were assessed by investigating their permeation through the Caco-2 cell monolayers in a transwell. The impact of anthelminthics on the transport of ARVs was determined by assessing the apical to basolateral (AP → BL) [passive] and basolateral to apical (BL → AP) [efflux] directions alone, and in presence of an anthelminthic. The reverse was conducted for the assessment of the influence of ARVs on anthelminthics. METHODS Samples from the AP and BL compartments were taken at 60, 120, 180 and 240 min and quantified either by HPLC or radiolabeled assay using a liquid scintillating counter for the respective drugs. Transepithelial resistance (TEER) was used to assess the integrity of the monolayers. The amount of compound transported per second (apparent permeability, Papp) was calculated for both AP to BL (PappAtoB), and BL to AP (PappBtoA) movements. Samples collected after 60 min were used to determine the efflux ratio (ER), quotient of secretory permeability and absorptive permeability (PappBL-AP/PappAP-BL). The reverse, (PappAP-BL/PappBL-AP) constituted the uptake ratio. The impact of SQV, EFV and NVP on the transport of both IVM and PZQ were investigated. The effect of LPV on the transport of IVM was also determined. The influence of IVM on the transport of SQV, NVP, LPV and EFV; as well as the effect PZQ on the transport of SQV of was also investigated, and a two-tailed p value of <0.05 was considered significant. RESULTS IVM significantly inhibited the efflux transport (BL → AP movement) of LPV (ER; 6.7 vs. 0.8, p = 0.0038) and SQV (ER; 3.1 vs. 1.2 p = 0.00328); and increased the efflux transport of EFV (ER; 0.7 vs. 0.9, p = 0.031) suggesting the possibility of drug transporter mediated interactions between the two drugs. NVP increased the efflux transport of IVM (ER; 0.8 vs. 1.8, p = 0.0094). CONCLUSIONS The study provides in vitro evidence of potential interactions between IVM, an anthelminthic drug with antiretroviral drugs; LPV, SQV, NVP and EFV. Further investigations should be conducted to investigate the possibility of in vivo interactions.
Collapse
Affiliation(s)
- Gabriel Kigen
- Department of Pharmacology and Toxicology, Moi University School of Medicine, P.O. Box 4606, 30100 Eldoret, Kenya
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, L69 3GE UK
| | - Geoffrey Edwards
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, L69 3GE UK
| |
Collapse
|
16
|
Abstract
INTRODUCTION Oral delivery of therapeutics, particularly protein-based pharmaceutics, is of great interest for safe and controlled drug delivery for patients. Hydrogels offer excellent potential as oral therapeutic systems due to inherent biocompatibility, diversity of both natural and synthetic material options and tunable properties. In particular, stimuli-responsive hydrogels exploit physiological changes along the intestinal tract to achieve site-specific, controlled release of protein, peptide and chemotherapeutic molecules for both local and systemic treatment applications. AREAS COVERED This review provides a wide perspective on the therapeutic use of hydrogels in oral delivery systems. General features and advantages of hydrogels are addressed, with more considerable focus on stimuli-responsive systems that respond to pH or enzymatic changes in the gastrointestinal environment to achieve controlled drug release. Specific examples of therapeutics are given. Last, in vitro and in vivo methods to evaluate hydrogel performance are discussed. EXPERT OPINION Hydrogels are excellent candidates for oral drug delivery, due to the number of adaptable parameters that enable controlled delivery of diverse therapeutic molecules. However, further work is required to more accurately simulate physiological conditions and enhance performance, which is important to achieve improved bioavailability and increase commercial interest.
Collapse
Affiliation(s)
- Lindsey A Sharpe
- The University of Texas, Department of Biomedical Engineering , Austin, TX 78712 , USA +1 512 471 6644 ; +1 512 471 8227 ;
| | | | | | | |
Collapse
|
17
|
Xiao C, Dash S, Morgantini C, Lewis GF. New and emerging regulators of intestinal lipoprotein secretion. Atherosclerosis 2014; 233:608-615. [PMID: 24534456 DOI: 10.1016/j.atherosclerosis.2013.12.047] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 12/12/2013] [Accepted: 12/31/2013] [Indexed: 12/25/2022]
Abstract
Overproduction of hepatic apoB100-containing VLDL particles has been well documented in animal models and in humans with insulin resistance such as the metabolic syndrome and type 2 diabetes, and contributes to the typical dyslipidemia of these conditions. In addition, postprandial hyperlipidemia and elevated plasma concentrations of intestinal apoB48-containing chylomicron and chylomicron remnant particles have been demonstrated in insulin resistant states. Intestinal lipoprotein production is primarily determined by the amount of fat ingested and absorbed. Until approximately 10 years ago, however, relatively little attention was paid to the role of the intestine itself in regulating the production of triglyceride-rich lipoproteins (TRL) and its dysregulation in pathological states such as insulin resistance. We and others have shown that insulin resistant animal models and humans are characterized by overproduction of intestinal apoB48-containing lipoproteins. Whereas various factors are known to regulate hepatic lipoprotein particle production, less is known about factors that regulate the production of intestinal lipoprotein particles. Monosacharides, plasma free fatty acids (FFA), resveratrol, intestinal peptides (e.g. GLP-1 and GLP-2), and pancreatic hormones (e.g. insulin) have recently been shown to be important regulators of intestinal lipoprotein secretion. Available evidence in humans and animal models strongly supports the concept that the small intestine is not merely an absorptive organ but rather plays an active role in regulating the rate of production of chylomicrons in fed and fasting states. Metabolic signals in insulin resistance and type 2 diabetes and in some cases an aberrant intestinal response to these factors contribute to the enhanced formation and secretion of TRL. Understanding the regulation of intestinal lipoprotein production is imperative for the development of new therapeutic strategies for the prevention and treatment of dyslipidemia. Here we review recent developments in this field and present evidence that intestinal lipoprotein production is a process with metabolic plasticity and that modulation of intestinal lipoprotein secretion may be a feasible therapeutic strategy in the treatment of dyslipidemia and possibly prevention of atherosclerosis.
Collapse
Affiliation(s)
- Changting Xiao
- Department of Medicine, University of Toronto, Canada; Department of Physiology, University of Toronto, Canada; Banting and Best Diabetes Centre, Toronto General Hospital, 200 Elizabeth Street, EN12-218, Toronto, Ontario M5G 2C4, Canada
| | - Satya Dash
- Department of Medicine, University of Toronto, Canada; Department of Physiology, University of Toronto, Canada; Banting and Best Diabetes Centre, Toronto General Hospital, 200 Elizabeth Street, EN12-218, Toronto, Ontario M5G 2C4, Canada
| | - Cecilia Morgantini
- Department of Medicine, University of Toronto, Canada; Department of Physiology, University of Toronto, Canada; Banting and Best Diabetes Centre, Toronto General Hospital, 200 Elizabeth Street, EN12-218, Toronto, Ontario M5G 2C4, Canada
| | - Gary F Lewis
- Department of Medicine, University of Toronto, Canada; Department of Physiology, University of Toronto, Canada; Banting and Best Diabetes Centre, Toronto General Hospital, 200 Elizabeth Street, EN12-218, Toronto, Ontario M5G 2C4, Canada.
| |
Collapse
|
18
|
Chandra-Hioe MV, Addepalli R, Osborne SA, Slapetova I, Whan R, Bucknall MP, Arcot J. Transport of folic acid across Caco-2 cells is more effective than 5-methyltetrahydrofolate following the in vitro digestion of fortified bread. Food Res Int 2013. [DOI: 10.1016/j.foodres.2013.03.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Falé PL, Ascensão L, Serralheiro MLM. Effect of luteolin and apigenin on rosmarinic acid bioavailability in Caco-2 cell monolayers. Food Funct 2013; 4:426-31. [PMID: 23223784 DOI: 10.1039/c2fo30318c] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Herbal teas are usually complex mixtures of therapeutically active compounds. The present study is focused on the interference of flavonoids on the bioavailability of rosmarinic acid, as these types of compounds are often present together in decoctions of medicinal plants, namely Lamiaceae species. The bioavailability of rosmarinic acid was analysed in the decoction of P. barbatus and in mixtures with apigenin and luteolin. Rosmarinic acid in the herbal tea showed a 43% bioavailability through the Caco-2 cells when luteolin and apigenin were approximately 30 μM each. In the artificial mixtures the bioavailability could be increased to 90% when the concentration of flavonoids was increased to 90 μM. The co-administration of substrates of known intestinal transport systems, Pgp, Oatp and MCT, showed that the extract components not only modulated the activity of these transporters but also their own bioavailability was dependent on them. Our results demonstrate that plant extracts with a high diversity of polyphenol compounds may have higher bioavailability than that predicted by the isolated compounds.
Collapse
Affiliation(s)
- Pedro L Falé
- Centro Química e Bioquímica da Faculdade de Ciências da Universidade de Lisboa, Edifício C8, Campo Grande, 1749-016 Lisboa, Portugal
| | | | | |
Collapse
|
20
|
Roth WJ, Lindley DJ, Carl SM, Knipp GT. The effects of intralaboratory modifications to media composition and cell source on the expression of pharmaceutically relevant transporters and metabolizing genes in the Caco-2 cell line. J Pharm Sci 2012; 101:3962-78. [PMID: 22786684 DOI: 10.1002/jps.23241] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 06/04/2012] [Accepted: 06/06/2012] [Indexed: 11/05/2022]
Abstract
Expression and function of drug transporters and drug-metabolizing enzymes (DMEs) in the gastrointestinal tract are critical attributes of intestinal physiology that influence the absorption of orally administered compounds. The purpose of this study was to examine the effects of media composition and cell source on mRNA expression and function of pharmaceutically relevant drug transporters and DMEs from two different sources of Caco-2 cells. Briefly, cells were cultured in either minimum essential medium alpha or Dulbecco's modified Eagle's medium. Total RNA was isolated from each experimental group, and mRNA expression was evaluated using quantitative reverse-transcriptase polymerase chain reaction arrays. Principal component analysis was used to analyze results, which indicated variable transporter and metabolic expression attributable to differences in media composition and cell source. In addition, transport properties of paracellular markers and proton-dependent oligopeptide transporter-mediated substrates across Caco-2 cell monolayers were assessed. Transport experiments demonstrated significant differences in both paracellular and transcellular permeation resultant from differences in media composition and cell source. These studies support previous findings that media composition and cell source may significantly impact expressional and functional characteristics of Caco-2 cells. Standardization of culture-related methodology may reduce variability associated with Caco-2 cells, enabling more meaningful intralaboratory and interlaboratory data comparisons.
Collapse
Affiliation(s)
- Wyatt J Roth
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907-2091, USA
| | | | | | | |
Collapse
|
21
|
Lu W, Xiong C, Zhang R, Shi L, Huang M, Zhang G, Song S, Huang Q, Liu GY, Li C. Receptor-mediated transcytosis: a mechanism for active extravascular transport of nanoparticles in solid tumors. J Control Release 2012; 161:959-66. [PMID: 22617522 DOI: 10.1016/j.jconrel.2012.05.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 05/05/2012] [Indexed: 11/29/2022]
Abstract
Targeted nanoparticle-based delivery systems have been used extensively to develop effective cancer theranostics. However, how targeting ligands affect extravascular transport of nanoparticles in solid tumors remains unclear. Here, we show, using B16/F10 melanoma cells expressing melanocortin type-1 receptor (MC1R), that the nature of targeting ligands, i.e., whether they are agonists or antagonists, directs tumor uptake and intratumoral distribution after extravasation of nanoparticles from tumor vessels into the extravascular fluid space. Pegylated hollow gold nanospheres (HAuNS, diameter=40 nm) coated with MC1R agonist are internalized upon ligand-receptor binding, whereas MC1R antagonist-conjugated HAuNS remain attached on the cell surface. Transcellular transport of agonist-conjugated HAuNS was confirmed by a multilayer tumor cell model and by transmission electron microscopy. MC1R agonist- but not MC1R antagonist-conjugated nanoparticles exhibit significantly higher tumor uptake than nontargeted HAuNS and are quickly dispersed from tumor vessels via receptor-mediated endocytosis and subsequent transcytosis. These results confirm an active transport mechanism that can be used to overcome one of the major biological barriers for efficient nanoparticle delivery to solid tumors.
Collapse
Affiliation(s)
- Wei Lu
- Department of Experimental Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Pandey V, Chaube B, Bhat MK. Hyperglycemia regulates MDR-1, drug accumulation and ROS levels causing increased toxicity of carboplatin and 5-fluorouracil in MCF-7 cells. J Cell Biochem 2011; 112:2942-52. [DOI: 10.1002/jcb.23210] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
23
|
Scow JS, Madhavan S, Chaudhry RM, Zheng Y, Duenes JA, Sarr MG. Differentiating passive from transporter-mediated uptake by PepT1: a comparison and evaluation of four methods. J Surg Res 2011; 170:17-23. [PMID: 21529830 DOI: 10.1016/j.jss.2011.02.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Revised: 01/18/2011] [Accepted: 02/10/2011] [Indexed: 12/24/2022]
Abstract
BACKGROUND To quantify transmembrane transport of dipeptides by PepT1, passive uptake (non-PepT1 mediated) must be subtracted from total (measured) uptake. Three methods have been described to estimate passive uptake: perform experiments at cold temperatures, inhibit target dipeptide uptake with a greater concentration of a second dipeptide, or use modified Michaelis-Menten kinetics. We hypothesized that performing uptake experiments at pH 8.0 would estimate passive uptake accurately, because PepT1 requires a proton gradient. Our aim was to determine the most accurate method to estimate passive uptake. METHODS Caco-2 cells were incubated with various concentrations of glycyl-sarcosine (gly-sar) at pH 6.0 and at 37°C to measure total uptake. Passive uptake was estimated: (1) by incubating Caco-2 cells with varying concentrations of gly-sar at 4°C, (2) in the presence of 50 mM glycyl-leucine, (3) in solution at pH 8.0, or (4) using modified Michaelis-Menten kinetics. PepT1-mediated uptake was calculated by subtracting passive uptake from total uptake. K(m), V(max), and % gly-sar transported by PepT1 were calculated and compared. RESULTS K(m), V(max), and % gly-sar transported by PepT1 varied from 0.7 to 2.4 mM, 8.4 to 21.0 nmol/mg protein/10 min, and 69% to 87%, respectively. Uptakes calculated with cold, 50 mM gly-leu and using modified Michaelis-Menten kinetics were similar but differed significantly from uptake at pH 8.0 (P < 0.001). CONCLUSIONS Estimating passive uptake at pH 8.0 does not appear to be accurate. Measuring uptake at cold temperatures or in the presence of a greater concentration of a second dipeptide, and confirming results with modified Michaelis-Menten kinetics is recommended.
Collapse
Affiliation(s)
- Jeffrey S Scow
- Department of Surgery and GI Research Unit, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | |
Collapse
|
24
|
Petecchia L, Sabatini F, Varesio L, Camoirano A, Usai C, Pezzolo A, Rossi GA. Bronchial airway epithelial cell damage following exposure to cigarette smoke includes disassembly of tight junction components mediated by the extracellular signal-regulated kinase 1/2 pathway. Chest 2009; 135:1502-1512. [PMID: 19447922 DOI: 10.1378/chest.08-1780] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Through a variety of biochemical mechanisms, cigarette smoke (CS) may damage airway epithelium, altering its normal structure and function. Injury to epithelium may include changes in tight junction (TJ) integrity with impairment of epithelial barrier function. METHODS AND RESULTS To study the effect of the exposure to CS condensate (CSC) on TJ integrity, two human bronchial epithelial cell lines (HBECs), BEAS-2B and 16HBE14o-, were used. Exposure of the two HBECs to CSC resulted in a time-dependent and concentration-dependent disassembly of TJs, which were already detectable at 24 h at all the CSC concentrations tested (5%, 10%, and 20%), associated with changes in cell shape, suggesting cell damage. However, a significant inhibition of cell growth and an increase in DNA fragmentation were detected only at the highest CSC concentration tested (20%) at 48 and 72 h, respectively. The involvement of epidermal growth factor receptor (EGFR)-extracellular signal-regulated kinase (ERK) 1/2 cascade in CSC-induced damage was shown by the observation that exposure to CSC (5%) induced a marked phosphorylation of ERK1/2, already detectable after 5-min incubation and confirmed by the demonstration that not only ERK1/2 phosphorylation but also CSC-induced TJ disassembly and DNA fragmentation were partially inhibited by a mitogen-activated protein kinase kinase inhibitor (U0126) and completely blocked by a EGFR inhibitor (AG1478). CONCLUSION CSC-induced damage to airway epithelium includes disassembly of TJs, modulated through the EGFR-ERK1/2 signaling pathway.
Collapse
Affiliation(s)
| | | | - Luigi Varesio
- Molecular Biology Laboratory, G. Gaslini Institute, Genoa, Italy
| | - Anna Camoirano
- Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Cesare Usai
- Institute of Biophysics, National Research Council, Genoa, Italy
| | - Annalisa Pezzolo
- Oncology and Pathology Laboratory, G. Gaslini Institute, Genoa, Italy
| | | |
Collapse
|
25
|
Ngo N, Yan Z, Graf TN, Carrizosa DR, Kashuba ADM, Dees EC, Oberlies NH, Paine MF. Identification of a cranberry juice product that inhibits enteric CYP3A-mediated first-pass metabolism in humans. Drug Metab Dispos 2008; 37:514-22. [PMID: 19114462 DOI: 10.1124/dmd.108.024968] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
An in vivo study in rats showed a cranberry juice product to inhibit the intestinal first-pass metabolism of the CYP3A substrate nifedipine. However, a clinical study involving the CYP3A probe substrate midazolam and a different cranberry juice product showed no interaction. Because the composition of bioactive components in natural products can vary substantially, a systematic in vitro-in vivo approach was taken to identify a cranberry juice capable of inhibiting enteric CYP3A in humans. First, the effects of five cranberry juices, coded A through E, were evaluated on midazolam 1'-hydroxylation activity in human intestinal microsomes. Juice E was the most potent, ablating activity at 0.5% juice (v/v) relative to control. Second, juice E was fractionated to generate hexane-, chloroform-, butanol-, and aqueous-soluble fractions. The hexane- and chloroform-soluble fractions at 50 microg/ml were the most potent, inhibiting by 77 and 63%, respectively, suggesting that the CYP3A inhibitors reside largely in these more lipophilic fractions. Finally, juice E was evaluated on the oral pharmacokinetics of midazolam in 16 healthy volunteers. Relative to water, juice E significantly increased the geometric mean area under the curve (AUC)(0-infinity) of midazolam by approximately 30% (p=0.001), decreased the geometric mean 1'-hydroxymidazolam/midazolam AUC(0-infinity) ratio by approximately 40% (p<0.001), and had no effect on geometric mean terminal half-life, indicating inhibition of enteric, but not hepatic, CYP3A-mediated first-pass metabolism of midazolam. This approach both showed a potential drug interaction liability with cranberry juice and substantiated that rigorous in vitro characterization of dietary substances is required before initiation of clinical drug-diet interaction studies.
Collapse
Affiliation(s)
- Ngoc Ngo
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599-7360, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Kalsi KK, Baker EH, Fraser O, Chung YL, Mace OJ, Tarelli E, Philips BJ, Baines DL. Glucose homeostasis across human airway epithelial cell monolayers: role of diffusion, transport and metabolism. Pflugers Arch 2008; 457:1061-70. [PMID: 18781323 DOI: 10.1007/s00424-008-0576-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Accepted: 08/09/2008] [Indexed: 12/20/2022]
Abstract
Glucose in airway surface liquid (ASL) is maintained at low concentrations compared to blood glucose. Using radiolabelled [(3)H]-D: -glucose and [(14)C]-L: -glucose, detection of D: - and L: -glucose by high-performance liquid chromatography and metabolites by nuclear magnetic resonance, we found that glucose applied to the basolateral side of H441 human airway epithelial cell monolayers at a physiological concentration (5 mM) crossed to the apical side by paracellular diffusion. Transepithelial resistance of the monolayer was inversely correlated with paracellular diffusion. Appearance of glucose in the apical compartment was reduced by uptake of glucose into the cell by basolateral and apical phloretin-sensitive GLUT transporters. Glucose taken up into the cell was metabolised to lactate which was then released, at least in part, across the apical membrane. We suggest that glucose transport through GLUT transporters and its subsequent metabolism in lung epithelial cells help to maintain low glucose concentrations in human ASL which is important for protecting the lung against infection.
Collapse
Affiliation(s)
- Kameljit K Kalsi
- Centre for Ion Channel and Cell Signalling, St George's, University of London, Cranmer Terrace, UK
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Models predictive of intestinal drug absorption are important in drug development to identify compounds with promising biopharmaceutical properties. Since permeability is a factor affecting absorption, cell culture models (e.g., Caco-2, MDCK) have been developed to predict drug transport from the intestinal lumen into the bloodstream. The differences as to how the assays are performed, along with heterogeneity of the cell lines, have lead to different permeability values for the same drug. Transport and metabolic properties of cultured cells can vary due to culture conditions, seeding density, passage number, confluency, filter support, monolayer age, and stage of differentiation. During the transport experiment, cell absorption properties can change due to the composition and pH of the transport buffer, solute concentration and solubility, temperature, additives and/or cosolvents, agitation, sampling schedule, sink conditions, and analytical methods. Such variability within a laboratory can be avoided by characterizing a cell culture method and setting acceptance criteria in terms of monolayer integrity, passive transport, and active transport. The repeated evaluation of reference compounds will then facilitate intra-laboratory comparisons.
Collapse
Affiliation(s)
- Donna A Volpe
- Division of Product Quality Research, Life Sciences Bldg. 64, 10903 New Hampshire Ave., Silver Spring, Maryland 20993-0002, USA.
| |
Collapse
|
28
|
Samikkannu T, Thomas JJ, Bhat GJ, Wittman V, Thekkumkara TJ. Acute effect of high glucose on long-term cell growth: a role for transient glucose increase in proximal tubule cell injury. Am J Physiol Renal Physiol 2006; 291:F162-75. [PMID: 16467130 DOI: 10.1152/ajprenal.00189.2005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Although chronic exposure of renal cells to high glucose has been shown to cause cell injury, the effect of acute exposure has not been elucidated. In this study, we demonstrate that acute (10 min) exposure of human proximal tubule epithelial cells (hPTEC) to high glucose (25 mM) induces a time-dependent dual effect consisting of an early proliferation and a late apoptosis. Acute exposure of hPTEC to high glucose induced a twofold increase in DNA synthesis and cell number at 12 h. However, after 36 h, a significant decrease in cell growth is observed, followed by apoptosis. On glucose treatment, both p42/p44 mitogen-activated protein (MAP) kinases and the downstream signaling intermediate NF-κB were phosphorylated and translocated to the nucleus. Pretreatment of cells with MAP kinase and NF-κB-specific inhibitors abolished glucose-induced proliferation. However, these inhibitors were ineffective in preventing glucose-induced apoptosis. Interestingly, conditioned medium from cells exposed to high-glucose concentrations inhibited proliferation and concomitantly induced apoptosis in normal cells, suggesting that the inhibitory effect of glucose occurs through secretion of a secondary factor(s). In parallel to apoptosis, we observed an increased production of reactive oxygen species (ROS). Pretreatment of cells with the antioxidant N-acetyl cysteine reversed glucose-mediated ROS production and apoptosis, suggesting that ROS is involved in apoptosis. Our study demonstrates for the first time that a single high-glucose exposure for 10 min alone is sufficient to elicit proliferation and apoptosis in hPTEC and suggests that episodes of transient increase in glucose may contribute to cell damage leading to epithelial cell dysfunction.
Collapse
Affiliation(s)
- Thangavel Samikkannu
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, 1300 Coulter Drive, Amarillo, TX 79106, USA
| | | | | | | | | |
Collapse
|