1
|
Varga GM, Spendal M, Sigh J, Søeborg T, Nielsen NJ. Interference from anti-drug antibodies on the quantification of insulin: a comparison of an LC-MS/MS assay and immunoassays. Bioanalysis 2024; 16:1-11. [PMID: 39262387 PMCID: PMC11485705 DOI: 10.1080/17576180.2024.2389637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 08/05/2024] [Indexed: 09/13/2024] Open
Abstract
Aim: This study aims to compare the anti-drug antibody (ADA) interference in four pharmacokinetic (PK) assays across different platforms (AlphaLISA, Gyrolab, LC-MS/MS) and to devise a strategy for ADA interference mitigation to improve the accuracy of measured drug in total PK assays.Materials & methods: Spiked test samples, created to achieve different ADA concentrations in human serum also containing an insulin analogue, were analyzed alongside pooled clinical samples using four assays.Results & conclusion: Interference was observed in all platforms. A novel approach using the Gyrolab mixing CD, including acid dissociation in the PK assay, significantly reduced interference and thereby improved relative error from >99% to ≤20% yielding measurements well within the acceptance criteria. Clinical sample results reinforced findings from the test samples.
Collapse
Affiliation(s)
- Georgina Marta Varga
- Analytical Chemistry Group, Department of Plant & Environmental Science, Faculty of Science, University of Copenhagen, Frederiksberg C, DK-1871, Denmark
- Non-clinical & Clinical Assay Sciences, Global Discovery & Development Sciences, Novo Nordisk A/S Måløv, DK-2760, Denmark
| | - Manca Spendal
- Analytical Chemistry Group, Department of Plant & Environmental Science, Faculty of Science, University of Copenhagen, Frederiksberg C, DK-1871, Denmark
- Non-clinical & Clinical Assay Sciences, Global Discovery & Development Sciences, Novo Nordisk A/S Måløv, DK-2760, Denmark
| | - Jens Sigh
- Non-clinical & Clinical Assay Sciences, Global Discovery & Development Sciences, Novo Nordisk A/S Måløv, DK-2760, Denmark
| | - Tue Søeborg
- Non-clinical & Clinical Assay Sciences, Global Discovery & Development Sciences, Novo Nordisk A/S Måløv, DK-2760, Denmark
| | - Nikoline Juul Nielsen
- Analytical Chemistry Group, Department of Plant & Environmental Science, Faculty of Science, University of Copenhagen, Frederiksberg C, DK-1871, Denmark
| |
Collapse
|
2
|
Berkhout J, Fairman D, van Noort M, van Steeg TJ. A model-based approach using GSK3772847, an anti-interleukin-33 receptor monoclonal antibody, as a showcase to predict SC administration PK and free target dynamics based on PK and total target measurements after IV administration. CPT Pharmacometrics Syst Pharmacol 2024. [PMID: 39258338 DOI: 10.1002/psp4.13234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/12/2024] Open
Abstract
Integrated modeling of the pharmacokinetic (PK) and target binding, by means of a TMDD model, can provide valuable insights into the expected pharmacodynamic (PD) effects of monoclonal antibodies (mAbs). Optimal characterization of the human PK and target binding for mAbs requires data obtained after intravenous (IV) administration which can be combined with subcutaneous (SC) data to further this characterization. Integration of free and/or total target measurements in a population TMDD model will allow quantification of target engagement which is the first step in the cascade leading to efficacy. However, the assays for determination of free target concentrations are analytically challenging and are inherently biased to overpredict the true concentrations in the presence of mAb:target complexes. For that reason, the objective of the current research was to evaluate the predictive value of free target concentrations in a TMDD model developed using PK and total target observations only. Further, a secondary objective was to demonstrate that prediction of SC data is feasible, based on an existing IV model and typical values of mAb parameters reported for SC absorption. GSK3772847, a human immunoglobulin G2 sigma isotype (IgG2f) mAb that binds to the extracellular domain of the interleukin-33 receptor (IL-33R or ST2) and neutralizes IL-33-mediated ST2 signaling, was used as a model compound for mAbs in this study.
Collapse
Affiliation(s)
- Jan Berkhout
- Leiden Experts on Advanced Pharmacokinetics and Pharmacodynamics (LAP&P), Leiden, The Netherlands
| | - Dave Fairman
- Clinical Pharmacology Modelling and Simulation, GSK, Stevenage, Hertfordshire, UK
| | - Martijn van Noort
- Leiden Experts on Advanced Pharmacokinetics and Pharmacodynamics (LAP&P), Leiden, The Netherlands
| | - Tamara J van Steeg
- Leiden Experts on Advanced Pharmacokinetics and Pharmacodynamics (LAP&P), Leiden, The Netherlands
| |
Collapse
|
3
|
Wilford T, Bartlett PD, Schlag A, Jasaitis L, Pandha H, Pierce AJ, Hughes R. Solving selectivity issues in LBAs: case study using Gyrolab to quantify CB307, a bispecific Humabody in human serum. Bioanalysis 2024; 16:757-769. [PMID: 38957926 PMCID: PMC11389741 DOI: 10.1080/17576180.2024.2365545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/05/2024] [Indexed: 07/04/2024] Open
Abstract
Aim: Endogenous interferents can cause nonselectivity in ligand binding pharmacokinetic assays, leading to inaccurate quantification of drug concentrations. We describe the development of a Gyrolab immunoassay to quantify a new modality, CB307 and discuss strategies implemented to overcome matrix effects and achieve selectivity at the desired sensitivity.Results: Matrix effects were mitigated using strategies including increasing minimum required dilution (MRD) and lower limit of quantification, optimization of antibody orientation, assay buffer and solid phase.Conclusion: The strategies described resulted in a selective method for CB307 in disease state matrix that met bioanalytical method validation (BMV) guidance and is currently used to support clinical pharmacokinetic sample analysis in the first-in-human POTENTIA clinical study (NCT04839991) as a secondary clinical end point.
Collapse
Affiliation(s)
- Thomas Wilford
- Resolian, Fordham, Cambridgeshire CB7 5WW, United Kingdom of Great Britain & Northern Ireland
| | - Phillip D Bartlett
- Crescendo Biologics Limited, Cambridge CB22 3AT, United Kingdom of Great Britain & Northern Ireland
| | - Anna Schlag
- Crescendo Biologics Limited, Cambridge CB22 3AT, United Kingdom of Great Britain & Northern Ireland
| | - Lukas Jasaitis
- Crescendo Biologics Limited, Cambridge CB22 3AT, United Kingdom of Great Britain & Northern Ireland
| | - Hardev Pandha
- University of Surrey, School of Biosciences, Guildford GU2 7XH, Surrey, United Kingdom of Great Britain & Northern Ireland
| | - Andrew J Pierce
- Crescendo Biologics Limited, Cambridge CB22 3AT, United Kingdom of Great Britain & Northern Ireland
| | - Richard Hughes
- Resolian, Fordham, Cambridgeshire CB7 5WW, United Kingdom of Great Britain & Northern Ireland
| |
Collapse
|
4
|
Dejager L, Banton S, Marques P, Rinikova G, Lory S, Hickford ES, Martin-Hamka C, Penney M, Grootjans S. BiSim Tool: a binding simulation tool to aid and simplify ligand-binding assay design and development. Bioanalysis 2024; 16:519-533. [PMID: 38629337 PMCID: PMC11299794 DOI: 10.4155/bio-2023-0242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/29/2024] [Indexed: 08/02/2024] Open
Abstract
Ligand-binding assays (LBAs) rely on the reversible, noncovalent binding between the analyte of interest and the assay reagents, and understanding their dynamic equilibrium is key to building robust LBA methods. Although the dynamic interplay of free and bound fractions can be calculated using mathematical models, these are not routinely applied. This approach is costly in terms of both assay development time and reagents, and can result in an under-exploration of the possible parameter combinations. Therefore, we have created a user-friendly simulation tool to facilitate LBA development (the BiSim Tool). We describe the models driving the mathematical simulations and the main features of our software solution by means of case studies, illustrating the tool's value in drug development. To support drug development for all patients worldwide, the BiSim Tool is now available as an open-source code project and as a free web-based tool at https://proteinbindingsimulation.shinyapps.io/BiSim-ProteinBindingSimulation [1].
Collapse
Affiliation(s)
- Lien Dejager
- UCB Biopharma, Allée de la Recherche 60, 1070 Brussels, Belgium
| | - Sophia Banton
- UCB Biopharma, Allée de la Recherche 60, 1070 Brussels, Belgium
| | - Patricia Marques
- UCB Biopharma, Allée de la Recherche 60, 1070 Brussels, Belgium
- Employed by UCB at the time the work was undertaken
| | - Gabriela Rinikova
- UCB Biopharma, Allée de la Recherche 60, 1070 Brussels, Belgium
- Employed by UCB at the time the work was undertaken
| | - Sabrina Lory
- UCB Biopharma, Allée de la Recherche 60, 1070 Brussels, Belgium
| | | | | | - Mark Penney
- UCB Biopharma, Bath Road, Slough, SL1 3WE, UK
- Employed by UCB at the time the work was undertaken
| | | |
Collapse
|
5
|
Mi W, Zhang X, Wang B, Sun R, Ma S, Hu Z, Dai X. Absolute protein quantification based on calibrated particle counting using electrospray-differential mobility analysis. Anal Chim Acta 2024; 1304:342534. [PMID: 38637035 DOI: 10.1016/j.aca.2024.342534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/13/2024] [Accepted: 03/25/2024] [Indexed: 04/20/2024]
Abstract
The traceability of in vitro diagnostics or drug products is based on the accurate quantification of proteins. In this study, we developed an absolute quantification approach for proteins. This method is based on calibrated particle counting using electrospray-differential mobility analysis (ES-DMA) coupled with a condensation particle counter (CPC). The absolute concentration of proteins was quantified with the observed protein particle number measured with ES-DMA-CPC, and the detection efficiency was determined by calibrators. The measurement performance and quantitative level were verified using two certificated reference materials, BSA and NIMCmAb. The linear regression fit for the detection efficiency values of three reference materials and one highly purified protein (myoglobin, BSA, NIMCmAb and fibrinogen) indicated that the detection efficiency and the particle size distribution of these proteins exhibited a linear relationship. Moreover, to explore the suitability of the detection efficiency-particle size curve for protein quantification, the concentrations of three typical proteinaceous particles, including two high molecular weight proteins (NIST reference material 8671 and D-dimer) and one protein complex (glutathione S-transferase dimer), were determined. This work suggests that this calibrated particle counting method is an efficient approach for nondestructive, rapid and accurate quantification of proteins, especially for measuring proteinaceous particles with tremendous size and without reference standards.
Collapse
Affiliation(s)
- Wei Mi
- National Institute of Metrology, No.18 Beisanhuan Donglu, Beijing, 100029, China.
| | - Xinyi Zhang
- National Institute of Metrology, No.18 Beisanhuan Donglu, Beijing, 100029, China
| | - Bin Wang
- National Institute of Metrology, No.18 Beisanhuan Donglu, Beijing, 100029, China
| | - Ruixue Sun
- College of Life Sciences, China Jiliang University, Xueyuan Street 258, Hangzhou, 310018, China
| | - Shangying Ma
- College of Life Sciences, China Jiliang University, Xueyuan Street 258, Hangzhou, 310018, China
| | - Zhishang Hu
- National Institute of Metrology, No.18 Beisanhuan Donglu, Beijing, 100029, China.
| | - Xinhua Dai
- National Institute of Metrology, No.18 Beisanhuan Donglu, Beijing, 100029, China.
| |
Collapse
|
6
|
Werth EG, Roos D, Philip ET. Immunocapture LC-MS methods for pharmacokinetics of large molecule drugs. Bioanalysis 2024; 16:165-177. [PMID: 38348660 DOI: 10.4155/bio-2023-0261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024] Open
Abstract
Implementation of immunocapture LC-MS methods to characterize the pharmacokinetic profile of large molecule drugs has become a widely used technique over the past decade. As the pharmaceutical industry strives for speediness into clinical development without jeopardizing quality, robust assays with generic application across the pipeline are becoming instrumental in bioanalysis, especially in early-stage development. This review highlights the capabilities and challenges involved in hybrid immunocapture LC-MS techniques and its continued applications in nonclinical and clinical pharmacokinetic assay design. This includes a comparison of LC-MS-based approaches to conventional ligand-binding assays and the driving demands in large molecule drug portfolios including growing sensitivity requirements and the unique challenges of new modalities requiring innovation in the bioanalytical laboratory.
Collapse
Affiliation(s)
- Emily G Werth
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT 06877, USA
| | - David Roos
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT 06877, USA
| | - Elsy T Philip
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT 06877, USA
| |
Collapse
|
7
|
Kim A, Oh MS, Lee GH, Song S, Byun MS, Choi D, Yu BY, Lee H. Understanding the pharmacokinetic journey of Fc-fusion protein, rhIL-7-hyFc using complementary approach of two analytical methods, accelerator mass spectrometry and ELISA. Antib Ther 2024; 7:105-113. [PMID: 38566969 PMCID: PMC10983079 DOI: 10.1093/abt/tbae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/21/2024] [Accepted: 01/28/2024] [Indexed: 04/04/2024] Open
Abstract
Antibody-based therapeutics (ABTs), including monoclonal/polyclonal antibodies and fragment crystallizable region (Fc)-fusion proteins, are increasingly used in disease treatment, driving the global market growth. Understanding the pharmacokinetic (PK) properties of ABTs is crucial for their clinical effectiveness. This study investigated the PK profile and tissue distribution of efineptakin alfa, a long-acting recombinant human interleukin-7 (rhIL-7-hyFc), using enzyme-linked immunosorbent assay (ELISA) and accelerator mass spectrometry (AMS). Totally, four rats were injected intramuscularly with 1 mg/kg of rhIL-7-hyFc containing 14C-rhIL-7-hyFc, which was prepared via reductive methylation. Serum total radioactivity (TRA) and serum rhIL-7-hyFc concentrations were quantified using AMS and ELISA, respectively. The TRA concentrations in organs were determined by AMS. Serum TRA peaked at 10 hours with a terminal half-life of 40 hours. The rhIL-7-hyFc exhibited a mean peak concentration at around 17 hours and a rapid elimination with a half-life of 12.3 hours. Peak concentration and area under the curve of TRA were higher than those of rhIL-7-hyFc. Tissue distribution analysis showed an elevated TRA concentrations in lymph nodes, kidneys, and spleen, indicating rhIL-7-hyFc's affinity for these organs. The study also simulated the positions of 14C labeling in rhIL-7-hyFc, identifying specific residues in the fragment of rhIL-7 portion, and provided the explanation of distinct analytes targeted by each method. Combining ELISA and AMS provided advantages by offering sensitivity and specificity for quantification as well as enabling the identification of analyte forms. The integrated use of ELISA and AMS offers valuable insights for the development and optimization of ABT.
Collapse
Affiliation(s)
- Anhye Kim
- Department of Clinical Pharmacology and Therapeutics, CHA Bundang Medical Center, CHA University, Seongnam 13496, Republic of Korea
- Department of Biomedical Informatics, CHA University School of Medicine, CHA University, Seongnam 13488, Republic of Korea
- Institute for Biomedical Informatics, CHA University School of Medicine, CHA University, Seongnam 13488, Republic of Korea
| | - Min-Seok Oh
- Research Resources Division, Advanced Analysis and Data Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Gwan-Ho Lee
- Research Resources Division, Advanced Analysis and Data Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Seongeun Song
- Research Resources Division, Advanced Analysis and Data Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Republic of Korea
| | - Mi-sun Byun
- Clinical Development Division, Genexine, Inc., Seoul 07789, Republic of Korea
| | - Donghoon Choi
- Research Institute, NeoImmuneTech, co. Ltd., Pohang 37666, Republic of Korea
| | - Byung-Yong Yu
- Research Resources Division, Advanced Analysis and Data Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Howard Lee
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
- Department of Clinical Pharmacology and Therapeutics, Seoul National University Hospital, Seoul 03080, Republic of Korea
- Advanced Institute of Convergence Technology, Suwon 16229, Republic of Korea
| |
Collapse
|
8
|
Spreafico A, Couselo EM, Irmisch A, Bessa J, Au-Yeung G, Bechter O, Svane IM, Sanmamed MF, Gambardella V, McKean M, Callahan M, Dummer R, Klein C, Umaña P, Justies N, Heil F, Fahrni L, Opolka-Hoffmann E, Waldhauer I, Bleul C, Staack RF, Karanikas V, Fowler S. Phase 1, first-in-human study of TYRP1-TCB (RO7293583), a novel TYRP1-targeting CD3 T-cell engager, in metastatic melanoma: active drug monitoring to assess the impact of immune response on drug exposure. Front Oncol 2024; 14:1346502. [PMID: 38577337 PMCID: PMC10991832 DOI: 10.3389/fonc.2024.1346502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/05/2024] [Indexed: 04/06/2024] Open
Abstract
Introduction Although checkpoint inhibitors (CPIs) have improved outcomes for patients with metastatic melanoma, those progressing on CPIs have limited therapeutic options. To address this unmet need and overcome CPI resistance mechanisms, novel immunotherapies, such as T-cell engaging agents, are being developed. The use of these agents has sometimes been limited by the immune response mounted against them in the form of anti-drug antibodies (ADAs), which is challenging to predict preclinically and can lead to neutralization of the drug and loss of efficacy. Methods TYRP1-TCB (RO7293583; RG6232) is a T-cell engaging bispecific (TCB) antibody that targets tyrosinase-related protein 1 (TYRP1), which is expressed in many melanomas, thereby directing T cells to kill TYRP1-expressing tumor cells. Preclinical studies show TYRP1-TCB to have potent anti-tumor activity. This first-in-human (FIH) phase 1 dose-escalation study characterized the safety, tolerability, maximum tolerated dose/optimal biological dose, and pharmacokinetics (PK) of TYRP1-TCB in patients with metastatic melanoma (NCT04551352). Results Twenty participants with cutaneous, uveal, or mucosal TYRP1-positive melanoma received TYRP1-TCB in escalating doses (0.045 to 0.4 mg). All participants experienced ≥1 treatment-related adverse event (TRAE); two participants experienced grade 3 TRAEs. The most common toxicities were grade 1-2 cytokine release syndrome (CRS) and rash. Fractionated dosing mitigated CRS and was associated with lower levels of interleukin-6 and tumor necrosis factor-alpha. Measurement of active drug (dual TYPR1- and CD3-binding) PK rapidly identified loss of active drug exposure in all participants treated with 0.4 mg in a flat dosing schedule for ≥3 cycles. Loss of exposure was associated with development of ADAs towards both the TYRP1 and CD3 domains. A total drug PK assay, measuring free and ADA-bound forms, demonstrated that TYRP1-TCB-ADA immune complexes were present in participant samples, but showed no drug activity in vitro. Discussion This study provides important insights into how the use of active drug PK assays, coupled with mechanistic follow-up, can inform and enable ongoing benefit/risk assessment for individuals participating in FIH dose-escalation trials. Translational studies that lead to a better understanding of the underlying biology of cognate T- and B-cell interactions, ultimately resulting in ADA development to novel biotherapeutics, are needed.
Collapse
Affiliation(s)
- Anna Spreafico
- Department of Medicine, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Eva Muñoz Couselo
- Department of Medical Oncology, Vall d’Hebron University Hospital and Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Anja Irmisch
- Roche Pharma Research & Early Development, Roche Innovation Center Zurich, Zurich, Switzerland
| | - Juliana Bessa
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - George Au-Yeung
- Department of Medical Oncology, Peter MacCallum Cancer Center and Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Oliver Bechter
- Department of General Medical Oncology, Universitair Ziekenhuis (UZ), Leuven, Leuven, Belgium
| | - Inge Marie Svane
- National Center for Cancer Immune Therapy and Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Miguel F. Sanmamed
- Department of Medical Oncology, Clínica Universidad de Navarra and Immunology and Immunotherapy Program, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Valentina Gambardella
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- Department of Medical Oncology, Hospital Clínico Universitario de Valencia, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain
| | - Meredith McKean
- Sarah Cannon Research Institute at Tennessee Oncology, Nashville, TN, United States
| | - Margaret Callahan
- Department of Medicine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY, United States
| | - Reinhard Dummer
- Department of Dermatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Christian Klein
- Roche Pharma Research & Early Development, Roche Innovation Center Zurich, Zurich, Switzerland
| | - Pablo Umaña
- Roche Pharma Research & Early Development, Roche Innovation Center Zurich, Zurich, Switzerland
| | - Nicole Justies
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Florian Heil
- Roche Pharma Research & Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Linda Fahrni
- Roche Pharma Research & Early Development, Roche Innovation Center Zurich, Zurich, Switzerland
| | - Eugenia Opolka-Hoffmann
- Roche Pharma Research & Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Inja Waldhauer
- Roche Pharma Research & Early Development, Roche Innovation Center Zurich, Zurich, Switzerland
| | - Conrad Bleul
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Roland F. Staack
- Roche Pharma Research & Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Vaios Karanikas
- Roche Pharma Research & Early Development, Roche Innovation Center Zurich, Zurich, Switzerland
| | - Stephen Fowler
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, Basel, Switzerland
| |
Collapse
|
9
|
Foley AR, Sperinde G, Fischer SK. Expanding assay range to accommodate a monoclonal antibody therapeutic quantification in blood and cerebrospinal fluid. Bioanalysis 2024; 16:129-140. [PMID: 38088824 DOI: 10.4155/bio-2023-0179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Abstract
Antibody therapeutic levels in neurodegenerative diseases are often measured in both serum and cerebrospinal fluid (CSF). Due to 0.1% drug partition from serum to CSF and the higher sensitivity needs, usually two different assays are required. The different Gyrolab Bioaffy compact discs can extend the dynamic range of assays. Here, an assay was developed and adapted on two different Gyrolab Bioaffy compact discs (200 and 4000 nl) to achieve the required sensitivity and assay dynamic range needed for the measurement of drug in both serum and CSF. This was accomplished by using the same critical reagents with minimal assay development to transition from a serum to a CSF assay.
Collapse
Affiliation(s)
- Alejandro R Foley
- BioAnalytical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Gizette Sperinde
- BioAnalytical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Saloumeh K Fischer
- BioAnalytical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| |
Collapse
|
10
|
Liu V, McGrath K, Albert J, Mayer AP, Busz M, Birchler M, Tang H, Jiang Y. Screening Non-neutralizing Anti-idiotype Antibodies Against a Drug Candidate for Total Pharmacokinetic and Target Engagement Assay. AAPS J 2024; 26:18. [PMID: 38267774 DOI: 10.1208/s12248-024-00892-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/27/2023] [Indexed: 01/26/2024] Open
Abstract
Non-neutralizing anti-idiotype antibodies against a therapeutic monoclonal antibody (mAb) play a crucial role in the creation of total pharmacokinetic (PK) assays and total target engagement (TE) assays during both pre-clinical and clinical development. The development of these anti-idiotype antibodies is challenging. In this study, we utilized a hybridoma platform to produce a variety of anti-idiotype antibodies against GSK2857914, a humanized IgG1 anti-BCMA monoclonal antibody. The candidate clones were evaluated using surface plasmon resonance (SPR) and bio-layer interferometry (BLI) for binding affinity, binding profiling, matrix interference, and antibody pairing determination. We discovered that three anti-idiotype antibodies did not prevent BCMA from binding to GSK2857914. All three candidates demonstrated high binding affinities. One of the three exhibited minimal matrix inference and could pair with the other two candidates. Additionally, one of the three clones was biotinylated as a capture reagent for the total PK assay, and another was labeled with ruthenium as a detection reagent for both the total PK assay and total TE assay. The assay results clearly show that these reagents are genuine non-neutralizing anti-idiotypic antibodies and are suitable for total PK and TE assay development. Based on this and similar studies, we conclude that the hybridoma platform has a high success rate for generating non-neutralizing anti-idiotype antibodies. Our methodology for developing and characterizing non-neutralizing anti-idiotype antibodies to therapeutic antibodies can be generally applied to any antibody-based drug candidate's total PK and total TE assay development.
Collapse
Affiliation(s)
- Veronica Liu
- Bioanalysis, Immunogenicity & Biomarkers GSK R&D, 1250 S. Collegeville Rd, Collegeville, PA, 19426, USA
| | - Kelly McGrath
- Bioanalysis, Immunogenicity & Biomarkers GSK R&D, 1250 S. Collegeville Rd, Collegeville, PA, 19426, USA
| | - Josh Albert
- Bioanalysis, Immunogenicity & Biomarkers GSK R&D, 1250 S. Collegeville Rd, Collegeville, PA, 19426, USA
| | - Andrew P Mayer
- Bioanalysis, Immunogenicity & Biomarkers GSK R&D, 1250 S. Collegeville Rd, Collegeville, PA, 19426, USA
| | - Maria Busz
- Bioanalysis, Immunogenicity & Biomarkers GSK R&D, 1250 S. Collegeville Rd, Collegeville, PA, 19426, USA
| | - Mary Birchler
- Bioanalysis, Immunogenicity & Biomarkers GSK R&D, 1250 S. Collegeville Rd, Collegeville, PA, 19426, USA
| | - Huaping Tang
- Bioanalysis, Immunogenicity & Biomarkers GSK R&D, 1250 S. Collegeville Rd, Collegeville, PA, 19426, USA
| | - Yong Jiang
- Bioanalysis, Immunogenicity & Biomarkers GSK R&D, 1250 S. Collegeville Rd, Collegeville, PA, 19426, USA.
| |
Collapse
|
11
|
Li S, Guo H, Gao Y, Tian W, Wang S, Shen C, Xu L, Liu H, Zhang J, Wang Y. Development of a free cytokine immunoassay to maintain binding and dissociation equilibrium in vitro. J Pharm Biomed Anal 2024; 238:115813. [PMID: 37956554 DOI: 10.1016/j.jpba.2023.115813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/18/2023] [Accepted: 10/22/2023] [Indexed: 11/15/2023]
Abstract
Using competitive ELISA to detect free cytokines is limited as it can only reflect relative trends rather than accurately determine the real state and quantity of cytokines due to the dynamic equilibrium between dissociation and binding. This imprecise quantification adversely affects the usage of clinical medication and the validity assessment. In this study, we have developed a novel cytokine immunoassay that utilizes Rosetta molecular docking prediction technique, we screened two specific antibody pairs binding IL-1β and Durg respectively and then established the Total IL-1β and Total Drug ELISA assay. Protein A column could separate bound IL-1β and free IL-1β, and the bound IL-1β occupied for about 90% of the total. This innovative approach ensures the maintenance of equilibrium between the free cytokines and complex. We have developed a free cytokine content detection method that combines ELISA and solid phase extraction, which can detect the true concentration of free cytokines without destroying the free-binding dynamic equilibrium. It can be used to verify the accuracy of clinical PK/PD and other data, evaluate the applicability of detection methods, and guide clinical drug use and drug efficacy evaluation.
Collapse
Affiliation(s)
- Siqi Li
- GeneScience Pharmaceuticals Co, Ltd, Changchun 130012, China
| | - Hao Guo
- GeneScience Pharmaceuticals Co, Ltd, Changchun 130012, China
| | - Yan Gao
- GeneScience Pharmaceuticals Co, Ltd, Changchun 130012, China
| | - Wen Tian
- GeneScience Pharmaceuticals Co, Ltd, Changchun 130012, China
| | - Shan Wang
- GeneScience Pharmaceuticals Co, Ltd, Changchun 130012, China
| | - Chen Shen
- GeneScience Pharmaceuticals Co, Ltd, Changchun 130012, China
| | - Lili Xu
- GeneScience Pharmaceuticals Co, Ltd, Changchun 130012, China
| | - Hailong Liu
- GeneScience Pharmaceuticals Co, Ltd, Changchun 130012, China
| | - Jinliang Zhang
- School of Life Science, Jilin University, Changchun 130012, China; GeneScience Pharmaceuticals Co, Ltd, Changchun 130012, China
| | - Yingwu Wang
- School of Life Science, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130012, China.
| |
Collapse
|
12
|
Evans BR, Beck AG, Yeung L, Li A, Lee DH, Bateman KP, Chopra G. Automated Bioanalytical Workflow for Ligand Binding-Based Pharmacokinetic Assay Development. Anal Chem 2024; 96:488-495. [PMID: 38156369 DOI: 10.1021/acs.analchem.3c04589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
The growth of therapeutic monoclonal antibodies (mAbs) continues to accelerate due to their success as treatments for many diseases. As new therapeutics are developed, it is increasingly important to have robust bioanalytical methods to measure the pharmacokinetics (PK) of circulating therapeutic mAbs in serum. Ligand-binding assays such as enzyme-linked immunosorbent assays (ELISAs) with anti-idiotypic antibodies (anti-IDs) targeting the variable regions of the therapeutic antibody are sensitive and specific bioanalytical methods to measure levels of therapeutic antibodies in a biological matrix. However, soluble circulating drug mAb targets can interfere with the anti-IDs binding to the therapeutic mAb, thereby resulting in an underestimation of total drug concentration. Therefore, in addition to a high binding affinity for the mAb, the selection of anti-IDs and the assay format that are not impacted by soluble antigens and have low matrix interference is essential for developing a robust PK assay. Standardized automated approaches to screen and select optimal reagents and assay formats are critical to increase efficiency, quality, and PK assay robustness. However, there does not exist an integrated screening and analysis platform to develop robust PK assays across multiple formats. We have developed an automated workflow and scoring platform with multiple bioanalytical assay parameters that allow for ranking of candidate anti-IDs. A primary automated indirect electrochemiluminescence (ECL) was utilized to shortlist the anti-IDs that were selected for labeling and screening in pairs. A secondary screen using an ECL sandwich assay with labeled-anti-ID pairings was used to test multiple PK assay formats to identify the best anti-ID pairing/PK assay format. We developed an automated assay using fixed plate maps combined with a human-guided graphical user interface-based scoring system and compared it to a data-dependent scoring system using Gaussian mixture models for automated scoring and selection. Our approach allowed for screening of anti-IDs and identification of the most robust PK assay format with significantly reduced time and resources compared with traditional approaches. We believe that such standardized, automated, and integrated platforms that accelerate the development of PK assays will become increasingly important for supporting future human clinical trials.
Collapse
Affiliation(s)
- Brad R Evans
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Company Incorporated, Rahway, New Jersey 07065, United States
| | - Armen G Beck
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Lai Yeung
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Company Incorporated, Rahway, New Jersey 07065, United States
| | - Annie Li
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Company Incorporated, Rahway, New Jersey 07065, United States
| | - Dong Hun Lee
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Company Incorporated, Rahway, New Jersey 07065, United States
| | - Kevin P Bateman
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Company Incorporated, Rahway, New Jersey 07065, United States
| | - Gaurav Chopra
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
- Department of Computer Science (by Courtesy), Purdue University, West Lafayette, Indiana 47907, United States
- Regenstrief Center for Healthcare Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institutes for Drug Discovery, Integrative Neuroscience, Inflammation, Immunology and Infectious Disease, Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
13
|
Todoroki K, Hamada D, Yamada T, Saito T, Shimizu Y, Sugiyama E, Mizuno H, Hayashi H, Tsukakoshi K, Ikebukuro K. Development of a liquid chromatography-based versatile bioanalysis for bevacizumab based on pretreatment combining aptamer affinity purification and centrifugal ultrafiltration concentration. ANAL SCI 2023; 39:1805-1811. [PMID: 37660341 DOI: 10.1007/s44211-023-00417-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/20/2023] [Indexed: 09/05/2023]
Abstract
We report on the development of a versatile and accurate bioanalytical method for bevacizumab using a pretreatment method combining affinity purification with anti-idiotypic DNA aptamers and centrifugal ultrafiltration concentration, followed by liquid chromatography (LC)-fluorescence analysis. An affinity purification method using Sepharose beads as an affinity support removed immunoglobulin G and a large amount of coexisting substances in the serum sample. Purified bevacizumab was separated as a single peak by conventional LC and detected fluorometrically, showing good linearity (R2 = 0.999) in the range of 5-200 μg/mL, sufficient to analyze bevacizumab concentrations in the blood of bevacizumab-treated patients. By combining this purification method with a concentration method using a centrifugal filtration device that inhibits non-specific adsorption of bevacizumab, the quantitative range was reduced by a factor of 10 while showing good linearity (R2 = 0.999) in the 0.5-20 μg/mL range. The developed analytical method is expected to be used not only for general bioanalysis of therapeutic mAbs in clinical settings, but also for next-generation antibody drugs that show drug efficacy at low concentrations and for analysis of trace samples.
Collapse
Affiliation(s)
- Kenichiro Todoroki
- Department of Analytical and Bioanalytical Chemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1, Yada, Suruga-Ku, Shizuoka, 422-8526, Japan.
| | - Daichi Hamada
- Department of Analytical and Bioanalytical Chemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1, Yada, Suruga-Ku, Shizuoka, 422-8526, Japan
| | - Tomohiro Yamada
- Department of Analytical and Bioanalytical Chemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1, Yada, Suruga-Ku, Shizuoka, 422-8526, Japan
| | - Taro Saito
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-Cho, Koganei, Japan
| | - Yutaka Shimizu
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-Cho, Koganei, Japan
| | - Eiji Sugiyama
- Department of Analytical and Bioanalytical Chemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1, Yada, Suruga-Ku, Shizuoka, 422-8526, Japan
| | - Hajime Mizuno
- Laboratory of Analytical Chemistry, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku, Nagoya, 468-8503, Japan
| | - Hideki Hayashi
- Laboratory of Community Pharmaceutical Practice and Science, Gifu Pharmaceutical University, Daigaku-Nishi 1-25-4, Gifu, 501-1196, Japan
| | - Kaori Tsukakoshi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-Cho, Koganei, Japan
| | - Kazunori Ikebukuro
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-Cho, Koganei, Japan
| |
Collapse
|
14
|
Sena-Torralba A, Banguera-Ordoñez YD, Mira-Pascual L, Maquieira Á, Morais S. Exploring the potential of paper-based electrokinetic phenomena in PoC biosensing. Trends Biotechnol 2023; 41:1299-1313. [PMID: 37150668 DOI: 10.1016/j.tibtech.2023.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 05/09/2023]
Abstract
In order to decentralize health care, the development of point-of-care (PoC) assays has gained significant attention in recent decades. The lateral flow immunoassay (LFIA) has emerged as a promising bioanalytical method due to its low cost and single-step detection process. However, its limited sensitivity and inability to detect disease biomarkers at clinically relevant levels have hindered its application for early diagnosis. This review explores the potential of merging different electrokinetic phenomena into paper-based assays to enhance their analytical performance, offering a versatile and affordable approach for PoC testing. The review exposes the challenges faced in integrating electrokinetic phenomena with paper-based biosensing and concludes by discussing the issues that need to be improved to maximize the potential of this technology for early diagnosis.
Collapse
Affiliation(s)
- Amadeo Sena-Torralba
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain; Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
| | - Yulieth D Banguera-Ordoñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Laia Mira-Pascual
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Ángel Maquieira
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain; Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Sergi Morais
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain; Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain.
| |
Collapse
|
15
|
Shim J, Chen J, Carrasco-Triguero M, Fischer SK. Overcoming Soluble Target Interference in Measurement of Total Bispecific Therapeutic Antibody Concentrations. AAPS J 2023; 25:82. [PMID: 37594571 DOI: 10.1208/s12248-023-00848-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/04/2023] [Indexed: 08/19/2023] Open
Abstract
The measurement of therapeutic drug concentrations is used to assess drug exposure and the relationship between therapeutic pharmacokinetics (PK) and pharmacodynamics (PD), which help determine the optimal dose for patients. Ligand binding assays (LBAs) are often the method of choice for evaluation of drug concentration and use either the therapeutic target protein or antibodies to the therapeutic as capture and/or detection reagents. Due to the bivalency of antibody therapeutics, heterogeneous states of the drug/target complex can exist in the presence of soluble targets which can complicate measurement of unbound drug. In the case of bispecific antibodies, measurement of drug can be even more complicated and depend upon the levels of both targets to each arm. Measuring the total drug allows for PKPD modeling prediction of human dose projections in addition to overcoming challenges associated with measuring free drug for bispecific antibodies. Here, we present a study in which a sandwich ELISA format was used to measure total anti-KLK5/KLK7 antibody concentrations. This assay utilized a non-blocking anti-idiotype (ID) antibody to one arm of the antibody for capture and an antibody to target bound to the other arm of the antibody for detection. Our qualified assay showed acceptable precision, accuracy, dilutional linearity, and reproducibility and enabled detection of a total bispecific antibody at high levels of two targets. To confirm that our assay was detecting total drug, a subset of samples was evaluated in a generic total LC-MS/MS assay.
Collapse
Affiliation(s)
- Jeongsup Shim
- BioAnalytical Sciences, Development Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, California, 94080, USA.
| | - Jessica Chen
- BioAnalytical Sciences, Development Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Montserrat Carrasco-Triguero
- BioAnalytical Sciences, Development Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Saloumeh K Fischer
- BioAnalytical Sciences, Development Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| |
Collapse
|
16
|
Sumner G, Keller S, Huleatt J, Staack RF, Wagner L, Azadeh M, Bandukwala A, Cao L, Du X, Salinas GF, Garofolo F, Harris S, Hopper S, Irwin C, Ji Q, Joseph J, King L, Kinhikar A, Lu Y, Luo R, Mabrouk O, Malvaux L, Marshall JC, McGuire K, Mikol V, Neely R, Qiu X, Saito Y, Salaun B, Scully I, Smeraglia J, Solstad T, Stoop J, Tang H, Teixeira P, Wang Y, Wright M, Mendez L, Beaver C, Eacret J, Au-Yeung A, Decman V, Dessy F, Eck S, Goihberg P, Alcaide EG, Gonneau C, Grugan K, Hedrick MN, Kar S, Sehra S, Stevens E, Stevens C, Sun Y, McCush F, Williams L, Fischer S, Wu B, Jordan G, Burns C, Cludts I, Coble K, Grimaldi C, Henderson N, Joyce A, Lotz G, Lu Y, Luo L, Neff F, Sperinde G, Stubenrauch KG, Wang Y, Ware M, Xu W. 2022 White Paper on Recent Issues in Bioanalysis: Enzyme Assay Validation, BAV for Primary End Points, Vaccine Functional Assays, Cytometry in Tissue, LBA in Rare Matrices, Complex NAb Assays, Spectral Cytometry, Endogenous Analytes, Extracellular Vesicles Part 2 - Recommendations on Biomarkers/CDx, Flow Cytometry, Ligand-Binding Assays Development & Validation; Emerging Technologies; Critical Reagents Deep Characterization. Bioanalysis 2023; 15:861-903. [PMID: 37584363 DOI: 10.4155/bio-2023-0151] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023] Open
Abstract
The 16th Workshop on Recent Issues in Bioanalysis (16th WRIB) took place in Atlanta, GA, USA on September 26-30, 2022. Over 1000 professionals representing pharma/biotech companies, CROs, and multiple regulatory agencies convened to actively discuss the most current topics of interest in bioanalysis. The 16th WRIB included 3 Main Workshops and 7 Specialized Workshops that together spanned 1 week in order to allow exhaustive and thorough coverage of all major issues in bioanalysis, biomarkers, immunogenicity, gene therapy, cell therapy and vaccines. Moreover, in-depth workshops on ICH M10 BMV final guideline (focused on this guideline training, interpretation, adoption and transition); mass spectrometry innovation (focused on novel technologies, novel modalities, and novel challenges); and flow cytometry bioanalysis (rising of the 3rd most common/important technology in bioanalytical labs) were the special features of the 16th edition. As in previous years, WRIB continued to gather a wide diversity of international, industry opinion leaders and regulatory authority experts working on both small and large molecules as well as gene, cell therapies and vaccines to facilitate sharing and discussions focused on improving quality, increasing regulatory compliance, and achieving scientific excellence on bioanalytical issues. This 2022 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2022 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication (Part 2) covers the recommendations on LBA, Biomarkers/CDx and Cytometry. Part 1 (Mass Spectrometry and ICH M10) and Part 3 (Gene Therapy, Cell therapy, Vaccines and Biotherapeutics Immunogenicity) are published in volume 15 of Bioanalysis, issues 16 and 14 (2023), respectively.
Collapse
Affiliation(s)
| | | | | | - Roland F Staack
- Roche Pharma Research & Early Development, Roche Innovation Center, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | - Qin Ji
- AbbVie, North Chicago, IL, USA
| | | | | | | | - Yang Lu
- US FDA, Silver Spring, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Priscila Teixeira
- Roche Pharma Research & Early Development, Roche Innovation Center, Munich, Germany
| | - Yixin Wang
- Bristol-Myers Squibb, Lawrenceville, NJ, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Gregor Jordan
- Roche Pharma Research & Early Development, Roche Innovation Center, Munich, Germany
| | | | | | | | | | - Neil Henderson
- Integrated Bioanalysis, Clinical Pharmacology & Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Gregor Lotz
- Roche Pharma Research & Early Development, Roche Innovation Center, Munich, Germany
| | | | | | - Florian Neff
- Roche Pharma Research & Early Development, Roche Innovation Center, Munich, Germany
| | | | | | | | | | | |
Collapse
|
17
|
Liu D, Hu L, Shao H. Therapeutic drug monitoring of immune checkpoint inhibitors: based on their pharmacokinetic properties and biomarkers. Cancer Chemother Pharmacol 2023:10.1007/s00280-023-04541-8. [PMID: 37410155 DOI: 10.1007/s00280-023-04541-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/03/2023] [Indexed: 07/07/2023]
Abstract
As a new means of oncology treatment, immune checkpoint inhibitors (ICIs) can improve survival rates in patients with resistant or refractory tumors. However, there are obvious inter-individual differences in the unsatisfactory response rate, drug resistance rate and the occurrence of immune-related adverse events (irAE). These questions have sparked interest in researchers looking for a way to screen sensitive populations and predict efficacy and safety. Therapeutic drug monitoring (TDM) is a way to ensure the safety and effectiveness of medication by measuring the concentration of drugs in body fluids and adjusting the medication regimen. It has the potential to be an adjunctive means of predicting the safety and efficacy of ICIs treatment. In this review, the author outlined the pharmacokinetic (PK) characteristics of ICIs in patients. The feasibility and limitations of TDM of ICIs were discussed by summarizing the relationships between the pharmacokinetic parameters and the efficacy, toxicity and biomarkers.
Collapse
Affiliation(s)
- Dongxue Liu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Linlin Hu
- Department of Pharmacy, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- Office of Medication Clinical Institution, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Hua Shao
- Office of Medication Clinical Institution, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China.
| |
Collapse
|
18
|
Suh MJ, Powers JB, Daniels CM, Wu Y. Enhanced Pharmacokinetic Bioanalysis of Antibody-drug Conjugates using Hybrid Immunoaffinity Capture and Microflow LC-MS/MS. AAPS J 2023; 25:68. [PMID: 37386323 DOI: 10.1208/s12248-023-00835-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/14/2023] [Indexed: 07/01/2023] Open
Abstract
The increasing complexity and diversity of antibody-drug conjugates (ADCs) have led to a need for comprehensive and informative bioanalytical methods to enhance pharmacokinetic (PK) understanding. This study aimed to evaluate the feasibility of a hybrid immunoaffinity (IA) capture microflow LC-MS/MS (μLC-MS/MS) method for ADC analysis, utilizing a minimal sample volume for PK assessments in a preclinical study. A robust workflow was established for the quantitative analysis of ADCs by the implementation of solid-phase extraction (SPE) and semi-automation in µLC-MS/MS. Utilizing the µLC-MS/MS approach in conjunction with 1 µL of ADC-dosed mouse plasma sample volume, standard curves of two representative surrogate peptides for total antibody (heavy chain, HC) and intact antibody (light chain, LC) ranged from 1.00 ng/mL (LLOQ) to 5000 ng/mL with correlation coefficients (r2) values of > 0.99. The linear range of the standard curve for payload as a surrogate for the concentration of total ADC was from 0.5 ng/mL (LLOQ) to 2000 ng/mL with high accuracy and precision (< 10% CV at all concentrations). Moreover, a high correlation of concentrations of total antibody between two assay approaches (µLC-MS and ELISA) was achieved with less than 20% difference at all time points, indicating that the two methods are comparable in quantitation of total antibody in plasma samples. The µLC-MS platform demonstrated a greater dynamic range, sensitivity, robustness, and good reproducibility. These findings demonstrated that the cost-effective µLC-MS method can reduce reagent consumption and minimize the use of mice plasma samples while providing more comprehensive information about ADCs being analyzed, including the total antibody, intact antibody, and total ADC.
Collapse
Affiliation(s)
- Moo-Jin Suh
- Integrated Bioanalysis, Clinical Pharmacology & Safety Sciences, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, 20878, USA.
| | - Joshua B Powers
- Integrated Bioanalysis, Clinical Pharmacology & Safety Sciences, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, 20878, USA
| | - Casey M Daniels
- Integrated Bioanalysis, Clinical Pharmacology & Safety Sciences, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, 20878, USA
| | - Yuling Wu
- Integrated Bioanalysis, Clinical Pharmacology & Safety Sciences, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, 20878, USA.
| |
Collapse
|
19
|
Sun B, Liu J, Cai P, Wu J, Liu W, Hu H, Liu L. Aptamer-based sample purification for mass spectrometric quantification of trastuzumab in human serum. Talanta 2023; 257:124349. [PMID: 36827940 DOI: 10.1016/j.talanta.2023.124349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/19/2023]
Abstract
In this study, we developed a simple liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay to quantify trastuzumab in human serum using aptamers for sample purification. Trastuzumab was extracted from serum samples using the capture probe based on its aptamer CH1S-3, followed by reduction, alkylation, trypsin digestion, and quantification using LC-MS/MS. Additionally, a unique peptide, FTISADTSK, was employed as a surrogate peptide and quantified, and *FTISADTSK (13C915N-labeled phenylalanine) was used as an internal standard to minimize variability in detection among the samples. The detection range for this method was 0.5-250 μg/mL, with a high correlation coefficient (r2 > 0.99). The intra- and inter-day precision (%CV, the coefficient of variation) of the quality control samples was less than 12.7%, and the accuracy (%bias) was below 8.64%. After optimization and verification, this assay was used to determine trastuzumab levels in clinical human serum samples. The results indicated that the trastuzumab concentrations had an approximate 4-fold difference among ten patients (range: 11.80-41.90 μg/mL). This study provides a novel approach for the accurate and quantitative monitoring of the mAb-trastuzumab.
Collapse
Affiliation(s)
- Bo Sun
- Department of Pharmacy, The First People's Hospital of Lianyungang, Lianyungang, 222000, China
| | - Jiuyang Liu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Pei Cai
- School of Pharmacy, Wuhan University, Wuhan, 430071, China
| | - Jianhua Wu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Wei Liu
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
| | - Hankun Hu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China; Hubei Micro-explore Innovative Pharmaceutical Research Co., Ltd, Wuhan, 430074, China.
| | - Liang Liu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
20
|
Direct bioanalysis or indirect calculation of target engagement and free drug exposure: do we apply double standards? Bioanalysis 2023; 15:5-16. [PMID: 36762451 DOI: 10.4155/bio-2022-0246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Analysis of "free" drug/target concentrations is important to set up appropriate pharmacokinetic-pharmacodynamic models, to evaluate active-drug exposure and target engagement. Such "free-analyte" determination could be done by direct bioanalysis using an appropriate "free-analyte" assay. Development of "free" assays is often considered challenging from a technological and regulatory perspective. The application of a "total-total" approach, where the "free-analyte" concentration is determined mathematically, is considered a more convenient option. In this perspective, we examine and discuss the challenges of this "total-total" approach, from the affinity data, the importance of applying an appropriate "total" assay, the impact of additional binding partners and the variability of the total drug/target assays and their impact on the quality and variability of the final "free-analyte" dataset.
Collapse
|
21
|
Fairman D, Tang H. Best Practices in mAb and Soluble Target Assay Selection for Quantitative Modelling and Qualitative Interpretation. AAPS J 2023; 25:23. [PMID: 36759378 DOI: 10.1208/s12248-023-00788-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/22/2023] [Indexed: 02/11/2023] Open
Abstract
Biologics, especially monoclonal antibodies (mAbs), are an increasingly important part of the drug discovery and development portfolio across the pharmaceutical industry. To enable robust demonstration of pillars 1 and 2 [1] for mAbs, specialised assays are required to measure the complex interactions between mAb and target. This is especially important for the interpretation of soluble target interactions. In some instances, multiple assays with overlapping purposes (e.g., developing both complex and total assays) have been developed. In retrospect, these efforts may have led to excessive time and resources spent in assay development and the generation of data that is contradictory or misleading. Our recommendation is to invest resources early into the development of total assays for both mAb and target. Free target assay data may be inaccurate and report higher levels of free target than are present in the sample at collection due to re-equilibrium during measurement. Total assay formats are inherently less sensitive to the effects of sample preparation, assay conditions, and re-equilibration than free or complex assays. It is acknowledged that pathology/pharmacology is ultimately driven by the free target and knowledge of its dynamics are critical. However, generation of appropriate total target data and using model-based estimation of free target concentrations is a more robust approach than utilisation of direct assay derived estimates. Where free data are utilised, the potential biases should be prospectively considered when developing the assay and utilising the data for quantitative analyses.
Collapse
Affiliation(s)
- David Fairman
- Clinical Pharmacology Modelling and Simulation, GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Huaping Tang
- Bioanalysis Immunogenicity and Biomarkers, GSK Research, 1250 South Collegeville Road, Pennsylvania, 19426, Collegeville, USA.
| |
Collapse
|
22
|
Salimi-Moosavi H, Soto M. A Non-radiometric Approach to Determine Tissue Vascular Blood Volume in Biodistribution Studies. AAPS J 2022; 24:116. [PMID: 36376552 DOI: 10.1208/s12248-022-00770-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/28/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of this research was to develop a reliable non-radiometric method to measure the residual blood in tissue without the need for perfusion or radiometric measurements in biodistribution studies. It was found that the perfusion method not only was ineffective in removing blood from tissue, but also introduced additional variability in the determination of tissue drug exposure and was not reproducible across studies. In addition, the use of hemoglobin as an endogenous protein and biomarker for tissue blood content was studied and it was found that hemoglobin measurement in tissue was not a reliable and effective approach for determination of residual blood level in tissue. To evaluate an alternative method for addressing the tissue blood level in biodistribution studies, animals were dosed with a Residual Blood Determinant Reagent (RBDR) 5 min prior to tissue harvesting. The level of RBDR, an exogenous protein, was measured in whole blood homogenate and in tissue lysate. Based on the level of the RBDR, the vascular blood volume (VBV) in tissue was calculated and then the tissue exposures were corrected based on the blood volumes. The tissue VBVs measured by the RBDR method were comparable with the literature values obtained by radiometric measurements.
Collapse
Affiliation(s)
- Hossein Salimi-Moosavi
- Translational Safety & Bioanalytical Sciences, Amgen Research, Amgen Inc, One Amgen Center Drive, Thousand Oaks, California, 91320, USA.
| | - Marcus Soto
- Pharmacokinetics & Drug Metabolism, Amgen Research, Amgen Inc, One Amgen Center Drive, Thousand Oaks, California, 91320, USA
| |
Collapse
|
23
|
2021 White Paper on Recent Issues in Bioanalysis: ISR for Biomarkers, Liquid Biopsies, Spectral Cytometry, Inhalation/Oral & Multispecific Biotherapeutics, Accuracy/LLOQ for Flow Cytometry ( Part 2 - Recommendations on Biomarkers/CDx Assays Development & Validation, Cytometry Validation & Innovation, Biotherapeutics PK LBA Regulated Bioanalysis, Critical Reagents & Positive Controls Generation). Bioanalysis 2022; 14:627-692. [PMID: 35578974 DOI: 10.4155/bio-2022-0080] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The 15th edition of the Workshop on Recent Issues in Bioanalysis (15th WRIB) was held on 27 September to 1 October 2021. Even with a last-minute move from in-person to virtual, an overwhelmingly high number of nearly 900 professionals representing pharma and biotech companies, contract research organizations (CROs), and multiple regulatory agencies still eagerly convened to actively discuss the most current topics of interest in bioanalysis. The 15th WRIB included three Main Workshops and seven Specialized Workshops that together spanned 1 week in order to allow exhaustive and thorough coverage of all major issues in bioanalysis, biomarkers, immunogenicity, gene therapy, cell therapy and vaccines. Moreover, in-depth workshops on biomarker assay development and validation (BAV) (focused on clarifying the confusion created by the increased use of the term "context of use" [COU]); mass spectrometry of proteins (therapeutic, biomarker and transgene); state-of-the-art cytometry innovation and validation; and critical reagent and positive control generation were the special features of the 15th edition. This 2021 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop, and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2021 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication (Part 2) covers the recommendations on ISR for Biomarkers, Liquid Biopsies, Spectral Cytometry, Inhalation/Oral & Multispecific Biotherapeutics, Accuracy/LLOQ for Flow Cytometry. Part 1A (Endogenous Compounds, Small Molecules, Complex Methods, Regulated Mass Spec of Large Molecules, Small Molecule, PoC), Part 1B (Regulatory Agencies' Inputs on Bioanalysis, Biomarkers, Immunogenicity, Gene & Cell Therapy and Vaccine) and Part 3 (TAb/NAb, Viral Vector CDx, Shedding Assays; CRISPR/Cas9 & CAR-T Immunogenicity; PCR & Vaccine Assay Performance; ADA Assay Comparability & Cut Point Appropriateness) are published in volume 14 of Bioanalysis, issues 9 and 11 (2022), respectively.
Collapse
|
24
|
Development of an immunoassay for aglycosylated murine IgG1 in mouse serum via generation of a specific tool antibody. Bioanalysis 2022; 14:581-588. [PMID: 35548877 DOI: 10.4155/bio-2022-0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: To develop a method for the quantitation of effector functionless mouse surrogate IgG1 drug molecules in mouse matrices. Materials & methods: A panel of antibodies that bound specifically to N297G mutation-containing mouse IgG molecules was generated in rats. The panel was screened to identify an antibody that could be used as both the capture and detection reagent in an electrochemiluminescent immunoassay. Results & conclusion: The quantitative assay developed with the N297G-specific antibody passed acceptance criteria across multiple IgG1 fragment crystallizable (Fc)-containing protein formats and provides accurate quantitation of the total levels of mouse surrogate protein Fc present in in vivo mouse serum samples. These results are useful in understanding drug integrity and the development of precise pharmacokinetic/pharmacodynamic relationships.
Collapse
|
25
|
Zhang J, Hu L, Shao H. Research Progress on Quantification Methods of Drug Concentration of Monoclonal Antibodies. CURR PHARM ANAL 2022. [DOI: 10.2174/1573412918666220329110712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
With the development of monoclonal antibodies (mAbs) from the first generation of mice to the fourth generation of human origin, the efficacy and safety in the treatment of many diseases have been continuously improved. MAbs have been widely used in the treatment of cancer, chronic inflammatory diseases, and so on. However, the treatment response of mAbs varies greatly among individuals, and drug exposure may be affected by a variety of physiological and pathological factors, such as combined use of drugs and progression of disease. Therefore, studies tend to recommend therapeutic drug monitoring and individualized treatment strategies.
Objective:
In this paper, the commonly used methods of quantification of monoclonal antibodies were reviewed, especially liquid chromatography- mass spectrometry (LC-MS/MS) and enzyme-linked immunosorbent assay (ELISA), to provide technical support for therapeutic drug detection and individualize dosing for patients.
Conclusion:
For patients achieving mAbs treatment, it is necessary to carry out therapeutic drug monitoring and take it as a routine monitoring index. We recommend that for pharmaceutical laboratories in hospitals, establishing an appropriate assay formats, such as ELISA and LC-MS/MS is critical to determine drug concentration and antidrug antibody (ADA) for mAbs.
Collapse
Affiliation(s)
- Jinlu Zhang
- School of Medicine, Southeast University, Nanjing, China
| | - Linlin Hu
- Office of Medication Clinical Institution, Zhongda Hospital, Southeast University, Nanjing, China;
- Department of Pharmacy, Zhongda Hospital, Southeast University, Nanjing, China
| | - Hua Shao
- Department of Pharmacy, Zhongda Hospital, Southeast University, Nanjing, China
| |
Collapse
|
26
|
Assay pH and critical reagent optimization in measuring concentrations of a monoclonal antibody and its target. Bioanalysis 2022; 14:491-502. [PMID: 35297286 DOI: 10.4155/bio-2021-0276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: To mitigate assay interference in the drug and target assays to support the development of monoclonal antibody REGN-Z. Results: Mild acidic assay conditions and capture and detection antibodies with different affinities and t1/2 under different assay pHs were used to mitigate interference in the total drug and total target assays. A free target assay was also developed using a lower-affinity capture antibody with a much slower association and dissociation rate. The impact of sample incubation, dilution and storage on the accurate detection of the free target was also evaluated. Conclusion: The total drug, total and free target assays can accurately quantitate drug and target concentrations when tested with a subset of clinical study samples.
Collapse
|
27
|
Myzithras M, Lin S, Radden L, Hess Kenny C, Cai Z, MacDonald A, Binetti R, Marlow M, Fracasso P, Gibson G, Bartlett C, Hawkins J, Hansel S. Development of novel ultra-sensitive IL-11 target engagement assays to support mechanistic PK/PD modeling for an anti-IL-11 antibody therapeutic. MAbs 2022; 14:2104153. [PMID: 35916739 PMCID: PMC9348130 DOI: 10.1080/19420862.2022.2104153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An in-house antibody generation campaign identified a diverse, high affinity set of anti-interleukin-11 (IL-11) monoclonal antibodies (mAbs) to enable successful development of novel, custom ultra-sensitive target engagement assays for detection of “free” (unbound to the dosed anti-IL-11 therapeutic mAb) and “total” (free and mAb-IL-11 complexed form) IL-11 in preclinical species and human. Antibody hits from distinct epitope communities were screened on various platforms, including enzyme-linked immunosorbent assay, Meso Scale Discovery, Simoa HD-1 and Simoa Planar Array (SP-X), and used for assay development and sensitivity optimization. The ultra-sensitive SP-X format achieved a lower limit of quantitation of 0.006 pg/mL, enabling the first reported baseline levels of IL-11 in healthy control plasma determined by custom bioanalytical assays. These newly established baseline levels supported mechanistic pharmacokinetic/pharmacodynamic modeling in mouse, cynomolgus monkey, and human for a greater understanding of preclinical study design and in vivo dynamic interaction of soluble IL-11 with an anti-IL-11 antibody therapeutic candidate. Modeling and simulation also helped refine the utility of assays with respect to their potential use as target engagement biomarkers in the clinic. Abbreviations IL-11: Interleukin-11, TE: Target engagement, PK/PD: Pharmacokinetic/pharmacodynamic, mAb: Monoclonal antibody, NHP: Non-human primate, IgG: Immunoglobulin G, Cyno: Cynomolgulus monkey, GFR: Glomerular filtration rate, BQL: Below quantitation levels, DRM: Disease relevant model, kDa: kilodaltons, SPR: Surface plasmon resonance, pSTAT3: phosphorylated STAT3, IL-11R: Interleukin-11 receptor, TPP: Target product protein, LLOQ: Lower limit of quantitation, RLU: Relative light units
Collapse
Affiliation(s)
| | - Siqi Lin
- Biotherapeutics Discovery, Research, Ridgefield, CT, USA
| | | | | | - Zheng Cai
- Biotherapeutics Discovery, Research, Ridgefield, CT, USA
| | | | - Ralph Binetti
- Immunology & Respiratory, Research, Ridgefield, CT, USA
| | - Michael Marlow
- Biotherapeutics Discovery, Research, Ridgefield, CT, USA
| | - Paul Fracasso
- Cardiometabolic Diseases, Research, Ridgefield, CT, USA
| | - Glenn Gibson
- Cardiometabolic Diseases, Research, Ridgefield, CT, USA
| | | | - Julie Hawkins
- Cardiometabolic Diseases, Research, Ridgefield, CT, USA
| | - Steven Hansel
- Biotherapeutics Discovery, Research, Ridgefield, CT, USA
| |
Collapse
|
28
|
Kroenke MA, Milton MN, Kumar S, Bame E, White JT. Immunogenicity Risk Assessment for Multi-specific Therapeutics. AAPS JOURNAL 2021; 23:115. [PMID: 34741215 PMCID: PMC8571146 DOI: 10.1208/s12248-021-00642-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/23/2021] [Indexed: 01/12/2023]
Abstract
The objective of this manuscript is to provide the reader with a hypothetical case study to present an immunogenicity risk assessment for a multi-specific therapeutic as part of Investigational New Drug (IND) application. In order to provide context for the bioanalytical strategies used to support the multi-specific therapeutic presented herein, the introduction focuses on known immunogenicity risk factors. The subsequent hypothetical case study applies these principles to a specific example HC-12, based loosely on anti-TNFα and anti-IL-17A bispecific molecules previously in development, structured as an example immunogenicity risk assessment for submission to health authorities. The risk of higher incidence and safety impact of anti-drug antibodies (ADA) due to large protein complexes is explored in the context of multi-specificity and multi-valency of the therapeutic in combination with the oligomeric forms of the targets.
Collapse
Affiliation(s)
| | - Mark N Milton
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, USA
| | - Seema Kumar
- EMD Serono Research & Development Institute, Inc, Billerica, Massachusetts, USA
| | - Eris Bame
- Biogen, Cambridge, Massachusetts, USA
| | - Joleen T White
- Bill & Melinda Gates Medical Research Institute, One Kendall Square, Building 600, Suite 6-301, Cambridge, Massachusetts, 02139, USA.
| |
Collapse
|
29
|
Amrani ME, Gerencser L, Huitema ADR, Hack CE, van Luin M, van der Elst KCM. A generic sample preparation method for the multiplex analysis of seven therapeutic monoclonal antibodies in human plasma or serum with liquid chromatography-tandem mass spectrometry. J Chromatogr A 2021; 1655:462489. [PMID: 34509691 DOI: 10.1016/j.chroma.2021.462489] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/03/2021] [Accepted: 08/18/2021] [Indexed: 11/26/2022]
Abstract
Due to the increasing number of therapeutic monoclonal antibodies (mAbs) used in the clinic, there is an increasing need for robust analytical methods to quantify total mAb concentrations in human plasma for clinical studies and therapeutic drug monitoring. We developed an easy, rapid, and robust sample preparation method for liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. The method was validated for infliximab (IFX), rituximab (RTX), cetuximab (CTX), dupilumab (DPL), dinutuximab (DNX), vedolizumab (VDZ), and emicizumab (EMZ). Saturated ammonium sulfate (AS) was used to precipitate immunoglobulins in human plasma. After centrifugation, supernatant containing albumin was decanted, and the precipitated immunoglobulin fraction was re-dissolved in buffer containing 6M guanidine. This fraction was then completely denatured, reduced, alkylated, and trypsin digested. Finally, signature peptides from the seven mAbs were simultaneously quantified on LC-MS/MS together with their internal standards stable isotopically labeled peptide counterparts. The linear dynamic ranges (1 - 512 mg/L) of IFX, CTX, RTX, and EMZ showed excellent (R2 > 0.999) linearity and those of DPL, DNX, and VDZ showed good (R2 > 0.995) linearity. The method was validated in accordance with the EMA guidelines. EDTA plasma, sodium citrate plasma, heparin plasma, and serum yielded similar results. Prepared samples were stable at room temperature (20°C) and at 5°C for 3 days, and showed no decline in concentration for all tested mAbs. This described method, which has the advantage of an easy, rapid, and robust pre-analytical sample preparation, can be used as a template to quantify other mAbs in human plasma or serum.
Collapse
Affiliation(s)
- Mohsin El Amrani
- Department of Clinical Pharmacy, Division Laboratories, Pharmacy and Biomedical Genetics, University Medical Centre Utrecht, Utrecht, the Netherlands.
| | - Laszlo Gerencser
- Department of Clinical Pharmacy, Division Laboratories, Pharmacy and Biomedical Genetics, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Alwin D R Huitema
- Department of Clinical Pharmacy, Division Laboratories, Pharmacy and Biomedical Genetics, University Medical Centre Utrecht, Utrecht, the Netherlands; Department of Pharmacy & Pharmacology, Netherlands Cancer Institute, Amsterdam, the Netherlands; Department of Pharmacology, Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - C Erik Hack
- Center of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Matthijs van Luin
- Department of Clinical Pharmacy, Division Laboratories, Pharmacy and Biomedical Genetics, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Kim C M van der Elst
- Department of Clinical Pharmacy, Division Laboratories, Pharmacy and Biomedical Genetics, University Medical Centre Utrecht, Utrecht, the Netherlands
| |
Collapse
|
30
|
A survey of pharmacokinetic bioanalytical methods in biosimilar biological license applications for the assessment of target and antidrug antibody effects. Bioanalysis 2021; 13:1323-1332. [PMID: 34515515 DOI: 10.4155/bio-2021-0116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The presence of circulating targets and antidrug antibodies can influence the ability of a bioanalytical method to measure therapeutic protein (TP) concentration relevant to exposure-response evaluations. This project surveyed biosimilar submissions for their bioanalytical methods. Survey results revealed that 97% of pharmacokinetic methods designed to measure theoretically free or partial-free TPs with respect to target indeed measured free or partial-free TPs when considering experimental testing results for target effects. Antidrug antibody effect is less often evaluated. The observed trend of measuring biologically active forms of TP is consistent with the scientific understanding that pharmacokinetics of biologically active forms is more likely to be relevant to the clinical responses and evaluation of clinically meaningful differences to contribute to biosimilarity assessments.
Collapse
|
31
|
Zheng S, Niu J, Geist B, Fink D, Xu Z, Zhou H, Wang W. A minimal physiologically based pharmacokinetic model to characterize colon TNF suppression and treatment effects of an anti-TNF monoclonal antibody in a mouse inflammatory bowel disease model. MAbs 2021; 12:1813962. [PMID: 32967523 PMCID: PMC7531524 DOI: 10.1080/19420862.2020.1813962] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Biotherapeutic drugs against tumor necrosis factor (TNF) are effective treatments for moderate to severe inflammatory bowel disease (IBD). Here, we evaluated CNTO 5048, an antimurine TNF surrogate monoclonal antibody (mAb), in a CD45RBhigh adoptive T cell transfer mouse colitis model, which allows examination of the early immunological events associated with gut inflammation and the therapeutic effects. The study was designed to quantitatively understand the effects of IBD on CNTO 5048 disposition, the ability of CNTO 5048 to neutralize pathogenic TNF at the colon under disease conditions, and the impact of dosing regimen on CNTO 5048 treatment effect. CNTO 5048 and TNF concentrations in both mice serum and colon homogenate were also measured. Free TNF concentrations in colon, but not in serum, were shown to correlate well with the colon pharmacodynamic readout, such as the summed histopathology score and neutrophil score. A minimal physiologically based pharmacokinetic (mPBPK) model was developed to characterize CNTO 5048 PK and disposition, as well as colon soluble TNF target engagement (TE). The mPBPK/TE model reasonably captured the observed data and provided a quantitative understanding of an anti-TNF mAb on its colon TNF suppression and therapeutic effect in a physiologically relevant IBD animal model. These results also provided insights into the potential benefits of using induction doses for the treatment of IBD patients.
Collapse
Affiliation(s)
- Songmao Zheng
- Biologics Development Sciences, Janssen BioTherapeutics (JBIO) , Spring House, PA, USA
| | - Jin Niu
- Biologics Development Sciences, Janssen BioTherapeutics (JBIO) , Spring House, PA, USA.,Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York , Buffalo, NY, USA
| | - Brian Geist
- Biologics Development Sciences, Janssen BioTherapeutics (JBIO) , Spring House, PA, USA
| | - Damien Fink
- Biologics Development Sciences, Janssen BioTherapeutics (JBIO) , Spring House, PA, USA
| | - Zhenhua Xu
- Clinical Pharmacology and Pharmacometrics, Quantitative Sciences , Spring House, PA, USA
| | - Honghui Zhou
- Clinical Pharmacology and Pharmacometrics, Quantitative Sciences , Spring House, PA, USA
| | - Weirong Wang
- Clinical Pharmacology and Pharmacometrics, Quantitative Sciences , Spring House, PA, USA
| |
Collapse
|
32
|
Kellie JF, Tran JC, Jian W, Jones B, Mehl JT, Ge Y, Henion J, Bateman KP. Intact Protein Mass Spectrometry for Therapeutic Protein Quantitation, Pharmacokinetics, and Biotransformation in Preclinical and Clinical Studies: An Industry Perspective. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1886-1900. [PMID: 32869982 DOI: 10.1021/jasms.0c00270] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Recent advancements in immunocapture methods and mass spectrometer technology have enabled intact protein mass spectrometry to be applied for the characterization of antibodies and other large biotherapeutics from in-life studies. Protein molecules have not been traditionally studied by intact mass or screened for catabolites in the same manner as small molecules, but the landscape has changed. Researchers have presented methods that can be applied to the drug discovery and development stages, and others are exploring the possibilities of the new approaches. However, a wide variety of options for assay development exists without clear recommendation on best practice, and data processing workflows may have limitations depending on the vendor. In this perspective, we share experiences and recommendations for current and future application of mass spectrometry for biotherapeutic molecule monitoring from preclinical and clinical studies.
Collapse
Affiliation(s)
- John F Kellie
- Bioanalysis, Immunogenicity & Biomarkers, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | - John C Tran
- Biochemical & Cellular Pharmacology, Genentech Inc., South San Francisco, California 94080, United States
| | - Wenying Jian
- DMPK, Janssen Research & Development, Johnson & Johnson, Spring House, Pennsylvania 19477, United States
| | - Barry Jones
- Q Squared Solutions, 19 Brown Road, Ithaca, New York 14850, United States
| | - John T Mehl
- Bioanalytical Research, Bristol-Myers Squibb, Princeton, New Jersey 08648, United States
| | - Ying Ge
- Department of Cell and Regenerative Biology, Department of Chemistry, Human Proteomics Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Jack Henion
- Advion, Inc., 61 Brown Road, Ithaca, New York 14850, United States
| | - Kevin P Bateman
- PPDM, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| |
Collapse
|
33
|
Gao Y, Chen Z, Yang C, Zhong D. Liquid chromatography-mass spectrometry method for the quantification of an anti-sclerostin monoclonal antibody in cynomolgus monkey serum. J Pharm Anal 2021; 11:472-479. [PMID: 34513123 PMCID: PMC8424367 DOI: 10.1016/j.jpha.2020.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/01/2020] [Accepted: 08/09/2020] [Indexed: 11/20/2022] Open
Abstract
Liquid chromatography tandem mass spectrometry (LC-MS/MS) has gradually become a promising alternative to ligand binding assay for the bioanalysis of biotherapeutic molecules, due to its rapid method development and high accuracy. In this study, we established a new LC-MS/MS method for the determination of the anti-sclerostin monoclonal antibody (SHR-1222) in cynomolgus monkey serum, and compared it to a previous electrochemiluminescence method. The antibody was quantified by detecting the surrogate peptide obtained by trypsin digestion. The surrogate peptide was carefully selected by investigating its uniqueness, stability and MS response. The quantitative range of the proposed method was 2.00-500 μg/mL, and this verified method was successfully applied to the toxicokinetic assessment of SHR-1222 in cynomolgus monkey serum. It was found that the concentrations of SHR-1222 in cynomolgus monkeys displayed an excellent agreement between the LC-MS/MS and electrochemiluminescence methods (ratios of drug exposure, 0.8-1.0). Notably, two monkeys in the 60 mg/kg dose group had abnormal profiles with a low detection value of SHR-1222 in their individual sample. Combining the high-level anti-drug antibodies (ADAs) in these samples and the consistent quantitative results of the two methods, we found that the decreased concentration of SHR-1222 was due to the accelerated clearance mediated by ADAs rather than the interference of ADAs to the detection platform. Taken together, we successfully developed an accurate, efficient and cost-effective LC-MS/MS method for the quantification of SHR-1222 in serum samples, which could serve as a powerful tool to improve the preclinical development of antibody drugs.
Collapse
Affiliation(s)
- Yuxiong Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhendong Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Changyong Yang
- Preclinical Department, Hengrui Medicine Co., Ltd., Lianyungang, Jiangsu Province, 222047, China
| | - Dafang Zhong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
34
|
Dong W, Chen M, Niu S, Wang B, Xia L, Wang J, Shen T, Wang Q, Lv J, Liu G, Fan H, Xie Z, Xie F, An Y, Zheng Q, Rao H, Song H, Fang Y. Pharmacokinetic bioequivalence, safety, and immunogenicity of GB222, a bevacizumab biosimilar candidate, and bevacizumab in Chinese healthy males: a randomized clinical trial. Expert Opin Biol Ther 2021; 22:253-262. [PMID: 34236011 DOI: 10.1080/14712598.2021.1954157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND This study was conducted to compare the similarity of the pharmacokinetics (PKs), safety, and immunogenicity of GB222, a potential bevacizumab biosimilar, to that of reference bevacizumab in Chinese healthy males. RESEARCH DESIGN AND METHODS This was a randomized, double-blind, single-dose, parallel-group clinical trial performed in 84 Chinese healthy males, who were randomly assigned to receive a single infusion dose of 1 mg/kg GB222 or bevacizumab with an 84-days follow-up. The primary endpoint was the area under the plasma concentration-time curve (AUC) from zero to the last quantifiable concentration at time t (AUC0-t). The second endpoints were the safety and immunogenicity evaluation. The PK bioequivalence was verified by the 90% confidence intervals (CIs) of the geometrical mean (GM) ratio for AUC0-t falling within the bioequivalence margin, 80-125%. RESULTS The PK profiles of GB222 and bevacizumab were comparable. The 90% CIs of GM ratio of GB222 to bevacizumab for AUC0-t was within the pre-specified bioequivalence margin. The most common treatment-related adverse event was sinus bradycardia. Seventeen subjects (20.2%) tested positive for anti-drug antibodies (ADAs). CONCLUSION GB222 was found to be comparable to bevacizumab in terms of PKs, safety, and immunogenicity for Chinese healthy males. TRIAL REGISTRATION ChiCTR-IIR-17,011,143.
Collapse
Affiliation(s)
- Wenliang Dong
- Department of Pharmacy, Peking University People's Hospital, Beijing, China.,Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical, Peking University, Beijing, China
| | - Min Chen
- Department of Pharmacy, Peking University People's Hospital, Beijing, China.,Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical, Peking University, Beijing, China
| | - Suping Niu
- Department of Science and Research, Peking University People's Hospital, Beijing, China
| | - Bianzhen Wang
- Beijing United-Power Pharma Tech Co.,Ltd, Beijing, China
| | - Lin Xia
- Department of Pharmacy, Peking University People's Hospital, Beijing, China.,School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Jiaxue Wang
- Department of Pharmacy, Peking University People's Hospital, Beijing, China.,Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical, Peking University, Beijing, China
| | - Tiantian Shen
- Department of Pharmacy, Peking University People's Hospital, Beijing, China.,School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Qian Wang
- Department of Pharmacy, Peking University People's Hospital, Beijing, China
| | - Jie Lv
- Department of Intensive Care Units, Peking University People's Hospital, Beijing, China
| | - Gang Liu
- Department of Pharmacy, Peking University People's Hospital, Beijing, China
| | - Huaying Fan
- Department of Science and Research, Peking University People's Hospital, Beijing, China
| | - Zhenwei Xie
- Department of Science and Research, Peking University People's Hospital, Beijing, China
| | - Fan Xie
- Department of Clinical and Registration, Genor Biopharm Co., Ltd., Shanghai, China
| | - Youzhong An
- Department of Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Qingshan Zheng
- The Center for Drug Clinical Research of Shanghai University of TCM, Shanghai, China
| | - Huiying Rao
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Disease, Beijing, China
| | - Haifeng Song
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of LifeOmics, Beijing, China
| | - Yi Fang
- Department of Pharmacy, Peking University People's Hospital, Beijing, China
| |
Collapse
|
35
|
Shi J, Chen X, Diao J, Jiang L, Li L, Li S, Liang W, Jin X, Wang Y, Wong C, Zhang XT, Tse FLS. Bioanalysis in the Age of New Drug Modalities. AAPS JOURNAL 2021; 23:64. [PMID: 33942188 PMCID: PMC8093172 DOI: 10.1208/s12248-021-00594-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/09/2021] [Indexed: 12/14/2022]
Abstract
In the absence of regulatory guidelines for the bioanalysis of new drug modalities, many of which contain multiple functional domains, bioanalytical strategies have been carefully designed to characterize the intact drug and each functional domain in terms of quantity, functionality, biotransformation, and immunogenicity. The present review focuses on the bioanalytical challenges and considerations for RNA-based drugs, bispecific antibodies and multi-domain protein therapeutics, prodrugs, gene and cell therapies, and fusion proteins. Methods ranging from the conventional ligand binding assays and liquid chromatography-mass spectrometry assays to quantitative polymerase chain reaction or flow cytometry often used for oligonucleotides and cell and gene therapies are discussed. Best practices for method selection and validation are proposed as well as a future perspective to address the bioanalytical needs of complex modalities.
Collapse
Affiliation(s)
- Jing Shi
- Bioanalytical Services Department, WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao, Shanghai, 200131, China.
| | - Xuesong Chen
- Bioanalytical Services Department, WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao, Shanghai, 200131, China
| | - Jianbo Diao
- Bioanalytical Services Department, WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao, Shanghai, 200131, China
| | - Liying Jiang
- Bioanalytical Services Department, WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao, Shanghai, 200131, China
| | - Lan Li
- Bioanalytical Services Department, WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao, Shanghai, 200131, China
| | - Stephen Li
- Bioanalytical Services Department, WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao, Shanghai, 200131, China
| | - Wenzhong Liang
- Bioanalytical Services Department, WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao, Shanghai, 200131, China
| | - Xiaoying Jin
- Bioanalytical Services Department, WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao, Shanghai, 200131, China
| | - Yonghui Wang
- Bioanalytical Services Department, WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao, Shanghai, 200131, China
| | - Colton Wong
- Bioanalytical Services Department, WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao, Shanghai, 200131, China
| | - Xiaolong Tom Zhang
- Bioanalytical Services Department, WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao, Shanghai, 200131, China
| | - Francis L S Tse
- Bioanalytical Services Department, WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao, Shanghai, 200131, China
| |
Collapse
|
36
|
Monoclonal Antibody Monitoring: Clinically Relevant Aspects, A Systematic Critical Review. Ther Drug Monit 2021; 42:45-56. [PMID: 31365482 DOI: 10.1097/ftd.0000000000000681] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Monoclonal antibody (mAb) therapy does not usually lead to a clinical response in all patients and resistance may increase over time after repeated mAb administration. This lack or loss of response to the treatment may originate from different and little-known epigenetic, biomolecular, or pathophysiological mechanisms, although an inadequate serum concentration is perhaps the most likely cause, even if not widely recognized and investigated yet. Patient factors that influence the pharmacokinetics (PK) of a mAb should be taken into account. Multiple analyses of patient-derived PK data have identified various factors influencing the clearance of mAbs. These factors include the presence of antidrug antibodies, low serum albumin, high serum levels of C-reactive protein, high body weight, and gender differences among others. The same clearance processes involved in systemic clearance after intravenous administration are also involved in local first-pass catabolism after subcutaneous administration of mAbs. Therapeutic drug monitoring has been proposed as a way to understand and respond to the variability in clinical response and remission. For both classes of mAbs with anti-inflammatory and antitumor effects, dose-guided optimization based on the measurement of serum concentrations in individual patients could be the next step for a personalized and targeted mAb therapy.
Collapse
|
37
|
Increasing robustness, reliability and storage stability of critical reagents by freeze-drying. Bioanalysis 2021; 13:829-840. [PMID: 33890493 DOI: 10.4155/bio-2020-0299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Aim: Stabilization of critical reagents by freeze-drying would facilitate storage and transportation at ambient temperatures, and simultaneously enable constant reagent performance for long-term bioanalytical support throughout drug development. Freeze-drying as a generic process for stable performance and storage of critical reagents was investigated by establishing an universal formulation buffer and lyophilization process. Results: Using a storage-labile model protein, formulation buffers were evaluated to preserve reagent integrity during the freeze-drying process, and to retain functional performance after temperature stress. Application to critical reagents used in pharmacokinetics and anti-drug antibodies assays demonstrated stable functional performance of the reagents after 11 month at +40°C. Conclusion: Stabilization and storage of critical assay reagents by freeze-drying is an attractive alternative to traditional deep freezing.
Collapse
|
38
|
Pharmacokinetic-Pharmacodynamic Modelling of Systemic IL13 Blockade by Monoclonal Antibody Therapy: A Free Assay Disguised as Total. Pharmaceutics 2021; 13:pharmaceutics13040519. [PMID: 33918602 PMCID: PMC8069034 DOI: 10.3390/pharmaceutics13040519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 01/17/2023] Open
Abstract
A sequential pharmacokinetic (PK) and pharmacodynamic (PD) model was built with Nonlinear Mixed Effects Modelling based on data from a first-in-human trial of a novel biologic, MEDI7836. MEDI7836 is a human immunoglobulin G1 lambda (IgG1λ-YTE) monoclonal antibody, with an Fc modification to reduce metabolic clearance. MEDI7836 specifically binds to, and functionally neutralizes interleukin-13. Thirty-two healthy male adults were enrolled into a dose-escalation clinical trial. Four active doses were tested (30, 105, 300, and 600 mg) with 6 volunteers enrolled per cohort. Eight volunteers received placebo as control. Following single subcutaneous administration (SC), individual time courses of serum MEDI7836 concentrations, and the resulting serum IL13 modulation in vivo, were quantified. A binding pharmacokinetic-pharmacodynamic (PK-PD) indirect response model was built to characterize the exposure-driven modulation of the target over time by MEDI7836. While the validated bioanalytical assay specification quantified the level of free target (i.e., a free IL13 assay), emerging clinical data suggested dose-dependent increase in systemic IL13 concentration over time, indicative of a total IL13 assay. The target time course was modelled as a linear combination of free target and a percentage of the drug-target complex to fit the clinical data. This novel PK-PD modelling approach integrates independent knowledge about the assay characteristics to successfully elucidate apparently complex observations.
Collapse
|
39
|
Universal Automated Immunoaffinity Purification-CE-MS Platform for Accelerating Next Generation Biologic Design. Anal Chem 2021; 93:5562-5569. [PMID: 33764735 DOI: 10.1021/acs.analchem.1c00149] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
As the pharmaceutical industry places greater emphasis on pairing biological pathways with appropriate therapeutic intervention, an increase in the use of biologic drugs has emerged. With increasing complexity of biotherapeutics, absorption, distribution, metabolism, and excretion (ADME) studies have also become increasingly complex. The characterization of ADME properties is critical to tuning the pharmacokinetic profiles of next generation biologics (NGBs). The knowledge of the fate of a drug is essential for the enhancement of the design processes, elongation of exposure at the desired site of action, and achieving efficacy with minimum toxicity. In vivo proteolytic cleavage of biotherapeutics may lead to undesirable in vivo properties, such as rapid clearance, low bioavailability, and loss of pharmacodynamic effect. All of these may affect drug efficacy and/or generate safety concerns through increases in immunogenicity or off-target toxicity. The work herein describes the development of a robust, fully automated immunoaffinity purification (IA)-capillary electrophoresis-mass spectrometry (CE-MS) workflow. The reagents were carefully optimized to maximize isolation yields while minimizing the number of experimental steps to analytical results. The result is the development of a comprehensive integrated platform for the characterization of a wide range of biotherapeutics, including peptibodies, monoclonal antibodies, and bispecific antibodies. Empowered by this automated IA-CE-MS approach, implementing biotransformation studies at an early drug discovery stage can speed up the drug development process.
Collapse
|
40
|
Harth S, Frisch C. Recombinant Anti-idiotypic Antibodies in Ligand Binding Assays for Antibody Drug Development. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2261:291-306. [PMID: 33420997 DOI: 10.1007/978-1-0716-1186-9_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Sensitive and reproducible pharmacokinetic (PK) assays and immunogenicity assessment are required as part of the complex and lengthy development process for biotherapeutic proteins. Ligand binding assays (LBAs) are included in a range of approaches applied to understand the nature and properties of the drug as well as the induction of anti-drug antibodies (ADA) against the therapeutic, which can cause adverse events and loss of efficacy. Currently, most biotherapeutics are monoclonal human or humanized antibodies. Anti-idiotypic antibodies, targeting the idiotopic determinants of individual antibody drugs are recognized as perfect reagents for such LBAs. Here we describe the typical setups for these assays and how different types of anti-biotherapeutic antibodies can be used to establish selective and sensitive assays.
Collapse
|
41
|
Development of a Meso Scale Discovery ligand-binding assay for measurement of free (drug-unbound) target in nonhuman primate serum. Bioanalysis 2021; 13:575-585. [PMID: 33749335 DOI: 10.4155/bio-2020-0307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Aim: To quantify the free form of a protein as a target-engagement biomarker in nonhuman primate serum, a Meso Scale Discovery ligand-binding assay was developed and qualified. Results: The initial assay produced an unexpected artifact when used to measure the free target in study samples dosed with drug. By using incurred study samples dosed with high drug levels to test assay performance, we developed an alternative assay that does not suffer from drug interference. Conclusion: Our work demonstrated that an assay designed to measure free target may not necessarily deliver reliable quantitation. In our case, incurred study samples dosed with drug proved to be useful in developing an alternative free assay that does not suffer from drug interference.
Collapse
|
42
|
Quantification of surrogate monoclonal antibodies in mouse serum using LC-MS/MS. Bioanalysis 2021; 13:147-159. [PMID: 33543654 DOI: 10.4155/bio-2020-0297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: Surrogate monoclonal antibodies (mAbs) used in preclinical in vivo studies can be challenging to quantify due to lack of suitable immunoaffinity reagents or unavailability of the mAb protein sequence. Generic immunoaffinity reagents were evaluated to develop sensitive LC-MS/MS assays. Peptides of unknown sequence can be used for selective LC-MS quantification. Results: anti-mouse IgG1 was found to be an effective immunoaffinity reagent, enabling quantification of mouse IgG1 mAbs in mouse serum. Selective peptides of unknown sequence were applied for multiplex LC-MS quantification of two rat mAbs co-dosed in mouse. Conclusion: Generic anti-mouse IgG subtype-specific antibodies can be used to improve assay sensitivity and peptides of unknown sequence can be used to quantify surrogate mAbs when the mAb protein sequence in unavailable.
Collapse
|
43
|
Watanabe H, Shibuya M, Shibahara N, Ruike Y, Sampei Z, Haraya K, Tachibana T, Wakabayashi T, Sakamoto A, Tsunoda H, Murao N. A Novel Total Drug Assay for Quantification of Anti-C5 Therapeutic Monoclonal Antibody in the Presence of Abundant Target. AAPS JOURNAL 2021; 23:21. [PMID: 33415498 DOI: 10.1208/s12248-020-00539-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 11/24/2020] [Indexed: 11/30/2022]
Abstract
SKY59 or RO7112689 is a humanized monoclonal antibody against complement protein C5 with pH-dependent C5-binding and neonatal Fc receptor-mediated recycling capabilities, which result in long-lasting neutralization of C5. We developed and validated a novel total drug assay for quantification of target-binding competent SKY59 in the presence of endogenous C5 in cynomolgus monkey plasma. The target-binding competent SKY59 was determined after complex formation by the addition of recombinant monkey C5 using goat anti-human IgG-heavy chain monkey-adsorbed polyclonal antibody as a capture antibody and rabbit anti-C5 monoclonal antibody (mAb) non-competing with SKY59 for detection. The total SKY59 assay was shown to be accurate and precise over the range of 0.05-3.2 μg/mL as well as be tolerant to more than 400 μg/mL of C5 (~ 3000-fold molar excess of target). We also developed and validated a total C5 assay, confirmed selectivity and parallelism, and verified the utility of recombinant monkey C5 for the total C5 assay as well as the total SKY59 assay. Furthermore, we used these validated methods to measure SKY59 and C5 concentrations in cynomolgus monkey plasma samples in a toxicology study. This total drug assay can be applied not only to other antibody therapeutics against shed/soluble targets when a non-competing reagent mAb is available but also for clinical studies when a reagent mAb specific for engineered Fc region on a therapeutic mAb is available.
Collapse
Affiliation(s)
- Hiroo Watanabe
- Research Division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka, 412-8513, Japan.
| | - Mitsuko Shibuya
- Research Division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka, 412-8513, Japan
| | - Norihito Shibahara
- Research Division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka, 412-8513, Japan
| | - Yoshinao Ruike
- Research Division, Chugai Pharmaceutical Co., Ltd., 200 Kajiwara, Kamakura, Kanagawa, 247-8530, Japan
| | - Zenjiro Sampei
- Research Division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka, 412-8513, Japan
| | - Kenta Haraya
- Research Division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka, 412-8513, Japan
| | - Tatsuhiko Tachibana
- Research Division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka, 412-8513, Japan
| | - Tetsuya Wakabayashi
- Research Division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka, 412-8513, Japan
| | - Akihisa Sakamoto
- Research Division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka, 412-8513, Japan
| | - Hiroyuki Tsunoda
- Research Division, Chugai Pharmaceutical Co., Ltd., 200 Kajiwara, Kamakura, Kanagawa, 247-8530, Japan
| | - Naoaki Murao
- Research Division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka, 412-8513, Japan
| |
Collapse
|
44
|
Kissner T, Blaich G, Baumann A, Kronenberg S, Hey A, Kiessling A, Schmitt PM, Driessen W, Carrez C, Kramer D, Fretland J, Richter WF, Paehler T, Hopfer U, Rattel B. Challenges of non-clinical safety testing for biologics: A Report of the 9th BioSafe European Annual General Membership Meeting. MAbs 2021; 13:1938796. [PMID: 34241561 PMCID: PMC8274438 DOI: 10.1080/19420862.2021.1938796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 10/26/2022] Open
Abstract
New challenges and other topics in non-clinical safety testing of biotherapeutics were presented and discussed at the nineth European BioSafe Annual General Membership meeting in November 2019. The session topics were selected by European BioSafe organization committee members based on recent company achievements, agency interactions and new data obtained in the non-clinical safety testing of biotherapeutics, for which data sharing would be of interest and considered as valuable information. The presented session topics ranged from strategies of in vitro testing, immunogenicity prediction, bioimaging, and developmental and reproductive toxicology (DART) assessments to first-in-human (FIH) dose prediction and bioanalytical challenges, reflecting the entire space of different areas of expertise and different molecular modalities. During the 9th meeting of the European BioSafe members, the following topics were presented and discussed in 6 main sessions (with 3 or 4 presentations per session) and in three small group breakout sessions: 1) DART assessment with biotherapeutics: what did we learn and where to go?; 2) Non-animal testing strategies; 3) Seeing is believing: new frontiers in imaging; 4) Predicting immunogenicity during early drug development: hope or despair?; 5) Challenges in FIH dose projections; and 6) Non-canonical biologics formats: challenges in bioanalytics, PKPD and biotransformation for complex biologics formats. Small group breakout sessions were organized for team discussion about 3 specific topics: 1) Testing of cellular immune function in vitro and in vivo; 2) MABEL approach (toxicology and pharmacokinetic perspective); and 3) mRNA treatments. This workshop report presents the sessions and discussions at the meeting.
Collapse
Affiliation(s)
- Thomas Kissner
- Preclinical Safety, Sanofi-Aventis Deutschland GmbH, Frankfurt, Germany
| | - Guenter Blaich
- Preclinical Safety, AbbVie Deutschland GmbH, Ludwigshafen, Germany
| | - Andreas Baumann
- R&D Pharmaceuticals, Translational Sciences, Bayer AG, Berlin, Germany
| | - Sven Kronenberg
- Pharmaceutical Sciences, Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Adam Hey
- Oncology Safety, Clinical Pharmacology and Safety Sciences, AstraZeneca, Cambridge, UK
| | | | - Petra M. Schmitt
- Preclinical Safety, AbbVie Deutschland GmbH, Ludwigshafen, Germany
| | - Wouter Driessen
- Pharmaceutical Sciences, Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Chantal Carrez
- Sanofi R&D, Translational In Vivo Models, Sanofi S.A, Vitry-sur-Seine, France
| | - Daniel Kramer
- Sanofi R&D, Translational Medicine & Early Development, Sanofi-Aventis Deutschland GmbH, Frankfurt, Germany
| | | | - Wolfgang F. Richter
- Pharmaceutical Sciences, Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Tobias Paehler
- Drug Metabolism and Pharmacokinetics, Sanofi-Aventis Deutschland GmbH, Frankfurt, Germany
| | - Ulrike Hopfer
- Pharmaceutical Sciences, Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Benno Rattel
- Translational Safety & Bioanalytical Sciences, Amgen Research (Munich) GmbH, Munich, Germany
| |
Collapse
|
45
|
Kawakatsu S, Bruno R, Kågedal M, Li C, Girish S, Joshi A, Wu B. Confounding factors in exposure-response analyses and mitigation strategies for monoclonal antibodies in oncology. Br J Clin Pharmacol 2020; 87:2493-2501. [PMID: 33217012 DOI: 10.1111/bcp.14662] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/03/2020] [Accepted: 11/08/2020] [Indexed: 12/29/2022] Open
Abstract
Dose selection and optimization is an important topic in drug development to maximize treatment benefits for all patients. While exposure-response (E-R) analysis is a useful method to inform dose-selection strategy, in oncology, special considerations for prognostic factors are needed due to their potential to confound the E-R analysis for monoclonal antibodies. The current review focuses on 3 different approaches to mitigate the confounding effects for monoclonal antibodies in oncology: (i) Cox-proportional hazards modelling and case-matching; (ii) tumour growth inhibition-overall survival modelling; and (iii) multiple dose level study design. In the presence of confounding effects, studying multiple dose levels may be required to reveal the true E-R relationship. However, it is impractical for pivotal trials in oncology drug development programmes. Therefore, the strengths and weaknesses of the other 2 approaches are considered, and the favourable utility of tumour growth inhibition-overall survival modelling to address confounding in E-R analyses is described. In the broader scope of oncology drug development, this review discusses the downfall of the current emphasis on E-R analyses using data from single dose level trials and proposes that development programmes be designed to study more dose levels in earlier trials.
Collapse
Affiliation(s)
- Sonoko Kawakatsu
- Clinical Pharmacology, Development Sciences, gRED, Genentech/Roche, South San Francisco, CA, USA.,Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA, USA
| | - René Bruno
- Clinical Pharmacology, Development Sciences, gRED, Genentech/Roche, South San Francisco, CA, USA
| | - Matts Kågedal
- Clinical Pharmacology, Development Sciences, gRED, Genentech/Roche, South San Francisco, CA, USA
| | - Chunze Li
- Clinical Pharmacology, Development Sciences, gRED, Genentech/Roche, South San Francisco, CA, USA
| | - Sandhya Girish
- Clinical Pharmacology, Development Sciences, gRED, Genentech/Roche, South San Francisco, CA, USA
| | - Amita Joshi
- Clinical Pharmacology, Development Sciences, gRED, Genentech/Roche, South San Francisco, CA, USA
| | - Benjamin Wu
- Clinical Pharmacology, Development Sciences, gRED, Genentech/Roche, South San Francisco, CA, USA
| |
Collapse
|
46
|
Stauffer A, Ray C, Hall M. A Flexible Multiplatform Bioanalytical Strategy for Measurement of Total Circulating Shed Target Receptors: Application to Soluble B Cell Maturation Antigen Levels in the Presence of a Bispecific Antibody Drug. Assay Drug Dev Technol 2020; 19:17-26. [PMID: 33232610 DOI: 10.1089/adt.2020.1024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
B cell maturation antigen (BCMA) is a membrane-bound receptor that is overexpressed on multiple myeloma cells and can be targeted with biotherapeutics. Soluble shed forms of membrane-associated receptors in circulation can act as a drug sink, especially when it is present in high molar ratio compared to drug concentration, potentially derailing the intended pharmacological mechanism and impacting pharmacokinetic (PK) measurements and efficacious dose predictions. In this study, we present a bioanalytical strategy for assessing dynamic levels of total soluble BCMA before and during treatment with a bispecific antibody targeting BCMA and CD3. Implementation of a ligand binding assay was not successful due to extensive bispecific antibody interference. Instead, we explored two types of immunoaffinity (IA) liquid chromatography-tandem mass spectrometry (LC-MS/MS) assays, one at the protein level and one at the surrogate peptide level. Ultimately, the protein-level IA-LC-MS/MS method was optimized for use in a cynomolgus monkey PK/pharmacodynamic study. In addition, we demonstrated that the method was easily adapted for use with human samples in preparation for translation to the clinic. This work demonstrates the benefit of flexibility and agility in bioanalytical method development in early drug development. Multiplatform suitability assessments enable rapid, resource-sparing identification and qualification of clinically translatable assays. We recommend early adoption of this strategy to provide enough time for critical reagent development and assay validation for analysis of shed targets.
Collapse
Affiliation(s)
- Angela Stauffer
- Biomedicine Design, Pfizer Worldwide Research, Development, and Medical, San Diego, California, USA
| | - Chad Ray
- Zoetis Incorporated, Fort Collins, Colorado, USA
| | - Michael Hall
- Biomedicine Design, Pfizer Worldwide Research, Development, and Medical, San Diego, California, USA
| |
Collapse
|
47
|
Carter QL, Siegel RW, Qian Y, Konrad RJ. Application of a novel drug-tolerant target assay for measuring target engagement when only one epitope remains after therapeutic antibodies bind their targets. J Immunol Methods 2020; 489:112916. [PMID: 33242494 DOI: 10.1016/j.jim.2020.112916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/13/2020] [Accepted: 11/13/2020] [Indexed: 11/17/2022]
Abstract
The measurement of proteins with a limited number of available non-overlapping epitopes recognizable by antibodies represents a common challenge for the development of drug-tolerant clinical biomarker assays. For target proteins with two dominant epitopes, only one epitope remains when the other is occupied by the therapeutic antibody. Alternative strategies for overcoming this obstacle have been described in the literature; however, these methods have potential limitations. We have developed a novel method for measuring target engagement when only one epitope remains after therapeutic antibodies bind their analytes. The method combines Affinity Capture Elution (ACE) followed by simultaneous capture and detection of the protein of interest. This novel method has been named ACE-Sandwich. The application of this method is not dependent on the immunoglobulin G subclass of the therapeutic antibody, nor does this method require sample pretreatment. Furthermore, the ACE-Sandwich method is highly sensitive, reproducible, and tolerant to high concentrations of therapeutic antibody.
Collapse
Affiliation(s)
- Quincy L Carter
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA.
| | - Robert W Siegel
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Yuewei Qian
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Robert J Konrad
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| |
Collapse
|
48
|
An B, Zhang M, Pu J, Qu Y, Shen S, Zhou S, Ferrari L, Vazvaei F, Qu J. Toward Accurate and Robust Liquid Chromatography–Mass Spectrometry-Based Quantification of Antibody Biotherapeutics in Tissues. Anal Chem 2020; 92:15152-15161. [DOI: 10.1021/acs.analchem.0c03620] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Bo An
- The Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214, United States
- New York State Center of Excellence in Bioinformatics and Life Science, Buffalo, New York 14203, United States
- Protein MS, In-vitro/In-vivo Translation, GlaxoSmithKline Pharmaceuticals, Collegeville, Pennsylvania 19426, United States
| | - Ming Zhang
- The Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214, United States
- New York State Center of Excellence in Bioinformatics and Life Science, Buffalo, New York 14203, United States
| | - Jie Pu
- The Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214, United States
- New York State Center of Excellence in Bioinformatics and Life Science, Buffalo, New York 14203, United States
| | - Yang Qu
- The Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214, United States
- New York State Center of Excellence in Bioinformatics and Life Science, Buffalo, New York 14203, United States
| | - Shichen Shen
- The Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214, United States
- New York State Center of Excellence in Bioinformatics and Life Science, Buffalo, New York 14203, United States
| | - Shaolian Zhou
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel CH-4070, Switzerland
| | - Luca Ferrari
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel CH-4070, Switzerland
| | - Faye Vazvaei
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center New York, Buffalo, New York 10016, United States
| | - Jun Qu
- The Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214, United States
- New York State Center of Excellence in Bioinformatics and Life Science, Buffalo, New York 14203, United States
| |
Collapse
|
49
|
Zhu L, Glick J, Flarakos J. Bioanalytical Challenges in Support of Complex Modalities of Antibody-Based Therapeutics. AAPS JOURNAL 2020; 22:130. [PMID: 33037499 DOI: 10.1208/s12248-020-00517-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/28/2020] [Indexed: 01/23/2023]
Abstract
Antibody-based therapeutic classes are evolving from monoclonal antibodies to antibody derivatives with complex structures to achieve advanced therapeutic effect. These antibody derivatives may contain multiple functional domains and are often vulnerable to in vivo biotransformation. Understanding the pharmacokinetics of these antibody derivatives requires a sophisticated bioanalytical approach to carefully characterize the whole drug and each functional domain with respect to quantity, functionality enabled by biotransformation, and corresponding immune responses. Ligand binding assays and liquid chromatography-mass spectrometry assays are predominantly used in bioanalytical support of monoclonal antibodies and are continuously used for antibody derivatives such as antibody drug conjugate and bispecific antibodies. However, they become increasingly cumbersome in coping with increased complexity of drug modality and associated biotransformation. In this mini-review, we examined the current pharmacokinetic assays in the literature for antibody drug conjugate and bispecific antibodies, and presented our view of promising bioanalytical technologies to address the distinct bioanalytical needs of complex modalities.
Collapse
Affiliation(s)
- Liang Zhu
- PK Sciences, Novartis Institute for Biomedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts, 02139, USA.
| | - Jim Glick
- PK Sciences, Novartis Institute for Biomedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts, 02139, USA
| | - Jimmy Flarakos
- PK Sciences, Novartis Institute for Biomedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts, 02139, USA
| |
Collapse
|
50
|
Intact mAb LC–MS for drug concentration from pre-clinical studies: bioanalytical method performance and in-life samples. Bioanalysis 2020; 12:1389-1403. [DOI: 10.4155/bio-2020-0168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background: Antibody biotherapeutic measurement from pharmacokinetic studies has not been traditionally based on intact molecular mass as is the case for small molecules. However, recent advancements in protein capture and mass spectrometer technology have enabled intact mass detection and quantitation for dosed biotherapeutics. A bioanalytical method validation is part of the regulatory requirement for sample analysis to determine drug concentration from in-life study samples. Results/methodology: Here, an intact protein LC–MS assay is subjected to mock bioanalytical method validation, and unknown samples are compared between intact protein LC–MS and established bioanalytical assay formats: Ligand-binding assay and peptide LC–MS/MS. Discussion/conclusion: Results are presented from the intact and traditional bioanalytical method evaluations, where the in-life sample concentrations were comparable across method types with associated data analyses presented. Furthermore, for intact protein LC–MS, modification monitoring and evaluation of data processing parameters is demonstrated.
Collapse
|