1
|
Laganà A, Visalli G, Di Pietro A, Facciolà A. Vaccinomics and adversomics: key elements for a personalized vaccinology. Clin Exp Vaccine Res 2024; 13:105-120. [PMID: 38752004 PMCID: PMC11091437 DOI: 10.7774/cevr.2024.13.2.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/07/2024] [Accepted: 03/12/2024] [Indexed: 05/18/2024] Open
Abstract
Vaccines are one of the most important and effective tools in the prevention of infectious diseases and research about all the aspects of vaccinology are essential to increase the number of available vaccines more and more safe and effective. Despite the unquestionable value of vaccinations, vaccine hesitancy has spread worldwide compromising the success of vaccinations. Currently, the main purpose of vaccination campaigns is the immunization of whole populations with the same vaccine formulations and schedules for all individuals. A personalized vaccinology approach could improve modern vaccinology counteracting vaccine hesitancy and giving great benefits for human health. This ambitious purpose would be possible by facing and deepening the areas of vaccinomics and adversomics, two innovative areas of study investigating the role of a series of variables able to influence the immune response to vaccinations and the development of serious side effects, respectively. We reviewed the recent scientific knowledge about these innovative sciences focusing on genetic and non-genetic basis involved in the individual response to vaccines in terms of both immune response and side effects.
Collapse
Affiliation(s)
- Antonio Laganà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
- Istituto Clinico Polispecialistico C.O.T., Cure Ortopediche Traumatologiche S.P.A., Messina, Italy
| | - Giuseppa Visalli
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Angela Di Pietro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Alessio Facciolà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| |
Collapse
|
2
|
Frazer SA, Baghbanzadeh M, Rahnavard A, Crandall KA, Oakley TH. Discovering genotype-phenotype relationships with machine learning and the Visual Physiology Opsin Database (VPOD). Gigascience 2024; 13:giae073. [PMID: 39460934 PMCID: PMC11512451 DOI: 10.1093/gigascience/giae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/25/2024] [Accepted: 09/01/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Predicting phenotypes from genetic variation is foundational for fields as diverse as bioengineering and global change biology, highlighting the importance of efficient methods to predict gene functions. Linking genetic changes to phenotypic changes has been a goal of decades of experimental work, especially for some model gene families, including light-sensitive opsin proteins. Opsins can be expressed in vitro to measure light absorption parameters, including λmax-the wavelength of maximum absorbance-which strongly affects organismal phenotypes like color vision. Despite extensive research on opsins, the data remain dispersed, uncompiled, and often challenging to access, thereby precluding systematic and comprehensive analyses of the intricate relationships between genotype and phenotype. RESULTS Here, we report a newly compiled database of all heterologously expressed opsin genes with λmax phenotypes that we call the Visual Physiology Opsin Database (VPOD). VPOD_1.0 contains 864 unique opsin genotypes and corresponding λmax phenotypes collected across all animals from 73 separate publications. We use VPOD data and deepBreaks to show regression-based machine learning (ML) models often reliably predict λmax, account for nonadditive effects of mutations on function, and identify functionally critical amino acid sites. CONCLUSION The ability to reliably predict functions from gene sequences alone using ML will allow robust exploration of molecular-evolutionary patterns governing phenotype, will inform functional and evolutionary connections to an organism's ecological niche, and may be used more broadly for de novo protein design. Together, our database, phenotype predictions, and model comparisons lay the groundwork for future research applicable to families of genes with quantifiable and comparable phenotypes.
Collapse
Affiliation(s)
- Seth A Frazer
- Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, California 93106, USA
| | - Mahdi Baghbanzadeh
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC 20052, USA
| | - Ali Rahnavard
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC 20052, USA
| | - Keith A Crandall
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC 20052, USA
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20012, USA
| | - Todd H Oakley
- Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
3
|
de la Fuente J, Contreras M. Quantum vaccinomics platforms to advance in vaccinology. Front Immunol 2023; 14:1172734. [PMID: 37398646 PMCID: PMC10307952 DOI: 10.3389/fimmu.2023.1172734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
The opinion flows from Introduction to the immunological quantum that requires a historical perspective, to Quantum vaccine algorithms supported by a bibliometric analysis, to Quantum vaccinomics describing from our perspective the different vaccinomics and quantum vaccinomics algorithms. Finally, in the Discussion and conclusions we propose novel platforms and algorithms developed to further advance on quantum vaccinomics. In the paper we refer to protective epitopes or immunological quantum for the design of candidate vaccine antigens, which may elicit a protective response through both cellular and antibody mediated mechanisms of the host immune system. Vaccines are key interventions for the prevention and control of infectious diseases affecting humans and animals worldwide. Biophysics led to quantum biology and quantum immunology reflecting quantum dynamics within living systems and their evolution. In analogy to quantum of light, immune protective epitopes were proposed as the immunological quantum. Multiple quantum vaccine algorithms were developed based on omics and other technologies. Quantum vaccinomics is the methodological approach with different platforms used for the identification and combination of immunological quantum for vaccine development. Current quantum vaccinomics platforms include in vitro, in music and in silico algorithms and top trends in biotechnology for the identification, characterization and combination of candidate protective epitopes. These platforms have been applied to different infectious diseases and in the future should target prevalent and emerging infectious diseases with novel algorithms.
Collapse
Affiliation(s)
- José de la Fuente
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Marinela Contreras
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain
| |
Collapse
|
4
|
Dudley MZ, Gerber JE, Budigan Ni H, Blunt M, Holroyd TA, Carleton BC, Poland GA, Salmon DA. Vaccinomics: A scoping review. Vaccine 2023; 41:2357-2367. [PMID: 36803903 PMCID: PMC10065969 DOI: 10.1016/j.vaccine.2023.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 12/24/2022] [Accepted: 02/03/2023] [Indexed: 02/21/2023]
Abstract
BACKGROUND This scoping review summarizes a key aspect of vaccinomics by collating known associations between heterogeneity in human genetics and vaccine immunogenicity and safety. METHODS We searched PubMed for articles in English using terms covering vaccines routinely recommended to the general US population, their effects, and genetics/genomics. Included studies were controlled and demonstrated statistically significant associations with vaccine immunogenicity or safety. Studies of Pandemrix®, an influenza vaccine previously used in Europe, were also included, due to its widely publicized genetically mediated association with narcolepsy. FINDINGS Of the 2,300 articles manually screened, 214 were included for data extraction. Six included articles examined genetic influences on vaccine safety; the rest examined vaccine immunogenicity. Hepatitis B vaccine immunogenicity was reported in 92 articles and associated with 277 genetic determinants across 117 genes. Thirty-three articles identified 291 genetic determinants across 118 genes associated with measles vaccine immunogenicity, 22 articles identified 311 genetic determinants across 110 genes associated with rubella vaccine immunogenicity, and 25 articles identified 48 genetic determinants across 34 genes associated with influenza vaccine immunogenicity. Other vaccines had fewer than 10 studies each identifying genetic determinants of their immunogenicity. Genetic associations were reported with 4 adverse events following influenza vaccination (narcolepsy, GBS, GCA/PMR, high temperature) and 2 adverse events following measles vaccination (fever, febrile seizure). CONCLUSION This scoping review identified numerous genetic associations with vaccine immunogenicity and several genetic associations with vaccine safety. Most associations were only reported in one study. This illustrates both the potential of and need for investment in vaccinomics. Current research in this field is focused on systems and genetic-based studies designed to identify risk signatures for serious vaccine reactions or diminished vaccine immunogenicity. Such research could bolster our ability to develop safer and more effective vaccines.
Collapse
Affiliation(s)
- Matthew Z Dudley
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA; Institute for Vaccine Safety, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Jennifer E Gerber
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA; Survey Research Division, RTI International, Washington, DC, USA
| | - Haley Budigan Ni
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA; Office of Health Equity, California Department of Public Health, Richmond, CA, USA
| | - Madeleine Blunt
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Taylor A Holroyd
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA; International Vaccine Access Center, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Bruce C Carleton
- Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada; Pharmaceutical Outcomes Programme, BC Children's Hospital, Vancouver, BC, Canada; BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Gregory A Poland
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN, USA; Mayo Vaccine Research Group, Mayo Clinic, Rochester, MN, USA
| | - Daniel A Salmon
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA; Institute for Vaccine Safety, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA; Department of Health, Behavior & Society, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
5
|
Li A, Hu Y, Li J, Chen X, Jiang Y, Xie C. Case report: Anti-GAD65 antibody-associated autoimmune encephalitis following HPV vaccination. Front Neurol 2022; 13:1017086. [PMID: 36277911 PMCID: PMC9579373 DOI: 10.3389/fneur.2022.1017086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/15/2022] [Indexed: 12/04/2022] Open
Abstract
Human papillomavirus (HPV) infection is a sexually transmitted disease that may lead to cervical cancer. HPV vaccines have been implemented widely to prevent this. While generally few complications of vaccination are reported, there have been occasional reports of adverse reactions post-vaccination. The safety profile of the HPV vaccine is reassuring. However, since its introduction, several serious post-vaccination central nervous system complications have been reported; however, causality has not been established. Herein, we describe a 39-year-old woman who developed seizures and experienced a rapid decline in memory shortly after her first dose of the HPV vaccine. Cranial magnetic resonance imaging and cerebrospinal fluid analysis were performed, and the patient was diagnosed with anti-glutamic acid decarboxylase 65 (anti-GAD65) antibody-associated autoimmune encephalitis. She responded well to high-dose glucocorticoids. Four-month follow-up revealed full recovery and absence of recurrence. Since the HPV vaccine is administered worldwide, this case should raise clinicians' awareness regarding the possible CNS complications related to vaccinations, such as anti-GAD65 antibody-associated AE.
Collapse
|
6
|
Brooks BD, Beland A, Aguero G, Taylor N, Towne FD. Moving beyond Titers. Vaccines (Basel) 2022; 10:vaccines10050683. [PMID: 35632439 PMCID: PMC9144832 DOI: 10.3390/vaccines10050683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 01/27/2023] Open
Abstract
Vaccination to prevent and even eliminate disease is amongst the greatest achievements of modern medicine. Opportunities remain in vaccine development to improve protection across the whole population. A next step in vaccine development is the detailed molecular characterization of individual humoral immune responses against a pathogen, especially the rapidly evolving pathogens. New technologies such as sequencing the immune repertoire in response to disease, immunogenomics/vaccinomics, particularly the individual HLA variants, and high-throughput epitope characterization offer new insights into disease protection. Here, we highlight the emerging technologies that could be used to identify variation within the human population, facilitate vaccine discovery, improve vaccine safety and efficacy, and identify mechanisms of generating immunological memory. In today’s vaccine-hesitant climate, these techniques used individually or especially together have the potential to improve vaccine effectiveness and safety and thus vaccine uptake rates. We highlight the importance of using these techniques in combination to understand the humoral immune response as a whole after vaccination to move beyond neutralizing titers as the standard for immunogenicity and vaccine efficacy, especially in clinical trials.
Collapse
Affiliation(s)
- Benjamin D. Brooks
- Department of Biomedical Sciences, Rocky Vista University, Ivins, UT 84738, USA
- Inovan Inc., Fargo, ND 58103, USA
- Correspondence: ; Tel.: +1-(435)-222-1304
| | - Alexander Beland
- College of Osteopathic Medicine, Rocky Vista University, Parker, CO 80112, USA; (A.B.); (G.A.); (N.T.); (F.D.T.)
| | - Gabriel Aguero
- College of Osteopathic Medicine, Rocky Vista University, Parker, CO 80112, USA; (A.B.); (G.A.); (N.T.); (F.D.T.)
| | - Nicholas Taylor
- College of Osteopathic Medicine, Rocky Vista University, Parker, CO 80112, USA; (A.B.); (G.A.); (N.T.); (F.D.T.)
| | - Francina D. Towne
- College of Osteopathic Medicine, Rocky Vista University, Parker, CO 80112, USA; (A.B.); (G.A.); (N.T.); (F.D.T.)
| |
Collapse
|
7
|
Tshabalala M, Mellet J, Vather K, Nelson D, Mohamed F, Christoffels A, Pepper MS. High Resolution HLA ∼A, ∼B, ∼C, ∼DRB1, ∼DQA1, and ∼DQB1 Diversity in South African Populations. Front Genet 2022; 13:711944. [PMID: 35309124 PMCID: PMC8931603 DOI: 10.3389/fgene.2022.711944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 01/17/2022] [Indexed: 01/10/2023] Open
Abstract
Background: Lack of HLA data in southern African populations hampers disease association studies and our understanding of genetic diversity in these populations. We aimed to determine HLA diversity in South African populations using high resolution HLA ∼A, ∼B, ∼C, ∼DRB1, ∼DQA1 and ∼DQB1 data, from 3005 previously typed individuals. Methods: We determined allele and haplotype frequencies, deviations from Hardy-Weinberg equilibrium (HWE), linkage disequilibrium (LD) and neutrality test. South African HLA class I data was additionally compared to other global populations using non-metrical multidimensional scaling (NMDS), genetic distances and principal component analysis (PCA). Results: All loci strongly (p < 0.0001) deviated from HWE, coupled with excessive heterozygosity in most loci. Two of the three most frequent alleles, HLA ∼DQA1*05:02 (0.2584) and HLA ∼C*17:01 (0.1488) were previously reported in South African populations at lower frequencies. NMDS showed genetic distinctness of South African populations. Phylogenetic analysis and PCA clustered our current dataset with previous South African studies. Additionally, South Africans seem to be related to other sub-Saharan populations using HLA class I allele frequencies. Discussion and Conclusion: Despite the retrospective nature of the study, data missingness, the imbalance of sample sizes for each locus and haplotype pairs, and induced methodological difficulties, this study provides a unique and large HLA dataset of South Africans, which might be a useful resource to support anthropological studies, disease association studies, population based vaccine development and donor recruitment programs. We additionally provide simulated high resolution HLA class I data to augment the mixed resolution typing results generated from this study.
Collapse
Affiliation(s)
- Mqondisi Tshabalala
- Department of Immunology, Institute for Cellular and Molecular Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- South African Medical Research Council (SAMRC) Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Juanita Mellet
- Department of Immunology, Institute for Cellular and Molecular Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- South African Medical Research Council (SAMRC) Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Kuben Vather
- South African National Blood Service (SANBS), Roodepoort, South Africa
| | - Derrick Nelson
- South African National Blood Service (SANBS), Roodepoort, South Africa
| | - Fathima Mohamed
- South African National Blood Service (SANBS), Roodepoort, South Africa
| | - Alan Christoffels
- SAMRC Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Bellville, South Africa
| | - Michael S. Pepper
- Department of Immunology, Institute for Cellular and Molecular Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- South African Medical Research Council (SAMRC) Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- *Correspondence: Michael S. Pepper,
| |
Collapse
|
8
|
de la Fuente J, Contreras M. Vaccinomics: a future avenue for vaccine development against emerging pathogens. Expert Rev Vaccines 2021; 20:1561-1569. [PMID: 34582295 DOI: 10.1080/14760584.2021.1987222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Vaccines are a major achievement in medical sciences, but the development of more effective vaccines against infectious diseases is essential for prevention and control of emerging pathogens worldwide. The application of omics technologies has advanced vaccinology through the characterization of host-vector-pathogen molecular interactions and the identification of candidate protective antigens. However, major challenges such as host immunity, pathogen and environmental factors, vaccine efficacy and safety need to be addressed. Vaccinomics provides a platform to address these challenges and improve vaccine efficacy and safety. AREAS COVERED In this review, we summarize current information on vaccinomics and propose quantum vaccinomics approaches to further advance vaccine development through the identification and combination of antigen protective epitopes, the immunological quantum. The COVID-19 pandemic caused by SARS-CoV-2 is an example of emerging infectious diseases with global impact on human health. EXPERT OPINION Vaccines are required for the effective and environmentally sustainable intervention for the control of emerging infectious diseases worldwide. Recent advances in vaccinomics provide a platform to address challenges in improving vaccine efficacy and implementation. As proposed here, quantum vaccinomics will contribute to vaccine development, efficacy, and safety by facilitating antigen combinations to target pathogen infection and transmission in emerging infectious diseases.
Collapse
Affiliation(s)
- José de la Fuente
- SaBio, Instituto De Investigación En Recursos Cinegéticos Irec-csic-uclm-jccm, Ciudad Real, Spain.,Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Marinela Contreras
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, Espinardo, Spain
| |
Collapse
|
9
|
Omersel J, Karas Kuželički N. Vaccinomics and Adversomics in the Era of Precision Medicine: A Review Based on HBV, MMR, HPV, and COVID-19 Vaccines. J Clin Med 2020; 9:E3561. [PMID: 33167413 PMCID: PMC7694388 DOI: 10.3390/jcm9113561] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/31/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023] Open
Abstract
Precision medicine approaches based on pharmacogenomics are now being successfully implemented to enable physicians to predict more efficient treatments and prevention strategies for a given disease based on the genetic background of the patient. This approach has already been proposed for vaccines, but research is lagging behind the needs of society, and precision medicine is far from being implemented here. While vaccinomics concerns the effectiveness of vaccines, adversomics concerns their side effects. This area has great potential to address public concerns about vaccine safety and to promote increased public confidence, higher vaccination rates, and fewer serious adverse events in genetically predisposed individuals. The aim here is to explore the contemporary scientific literature related to the vaccinomic and adversomic aspects of the three most-controversial vaccines: those against hepatitis B, against measles, mumps, and rubella, and against human Papilloma virus. We provide detailed information on the genes that encode human leukocyte antigen, cytokines and their receptors, and transcription factors and regulators associated with the efficacy and safety of the Hepatitis B and Measles, Mumps and Rubella virus vaccines. We also investigate the future prospects of vaccinomics and adversomics of a COVID-19 vaccine, which might represent the fastest development of a vaccine ever.
Collapse
Affiliation(s)
| | - Nataša Karas Kuželički
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia;
| |
Collapse
|
10
|
Connell AR, Connell J, Leahy TR, Hassan J. Mumps Outbreaks in Vaccinated Populations-Is It Time to Re-assess the Clinical Efficacy of Vaccines? Front Immunol 2020; 11:2089. [PMID: 33072071 PMCID: PMC7531022 DOI: 10.3389/fimmu.2020.02089] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/31/2020] [Indexed: 01/05/2023] Open
Abstract
History illustrates the remarkable public health impact of mass vaccination, by dramatically improving life expectancy and reducing the burden of infectious diseases and co-morbidities worldwide. It has been perceived that if an individual adhered to the MMR vaccine schedule that immunity to mumps virus (MuV) would be lifelong. Recent mumps outbreaks in individuals who had received two doses of the Measles Mumps Rubella (MMR) vaccine has challenged the efficacy of the MMR vaccine. However, clinical symptoms, complications, viral shedding and transmission associated with mumps infection has been shown to be reduced in vaccinated individuals, demonstrating a benefit of this vaccine. Therefore, the question of what constitutes a good mumps vaccine and how its impact is assessed in this modern era remains to be addressed. Epidemiology of the individuals most affected by the outbreaks (predominantly young adults) and variance in the circulating MuV genotype have been well-described alluding to a collection of influences such as vaccine hesitancy, heterogeneous vaccine uptake, primary, and/or secondary vaccine failures. This review aims to discuss in detail the interplay of factors thought to be contributing to the current mumps outbreaks seen in highly vaccinated populations. In addition, how mumps diagnoses has progressed and impacted the understanding of mumps infection since a mumps vaccine was first developed, the limitations of current laboratory tests in confirming protection in vaccinated individuals and how vaccine effectiveness is quantified are also considered. By highlighting knowledge gaps within this area, this state-of-the-art review proposes a change of perspective regarding the impact of a vaccine in a highly vaccinated population from a clinical, diagnostic and public perspective, highlighting a need for a paradigm shift on what is considered vaccine immunity.
Collapse
Affiliation(s)
- Anna R. Connell
- National Children's Research Centre, Children's Health Ireland, Dublin, Ireland
| | - Jeff Connell
- National Virus Reference Laboratory, University College Dublin, Dublin, Ireland
| | - T. Ronan Leahy
- Children's Health Ireland, Dublin, Ireland
- Department of Pediatrics, University of Dublin, Trinity College, Dublin, Ireland
| | - Jaythoon Hassan
- National Children's Research Centre, Children's Health Ireland, Dublin, Ireland
- National Virus Reference Laboratory, University College Dublin, Dublin, Ireland
| |
Collapse
|
11
|
Kennedy RB, Ovsyannikova IG, Palese P, Poland GA. Current Challenges in Vaccinology. Front Immunol 2020; 11:1181. [PMID: 32670279 PMCID: PMC7329983 DOI: 10.3389/fimmu.2020.01181] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/13/2020] [Indexed: 12/12/2022] Open
Abstract
The development of vaccines, which prime the immune system to respond to future infections, has led to global declines in morbidity and mortality from dreadful infectious communicable diseases. However, many pathogens of public health importance are highly complex and/or rapidly evolving, posing unique challenges to vaccine development. Several of these challenges include an incomplete understanding of how immunity develops, host and pathogen genetic variability, and an increased societal skepticism regarding vaccine safety. In particular, new high-dimensional omics technologies, aided by bioinformatics, are driving new vaccine development (vaccinomics). Informed by recent insights into pathogen biology, host genetic diversity, and immunology, the increasing use of genomic approaches is leading to new models and understanding of host immune system responses that may provide solutions in the rapid development of novel vaccine candidates.
Collapse
Affiliation(s)
- Richard B Kennedy
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, United States
| | - Inna G Ovsyannikova
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, United States
| | - Peter Palese
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Gregory A Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
12
|
Ul-Rahman A, Shabbir MAB. In silico analysis for development of epitopes-based peptide vaccine against Alkhurma hemorrhagic fever virus. J Biomol Struct Dyn 2019; 38:3110-3122. [PMID: 31370756 DOI: 10.1080/07391102.2019.1651673] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Alkhurma hemorrhagic fever virus (ALKV) causes a fatal clinical disease in human beings of different tropical and sub-tropical regions. Recently, the ALKV epidemics have raised a great public health concern with the room for improvement in the essential therapeutic interventions. Despite increased realistic clinical cases of ALKV infection, the efficient vaccine or immunotherapy is not yet available to-date. Therefore, the current study aimed to analyze the envelope glycoprotein of ALKV for the development of B-cells and T-cells epitope-based peptide vaccine using the computational in silico method. Utilizing various immunoinformatics approaches, a total of 5 B-cells and 25 T-cells (MHC-I = 17, MHC-II = 8) epitope-based peptides were predicted in the current study. All predicted peptides had highest antigenicity and immunogenicity scores along with high binding affinity to human leukocyte antigen (HLA) class II alleles. Among 25T-cell epitopes, three peptides were found alike to have affinity to bind both MHC-I and MHC-II alleles. These outcomes suggested that these predicted epitopes could potentially be used in the development of an efficient vaccine against ALKV, which may enable to elicit both humoral and cell-mediated immunity. Although, these predicted peptides could be useful in designing a candidate vaccine for the prevention of ALKV; however, it's in vitro and in vivo assessments are prerequisite.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Aziz Ul-Rahman
- Department of Microbiology and Quality Operations Laboratory, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Abu Bakr Shabbir
- Department of Microbiology and Quality Operations Laboratory, University of Veterinary and Animal Sciences, Lahore, Pakistan.,China MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
13
|
Pezeshki A, Ovsyannikova IG, McKinney BA, Poland GA, Kennedy RB. The role of systems biology approaches in determining molecular signatures for the development of more effective vaccines. Expert Rev Vaccines 2019; 18:253-267. [PMID: 30700167 DOI: 10.1080/14760584.2019.1575208] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Emerging infectious diseases are a major threat to public health, and while vaccines have proven to be one of the most effective preventive measures for infectious diseases, we still do not have safe and effective vaccines against many human pathogens, and emerging diseases continually pose new threats. The purpose of this review is to discuss how the creation of vaccines for these new threats has been hindered by limitations in the current approach to vaccine development. Recent advances in high-throughput technologies have enabled scientists to apply systems biology approaches to collect and integrate increasingly large datasets that capture comprehensive biological changes induced by vaccines, and then decipher the complex immune response to those vaccines. AREAS COVERED This review covers advances in these technologies and recent publications that describe systems biology approaches to understanding vaccine immune responses and to understanding the rational design of new vaccine candidates. EXPERT OPINION Systems biology approaches to vaccine development provide novel information regarding both the immune response and the underlying mechanisms and can inform vaccine development.
Collapse
Affiliation(s)
| | | | - Brett A McKinney
- b Department of Mathematics , University of Tulsa , Tulsa , OK , USA.,c Tandy School of Computer Science , University of Tulsa , Tulsa , OK , USA
| | - Gregory A Poland
- a Mayo Vaccine Research Group , Mayo Clinic , Rochester , MN , USA
| | | |
Collapse
|
14
|
Human Leukocyte Antigen-A, B, C, DRB1, and DQB1 Allele and Haplotype Frequencies in a Subset of 237 Donors in the South African Bone Marrow Registry. J Immunol Res 2018; 2018:2031571. [PMID: 29850621 PMCID: PMC5937380 DOI: 10.1155/2018/2031571] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 01/30/2018] [Accepted: 04/11/2018] [Indexed: 12/31/2022] Open
Abstract
Human leukocyte antigen- (HLA-) A, HLA-B, HLA-C, HLA-DRB1, and HLA-DQB1 allele and haplotype frequencies were studied in a subset of 237 volunteer bone marrow donors registered at the South African Bone Marrow Registry (SABMR). Hapl-o-Mat software was used to compute allele and haplotype frequencies from individuals typed at various resolutions, with some alleles in multiple allele code (MAC) format. Four hundred and thirty-eight HLA-A, 235 HLA-B, 234 HLA-DRB1, 41 HLA-DQB1, and 29 HLA-C alleles are reported. The most frequent alleles were A∗02:02g (0.096), B∗07:02g (0.082), C∗07:02g (0.180), DQB1∗06:02 (0.157), and DRB1∗15:01 (0.072). The most common haplotype was A∗03:01g~B∗07:02g~C∗07:02g~DQB1∗06:02~DRB1∗15:01 (0.067), which has also been reported in other populations. Deviations from Hardy-Weinberg equilibrium were observed in A, B, and DRB1 loci, with C~DQB1 being the only locus pair in linkage disequilibrium. This study describes allele and haplotype frequencies from a subset of donors registered at SABMR, the only active bone marrow donor registry in Africa. Although the sample size was small, our results form a key resource for future population studies, disease association studies, and donor recruitment strategies.
Collapse
|
15
|
Langlais D, Fodil N, Gros P. Genetics of Infectious and Inflammatory Diseases: Overlapping Discoveries from Association and Exome-Sequencing Studies. Annu Rev Immunol 2017; 35:1-30. [DOI: 10.1146/annurev-immunol-051116-052442] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- David Langlais
- McGill University Research Centre on Complex Traits, McGill University, Montreal, Quebec H3G 0B1, Canada;, ,
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - Nassima Fodil
- McGill University Research Centre on Complex Traits, McGill University, Montreal, Quebec H3G 0B1, Canada;, ,
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - Philippe Gros
- McGill University Research Centre on Complex Traits, McGill University, Montreal, Quebec H3G 0B1, Canada;, ,
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 0B1, Canada
| |
Collapse
|
16
|
Kennedy RB, Ovsyannikova IG, Haralambieva IH, Oberg AL, Zimmermann MT, Grill DE, Poland GA. Immunosenescence-Related Transcriptomic and Immunologic Changes in Older Individuals Following Influenza Vaccination. Front Immunol 2016; 7:450. [PMID: 27853459 PMCID: PMC5089977 DOI: 10.3389/fimmu.2016.00450] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/10/2016] [Indexed: 12/24/2022] Open
Abstract
The goal of annual influenza vaccination is to reduce mortality and morbidity associated with this disease through the generation of protective immune responses. The objective of the current study was to examine markers of immunosenescence and identify immunosenescence-related differences in gene expression, gene regulation, cytokine secretion, and immunologic changes in an older study population receiving seasonal influenza A/H1N1 vaccination. Surprisingly, prior studies in this cohort revealed weak correlations between immunosenescence markers and humoral immune response to vaccination. In this report, we further examined the relationship of each immunosenescence marker (age, T cell receptor excision circle frequency, telomerase expression, percentage of CD28− CD4+ T cells, percentage of CD28− CD8+ T cells, and the CD4/CD8 T cell ratio) with additional markers of immune response (serum cytokine and chemokine expression) and measures of gene expression and/or regulation. Many of the immunosenescence markers indeed correlated with distinct sets of individual DNA methylation sites, miRNA expression levels, mRNA expression levels, serum cytokines, and leukocyte subsets. However, when the individual immunosenescence markers were grouped by pathways or functional terms, several shared biological functions were identified: antigen processing and presentation pathways, MAPK, mTOR, TCR, BCR, and calcium signaling pathways, as well as key cellular metabolic, proliferation and survival activities. Furthermore, the percent of CD4+ and/or CD8+ T cells lacking CD28 expression also correlated with miRNAs regulating clusters of genes known to be involved in viral infection. Integrated (DNA methylation, mRNA, miRNA, and protein levels) network biology analysis of immunosenescence-related pathways and genesets identified both known pathways (e.g., chemokine signaling, CTL, and NK cell activity), as well as a gene expression module not previously annotated with a known function. These results may improve our ability to predict immune responses to influenza and aid in new vaccine development, and highlight the need for additional studies to better define and characterize immunosenescence.
Collapse
Affiliation(s)
- Richard B Kennedy
- Mayo Clinic Vaccine Research Group, Department of General Internal Medicine, Mayo Clinic , Rochester, MN , USA
| | - Inna G Ovsyannikova
- Mayo Clinic Vaccine Research Group, Department of General Internal Medicine, Mayo Clinic , Rochester, MN , USA
| | - Iana H Haralambieva
- Mayo Clinic Vaccine Research Group, Department of General Internal Medicine, Mayo Clinic , Rochester, MN , USA
| | - Ann L Oberg
- Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic , Rochester, MN , USA
| | - Michael T Zimmermann
- Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic , Rochester, MN , USA
| | - Diane E Grill
- Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic , Rochester, MN , USA
| | - Gregory A Poland
- Mayo Clinic Vaccine Research Group, Department of General Internal Medicine, Mayo Clinic , Rochester, MN , USA
| |
Collapse
|
17
|
McKinney BA, Lareau C, Oberg AL, Kennedy RB, Ovsyannikova IG, Poland GA. The Integration of Epistasis Network and Functional Interactions in a GWAS Implicates RXR Pathway Genes in the Immune Response to Smallpox Vaccine. PLoS One 2016; 11:e0158016. [PMID: 27513748 PMCID: PMC4981436 DOI: 10.1371/journal.pone.0158016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 06/08/2016] [Indexed: 11/24/2022] Open
Abstract
Although many diseases and traits show large heritability, few genetic variants have been found to strongly separate phenotype groups by genotype. Complex regulatory networks of variants and expression of multiple genes lead to small individual-variant effects and difficulty replicating the effect of any single variant in an affected pathway. Interaction network modeling of GWAS identifies effects ignored by univariate models, but population differences may still cause specific genes to not replicate. Integrative network models may help detect indirect effects of variants in the underlying biological pathway. In this study, we used gene-level functional interaction information from the Integrative Multi-species Prediction (IMP) tool to reveal important genes associated with a complex phenotype through evidence from epistasis networks and pathway enrichment. We test this method for augmenting variant-based network analyses with functional interactions by applying it to a smallpox vaccine immune response GWAS. The integrative analysis spotlights the role of genes related to retinoid X receptor alpha (RXRA), which has been implicated in a previous epistasis network analysis of smallpox vaccine.
Collapse
Affiliation(s)
- Brett A. McKinney
- Tandy School of Computer Science and Department of Mathematics, University of Tulsa, Tulsa, OK, United States of America
| | - Caleb Lareau
- Tandy School of Computer Science and Department of Mathematics, University of Tulsa, Tulsa, OK, United States of America
| | - Ann L. Oberg
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, United States of America
| | - Richard B. Kennedy
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, United States of America
| | - Inna G. Ovsyannikova
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, United States of America
| | - Gregory A. Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, United States of America
- * E-mail:
| |
Collapse
|
18
|
|
19
|
Poland GA, Whitaker JA, Poland CM, Ovsyannikova IG, Kennedy RB. Vaccinology in the third millennium: scientific and social challenges. Curr Opin Virol 2016; 17:116-125. [PMID: 27039875 PMCID: PMC4902778 DOI: 10.1016/j.coviro.2016.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 02/19/2016] [Accepted: 03/11/2016] [Indexed: 12/21/2022]
Abstract
The epidemiology of deaths due to vaccine-preventable diseases has been significantly and positively altered through the use of vaccines. Despite this, significant challenges remain in vaccine development and use in the third millennium. Both new (Ebola, Chikungunya, Zika, and West Nile) and re-emerging diseases (measles, mumps, and influenza) require the development of new or next-generation vaccines. The global aging of the population, and accumulating numbers of immunocompromised persons, will require new vaccine and adjuvant development to protect large segments of the population. After vaccine development, significant challenges remain globally in the cost and efficient use and acceptance of vaccines by the public. This article raises issues in these two areas and suggests a way forward that will benefit current and future generations.
Collapse
Affiliation(s)
- Gregory A Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA; Mayo Clinic Division of General Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| | - Jennifer A Whitaker
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA; Mayo Clinic Division of General Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA; Mayo Clinic Division of Infectious Diseases, Mayo Clinic, Rochester, MN 55905, USA
| | - Caroline M Poland
- Taylor University Counseling Center, Taylor University, Upland, IN 46989, USA
| | - Inna G Ovsyannikova
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA; Mayo Clinic Division of General Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Richard B Kennedy
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA; Mayo Clinic Division of General Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
20
|
Georgopoulos AP, James LM, Mahan MY, Joseph J, Georgopoulos A, Engdahl BE. Reduced Human Leukocyte Antigen (HLA) Protection in Gulf War Illness (GWI). EBioMedicine 2015; 3:79-85. [PMID: 26870819 PMCID: PMC4739436 DOI: 10.1016/j.ebiom.2015.11.037] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 11/16/2015] [Accepted: 11/20/2015] [Indexed: 11/29/2022] Open
Abstract
Background Gulf War Illness (GWI) is a disease of unknown etiology with symptoms suggesting the involvement of an immune process. Here we tested the hypothesis that Human Leukocyte Antigen (HLA) composition might differ between veterans with and without GWI. Methods We identified 144 unique alleles of Class I and II HLA genes in 82 veterans (66 with and 16 without GWI). We tested the hypothesis that a subset of HLA alleles may classify veterans in their respective group using a stepwise linear discriminant analysis. In addition, each participant rated symptom severity in 6 domains according to established GWI criteria, and an overall symptom severity was calculated. Findings We found 6 Class II alleles that classified participants 84.1% correctly (13/16 control and 56/66 GWI). The number of copies of the 6 alleles was significantly higher in the control group, suggesting a protective role. This was supported by a significant negative dependence of overall symptom severity on the number of allele copies, such that symptom severity was lower in participants with larger numbers of allele copies. Interpretation These results indicate a reduced HLA protection (i.e. genetic susceptibility) in veterans with GWI. Funding University of Minnesota and U.S. Department of Veterans Affairs. Differences in Human Leukocyte Antigen distinguished veterans with Gulf War Illness (GWI) from healthy Gulf War era veterans. Veterans with GWI show genetic susceptibility which is associated with increased severity of hallmark symptoms of GWI.
A large number of Gulf War veterans suffer from diffuse and debilitating symptoms that resemble altered immune functioning. This study evaluated whether the Human Leukocyte Antigen (HLA) gene, which is central to immune functioning, differs between veterans with GWI and unaffected Gulf War veterans. The findings highlight robust differences in HLA composition between the two groups and suggest that veterans with GWI are characterized by genetic susceptibility that confers risk for typical GWI symptoms. These findings provide compelling genetic evidence of immune dysfunction in GWI.
Collapse
Affiliation(s)
- Apostolos P Georgopoulos
- Brain Sciences Center, Department of Veterans Affairs Health Care System, Minneapolis, MN 55417, USA; Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN 55455, USA; Department of Neurology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN 55455, USA; Center for Cognitive Sciences, University of Minnesota, Minneapolis, MN 55455, USA; Graduate Program in Biomedical Informatics and Computational Biology, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Lisa M James
- Brain Sciences Center, Department of Veterans Affairs Health Care System, Minneapolis, MN 55417, USA; Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN 55455, USA; Center for Cognitive Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| | - Margaret Y Mahan
- Brain Sciences Center, Department of Veterans Affairs Health Care System, Minneapolis, MN 55417, USA; Graduate Program in Biomedical Informatics and Computational Biology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jasmine Joseph
- Brain Sciences Center, Department of Veterans Affairs Health Care System, Minneapolis, MN 55417, USA; Graduate Program in Biomedical Informatics and Computational Biology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Angeliki Georgopoulos
- Metabolic Service, Department of Medicine, Department of Veterans Affairs Health Care System, Minneapolis, MN 55417, USA; Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Brian E Engdahl
- Brain Sciences Center, Department of Veterans Affairs Health Care System, Minneapolis, MN 55417, USA; Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN 55455, USA; Center for Cognitive Sciences, University of Minnesota, Minneapolis, MN 55455, USA; Department of Psychology, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
21
|
Human Leukocyte Antigen Diversity: A Southern African Perspective. J Immunol Res 2015; 2015:746151. [PMID: 26347896 PMCID: PMC4549606 DOI: 10.1155/2015/746151] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 07/26/2015] [Indexed: 12/30/2022] Open
Abstract
Despite the increasingly well-documented evidence of high genetic, ethnic, and linguistic diversity amongst African populations, there is limited data on human leukocyte antigen (HLA) diversity in these populations. HLA is part of the host defense mechanism mediated through antigen presentation to effector cells of the immune system. With the high disease burden in southern Africa, HLA diversity data is increasingly important in the design of population-specific vaccines and the improvement of transplantation therapeutic interventions. This review highlights the paucity of HLA diversity data amongst southern African populations and defines a need for information of this kind. This information will support disease association studies, provide guidance in vaccine design, and improve transplantation outcomes.
Collapse
|
22
|
Guimarães LE, Baker B, Perricone C, Shoenfeld Y. Vaccines, adjuvants and autoimmunity. Pharmacol Res 2015; 100:190-209. [PMID: 26275795 PMCID: PMC7129276 DOI: 10.1016/j.phrs.2015.08.003] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 08/05/2015] [Indexed: 12/15/2022]
Abstract
Vaccines and autoimmunity are linked fields. Vaccine efficacy is based on whether host immune response against an antigen can elicit a memory T-cell response over time. Although the described side effects thus far have been mostly transient and acute, vaccines are able to elicit the immune system towards an autoimmune reaction. The diagnosis of a definite autoimmune disease and the occurrence of fatal outcome post-vaccination have been less frequently reported. Since vaccines are given to previously healthy hosts, who may have never developed the disease had they not been immunized, adverse events should be carefully accessed and evaluated even if they represent a limited number of occurrences. In this review of the literature, there is evidence of vaccine-induced autoimmunity and adjuvant-induced autoimmunity in both experimental models as well as human patients. Adjuvants and infectious agents may exert their immune-enhancing effects through various functional activities, encompassed by the adjuvant effect. These mechanisms are shared by different conditions triggered by adjuvants leading to the autoimmune/inflammatory syndrome induced by adjuvants (ASIA syndrome). In conclusion, there are several case reports of autoimmune diseases following vaccines, however, due to the limited number of cases, the different classifications of symptoms and the long latency period of the diseases, every attempt for an epidemiological study has so far failed to deliver a connection. Despite this, efforts to unveil the connection between the triggering of the immune system by adjuvants and the development of autoimmune conditions should be undertaken. Vaccinomics is a field that may bring to light novel customized, personalized treatment approaches in the future.
Collapse
Affiliation(s)
- Luísa Eça Guimarães
- The Zabludowicz Center for Autoimmune Diseases, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | - Britain Baker
- The Zabludowicz Center for Autoimmune Diseases, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | - Carlo Perricone
- Reumatologia, Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Italy
| | - Yehuda Shoenfeld
- The Zabludowicz Center for Autoimmune Diseases, Chaim Sheba Medical Center, Tel-Hashomer, Israel; Incumbent of the Laura Schwarz-kipp chair for research of autoimmune diseases, Sackler Faculty of Medicine, Tel-Aviv University, Israel.
| |
Collapse
|
23
|
Castiblanco J, Anaya JM. Genetics and vaccines in the era of personalized medicine. Curr Genomics 2015; 16:47-59. [PMID: 25937813 PMCID: PMC4412964 DOI: 10.2174/1389202916666141223220551] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 12/22/2014] [Accepted: 12/23/2014] [Indexed: 12/17/2022] Open
Abstract
Vaccines represent the most successful and sustainable tactic to prevent and counteract infection. A vaccine generally improves immunity to a particular disease upon administration by inducing specific protective and efficient immune responses in all of the receiving population. The main known factors influencing the observed heterogeneity for immune re-sponses induced by vaccines are gender, age, co-morbidity, immune system, and genetic background. This review is mainly focused on the genetic status effect to vaccine immune responses and how this could contribute to the development of novel vaccine candidates that could be better directed and predicted relative to the genetic history of an individual and/or population. The text offers a brief history of vaccinology as a field, a description of the genetic status of the most relevant and studied genes and their functionality and correlation with exposure to specific vaccines; followed by an inside look into autoimmunity as a concern when designing vaccines as well as perspectives and conclusions looking towards an era of personalized and predictive vaccinology instead of a one size fits all approach.
Collapse
Affiliation(s)
- John Castiblanco
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 #63-C-69, Bogota, Colombia ; Doctoral Program in Biomedical Sciences, Universidad del Rosario, Bogotá,Colombia
| | - Juan-Manuel Anaya
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 #63-C-69, Bogota, Colombia
| |
Collapse
|
24
|
Han S. Clinical vaccine development. Clin Exp Vaccine Res 2015; 4:46-53. [PMID: 25648742 PMCID: PMC4313108 DOI: 10.7774/cevr.2015.4.1.46] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 12/28/2014] [Accepted: 12/31/2014] [Indexed: 11/15/2022] Open
Abstract
Vaccination is regarded as one of the biggest triumphs in the history of medicine. We are living in the most successful period of vaccine development. The accumulation of multidisciplinary knowledge and the investment of massive funding have enabled the development of vaccines against many infectious diseases as well as other diseases including malignant tumors. The paradigm of clinical vaccine evaluation and licensure has also been modernized based on scientific improvements and historical experience. However, there remain a number of hurdles to overcome. Continuous efforts are focused on increasing the efficacy and reducing the risks related to vaccine use. Cutting-edge knowledge about immunology and microbiology is being rapidly translated to vaccine development. Thus, physicians and others involved in the clinical development of vaccines should have sufficient understanding of the recent developmental trends in vaccination and the diseases of interest.
Collapse
Affiliation(s)
- Seunghoon Han
- Department of Pharmacology, College of Medicine, The Catholic University of Korea, Seoul, Korea. ; Department of Clinical Pharmacology and Therapeutics, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
25
|
Szolek A, Schubert B, Mohr C, Sturm M, Feldhahn M, Kohlbacher O. OptiType: precision HLA typing from next-generation sequencing data. ACTA ACUST UNITED AC 2014; 30:3310-6. [PMID: 25143287 PMCID: PMC4441069 DOI: 10.1093/bioinformatics/btu548] [Citation(s) in RCA: 473] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Motivation: The human leukocyte antigen (HLA) gene cluster plays a crucial role in adaptive immunity and is thus relevant in many biomedical applications. While next-generation sequencing data are often available for a patient, deducing the HLA genotype is difficult because of substantial sequence similarity within the cluster and exceptionally high variability of the loci. Established approaches, therefore, rely on specific HLA enrichment and sequencing techniques, coming at an additional cost and extra turnaround time. Result: We present OptiType, a novel HLA genotyping algorithm based on integer linear programming, capable of producing accurate predictions from NGS data not specifically enriched for the HLA cluster. We also present a comprehensive benchmark dataset consisting of RNA, exome and whole-genome sequencing data. OptiType significantly outperformed previously published in silico approaches with an overall accuracy of 97% enabling its use in a broad range of applications. Contact:szolek@informatik.uni-tuebingen.de Supplementary information:Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- András Szolek
- Applied Bioinformatics, Center for Bioinformatics, Quantitative Biology Center, and Department of Computer Science, University of Tübingen, Institute of Medical Genetics and Applied Genomics, University of Tübingen, and CeGaT GmbH, 72076 Tübingen, Germany
| | - Benjamin Schubert
- Applied Bioinformatics, Center for Bioinformatics, Quantitative Biology Center, and Department of Computer Science, University of Tübingen, Institute of Medical Genetics and Applied Genomics, University of Tübingen, and CeGaT GmbH, 72076 Tübingen, Germany Applied Bioinformatics, Center for Bioinformatics, Quantitative Biology Center, and Department of Computer Science, University of Tübingen, Institute of Medical Genetics and Applied Genomics, University of Tübingen, and CeGaT GmbH, 72076 Tübingen, Germany
| | - Christopher Mohr
- Applied Bioinformatics, Center for Bioinformatics, Quantitative Biology Center, and Department of Computer Science, University of Tübingen, Institute of Medical Genetics and Applied Genomics, University of Tübingen, and CeGaT GmbH, 72076 Tübingen, Germany Applied Bioinformatics, Center for Bioinformatics, Quantitative Biology Center, and Department of Computer Science, University of Tübingen, Institute of Medical Genetics and Applied Genomics, University of Tübingen, and CeGaT GmbH, 72076 Tübingen, Germany
| | - Marc Sturm
- Applied Bioinformatics, Center for Bioinformatics, Quantitative Biology Center, and Department of Computer Science, University of Tübingen, Institute of Medical Genetics and Applied Genomics, University of Tübingen, and CeGaT GmbH, 72076 Tübingen, Germany
| | - Magdalena Feldhahn
- Applied Bioinformatics, Center for Bioinformatics, Quantitative Biology Center, and Department of Computer Science, University of Tübingen, Institute of Medical Genetics and Applied Genomics, University of Tübingen, and CeGaT GmbH, 72076 Tübingen, Germany
| | - Oliver Kohlbacher
- Applied Bioinformatics, Center for Bioinformatics, Quantitative Biology Center, and Department of Computer Science, University of Tübingen, Institute of Medical Genetics and Applied Genomics, University of Tübingen, and CeGaT GmbH, 72076 Tübingen, Germany
| |
Collapse
|
26
|
Orson FM, Wang R, Brimijoin S, Kinsey BM, Singh RA, Ramakrishnan M, Wang HY, Kosten TR. The future potential for cocaine vaccines. Expert Opin Biol Ther 2014; 14:1271-83. [PMID: 24835496 DOI: 10.1517/14712598.2014.920319] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Addiction to cocaine is a major problem around the world, but especially in developed countries where the combination of wealth and user demand has created terrible social problems. Although only some users become truly addicted, those who are often succumb to a downward spiral in their lives from which it is very difficult to escape. From the medical perspective, the lack of effective and safe, non-addictive therapeutics has instigated efforts to develop alternative approaches for treatment, including anticocaine vaccines designed to block cocaine's pharmacodynamic effects. AREAS COVERED This paper discusses the implications of cocaine pharmacokinetics for robust vaccine antibody responses, the results of human vaccine clinical trials, new developments in animal models for vaccine evaluation, alternative vaccine formulations and complementary therapy to enhance anticocaine effectiveness. EXPERT OPINION Robust anti-cocaine antibody responses are required for benefit to cocaine abusers, but since any reasonably achievable antibody level can be overcome with higher drug doses, sufficient motivation to discontinue use is also essential so that the relative barrier to cocaine effects will be appropriate for each individual. Combining a vaccine with achievable levels of an enzyme to hydrolyze cocaine to inactive metabolites, however, may substantially increase the blockade and improve treatment outcomes.
Collapse
Affiliation(s)
- Frank M Orson
- Center for Translational Research in Inflammatory Diseases, Baylor College of Medicine, Department of Medicine , Bldg. 109, Rm. 234, 2002 Holcombe Blvd, Houston, TX 77030 , USA +1 713 794 7960 ; +1 713 794 7938 ;
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Elmgren L, Li X, Wilson C, Ball R, Wang J, Cichutek K, Pfleiderer M, Kato A, Cavaleri M, Southern J, Jivapaisarnpong T, Minor P, Griffiths E, Sohn Y, Wood D. A global regulatory science agenda for vaccines. Vaccine 2014; 31 Suppl 2:B163-75. [PMID: 23598478 DOI: 10.1016/j.vaccine.2012.10.117] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 10/22/2012] [Accepted: 10/31/2012] [Indexed: 02/06/2023]
Abstract
The Decade of Vaccines Collaboration and development of the Global Vaccine Action Plan provides a catalyst and unique opportunity for regulators worldwide to develop and propose a global regulatory science agenda for vaccines. Regulatory oversight is critical to allow access to vaccines that are safe, effective, and of assured quality. Methods used by regulators need to constantly evolve so that scientific and technological advances are applied to address challenges such as new products and technologies, and also to provide an increased understanding of benefits and risks of existing products. Regulatory science builds on high-quality basic research, and encompasses at least two broad categories. First, there is laboratory-based regulatory science. Illustrative examples include development of correlates of immunity; or correlates of safety; or of improved product characterization and potency assays. Included in such science would be tools to standardize assays used for regulatory purposes. Second, there is science to develop regulatory processes. Illustrative examples include adaptive clinical trial designs; or tools to analyze the benefit-risk decision-making process of regulators; or novel pharmacovigilance methodologies. Included in such science would be initiatives to standardize regulatory processes (e.g., definitions of terms for adverse events [AEs] following immunization). The aim of a global regulatory science agenda is to transform current national efforts, mainly by well-resourced regulatory agencies, into a coordinated action plan to support global immunization goals. This article provides examples of how regulatory science has, in the past, contributed to improved access to vaccines, and identifies gaps that could be addressed through a global regulatory science agenda. The article also identifies challenges to implementing a regulatory science agenda and proposes strategies and actions to fill these gaps. A global regulatory science agenda will enable regulators, academics, and other stakeholders to converge around transformative actions for innovation in the regulatory process to support global immunization goals.
Collapse
|
28
|
New Wisdom to Defy an Old Enemy: Summary from a scientific symposium at the 4th Influenza Vaccines for the World (IVW) 2012 Congress, 11 October, Valencia, Spain. Vaccine 2014; 31 Suppl 1:A1-20. [PMID: 23587330 DOI: 10.1016/j.vaccine.2013.02.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 02/15/2013] [Indexed: 01/26/2023]
Abstract
Both seasonal and pandemic influenza cause considerable morbidity and mortality globally. In addition, the ongoing threat of new, unpredictable influenza pandemics from emerging variant strains cannot be underestimated. Recently bioCSL (previously known as CSL Biotherapies) sponsored a symposium 'New Wisdom to Defy an Old Enemy' at the 4th Influenza Vaccines for the World Congress in Valencia, Spain. This symposium brought together a renowned faculty of experts to discuss lessons from past experience, novel influenza vaccine developments, and new methods to increase vaccine acceptance and coverage. Specific topics reviewed and discussed included new vaccine development efforts focused on improving efficacy via alternative administration routes, dose modifications, improved adjuvants, and the use of master donor viruses. Improved safety was also discussed, particularly the new finding of an excess of febrile reactions isolated to children who received the 2010 Southern Hemisphere (SH) trivalent inactivated influenza vaccine (TIV). Significant work has been done to both identify the cause and minimize the risk of febrile reactions in children. Other novel prophylactic and therapeutic advances were discussed including immunotherapy. Standard IVIg and hIVIg have been used in ferret studies and human case reports with promising results. New adjuvants, such as ISCOMATRIX™ adjuvant, were noted to provide single-dose, prolonged protection with seasonal vaccine after lethal H5N1 virus challenge in a ferret model of human influenza disease. The data suggest that adjuvanted seasonal influenza vaccines may provide broader protection than unadjuvanted vaccines. The use of an antigen-formulated vaccine to induce broad protection between pandemics that could bridge the gap between pandemic declaration and the production of a homologous vaccine was also discussed. Finally, despite the availability of effective vaccines, most current efforts to increase influenza vaccine coverage rates to higher levels (i.e., above 70-80%) have been ineffective in highly developed countries where the vaccine is used, hindered by the public's skepticism towards vaccines in general. New educational and social media methods to increase vaccine acceptance and coverage were discussed. While the first priority should be the development of improved influenza vaccines, a particular focus on the aging global population is critical. It is also important to draw lessons from other academic disciplines that can help to inform vaccine education programs, policy, and communication. By tailoring communications and patient education using an understanding of cognitive bias and the model of preferred cognitive styles, the likelihood of effecting desirable health decisions can be maximized, leading to improved vaccine coverage and control of influenza and other vaccine-preventable diseases.
Collapse
|
29
|
Pan L, Zhang L, Zhang W, Wu X, Li Y, Yan B, Zhu X, Liu X, Yang C, Xu J, Zhou G, Xu A, Li H, Liu Y. A genome-wide association study identifies polymorphisms in the HLA-DR region associated with non-response to hepatitis B vaccination in Chinese Han populations. Hum Mol Genet 2013; 23:2210-9. [PMID: 24282030 DOI: 10.1093/hmg/ddt586] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Vaccination against hepatitis B virus is an effective and routine practice that can prevent infection. However, 5-10% of healthy adults fail to produce protective levels of antibody against the hepatitis B vaccination. It has been reported that host genetic variants might affect the immune response to hepatitis B vaccination. Here, we reported a genome-wide association study in a Chinese Han population consisting of 108 primary high-responders and 77 booster non-responders to hepatitis B vaccination using the Illumina HumanOmniExpress Beadchip. We identified 21 SNPs at 6p21.32 were significantly associated with non-response to booster hepatitis B vaccination (P-value <1 × 10(-6)). The most significant SNP in the region was rs477515, located ∼12 kb upstream of the HLA-DRB1 gene. Its P-value (4.81 × 10(-8)) exceeded the Bonferroni-corrected genome-wide significance threshold. Four tagging SNPs (rs477515, rs28366298, rs3763316 and rs13204672) that capture genetic information of these 21 SNPs were validated in three additional Chinese Han populations, consisting of 1336 primary high-responders and 420 primary non-responders. The four SNPs continued to show significant associations with non-response to hepatitis B vaccination (P-combined = 3.98 × 10(-13)- 1.42 × 10(-8)). Further analysis showed that the rs477515 was independently associated with non-response to hepatitis B vaccination with correction for other three SNPs in our GWAS and the known hepatitis B vaccine immunity associated SNP in previous GWAS. Our findings suggest that the rs477515 was an independent marker associated with non-response to hepatitis B vaccination and HLA-DR region might be a critical susceptibility locus of hepatitis B vaccine-induced immunity.
Collapse
Affiliation(s)
- Liping Pan
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Wang CC, Zhu B, Fan X, Gicquel B, Zhang Y. Systems approach to tuberculosis vaccine development. Respirology 2013; 18:412-20. [PMID: 23331331 DOI: 10.1111/resp.12052] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Revised: 12/26/2012] [Accepted: 01/03/2013] [Indexed: 01/04/2023]
Abstract
Tuberculosis is both highly prevalent across the world and eludes our attempts to control it. The current bacillus Calmette-Guérin vaccine has unreliable protection against adult pulmonary tuberculosis. As a result, tuberculosis vaccine development has been an ongoing area of research for several decades. Only recently have research efforts resulted in the development of several vaccine candidates that are further along in clinical trials. The majority of the barriers surrounding tuberculosis vaccine development are related to the lack of defined biomarkers for tuberculosis protective immunity and the lack of understanding of the complex interactions between the host and pathogen in the human immune system. As a result, testing various antigens discovered through molecular biology techniques have been only with surrogates of protection and do not accurately predict protective immunity. This review will address new discoveries in latency antigens and new next-generation candidate vaccines that promise the possibility of sterile eradication. Also discussed are the potentially important roles of systems biology and vaccinomics in shortening development of an efficacious tuberculosis vaccine through utilization of high-throughput technology, computer modelling and integrative approaches.
Collapse
Affiliation(s)
- Charles C Wang
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
31
|
Camacho AI, Irache JM, Gamazo C. Recent progress towards development of a Shigella vaccine. Expert Rev Vaccines 2013; 12:43-55. [PMID: 23256738 DOI: 10.1586/erv.12.135] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The burden of dysentery due to shigellosis among children in the developing world is still a major concern. A safe and efficacious vaccine against this disease is a priority, since no licensed vaccine is available. This review provides an update of vaccine achievements focusing on subunit vaccine strategies and the forthcoming strategies surrounding this approach. In particular, this review explores several aspects of the pathogenesis of shigellosis and the elicited immune response as being the basis of vaccine requirements. The use of appropriate Shigella antigens, together with the right adjuvants, may offer safety, efficacy and more convenient delivery methods for massive worldwide vaccination campaigns.
Collapse
|
32
|
Poland GA, Kennedy RB, McKinney BA, Ovsyannikova IG, Lambert ND, Jacobson RM, Oberg AL. Vaccinomics, adversomics, and the immune response network theory: individualized vaccinology in the 21st century. Semin Immunol 2013; 25:89-103. [PMID: 23755893 DOI: 10.1016/j.smim.2013.04.007] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 03/23/2013] [Accepted: 04/18/2013] [Indexed: 02/08/2023]
Abstract
Vaccines, like drugs and medical procedures, are increasingly amenable to individualization or personalization, often based on novel data resulting from high throughput "omics" technologies. As a result of these technologies, 21st century vaccinology will increasingly see the abandonment of a "one size fits all" approach to vaccine dosing and delivery, as well as the abandonment of the empiric "isolate-inactivate-inject" paradigm for vaccine development. In this review, we discuss the immune response network theory and its application to the new field of vaccinomics and adversomics, and illustrate how vaccinomics can lead to new vaccine candidates, new understandings of how vaccines stimulate immune responses, new biomarkers for vaccine response, and facilitate the understanding of what genetic and other factors might be responsible for rare side effects due to vaccines. Perhaps most exciting will be the ability, at a systems biology level, to integrate increasingly complex high throughput data into descriptive and predictive equations for immune responses to vaccines. Herein, we discuss the above with a view toward the future of vaccinology.
Collapse
|
33
|
Bartlett G, Antoun J, Zgheib NK. Theranostics in primary care: pharmacogenomics tests and beyond. Expert Rev Mol Diagn 2013; 12:841-55. [PMID: 23249202 DOI: 10.1586/erm.12.115] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Theranostics represents a broadening in the scope of personalized medicine to include companion diagnostics for health interventions ranging from drugs to vaccines, as well as individual susceptibility to disease. Surprisingly, in the course of this broadening of personalized medicine discourse, relatively little attention has been paid to primary care (as compared with tertiary healthcare settings) despite its vast patient population and being a crucial entry point to health services. Recent advances in pharmacogenomics (PGx), a classical theranostics application whereby genotyping and/or gene expression-based tests are used for targeted or optimal therapy, revealed new opportunities to characterize more precisely human genomic variation and the ways in which it contributes to person-to-person and population variations in drug response. In the immediate foreseeable future, the primary-care physicians are expected to play an ever increasing crucial role in PGx-based prescribing in order to reduce the rates of adverse drug events and improve drug efficacy, yet PGx testing in primary care remains limited. In this article, the authors review the advances in PGx applications, the barriers for their adoption in the clinic from a primary care point of view and the efforts that are being undertaken to move PGx forward in this hitherto neglected application context of theranostic medicine. Finally, the authors propose several salient recommendations, including a 5-year forecast, to accelerate the current convergence between PGx and primary care.
Collapse
Affiliation(s)
- Gillian Bartlett
- Department of Family Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | | | | |
Collapse
|
34
|
Kollmann TR. Variation between Populations in the Innate Immune Response to Vaccine Adjuvants. Front Immunol 2013; 4:81. [PMID: 23565115 PMCID: PMC3613898 DOI: 10.3389/fimmu.2013.00081] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 03/18/2013] [Indexed: 12/15/2022] Open
Abstract
The success of the World Health Organization recommended “Expanded Program of Immunization” (EPI) and similar regional or national programs has been astounding. However, infectious threats currently not covered by these programs continue to infect millions of infants around the world. Furthermore, many infants do not receive existing vaccines either on time or for the required number of doses to provide optimal protection. Nor do all infants around the world develop the same protective immune response to the same vaccine. As a result approximately three million infants die every year from vaccine preventable infections. To tackle these issues, new vaccines need to be developed as well as existing ones made easier to administer. This requires identification of age-optimized vaccine schedules and formulations. In order to be most effective this approach will need to take population-based differences in response to vaccines and adjuvants into account. This review summarizes what is currently known about differences between populations around the world in the innate immune response to existing as well as new and promising vaccine adjuvants.
Collapse
Affiliation(s)
- Tobias R Kollmann
- Division of Infectious and Immunological Diseases, Department of Paediatrics, University of British Columbia Vancouver, BC, Canada
| |
Collapse
|
35
|
Prachi P, Donati C, Masciopinto F, Rappuoli R, Bagnoli F. Deep sequencing in pre- and clinical vaccine research. Public Health Genomics 2013; 16:62-8. [PMID: 23548719 DOI: 10.1159/000345611] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Vaccine research has experienced a quantum leap after the beginning of the genomics era. High-throughput sequencing techniques, unlimited computing resources, as well as new bioinformatic algorithms are now changing the way we perform genomic studies. Whole genome sequencing will soon become the gold standard for phylogenetic and epidemiology studies and is already shedding new light on the dynamics of bacterial evolution. We believe that deep sequencing projects, together with structural studies on vaccine candidates, will allow targeting constant epitopes and avoid vaccine failure due to antigenic variability. Systems biology, which is expected to revolutionize vaccine research and clinical studies, greatly relies on high-throughput technologies such as RNA-seq. Furthermore, genomics is a key element to develop safer vaccines, and the accuracy of deep sequencing will allow monitoring vaccine coverage after their introduction on the market.
Collapse
Affiliation(s)
- P Prachi
- Novartis Vaccines, Research Center, Siena, Italy
| | | | | | | | | |
Collapse
|
36
|
Lambert ND, Ovsyannikova IG, Pankratz VS, Jacobson RM, Poland GA. Understanding the immune response to seasonal influenza vaccination in older adults: a systems biology approach. Expert Rev Vaccines 2013; 11:985-94. [PMID: 23002979 DOI: 10.1586/erv.12.61] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Annual vaccination against seasonal influenza is recommended to decrease disease-related mortality and morbidity. However, one population that responds suboptimally to influenza vaccine is adults over the age of 65 years. The natural aging process is associated with a complex deterioration of multiple components of the host immune system. Research into this phenomenon, known as immunosenescence, has shown that aging alters both the innate and adaptive branches of the immune system. The intricate mechanisms involved in immune response to influenza vaccine, and how these responses are altered with age, have led us to adopt a more encompassing systems biology approach to understand exactly why the response to vaccination diminishes with age. Here, the authors review what changes occur with immunosenescence, and some immunogenetic factors that influence response, and outline the systems biology approach to understand the immune response to seasonal influenza vaccination in older adults.
Collapse
Affiliation(s)
- Nathaniel D Lambert
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Guggenheim 611C, 200 1st Street SW, Rochester, MI 55905, USA
| | | | | | | | | |
Collapse
|
37
|
White SJ, Haralambieva IH, Ovsyannikova IG, Vierkant RA, O'Byrne MM, Poland GA. Replication of associations between cytokine and cytokine receptor single nucleotide polymorphisms and measles-specific adaptive immunophenotypic extremes. Hum Immunol 2012; 73:636-40. [PMID: 22504412 PMCID: PMC3368081 DOI: 10.1016/j.humimm.2012.03.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 03/08/2012] [Accepted: 03/19/2012] [Indexed: 11/25/2022]
Abstract
Our objective was to replicate previously reported associations between cytokine and cytokine receptor SNPs and humoral and CMI (cell-mediated immune) responses to measles vaccine. All subjects (n=758) received two doses of MMR (measles/mumps/rubella) vaccine. From these subjects, candidate cytokine and cytokine receptor SNPs were genotyped and analyzed in 29-30 subjects falling into one of four "extreme" humoral (Ab(high/low)) and CMI (CMI(high/low)) response quadrants. Associations between seven SNPs (out of 11 in the discovery study) and measles-specific neutralizing antibody levels and IFN-γ ELISPOT responses were evaluated using chi-square tests. We found one replicated association for SNP rs372889 in the IL12RB1 gene (P=0.03 for Ab(high)CMI(high) vs. Ab(low)CMI(low)). Our findings demonstrate the importance of replicating genotypic-phenotypic associations, which can be achieved using immunophenotypic extremes and smaller sample sizes. We speculate that IL12RB1 polymorphisms may affect IL-12 and IL-23 binding and downstream effects, which are critical cytokines in the CMI response to measles vaccine.
Collapse
Affiliation(s)
- Sarah J White
- Mayo Clinic Vaccine Research Group, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | | | | | |
Collapse
|
38
|
Poland GA, Ovsyannikova IG, Kennedy RB, Haralambieva IH, Jacobson RM. Vaccinomics and a new paradigm for the development of preventive vaccines against viral infections. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2011; 15:625-36. [PMID: 21732819 PMCID: PMC3166201 DOI: 10.1089/omi.2011.0032] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this article we define vaccinomics as the integration of immunogenetics and immunogenomics with systems biology and immune profiling. Vaccinomics is based on the use of cutting edge, high-dimensional (so called "omics") assays and novel bioinformatics approaches to the development of next-generation vaccines and the expansion of our capabilities in individualized medicine. Vaccinomics will allow us to move beyond the empiric "isolate, inactivate, and inject" approach characterizing past vaccine development efforts, and toward a more detailed molecular and systemic understanding of the carefully choreographed series of biological processes involved in developing viral vaccine-induced "immunity." This enhanced understanding will then be applied to overcome the obstacles to the creation of effective vaccines to protect against pathogens, particularly hypervariable viruses, with the greatest current impact on public health. Here we provide an overview of how vaccinomics will inform vaccine science, the development of new vaccines and/or clinically relevant biomarkers or surrogates of protection, vaccine response heterogeneity, and our understanding of immunosenescence.
Collapse
Affiliation(s)
- Gregory A Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, Minnesota 55905, USA.
| | | | | | | | | |
Collapse
|