1
|
Suksaeree J, Wunnakup T, Chankana N, Charoenchai L, Monton C. Formulation Development of Directly Compressible Tablets Incorporating Trisamo Extract With Synergistic Antioxidant Activity. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2024; 2024:8920060. [PMID: 39421547 PMCID: PMC11483649 DOI: 10.1155/2024/8920060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/26/2024] [Accepted: 09/04/2024] [Indexed: 10/19/2024]
Abstract
This work investigates the synergistic antioxidant activity of the compositions of Trisamo (TSM) herbal formula containing the dried fruits of Terminalia chebula, Terminalia arjuna, and Terminalia bellirica. An augmented simplex lattice design was utilized to investigate the synergistic antioxidant activity, finding an equal mass ratio among the three herbal drugs to exhibit optimal synergistic antioxidant activity, with a combination index of less than 0.8. The optimal TSM extract was used to prepare directly compressible tablets employing a Box-Behnken design response surface methodology, optimizing compressional force (500, 1000, and 1500 psi), sodium starch glycolate (0%, 2%, and 4%), and magnesium stearate (0.5%, 1.0%, and 1.5%). Optimal parameters were a compressional force of 1000 psi, 2% sodium starch glycolate, and 0.5% magnesium stearate. The TSM extract tablet had a weight of 600.06 mg, a diameter of 12.78 mm, a thickness of 4.12 mm, a hardness of 6.85 kP, a friability of 0.30%, and a disintegration time of 1.81 min. Computer model predictions were verified with a low percentage error (≤ 10.00%). After 6 h, phenolic compounds were dissolved to an extent of approximately 40%-80%, including gallic acid (57.11%), corilagin (38.64%), chebulagic acid (58.49%), and chebulinic acid (81.44%). Stability data revealed that the phenolic compounds were retained for 3 months compared to the initial time point, with gallic acid at 81.43% and 100.27%, corilagin at 94.81% and 87.85%, chebulagic acid at 92.22% and 69.83%, and chebulinic acid at 107.00% and 85.54% at 30°C/75% RH and 45°C/75% RH, respectively. The summation of these four compounds did not change significantly when stored under either set of conditions. In summary, mixture design and response surface design were successfully utilized in the optimization of TSM extract tablets with synergistic antioxidant activity.
Collapse
Affiliation(s)
- Jirapornchai Suksaeree
- Department of Pharmaceutical Chemistry, College of Pharmacy, Rangsit University, Pathum Thani 12000, Thailand
| | - Thaniya Wunnakup
- Drug and Herbal Product Research and Development Center, College of Pharmacy, Rangsit University, Pathum Thani 12000, Thailand
| | - Natawat Chankana
- Sun Herb Thai Chinese Manufacturing, College of Pharmacy, Rangsit University, Pathum Thani 12000, Thailand
| | - Laksana Charoenchai
- Drug and Herbal Product Research and Development Center, College of Pharmacy, Rangsit University, Pathum Thani 12000, Thailand
| | - Chaowalit Monton
- Drug and Herbal Product Research and Development Center, College of Pharmacy, Rangsit University, Pathum Thani 12000, Thailand
| |
Collapse
|
2
|
Veronica N, Lee ESM, Heng PWS, Liew CV. Functionality of wet-granulated disintegrant in comparison to directly incorporated disintegrant in a poorly water-soluble tablet matrix. Int J Pharm 2024; 661:124467. [PMID: 39004293 DOI: 10.1016/j.ijpharm.2024.124467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/16/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
Tablet disintegration is crucial for drug release and subsequent systemic absorption. Although factors affecting the disintegrant's functionality have been extensively studied, the impact of wet granulation on the performance of disintegrants in a poorly water-soluble matrix has received much less attention. In this study, the disintegrants, crospovidone (XPVP), croscarmellose sodium (CCS) and sodium starch glycolate (SSG), were wet-granulated with dibasic calcium phosphate dihydrate as the poorly water-soluble matrix and polyvinylpyrrolidone as the binder. The effect of wet granulation was studied by evaluating tablet tensile strength and disintegratability. Comparison between tablets with granulated or ungranulated disintegrants as well those without disintegrants were also made. Different formulations showed different degrees of sensitivity to changes in tablet tensile strength and disintegratability post-wet granulation. Tablet tensile strength decreased for tablets with granulated disintegrant XPVP or CCS, but to a smaller extent for SSG. While tablets with granulated XPVP or CCS had increased disintegration time, the increment was lesser than for SSG, suggesting that wet granulation impacted a swelling disintegrant more. The findings showed that tablets with wet-granulated disintegrant had altered the disintegrant's functionality. These findings could provide better insights into changes in the disintegrant's functionality after wet granulation.
Collapse
Affiliation(s)
- Natalia Veronica
- GEA-NUS Pharmaceutical Processing Research Laboratory, Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, 18 Science Drive 4, 117543, Singapore
| | - Erinn Si Min Lee
- GEA-NUS Pharmaceutical Processing Research Laboratory, Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, 18 Science Drive 4, 117543, Singapore
| | - Paul Wan Sia Heng
- GEA-NUS Pharmaceutical Processing Research Laboratory, Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, 18 Science Drive 4, 117543, Singapore; Airlangga University, Kampus C Mulyorejo, Surabaya 60115, Indonesia
| | - Celine Valeria Liew
- GEA-NUS Pharmaceutical Processing Research Laboratory, Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, 18 Science Drive 4, 117543, Singapore; School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia(1).
| |
Collapse
|
3
|
Alhamhoom Y, Kumaraswamy T, Kumar A, Nanjappa SH, Prakash SS, Rahamathulla M, Thajudeen KY, Ahmed MM, Shivanandappa TB. Formulation and Evaluation of pH-Modulated Amorphous Solid Dispersion-Based Orodispersible Tablets of Cefdinir. Pharmaceutics 2024; 16:866. [PMID: 39065563 PMCID: PMC11279461 DOI: 10.3390/pharmaceutics16070866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Cefdinir (CEF) is a semi-synthetic third-generation broad-spectrum oral cephalosporin that exhibits poor solubility at lower pH values. Considering this, pH-modulated CEF solid dispersions (ASDs) were produced by solvent evaporation method employing various hydrophilic carriers and alkalizers. Among different carriers, ASDs produced using PEG 6000 with meglumine as alkalizer were found to significantly increase (p < 0.005) the drug solubility (4.50 ± 0.32 mg/mL) in pH 1.2. Fourier transform infrared spectrophotometry confirmed chemical integrity of CEF while differential scanning calorimetry (DSC) and X-ray diffractometry (XRD) indicated CEF was reduced to an amorphous state in ASD8. Antimicrobial assay performed by well diffusion method against Staphylococcus aureus (MTCC96) and Escherichia coli (MTCC118) demonstrated significantly superior (p < 0.001) efficacy of CEFSD compared to CEF. The porous orodispersible tablets (ODTs) of ASD8 (batch F5) were developed by incorporating ammonium bicarbonate as a subliming agent by direct compression, followed by vacuum drying displayed quick disintegration (27.11 ± 1.96 s) that met compendial norms and near-complete dissolution (93.85 ± 1.27%) in 30 min. The ODTs of ASD8 appear to be a promising platform to mitigate the pH-dependent solubility and dissolution issues associated with CEF in challenging physiological pH conditions prevalent in stomach. Thus, ODTs of ASD8 are likely to effectively manage various infections and avoid development of drug-resistant strains, thereby improving the curing rates.
Collapse
Affiliation(s)
- Yahya Alhamhoom
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Al Faraa, Abha 62223, Saudi Arabia; (Y.A.); (M.R.)
| | - Thanusha Kumaraswamy
- Department of Pharmaceutics, KLE College of Pharmacy, Rajajinagar, Bengaluru 560010, India; (T.K.); (A.K.); (S.S.P.)
| | - Avichal Kumar
- Department of Pharmaceutics, KLE College of Pharmacy, Rajajinagar, Bengaluru 560010, India; (T.K.); (A.K.); (S.S.P.)
| | | | - Sanjana S. Prakash
- Department of Pharmaceutics, KLE College of Pharmacy, Rajajinagar, Bengaluru 560010, India; (T.K.); (A.K.); (S.S.P.)
| | - Mohamed Rahamathulla
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Al Faraa, Abha 62223, Saudi Arabia; (Y.A.); (M.R.)
| | - Kamal Y. Thajudeen
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Al Faraa, Abha 62223, Saudi Arabia;
| | - Mohammed Muqtader Ahmed
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdul Aziz University, Al Kharj 11942, Saudi Arabia;
| | | |
Collapse
|
4
|
Yi Zheng A, Teng Loh M, Wan Sia Heng P, Wah Chan L. Selection of lubricant type and concentration for orodispersible tablets. Int J Pharm 2024; 657:124190. [PMID: 38701910 DOI: 10.1016/j.ijpharm.2024.124190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/04/2024] [Accepted: 04/30/2024] [Indexed: 05/05/2024]
Abstract
Lubricants are essential for most tablet formulations as they assist powder flow, prevent adhesion to tableting tools and facilitate tablet ejection. Magnesium stearate (MgSt) is an effective lubricant but may compromise tablet strength and disintegratability. In the design of orodispersible tablets, tablet strength and disintegratability are critical attributes of the dosage form. Hence, this study aimed to conduct an in-depth comparative study of MgSt with alternative lubricants, namely sodium lauryl sulphate (SLS), stearic acid (SA) and hydrogenated castor oil (HCO), for their effects on the tableting process as well as tablet properties. Powder blends were prepared with lactose, sodium starch glycolate or crospovidone as the disintegrant, and a lubricant at different concentrations. Angle of repose was determined for the mixtures. Comparative evaluation was carried out based on the ejection force, tensile strength, liquid penetration and disintegratability of the tablets produced. As the lubricant concentration increased, powder flow and tablet ejection improved. The lubrication efficiency generally decreased as follows: MgSt > HCO > SA > SLS. Despite its superior lubrication efficacy, MgSt is the only lubricant of four evaluated that reduced tablet tensile strength. Tablet disintegration time was strongly determined by tensile strength and liquid penetration, which were in turn affected by the lubricant type and concentration. All the above factors should be taken into consideration when deciding the type and concentration of lubricant for an orodispersible tablet formulation.
Collapse
Affiliation(s)
- Audrey Yi Zheng
- GEA-NUS Pharmaceutical Processing Research Laboratory, Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | - Mahn Teng Loh
- GEA-NUS Pharmaceutical Processing Research Laboratory, Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | - Paul Wan Sia Heng
- GEA-NUS Pharmaceutical Processing Research Laboratory, Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | - Lai Wah Chan
- GEA-NUS Pharmaceutical Processing Research Laboratory, Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore.
| |
Collapse
|
5
|
Waldner S, Wendelspiess E, Detampel P, Schlepütz CM, Huwyler J, Puchkov M. Advanced analysis of disintegrating pharmaceutical compacts using deep learning-based segmentation of time-resolved micro-tomography images. Heliyon 2024; 10:e26025. [PMID: 38384517 PMCID: PMC10878950 DOI: 10.1016/j.heliyon.2024.e26025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 02/23/2024] Open
Abstract
The mechanism governing pharmaceutical tablet disintegration is far from fully understood. Despite the importance of controlling a formulation's disintegration process to maximize the active pharmaceutical ingredient's bioavailability and ensure predictable and consistent release profiles, the current understanding of the process is based on indirect or superficial measurements. Formulation science could, therefore, additionally deepen the understanding of the fundamental physical principles governing disintegration based on direct observations of the process. We aim to help bridge the gap by generating a series of time-resolved X-ray micro-computed tomography (μCT) images capturing volumetric images of a broad range of mini-tablet formulations undergoing disintegration. Automated image segmentation was a prerequisite to overcoming the challenges of analyzing multiple time series of heterogeneous tomographic images at high magnification. We devised and trained a convolutional neural network (CNN) based on the U-Net architecture for autonomous, rapid, and consistent image segmentation. We created our own μCT data reconstruction pipeline and parameterized it to deliver image quality optimal for our CNN-based segmentation. Our approach enabled us to visualize the internal microstructures of the tablets during disintegration and to extract parameters of disintegration kinetics from the time-resolved data. We determine by factor analysis the influence of the different formulation components on the disintegration process in terms of both qualitative and quantitative experimental responses. We relate our findings to known formulation component properties and established experimental results. Our direct imaging approach, enabled by deep learning-based image processing, delivers new insights into the disintegration mechanism of pharmaceutical tablets.
Collapse
Affiliation(s)
- Samuel Waldner
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Klingelberstrasse 50, 4056, Basel, Switzerland
| | - Erwin Wendelspiess
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Klingelberstrasse 50, 4056, Basel, Switzerland
| | - Pascal Detampel
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Klingelberstrasse 50, 4056, Basel, Switzerland
| | | | - Jörg Huwyler
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Klingelberstrasse 50, 4056, Basel, Switzerland
| | - Maxim Puchkov
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Klingelberstrasse 50, 4056, Basel, Switzerland
| |
Collapse
|
6
|
Zheng AY, Liau YW, Heng PWS, Chan LW. Elucidating the effect of salt incorporation in tablets on tablet disintegratability. Int J Pharm 2024; 651:123759. [PMID: 38163527 DOI: 10.1016/j.ijpharm.2023.123759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/13/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
The disintegration of tablets plays a crucial role in facilitating drug release, and disintegrants are used in tablet formulations to promote the disintegration process. This study aimed to explore and understand the impact of salt incorporation on tablet disintegratability. The study was designed to modulate the microenvironment temperature of tablets through dissolution of salts incorporated in the formulation, with the aim to facilitate tablet disintegration. It was observed that the incorporation of salts generally prolonged tablet disintegration. The impact of incorporating salts on tablet properties was both concentration-dependent and multi-factorial. The observed effect of salts on tablet disintegration was likely influenced by a combination of factors, including different properties of the salts, enhanced solubility of components, the temperature difference between the tablet and the disintegration medium, the expansion of air resulting from increased microenvironment temperature, and the competition for water between salts and disintegrants. These factors collectively contributed to the overall impact of salts on tablet disintegration.
Collapse
Affiliation(s)
- Audrey Yi Zheng
- GEA-NUS Pharmaceutical Processing Research Laboratory, Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | - Yuan Wei Liau
- GEA-NUS Pharmaceutical Processing Research Laboratory, Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | - Paul Wan Sia Heng
- GEA-NUS Pharmaceutical Processing Research Laboratory, Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | - Lai Wah Chan
- GEA-NUS Pharmaceutical Processing Research Laboratory, Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore.
| |
Collapse
|
7
|
Mehmood Y, Shahid H, Barkat K, Arshad N, Rasul A, Uddin MN, Kazi M. Novel Hydrolytic Degradable Crosslinked Interpenetrating Polymeric Networks (IPNs): An Efficient Hybrid System to Manage the Controlled Release and Degradation of Misoprostol. Gels 2023; 9:697. [PMID: 37754378 PMCID: PMC10529051 DOI: 10.3390/gels9090697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/28/2023] Open
Abstract
PURPOSE The goal of this study was to make pH-sensitive HPMC/Neocel C19-based interpenetrating polymeric networks (IPNs) that could be used to treat different diseases. An assembled novel carrier system was demonstrated in this study to achieve multiple functions such as drug protection and self-regulated release. METHODS Misoprostol (MPT) was incorporated as a model drug in hydroxyl-propyl-methylcellulose (HPMC)- and Neocel C19-based IPNs for controlled release. HPMC- and Neocel C19-based IPNs were fabricated through an aqueous polymerization method by utilizing the polymers HPMC and Neocel C19, the initiator ammonium peroxodisulfate (APS), the crosslinker methylenebisacrylamide (MBA), and the monomer methacrylic acid (MAA). An IPN based on these materials was created using an aqueous polymerization technique. Samples of IPN were analyzed using scanning electron microscopy (SEM), atomic force microscopy (AFM), differential scanning calorimetry (DSC), thermal analysis (TGA), and powder X-ray diffraction (PXRD). The effects of the pH levels 1.2 and 7.4 on these polymeric networks were also studied in vitro and through swelling experiments. We also performed in vivo studies on rabbits using commercial tablets and hydrogels. RESULTS The thermal stability measured using TGA and DSC for the revised formulation was higher than that of the individual components. Crystallinity was low and amorphousness was high in the polymeric networks, as revealed using powder X-ray diffraction (PXRD). The results from the SEM analysis demonstrated that the surface of the polymeric networks is uneven and porous. Better swelling and in vitro results were achieved at a high pH (7.4), which endorses the pH-responsive characteristics of IPN. Drug release was also increased in 7.4 pH (80% in hours). The pharmacokinetic properties of the drugs showed improvement in our work with hydrogel. The tablet MRT was 13.17 h, which was decreased in the hydrogels, and its AUC was increased from 314.41 ng h/mL to 400.50 ng h/mL in hydrogels. The blood compatibility of the IPN hydrogel was measured using different weights (100 mg, 200 mg, 400 mg, and 600 mg; 5.34%, 12.51%, 20.23%, and 29.37%, respectively). CONCLUSIONS As a result, IPN composed of HPMC and Neocel C19 was successfully synthesized, and it is now possible to use it for the controlled release of MPT.
Collapse
Affiliation(s)
- Yasir Mehmood
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad P.O. Box 38000, Pakistan;
- Riphah Institute of Pharmaceutical Sciences (RIPS), Riphah International University Faisalabad, Faisalabad P.O. Box 38000, Pakistan
| | - Hira Shahid
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad P.O. Box 38000, Pakistan;
| | - Kashif Barkat
- Faculty of Pharmacy, The University of Lahore, Lahore P.O. Box 54000, Pakistan;
| | - Numera Arshad
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore P.O. Box 54000, Pakistan;
| | - Akhtar Rasul
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad P.O. Box 38000, Pakistan;
| | - Mohammad N. Uddin
- College of Pharmacy, Mercer University, 3001 Mercer University Drive, Atlanta, GA 30341, USA;
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
8
|
Mehmood Y, Shahid H, Arshad N, Rasul A, Jamshaid T, Jamshaid M, Jamshaid U, Uddin MN, Kazi M. Amikacin-Loaded Chitosan Hydrogel Film Cross-Linked with Folic Acid for Wound Healing Application. Gels 2023; 9:551. [PMID: 37504430 PMCID: PMC10379863 DOI: 10.3390/gels9070551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/25/2023] [Accepted: 07/02/2023] [Indexed: 07/29/2023] Open
Abstract
PURPOSE Numerous carbohydrate polymers are frequently used in wound-dressing films because they are highly effective materials for promoting successful wound healing. In this study, we prepared amikacin (AM)-containing hydrogel films through the cross-linking of chitosan (CS) with folic acid along with methacrylic acid (MA), ammonium peroxodisulfate (APS), and methylenebisacrylamide (MBA). In the current studies, an effort has been made to look at the possibilities of these materials in developing new hydrogel film wound dressings meant for a slow release of the antibiotic AM and to enhance the potential for wound healing. METHODS Free-radical polymerization was used to generate the hydrogel film, and different concentrations of the CS polymer were used. Measurements were taken of the film thickness, weight fluctuation, folding resistance, moisture content, and moisture uptake. HPLC, FTIR, SEM, DSC, and AFM analyses were some of the different techniques used to confirm that the films were successfully developed. RESULTS The AM release profile demonstrated regulated release over a period of 24 h in simulated wound media at pH 5.5 and 7.4, with a low initial burst release. The antibacterial activity against gram-negative bacterial strains exhibited substantial effectiveness, with inhibitory zones measuring approximately 20.5 ± 0.1 mm. Additionally, in vitro cytocompatibility assessments demonstrated remarkable cell viability, surpassing 80%, specifically when evaluated against human skin fibroblast (HFF-1) cells. CONCLUSIONS The exciting findings of this study indicate the promising potential for further development and testing of these hydrogel films, offering effective and controlled antibiotic release to enhance the process of wound healing.
Collapse
Affiliation(s)
- Yasir Mehmood
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad P.O. Box 38000, Pakistan
- Riphah Institute of Pharmaceutical Sciences (RIPS), Riphah International University Faisalabad, Faisalabad P.O. Box 38000, Pakistan
| | - Hira Shahid
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, GC University Faisalabad, Faisalabad P.O. Box 38000, Pakistan
| | - Numera Arshad
- Department of Pharmacy, COMSAT University Islamabad, Lahore Campus, Lahore P.O. Box 54000, Pakistan
| | - Akhtar Rasul
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad P.O. Box 38000, Pakistan
| | - Talha Jamshaid
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Jamshaid
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore P.O. Box 54000, Pakistan
| | - Usama Jamshaid
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore P.O. Box 54000, Pakistan
| | - Mohammad N Uddin
- College of Pharmacy, Mercer University, 3001 Mercer University Drive, Atlanta, GA 30341, USA
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
9
|
Warnken Z, Trementozzi A, Martins PP, Parkeh J, Koleng JJ, Smyth HDC, Brunaugh A. Development of Low-Cost, Weight-Adjustable Clofazimine Mini-Tablets for Treatment of Tuberculosis in Pediatrics. Eur J Pharm Sci 2023; 187:106470. [PMID: 37207942 DOI: 10.1016/j.ejps.2023.106470] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023]
Abstract
Clofazimine (CFZ) is an important component of the World Health Organization's (WHO) recommended all-oral drug regimen for treatment of multi-drug resistant tuberculosis (MDR-TB). However, the lack of a dividable oral dosage form has limited the use of the drug in pediatric populations, who may require lowering of the dose to reduce the likelihood of adverse drug events. In this study, pediatric-friendly CFZ mini-tablets were prepared from micronized powder via direct compression. Rapid disintegration and maximized dissolution in GI fluids was achieved using an iterative formulation design process. Pharmacokinetic (PK) parameters of the optimized mini-tablets were obtained in Sprague-Dawley rats and compared against an oral suspension of micronized CFZ particles to examine the effect of processing and formulation on the oral absorption of the drug. Differences in maximum concentration and area under the curve between the two formulations were non-significant at the highest dosing level tested. Variability between rats prevented bioequivalence from being determined according to guidelines outlined by the Food and Drug Administration (FDA). These studies provide an important proof-of-concept for an alternative, low-cost formulation and processing approach for the oral delivery of CFZ in manner that is suitable for children as young as 6 months of age.
Collapse
Affiliation(s)
- Zachary Warnken
- Via Therapeutics, 2409 University Ave, Austin, TX, USA, 78712
| | | | | | - Jagruti Parkeh
- Via Therapeutics, 2409 University Ave, Austin, TX, USA, 78712
| | - John J Koleng
- Via Therapeutics, 2409 University Ave, Austin, TX, USA, 78712
| | - Hugh D C Smyth
- Via Therapeutics, 2409 University Ave, Austin, TX, USA, 78712; University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, 2409 University Ave, Austin, TX, USA, 78712
| | - Ashlee Brunaugh
- Via Therapeutics, 2409 University Ave, Austin, TX, USA, 78712; University of Michigan, College of Pharmacy, Department of Pharmaceutical Sciences, 428 Church St, Ann Arbor, MI, USA, 48109.
| |
Collapse
|
10
|
Suksaeree J, Monton C, Charoenchai L, Chankana N. Microwave-assisted drying of Prasakanphlu herbal granules and formulation development of Prasakanphlu tablets: Design of Experiments approach. ADVANCES IN TRADITIONAL MEDICINE 2023. [DOI: 10.1007/s13596-023-00681-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
11
|
Jarungsirawat R, Kajthunyakarn W, Siriwachirachai C, Pongjanyakul T. Formulation Development of Fluconazole-Loaded Lactose Agglomerate Tablets as a Disinfectant for Candida-Associated Dentures. Pharmaceutics 2022; 14:pharmaceutics14081723. [PMID: 36015349 PMCID: PMC9414907 DOI: 10.3390/pharmaceutics14081723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/13/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
Denture stomatitis is induced by irritation or an inflammatory response when wearing a denture for a long time. Candida species are the leading cause of biofilm formation on the surfaces and fissures of dentures. Thus, this study aimed to formulate and evaluate fluconazole tablets for use in preparing a disinfectant mixture with anticandidal activity. For size enlargement of lactose, a tablet diluent, using polyvinylpyrrolidone (PVP) as an agglomerating agent, was developed to enhance the flowability and compactability of the tablet preparation using direct compression. Lactose agglomerates with 6% PVP were used as a diluent for the fluconazole tablets. Furthermore, other excipients were used, such as a buffering agent, disintegrant, surfactant, and lubricant. The fluconazole tablets obtained could be dispersed and dissolved within 10 min in distilled water to achieve a clear mixture, providing a neutral pH and 96% transmittance. Furthermore, the fluconazole mixtures displayed anticandidal efficiency against C. albicans with a similar effect to the standard fluconazole solution. These findings suggest that the fluconazole-loaded lactose agglomerate tablets show strong potential when prepared using direct compression. The fluconazole mixtures made by dispersing the tablets can be used as a disinfectant for Candida-associated dentures, particularly in patients with oral candidiasis.
Collapse
Affiliation(s)
- Rapee Jarungsirawat
- Division of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Wanassnant Kajthunyakarn
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Srinakharinwirot University, Nakhon Nayok 26120, Thailand
| | - Chaipat Siriwachirachai
- Division of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Thaned Pongjanyakul
- Division of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
- Correspondence: ; Tel.: +66-850-113-176
| |
Collapse
|
12
|
Rao MRP, Sapate S, Sonawane A. Pharmacotechnical Evaluation by SeDeM Expert System to Develop Orodispersible Tablets. AAPS PharmSciTech 2022; 23:133. [PMID: 35534652 DOI: 10.1208/s12249-022-02285-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 04/18/2022] [Indexed: 11/30/2022] Open
Abstract
Sediment delivery model (SeDeM) system is innovative tool to correlate micromeritic properties of powders with compressibility. It involves computation of indices which facilitate direct compressibility of solids and enable corrective measures through particle engineering. Study had multiple objectives, viz, (i) to enhance solubility of BCS class II, nevirapine using solid dispersions; (ii) SeDeM analyses of excipients and solid dispersions to analyze direct compressibility; and (iii) prepare orodispersible tablets (ODT). Solid dispersions were prepared by solvent evaporation. Superdisintegrants and solid dispersions were analyzed for primary indices of dimension, compressibility, flowability, stability, and disgregability derived from micromeritic properties. Radar diagrams were constructed to provide visual clues to deficient properties for direct compressibility. ODTs were prepared using excipients which passed criteria for direct compressibility and evaluated for tablet properties. Solid dispersions with Eudragit S100 revealed 6 to 10 fold increase in solubility in various dissolution media including biorelevant media in comparison with plain drug. Solubility was found to be pH dependent. SeDeM analyses facilitated identification of superdisintegrants and excipients with unfavorable compressibility. Radar diagrams provided a clear pictorial evidence of lacunae in powder properties. Based on SeDeM results, tablets were formulated by direct compression using crosspovidone, croscarmellose sodium, and mannitol. All batches showed 40% release in first minute in simulated salivary fluid.
Collapse
|
13
|
Puzzle Out Machine Learning Model-Explaining Disintegration Process in ODTs. Pharmaceutics 2022; 14:pharmaceutics14040859. [PMID: 35456693 PMCID: PMC9044744 DOI: 10.3390/pharmaceutics14040859] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 02/05/2023] Open
Abstract
Tablets are the most common dosage form of pharmaceutical products. While tablets represent the majority of marketed pharmaceutical products, there remain a significant number of patients who find it difficult to swallow conventional tablets. Such difficulties lead to reduced patient compliance. Orally disintegrating tablets (ODT), sometimes called oral dispersible tablets, are the dosage form of choice for patients with swallowing difficulties. ODTs are defined as a solid dosage form for rapid disintegration prior to swallowing. The disintegration time, therefore, is one of the most important and optimizable critical quality attributes (CQAs) for ODTs. Current strategies to optimize ODT disintegration times are based on a conventional trial-and-error method whereby a small number of samples are used as proxies for the compliance of whole batches. We present an alternative machine learning approach to optimize the disintegration time based on a wide variety of machine learning (ML) models through the H2O AutoML platform. ML models are presented with inputs from a database originally presented by Han et al., which was enhanced and curated to include chemical descriptors representing active pharmaceutical ingredient (API) characteristics. A deep learning model with a 10-fold cross-validation NRMSE of 8.1% and an R2 of 0.84 was obtained. The critical parameters influencing the disintegration of the directly compressed ODTs were ascertained using the SHAP method to explain ML model predictions. A reusable, open-source tool, the ODT calculator, is now available at Heroku platform.
Collapse
|
14
|
Technical insight into potential functional-related characteristics (FRCs) of sodium starch glycolate, croscarmellose sodium and crospovidone. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Than YM, Suriyarak S, Titapiwatanakun V. Rheological Investigation of Hydroxypropyl Cellulose–Based Filaments for Material Extrusion 3D Printing. Polymers (Basel) 2022; 14:polym14061108. [PMID: 35335439 PMCID: PMC8948723 DOI: 10.3390/polym14061108] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 12/22/2022] Open
Abstract
The rheological properties of drug–polymer mixtures have a significant influence on their processability when using transformative techniques, such as hot-melt-extrusion and material-extrusion 3D printing; however, there has been limited data on printable systems. This study investigated the rheological properties of 17 formulations of successful printed tablets for both immediate and controlled release. Hydroxypropyl cellulose was used in various ratios to obtain printable filaments in combination with various drugs (indomethacin or theophylline), polymers and disintegrants. The complex viscosity, shear thinning behavior and viscoelastic properties were affected by the drug load, polymer composite, disintegrant type, temperature and shear rate applied. Larger windows of processing viscosity were revealed. The viscosity of the printable blends could be as low as the range 10–1000 Pa·s at 100 rad/s angular frequency. All formulations showed shear thinning behavior with a broad slope of complex viscosity from −0.28 to −0.74. The addition of 30–60% drug or disintegrant tended to have greater viscosity values. While microcrystalline cellulose was found to be an alternative additive to lower the storage and loss modulus among disintegrants. This rheological data could be useful for the preformulation and further development of material-extrusion 3D-printing medicines.
Collapse
Affiliation(s)
- Yee Mon Than
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Sarisa Suriyarak
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Emerging Processes for Food Functionality Design Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: (S.S.); (V.T.)
| | - Varin Titapiwatanakun
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
- Correspondence: (S.S.); (V.T.)
| |
Collapse
|
16
|
Sohail Arshad M, Zafar S, Yousef B, Alyassin Y, Ali R, AlAsiri A, Chang MW, Ahmad Z, Ali Elkordy A, Faheem A, Pitt K. A review of emerging technologies enabling improved solid oral dosage form manufacturing and processing. Adv Drug Deliv Rev 2021; 178:113840. [PMID: 34147533 DOI: 10.1016/j.addr.2021.113840] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 12/20/2022]
Abstract
Tablets are the most widely utilized solid oral dosage forms because of the advantages of self-administration, stability, ease of handling, transportation, and good patient compliance. Over time, extensive advances have been made in tableting technology. This review aims to provide an insight about the advances in tablet excipients, manufacturing, analytical techniques and deployment of Quality by Design (QbD). Various excipients offering novel functionalities such as solubility enhancement, super-disintegration, taste masking and drug release modifications have been developed. Furthermore, co-processed multifunctional ready-to-use excipients, particularly for tablet dosage forms, have benefitted manufacturing with shorter processing times. Advances in granulation methods, including moist, thermal adhesion, steam, melt, freeze, foam, reverse wet and pneumatic dry granulation, have been proposed to improve product and process performance. Furthermore, methods for particle engineering including hot melt extrusion, extrusion-spheronization, injection molding, spray drying / congealing, co-precipitation and nanotechnology-based approaches have been employed to produce robust tablet formulations. A wide range of tableting technologies including rapidly disintegrating, matrix, tablet-in-tablet, tablet-in-capsule, multilayer tablets and multiparticulate systems have been developed to achieve customized formulation performance. In addition to conventional invasive characterization methods, novel techniques based on laser, tomography, fluorescence, spectroscopy and acoustic approaches have been developed to assess the physical-mechanical attributes of tablet formulations in a non- or minimally invasive manner. Conventional UV-Visible spectroscopy method has been improved (e.g. fiber-optic probes and UV imaging-based approaches) to efficiently record the dissolution profile of tablet formulations. Numerous modifications in tableting presses have also been made to aid machine product changeover, cleaning, and enhance efficiency and productivity. Various process analytical technologies have been employed to track the formulation properties and critical process parameters. These advances will contribute to a strategy for robust tablet dosage forms with excellent performance attributes.
Collapse
Affiliation(s)
| | - Saman Zafar
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Bushra Yousef
- Leicester School of Pharmacy, De Montfort University, Leicester, United Kingdom
| | - Yasmine Alyassin
- Leicester School of Pharmacy, De Montfort University, Leicester, United Kingdom
| | - Radeyah Ali
- Leicester School of Pharmacy, De Montfort University, Leicester, United Kingdom
| | - Ali AlAsiri
- Leicester School of Pharmacy, De Montfort University, Leicester, United Kingdom; Pharmacy College, Pharmaceutics Department, Najran University, Najran, Saudi Arabia
| | - Ming-Wei Chang
- Nanotechnology and Integrated Bioengineering Centre, University of Ulster, Jordanstown Campus, Newtownabbey BT37 0QB, Northern Ireland, United Kingdom
| | - Zeeshan Ahmad
- Leicester School of Pharmacy, De Montfort University, Leicester, United Kingdom
| | - Amal Ali Elkordy
- School of Pharmacy and Pharmaceutical Sciences, Faculty of Health Sciences and Wellbeing,University of Sunderland, Sunderland, United Kingdom
| | - Ahmed Faheem
- School of Pharmacy and Pharmaceutical Sciences, Faculty of Health Sciences and Wellbeing,University of Sunderland, Sunderland, United Kingdom; Faculty of Pharmacy, University of Tanta, Tanta, Egypt
| | - Kendal Pitt
- Manufacturing, Science & Technology, Pharma Supply Chain, GlaxoSmithKline, Ware, United Kingdom.
| |
Collapse
|
17
|
3D-Printed Oral Dosage Forms: Mechanical Properties, Computational Approaches and Applications. Pharmaceutics 2021; 13:pharmaceutics13091401. [PMID: 34575475 PMCID: PMC8467731 DOI: 10.3390/pharmaceutics13091401] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/23/2021] [Accepted: 08/30/2021] [Indexed: 12/18/2022] Open
Abstract
The aim of this review is to present the factors influencing the mechanical properties of 3D-printed oral dosage forms. It also explores how it is possible to use specific excipients and printing parameters to maintain the structural integrity of printed drug products while meeting the needs of patients. Three-dimensional (3D) printing is an emerging manufacturing technology that is gaining acceptance in the pharmaceutical industry to overcome traditional mass production and move toward personalized pharmacotherapy. After continuous research over the last thirty years, 3D printing now offers numerous opportunities to personalize oral dosage forms in terms of size, shape, release profile, or dose modification. However, there is still a long way to go before 3D printing is integrated into clinical practice. 3D printing techniques follow a different process than traditional oral dosage from manufacturing methods. Currently, there are no specific guidelines for the hardness and friability of 3D printed solid oral dosage forms. Therefore, new regulatory frameworks for 3D-printed oral dosage forms should be established to ensure that they meet all appropriate quality standards. The evaluation of mechanical properties of solid dosage forms is an integral part of quality control, as tablets must withstand mechanical stresses during manufacturing processes, transportation, and drug distribution as well as rough handling by the end user. Until now, this has been achieved through extensive pre- and post-processing testing, which is often time-consuming. However, computational methods combined with 3D printing technology can open up a new avenue for the design and construction of 3D tablets, enabling the fabrication of structures with complex microstructures and desired mechanical properties. In this context, the emerging role of computational methods and artificial intelligence techniques is highlighted.
Collapse
|
18
|
Suzuki N, Fukui K, Otaka K, Suzuki T, Fukami T. Monitoring of Cocrystal Dissociation during the Wet Granulation Process in the Presence of Disintegrants by Using Low-Frequency Raman Spectroscopy. Chem Pharm Bull (Tokyo) 2021; 69:877-885. [PMID: 34470952 DOI: 10.1248/cpb.c21-00302] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this study was to evaluate the effect of three coformers and five disintegrants in the granulation formulation on the dissociation of cocrystal during the granulation process by monitoring wet granulation with probe-type low-frequency Raman (LF-Raman) spectroscopy. As model cocrystals, paracetamol (APAP)-oxalic acid (OXA), APAP-maleic acid (MLA), and APAP-trimethylglycine (TMG) were used. The monitoring of the granulation recipe containing cocrystals during wet granulation was performed over time with high-performance LF-Raman spectrometry and the dissociation rate was calculated from the results of multivariate analysis of LF-Raman spectra. The dissociation rate decreased in the order of APAP-TMG, APAP-OXA, and APAP-MLA, showing the same order as observed in Powder X-ray diffraction measurements. Furthermore, to compare the effect of disintegrants on the dissociation rate of APAP-OXA, LF-Raman monitoring was performed for the granulation recipes containing five typical disintegrants (two low-substitution hydroxypropyl cellulose (HPC), cornstarch (CSW), carmellose sodium (CMC), and crospovidone (CRP)). The dissociation rate of APAP-OXA decreased in the order of CSW, HPCs, CMC, and CRP. This difference in the dissociation rate of APAP-OXA was thought to be due to the disintegration mechanism of the disintegrants and the water absorption ratio, which was expected to affect the water behavior on the disintegrant surface during wet granulation. These results suggested that probe-type LF-Raman spectroscopy is useful to monitor the dissociation behavior of cocrystals during wet granulation and can compare the relative stability of cocrystal during wet granulation between different formulations.
Collapse
Affiliation(s)
- Naoto Suzuki
- Laboratory of Pharmaceutics, School of Pharmacy, Nihon University
| | - Kanako Fukui
- Department of Molecular Pharmaceutics, Meiji Pharmaceutical University
| | - Koki Otaka
- Department of Molecular Pharmaceutics, Meiji Pharmaceutical University
| | - Toyofumi Suzuki
- Laboratory of Pharmaceutics, School of Pharmacy, Nihon University
| | - Toshiro Fukami
- Department of Molecular Pharmaceutics, Meiji Pharmaceutical University
| |
Collapse
|
19
|
Steffens KE, Wagner KG. Immediate-Release Formulations Produced via Twin-Screw Melt Granulation: Systematic Evaluation of the Addition of Disintegrants. AAPS PharmSciTech 2021; 22:183. [PMID: 34132921 PMCID: PMC8208916 DOI: 10.1208/s12249-021-02056-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/15/2021] [Indexed: 11/30/2022] Open
Abstract
The current study evaluated the effect of location and amount of various superdisintegrants on the properties of tablets made by twin-screw melt granulation (TSMG). Sodium-croscarmellose (CCS), crospovidone (CPV), and sodium starch glycolate (SSG) were used in various proportions intra- and extra-granular. Tabletability, compactibility, compressibility as well as friability, disintegration, and dissolution performance were assessed. The extra-granular addition resulted in the fasted disintegration and dissolution. CPV performed superior to CCS and SSG. Even if the solid fraction (SF) of the granules was lower for CPV, only a minor decrease in tabletability was observed, due to the high plastic deformation of the melt granules. The intra-granular addition of CPV resulted in a more prolonged dissolution profile, which could be correlated to a loss in porosity during tableting. The 100% intra-granular addition of the CPV resulted in a distinct decrease of the disintegration efficiency, whereas the performance of SSG was unaffected by the granulation process. CCS was not suitable to be used for the production of an immediate-release formulation, when added in total proportion into the granulation phase, but its efficiency was less impaired compared to CPV. Shortest disintegration (78 s) and dissolution (Q80: 4.2 min) was achieved with CPV extra-granular. Using CPV and CCS intra-granular resulted in increased disintegration time and Q80. However, at a higher level of appx. 500 s and appx. 15 min, only SSG showed a process and location independent disintegration and dissolution performance.
Collapse
|
20
|
Berardi A, Bisharat L, Quodbach J, Abdel Rahim S, Perinelli DR, Cespi M. Advancing the understanding of the tablet disintegration phenomenon - An update on recent studies. Int J Pharm 2021; 598:120390. [PMID: 33607196 DOI: 10.1016/j.ijpharm.2021.120390] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/01/2021] [Accepted: 02/10/2021] [Indexed: 10/22/2022]
Abstract
Disintegration is the de-aggregation of particles within tablets upon exposure to aqueous fluids. Being an essential step in the bioavailability cascade, disintegration is a fundamental quality attribute of immediate release tablets. Although the disintegration phenomenon has been studied for over six decades, some gaps of knowledge and research questions still exist. Three reviews, published in 2015, 2016 and 2017, have discussed the literature relative to tablet disintegration and summarised the understanding of this topic. Yet, since then more studies have been published, adding to the established body of knowledge. This article guides a step forward towards the comprehension of disintegration by reviewing, concisely, the most recent scientific updates on this topic. Initially, we revisit the mechanisms of disintegration with relation to the three most used superdisintegrants, namely sodium starch glycolate, croscarmellose sodium and crospovidone. Then, the influence of formulation, storage, manufacturing and media conditions on disintegration is analysed. This is followed by an excursus on novel disintegrants. Finally, we highlight unanswered research questions and envision future research venues in the field.
Collapse
Affiliation(s)
- Alberto Berardi
- Department of Pharmaceutical Sciences and Pharmaceutics Faculty of Pharmacy, Applied Science Private University, Amman 11931, Jordan.
| | - Lorina Bisharat
- Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Julian Quodbach
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University Duesseldorf, Germany
| | - Safwan Abdel Rahim
- Department of Pharmaceutical Sciences and Pharmaceutics Faculty of Pharmacy, Applied Science Private University, Amman 11931, Jordan
| | - Diego R Perinelli
- School of Pharmacy, University of Camerino, 62032 Camerino, MC, Italy
| | - Marco Cespi
- School of Pharmacy, University of Camerino, 62032 Camerino, MC, Italy
| |
Collapse
|
21
|
Microstructure based simulation of the disintegration and dissolution of immediate release pharmaceutical tablets. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2020.08.093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Mehanna MM, Mneimneh AT, Domiati S, Allam AN. Tadalafil-Loaded Limonene-Based Orodispersible Tablets: Formulation, in vitro Characterization and in vivo Appraisal of Gastroprotective Activity. Int J Nanomedicine 2020; 15:10099-10112. [PMID: 33363369 PMCID: PMC7754088 DOI: 10.2147/ijn.s288552] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022] Open
Abstract
Background Gastric ulcer is a prevalent disease with various etiologies, including non-steroidal anti-inflammatory drugs and alcohol consumption. This study aimed to explore the dual gastric protection effect of tadalafil and limonene as a self-nanoemulsifying system (SNES)-based orodispersible tablets. Methods Tadalafil-loaded limonene-based SNES was prepared, and the optimum formula was characterized in terms of particle size (PS), polydispersity index (PDI), and zeta potential (ZP) then loaded on various porous carriers to formulate lyophilized orodispersible tablets (ODTs). The ODTs were evaluated via determining hardness, friability, content uniformity, wetting, and disintegration time. The selected ODT was examined for its gastric ulcer protective effect against alcohol-induced ulcers in rat model. Ulcer score and ulcer index were computed for rats stomachs that were inspected macroscopically and histopathologically. Results The prepared SNES had droplet size of 104 nm, polydispersity index of 0.2, and zeta potential of −15.4 mV. From the different ODTs formulated, the formula with superior wetting time: 23.67 s, outstanding disintegration time: 28 s, accepted hardness value: 3.11 kg/cm2 and friability: 0.6% was designated. A significant gastroprotective effect of the unloaded and tadalafil-loaded ODTs was recognized compared to the omeprazole pre-treated group. Moreover, the histopathological analysis displayed very mild inflammation in the limonene-based ODTs group and intact structure in the tadalafil-loaded pre-treated animals. Conclusion Limonene gastroprotective effect functioned along with tadalafil in the form of SNES-incorporated ODTs could serve as a promising revenue for better efficacy in gastric ulcer prevention.
Collapse
Affiliation(s)
- Mohammed M Mehanna
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.,Department of Pharmaceutical Technology, Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon
| | - Amina Tarek Mneimneh
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon
| | - Souraya Domiati
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon
| | - Ahmed N Allam
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
23
|
Kurakula M, Rao GSNK. Pharmaceutical assessment of polyvinylpyrrolidone (PVP): As excipient from conventional to controlled delivery systems with a spotlight on COVID-19 inhibition. J Drug Deliv Sci Technol 2020; 60:102046. [PMID: 32905026 PMCID: PMC7462970 DOI: 10.1016/j.jddst.2020.102046] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/04/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022]
Abstract
Polyvinylpyrrolidone (PVP) is a water-soluble polymer obtained by polymerization of monomer N-vinylpyrrolidone. PVP is an inert, non-toxic, temperature-resistant, pH-stable, biocompatible, biodegradable polymer that helps to encapsulate and cater both hydrophilic and lipophilic drugs. These advantages enable PVP a versatile excipient in the formulation development of broad conventional to novel controlled delivery systems. PVP has tunable properties and can be used as a brace component for gene delivery, orthopedic implants, and tissue engineering applications. Based on different molecular weights and modified forms, PVP can lead to exceptional beneficial features with varying chemical properties. Graft copolymerization and other techniques assist PVP to conjugate with poorly soluble drugs that can inflate bioavailability and even introduces the desired swelling tract for their control or sustained release. The present review provides chemistry, mechanical, physicochemical properties, evaluation parameters, dewy preparation methods of PVP derivatives intended for designing conventional to controlled systems for drug, gene, and cosmetic delivery. The past and growing interest in PVP establishes it as a promising polymer to enhance the trait and performance of current generation pharmaceutical dosage forms. Furthermore, the scrutiny explores existing patents, marketed products, new and futuristic approaches of PVP that have been identified and scope for future development, characterization, and its use. The exploration spotlights the importance and role of PVP in the design of Povidone-iodine (PVP-I) and clinical trials to assess therapeutic efficacy against the COVID-19 in the current pandemic scenario.
Collapse
Affiliation(s)
- Mallesh Kurakula
- Department of Biomedical Engineering, The University of Memphis, Memphis, TN 38152, USA
| | - G S N Koteswara Rao
- College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP, 522502, India
| |
Collapse
|
24
|
Bauhuber S, Warnke G, Berardi A. Disintegrant Selection in Hydrophobic Tablet Formulations. J Pharm Sci 2020; 110:2028-2037. [PMID: 33181185 DOI: 10.1016/j.xphs.2020.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/16/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023]
Abstract
The hydrophobicity of poorly soluble drugs can delay tablets disintegration. We probed here the influence of different disintegrants on the disintegration of challenging hydrophobic formulations. Tablets containing diluents, hydrogenated vegetable oil and either sodium starch glycolate (SSG), croscarmellose sodium (CCS) or crospovidone (XPVP) were prepared. The disintegration time of tablets was tested immediately and after storage at 40 °C and 75% RH in sealed bags. Results show that storage and compression force had a negative effect on disintegration, particularly with 1% disintegrant. The performance of the three disintegrants was in the following order: CCS (best) > SSG > XPVP. For example, tablets containing 1% CCS, SSG and XPVP, compressed at 20 kN, disintegrated in ≈3, ≈12 and ≈69 min, respectively, after two months storage. Settling volume, liquid uptake and effect of storage on physical properties of the pure disintegrants were also studied and revealed that the reduced performance of XPVP is related to: 1) its rapid, yet short-range expansion upon liquid exposure and 2) its change of behaviour on storage. In conclusion, CCS ensured rapid disintegration at low concentration across various compression forces and storage times. Thus, the use of CCS in hydrophobic tablet formulations is recommended.
Collapse
Affiliation(s)
- Sonja Bauhuber
- Technical Competence Center, JRS PHARMA GmbH & Co. KG, 73494 Rosenberg, Germany
| | - Gernot Warnke
- Technical Competence Center, JRS PHARMA GmbH & Co. KG, 73494 Rosenberg, Germany
| | - Alberto Berardi
- Department of Pharmaceutical Sciences and Pharmaceutics, Faculty of Pharmacy, Applied Science Private University, Amman 11931, Jordan.
| |
Collapse
|
25
|
|
26
|
Zarmpi P, Flanagan T, Meehan E, Mann J, Østergaard J, Fotaki N. Biopharmaceutical implications of excipient variability on drug dissolution from immediate release products. Eur J Pharm Biopharm 2020; 154:195-209. [PMID: 32681966 DOI: 10.1016/j.ejpb.2020.07.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 07/02/2020] [Accepted: 07/13/2020] [Indexed: 12/13/2022]
Abstract
Elucidating the impact of excipient variability on oral product performance in a biopharmaceutical perspective would be beneficial and allow excipient implementation on Quality by Design (QbD) approaches. The current study investigated the impact of varying viscosity of binders (hypromellose (HPMC)) and superdisintegrants (sodium starch glycolate (SSG)) and particle size distribution of lubricants (magnesium stearate (MgSt)) on the in vitro dissolution of a highly and a poorly soluble drug from immediate release formulations. Compendial (pharmacopoeia buffers) and biorelevant (media simulating the gastrointestinal fluids) media and the USP 2 and USP 4 apparatuses were used to assess the exerted excipient effects on drug dissolution. Real-time dissolution UV imaging provided mechanistic insights into disintegration and dissolution of the immediate release formulations. Varying the viscosity type of HPMC or SSG did not significantly affect drug dissolution irrespective of the compound used. Faster drug dissolution was observed when decreasing the particle size of MgSt for the highly soluble drug. The use of real-time dissolution UV Imaging revealed the influential role of excipient variability on tablet disintegration, as for the highly soluble drug, tablets containing high viscosity HPMC or low particle size MgSt disintegrated faster as compared to the control tablets while for the poorly soluble drug, slower tablet disintegration was observed when increasing the viscosity of the HPMC as compared to the control tablets. Changes in drug dissolution when varying excipients may be anticipated if the excipient change has previously affected drug solubility. The use of multivariate data analysis revealed the influential biopharmaceutical factors such as critical excipient types/properties, drug aqueous solubility, medium/hydrodynamic characteristics affecting the impact of excipient variability on in vitro drug dissolution.
Collapse
Affiliation(s)
- P Zarmpi
- Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom
| | - T Flanagan
- Pharmaceutical Technology & Development, AstraZeneca, Macclesfield, United Kingdom; Currently at UCB Pharma, Chemin du Foriest, B - 1420 Braine-l'Alleud, Belgium
| | - E Meehan
- Pharmaceutical Technology & Development, AstraZeneca, Macclesfield, United Kingdom
| | - J Mann
- Pharmaceutical Technology & Development, AstraZeneca, Macclesfield, United Kingdom
| | - J Østergaard
- Department of Pharmacy, Faculty of Health and Medicinal Sciences, University of Copenhagen, Denmark
| | - N Fotaki
- Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom.
| |
Collapse
|
27
|
Zarmpi P, Flanagan T, Meehan E, Mann J, Fotaki N. Biopharmaceutical Understanding of Excipient Variability on Drug Apparent Solubility Based on Drug Physicochemical Properties. Case Study: Superdisintegrants. AAPS JOURNAL 2020; 22:46. [PMID: 32048079 PMCID: PMC7012964 DOI: 10.1208/s12248-019-0406-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/06/2019] [Indexed: 01/28/2023]
Abstract
The presence of different excipient types/brands in solid oral dosage forms may affect product performance and drug bioavailability. Understanding the biopharmaceutical implications of superdisintegrant variability (changes in material properties), variation (changes in excipient amount) and interchangeability (use of different excipient types with the same intended functionality) in oral drug performance would be beneficial for the development of robust final dosage forms. The current study investigated the impact of superdisintegrants (sodium starch glycolate, croscarmellose sodium, crospovidone) on the apparent solubility of drugs with different physicochemical properties (drug ionisation, drug lipophilicity, drug aqueous solubility). Compendial and biorelevant media were used to assess the impact of gastrointestinal conditions on the effects of excipient on drug apparent solubility. For the majority of compounds, changes in drug apparent solubility were not observed in superdisintegrant presence, apart from the cases of highly ionised compounds (significant decrease in drug solubility) and/or compounds that aggregate/precipitate in solution (significant increase in drug solubility). Excipient variability did not greatly affect the impact of excipients on drug apparent solubility. The use of multivariate data analysis identified the biopharmaceutical factors affecting excipient performance. The construction of roadmaps revealed that superdisintegrants may be of low risk for the impact of excipients on oral drug performance based on drug solubility alone; superdisintegrants activity could still be a risk for oral bioavailability due to their effects on tablet disintegration.
Collapse
Affiliation(s)
- Panagiota Zarmpi
- Department of Pharmacy and Pharmacology, University of Bath, Bath, BA2 7AY, UK
| | - Talia Flanagan
- Pharmaceutical Technology & Development, AstraZeneca, Macclesfield, UK.,UCB Pharma, Chemin du Foriest, B-1420, Braine-l'Alleud, Belgium
| | - Elizabeth Meehan
- Pharmaceutical Technology & Development, AstraZeneca, Macclesfield, UK
| | - James Mann
- Pharmaceutical Technology & Development, AstraZeneca, Macclesfield, UK
| | - Nikoletta Fotaki
- Department of Pharmacy and Pharmacology, University of Bath, Bath, BA2 7AY, UK.
| |
Collapse
|
28
|
Hauck JS, Lowe J, Rastogi N, McElhanon KE, Petrosino JM, Peczkowski KK, Chadwick AN, Zins JG, Accornero F, Janssen PML, Weisleder NL, Rafael-Fortney JA. Mineralocorticoid receptor antagonists improve membrane integrity independent of muscle force in muscular dystrophy. Hum Mol Genet 2020; 28:2030-2045. [PMID: 30759207 DOI: 10.1093/hmg/ddz039] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/04/2019] [Accepted: 02/07/2019] [Indexed: 12/15/2022] Open
Abstract
Mineralocorticoid receptor (MR) drugs have been used clinically for decades to treat cardiovascular diseases. MR antagonists not only show preclinical efficacy for heart in Duchenne muscular dystrophy (DMD) models but also improve skeletal muscle force and muscle membrane integrity. The mechanisms of action of MR antagonists in skeletal muscles are entirely unknown. Since MR are present in many cell types in the muscle microenvironment, it is critical to define cell-intrinsic functions in each cell type to ultimately optimize antagonist efficacy for use in the widest variety of diseases. We generated a new conditional knockout of MR in myofibers and quantified cell-intrinsic mechanistic effects on functional and histological parameters in a DMD mouse model. Skeletal muscle MR deficiency led to improved respiratory muscle force generation and less deleterious fibrosis but did not reproduce MR antagonist efficacy on membrane susceptibility to induced damage. Surprisingly, acute application of MR antagonist to muscles led to improvements in membrane integrity after injury independent of myofiber MR. These data demonstrate that MR antagonists are efficacious to dystrophic skeletal muscles through both myofiber intrinsic effects on muscle force and downstream fibrosis and extrinsic functions on membrane stability. MR antagonists may therefore be applicable for treating more general muscle weakness and possibly other conditions that result from cell injuries.
Collapse
Affiliation(s)
| | | | | | - Kevin E McElhanon
- Department of Physiology and Cell Biology.,Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH USA
| | - Jennifer M Petrosino
- Department of Physiology and Cell Biology.,Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH USA
| | | | | | | | - Federica Accornero
- Department of Physiology and Cell Biology.,Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH USA
| | | | - Noah L Weisleder
- Department of Physiology and Cell Biology.,Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH USA
| | | |
Collapse
|
29
|
Zarmpi P, Flanagan T, Meehan E, Mann J, Fotaki N. Surface dissolution UV imaging for characterization of superdisintegrants and their impact on drug dissolution. Int J Pharm 2020; 577:119080. [PMID: 31988030 DOI: 10.1016/j.ijpharm.2020.119080] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 12/15/2022]
Abstract
Superdisintegrants are a key excipient used in immediate release formulations to promote fast tablet disintegration, therefore understanding the impact of superdisintegrant variability on product performance is important. The current study examined the impact of superdisintegrant critical material attributes (viscosity for sodium starch glycolate (SSG), particle size distribution (PSD) for croscarmellose sodium (CCS)) on their performance (swelling) and on drug dissolution using surface dissolution UV imaging. Acidic and basic pharmacopoeia (compendial) media were used to assess the role of varying pH on superdisintegrant performance and its effect on drug dissolution. A highly soluble (paracetamol) and a poorly soluble (carbamazepine) drug were used as model compounds and drug compacts and drug-excipient compacts were prepared for the dissolution experiments. The presence of a swelled SSG or CCS layer on the compact surface, due to the fast excipient hydration capacity, upon contact with dissolution medium was visualized. The swelling behaviour of superdisintegrants depended on excipient critical material attributes and the pH of the medium. Drug dissolution was faster in presence compared to superdisintegrant absence due to improved compact wetting or compact disintegration. The improvement in drug dissolution was less pronounced with increasing SSG viscosity or CCS particle size. Drug dissolution was slightly more complete in basic compared to acidic conditions in presence of the studied superdisintegrants for the highly soluble drug attributed to the increased excipient hydration capacity and the fast drug release through the swelled excipient structure. The opposite was observed for the poorly soluble drug as potentially the improvement in drug dissolution was compromised by drug release from the highly swelled structure. The use of multivariate data analysis revealed the influential role of excipient and drug properties on the impact of excipient variability on drug dissolution.
Collapse
Affiliation(s)
- P Zarmpi
- Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom
| | - T Flanagan
- Pharmaceutical Technology & Development, AstraZeneca, Macclesfield, United Kingdom
| | - E Meehan
- Pharmaceutical Technology & Development, AstraZeneca, Macclesfield, United Kingdom
| | - J Mann
- Pharmaceutical Technology & Development, AstraZeneca, Macclesfield, United Kingdom
| | - N Fotaki
- Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom.
| |
Collapse
|
30
|
Na YG, Byeon JJ, Wang M, Huh HW, Kim MK, Bang KH, Han MG, Lee HK, Cho CW. Statistical approach for solidifying ticagrelor loaded self-microemulsifying drug delivery system with enhanced dissolution and oral bioavailability. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109980. [DOI: 10.1016/j.msec.2019.109980] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 07/11/2019] [Accepted: 07/15/2019] [Indexed: 11/26/2022]
|
31
|
Conceição J, Farto-Vaamonde X, Goyanes A, Adeoye O, Concheiro A, Cabral-Marques H, Sousa Lobo JM, Alvarez-Lorenzo C. Hydroxypropyl-β-cyclodextrin-based fast dissolving carbamazepine printlets prepared by semisolid extrusion 3D printing. Carbohydr Polym 2019; 221:55-62. [DOI: 10.1016/j.carbpol.2019.05.084] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/15/2019] [Accepted: 05/15/2019] [Indexed: 10/26/2022]
|
32
|
Trisopon K, Kittipongpatana OS. Development of a Direct Compression Excipient from Epichlorohydrin-Crosslinked Carboxymethyl Rice Starch with Sodium Silicate Using a Coprocessing Technique. STARCH-STARKE 2019. [DOI: 10.1002/star.201800220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Karnkamol Trisopon
- Department of Pharmaceutical Sciences; Faculty of Pharmacy; Chiang Mai University; Chiang Mai 50200 Thailand
| | - Ornanong S. Kittipongpatana
- Department of Pharmaceutical Sciences; Faculty of Pharmacy; Chiang Mai University; Chiang Mai 50200 Thailand
| |
Collapse
|
33
|
Bisharat L, AlKhatib HS, Muhaissen S, Quodbach J, Blaibleh A, Cespi M, Berardi A. The influence of ethanol on superdisintegrants and on tablets disintegration. Eur J Pharm Sci 2019; 129:140-147. [PMID: 30630089 DOI: 10.1016/j.ejps.2019.01.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/05/2018] [Accepted: 01/06/2019] [Indexed: 11/18/2022]
Abstract
Disintegration of immediate release tablets originates from the volume expansion of disintegrants within the formulation. Here, we study the impact of ethanol on the disintegrant expansion and on tablets disintegration. The three most commonly used superdisintegrants, namely sodium starch glycolate (SSG), crospovidone (PVPP) and croscarmellose sodium (CCS) were investigated alone and incorporated in dicalcium phosphate and in drug-containing tablets. High (i.e. 40%), but not moderate (i.e. 10%), aqueous ethanol concentrations reduce the size expansion of the three disintegrants compared to water. This "ethanol effect" is the greatest for SSG, followed by CCS and then PVPP. Moreover, the presence of ethanol in the media can significantly influence the disintegration time of drug-containing tablets via affecting both the disintegrant action itself and the drug solubility. For example, the disintegration time of theophylline tablets containing SSG is 8.1-fold greater in 40% aqueous ethanol compared to water. Overall, this study brought to light the existence of a potentially significant interference of alcohol with the disintegration phenomenon, suggesting that the concomitant administration of tablets and intake of alcoholic beverages may affect, in some cases, tablets disintegration. More studies are now needed to verify the importance of the "ethanol effect" on disintegration of commercial dosage forms. Our findings also suggest that PVPP is the disintegrant that is the least affected by alcohol.
Collapse
Affiliation(s)
- Lorina Bisharat
- Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Hatim S AlKhatib
- Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Suha Muhaissen
- Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Julian Quodbach
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University Duesseldorf, Germany
| | - Anaheed Blaibleh
- Department of Pharmaceutical Sciences and Pharmaceutics, Faculty of Pharmacy, Applied Science Private University, Amman 11931, Jordan
| | - Marco Cespi
- School of Pharmacy, University of Camerino, 62032 Camerino, MC, Italy
| | - Alberto Berardi
- Department of Pharmaceutical Sciences and Pharmaceutics, Faculty of Pharmacy, Applied Science Private University, Amman 11931, Jordan.
| |
Collapse
|
34
|
Berardi A, Bisharat L, Blaibleh A, Pavoni L, Cespi M. A Simple and Inexpensive Image Analysis Technique to Study the Effect of Disintegrants Concentration and Diluents Type on Disintegration. J Pharm Sci 2018; 107:2643-2652. [DOI: 10.1016/j.xphs.2018.06.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 01/15/2023]
|
35
|
Bowles BJ, Dziemidowicz K, Lopez FL, Orlu M, Tuleu C, Edwards AJ, Ernest TB. Co-Processed Excipients for Dispersible Tablets-Part 1: Manufacturability. AAPS PharmSciTech 2018; 19:2598-2609. [PMID: 29916193 DOI: 10.1208/s12249-018-1090-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/29/2018] [Indexed: 11/30/2022] Open
Abstract
Co-processed excipients may enhance functionality and reduce drawbacks of traditional excipients for the manufacture of tablets on a commercial scale. The following study aimed to characterise a range of co-processed excipients that may prove suitable for dispersible tablet formulations prepared by direct compression. Co-processed excipients were lubricated and compressed into 10.5-mm convex tablets using a Phoenix compaction simulator. Compression profiles were generated by varying the compression force applied to the formulation and the prepared tablets were characterised for hardness, friability, disintegration and fineness of dispersion. Our data indicates that CombiLac, F-Melt type C and SmartEx QD100 were the top 3 most suitable out of 16 co-processed excipients under the conditions evaluated. They exhibited good flow properties (Carr's index ˂ 20), excellent tabletability (tensile strength > 3.0 MPa at 0.85 solid fraction), very low friability (< 1% after 15 min), rapid disintegration times (27-49 s) and produced dispersions of ideal fineness (< 250 μm). Other co-processed excipients (including F-Melt type M, Ludiflash, MicroceLac, Pharmaburst 500 and Avicel HFE-102) may be appropriate for dispersible tablets produced by direct compression providing the identified disintegration and dispersion risks were mitigated prior to commercialisation. This indicates that robust dispersible tablets which disintegrate rapidly could be manufactured from a range of co-processed excipients.
Collapse
|
36
|
Sallam NM, Sanad RAB, Kharshoum RM, Zineldin MA. Development of Salbutamol Sulphate fast disintegrating sublingual tablets with enhanced bioavailability and improved clinical efficacy for potential treatment of asthma. J Drug Deliv Sci Technol 2017. [DOI: 10.1016/j.jddst.2017.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Wren S, Alhusban F, Barry A, Hughes L. Mechanistic understanding of the link between Sodium Starch Glycolate properties and the performance of tablets made by wet granulation. Int J Pharm 2017; 529:319-328. [DOI: 10.1016/j.ijpharm.2017.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/30/2017] [Accepted: 07/01/2017] [Indexed: 11/25/2022]
|
38
|
Zhao J, Koo O, Pan D, Wu Y, Morkhade D, Rana S, Saha P, Marin A. The Impact of Disintegrant Type, Surfactant, and API Properties on the Processability and Performance of Roller Compacted Formulations of Acetaminophen and Aspirin. AAPS JOURNAL 2017; 19:1387-1395. [DOI: 10.1208/s12248-017-0104-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 05/26/2017] [Indexed: 11/30/2022]
|
39
|
Kumar A, Saharan VA. A Comparative Study of Different Proportions of Superdisintegrants: Formulation and Evaluation of Orally Disintegrating Tablets of Salbutamol Sulphate. Turk J Pharm Sci 2017; 14:40-48. [PMID: 32454593 DOI: 10.4274/tjps.74946] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 07/14/2016] [Indexed: 12/01/2022]
Abstract
Objectives Superdisintegrants play important role in disintegration of orally disintegrating tablets (ODTs). Action of three different superdisintegrants, viz. croscarmellose sodium, sodium starch glycolate and Indion 414, were studied individually or in their binary combinations for their fast disintegrant action in ODTs of salbutamol sulphate prepared by direct compression. Materials and Methods ODTs were prepared in three different superdisintegrant combinations A, B and C. In each combination, five formulations were prepared with superdisintegrants in ratios 10:90, 25:75, 50:50, 75:25, and 90:10. Three ODT formulations were prepared with single superdisintegrant and two ODT batches were prepared from marketed ODT excipient blends, viz. Prosolv-ODT and F-Melt. Prepared ODT formulations were evaluated and compared for weight variation, hardness, friability, wetting time, disintegration and drug release. Results All ODTs disintegrated quickly in 32 s or less. ODT formulation F3, containing croscarmellose sodium and sodium starch glycolate, disintegrated very quickly in 19.28±3.11 s. Results of F3 were compared with the batches (F19 and F20) containing marketed coprocessed excipients and found in good agreement for various evaluation parameters. Formulation F20 was hygroscopic, while F3 did not suffer this disadvantage. Conclusion Thus, we may conclude that superdisintegrants in combinations may offer additive and/or synergistic disintegration possible due to their different mechanism.
Collapse
Affiliation(s)
- Ajay Kumar
- Department Of Pharmaceutics, School Of Pharmaceutical Sciences, Sardar Bhagwan Singh Post Graduate Institute Of Biomedical Sciences And Research, Balawala, Dehradun 248161, Uttarakhand, India
| | - Vikas Anand Saharan
- Department Of Pharmaceutics, School Of Pharmaceutical Sciences, Sardar Bhagwan Singh Post Graduate Institute Of Biomedical Sciences And Research, Balawala, Dehradun 248161, Uttarakhand, India
| |
Collapse
|
40
|
Vraníková B, Pavloková S, Gajdziok J. Experimental Design for Determination of Effects of Superdisintegrant Combinations on Liquisolid System Properties. J Pharm Sci 2017; 106:817-825. [DOI: 10.1016/j.xphs.2016.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 10/04/2016] [Accepted: 11/01/2016] [Indexed: 10/20/2022]
|
41
|
Zarmpi P, Flanagan T, Meehan E, Mann J, Fotaki N. Biopharmaceutical aspects and implications of excipient variability in drug product performance. Eur J Pharm Biopharm 2017; 111:1-15. [DOI: 10.1016/j.ejpb.2016.11.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/02/2016] [Accepted: 11/07/2016] [Indexed: 12/29/2022]
|
42
|
Alves-Silva I, Marreto RN, Gelfuso GM, Sá-Barreto LCL, Lima EM, Cunha-Filho MSS. Preparation of benznidazole pellets for immediate drug delivery using the extrusion spheronization technique. Drug Dev Ind Pharm 2016; 43:762-769. [DOI: 10.1080/03639045.2016.1220574] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
43
|
Vraníková B, Gajdziok J, Doležel P. The effect of superdisintegrants on the properties and dissolution profiles of liquisolid tablets containing rosuvastatin. Pharm Dev Technol 2015; 22:138-147. [PMID: 26401959 DOI: 10.3109/10837450.2015.1089900] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT The preparation of liquisolid systems (LSS) represents a promising method for enhancing a dissolution rate and bioavailability of poorly soluble drugs. The release of the drug from LSS tablets is affected by many factors, including the disintegration time. OBJECTIVE The evaluation of differences among LSS containing varying amounts and types of commercially used superdisintegrants (Kollidon® CL-F, Vivasol® and Explotab®). MATERIALS AND METHODS LSS were prepared by spraying rosuvastatin solution onto Neusilin® US2 and further processing into tablets. Varying amounts of superdisintegrants were used and the differences among LSS were evaluated. The multiple scatter plot method was used to visualize the relationships within the obtained data. RESULTS AND DISCUSSION All disintegrants do not showed negative effect on the flow properties of powder blends. The type and concentration of superdisintegrant had an impact on the disintegration time and dissolution profiles of tablets. Tablets with Explotab® showed the longest disintegration time and the smallest amount of released drug. Fastest disintegration and dissolution rate were observed in tablets containing Kollidon® CL-F (≥2.5% w/w). Also tablets with Vivasol® (2.5-4.0% w/w) showed fast disintegration and complete drug release. CONCLUSION Kollidon® CL-F and Vivasol® in concentration ≥2.5% are suitable superdisintegrants for LSS with enhanced release of drug.
Collapse
Affiliation(s)
- Barbora Vraníková
- a Department of Pharmaceutics, Faculty of Pharmacy , University of Veterinary and Pharmaceutical Sciences , Palackeho Trida 1/3 , Brno , Czech Republic
| | - Jan Gajdziok
- a Department of Pharmaceutics, Faculty of Pharmacy , University of Veterinary and Pharmaceutical Sciences , Palackeho Trida 1/3 , Brno , Czech Republic
| | - Petr Doležel
- a Department of Pharmaceutics, Faculty of Pharmacy , University of Veterinary and Pharmaceutical Sciences , Palackeho Trida 1/3 , Brno , Czech Republic
| |
Collapse
|
44
|
Shahi P, Kumari N, Pathak K. Microspheres and tablet in capsule system: A novel chronotherapeutic system of ketorolac tromethamine for site and time specific delivery. Int J Pharm Investig 2015; 5:161-70. [PMID: 26258058 PMCID: PMC4522866 DOI: 10.4103/2230-973x.160854] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The objective of the present work was to develop a novel delivery system of ketorolac tromethamine (KT) for dual pulse release based on microspheres and tablet in capsule system (MATICS) as a treatment modality for rheumatoid arthritis. The design consisted of an impermeable hard gelatin capsule body, in which a core tablet was (second pulse) placed in the bottom and sealed with a hydrogel plug (HP2). The body was locked with enteric coated cap filled with KT microspheres (first pulse). The microspheres for first pulse were selected by screening the formulations (M1–M6), and M1 with least particle size of 96.38 ± 0.05 μm, highest drug loading of 25.10% ± 0.28% and maximum CDR of 89.32% ± 0.21% was adjudged as the best formulation. The HP2 tablet was selected based on its capability for maintaining a lag period of 6 h. The selection criterion of the second pulse (core tablet: T3) was its disintegration time of 4.02 ± 0.53 min and CDR of 99.10% ± 0.32% in 30 min. All the optimized formulations were assembled in accordance with the proposed design to form pulsatile MATICS and evaluated for in vitro release. MATICS displayed delayed sustained CDR of 80.15% in 8 h from the first pulse (microspheres) after a lag time of 2 h, followed by 97.05% KT release from second pulse (core tablet) in simulated colonic fluid within 10 h. Conclusively, in vitro pulsatile release was a rational combination of delayed sustained and immediate release of KT that has the potential to combat the pain at night and morning stiffness. Incorporation of two pulses in one system offers a reduction in dose frequency and better pain management.
Collapse
Affiliation(s)
- Priya Shahi
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, Mathura - 281 001, Uttar Pradesh, India
| | - Neeraj Kumari
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, Mathura - 281 001, Uttar Pradesh, India
| | - Kamla Pathak
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, Mathura - 281 001, Uttar Pradesh, India
| |
Collapse
|
45
|
Das S, Vegesna NSKV, H. G. S. Design and development of a dual-drug loaded pulsatile capsule for treatment of hypertension – in vitro and ex vivo studies. RSC Adv 2015. [DOI: 10.1039/c5ra18883k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The aim of the present study was to design and evaluate a pulsatile dosage form to program the release of dual antihypertensive drugs to mimic the circadian pattern of BP.
Collapse
Affiliation(s)
- Saugandha Das
- Department of Pharmaceutical Sciences and Technology
- Institute of Chemical Technology
- Mumbai, India
- Department of Pharmaceutics
- JSS College of Pharmacy
| | | | - Shivakumar H. G.
- Department of Pharmaceutics
- JSS College of Pharmacy
- JSS University
- Mysore, India
| |
Collapse
|
46
|
Liao JB, Liang YZ, Chen YL, Xie JH, Liu WH, Chen JN, Lai XP, Su ZR. Novel patchouli alcohol ternary solid dispersion pellets prepared by poloxamers. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2015; 14:15-26. [PMID: 25561908 PMCID: PMC4277615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The present study investigates the possibility of using poloxamers as solubility and dissolution rate enhancing agents of poorly water soluble bioactive constituent patchouli alcohol (PA) that can be used for the preparation of immediate release pellets formulation. Two commercially available grades poloxamer 188 (P 188) and poloxamer 407 (P 407) were selected, and solid dispersions (SDs) containing different weight ratio of PA and poloxamers, and the combination of P 188 and P 407 as dispersing carriers of ternary solid dispersions (tSDs) were prepared by a low temperature melting method and solidified rapidly by dropping into the 10-15 °C condensing agent atoleine. Both PA/P 188 and PA/P 407 binary solid dispersions (bSDs) could remarkably promote the dissolution rate of PA, increasing approximately 16 times in bSDs with poloxamers in comparison with pure PA within 180 min. P188 contributed to a faster dissolution rate than P 407, however, P 407 had a better solubility. It is interesting to note that the incorporation of P 188 in PA/P 407 bSD pellets could strongly enhance the dissolution rate of PA. DSC and FTIR were used to explore the characteristics of PA-SD pellets. The enhancement of dissolution from the SDs may be attributed partly to the reduction in particle size in PA crystalline due to the formation of eutectic system with poloxamers. Moreover, a simple, accurate in-vitro dissolution test method for volatility drug was established, and the process of PA-SD pellets preparation was simple, rapid, cost effective, uncomplicated and potentially scalable.
Collapse
Affiliation(s)
- Jin-Bin Liao
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China. ,Guangdong Second Province Hospital of Traditional Chinese Medicine, Guangzhou 510095, P. R. China.
| | - Yong-Zhuo Liang
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China.
| | - Yun-Long Chen
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China.
| | - Jian-Hui Xie
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China.
| | - Wei-Hai Liu
- Dongguan Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Dongguan 523808, PR China.
| | - Jian Nan Chen
- Institute of Higher Education, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China.,Corresponding author: ;
| | - Xiao-Ping Lai
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China.
| | - Zi-Ren Su
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China. ,Corresponding author: ;
| |
Collapse
|
47
|
Xu LL, Shi LL, Cao QR, Xu WJ, Cao Y, Zhu XY, Cui JH. Formulation and in vitro characterization of novel sildenafil citrate-loaded polyvinyl alcohol-polyethylene glycol graft copolymer-based orally dissolving films. Int J Pharm 2014; 473:398-406. [DOI: 10.1016/j.ijpharm.2014.07.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 06/16/2014] [Accepted: 07/25/2014] [Indexed: 11/17/2022]
|