1
|
Deng H, Chen Y, Xing J, Zhang N, Xu L. Systematic low-grade chronic inflammation and intrinsic mechanisms in polycystic ovary syndrome. Front Immunol 2024; 15:1470283. [PMID: 39749338 PMCID: PMC11693511 DOI: 10.3389/fimmu.2024.1470283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/03/2024] [Indexed: 01/04/2025] Open
Abstract
Polycystic ovary syndrome (PCOS) is a prevalent endocrine and metabolic disorder affecting 6-20% of women of childbearing age worldwide. Immune cell imbalance and dysregulation of inflammatory factors can lead to systematic low-grade chronic inflammation (SLCI), which plays a pivotal role in the pathogenesis of PCOS. A significant higher infiltration of immune cells such as macrophages and lymphocytes and pro-inflammatory factors IL-6 and TNF-α has been detected in PCOS organ systems, impacting not only the female reproductive system but also other organs such as the cardiovascular, intestine, liver, thyroid, brain and other organs. Obesity, insulin resistance (IR), steroid hormones imbalance and intestinal microecological imbalance, deficiencies in vitamin D and selenium, as well as hyperhomocysteinemia (HHcy) can induce systematic imbalance between pro-inflammatory and anti-inflammatory cells and molecules. The pro-inflammatory cells and cytokines also interact with obesity, steroid hormones imbalance and IR, leading to increased metabolic imbalance and reproductive-endocrine dysfunction in PCOS patients. This review aims to summarize the dysregulation of immune response in PCOS organ system and the intrinsic mechanisms affecting SLCI in PCOS to provide new insights for the systemic inflammatory treatment of PCOS in the future.
Collapse
Affiliation(s)
- Hongxia Deng
- Reproductive Endocrinology and Regulation Laboratory, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Yan Chen
- Reproductive Endocrinology and Regulation Laboratory, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jilong Xing
- Division of Renal and Endocrinology, Qin Huang Hospital, Xi’an, China
| | - Nannan Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Liangzhi Xu
- Reproductive Endocrinology and Regulation Laboratory, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Zanjirband M, Nasr-Esfahani MH, Curtin NJ, Drew Y, Sharma Saha S, Adibi P, Lunec J. A Systematic Review of the Molecular Mechanisms Involved in the Association Between PCOS and Endometrial and Ovarian Cancers. J Cell Mol Med 2024; 28:e70312. [PMID: 39720923 DOI: 10.1111/jcmm.70312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/24/2024] [Accepted: 12/10/2024] [Indexed: 12/26/2024] Open
Abstract
Polycystic ovary syndrome (PCOS), a major cause of female infertility, affects 4%-20% of reproductive-age women. Metabolic and hormonal alterations are key features of PCOS, potentially raising the risk of endometrial (EC) and ovarian (OVCA) cancers. This systematic review aims to summarise the proposed molecular mechanisms involved in the association between PCOS and EC or OVCA. This is achieved by conducting a thorough literature review and utilising specific search terms to identify all relevant studies published in English from 2010 to December 2022. PRISMA was followed, and the protocol was registered on PROSPERO (CRD42022375461). The QUADAS-2 tool and Review Manager Software were employed to evaluate study quality and risk of bias respectively. Forty-five eligible studies were selected with molecular signatures based on genomic, transcriptomic, metabolomic, proteomic and epigenetic analyses. Genes and their products deregulated in EC and/or OVCA were identified, including BRCA1, MLH1, NQO1 and ESR1, which were also deregulated in PCOS. Serum levels of IGF1, IGFBP1, SREBP1 and visfatin in women with PCOS were also identified as potential biomarkers of enhanced EC risk. Salusin-β serum levels in individuals with PCOS were identified as a potential biomarker for increased risk of OVCA. Gene signature-based drug repositioning identified several drug candidates: metformin, fenofibrate, fatostatin, melatonin, resveratrol and quercetin, some already established and prescribed for PCOS. In conclusion, this study provides a strong basis for further research to confirm the identified molecular signatures and associated causal links for potential therapeutic prevention strategies for EC and OVCA in women with PCOS.
Collapse
Affiliation(s)
- M Zanjirband
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - M H Nasr-Esfahani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - N J Curtin
- Translational and Clinical Research Institute, Newcastle University Cancer Centre, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Y Drew
- BC Cancer Vancouver and University of British Columbia, Vancouver, British Columbia, Canada
| | - S Sharma Saha
- Translational and Clinical Research Institute, Newcastle University Cancer Centre, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - P Adibi
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - J Lunec
- Biosciences Institute, Newcastle University Cancer Centre, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| |
Collapse
|
3
|
Palomba S, Costanzi F, Caserta D, Vitagliano A. Pharmacological and non-pharmacological interventions for improving endometrial receptivity in infertile patients with polycystic ovary syndrome: a comprehensive review of the available evidence. Reprod Biomed Online 2024; 49:104381. [PMID: 39454320 DOI: 10.1016/j.rbmo.2024.104381] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 10/28/2024]
Abstract
Direct and indirect evidence suggests that endometrial receptivity may play a crucial role in the reduced fertility rate of women with polycystic ovary syndrome (PCOS). Various pharmacological and non-pharmacological strategies with potential effects on endometrial receptivity in patients with PCOS have been proposed. The aim of this study was to summarize the rationale and the clinical and experimental evidence of interventions tested for improving endometrial receptivity in infertile patients with PCOS. A systematic review was conducted by consulting electronic databases. All interventions with a potential influence on endometrial receptivity in infertile patients with PCOS were evaluated, and their main biological mechanisms were analysed. In total, 24 interventions related to endometrial receptivity were identified. Notwithstanding a strong biological rationale, no intervention aimed at improving endometrial receptivity in women with PCOS is supported by an adequate body of evidence, limiting their use in clinical practice. Further high-quality research is needed in this field to limit potentially ineffective and unsafe add-on treatments in infertile patients with PCOS.
Collapse
Affiliation(s)
- Stefano Palomba
- Unit of Gynaecology, Department of Medical-Surgical Sciences and Translational Medicine, University 'Sapienza' of Rome, Sant'Andrea Hospital, Rome, Italy.
| | - Flavia Costanzi
- Unit of Gynaecology, Department of Medical-Surgical Sciences and Translational Medicine, University 'Sapienza' of Rome, Sant'Andrea Hospital, Rome, Italy; University 'Sapienza' of Rome, Sant'Andrea Hospital, Rome, Italy
| | - Donatella Caserta
- Unit of Gynaecology, Department of Medical-Surgical Sciences and Translational Medicine, University 'Sapienza' of Rome, Sant'Andrea Hospital, Rome, Italy
| | - Amerigo Vitagliano
- Unit of Obstetrics and Gynaecology, Department of Interdisciplinary Medicine, University of Bari, Bari, Italy
| |
Collapse
|
4
|
Alur V, Vastrad B, Raju V, Vastrad C, Kotturshetti S. The identification of key genes and pathways in polycystic ovary syndrome by bioinformatics analysis of next-generation sequencing data. MIDDLE EAST FERTILITY SOCIETY JOURNAL 2024; 29:53. [DOI: 10.1186/s43043-024-00212-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 11/17/2024] [Indexed: 01/02/2025] Open
Abstract
Abstract
Background
Polycystic ovary syndrome (PCOS) is a reproductive endocrine disorder. The specific molecular mechanism of PCOS remains unclear. The aim of this study was to apply a bioinformatics approach to reveal related pathways or genes involved in the development of PCOS.
Methods
The next-generation sequencing (NGS) dataset GSE199225 was downloaded from the gene expression omnibus (GEO) database and NGS dataset analyzed is obtained from in vitro culture of PCOS patients’ muscle cells and muscle cells of healthy lean control women. Differentially expressed gene (DEG) analysis was performed using DESeq2. The g:Profiler was utilized to analyze the gene ontology (GO) and REACTOME pathways of the differentially expressed genes. A protein–protein interaction (PPI) network was constructed and module analysis was performed using HiPPIE and cytoscape. The miRNA-hub gene regulatory network and TF-hub gene regulatory network were constructed. The hub genes were validated by using receiver operating characteristic (ROC) curve analysis.
Results
We have identified 957 DEG in total, including 478 upregulated genes and 479 downregulated gene. GO terms and REACTOME pathways illustrated that DEG were significantly enriched in regulation of molecular function, developmental process, interferon signaling and platelet activation, signaling, and aggregation. The top 5 upregulated hub genes including HSPA5, PLK1, RIN3, DBN1, and CCDC85B and top 5 downregulated hub genes including DISC1, AR, MTUS2, LYN, and TCF4 might be associated with PCOS. The hub gens of HSPA5 and KMT2A, together with corresponding predicted miRNAs (e.g., hsa-mir-34b-5p and hsa-mir-378a-5p), and HSPA5 and TCF4 together with corresponding predicted TF (e.g., RCOR3 and TEAD4) were found to be significantly correlated with PCOS.
Conclusions
These study uses of bioinformatics analysis of NGS data to obtain hub genes and key signaling pathways related to PCOS and its associated complications. Also provides novel ideas for finding biomarkers and treatment methods for PCOS and its associated complications.
Collapse
|
5
|
Wu Y, Su K, Zhang Y, Liang L, Wang F, Chen S, Gao L, Zheng Q, Li C, Su Y, Mao Y, Zhu S, Chai C, Lan Q, Zhai M, Jin X, Zhang J, Xu X, Zhang Y, Gao Y, Huang H. A spatiotemporal transcriptomic atlas of mouse placentation. Cell Discov 2024; 10:110. [PMID: 39438452 PMCID: PMC11496649 DOI: 10.1038/s41421-024-00740-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 09/10/2024] [Indexed: 10/25/2024] Open
Abstract
The placenta, a temporary but essential organ for gestational support, undergoes intricate morphological and functional transformations throughout gestation. However, the spatiotemporal patterns of gene expression underlying placentation remain poorly understood. Utilizing Stereo-seq, we constructed a Mouse Placentation Spatiotemporal Transcriptomic Atlas (MPSTA) spanning from embryonic day (E) 7.5 to E14.5, which includes the transcriptomes of large trophoblast cells that were not captured in previous single-cell atlases. We defined four distinct strata of the ectoplacental cone, an early heterogeneous trophectoderm structure, and elucidated the spatial trajectory of trophoblast differentiation during early postimplantation stages before E9.5. Focusing on the labyrinth region, the interface of nutrient exchange in the mouse placenta, our spatiotemporal ligand-receptor interaction analysis unveiled pivotal modulators essential for trophoblast development and placental angiogenesis. We also found that paternally expressed genes are exclusively enriched in the placenta rather than in the decidual regions, including a cluster of genes enriched in endothelial cells that may function in placental angiogenesis. At the invasion front, we identified interface-specific transcription factor regulons, such as Atf3, Jun, Junb, Stat6, Mxd1, Maff, Fos, and Irf7, involved in gestational maintenance. Additionally, we revealed that maternal high-fat diet exposure preferentially affects this interface, exacerbating inflammatory responses and disrupting angiogenic homeostasis. Collectively, our findings furnish a comprehensive, spatially resolved atlas that offers valuable insights and benchmarks for future explorations into placental morphogenesis and pathology.
Collapse
Affiliation(s)
- Yanting Wu
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.
- Key Laboratory of Reproductive Genetics (Ministry of Education), Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China.
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, China.
| | - Kaizhen Su
- Key Laboratory of Reproductive Genetics (Ministry of Education), Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Zhang
- BGI Research, Shenzhen, Guangdong, China
- Shanxi Medical University - BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Langchao Liang
- BGI Research, Qingdao, Shandong, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Fei Wang
- BGI Research, Shenzhen, Guangdong, China
| | - Siyue Chen
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Ling Gao
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Qiutong Zheng
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Cheng Li
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Yunfei Su
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Yiting Mao
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Simeng Zhu
- Department of Cardiology, Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chaochao Chai
- BGI Research, Qingdao, Shandong, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qing Lan
- BGI Research, Shenzhen, Guangdong, China
| | - Man Zhai
- BGI Research, Shenzhen, Guangdong, China
| | - Xin Jin
- BGI Research, Shenzhen, Guangdong, China
| | - Jinglan Zhang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, China
| | - Xun Xu
- BGI Research, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, Guangdong, China
| | - Yu Zhang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.
| | - Ya Gao
- BGI Research, Shenzhen, Guangdong, China.
- Shanxi Medical University - BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan, Shanxi, China.
- Shenzhen Engineering Laboratory for Birth Defects Screening, BGI Research, Shenzhen, Guangdong, China.
| | - Hefeng Huang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.
- Key Laboratory of Reproductive Genetics (Ministry of Education), Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China.
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, China.
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
6
|
Guan Y, Li X, Yang H, Xu S, Shi L, Liu Y, Kong L, Qin Y. Role and mechanism of IRF9 in promoting the progression of rheumatoid arthritis by regulating macrophage polarization via PSMA5. Heliyon 2024; 10:e35589. [PMID: 39170377 PMCID: PMC11336755 DOI: 10.1016/j.heliyon.2024.e35589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024] Open
Abstract
Aim To explore the mechanisms of IRF9 in the progression of rheumatoid arthritis(RA), and the effects of IRF9 on M1/M2 polarization. Methods RA dataset (GSE55457) was downloaded from GEO. Correlation analysis between IRF9 and its downstream target protein PSMA5 was performed using bioinformatics analysis. The M1/M2 cell ratio of peripheral blood mononuclear cells which from 20 healthy specimen and 40 RA patients was determined. The expression of IRF9 and PSMA5 was detected using qPCR and Western blot. Then, knockdown IRF9 in RAW264.7 cell line (sh-IRF9 RAW264.7) was constructed. The effect of sh-IRF9 RAW264.7 on RA was explored by constructing a CIA mouse model. Results IRF9 is upregulated in RA and is of good early screening effect. The results of pathway analysis showed that IRF9 targets and regulates the PSMA5 signaling pathway. IRF9 and PSMA5 were significantly elevated in RA patients, M1/M2 ratio was also increased. The effects of IRF9 on RAW264.7 macrophages were deeply explored in vitro, revealing that knockdown of IRF9 suppressed PSMA5, M1/M2 ratio and the secretion of pro-inflammatory factor in RAW264.7. In mouse in vivo experiments, sh-IRF9 RAW264.7 cells were found to modulate RA by downregulating PSMA5, modulating the M1/M2 ratio through enhancing the anti-inflammatory factor, and suppressing the pro-inflammatory factor. Conclusion IRF9 promoted the progression of RA via regulating macrophage polarization through PSMA5.
Collapse
Affiliation(s)
- Yue Guan
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Xin Li
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Hemin Yang
- Central Laboratory, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Siyu Xu
- Inspection Center, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Lidong Shi
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Yangyang Liu
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Lingdan Kong
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Ying Qin
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| |
Collapse
|
7
|
Zheng M, Zhao F. The IL-12 family of heterodimeric cytokines in polycystic ovarian syndrome: biological role in induction, regulation, and treatment. Immunol Res 2024; 72:583-591. [PMID: 38771486 DOI: 10.1007/s12026-024-09487-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/01/2024] [Indexed: 05/22/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a diverse endocrine disorder widely recognized as the prevailing metabolic condition among women in their reproductive years. The precise pathophysiological mechanisms underlying PCOS remain incompletely understood. However, existing evidence suggests that the development of PCOS may be linked to factors such as abdominal obesity, hyperandrogenism, and insulin resistance (IR). Excessive central adiposity in women with PCOS may lead to the development of a chronic, low-grade inflammation characterized by the activation of proinflammatory cytokines. The cytokines that belong to the IL-12 family are a collection of distinct heterodimeric cytokines that include IL-12, IL-23, IL-27, and IL-35. Recent research has provided further evidence regarding the significance of IL-12 cytokines in influencing both innate and adaptive immune responses in different diseases. Additionally, these studies have discovered diverse roles for certain members of the IL-12 family, encompassing multiple immunological functions that can either act as effectors or regulators. In this discourse, we examine the distinctive and atypical structural and functional attributes of this particular cytokine family. This study aims to offer a comprehensive overview of the pathophysiological significance of the IL-12 family cytokines in PCOS patients. Additionally, the therapeutic potential of the cytokines as novel approaches for PCOS treatment will be proposed.
Collapse
Affiliation(s)
- Mingyan Zheng
- Gynaecology and Obstetrics, Weifang People's Hospital, Weifang, 261000, Shandong, China
| | - Feng Zhao
- Gynaecology and Obstetrics, Weifang People's Hospital, Weifang, 261000, Shandong, China.
| |
Collapse
|
8
|
He S, Li H, Zhang Q, Zhao W, Li W, Dai C, Li B, Cheng J, Wu S, Zhou Z, Yang J, Li S. Berberine alleviates inflammation in polycystic ovary syndrome by inhibiting hyaluronan synthase 2 expression. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155456. [PMID: 38537446 DOI: 10.1016/j.phymed.2024.155456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/03/2024] [Accepted: 02/14/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a heterogeneous metabolic and endocrine disorder that causes anovulatory infertility and abnormal folliculogenesis in women of reproductive age. Several studies have revealed inflammation in PCOS follicles, and recent evidence suggests that Berberine (BBR) effectively reduces inflammatory responses in PCOS, however, the underlying mechanisms remain unclear. PURPOSE To determine the underlying mechanisms by which BBR alleviates inflammation in PCOS. STUDY DESIGN Primary human GCs from healthy women and women with PCOS, and KGN cells were used for in vitro studies. ICR mice were used for in vivo studies. METHODS Gene expression was measured using RT-qPCR. HAS2, inflammatory cytokines, and serum hormones were assayed by ELISA. Protein expression profiles were assayed by Western blot. Chronic low-grade inflammatory mouse models were developed by intraperitoneal injection with LPS, and PCOS mouse models were established by subcutaneous intraperitoneal injection of DHEA. BBR and 4-MU were administered by gavage. Ovarian morphologic changes were evaluated using H&E staining. HAS2 expression in the ovary was assayed using Western blot and immunohistochemistry. RESULTS Our results confirmed that HAS2 expression and hyaluronan (HA) accumulation are closely associated with inflammatory responses in PCOS. Data obtained from in vitro studies showed that HAS2 and inflammatory genes (e.g., MCP-1, IL-1β, and IL-6) are significantly upregulated in PCOS samples and LPS-induced KGN cells compared to their control groups. In addition, these effects were reversed by blocking HAS2 expression or HA synthesis using BBR or 4-MU, respectively. Furthermore, HAS2 overexpression induces the expression of inflammatory genes in PCOS. These results were further confirmed in LPS- and DHEA-induced mouse models, where inflammatory genes were reduced by BBR or 4-MU, and ovarian morphology was restored. CONCLUSIONS Our results define previously unknown links between HAS2 and chronic low-grade inflammation in the follicles of women with PCOS. BBR exerts its anti-inflammatory effects by down-regulating HAS2. This study provides a novel therapeutic target for alleviating ovarian inflammation in women with PCOS.
Collapse
Affiliation(s)
- Shaojing He
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Hui Li
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Jiangsu Provincial Engineering Research Center for Precision Animal Breeding, Nanjing, 210014, China
| | - Qianjie Zhang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Weimin Zhao
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Jiangsu Provincial Engineering Research Center for Precision Animal Breeding, Nanjing, 210014, China
| | - Wei Li
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Chaohui Dai
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Jiangsu Provincial Engineering Research Center for Precision Animal Breeding, Nanjing, 210014, China
| | - Bixia Li
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Jiangsu Provincial Engineering Research Center for Precision Animal Breeding, Nanjing, 210014, China
| | - Jinhua Cheng
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Jiangsu Provincial Engineering Research Center for Precision Animal Breeding, Nanjing, 210014, China
| | - Shuang Wu
- Hubei Provincial Hospital of Traditional Chinese Medicine Affiliated to Hubei University of Traditional Chinese Medicine, Wuhan, 430060, China
| | - Zhongming Zhou
- Hubei Provincial Hospital of Traditional Chinese Medicine Affiliated to Hubei University of Traditional Chinese Medicine, Wuhan, 430060, China
| | - Jing Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Saijiao Li
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China.
| |
Collapse
|
9
|
Tan H, Long P, Xiao H. Dissecting the shared genetic architecture between endometriosis and polycystic ovary syndrome. Front Endocrinol (Lausanne) 2024; 15:1359236. [PMID: 38742190 PMCID: PMC11089172 DOI: 10.3389/fendo.2024.1359236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/15/2024] [Indexed: 05/16/2024] Open
Abstract
Background Previous study suggested evidence for coexistence and similarities between endometriosis and polycystic ovary syndrome (PCOS), but it is unclear regarding the shared genetic architecture and causality underlying the phenotypic similarities observed for endometriosis and PCOS. Methods By leveraging summary statistics from public genome-wide association studies regarding endometriosis (European-based: N=470,866) and PCOS (European-based: N=210,870), we explored the genetic correlation that shared between endometriosis and PCOS using linkage disequilibrium score regression. Shared risk SNPs were derived using PLACO (Pleiotropic analysis under composite null hypothesis) and FUMA (Functional Mapping and Annotation of Genetic Associations). The potential causal association between endometriosis and PCOS was investigated using two-sample Mendelian randomization (MR). Linkage disequilibrium score for the specific expression of genes analysis (LDSC-SEG) were performed for tissue enrichment analysis. The expression profiles of the risk gene in tissues were further examined. Results A positive genetic association was observed between endometriosis and PCOS. 12 significant pleiotropic loci shared between endometriosis and PCOS were identified. Genetic associations between endometriosis and PCOS were particularly enriched in uterus, endometrium and fallopian tube. Two-sample MR analysis further indicated a potential causative effect of endometriosis on PCOS, and vice versa. Microarray and RNA-seq verified the expressions of SYNE1 and DNM3 were significantly altered in the endometrium of patients with endometriosis or PCOS compared to those of control subjects. Conclusion Our study indicates the genetic correlation and shared risk genes between PCOS and endometriosis. These findings provide insights into the potential mechanisms behind their comorbidity and the future development of therapeutics.
Collapse
Affiliation(s)
- Hangjing Tan
- Institute of Reproductive & Stem Cell Engineering, Center of Reproductive Health, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Panpan Long
- Institute of Reproductive & Stem Cell Engineering, Center of Reproductive Health, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Center of Genetics, Changsha Jiangwan Maternity Hospital, Changsha, Hunan, China
| | - Hongmei Xiao
- Institute of Reproductive & Stem Cell Engineering, Center of Reproductive Health, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| |
Collapse
|
10
|
Xie N, Wang F, Chen D, Zhou J, Xu J, Qu F. Immune dysfunction mediated by the competitive endogenous RNA network in fetal side placental tissue of polycystic ovary syndrome. PLoS One 2024; 19:e0300461. [PMID: 38512862 PMCID: PMC10956758 DOI: 10.1371/journal.pone.0300461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/27/2024] [Indexed: 03/23/2024] Open
Abstract
Polycystic ovary syndrome (PCOS), a common endocrine and metabolic disorder affecting women in their reproductive years. Emerging evidence suggests that the maternal-fetal immune system is crucial for proper pregnancy. However, whether immune function is altered at the end of pregnancy in PCOS women and the underlying molecular mechanisms is currently unexplored. Herein, the basic maternal immune system was investigated (n = 136 in the control group; n = 103 in the PCOS group), and whole-transcriptome sequencing was carried out to quantify the mRNAs, miRNAs, and lncRNAs expression levels in fetal side placental tissue of women with PCOS. GO, KEGG, and GSEA analysis were employed for functional enrichment analysis. The process of identifying hub genes was conducted utilizing the protein-protein interaction network. CIBERSORT and Connectivity Map were deployed to determine immune cell infiltration and predict potential drugs, respectively. A network of mRNA-miRNA-lncRNA was constructed and then validated by qRT-PCR. First, red blood cell count, neutrophil count, lymphocyte count, hypersensitive C-reactive protein, and procalcitonin were significantly elevated, while placental growth factor was hindered in PCOS women. We identified 308 DEmRNAs, 77 DEmiRNAs, and 332 DElncRNAs in PCOS samples. Functional enrichment analysis revealed that there were significant changes observed in terms of the immune system, especially the chemokine pathway. Eight genes, including FOS, JUN, EGR1, CXCL10, CXCR1, CXCR2, CXCL11, and CXCL8, were considered as hub genes. Furthermore, the degree of infiltration of neutrophils was dramatically decreased in PCOS tissues. In total, 57 ceRNA events were finally obtained, and immune-related ceRNA networks were validated. Some potential drug candidates, such as enalapril and RS-100329, could have a function in PCOS therapy. This study represents the inaugural attempt to evaluate the immune system at the end of pregnancy and placental ceRNA networks in PCOS, indicating alterations in the chemokine pathway, which may impact fetal and placental growth, and provides new therapy targets.
Collapse
Affiliation(s)
- Ningning Xie
- Department of Obstetrics and Gynecology, International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Fangfang Wang
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Danqing Chen
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jue Zhou
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Jian Xu
- Department of Obstetrics and Gynecology, International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Fan Qu
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
11
|
Sparić R, Andjić M, Rakić A, Bjekić-Macut J, Livadas S, Kontić-Vučinić O, Mastorakos G, Macut D. Insulin-sensitizing agents for infertility treatment in woman with polycystic ovary syndrome: a narrative review of current clinical practice. Hormones (Athens) 2024; 23:49-58. [PMID: 37792213 DOI: 10.1007/s42000-023-00494-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 09/19/2023] [Indexed: 10/05/2023]
Abstract
PURPOSE Polycystic ovary syndrome (PCOS) is an endocrine, metabolic, and reproductive disorder which, according to the Rotterdam criteria, affects up to 24% of women of childbearing age. Although the prevalence of infertility in this subpopulation of women is high, the optimal treatment has not been fully established yet. Insulin resistance is considered to be an important mechanism involved in the development of PCOS; hence, the aim of this narrative review is to present an overview of the current pharmacological insulin-sensitizing treatment modalities for infertile women with PCOS. METHODS A MEDLINE and PubMed search for the years 1990-2023 was performed using a combination of keywords. Clinical trials with insulin sensitizers used for infertility treatment as well as analyses of systematic reviews and meta-analyses were evaluated. When deemed necessary, additional articles referenced in the retrieved papers were included in this narrative review. RESULTS Several insulin-sensitizing compounds and various therapeutical protocols are available for infertility treatment of women with PCOS. Metformin is the most common adjuvant medication to induce ovulation in infertile women with PCOS and is more frequently administered in combination with clomiphene citrate than on its own. Recently, inositol and glucagon-like peptide-1 (GLP-1) receptor agonists have emerged as possible options for infertility treatment in PCOS. CONCLUSION The future of medical treatment of PCOS women with infertility lies in a personalized pharmacological approach, which involves various compounds with different mechanisms of action that could modify ovarian function and endometrial receptivity, ultimately leading to better overall reproductive outcomes in these women.
Collapse
Affiliation(s)
- Radmila Sparić
- University of Belgrade Faculty of Medicine, Clinic for Gynecology and Obstetrics, University Clinical Center of Serbia, Belgrade, Serbia
| | - Mladen Andjić
- Clinic for Gynecology and Obstetrics, University Clinical Center of Serbia, Belgrade, Serbia
| | - Aleksandar Rakić
- Clinic for Gynecology and Obstetrics Narodni front, Belgrade, Serbia
| | - Jelica Bjekić-Macut
- Department of Endocrinology, UMC Bežanijska Kosa, University of Belgrade Faculty of Medicine, Belgrade, Serbia
| | | | - Olivera Kontić-Vučinić
- University of Belgrade Faculty of Medicine, Clinic for Gynecology and Obstetrics, University Clinical Center of Serbia, Belgrade, Serbia
| | - George Mastorakos
- Unit of Endocrine Diseases, Aretaieion Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Djuro Macut
- University of Belgrade Faculty of Medicine, Clinic for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Center of Serbia, Dr Subotića 13, Belgrade, 11000, Serbia.
| |
Collapse
|
12
|
Tan W, Zhang J, Dai F, Yang D, Gu R, Tang L, Liu H, Cheng YX. Insights on the NF-κB system in polycystic ovary syndrome, attractive therapeutic targets. Mol Cell Biochem 2024; 479:467-486. [PMID: 37097332 DOI: 10.1007/s11010-023-04736-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/07/2023] [Indexed: 04/26/2023]
Abstract
The nuclear factor κappa B (NF-κB) signaling plays a well-known function in inflammation and regulates a wide variety of biological processes. Low-grade chronic inflammation is gradually considered to be closely related to the pathogenesis of Polycystic ovary syndrome (PCOS). In this review, we provide an overview on the involvement of NF-κB in the progression of PCOS particularly, such as hyperandrogenemia, insulin resistance, cardiovascular diseases, and endometrial dysfunction. From a clinical perspective, progressive recognition of NF-κB pathway provides opportunities for therapeutic interventions aimed at inhibiting pathway-specific mechanisms. With the accumulation of basic experimental and clinical data, NF-κB signaling pathway was recognized as a therapeutic target. Although there have been no specific small molecule NF-κB inhibitors in PCOS, a plethora of natural and synthetic compound have emerged for the pharmacologic intervention of the pathway. The traditional herbs developed for NF-κB pathway have become increasingly popular in recent years. Abundant evidence elucidated that NF-κB inhibitors can significantly improve the symptoms of PCOS. Herein, we summarized evidence relating to how NF-κB pathway is involved in the development and progression of PCOS. Furthermore, we present an in-depth overview of NF-κB inhibitors for therapy interventions of PCOS. Taken together, the NF-κB signaling may be a futuristic treatment strategy for PCOS.
Collapse
Affiliation(s)
- Wei Tan
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, 430060, Hubei, People's Republic of China
| | - Jie Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, 430060, Hubei, People's Republic of China
| | - Fangfang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, 430060, Hubei, People's Republic of China
| | - Dongyong Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, 430060, Hubei, People's Republic of China
| | - Ran Gu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, 430060, Hubei, People's Republic of China
| | - Lujia Tang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, 430060, Hubei, People's Republic of China
| | - Hua Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, 430060, Hubei, People's Republic of China.
| | - Yan-Xiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, 430060, Hubei, People's Republic of China.
| |
Collapse
|
13
|
Wang K, Li Y, Chen Y. Androgen excess: a hallmark of polycystic ovary syndrome. Front Endocrinol (Lausanne) 2023; 14:1273542. [PMID: 38152131 PMCID: PMC10751361 DOI: 10.3389/fendo.2023.1273542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/22/2023] [Indexed: 12/29/2023] Open
Abstract
Polycystic ovarian syndrome (PCOS) is a metabolic, reproductive, and psychological disorder affecting 6-20% of reproductive women worldwide. However, there is still no cure for PCOS, and current treatments primarily alleviate its symptoms due to a poor understanding of its etiology. Compelling evidence suggests that hyperandrogenism is not just a primary feature of PCOS. Instead, it may be a causative factor for this condition. Thus, figuring out the mechanisms of androgen synthesis, conversion, and metabolism is relatively important. Traditionally, studies of androgen excess have largely focused on classical androgen, but in recent years, adrenal-derived 11-oxygenated androgen has also garnered interest. Herein, this Review aims to investigate the origins of androgen excess, androgen synthesis, how androgen receptor (AR) signaling mediates adverse PCOS traits, and the role of 11-oxygenated androgen in the pathophysiology of PCOS. In addition, it provides therapeutic strategies targeting hyperandrogenism in PCOS.
Collapse
Affiliation(s)
- Kexin Wang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yanhua Li
- Department of General Practice, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu Chen
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
14
|
Cho M, Woo YR, Cho SH, Lee JD, Kim HS. Metformin: A Potential Treatment for Acne, Hidradenitis Suppurativa and Rosacea. Acta Derm Venereol 2023; 103:adv18392. [PMID: 38078688 PMCID: PMC10726377 DOI: 10.2340/actadv.v103.18392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023] Open
Abstract
Metformin is a widely used drug for treatment of diabetes mellitus, due to its safety and efficacy. In addition to its role as an antidiabetic drug, numerous beneficial effects of metformin have enabled its use in various diseases. Considering the anti-androgenic, anti-angiogenic, anti-fibrotic and antioxidant properties of metformin, it may have the potential to improve chronic inflammatory skin diseases. However, further evidence is needed to confirm the efficacy of metformin in dermatological conditions, This review focuses on exploring the therapeutic targets of metformin in acne vulgaris, hidradenitis suppurativa and rosacea, by studying their pathogeneses.
Collapse
Affiliation(s)
- Minah Cho
- Department of Dermatology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yu Ri Woo
- Department of Dermatology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sang Hyun Cho
- Department of Dermatology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jeong Deuk Lee
- Department of Dermatology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hei Sung Kim
- Department of Dermatology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| |
Collapse
|
15
|
Yang X, Xiaoping W, Nan D, Jian Z, Xiaofeng L, Liwei Y, Zhao M, Wang F. Proteomic and bioinformatic analysis of human endometrium from polycystic ovarian syndrome with and without insulin resistance. Gynecol Endocrinol 2023; 39:2173948. [PMID: 36750132 DOI: 10.1080/09513590.2023.2173948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Objective: The aim of this study was to investigate the endometrial proteomic profiles of patients with polycystic ovary syndrome (PCOS) with and without insulin resistance (IR). Method of Study: We collected 40 endometrial samples, including PCOS-IR (n = 21), PCOS-non-IR (n = 12), and control (n = 7). Data-independent acquisition (DIA)-based proteomics method is used to identify the expressed proteins among the three groups. The correlation between pregnancy outcomes and identified proteins was analyzed by Lasso regression. Results: A total of 5331 proteins were identified, while 275 proteins were differentially expressed in the PCOS vs. control group and 215 proteins were differentially expressed in the PCOS-IR vs. PCOS-non-IR group. Platelet degranulation, neutrophil degranulation, and very long-chain fatty acid catabolic processes have been found to play important roles in the endometrium of patients with PCOS-IR. Lasso regression analysis found that ACTR1A, TSC22D2, CKB, ABRAXAS2, and TAGLN2 were associated with miscarriage in patients with PCOS. ACTR1A and CKB were higher in the PCOS-IR group and were positively correlated with HOMA-IR (p < .05). Conclusion: In this study, a panel of proteins was found to be differently expressed in the endometrium. ACTR1A and CKB may be considered as PCOS-IR candidate biomarkers.
Collapse
Affiliation(s)
- Xin Yang
- Reproductive Medicine Center, Second Hospital of Lanzhou University, Lanzhou, China
| | - Wang Xiaoping
- Reproductive Medicine Center, Second Hospital of Lanzhou University, Lanzhou, China
| | - Ding Nan
- Reproductive Medicine Center, Second Hospital of Lanzhou University, Lanzhou, China
| | - Zhang Jian
- Reproductive Medicine Center, Second Hospital of Lanzhou University, Lanzhou, China
| | - Li Xiaofeng
- Reproductive Medicine Center, Second Hospital of Lanzhou University, Lanzhou, China
| | - Yuan Liwei
- Reproductive Medicine Center, Second Hospital of Lanzhou University, Lanzhou, China
| | - Mengni Zhao
- Reproductive Medicine Center, Second Hospital of Lanzhou University, Lanzhou, China
| | - Fang Wang
- Reproductive Medicine Center, Second Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
16
|
Guo J, Chang Y, Zeng Z, Liu H, Liang X, Zeng H, Peng J. Chronic endometritis incidence in infertile women with and without polycystic ovary syndrome: a propensity score matched study. BMC Womens Health 2023; 23:628. [PMID: 38012612 PMCID: PMC10683087 DOI: 10.1186/s12905-023-02759-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/02/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is known to be associated with chronic low-grade inflammation and endometrial dysfunction. Chronic endometritis (CE) is a type of local inflammation that can contribute to endometrial dysfunction in infertile women. Some clinicians recommend screening for CE in women at high risk, such as those with endometrial polyps. However, it is still uncertain whether there is a relationship between PCOS and CE, as well as whether women with PCOS require enhanced screening for CE. This study was to assess the incidence of CE among infertile women with PCOS by hysteroscopy combined with histopathology CD138 immunohistochemical staining of endometrium. METHODS A total of 205 patients in the PCOS group and 4021 patients in the non-PCOS group from July 2017 to August 2022 were included in this retrospective study. After nearest-neighbor 1:4 propensity score matching (PSM), 189 PCOS patients were matched with 697 non-PCOS patients. Basic information was recorded. The CE incidence was compared. The risk factors affecting CE incidence were also analyzed. RESULTS No significantly higher CE incidence in infertile women with PCOS were found either in total analysis or after PSM (P = 0.969; P = 0.697; respectively). Similar results were discovered in the subgroup of Body Mass Index (BMI) (P = 0.301; P = 0.671; P = 0.427; respectively) as well as the four PCOS phenotypes (P = 0.157). Intriguingly, the incidence of CE increased as BMI increased in the PCOS group, even though no significant differences were found (P = 0.263). Multivariate logistic regression showed that age, infertility duration, infertility type, PCOS, and obesity were not the independent risk factors affecting CE incidence. CONCLUSION The incidence of CE in PCOS patients did not significantly increase compared to non-PCOS patients. Similarly, no significant differences in the incidence of CE were observed among different PCOS phenotypes. The current evidence does not substantiate the need for widespread CE screening among PCOS women, potentially mitigating the undue financial and emotional strain associated with such screenings.
Collapse
Affiliation(s)
- Jiayi Guo
- Reproductive Medicine Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China
- GuangDong Engineering Technology Research Center of Fertility Preservation, Guangzhou, 510655, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China
| | - Yajie Chang
- Reproductive Medicine Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China
- GuangDong Engineering Technology Research Center of Fertility Preservation, Guangzhou, 510655, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China
| | - Zhi Zeng
- Reproductive Medicine Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China
- GuangDong Engineering Technology Research Center of Fertility Preservation, Guangzhou, 510655, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China
| | - Huijun Liu
- Reproductive Medicine Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China
- GuangDong Engineering Technology Research Center of Fertility Preservation, Guangzhou, 510655, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China
| | - Xiaoyan Liang
- Reproductive Medicine Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China
- GuangDong Engineering Technology Research Center of Fertility Preservation, Guangzhou, 510655, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China
| | - Haitao Zeng
- Reproductive Medicine Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China
- GuangDong Engineering Technology Research Center of Fertility Preservation, Guangzhou, 510655, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China
| | - Jintao Peng
- Reproductive Medicine Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China.
- GuangDong Engineering Technology Research Center of Fertility Preservation, Guangzhou, 510655, Guangdong, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China.
| |
Collapse
|
17
|
Wang K, Li Y. Signaling pathways and targeted therapeutic strategies for polycystic ovary syndrome. Front Endocrinol (Lausanne) 2023; 14:1191759. [PMID: 37929034 PMCID: PMC10622806 DOI: 10.3389/fendo.2023.1191759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/18/2023] [Indexed: 11/07/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine disorder among women of reproductive age. Although promising strides have been made in the field of PCOS over the past decades, the distinct etiologies of this syndrome are not fully elucidated. Prenatal factors, genetic variation, epigenetic mechanisms, unhealthy lifestyles, and environmental toxins all contribute to the development of this intricate and highly heterogeneous metabolic, endocrine, reproductive, and psychological disorder. Moreover, interactions between androgen excess, insulin resistance, disruption to the hypothalamic-pituitary-ovary (HPO) axis, and obesity only make for a more complex picture. In this review, we investigate and summarize the related molecular mechanisms underlying PCOS pathogenesis from the perspective of the level of signaling pathways, including PI3K/Akt, TGF-β/Smads, Wnt/β-catenin, and Hippo/YAP. Additionally, this review provides an overview of prospective therapies, such as exosome therapy, gene therapy, and drugs based on traditional Chinese medicine (TCM) and natural compounds. By targeting these aberrant pathways, these interventions primarily alleviate inflammation, insulin resistance, androgen excess, and ovarian fibrosis, which are typical symptoms of PCOS. Overall, we hope that this paper will pave the way for better understanding and management of PCOS in the future.
Collapse
Affiliation(s)
- Kexin Wang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yanhua Li
- Department of General Practice, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
18
|
Ryssdal M, Vanky E, Stokkeland LMT, Jarmund AH, Steinkjer B, Løvvik TS, Madssen TS, Iversen AC, Giskeødegård GF. Immunomodulatory Effects of Metformin Treatment in Pregnant Women With PCOS. J Clin Endocrinol Metab 2023; 108:e743-e753. [PMID: 36916886 PMCID: PMC10438881 DOI: 10.1210/clinem/dgad145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/15/2023]
Abstract
CONTEXT Polycystic ovary syndrome (PCOS) is a common endocrine disorder associated with low-grade systemic inflammation and increased risk of pregnancy complications. Metformin treatment reduces the risk of late miscarriage and preterm birth in pregnant women with PCOS. Whether the protective effect of metformin involves immunological changes has not been determined. OBJECTIVE To investigate the effect of metformin on the maternal immunological status in women with PCOS. METHODS A post-hoc analysis was performed of two randomized controlled trials, PregMet and PregMet2, including longitudinal maternal serum samples from 615 women with PCOS. Women were randomized to metformin or placebo from first trimester to delivery. Twenty-two cytokines and C-reactive protein were measured in serum sampled at gestational weeks 5 to 12, 19, 32, and 36. RESULTS Metformin treatment was associated with higher serum levels of several multifunctional cytokines throughout pregnancy, with the strongest effect on eotaxin (P < .001), interleukin-17 (P = .03), and basic fibroblast growth factor (P = .04). Assessment of the combined cytokine development confirmed the impact of metformin on half of the 22 cytokines. The immunomodulating effect of metformin was more potent in normal weight and overweight women than in obese women. Moreover, normoandrogenic women had the strongest effect of metformin in early pregnancy, whereas hyperandrogenic women presented increasing effect throughout pregnancy. CONCLUSION It appears that metformin has immunomodulating rather than anti-inflammatory properties in pregnancy. Its effect on the serum levels of many multifunctional cytokines demonstrates robust, persisting, and body mass-dependent immune mobilization in pregnant women with PCOS.
Collapse
Affiliation(s)
- Mariell Ryssdal
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
- Centre of Molecular Inflammation Research (CEMIR), Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Eszter Vanky
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
- Department of Obstetrics and Gynecology, St. Olavs Hospital, Trondheim University Hospital, 7006 Trondheim, Norway
| | - Live Marie T Stokkeland
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
- Centre of Molecular Inflammation Research (CEMIR), Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Anders Hagen Jarmund
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
- Centre of Molecular Inflammation Research (CEMIR), Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Bjørg Steinkjer
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
- Centre of Molecular Inflammation Research (CEMIR), Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Tone Shetelig Løvvik
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
- Department of Obstetrics and Gynecology, St. Olavs Hospital, Trondheim University Hospital, 7006 Trondheim, Norway
| | - Torfinn Støve Madssen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Ann-Charlotte Iversen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
- Centre of Molecular Inflammation Research (CEMIR), Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Department of Obstetrics and Gynecology, St. Olavs Hospital, Trondheim University Hospital, 7006 Trondheim, Norway
| | - Guro F Giskeødegård
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
19
|
Wenger M, Grosse-Kathoefer S, Kraiem A, Pelamatti E, Nunes N, Pointner L, Aglas L. When the allergy alarm bells toll: The role of Toll-like receptors in allergic diseases and treatment. Front Mol Biosci 2023; 10:1204025. [PMID: 37426425 PMCID: PMC10325731 DOI: 10.3389/fmolb.2023.1204025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/08/2023] [Indexed: 07/11/2023] Open
Abstract
Toll-like receptors of the human immune system are specialized pathogen detectors able to link innate and adaptive immune responses. TLR ligands include among others bacteria-, mycoplasma- or virus-derived compounds such as lipids, lipo- and glycoproteins and nucleic acids. Not only are genetic variations in TLR-related genes associated with the pathogenesis of allergic diseases, including asthma and allergic rhinitis, their expression also differs between allergic and non-allergic individuals. Due to a complex interplay of genes, environmental factors, and allergen sources the interpretation of TLRs involved in immunoglobulin E-mediated diseases remains challenging. Therefore, it is imperative to dissect the role of TLRs in allergies. In this review, we discuss i) the expression of TLRs in organs and cell types involved in the allergic immune response, ii) their involvement in modulating allergy-associated or -protective immune responses, and iii) how differential activation of TLRs by environmental factors, such as microbial, viral or air pollutant exposure, results in allergy development. However, we focus on iv) allergen sources interacting with TLRs, and v) how targeting TLRs could be employed in novel therapeutic strategies. Understanding the contributions of TLRs to allergy development allow the identification of knowledge gaps, provide guidance for ongoing research efforts, and built the foundation for future exploitation of TLRs in vaccine design.
Collapse
|
20
|
Wang J, Yin T, Liu S. Dysregulation of immune response in PCOS organ system. Front Immunol 2023; 14:1169232. [PMID: 37215125 PMCID: PMC10196194 DOI: 10.3389/fimmu.2023.1169232] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common reproductive endocrine disorder affecting women, which can lead to infertility. Infertility, obesity, hirsutism, acne, and irregular menstruation are just a few of the issues that PCOS can be linked to. PCOS has a complicated pathophysiology and a range of clinical symptoms. Chronic low-grade inflammation is one of the features of PCOS. The inflammatory environment involves immune and metabolic disturbances. Numerous organ systems across the body, in addition to the female reproductive system, have been affected by the pathogenic role of immunological dysregulation in PCOS in recent years. Insulin resistance and hyperandrogenism are associated with immune cell dysfunction and cytokine imbalance. More importantly, obesity is also involved in immune dysfunction in PCOS, leading to an inflammatory environment in women with PCOS. Hormone, obesity, and metabolic interactions contribute to the pathogenesis of PCOS. Hormone imbalance may also contribute to the development of autoimmune diseases. The aim of this review is to summarize the pathophysiological role of immune dysregulation in various organ systems of PCOS patients and provide new ideas for systemic treatment of PCOS in the future.
Collapse
Affiliation(s)
- Jingxuan Wang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tailang Yin
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Su Liu
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| |
Collapse
|
21
|
Hu M, Zhang Y, Lu Y, Han J, Guo T, Cui P, Brännström M, Shao LR, Billig H. Regulatory mechanisms of HMGB1 and its receptors in polycystic ovary syndrome-driven gravid uterine inflammation. FEBS J 2023; 290:1874-1906. [PMID: 36380688 PMCID: PMC10952262 DOI: 10.1111/febs.16678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/23/2022] [Accepted: 11/15/2022] [Indexed: 11/17/2022]
Abstract
High-mobility group box 1 (HMGB1) is critical for inflammatory homeostasis and successful pregnancy, and there is a strong association among elevated levels of HMGB1, polycystic ovary syndrome (PCOS), chronic inflammation and pregnancy loss. However, the mechanisms responsible for PCOS-driven regulation of uterine HMGB1 and its candidate receptors [toll-like receptor (TLR) 2 and 4] and inflammatory responses during pregnancy remain unclear. In this study, we found a gestational stage-dependent decrease in uterine HMGB1 and TLR4 protein abundance in rats during normal pregnancy. We demonstrated that increased expression of HMGB1, TLR2 and TLR4 proteins was associated with activation of inflammation-related signalling pathways in the gravid uterus exposed to 5α-dihydrotestosterone and insulin, mimicking the clinical features (hyperandrogenism and insulin resistance) of PCOS and this elevation was completely inhibited by treatment with the androgen receptor (AR) antagonist flutamide. Interestingly, acute exposure to lipopolysaccharide suppressed HMGB1, TLR4 and inflammation-related protein abundance but did not affect androgen levels or AR expression in the gravid uterus with viable fetuses. Furthermore, immunohistochemical analysis revealed that, in addition to being localized predominately in the nuclear compartment, HMGB1 immunoreactivity was also detected in the cytoplasm in the PCOS-like rat uterus, PCOS endometrium and pregnant rat uterus with haemorrhagic and resorbed fetuses, possibly via activation of nuclear factor κB signalling. These results suggest that both AR-dependent and AR-independent mechanisms contribute to the modulation of HMGB1/TLR2/TLR4-mediated uterine inflammation. We propose that the elevation of HMGB1 and its receptors and disruption of the pro-/anti-inflammatory balance in the gravid uterus may participate in the pathophysiology of PCOS-associated pregnancy loss.
Collapse
Affiliation(s)
- Min Hu
- Department of Traditional Chinese MedicineThe First Affiliated Hospital of Guangzhou Medical UniversityChina
- Institute of Integrated Traditional Chinese Medicine and Western MedicineGuangzhou Medical UniversityChina
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska AcademyUniversity of GothenburgSweden
| | - Yuehui Zhang
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska AcademyUniversity of GothenburgSweden
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated HospitalHeilongjiang University of Chinese MedicineHarbinChina
| | - Yaxing Lu
- Department of Traditional Chinese MedicineThe First Affiliated Hospital of Guangzhou Medical UniversityChina
- Institute of Integrated Traditional Chinese Medicine and Western MedicineGuangzhou Medical UniversityChina
| | - Jing Han
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated HospitalHeilongjiang University of Chinese MedicineHarbinChina
| | - Tingting Guo
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated HospitalHeilongjiang University of Chinese MedicineHarbinChina
| | - Peng Cui
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska AcademyUniversity of GothenburgSweden
- Department of Obstetrics and GynecologyShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineChina
| | - Mats Brännström
- Department of Obstetrics and Gynecology, Sahlgrenska University Hospital, Sahlgrenska AcademyUniversity of GothenburgSweden
| | - Linus R. Shao
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska AcademyUniversity of GothenburgSweden
| | - Håkan Billig
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska AcademyUniversity of GothenburgSweden
| |
Collapse
|
22
|
Zanjirband M, Baharlooie M, Safaeinejad Z, Nasr-Esfahani MH. Transcriptomic screening to identify hub genes and drug signatures for PCOS based on RNA-Seq data in granulosa cells. Comput Biol Med 2023; 154:106601. [PMID: 36738709 DOI: 10.1016/j.compbiomed.2023.106601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/14/2023] [Accepted: 01/22/2023] [Indexed: 01/25/2023]
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is one of the most incident reproductive diseases, and remains the main cause of female infertility. Granulosa cells play a critical role in normal follicle development and steroid hormones synthesis. In spite of extensive research, no sole medication has been approved by FDA to treat PCOS. This study aimed to investigate the novel therapeutics targets in PCOS, focusing on granulosa cells transcriptome functional analysis with a drug repositioning approach. METHODS PCOS microarray and RNA-Seq datasets in granulosa cells were screened and reanalyzed. KEGG pathway enrichment and interaction network analyses were performed and followed by a set of drug signature screening and Poly-pharmacology survey. RESULTS 545 deregulated genes were identified via filters including padj < 0.05 and |log2FC| > 1. Amongst the top 15 KEGG pathways significantly enriched, metabolism of xenobiotics by cytochrome P450, steroid hormone biosynthesis and ovarian steroidogenesis were observed. The Protein-Protein Interaction network identified 18 hub genes amongst this set. Interestingly, most candidate drug signatures have been introduced by databases are either FDA approved or entered into clinical trials, including melatonin, resveratrol and raloxifene. Investigational or experimental introduced drugs obey rules of drug-likeness with almost safe and acceptable ADMET properties. Notably, 21 top target genes of the final drug set were also included in the granulosa significant differentially expressed genes. CONCLUSION Results of the current study represent approved, investigational and experimental drug signatures according to the differentially expressed genes in granulosa cells with supported literature reviews. This data might be useful for researchers and clinicians to pave the way for better management of PCOS.
Collapse
Affiliation(s)
- M Zanjirband
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - M Baharlooie
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran; Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Z Safaeinejad
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - M H Nasr-Esfahani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| |
Collapse
|
23
|
Zhu Z, Rahman Z, Aamir M, Shah SZA, Hamid S, Bilawal A, Li S, Ishfaq M. Insight into TLR4 receptor inhibitory activity via QSAR for the treatment of Mycoplasma pneumonia disease. RSC Adv 2023; 13:2057-2069. [PMID: 36712602 PMCID: PMC9833105 DOI: 10.1039/d2ra06178c] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/14/2022] [Indexed: 01/13/2023] Open
Abstract
Mycoplasma pneumoniae (MP) is one of the most common pathogenic organisms causing upper and lower respiratory tract infections, lung injury, and even death in young children. Toll-like receptors (TLRs) play an important role in innate immunity by allowing the host to recognize pathogens invading the body. Previous studies demonstrated that TLR4 is a potential therapeutic target for the treatment of MP pneumonia. Therefore, the present study aimed to screen biologically active ingredients that target the TLR4 receptor pathway. We first used molecular docking to screen out the active compounds inhibiting the TLR4 pathway, and then used regression and classification machine learning algorithms to establish a quantitative structure-activity relationship (QSAR) model to predict the biological activity of the screened compounds. A total of 78 molecules were used in QSAR modelling, which were retrieved from the ChEMBL database. The QSAR models had acceptable correlation coefficients of R 2 on the training and testing dataset in the range of 0.96 to 0.91 and 0.93 to 0.76, respectively. The multiclass classification models showed accuracy on training and testing data within ranges of 1.0 to 0.70, 0.96 to 0.63, and log loss ranges from 0.27 to 8.63, respectively. In addition, molecular descriptors and fingerprints have been studied as structural elements involved in increased and decreased inhibitory activities. These results provide a quantitative analysis of QSAR and classification models applicable for high-throughput screening, as well as insights into the mechanisms of inhibition of TLR4 antagonists.
Collapse
Affiliation(s)
- Zemin Zhu
- College of Computer Science, Huanggang Normal UniversityHuanggang 438000China+86 15972855212
| | - Ziaur Rahman
- College of Computer Science, Huanggang Normal UniversityHuanggang 438000China+86 15972855212
| | - Muhammad Aamir
- College of Computer Science, Huanggang Normal UniversityHuanggang 438000China+86 15972855212
| | - Syed Zahid Ali Shah
- Department of Pathology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur-PakistanPakistan
| | - Sattar Hamid
- The University of Agriculture PeshawarKhyber Pakhtunkhwa25130Pakistan
| | - Akhunzada Bilawal
- College of Food Science, Northeast Agricultural UniversityHarbinChina
| | - Sihong Li
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F UniversityHangzhou 311300China
| | - Muhammad Ishfaq
- College of Computer Science, Huanggang Normal UniversityHuanggang 438000China+86 15972855212
| |
Collapse
|
24
|
Abstract
BACKGROUND The aim of this study was to find underlying genes and their interaction mechanism crucial to the polycystic ovarian syndrome (PCOS) by analyzing differentially expressed genes (DEGs) between PCOS and non-PCOS subjects. METHODS Gene expression data of PCOS and non-PCOS subjects were collected from gene expression omnibus (GEO) database. GEO2R were used to calculating P value and logFC. The screening threshold of DEGs was P < .05 and | FC | ≥ 1.2. GO annotation and Kyoto encyclopedia of genes and genomes (KEGG) signaling pathway enrichment analysis was performed by using DAVID (2021 Update). The protein-protein interaction (PPI) network of DEGs was constructed by using the STRING database, and the hub genes were recognized through Hubba plugin of Cytoscape software. RESULTS PCOS and non-PCOS subjects shared a total of 174 DGEs, including 14 upregulated and 160 downregulated genes. The GO biological processes enriched by DEGs mainly involved actin cytoskeleton organization, positive regulation of NF-κB signaling pathway, and positive regulation of canonical Wnt signaling pathway. The DEGs were significantly enriched in cytoplasm, nucleus and cytosol. Their molecular functions mainly focused on protein binding, calmodulin binding and glycerol-3-phosphate dehydrogenase activity. The PI3K/Akt signaling pathway and glycosaminoglycan biosynthesis were highlighted as critical pathways enriched by DEGs. 10 hub genes were screened from the constructed PPI network, of which EGF, FN1 and TLR4 were mainly enriched in the PI3K/Akt signaling pathway. CONCLUSION In this study, a total of 174 DEGs and 10 hub genes were identified as new candidate targets for insulin resistance (IR) in PCOS individuals, which may provide a new direction for developing novel treatment strategies for PCOS.
Collapse
Affiliation(s)
- Fei Zhou
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Yuling Xing
- Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Tiantian Cheng
- Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Linlin Yang
- Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Huijuan Ma
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, Hebei, China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
- *Correspondence: Huijuan Ma, Hebei Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang 050017, Hebei, China (e-mail: )
| |
Collapse
|
25
|
Abruzzese GA, Silva AF, Velazquez ME, Ferrer MJ, Motta AB. Hyperandrogenism and Polycystic ovary syndrome: Effects in pregnancy and offspring development. WIREs Mech Dis 2022; 14:e1558. [PMID: 35475329 DOI: 10.1002/wsbm.1558] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/18/2022] [Accepted: 04/01/2022] [Indexed: 11/10/2022]
Abstract
Polycystic ovary syndrome (PCOS) is one of the major endocrine disorders affecting women of reproductive age. Its etiology remains unclear. It is suggested that environmental factors, and particularly the intrauterine environment, play key roles in PCOS development. Besides the role of androgens in PCOS pathogenesis, exposure to endocrine disruptors, as is Bisphenol A, could also contribute to its development. Although PCOS is considered one of the leading causes of ovarian infertility, many PCOS patients can get pregnant. Some of them by natural conception and others by assisted reproductive technique treatments. As hyperandrogenism (one of PCOS main features) affects ovarian and uterine functions, PCOS women, despite reaching pregnancy, could present high-risk pregnancies, including implantation failure, an increased risk of gestational diabetes, preeclampsia, and preterm birth. Moreover, hyperandrogenism may also be maintained in these women during pregnancy. Therefore, as an altered uterine milieu, including hormonal imbalance, could affect the developing organisms, monitoring these patients throughout pregnancy and their offspring development is highly relevant. The present review focuses on the impact of androgenism and PCOS on fertility issues and pregnancy-related outcomes and offspring development. The evidence suggests that the increased risk of pregnancy complications and adverse offspring outcomes of PCOS women would be due to the factors involved in the syndrome pathogenesis and the related co-morbidities. A better understanding of the involved mechanisms is still needed and could contribute to a better management of these women and their offspring. This article is categorized under: Reproductive System Diseases > Molecular and Cellular Physiology Reproductive System Diseases > Environmental Factors.
Collapse
Affiliation(s)
- Giselle A Abruzzese
- Laboratorio de Fisiopatología Ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFyBO), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Aimé F Silva
- Laboratorio de Fisiopatología Ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFyBO), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mariela E Velazquez
- Laboratorio de Fisiopatología Ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFyBO), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Maria-José Ferrer
- Laboratorio de Fisiopatología Ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFyBO), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alicia B Motta
- Laboratorio de Fisiopatología Ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFyBO), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
26
|
Zhai Y, Pang Y. Systemic and Ovarian Inflammation in Women with Polycystic Ovary Syndrome. J Reprod Immunol 2022; 151:103628. [DOI: 10.1016/j.jri.2022.103628] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/01/2022] [Accepted: 04/13/2022] [Indexed: 02/08/2023]
|
27
|
Hu M, Zhang Y, Lu L, Zhou Y, Wu D, Brännström M, Shao LR, Billig H. Overactivation of the androgen receptor exacerbates gravid uterine ferroptosis via interaction with and suppression of the NRF2 defense signaling pathway. FEBS Lett 2022; 596:806-825. [DOI: 10.1002/1873-3468.14289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/02/2021] [Accepted: 01/05/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Min Hu
- Department of Traditional Chinese Medicine The First Affiliated Hospital of Guangzhou Medical University 510120 Guangzhou China
- Institute of Integrated Traditional Chinese Medicine and Western Medicine Guangzhou Medical University 510120 Guangzhou China
- Department of Physiology/Endocrinology Institute of Neuroscience and Physiology The Sahlgrenska Academy University of Gothenburg 40530 Gothenburg Sweden
| | - Yuehui Zhang
- Department of Physiology/Endocrinology Institute of Neuroscience and Physiology The Sahlgrenska Academy University of Gothenburg 40530 Gothenburg Sweden
- Department of Obstetrics and Gynecology Key Laboratory and Unit of Infertility in Chinese Medicine First Affiliated Hospital Heilongjiang University of Chinese Medicine 150040 Harbin China
| | - Lingjing Lu
- Department of Traditional Chinese Medicine The First Affiliated Hospital of Guangzhou Medical University 510120 Guangzhou China
- Institute of Integrated Traditional Chinese Medicine and Western Medicine Guangzhou Medical University 510120 Guangzhou China
| | - Yu Zhou
- Department of Traditional Chinese Medicine The First Affiliated Hospital of Guangzhou Medical University 510120 Guangzhou China
- Institute of Integrated Traditional Chinese Medicine and Western Medicine Guangzhou Medical University 510120 Guangzhou China
| | - Denghui Wu
- Department of Obstetrics and Gynecology Key Laboratory and Unit of Infertility in Chinese Medicine First Affiliated Hospital Heilongjiang University of Chinese Medicine 150040 Harbin China
| | - Mats Brännström
- Department of Obstetrics and Gynecology Sahlgrenska University Hospital Sahlgrenska Academy University of Gothenburg 41345 Gothenburg Sweden
| | - Linus R Shao
- Department of Physiology/Endocrinology Institute of Neuroscience and Physiology The Sahlgrenska Academy University of Gothenburg 40530 Gothenburg Sweden
| | - Håkan Billig
- Department of Physiology/Endocrinology Institute of Neuroscience and Physiology The Sahlgrenska Academy University of Gothenburg 40530 Gothenburg Sweden
| |
Collapse
|
28
|
Hossain MA, Sharfaraz A, Hasan MI, Somadder PD, Haque MA, Sarker MR, Alam MM, Wasaf Hasan AM, Sohel M, Rahman MH. Molecular docking and pharmacology study to explore bio-active compounds and underlying mechanisms of Caesalpinia bonducella on polycystic ovarian syndrome. INFORMATICS IN MEDICINE UNLOCKED 2022. [DOI: 10.1016/j.imu.2022.101073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
29
|
Ala M, Ala M. Metformin for Cardiovascular Protection, Inflammatory Bowel Disease, Osteoporosis, Periodontitis, Polycystic Ovarian Syndrome, Neurodegeneration, Cancer, Inflammation and Senescence: What Is Next? ACS Pharmacol Transl Sci 2021; 4:1747-1770. [PMID: 34927008 DOI: 10.1021/acsptsci.1c00167] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Indexed: 12/15/2022]
Abstract
Diabetes is accompanied by several complications. Higher prevalence of cancers, cardiovascular diseases, chronic kidney disease (CKD), obesity, osteoporosis, and neurodegenerative diseases has been reported among patients with diabetes. Metformin is the oldest oral antidiabetic drug and can improve coexisting complications of diabetes. Clinical trials and observational studies uncovered that metformin can remarkably prevent or alleviate cardiovascular diseases, obesity, polycystic ovarian syndrome (PCOS), osteoporosis, cancer, periodontitis, neuronal damage and neurodegenerative diseases, inflammation, inflammatory bowel disease (IBD), tuberculosis, and COVID-19. In addition, metformin has been proposed as an antiaging agent. Numerous mechanisms were shown to be involved in the protective effects of metformin. Metformin activates the LKB1/AMPK pathway to interact with several intracellular signaling pathways and molecular mechanisms. The drug modifies the biologic function of NF-κB, PI3K/AKT/mTOR, SIRT1/PGC-1α, NLRP3, ERK, P38 MAPK, Wnt/β-catenin, Nrf2, JNK, and other major molecules in the intracellular signaling network. It also regulates the expression of noncoding RNAs. Thereby, metformin can regulate metabolism, growth, proliferation, inflammation, tumorigenesis, and senescence. Additionally, metformin modulates immune response, autophagy, mitophagy, endoplasmic reticulum (ER) stress, and apoptosis and exerts epigenetic effects. Furthermore, metformin protects against oxidative stress and genomic instability, preserves telomere length, and prevents stem cell exhaustion. In this review, the protective effects of metformin on each disease will be discussed using the results of recent meta-analyses, clinical trials, and observational studies. Thereafter, it will be meticulously explained how metformin reprograms intracellular signaling pathways and alters molecular and cellular interactions to modify the clinical presentations of several diseases.
Collapse
Affiliation(s)
- Moein Ala
- School of Medicine, Tehran University of Medical Sciences (TUMS), 1416753955 Tehran, Iran
| | - Mahan Ala
- School of Dentistry, Golestan University of Medical Sciences (GUMS), 4814565589 Golestan, Iran
| |
Collapse
|
30
|
Hu M, Zhang Y, Ma S, Li J, Wang X, Liang M, Sferruzzi-Perri AN, Wu X, Ma H, Brännström M, Shao LR, Billig H. Suppression of uterine and placental ferroptosis by N-acetylcysteine in a rat model of polycystic ovary syndrome. Mol Hum Reprod 2021; 27:gaab067. [PMID: 34850077 DOI: 10.1093/molehr/gaab067] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/09/2021] [Indexed: 12/15/2022] Open
Abstract
The mechanisms that link hyperandrogenism and insulin (INS) resistance (HAIR) to the increased miscarriage rate in women with polycystic ovary syndrome (PCOS) remain elusive. Previous studies demonstrate that increased uterine and placental ferroptosis is associated with oxidative stress-induced fetal loss in a pre-clinical PCOS-like rat model. Here, we investigated the efficacy and molecular mechanism of action of the antioxidant N-acetylcysteine (NAC) in reversing gravid uterine and placental ferroptosis in pregnant rats exposed to 5α-dihydrotestosterone (DHT) and INS. Molecular and histological analyses showed that NAC attenuated DHT and INS-induced uterine ferroptosis, including dose-dependent increases in anti-ferroptosis gene content. Changes in other molecular factors after NAC treatment were also observed in the placenta exposed to DHT and INS, such as increased glutathione peroxidase 4 protein level. Furthermore, increased apoptosis-inducing factor mitochondria-associated 2 mRNA expression was seen in the placenta but not in the uterus. Additionally, NAC was not sufficient to rescue DHT + INS-induced mitochondria-morphological abnormalities in the uterus, whereas the same treatment partially reversed such abnormalities in the placenta. Finally, we demonstrated that NAC selectively normalized uterine leukemia inhibitory factor, osteopontin/secreted phosphoprotein 1, progesterone receptor, homeobox A11 mRNA expression and placental estrogen-related receptor beta and trophoblast-specific protein alpha mRNA expression. Collectively, our data provide insight into how NAC exerts beneficial effects on differentially attenuating gravid uterine and placental ferroptosis in a PCOS-like rat model with fetal loss. These results indicate that exogenous administration of NAC represents a potential therapeutic strategy in the treatment of HAIR-induced uterine and placental dysfunction.
Collapse
Affiliation(s)
- Min Hu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Institute of Integrated Traditional Chinese Medicine and Western Medicine, Guangzhou Medical University, Guangzhou, China
- Department of Physiology and Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Yuehui Zhang
- Department of Physiology and Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shuting Ma
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Juanli Li
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xu Wang
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Mengmeng Liang
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Amanda Nancy Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Xiaoke Wu
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hongxia Ma
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Institute of Integrated Traditional Chinese Medicine and Western Medicine, Guangzhou Medical University, Guangzhou, China
| | - Mats Brännström
- Department of Obstetrics and Gynecology, Sahlgrenska University Hospital, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Linus R Shao
- Department of Physiology and Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Håkan Billig
- Department of Physiology and Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
31
|
Metformin Corrects Glucose Metabolism Reprogramming and NLRP3 Inflammasome-Induced Pyroptosis via Inhibiting the TLR4/NF- κB/PFKFB3 Signaling in Trophoblasts: Implication for a Potential Therapy of Preeclampsia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:1806344. [PMID: 34804360 PMCID: PMC8601820 DOI: 10.1155/2021/1806344] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/15/2021] [Accepted: 09/28/2021] [Indexed: 01/22/2023]
Abstract
NOD-like receptor family, pyrin domain-containing protein 3 (NLRP3) inflammasome-mediated pyroptosis is a crucial event in the preeclamptic pathogenesis, tightly linked with the uteroplacental TLR4/NF-κB signaling. Trophoblastic glycometabolism reprogramming has now been noticed in the preeclampsia pathogenesis, plausibly modulated by the TLR4/NF-κB signaling as well. Intriguingly, cellular pyroptosis and metabolic phenotypes may be inextricably linked and interacted. Metformin (MET), a widely accepted NF-κB signaling inhibitor, may have therapeutic potential in preeclampsia while the underlying mechanisms remain unclear. Herein, we investigated the role of MET on trophoblastic pyroptosis and its relevant metabolism reprogramming. The safety of pharmacologic MET concentration to trophoblasts was verified at first, which had no adverse effects on trophoblastic viability. Pharmacological MET concentration suppressed NLRP3 inflammasome-induced pyroptosis partly through inhibiting the TLR4/NF-κB signaling in preeclamptic trophoblast models induced via low-dose lipopolysaccharide. Besides, MET corrected the glycometabolic reprogramming and oxidative stress partly via suppressing the TLR4/NF-κB signaling and blocking transcription factor NF-κB1 binding on the promoter PFKFB3, a potent glycolytic accelerator. Furthermore, PFKFB3 can also enhance the NF-κB signaling, reduce NLRP3 ubiquitination, and aggravate pyroptosis. However, MET suppressed pyroptosis partly via inhibiting PFKFB3 as well. These results provided that the TLR4/NF-κB/PFKFB3 pathway may be a novel link between metabolism reprogramming and NLRP3 inflammasome-induced pyroptosis in trophoblasts. Further, MET alleviates the NLRP3 inflammasome-induced pyroptosis, which partly relies on the regulation of TLR4/NF-κB/PFKFB3-dependent glycometabolism reprogramming and redox disorders. Hence, our results provide novel insights into the pathogenesis of preeclampsia and propose MET as a potential therapy.
Collapse
|
32
|
Yang Y, Xia J, Yang Z, Wu G, Yang J. The abnormal level of HSP70 is related to Treg/Th17 imbalance in PCOS patients. J Ovarian Res 2021; 14:155. [PMID: 34781996 PMCID: PMC8591891 DOI: 10.1186/s13048-021-00867-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/19/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a disease with chronic nonspecific low-grade inflammation. The imbalance of immune cells exists in PCOS. Several studies have found that heat shock protein 70 (HSP70) may be involved in the immunological pathogenesis of PCOS, but the relationship between HSP70 and Regulatory T cell (Treg)/T helper cell 17(Th17) ratio remains unclear. This study aims to explore the correlation between HSP70 and Treg/Th17 ratio and to provide evidence for the role of HSP70 in the immunological etiology of PCOS. RESULTS There was no significant difference in age and body mass index (BMI) between the two groups. The concentrations of basal estradiol (E2), basal follicle-stimulating hormone (FSH) did not show a significant difference between the two groups. The concentrations of basal luteinizing hormone (LH) (P < 0.01), testosterone (T) (P < 0.01), glucose (P < 0.001) and insulin (P < 0.001) in PCOS patients were significantly higher than those in the control group. The protein levels of HSP70 were significantly higher in serum in the PCOS group (P < 0.001). The percentage of Treg cells was significantly lower (P < 0.01), while the percentage of the Th17 cells of the PCOS group was significantly higher than that of the control group (P < 0.05). The ratio of Treg/Th17 in the PCOS group was significantly lower (P < 0.001). The concentrations of Interleukin (IL)-6, IL-17, and IL-23 were significantly higher, while the levels of IL-10 and Transforming growth factor-β (TGF-β) were significantly lower in the PCOS group (P < 0.001). Spearman rank correlation analysis showed a strong negative correlation of serum HSP70 levels with Treg/Th17 ratio, IL-10, and TGF-β levels. In contrast, HSP70 levels were significantly positively correlated with IL-6, IL-17, IL-23, LH, insulin, and glucose levels. CONCLUSION The abnormal level of HSP70 is correlated with Treg/Th17 imbalance and corresponding cytokines, which indicates that HSP70 may play an important role in PCOS immunologic pathogenesis.
Collapse
Affiliation(s)
- Yiqing Yang
- Reproductive Medical Centre, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.,Hubei Clinical Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, 430060, People's Republic of China
| | - Jing Xia
- Reproductive Medical Centre, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.,Hubei Clinical Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, 430060, People's Republic of China
| | - Zhe Yang
- Reproductive Medical Centre, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.,Hubei Clinical Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, 430060, People's Republic of China
| | - Gengxiang Wu
- Reproductive Medical Centre, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China. .,Hubei Clinical Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, 430060, People's Republic of China.
| | - Jing Yang
- Reproductive Medical Centre, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China. .,Hubei Clinical Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, 430060, People's Republic of China.
| |
Collapse
|
33
|
Zhang Y, Hu M, Yang F, Zhang Y, Ma S, Zhang D, Wang X, Sferruzzi-Perri AN, Wu X, Brännström M, Shao LR, Billig H. Increased uterine androgen receptor protein abundance results in implantation and mitochondrial defects in pregnant rats with hyperandrogenism and insulin resistance. J Mol Med (Berl) 2021; 99:1427-1446. [PMID: 34180022 PMCID: PMC8455403 DOI: 10.1007/s00109-021-02104-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/20/2021] [Accepted: 06/10/2021] [Indexed: 12/21/2022]
Abstract
Abstract In this study, we show that during normal rat pregnancy, there is a gestational stage-dependent decrease in androgen receptor (AR) abundance in the gravid uterus and that this is correlated with the differential expression of endometrial receptivity and decidualization genes during early and mid-gestation. In contrast, exposure to 5α-dihydrotestosterone (DHT) and insulin (INS) or DHT alone significantly increased AR protein levels in the uterus in association with the aberrant expression of endometrial receptivity and decidualization genes, as well as disrupted implantation. Next, we assessed the functional relevance of the androgen-AR axis in the uterus for reproductive outcomes by treating normal pregnant rats and pregnant rats exposed to DHT and INS with the anti-androgen flutamide. We found that AR blockage using flutamide largely attenuated the DHT and INS-induced maternal endocrine, metabolic, and fertility impairments in pregnant rats in association with suppressed induction of uterine AR protein abundance and androgen-regulated response protein and normalized expression of several endometrial receptivity and decidualization genes. Further, blockade of AR normalized the expression of the mitochondrial biogenesis marker Nrf1 and the mitochondrial functional proteins Complexes I and II, VDAC, and PHB1. However, flutamide treatment did not rescue the compromised mitochondrial structure resulting from co-exposure to DHT and INS. These results demonstrate that functional AR protein is an important factor for gravid uterine function. Impairments in the uterine androgen-AR axis are accompanied by decreased endometrial receptivity, decidualization, and mitochondrial dysfunction, which might contribute to abnormal implantation in pregnant PCOS patients with compromised pregnancy outcomes and subfertility. Key messages The proper regulation of uterine androgen receptor (AR) contributes to a
normal pregnancy process, whereas the aberrant regulation of uterine AR might
be linked to polycystic ovary syndrome (PCOS)-induced pregnancy-related
complications. In the current study, we found that during normal rat pregnancy there is
a stage-dependent decrease in AR abundance in the gravid uterus and that this
is correlated with the differential expression of the endometrial receptivity
and decidualization genes Spp1, Prl, Igfbp1,
and Hbegf. Pregnant rats exposed to 5α-dihydrotestosterone (DHT) and insulin (INS)
or to DHT alone show elevated uterine AR protein abundance and implantation
failure related to the aberrant expression of genes involved in endometrial
receptivity and decidualization in early to mid-gestation. Treatment with the anti-androgen flutamide, starting from
pre-implantation, effectively prevents DHT + INS-induced defects in endometrial
receptivity and decidualization gene expression, restores uterine mitochondrial
homeostasis, and increases the pregnancy rate and the numbers of viable
fetuses. This study adds to our understanding of the mechanisms underlying poor
pregnancy outcomes in PCOS patients and the possible therapeutic use of
anti-androgens, including flutamide, after spontaneous conception.
Supplementary Information The online version contains supplementary material available at 10.1007/s00109-021-02104-z.
Collapse
Affiliation(s)
- Yuehui Zhang
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.,Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 11, P. O. Box 434, 40530, Gothenburg, Sweden
| | - Min Hu
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 11, P. O. Box 434, 40530, Gothenburg, Sweden.,Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.,Institute of Integrated Traditional Chinese Medicine and Western Medicine, Guangzhou Medical University, Guangzhou, 510120, China
| | - Fan Yang
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Yizhuo Zhang
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Shuting Ma
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Dongqi Zhang
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Xu Wang
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Amanda Nancy Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Xiaoke Wu
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Mats Brännström
- Department of Obstetrics and Gynecology, Sahlgrenska University Hospital, Sahlgrenska Academy, University of Gothenburg, 41345, Gothenburg, Sweden
| | - Linus R Shao
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 11, P. O. Box 434, 40530, Gothenburg, Sweden.
| | - Håkan Billig
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 11, P. O. Box 434, 40530, Gothenburg, Sweden
| |
Collapse
|
34
|
Hahner S, Ross RJ, Arlt W, Bancos I, Burger-Stritt S, Torpy DJ, Husebye ES, Quinkler M. Adrenal insufficiency. Nat Rev Dis Primers 2021; 7:19. [PMID: 33707469 DOI: 10.1038/s41572-021-00252-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/02/2021] [Indexed: 12/25/2022]
Abstract
Adrenal insufficiency (AI) is a condition characterized by an absolute or relative deficiency of adrenal cortisol production. Primary AI (PAI) is rare and is caused by direct adrenal failure. Secondary AI (SAI) is more frequent and is caused by diseases affecting the pituitary, whereas in tertiary AI (TAI), the hypothalamus is affected. The most prevalent form is TAI owing to exogenous glucocorticoid use. Symptoms of AI are non-specific, often overlooked or misdiagnosed, and are related to the lack of cortisol, adrenal androgen precursors and aldosterone (especially in PAI). Diagnosis is based on measurement of the adrenal corticosteroid hormones, their regulatory peptide hormones and stimulation tests. The goal of therapy is to establish a hormone replacement regimen that closely mimics the physiological diurnal cortisol secretion pattern, tailored to the patient's daily needs. This Primer provides insights into the epidemiology, mechanisms and management of AI during pregnancy as well as challenges of long-term management. In addition, the importance of identifying life-threatening adrenal emergencies (acute AI and adrenal crisis) is highlighted and strategies for prevention, which include patient education, glucocorticoid emergency cards and injection kits, are described.
Collapse
Affiliation(s)
- Stefanie Hahner
- Department of Medicine I, Division of Endocrinology and Diabetology, University Hospital Wuerzburg, Wuerzburg, Germany.
| | - Richard J Ross
- Department of Oncology and Metabolism, The University of Sheffield, Sheffield, UK
| | - Wiebke Arlt
- Institute for Metabolism and Systems Research, University of Birmingham, Birmingham, UK.,Centre for Endocrinology, Diabetes, and Metabolism, Birmingham Health Partners, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Irina Bancos
- Division of Endocrinology, Metabolism and Nutrition, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Stephanie Burger-Stritt
- Department of Medicine I, Division of Endocrinology and Diabetology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - David J Torpy
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, University of Adelaide, Adelaide, SA, Australia
| | - Eystein S Husebye
- Department of Clinical Science, University of Bergen, Bergen, Norway.,K.G. Jebsen Center for Autoimmune Diseases, University of Bergen, Bergen, Norway.,Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | | |
Collapse
|