1
|
Basak S, Kumar Dixit A, Kumar Dey R, Roy S, Singh R, Nair PG, Kumar S, Babu G. Rodent models in polycystic ovarian syndrome: Dissecting reproductive and metabolic phenotypes for therapeutic advancements. Steroids 2024; 211:109489. [PMID: 39117289 DOI: 10.1016/j.steroids.2024.109489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
The most prevalent reason for female infertility is polycystic ovarian syndrome (PCOS) exhibiting two of three phenotypes including biochemical or clinical hyperandrogenism, anovulation and polycystic ovaries. Insulin resistance and obesity are common in PCOS-afflicted women. Androgens are thought to be the primary cause of PCOS causing symptoms including anovulation, follicles that resemble cysts, higher levels of the luteinizing hormone (LH), increased adiposity, and insulin resistance. However, due to the heterogeneity of PCOS, it is challenging to establish a single model that accurately mimics all the reproductive and metabolic phenotypes seen in PCOS patients. In this review, we aimed to investigate rodent models of PCOS and related phenotypes with or without direct hormonal treatments and to determine the underlying mechanisms to comprehend PCOS better. We summarized rodent models of PCOS that includes direct and indirect hormone intervention and discussed the aetiology of PCOS and related phenotypes produced in rodent models. We presented combined insights on multiple rodent models of PCOS and compared their reproductive and/or metabolic phenotypes. Our review indicates that there are various models for studying PCOS and one should select a model most suitable for their purpose. This review will be helpful for consideration of rodent models for PCOS which are not conventionally used to determine mechanisms at the molecular/cellular levels encouraging development of novel treatments and control methods for PCOS.
Collapse
Affiliation(s)
- Smarto Basak
- Central Ayurveda Research Institute, Central Council for Research in Ayurvedic Sciences, Ministry of AYUSH, Government of India, Kolkata, West Bengal, India
| | - Amit Kumar Dixit
- Central Ayurveda Research Institute, Central Council for Research in Ayurvedic Sciences, Ministry of AYUSH, Government of India, Kolkata, West Bengal, India.
| | - Ranjit Kumar Dey
- Central Ayurveda Research Institute, Central Council for Research in Ayurvedic Sciences, Ministry of AYUSH, Government of India, Kolkata, West Bengal, India
| | - Susmita Roy
- Central Ayurveda Research Institute, Central Council for Research in Ayurvedic Sciences, Ministry of AYUSH, Government of India, Kolkata, West Bengal, India
| | - Rahul Singh
- Central Ayurveda Research Institute, Central Council for Research in Ayurvedic Sciences, Ministry of AYUSH, Government of India, Kolkata, West Bengal, India
| | - Parvathy G Nair
- National Ayurveda Research Institute for Panchakarma, CCRAS, Kerala, India
| | - Sanjay Kumar
- Central Council for Research in Ayurvedic Sciences, Janakpuri, New Delhi, India
| | - Gajji Babu
- Central Ayurveda Research Institute, Central Council for Research in Ayurvedic Sciences, Ministry of AYUSH, Government of India, Kolkata, West Bengal, India
| |
Collapse
|
2
|
Rulli SB, Ahtiainen P, Ratner LD, Jonas K, Calandra RS, Poutanen M, Huhtaniemi I. Elevated chorionic gonadotropic hormone in transgenic mice induces parthenogenetic activation and ovarian teratomas. Mol Cell Endocrinol 2024; 587:112214. [PMID: 38537882 DOI: 10.1016/j.mce.2024.112214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 02/25/2024] [Accepted: 03/19/2024] [Indexed: 04/13/2024]
Abstract
Both male and female reproductive functions are impacted by altered gonadotrophin secretion and action, which may also influence the development of endocrine tumours. To ascertain if chronic hypersecretion of human chorionic gonadotropin (hCG) contributes to the development of gonadal tumours, double transgenic (TG) mice that overexpress hCGα- and β-subunits were analysed. By the age of two months, ovarian tumours with characteristics of teratomas developed with 100% penetrance. Teratomas were also seen in wild-type ovaries orthotopically transplanted into TG mice, demonstrating an endocrine/paracrine mechanism for the hCG-induced ovarian tumorigenesis. Both in vitro and in vivo experiments showed oocyte parthenogenetic activation in TG females. In addition, ovaries showed reduced ovulatory gene expression, inhibited ERK1/2 phosphorylation, and impaired cumulus cell expansion. Hence, persistently high endocrine hCG activity causes parthenogenetic activation and development of ovarian teratomas, along with altered follicle development and impaired ERK1/2 signalling, offering a novel mechanism associated with the molecular pathogenesis of ovarian teratomas.
Collapse
Affiliation(s)
- Susana B Rulli
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Kiinamyllynkatu 10, FIN-20520, Turku, Finland; Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490, 1428, Buenos Aires, Argentina; Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Hidalgo 775, C1405BCK, Ciudad Autónoma de Buenos Aires, Argentina.
| | - Petteri Ahtiainen
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Kiinamyllynkatu 10, FIN-20520, Turku, Finland
| | - Laura D Ratner
- Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490, 1428, Buenos Aires, Argentina
| | - Kim Jonas
- Department of Digestion, Metabolism and Reproduction, Institute of Reproductive and Developmental Biology, Hammersmith Campus, Imperial College London, London, W12 0NN, UK; Department of Women and Children's Health, School of Population and Life Course Sciences, King's College London, London, SE1 1UL, UK
| | - Ricardo S Calandra
- Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490, 1428, Buenos Aires, Argentina
| | - Matti Poutanen
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Kiinamyllynkatu 10, FIN-20520, Turku, Finland; Turku Center for Disease Modeling, University of Turku, Kiinamyllynkatu 10, FIN-20520, Turku, Finland
| | - Ilpo Huhtaniemi
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Kiinamyllynkatu 10, FIN-20520, Turku, Finland; Department of Digestion, Metabolism and Reproduction, Institute of Reproductive and Developmental Biology, Hammersmith Campus, Imperial College London, London, W12 0NN, UK
| |
Collapse
|
3
|
Dzialach L, Sobolewska J, Zak Z, Respondek W, Witek P. Prolactin-secreting pituitary adenomas: male-specific differences in pathogenesis, clinical presentation and treatment. Front Endocrinol (Lausanne) 2024; 15:1338345. [PMID: 38370355 PMCID: PMC10870150 DOI: 10.3389/fendo.2024.1338345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/22/2024] [Indexed: 02/20/2024] Open
Abstract
Prolactinomas (PRLomas) constitute approximately half of all pituitary adenomas and approximately one-fifth of them are diagnosed in males. The clinical presentation of PRLomas results from direct prolactin (PRL) action, duration and severity of hyperprolactinemia, and tumor mass effect. Male PRLomas, compared to females, tend to be larger and more invasive, are associated with higher PRL concentration at diagnosis, present higher proliferative potential, are more frequently resistant to standard pharmacotherapy, and thus may require multimodal approach, including surgical resection, radiotherapy, and alternative medical agents. Therefore, the management of PRLomas in men is challenging in many cases. Additionally, hyperprolactinemia is associated with a significant negative impact on men's health, including sexual function and fertility potential, bone health, cardiovascular and metabolic complications, leading to decreased quality of life. In this review, we highlight the differences in pathogenesis, clinical presentation and treatment of PRLomas concerning the male sex.
Collapse
Affiliation(s)
- Lukasz Dzialach
- Department of Internal Medicine, Endocrinology and Diabetes, Medical University of Warsaw, Warsaw, Poland
| | - Joanna Sobolewska
- Department of Internal Medicine, Endocrinology and Diabetes, Medical University of Warsaw, Warsaw, Poland
| | - Zuzanna Zak
- Department of Internal Medicine, Endocrinology and Diabetes, Medical University of Warsaw, Warsaw, Poland
| | - Wioleta Respondek
- Department of Internal Medicine, Endocrinology and Diabetes, Mazovian Brodnowski Hospital, Warsaw, Poland
| | - Przemysław Witek
- Department of Internal Medicine, Endocrinology and Diabetes, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
4
|
Yang S, Jia Y, Wu Z, Fu B, Zhou S, Pires LV, Cheng JC, Fang L. Activation of G protein-coupled estrogen receptor stimulates placental human chorionic gonadotropin expression through PKA-CREB signaling. Mol Cell Endocrinol 2023; 577:112033. [PMID: 37506871 DOI: 10.1016/j.mce.2023.112033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
The placenta-secreted human chorionic gonadotropin (hCG) is a hormone that plays a critical role in inducing ovarian progesterone production, which is required for maintaining normal pregnancy. The bioavailability of hCG depends on the expression of the beta-subunit of hCG (hCG-β) which is encoded by the chorionic gonadotropin beta (CGB) gene. G protein-coupled estrogen receptor (GPER) is a membrane estrogen receptor involved in non-genomic estrogen signaling. Estradiol (E2) has been shown to stimulate hCG production. However, the role of the GPER in regulating CGB expression remains unknown. In the present study, our results revealed that treatment with G1 upregulated CGB expression in two human choriocarcinoma cell lines, BeWo and JEG-3, and primary human cytotrophoblast cells. In addition, G1 treatment activated the cAMP-response element binding protein (CREB). Using a pharmacological inhibitor and siRNA-mediated knockdown approach, we showed that the stimulatory effect of G1 on CGB expression is mediated by the protein kinase A (PKA)-CREB signaling pathway. This study increases the understanding of the role of GPER in the human placenta. In addition, our results provide important insights into the molecular mechanisms that mediate hCG expression, which may lead to the development of alternative therapeutic approaches for treating placental diseases.
Collapse
Affiliation(s)
- Sizhu Yang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuanyuan Jia
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ze Wu
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bingxin Fu
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shenghui Zhou
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Leticia Vicosa Pires
- Department of Gynaecology and Obstetrics, Federal University of Health Sciences of Porto Alegre, Rio Grande do Sul, Brazil
| | - Jung-Chien Cheng
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Lanlan Fang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
5
|
Marcial Lopez A, Ratner LD, Martinez CS, Di Giorgio N, Poutanen M, Huhtaniemi IT, Rulli SB. Persistently expressed human chorionic gonadotropin induces premature luteinization and progressive alterations on the reproductive axis in female mice. Gen Comp Endocrinol 2023; 336:114247. [PMID: 36858273 DOI: 10.1016/j.ygcen.2023.114247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023]
Abstract
The hypothalamic-pituitary-gonadal axis plays a fundamental role in the endocrine regulation of the reproductive function in mammals. Any change in the function of the participating hormones or their receptors can lead to alterations in sexual differentiation, the onset of puberty, infertility, cancer development, and other dysfunctions. In this study, we analyzed the influence of persistently elevated levels of the human chorionic gonadotropin hormone (hCG), a powerful agonist of pituitary luteinizing hormone (LH), on the reproductive axis of female mice. As a consequence of chronic hCG hypersecretion through a global expression of the hCGbeta-subunit in transgenic (TG) female mice, a series of events perturbed the prepubertal to juvenile transition. The imbalance in gonadotropin action was first manifested by precocious puberty and alterations in gonadal hormone production, with the consequent ovarian function disruption and infertility in adulthood. The expansion of cumulus cells in vivo and in vitro, ovulatory capacity, and gene expression of ovulation-related marker genes after hormone stimulation were normal in 3-week-old TG females. However, the expression of genes related to steroidogenesis and luteinization such as Lhcgr, Prlr, and the steroidogenic enzymes Cyp11a1, Cyp17a1, and Cyp19a1 were significantly elevated in the TG females. This study demonstrates that the excessive secretion of hCG in concert with high prolactin, induced premature luteinization, and enhanced ovarian steroidogenesis, as was shown by the up-regulation of luteal cell markers and progesterone synthesis in the TG mice. Furthermore, progressively impaired reproductive function of the TG females occurred from the peripubertal stage to adulthood, thus culminating in infertility.
Collapse
Affiliation(s)
- Agustina Marcial Lopez
- Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490 (1428), Buenos Aires, Argentina
| | - Laura D Ratner
- Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490 (1428), Buenos Aires, Argentina
| | - Carolina S Martinez
- Laboratorio de Bio-nanotecnología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Grupo vinculado GBEyB, IMBICE-CONICET-CICPBA, Bernal, Argentina
| | - Noelia Di Giorgio
- Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490 (1428), Buenos Aires, Argentina
| | - Matti Poutanen
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland; Turku Center for Disease Modeling, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland
| | - Ilpo T Huhtaniemi
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland; Department of Metabolism, Digestion and Reproduction, Institute of Reproductive and Developmental Biology, Imperial College London, London W12 0NN, UK
| | - Susana B Rulli
- Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490 (1428), Buenos Aires, Argentina.
| |
Collapse
|
6
|
Abeledo-Machado A, Peña-Zanoni M, Bornancini D, Camilletti MA, Faraoni EY, Marcial A, Rulli S, Alhenc-Gelas F, Díaz-Torga GS. Sex-specific Regulation of Prolactin Secretion by Pituitary Bradykinin Receptors. Endocrinology 2022; 163:6648127. [PMID: 35863039 DOI: 10.1210/endocr/bqac108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Indexed: 11/19/2022]
Abstract
Sex differences in the control of prolactin secretion are well documented. Sex-related differences in intrapituitary factors regulating lactotroph function have recently attracted attention. Sex differences in prolactinoma development are well documented in clinic, prolactinomas being more frequent in women but more aggressive in men, for poorly understood reasons. Kallikrein, the enzyme releasing kinins has been found in the pituitary, but there is no information on pituitary kinin receptors and their function. In the present work, we characterized pituitary bradykinin receptors (BRs) at the messenger RNA and protein levels in 2 mouse models of prolactinoma, Drd2 receptor gene inactivation and hCGβ gene overexpression, in both males and females, wild type or genomically altered. BR B2 (B2R) accounted for 97% or more of total pituitary BRs in both models, regardless of genotype, and was present in lactotrophs, somatotrophs, and gonadotrophs. Male pituitaries displayed higher level of B2R than females, regardless of genotype. Pituitary B2R gene expression was downregulated by estrogen in both males and females but only in females by dopamine. Activation of B1R or B2R by selective pharmacological agonists induced prolactin release in male pituitaries but inhibited prolactin secretion in female pituitaries. Increased B2R content was observed in pituitaries of mutated animals developing prolactinomas, compared to their respective wild-type controls. The present study documents a novel sex-related difference in the control of prolactin secretion and suggests that kinins are involved, through B2R activation, in lactotroph function and prolactinoma development.
Collapse
Affiliation(s)
- Alejandra Abeledo-Machado
- Laboratorio de Fisio-Patología Hormonal, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - Milagros Peña-Zanoni
- Laboratorio de Fisio-Patología Hormonal, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - Dana Bornancini
- Laboratorio de Fisio-Patología Hormonal, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - María Andrea Camilletti
- Laboratorio de Fisio-Patología Hormonal, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - Erika Yanil Faraoni
- Laboratorio de Fisio-Patología Hormonal, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - Agustina Marcial
- Laboratorio de Endocrinología Molecular de la Reproducción, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - Susana Rulli
- Laboratorio de Endocrinología Molecular de la Reproducción, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - Francois Alhenc-Gelas
- INSERM U1138, Universite Paris-Cite, Sorbonne Universite, Centre de Recherche des Cordeliers, Paris, France
| | - Graciela Susana Díaz-Torga
- Laboratorio de Fisio-Patología Hormonal, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| |
Collapse
|
7
|
Sarkar M, Sharma H, Singh P, Ranu R, Sharma RD, Agrawal U, Pal R. Progesterone limits the tumor-promoting effects of the beta-subunit of human chorionic gonadotropin via non-nuclear receptors. iScience 2022; 25:104527. [PMID: 35754725 PMCID: PMC9218381 DOI: 10.1016/j.isci.2022.104527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/13/2022] [Accepted: 05/30/2022] [Indexed: 11/25/2022] Open
Abstract
The post-menopausal state in women is associated with increased cancer incidence, the reasons for which remain obscure. Curiously, increased circulating levels of beta-hCG (human chorionic gonadotropin) (a hormonal subunit linked with tumors of several lineages) are also often observed post-menopause. This study describes a previously unidentified interplay between beta-hCG and progesterone in tumorigenesis. Progesterone mediated apoptosis in beta-hCG responsive tumor cells via non-nuclear receptors. The transgenic expression of beta-hCG, particularly in the absence of the ovaries (a mimic of the post-menopausal state) constituted a potent pro-tumorigenic signal. Significantly, the administration of progesterone had significant anti-tumor effects. RNA-seq profiling identified molecular signatures associated with these processes. TCGA analysis revealed correlates between the expression of several newly identified genes and poor prognosis in post-menopausal patients of lung adenocarcinoma, colon adenocarcinoma, and glioblastoma. Specifically in these women, the detection of intra-tumoral/extra-tumoral beta-hCG may serve as a useful prognostic indicator, and treatment with progesterone on its detection may prove beneficial.
Collapse
Affiliation(s)
- Moumita Sarkar
- Immunoendocrinology Lab, National Institute of Immunology, New Delhi, Delhi 110067, India
| | - Harsh Sharma
- Amity Institute of Integrative Sciences and Health, Amity University, Gurugram, Haryana 122413, India
| | - Parminder Singh
- Larry L. Hillblom Center, Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Ranbala Ranu
- Cancer Research Imaging and Biobanking Lab, National Institute of Pathology, New Delhi, Delhi 110029, India
| | - Ravi Datta Sharma
- Amity Institute of Integrative Sciences and Health, Amity University, Gurugram, Haryana 122413, India
| | - Usha Agrawal
- Cancer Research Imaging and Biobanking Lab, National Institute of Pathology, New Delhi, Delhi 110029, India
| | - Rahul Pal
- Immunoendocrinology Lab, National Institute of Immunology, New Delhi, Delhi 110067, India
| |
Collapse
|
8
|
Jonas KC, Rivero Müller A, Oduwole O, Peltoketo H, Huhtaniemi I. The Luteinizing Hormone Receptor Knockout Mouse as a Tool to Probe the In Vivo Actions of Gonadotropic Hormones/Receptors in Females. Endocrinology 2021; 162:6144965. [PMID: 33605422 PMCID: PMC8171189 DOI: 10.1210/endocr/bqab035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Indexed: 11/25/2022]
Abstract
Mouse models with altered gonadotropin functions have provided invaluable insight into the functions of these hormones/receptors. Here we describe the repurposing of the infertile and hypogonadal luteinizing hormone receptor (LHR) knockout mouse model (LuRKO), to address outstanding questions in reproductive physiology. Using crossbreeding strategies and physiological and histological analyses, we first addressed the physiological relevance of forced LHR homomerization in female mice using BAC expression of 2 ligand-binding and signaling deficient mutant LHR, respectively, that have previously shown to undergo functional complementation and rescue the hypogonadal phenotype of male LuRKO mice. In female LuRKO mice, coexpression of signaling and binding deficient LHR mutants failed to rescue the hypogonadal and anovulatory phenotype. This was apparently due to the low-level expression of the 2 mutant LHR and potential lack of luteinizing hormone (LH)/LHR-dependent pleiotropic signaling that has previously been shown at high receptor densities to be essential for ovulation. Next, we utilized a mouse model overexpressing human chorionic gonadotropin (hCG) with increased circulating "LH/hCG"-like bioactivity to ~40 fold higher than WT females, to determine if high circulating hCG in the LuRKO background could reveal putative LHR-independent actions. No effects were found, thus, suggesting that LH/hCG mediate their gonadal and non-gonadal effects solely via LHR. Finally, targeted expression of a constitutively active follicle stimulating hormone receptor (FSHR) progressed antral follicles to preovulatory follicles and displayed phenotypic markers of enhanced estrogenic activity but failed to induce ovulation in LuRKO mice. This study highlights the critical importance and precise control of functional LHR and FSHR for mediating ovarian functions and of the potential repurposing of existing genetically modified mouse models in answering outstanding questions in reproductive physiology.
Collapse
Affiliation(s)
- Kim Carol Jonas
- Department of Women and Children’s Health, King’s College London,
London SE1 1UL, UK
- Institute of Reproductive and Developmental Biology, Department of Metabolism,
Digestion and Reproduction, Imperial College London, London W12
0NN, UK
- Correspondence: Dr Kim Jonas, Department of Women and Children’s Health, King’s College London,
London SE1 1UL, UK; Institute of Reproductive and Developmental Biology, Department of
Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, UK.
; or Prof. Ilpo Huhtaniemi, Institute of Reproductive and
Developmental Biology, Department of Metabolism, Digestion and Reproduction, Imperial
College London, London, W12 0NN, UK; Institute for Biomedicine, Department of Physiology,
University of Turku, 20520 Turku, Finland.
| | - Adolfo Rivero Müller
- Institute for Biomedicine, Department of Physiology, University of
Turku, 20520 Turku, Finland
- Department of Biochemistry and Molecular Biology, Medical University of
Lublin, 20-093 Lublin, Poland
| | - Olayiwola Oduwole
- Institute of Reproductive and Developmental Biology, Department of Metabolism,
Digestion and Reproduction, Imperial College London, London W12
0NN, UK
| | - Hellevi Peltoketo
- Institute of Reproductive and Developmental Biology, Department of Metabolism,
Digestion and Reproduction, Imperial College London, London W12
0NN, UK
- Laboratory of Cancer Genetics and Tumour Biology, Cancer and Translational
Medicine Research Unit, Biocenter Oulu and University of Oulu,
90220 Oulu, Finland
| | - Ilpo Huhtaniemi
- Institute of Reproductive and Developmental Biology, Department of Metabolism,
Digestion and Reproduction, Imperial College London, London W12
0NN, UK
- Institute for Biomedicine, Department of Physiology, University of
Turku, 20520 Turku, Finland
- Correspondence: Dr Kim Jonas, Department of Women and Children’s Health, King’s College London,
London SE1 1UL, UK; Institute of Reproductive and Developmental Biology, Department of
Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, UK.
; or Prof. Ilpo Huhtaniemi, Institute of Reproductive and
Developmental Biology, Department of Metabolism, Digestion and Reproduction, Imperial
College London, London, W12 0NN, UK; Institute for Biomedicine, Department of Physiology,
University of Turku, 20520 Turku, Finland.
| |
Collapse
|
9
|
Motomura K, Romero R, Galaz J, Miller D, Done B, Arenas-Hernandez M, Garcia-Flores V, Tao L, Tarca AL, Gomez-Lopez N. Human Chorionic Gonadotropin Modulates the Transcriptome of the Myometrium and Cervix in Late Gestation. Reprod Sci 2021; 28:2246-2260. [PMID: 33650091 DOI: 10.1007/s43032-020-00454-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/29/2020] [Indexed: 10/22/2022]
Abstract
Human chorionic gonadotropin (hCG) is a critical hormone for the establishment and maintenance of pregnancy. hCG administration prevents the onset of preterm labor in mice; yet, the transcriptomic changes associated with this tocolytic effect that take place in the myometrium and cervix have not been elucidated. Herein, we implemented both discovery and targeted approaches to investigate the transcriptome of the myometrium and cervix after hCG administration. Pregnant mice were intraperitoneally injected with 10 IU of hCG on 13.0, 15.0, and 17.0 days post coitum, and the myometrium and cervix were collected. RNA sequencing was performed to determine differentially expressed genes, enriched biological processes, and impacted KEGG pathways. Multiplex qRT-PCR was performed to investigate the expression of targeted contractility- and inflammation-associated transcripts. hCG administration caused the differential expression of 720 genes in the myometrium. Among the downregulated genes, enriched biological processes were primarily associated with regulation of transcription. hCG administration downregulated key contractility genes, Gja1 and Oxtr, but upregulated the prostaglandin-related genes Ptgfr and Ptgs2 and altered the expression of inflammation-related genes in the myometrium. In the cervix, hCG administration caused differential expression of 3348 genes that were related to inflammation and host defense, among others. The downregulation of key contractility genes and upregulation of prostaglandin-related genes were also observed in the cervix. Thus, hCG exerts tocolytic and immunomodulatory effects in late gestation by altering biological processes in the myometrium and cervix, which should be taken into account when considering hCG as a potential treatment to prevent the premature onset of labor.
Collapse
Affiliation(s)
- Kenichiro Motomura
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, USA.,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA.,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA.,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA.,Detroit Medical Center, Detroit, MI, USA.,Department of Obstetrics and Gynecology, Florida International University, Miami, FL, USA
| | - Jose Galaz
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Derek Miller
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Bogdan Done
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Marcia Arenas-Hernandez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Valeria Garcia-Flores
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Li Tao
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Adi L Tarca
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, USA. .,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA. .,Department of Computer Science, Wayne State University College of Engineering, Detroit, MI, USA.
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, MI, USA. .,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA. .,Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
10
|
Camilletti MA, Abeledo-Machado A, Faraoni EY, Thomas P, Díaz-Torga G. New insights into progesterone actions on prolactin secretion and prolactinoma development. Steroids 2019; 152:108496. [PMID: 31521709 DOI: 10.1016/j.steroids.2019.108496] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/05/2019] [Accepted: 09/09/2019] [Indexed: 12/12/2022]
Abstract
Progesterone (P4) has controversial physiological effects on the regulation of the lactotroph population. While some studies have shown a negative role for P4 in prolactin secretion and lactotroph proliferation, antagonizing estradiol effects, others demonstrated a proliferative role of P4 at the pituitary level. Usually, progesterone actions in the pituitary gland were studied through their classical, genomic pathways triggered by nuclear progesterone receptors (nPRs). However, in 2003, the scene became more complex with the discovery of another group of progesterone receptors involved in rapid, non-genomic P4 effects: the membrane progesterone receptors (mPRs), which are members of the progesterone and adipoQ receptor (PAQR) family. This review examines the historical background and current data on the study of progesterone actions on PRL secretion providing new evidence of P4 effects at the hypothalamic and at the pituitary level through non-classic P4-receptors. In addition, we explore the role of progesterone in the development of experimental prolactinomas, a controversial topic in the literature.
Collapse
Affiliation(s)
- María A Camilletti
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | | | - Erika Y Faraoni
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - Peter Thomas
- Marine Science Institute, University of Texas at Austin, Port Aransas, TX, USA
| | - Graciela Díaz-Torga
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina.
| |
Collapse
|
11
|
Xiong S, Mhawech-Fauceglia P, Tsao-Wei D, Roman L, Gaur RK, Epstein AL, Pinski J. Expression of the luteinizing hormone receptor (LHR) in ovarian cancer. BMC Cancer 2019; 19:1114. [PMID: 31729966 PMCID: PMC6857310 DOI: 10.1186/s12885-019-6153-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 09/11/2019] [Indexed: 11/10/2022] Open
Abstract
We investigated the association of LHR expression in epithelial ovarian cancer (OC) with clinical and pathologic characteristics of patients. LHR expression was examined immunohistochemically using tissue microarrays (TMAs) of specimens from 232 OC patients. Each sample was scored quantitatively evaluating LHR staining intensity (LHR-I) and percentage of LHR (LHR-P) staining cells in tumor cells examined. LHR-I was assessed as no staining (negative), weak (+ 1), moderate (+ 2), and strong positive (+ 3). LHR-P was measured as 1 to 5, 6 to 50% and > 50% of the tumor cells examined. Positive LHR staining was found in 202 (87%) patients' tumor specimens and 66% patients had strong intensity LHR expression. In 197 (85%) of patients, LHR-P was measured in > 50% of tumor cells. LHR-I was significantly associated with pathologic stage (p = 0.007). We found that 72% of stage III or IV patients expressed strong LHR-I in tumor cells. There were 87% of Silberberg's grade 2 or 3 patients compared to 70% of grade 1 patients with LHR expression observed in > 50% of tumor cells, p = 0.037. Tumor stage was significantly associated with overall survival and recurrence free survival, p < 0.001 for both analyses, even after adjustment for age, tumor grade and whether patient had persistent disease after therapy or not. Our study demonstrates that LHR is highly expressed in the majority of OC patients. Both LHR-I and LHR-P are significantly associated with either the pathologic stage or tumor grade.
Collapse
Affiliation(s)
- Shigang Xiong
- Department of Medicine/Medical Oncology Division, University of Southern California, 1441 Eastlake Ave, Los Angeles, CA, 90033, USA
| | - Paulette Mhawech-Fauceglia
- Aurora Diagnostics, Department of Pathology, Gynecologic Pathology Consultant, San Antonio, TX, 78209, USA
| | - Denice Tsao-Wei
- University of Southern California, Norris Comprehensive Cancer Center, 1441 Eastlake Avenue, Los Angeles, CA, 90033, USA
| | - Lynda Roman
- Department of Obstetrics & Gynecology, University of Southern California Keck School of Medicine, Los Angeles, CA, 90033, USA
| | - Rajesh K Gaur
- Department of Medicine/Medical Oncology Division, University of Southern California, 1441 Eastlake Ave, Los Angeles, CA, 90033, USA
| | - Alan L Epstein
- Department of Pathology, University of Southern California, HMR 2011 Zonal Ave, Los Angeles, CA, 90033, USA
| | - Jacek Pinski
- Department of Medicine/Medical Oncology Division, University of Southern California, 1441 Eastlake Ave, Los Angeles, CA, 90033, USA. .,University of Southern California, Norris Comprehensive Cancer Center, 1441 Eastlake Avenue, Los Angeles, CA, 90033, USA.
| |
Collapse
|
12
|
Camilletti MA, Abeledo-Machado A, Perez PA, Faraoni EY, De Fino F, Rulli SB, Ferraris J, Pisera D, Gutierrez S, Thomas P, Díaz-Torga G. mPRs represent a novel target for PRL inhibition in experimental prolactinomas. Endocr Relat Cancer 2019; 26:497-510. [PMID: 30856609 DOI: 10.1530/erc-18-0409] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 03/11/2019] [Indexed: 12/15/2022]
Abstract
Membrane progesterone receptors are known to mediate rapid nongenomic progesterone effects in different cell types. Recent evidence revealed that mPRα is highly expressed in the rat pituitary, being primarily localized in lactotrophs, acting as an intermediary of P4-inhibitory actions on prolactin secretion. The role of mPRs in prolactinoma development remains unclear. We hypothesize that mPR agonists represent a novel tool for hyperprolactinemia treatment. To this end, pituitary expression of mPRs was studied in three animal models of prolactinoma. Expression of mPRs and nuclear receptor was significantly decreased in tumoral pituitaries compared to normal ones. However, the relative proportion of mPRα and mPRβ was highly increased in prolactinomas. Interestingly, the selective mPR agonist (Org OD 02-0) significantly inhibited PRL release in both normal and tumoral pituitary explants, displaying a more pronounced effect in tumoral tissues. As P4 also regulates PRL secretion indirectly, by acting on dopaminergic neurons, we studied mPR involvement in this effect. We found that the hypothalamus has a high expression of mPRs. Interestingly, both P4 and OrgOD 02-0 increased dopamine release in hypothalamus explants. Moreover, in an in vivo treatment, that allows both, pituitary and hypothalamus actions, the mPR agonist strongly reduced the hyperprolactinemia in transgenic females carrying prolactinoma. Finally, we also found and interesting gender difference: males express higher levels of pituitary mPRα/β, a sex that does not develop prolactinoma in these mice models. Taken together, these findings suggest mPRs activation could represent a novel tool for hyperprolactinemic patients, especially those that present resistance to dopaminergic drugs.
Collapse
Affiliation(s)
| | | | - Pablo A Perez
- Centro de Microscopia Electrónica, Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Erika Y Faraoni
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - Fernanda De Fino
- Instituto de Investigaciones Farmacológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Susana B Rulli
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - Jimena Ferraris
- Instituto de Investigaciones Biomédicas (INBIOMED), Facultad de Medicina, UBA-CONICET, Buenos Aires, Argentina
| | - Daniel Pisera
- Instituto de Investigaciones Biomédicas (INBIOMED), Facultad de Medicina, UBA-CONICET, Buenos Aires, Argentina
| | - Silvina Gutierrez
- Centro de Microscopia Electrónica, Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Peter Thomas
- Marine Science Institute, University of Texas at Austin, Port Aransas, Texas, USA
| | - Graciela Díaz-Torga
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| |
Collapse
|
13
|
Singh P, Sarkar M, Agrawal U, Huhtaniemi I, Pal R. The transgenic expression of the β-subunit of human chorionic gonadotropin influences the growth of implanted tumor cells. Oncotarget 2018; 9:34670-34680. [PMID: 30410667 PMCID: PMC6205172 DOI: 10.18632/oncotarget.26158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 09/10/2018] [Indexed: 12/21/2022] Open
Abstract
The beta subunit of human chorionic gonadotropin (βhCG) is secreted by various tumors, and its presence associated with poor prognosis. Though exogenous hCG elicits the synthesis of molecules associated with angiogenesis, invasion, immune suppression and chemoresistance from responsive tumor cells in vitro, the influence of cell-extrinsic βhCG on tumorigenesis in vivo has not been adequately explored. Female C57BL/6-/- × FVBβhCG/- F1 transgenic mice demonstrated ovarian hyperplasia and pituitary adenomas; transcripts of hCG-driven, tumor-associated molecules were heightened in the pituitary. Upon the implantation of Lewis Lung Carcinoma cells (murine lung tumor cells derived from C57BL/6 mice) in transgenic mice, tumor incidence and volume were enhanced, and increased transcription and expression of hCG-driven, tumor-associated molecules was observed in excised tumors. While treatment of these mice with Cabergoline (a potent dopamine receptor agonist) had no significant effects, ovariectomy resulted in a reduction in the lag phase, accompanied by an increase in tumor incidence and volume upon Lewis Lung Carcinoma cell implantation. In tumors derived from Lewis Lung Carcinoma cell-implanted ovariectomized, transgenic mice, the transcription and expression of hCG-driven, tumor-associated molecules remained elevated and enhanced animal mortality was observed. Cell-extrinsic βhCG can therefore induce pro-tumorigenic effects in vivo (even on tumor lineages not part of the reproductive axis), with ovarian products mediating an ameliorating influence.
Collapse
Affiliation(s)
- Poonam Singh
- Immunoendocrinology Lab, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, INDIA-110067
| | - Moumita Sarkar
- Immunoendocrinology Lab, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, INDIA-110067
| | - Usha Agrawal
- National Institute of Pathology, Safdarjang Hospital Campus, Ansari Nagar West, New Delhi, INDIA-110029
| | - Ilpo Huhtaniemi
- Department of Surgery & Cancer, Imperial College London, South Kensington Campus, London, UK SW7 2AZ
| | - Rahul Pal
- Immunoendocrinology Lab, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, INDIA-110067
| |
Collapse
|
14
|
Casarini L, Santi D, Brigante G, Simoni M. Two Hormones for One Receptor: Evolution, Biochemistry, Actions, and Pathophysiology of LH and hCG. Endocr Rev 2018; 39:549-592. [PMID: 29905829 DOI: 10.1210/er.2018-00065] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 06/08/2018] [Indexed: 01/03/2023]
Abstract
LH and chorionic gonadotropin (CG) are glycoproteins fundamental to sexual development and reproduction. Because they act on the same receptor (LHCGR), the general consensus has been that LH and human CG (hCG) are equivalent. However, separate evolution of LHβ and hCGβ subunits occurred in primates, resulting in two molecules sharing ~85% identity and regulating different physiological events. Pituitary, pulsatile LH production results in an ~90-minute half-life molecule targeting the gonads to regulate gametogenesis and androgen synthesis. Trophoblast hCG, the "pregnancy hormone," exists in several isoforms and glycosylation variants with long half-lives (hours) and angiogenic potential and acts on luteinized ovarian cells as progestational. The different molecular features of LH and hCG lead to hormone-specific LHCGR binding and intracellular signaling cascades. In ovarian cells, LH action is preferentially exerted through kinases, phosphorylated extracellular-regulated kinase 1/2 (pERK1/2) and phosphorylated AKT (also known as protein kinase B), resulting in irreplaceable proliferative/antiapoptotic signals and partial agonism on progesterone production in vitro. In contrast, hCG displays notable cAMP/protein kinase A (PKA)-mediated steroidogenic and proapoptotic potential, which is masked by estrogen action in vivo. In vitro data have been confirmed by a large data set from assisted reproduction, because the steroidogenic potential of hCG positively affects the number of retrieved oocytes, and LH affects the pregnancy rate (per oocyte number). Leydig cell in vitro exposure to hCG results in qualitatively similar cAMP/PKA and pERK1/2 activation compared with LH and testosterone. The supposed equivalence of LH and hCG has been disproved by such data, highlighting their sex-specific functions and thus deeming it an oversight caused by incomplete understanding of clinical data.
Collapse
Affiliation(s)
- Livio Casarini
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy
| | - Daniele Santi
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria, Modena, Italy
| | - Giulia Brigante
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria, Modena, Italy
| | - Manuela Simoni
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy.,Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria, Modena, Italy
| |
Collapse
|
15
|
Szymańska K, Kałafut J, Rivero-Müller A. The gonadotropin system, lessons from animal models and clinical cases. ACTA ACUST UNITED AC 2018; 70:561-587. [PMID: 30264954 DOI: 10.23736/s0026-4784.18.04307-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review article centers upon family of gonadotropin hormones which consists of two pituitary hormones - follicle-stimulating hormone (FSH) and luteinizing hormone (LH) as well as one non-pituitary hormone - human chorionic gonadotropin (hCG) secreted by placenta, and their receptors. Gonadotropins play an essential role in proper sexual development, puberty, gametogenesis, maintenance of pregnancy and male sexual differentiation during the fetal development. They belong to the family of glycoprotein hormones thus they constitute heterodimeric proteins built of common α subunit and hormone-specific β-subunit. Hitherto, several mutations in genes encoding both gonadotropins and their receptors have been identified in humans. Their occurrence resulted in a number of different phenotypes including delayed puberty, primary amenorrhea, hermaphroditism, infertility and hypogonadism. In order to understand the effects of mutations on the phenotype observed in affected patients, detailed molecular studies are required to map the relationship between the structure and function of gonadotropins and their receptors. Nonetheless, in vitro assays are often insufficient to understand physiology. Therefore, several animal models have been developed to unravel the physiological roles of gonadotropins and their receptors.
Collapse
|
16
|
Recouvreux MV, Faraoni EY, Camilletti MA, Ratner L, Abeledo-Machado A, Rulli SB, Díaz-Torga G. Sex differences in the pituitary TGFβ1 system: The role of TGFβ1 in prolactinoma development. Front Neuroendocrinol 2018; 50:118-122. [PMID: 29074127 DOI: 10.1016/j.yfrne.2017.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/21/2017] [Accepted: 10/11/2017] [Indexed: 02/07/2023]
Abstract
Prolactinomas are the most frequent functioning pituitary adenomas, and sex differences in tumor size, behavior and incidence have been described. These differences have been associated with earlier diagnosis in woman, as well as with serum estradiol levels. Experimental models of prolactinomas in rodents also show a higher incidence in females, and recent findings suggest that gender differences in the transforming growth factor beta 1 (TGFβ1) system might be involved in the sex-specific development of prolactinomas in these models. The aim of this review is to summarize the literature supporting the important role of TGFβ1 as a local modulator of pituitary lactotroph function and to provide recent evidence for TGFβ1 involvement in the sex differences found in prolactinoma development in animal models.
Collapse
Affiliation(s)
- M Victoria Recouvreux
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, V. Obligado 2490, 1428 Buenos Aires, Argentina; Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Rd, La Jolla, CA 92037, United States.
| | - Erika Y Faraoni
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, V. Obligado 2490, 1428 Buenos Aires, Argentina.
| | - M Andrea Camilletti
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, V. Obligado 2490, 1428 Buenos Aires, Argentina.
| | - Laura Ratner
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, V. Obligado 2490, 1428 Buenos Aires, Argentina.
| | - Alejandra Abeledo-Machado
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, V. Obligado 2490, 1428 Buenos Aires, Argentina.
| | - Susana B Rulli
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, V. Obligado 2490, 1428 Buenos Aires, Argentina.
| | - Graciela Díaz-Torga
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, V. Obligado 2490, 1428 Buenos Aires, Argentina.
| |
Collapse
|
17
|
Gilbert SB, Roof AK, Rajendra Kumar T. Mouse models for the analysis of gonadotropin secretion and action. Best Pract Res Clin Endocrinol Metab 2018; 32:219-239. [PMID: 29779578 PMCID: PMC5973545 DOI: 10.1016/j.beem.2018.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Gonadotropins are pituitary gonadotrope-derived glycoprotein hormones. They act by binding to G-protein coupled receptors on gonads. Gonadotropins play critical roles in reproduction by regulating both gametogenesis and steroidogenesis. Although biochemical and physiological studies provided a wealth of knowledge, gene manipulation techniques using novel mouse models gave new insights into gonadotropin synthesis, secretion and action. Both gain of function and loss of function mouse models for understanding gonadotropin action in a whole animal context have already been generated. Moreover, recent studies on gonadotropin actions in non-gonadal tissues challenged the central dogma of classical gonadotropin actions in gonads and revealed new signaling pathways in these non-gonadal tissues. In this Chapter, we have discussed our current understanding of gonadotropin synthesis, secretion and action using a variety of genetically engineered mouse models.
Collapse
Affiliation(s)
- Sara Babcock Gilbert
- Division of Reproductive Endocrinology and Infertility, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA; Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA; Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Allyson K Roof
- Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA; Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - T Rajendra Kumar
- Division of Reproductive Endocrinology and Infertility, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA; Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA; Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
18
|
Järvensivu P, Heinosalo T, Hakkarainen J, Kronqvist P, Saarinen N, Poutanen M. HSD17B1 expression induces inflammation-aided rupture of mammary gland myoepithelium. Endocr Relat Cancer 2018; 25:393-406. [PMID: 29371331 DOI: 10.1530/erc-17-0476] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 01/25/2018] [Indexed: 01/11/2023]
Abstract
Hydroxysteroid (17-beta) dehydrogenase type 1 (HSD17B1) converts low-active estrogen estrone to highly active estradiol. Estradiol is necessary for normal postpubertal mammary gland development; however, elevated estradiol levels increase mammary tumorigenesis. To investigate the significance of the human HSD17B1 enzyme in the mammary gland, transgenic mice universally overexpressing human HSD17B1 were used (HSD17B1TG mice). Mammary glands obtained from HSD17B1TG females at different ages were investigated for morphology and histology, and HSD17B1 activity and estrogen receptor activation in mammary gland tissue were assessed. To study the significance of HSD17B1 enzyme expression locally in mammary gland tissue, HSD17B1-expressing mammary epithelium was transplanted into cleared mammary fat pads of wild-type females, and the effects on mammary gland estradiol production, epithelial cells and the myoepithelium were investigated. HSD17B1TG females showed increased estrone to estradiol conversion and estrogen-response element-driven estrogen receptor signaling in mammary gland tissue, and they showed extensive lobuloalveolar development that was further enhanced by age along with an increase in serum prolactin concentrations. At old age, HSD17B1TG females developed mammary cancers. Mammary-restricted HSD17B1 expression induced lesions at the sites of ducts and alveoli, accompanied by peri- and intraductal inflammation and disruption of the myoepithelial cell layer. The lesions were shown to be estrogen dependent, as treatment with an antiestrogen, ICI 182,780, starting when lesions were already established reversed the phenotype. These data elucidate the ability of human HSD17B1 to enhance estrogen action in the mammary gland in vivo and indicate that HSD17B1 is a factor inducing phenotypic alterations associated with mammary tumorigenesis.
Collapse
Affiliation(s)
- Päivi Järvensivu
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology and Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Taija Heinosalo
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology and Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Janne Hakkarainen
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology and Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Pauliina Kronqvist
- Institute of Biomedicine, Research Center for Cancer, Infections and Immunity, University of Turku and Department of Pathology, Turku University Hospital, Turku, Finland
| | - Niina Saarinen
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology and Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Matti Poutanen
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology and Turku Center for Disease Modeling, University of Turku, Turku, Finland
| |
Collapse
|
19
|
Faraoni EY, Camilletti MA, Abeledo-Machado A, Ratner LD, De Fino F, Huhtaniemi I, Rulli SB, Díaz-Torga G. Sex differences in the development of prolactinoma in mice overexpressing hCGβ: role of TGFβ1. J Endocrinol 2017; 232:535-546. [PMID: 28096433 DOI: 10.1530/joe-16-0371] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 01/17/2017] [Indexed: 01/15/2023]
Abstract
Female transgenic mice that overexpress the human chorionic gonadotrophin β subunit (hCGβ+) develop prolactinomas, whereas hCGβ+ males do not. The high levels of circulating hCG induce massive luteinization in the ovary of hCGβ+ females, and progesterone becomes the primary steroid hormone produced, but estradiol remains at physiological level. The involvement of high levels of progesterone in lactotroph proliferation is not clearly understood; hence, the pathogenesis of prolactinomas in hCGβ+ females remains unclear. TGFβ1 is an inhibitor of lactotroph function, and the reduced TGFβ1 activity found in prolactinomas has been proposed to be involved in tumor development. The aim of the present work was to study the role of TGFβ1 in the gender-specific development of prolactinomas in hCGβ+ mice. We compared the expression of different components of the pituitary TGFβ1 system in males and females in this model. We found reduced TGFβ1 levels, reduced expression of TGFβ1 target genes, TGFβ1 receptors, Ltbp1, Smad4 and Smad7 in hCGβ+ female pituitaries. However, no differences were found between the transgenic and wild-type male pituitaries. We postulate that decreased pituitary TGFβ1 activity in hCGβ+ females is involved in the development of prolactinomas. In fact, we demonstrated that an in vivo treatment carried out for increasing pituitary TGFβ1 activity, was successful in reducing the prolactinoma development, and the hyperprolactinemia in hCGβ+ females. Moreover, the stronger TGFβ1 system found in males could protect them from excessive lactotroph proliferation. Sex differences in the regulation of the pituitary TGFβ1 system could explain gender differences in the incidence of prolactinoma.
Collapse
Affiliation(s)
- Erika Y Faraoni
- Instituto de Biología y Medicina ExperimentalConsejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - María Andrea Camilletti
- Instituto de Biología y Medicina ExperimentalConsejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Alejandra Abeledo-Machado
- Instituto de Biología y Medicina ExperimentalConsejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Laura D Ratner
- Instituto de Biología y Medicina ExperimentalConsejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Fernanda De Fino
- Instituto de Investigaciones FarmacológicasConsejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Ilpo Huhtaniemi
- Department of Surgery & CancerInstitute of Reproductive and Developmental Biology, Imperial College London, London, UK
| | - Susana B Rulli
- Instituto de Biología y Medicina ExperimentalConsejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Graciela Díaz-Torga
- Instituto de Biología y Medicina ExperimentalConsejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| |
Collapse
|
20
|
|
21
|
Rao CV. Protective Effects of Human Chorionic Gonadotropin Against Breast Cancer: How Can We Use This Information to Prevent/Treat the Disease? Reprod Sci 2016; 24:1102-1110. [DOI: 10.1177/1933719116676396] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- C. V. Rao
- Department of Cellular Biology and Pharmacology, Reproduction and Development Program, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
- Department of Molecular and Human Genetics, Reproduction and Development Program, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
- Department of Obstetrics and Gynecology, Reproduction and Development Program, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| |
Collapse
|
22
|
Mouse Models for the Study of Synthesis, Secretion, and Action of Pituitary Gonadotropins. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 143:49-84. [PMID: 27697204 DOI: 10.1016/bs.pmbts.2016.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Gonadotropins play fundamental roles in reproduction. More than 30years ago, Cga transgenic mice were generated, and more than 20years ago, the phenotypes of Cga null mice were reported. Since then, numerous mouse strains have been generated and characterized to address several questions in reproductive biology involving gonadotropin synthesis, secretion, and action. More recently, extragonadal expression, and in some cases, functions of gonadotropins in nongonadal tissues have been identified. Several genomic and proteomic approaches including novel mouse genome editing tools are available now. It is anticipated that these and other emerging technologies will be useful to build an integrated network of gonadotropin signaling pathways in various tissues. Undoubtedly, research on gonadotropins will continue to provide new knowledge and allow us transcend from benchside to the bedside.
Collapse
|
23
|
Ratner LD, Stevens G, Bonaventura MM, Lux-Lantos VA, Poutanen M, Calandra RS, Huhtaniemi IT, Rulli SB. Hyperprolactinemia induced by hCG leads to metabolic disturbances in female mice. J Endocrinol 2016; 230:157-69. [PMID: 27154336 DOI: 10.1530/joe-15-0528] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 05/06/2016] [Indexed: 01/23/2023]
Abstract
The metabolic syndrome is a growing epidemic; it increases the risk for diabetes, cardiovascular disease, fatty liver, and several cancers. Several reports have indicated a link between hormonal imbalances and insulin resistance or obesity. Transgenic (TG) female mice overexpressing the human chorionic gonadotropin β-subunit (hCGβ+ mice) exhibit constitutively elevated levels of hCG, increased production of testosterone, progesterone and prolactin, and obesity. The objective of this study was to investigate the influence of hCG hypersecretion on possible alterations in the glucose and lipid metabolism of adult TG females. We evaluated fasting serum insulin, glucose, and triglyceride levels in adult hCGβ+ females and conducted intraperitoneal glucose and insulin tolerance tests at different ages. TG female mice showed hyperinsulinemia, hypertriglyceridemia, and dyslipidemia, as well as glucose intolerance and insulin resistance at 6 months of age. A 1-week treatment with the dopamine agonist cabergoline applied on 5-week-old hCGβ+ mice, which corrected hyperprolactinemia, hyperandrogenism, and hyperprogesteronemia, effectively prevented the metabolic alterations. These data indicate a key role of the hyperprolactinemia-induced gonadal dysfunction in the metabolic disturbances of hCGβ+ female mice. The findings prompt further studies on the involvement of gonadotropins and prolactin on metabolic disorders and might pave the way for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Laura D Ratner
- Instituto de Biología y Medicina Experimental- Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina
| | - Guillermina Stevens
- Instituto de Biología y Medicina Experimental- Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina Hospital General de Agudos J. M. Ramos MejíaBuenos Aires, Argentina
| | - Maria Marta Bonaventura
- Instituto de Biología y Medicina Experimental- Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina
| | - Victoria A Lux-Lantos
- Instituto de Biología y Medicina Experimental- Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina
| | - Matti Poutanen
- Department of PhysiologyInstitute of Biomedicine, University of Turku, Turku, Finland Turku Center for Disease ModelingUniversity of Turku, Turku, Finland
| | - Ricardo S Calandra
- Instituto de Biología y Medicina Experimental- Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina
| | - Ilpo T Huhtaniemi
- Department of PhysiologyInstitute of Biomedicine, University of Turku, Turku, Finland Department of Surgery and CancerImperial College London, London, UK
| | - Susana B Rulli
- Instituto de Biología y Medicina Experimental- Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina
| |
Collapse
|
24
|
Gehring C, Siepmann T, Heidegger H, Jeschke U. The controversial role of human chorionic gonadotropin in the development of breast cancer and other types of tumors. Breast 2016; 26:135-40. [PMID: 27017252 DOI: 10.1016/j.breast.2016.01.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/21/2016] [Accepted: 01/29/2016] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION Breast cancer is the most often diagnosed tumor of women and one of the leading cause of cancer related death. Due to different known risk factors there are epidemiological differences. Beside genetic disorders and patient's age it is especially the age of the first full-term pregnancy and in this context the pregnancy hormone human chorionic gonadotropin that seems to play an important role. METHODS This review is based on a PubMed research in publications of the last 20 years. Only articles in English language were considered. RESULTS The effect of human chorionic gonadotropin on development of cancer is controversial. In fact, for breast cancer there is evidence that this hormone has a protective effect against tumorigenesis due the differentiation of the mammary tissue after a full term pregnancy through the downregulation of estrogen receptors. CONCLUSION Human chorionic gonadotropin has among promoting pregnancy important controversial functions especially in tumor development. The mechanisms that explain the pro- and anti-carcinogenic effects are not fully understood yet. It seems to have a protective effect on breast cancer through increasing differentiation and hereby decreasing susceptibility of the mammary tissue for toxicants. This knowledge might help developing a preventive agent in the next future that uses the anti-carcinogenic effect of human chorionic gonadotropin and thereby decrease the mortality out of breast cancer.
Collapse
Affiliation(s)
- Caroline Gehring
- Department of Obstetrics and Gynecology, Ludwig-Maximilians-University Hospital, Maistrasse 11, 80337 Munich, Germany.
| | - Timo Siepmann
- Department of Neurology, Institute of Clinical Pharmacology, University Hospital Carl Gustav Carus, Freiberger Str. 37, 01067 Dresden, Germany.
| | - Helene Heidegger
- Department of Obstetrics and Gynecology, Ludwig-Maximilians-University Hospital, Maistrasse 11, 80337 Munich, Germany.
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, Ludwig-Maximilians-University Hospital, Maistrasse 11, 80337 Munich, Germany.
| |
Collapse
|
25
|
Talwar GP, Gupta JC, Rulli SB, Sharma RS, Nand KN, Bandivdekar AH, Atrey N, Singh P. Advances in development of a contraceptive vaccine against human chorionic gonadotropin. Expert Opin Biol Ther 2015; 15:1183-90. [PMID: 26160491 DOI: 10.1517/14712598.2015.1049943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION There is continuing need for contraceptives. According to World Health Organization, 210 million pregnancies occur each year, out of which some 80 million are unintended. A vaccine offering privacy and periodic intake would be an attractive proposition. AREAS COVERED The article is a brief review of three vaccines developed against human chorionic gonadotropin (hCG) with progressively better attributes. Clinical trials have proven in more than one country the complete safety and reversibility of the anti-hCG vaccine(s) in women. Vaccination does not entail any disturbance in levels of reproductive tract hormones of the woman or any disturbance in menstrual regularity and bleeding profiles. Phase II clinical trials show the effective prevention of pregnancy in sexually active women of proven fertility. A recombinant vaccine amenable to industrial production has been developed; it induces substantially higher antibody titers in mice of four different genetic strains than those required to prevent pregnancy in women. Rigorous toxicology studies have been completed on this vaccine in rodents and marmosets. EXPERT OPINION This unique vaccine, requiring periodic intake and demonstrating no impairment of ovulation, hormonal profiles and menstrual regularity, is on the verge of final clinical trials under the aegis of the Indian Council of Medical Research and should be a valuable addition to the available contraceptives.
Collapse
Affiliation(s)
- Gursaran P Talwar
- Talwar Research Foundation , E-8, Neb Valley, Neb Sarai, New Delhi-110068 , India +91 011 6502 2405 ;
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Hai L, McGee SR, Rabideau AC, Paquet M, Narayan P. Infertility in Female Mice with a Gain-of-Function Mutation in the Luteinizing Hormone Receptor Is Due to Irregular Estrous Cyclicity, Anovulation, Hormonal Alterations, and Polycystic Ovaries. Biol Reprod 2015; 93:16. [PMID: 26040673 DOI: 10.1095/biolreprod.115.129072] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 05/29/2015] [Indexed: 11/01/2022] Open
Abstract
The luteinizing hormone receptor, LHCGR, is essential for fertility in males and females, and genetic mutations in the receptor have been identified that result in developmental and reproductive defects. We have previously generated and characterized a mouse model (KiLHR(D582G)) for familial male-limited precocious puberty caused by an activating mutation in the receptor. We demonstrated that the phenotype of the KiLHR(D582G) male mice is an accurate phenocopy of male patients with activating LHCGR mutations. In this study, we observed that unlike women with activating LHCGR mutations who are normal, female KiLHR(D582G) mice are infertile. Mice exhibit irregular estrous cyclicity, anovulation, and precocious puberty. A temporal study from 2-24 wk of age indicated elevated levels of progesterone, androstenedione, testosterone, and estradiol and upregulation of several steroidogenic enzyme genes. Ovaries of KiLHR(D582G) mice exhibited significant pathology with the development of large hemorrhagic cysts as early as 3 wk of age, extensive stromal cell hyperplasia and hypertrophy with luteinization, numerous atretic follicles, and granulosa cell tumors. Ovulation could not be rescued by the addition of exogenous gonadotropins. The body weights of the KiLHR(D582G) mice were higher than wild-type counterparts, but there was no increase in the body fat composition or metabolic abnormalities such as impaired glucose tolerance and insulin resistance. These studies demonstrate that activating LHCGR mutations do not produce the same phenotype in female mice as in humans and clearly illustrate species differences in the expression and regulation of LHCGR in the ovary, but not in the testis.
Collapse
Affiliation(s)
- Lan Hai
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois
| | - Stacey R McGee
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois
| | - Amanda C Rabideau
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois
| | - Marilène Paquet
- Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Prema Narayan
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois
| |
Collapse
|
27
|
Yuri T, Tsubura A. Relation between parity and pregnancy-related hormones and breast cancer control. BREAST CANCER MANAGEMENT 2015. [DOI: 10.2217/bmt.14.52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
SUMMARY Epidemiological research has indicated the beneficial effects of full-term pregnancy at an early age for a reduction in breast cancer risk. Experimental data have shown that pregnancy and pregnancy-related hormones, such as estrogen plus progesterone, estrogen alone and human chorionic gonadotropin, are involved in parity-induced protection. Pregnancy and short-duration treatment of a young host with pregnancy-related hormones to mimic the pregnancy environment provide mammary cancer protection by making cells refractory to carcinogenic stimuli and causing growth arrest and programmed cell death. Experimental data concerning pregnancy and pregnancy-related hormones are reviewed in relation to intrinsic subtypes of mammary cancer.
Collapse
Affiliation(s)
- Takashi Yuri
- Department of Pathology II, Kansai Medical University, Hirakata, Osaka, Japan
| | - Airo Tsubura
- Department of Pathology II, Kansai Medical University, Hirakata, Osaka, Japan
| |
Collapse
|
28
|
Narayan P. Genetic Models for the Study of Luteinizing Hormone Receptor Function. Front Endocrinol (Lausanne) 2015; 6:152. [PMID: 26483755 PMCID: PMC4586495 DOI: 10.3389/fendo.2015.00152] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 09/11/2015] [Indexed: 11/13/2022] Open
Abstract
The luteinizing hormone/chorionic gonadotropin receptor (LHCGR) is essential for fertility in men and women. LHCGR binds luteinizing hormone (LH) as well as the highly homologous chorionic gonadotropin. Signaling from LHCGR is required for steroidogenesis and gametogenesis in males and females and for sexual differentiation in the male. The importance of LHCGR in reproductive physiology is underscored by the large number of naturally occurring inactivating and activating mutations in the receptor that result in reproductive disorders. Consequently, several genetically modified mouse models have been developed for the study of LHCGR function. They include targeted deletion of LH and LHCGR that mimic inactivating mutations in hormone and receptor, expression of a constitutively active mutant in LHCGR that mimics activating mutations associated with familial male-limited precocious puberty and transgenic models of LH and hCG overexpression. This review summarizes the salient findings from these models and their utility in understanding the physiological and pathological consequences of loss and gain of function in LHCGR signaling.
Collapse
Affiliation(s)
- Prema Narayan
- Department of Physiology, School of Medicine, Southern Illinois University, Carbondale, IL, USA
- *Correspondence: Prema Narayan, Department of Physiology, School of Medicine, Southern Illinois University, LSIII, 1135 Lincoln Drive, Carbondale, IL 62901, USA,
| |
Collapse
|
29
|
Fagman JB, Wilhelmson AS, Motta BM, Pirazzi C, Alexanderson C, De Gendt K, Verhoeven G, Holmäng A, Anesten F, Jansson JO, Levin M, Borén J, Ohlsson C, Krettek A, Romeo S, Tivesten Å. The androgen receptor confers protection against diet-induced atherosclerosis, obesity, and dyslipidemia in female mice. FASEB J 2014; 29:1540-50. [PMID: 25550469 PMCID: PMC4470404 DOI: 10.1096/fj.14-259234] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 12/09/2014] [Indexed: 12/13/2022]
Abstract
Androgens have important cardiometabolic actions in males, but their metabolic role in females is unclear. To determine the physiologic androgen receptor (AR)–dependent actions of androgens on atherogenesis in female mice, we generated female AR-knockout (ARKO) mice on an atherosclerosis-prone apolipoprotein E (apoE)–deficient background. After 8 weeks on a high-fat diet, but not on a normal chow diet, atherosclerosis in aorta was increased in ARKO females (+59% vs. control apoE-deficient mice with intact AR gene). They also displayed increased body weight (+18%), body fat percentage (+62%), and hepatic triglyceride levels, reduced insulin sensitivity, and a marked atherogenic dyslipidemia (serum cholesterol, +52%). Differences in atherosclerosis, body weight, and lipid levels between ARKO and control mice were abolished in mice that were ovariectomized before puberty, consistent with a protective action of ovarian androgens mediated via the AR. Furthermore, the AR agonist dihydrotestosterone reduced atherosclerosis (−41%; thoracic aorta), subcutaneous fat mass (−44%), and cholesterol levels (−35%) in ovariectomized mice, reduced hepatocyte lipid accumulation in hepatoma cells in vitro, and regulated mRNA expression of hepatic genes pivotal for lipid homeostasis. In conclusion, we demonstrate that the AR protects against diet-induced atherosclerosis in female mice and propose that this is mediated by modulation of body composition and lipid metabolism.—Fagman, J. B., Wilhelmson, A. S., Motta, B. M., Pirazzi, C., Alexanderson, C., De Gendt, K., Verhoeven, G., Holmäng, A., Anesten, F., Jansson, J.-O., Levin, M., Borén, J., Ohlsson, C., Krettek, A., Romeo, S., Tivesten, A. The androgen receptor confers protection against diet-induced atherosclerosis, obesity, and dyslipidemia in female mice.
Collapse
Affiliation(s)
- Johan B Fagman
- *Wallenberg Laboratory for Cardiovascular and Metabolic Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Laboratory for Experimental Medicine and Endocrinology, Department of Experimental Medicine, Katholieke Universiteit Leuven, Leuven, Belgium; Department of Physiology, Institute of Neuroscience and Physiology, and Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Nordic School of Public Health, Gothenburg, Sweden; and Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna S Wilhelmson
- *Wallenberg Laboratory for Cardiovascular and Metabolic Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Laboratory for Experimental Medicine and Endocrinology, Department of Experimental Medicine, Katholieke Universiteit Leuven, Leuven, Belgium; Department of Physiology, Institute of Neuroscience and Physiology, and Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Nordic School of Public Health, Gothenburg, Sweden; and Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Benedetta M Motta
- *Wallenberg Laboratory for Cardiovascular and Metabolic Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Laboratory for Experimental Medicine and Endocrinology, Department of Experimental Medicine, Katholieke Universiteit Leuven, Leuven, Belgium; Department of Physiology, Institute of Neuroscience and Physiology, and Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Nordic School of Public Health, Gothenburg, Sweden; and Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Carlo Pirazzi
- *Wallenberg Laboratory for Cardiovascular and Metabolic Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Laboratory for Experimental Medicine and Endocrinology, Department of Experimental Medicine, Katholieke Universiteit Leuven, Leuven, Belgium; Department of Physiology, Institute of Neuroscience and Physiology, and Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Nordic School of Public Health, Gothenburg, Sweden; and Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Camilla Alexanderson
- *Wallenberg Laboratory for Cardiovascular and Metabolic Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Laboratory for Experimental Medicine and Endocrinology, Department of Experimental Medicine, Katholieke Universiteit Leuven, Leuven, Belgium; Department of Physiology, Institute of Neuroscience and Physiology, and Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Nordic School of Public Health, Gothenburg, Sweden; and Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Karel De Gendt
- *Wallenberg Laboratory for Cardiovascular and Metabolic Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Laboratory for Experimental Medicine and Endocrinology, Department of Experimental Medicine, Katholieke Universiteit Leuven, Leuven, Belgium; Department of Physiology, Institute of Neuroscience and Physiology, and Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Nordic School of Public Health, Gothenburg, Sweden; and Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Guido Verhoeven
- *Wallenberg Laboratory for Cardiovascular and Metabolic Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Laboratory for Experimental Medicine and Endocrinology, Department of Experimental Medicine, Katholieke Universiteit Leuven, Leuven, Belgium; Department of Physiology, Institute of Neuroscience and Physiology, and Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Nordic School of Public Health, Gothenburg, Sweden; and Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Agneta Holmäng
- *Wallenberg Laboratory for Cardiovascular and Metabolic Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Laboratory for Experimental Medicine and Endocrinology, Department of Experimental Medicine, Katholieke Universiteit Leuven, Leuven, Belgium; Department of Physiology, Institute of Neuroscience and Physiology, and Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Nordic School of Public Health, Gothenburg, Sweden; and Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Fredrik Anesten
- *Wallenberg Laboratory for Cardiovascular and Metabolic Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Laboratory for Experimental Medicine and Endocrinology, Department of Experimental Medicine, Katholieke Universiteit Leuven, Leuven, Belgium; Department of Physiology, Institute of Neuroscience and Physiology, and Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Nordic School of Public Health, Gothenburg, Sweden; and Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - John-Olov Jansson
- *Wallenberg Laboratory for Cardiovascular and Metabolic Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Laboratory for Experimental Medicine and Endocrinology, Department of Experimental Medicine, Katholieke Universiteit Leuven, Leuven, Belgium; Department of Physiology, Institute of Neuroscience and Physiology, and Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Nordic School of Public Health, Gothenburg, Sweden; and Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Malin Levin
- *Wallenberg Laboratory for Cardiovascular and Metabolic Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Laboratory for Experimental Medicine and Endocrinology, Department of Experimental Medicine, Katholieke Universiteit Leuven, Leuven, Belgium; Department of Physiology, Institute of Neuroscience and Physiology, and Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Nordic School of Public Health, Gothenburg, Sweden; and Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jan Borén
- *Wallenberg Laboratory for Cardiovascular and Metabolic Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Laboratory for Experimental Medicine and Endocrinology, Department of Experimental Medicine, Katholieke Universiteit Leuven, Leuven, Belgium; Department of Physiology, Institute of Neuroscience and Physiology, and Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Nordic School of Public Health, Gothenburg, Sweden; and Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Claes Ohlsson
- *Wallenberg Laboratory for Cardiovascular and Metabolic Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Laboratory for Experimental Medicine and Endocrinology, Department of Experimental Medicine, Katholieke Universiteit Leuven, Leuven, Belgium; Department of Physiology, Institute of Neuroscience and Physiology, and Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Nordic School of Public Health, Gothenburg, Sweden; and Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Alexandra Krettek
- *Wallenberg Laboratory for Cardiovascular and Metabolic Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Laboratory for Experimental Medicine and Endocrinology, Department of Experimental Medicine, Katholieke Universiteit Leuven, Leuven, Belgium; Department of Physiology, Institute of Neuroscience and Physiology, and Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Nordic School of Public Health, Gothenburg, Sweden; and Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Stefano Romeo
- *Wallenberg Laboratory for Cardiovascular and Metabolic Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Laboratory for Experimental Medicine and Endocrinology, Department of Experimental Medicine, Katholieke Universiteit Leuven, Leuven, Belgium; Department of Physiology, Institute of Neuroscience and Physiology, and Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Nordic School of Public Health, Gothenburg, Sweden; and Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Åsa Tivesten
- *Wallenberg Laboratory for Cardiovascular and Metabolic Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Laboratory for Experimental Medicine and Endocrinology, Department of Experimental Medicine, Katholieke Universiteit Leuven, Leuven, Belgium; Department of Physiology, Institute of Neuroscience and Physiology, and Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Nordic School of Public Health, Gothenburg, Sweden; and Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
30
|
Gonzalez B, Ratner LD, Scerbo MJ, Di Giorgio NP, Poutanen M, Huhtaniemi IT, Calandra RS, Lux-Lantos VAR, Cambiasso MJ, Rulli SB. Elevated hypothalamic aromatization at the onset of precocious puberty in transgenic female mice hypersecreting human chorionic gonadotropin: effect of androgens. Mol Cell Endocrinol 2014; 390:102-11. [PMID: 24755422 DOI: 10.1016/j.mce.2014.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/03/2014] [Accepted: 04/10/2014] [Indexed: 01/26/2023]
Abstract
Transgenic female mice overexpressing the α- and β- subunits of human chorionic gonadotropin (hCGαβ+) exhibited precocious puberty, as evidenced by early vaginal opening. Chronically elevated hCG in 21-day-old hCGαβ+ females stimulated gonadal androgen production, which exerted negative feedback over the endogenous gonadotropin synthesis, and activated the hypothalamic GnRH pulsatility and gene expression. Transgenic females also exhibited elevated hypothalamic aromatization in the preoptic area (POA), which is the sexually-differentiated area that controls the LH surge in adulthood. Ovariectomy at 14 days of age was unable to rescue this phenotype. However, the blockade of androgen action by flutamide from postnatal day 6 onwards reduced the aromatase levels in the POA of hCGαβ+ females. Our results suggest that early exposure of females to androgen action during a critical period between postnatal days 6-14 induces sex-specific organizational changes of the brain, which affect the aromatase expression in the POA at the onset of precocious puberty.
Collapse
Affiliation(s)
- Betina Gonzalez
- Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490, 1428 Buenos Aires, Argentina
| | - Laura D Ratner
- Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490, 1428 Buenos Aires, Argentina
| | - María J Scerbo
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Casilla de Correo 389, 5000 Córdoba, Argentina
| | - Noelia P Di Giorgio
- Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490, 1428 Buenos Aires, Argentina
| | - Matti Poutanen
- Department of Physiology, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, FIN-20520 Turku, Finland; Turku Center for Disease Modeling, University of Turku, Kiinamyllynkatu 10, FIN-20520 Turku, Finland
| | - Ilpo T Huhtaniemi
- Department of Physiology, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, FIN-20520 Turku, Finland; Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| | - Ricardo S Calandra
- Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490, 1428 Buenos Aires, Argentina
| | - Victoria A R Lux-Lantos
- Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490, 1428 Buenos Aires, Argentina
| | - María J Cambiasso
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Casilla de Correo 389, 5000 Córdoba, Argentina
| | - Susana B Rulli
- Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490, 1428 Buenos Aires, Argentina.
| |
Collapse
|
31
|
Abstract
Luteinizing hormone (LH) and human chorionic gonadotropin (hCG) are integral components of the hypothalamic-pituitary-gonadal axis, which controls sexual maturation and functionality. In the absence of signaling through their shared receptor, fetal sexual differentiation and post-natal development cannot proceed normally. Although they share a high degree of homology, the physiologic roles of these hormones are unique, governed by differences in expression pattern, biopotency and regulation. Whereas LH is a key regulator of gonadal steroidogenesis and ovulation, hCG is predominantly active in pregnancy and fetal development. Emerging evidence has revealed endogenous functions not previously ascribed to hCG, including participation in ovulation and fertilization, implantation, placentation and other activities in support of successful pregnancy. Spontaneous and induced mutations in LH, hCG and their mutual receptor have contributed substantially to our understanding of reproductive development and function. The lack of naturally occurring, functionally significant mutations in the β-subunit of hCG reinforce its putative role in establishment of pregnancy. Rescue of reproductive abnormalities resulting from aberrant gonadotropin signaling is possible in certain clinical contexts, depending on the nature of the underlying defect. By understanding the physiologic roles of LH and hCG in normal and pathologic states, we may better harness their diagnostic, prognostic and therapeutic potential.
Collapse
Affiliation(s)
- Janet Choi
- Department of Obstetrics and Gynecology, The Center for Women’s Reproductive Care at Columbia UniversityNew York, NYUSA
| | - Johan Smitz
- Department of Clinical Chemistry and Radioimmunology, UZ Brussel, Vrije Universiteit BrusselBrusselsBelgium
| |
Collapse
|
32
|
Ratner LD, Rulli SB, Huhtaniemi IT. Genetically modified mouse models addressing gonadotropin function. Reprod Biol 2014; 14:9-15. [DOI: 10.1016/j.repbio.2013.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 12/06/2013] [Accepted: 12/09/2013] [Indexed: 11/16/2022]
|
33
|
Ulloa-Aguirre A, Reiter E, Bousfield G, Dias JA, Huhtaniemi I. Constitutive activity in gonadotropin receptors. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2014; 70:37-80. [PMID: 24931192 DOI: 10.1016/b978-0-12-417197-8.00002-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Constitutively active mutants (CAMs) of gonadotropin receptors are, in general, rare conditions. Luteinizing hormone-choriogonadotropin receptor (LHCGR) CAMs provoke the dramatic phenotype of familial gonadotropin-independent isosexual male-limited precocious puberty, whereas in females, there is not yet any identified phenotype. Only one isolated follicle-stimulating hormone receptor (FSHR) CAM (Asp567Gly) has so far been detected in a single male patient, besides other FSHR weak CAMs linked to pregnancy-associated ovarian hyperstimulation syndrome or to impaired desensitization and internalization. Several animal models have been developed for studying enhanced gonadotropin action; in addition to unraveling valuable new information about the possible phenotypes of isolated FSHR and LHCGR CAMs in women, the information obtained from these mouse models has served multiple translational goals, including the development of new diagnostic and therapeutic targets as well as the prediction of phenotypes for mutations not yet identified in humans. Mutagenesis and computational studies have shed important information on the physiopathogenic mechanisms leading to constitutive activity of gonadotropin receptors; a common feature in these receptor CAMs is the release of stabilizing interhelical interactions between transmembrane domains (TMDs) 3 and 6 leading to an increase, with respect to the wild-type receptor, in the solvent accessibility at the cytosolic extension of TMDs 3, 5, and 6, which involves the highly conserved Glu/Asp-Arg-Tyr/Trp sequence. In this chapter, we summarize the structural features, functional consequences, and mechanisms that lead to constitutive activation of gonadotropin receptor CAMs and provide information on pharmacological approaches that might potentially modulate gonadotropin receptor CAM function.
Collapse
Affiliation(s)
- Alfredo Ulloa-Aguirre
- Studium Consortium for Research and Training in Reproductive Sciences (sCORTS), Tours, France; Research Support Network, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán" and Universidad Nacional Autónoma de México, México D.F., Mexico.
| | - Eric Reiter
- Studium Consortium for Research and Training in Reproductive Sciences (sCORTS), Tours, France; BIOS Group, INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France; CNRS, UMR7247, Nouzilly, France; Université François Rabelais, Tours, France
| | - George Bousfield
- Studium Consortium for Research and Training in Reproductive Sciences (sCORTS), Tours, France; Department of Biological Sciences, Wichita State University, Wichita, Kansas, USA
| | - James A Dias
- Studium Consortium for Research and Training in Reproductive Sciences (sCORTS), Tours, France; Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, New York, USA
| | - Ilpo Huhtaniemi
- Studium Consortium for Research and Training in Reproductive Sciences (sCORTS), Tours, France; Institute of Reproductive and Developmental Biology, Imperial College London, London, United Kingdom
| |
Collapse
|
34
|
Mouse models to study polycystic ovary syndrome: a possible link between metabolism and ovarian function? Reprod Biol 2013; 14:32-43. [PMID: 24607253 DOI: 10.1016/j.repbio.2013.09.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 09/27/2013] [Accepted: 09/30/2013] [Indexed: 11/22/2022]
Abstract
Polycystic ovary syndrome (PCOS) is the most common cause of female infertility affecting 6-8% of women worldwide. PCOS is characterized by two of the following three criteria: clinical or biochemical hyperandrogenism, oligo- or amenorrhea, and polycystic ovaries (PCO). In addition, women with PCOS are often obese and insulin resistant, and are at risk for type 2 diabetes and cardiovascular disease. The etiology of PCOS remains unknown. Therefore, several animal models for PCOS have been generated to gain insight into the etiology and development of the PCOS-associated phenotypes. Androgens are considered the main culprit of PCOS, and therefore, androgenization of animals is the most frequently used approach to induce symptoms that resemble PCOS. Prenatal or prepubertal androgen treatment results in many characteristics of human PCOS, including anovulation, cyst-like follicles, elevated luteinizing hormone (LH) levels, increased adiposity, and insulin insensitivity. However, PCOS has a heterogeneous presentation, and therefore it is difficult to generate a model that exactly reproduces the reproductive and metabolic phenotypes observed in women with PCOS. In this review, we discuss several mouse models for PCOS, and compare the reproductive and/or metabolic phenotypes observed in several androgen-induced models as well as in several genetic models.
Collapse
|
35
|
Bachelot A, Carré N, Mialon O, Matelot M, Servel N, Monget P, Ahtiainen P, Huhtaniemi I, Binart N. The permissive role of prolactin as a regulator of luteinizing hormone action in the female mouse ovary and extragonadal tumorigenesis. Am J Physiol Endocrinol Metab 2013; 305:E845-52. [PMID: 23921141 DOI: 10.1152/ajpendo.00243.2013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Transgenic female mice overexpressing the hCGβ subunit (hCGβ(+)) and producing elevated levels of luteinizing hormone (LH)/hCG bioactivity present as young adults with enhanced ovarian steroidogenesis, precocious puberty, and infertility. They subsequently develop pituitary prolactinomas, high circulating prolactin (PRL) levels, and marked mammary gland lobuloalveolar development followed by adenocarcinomas. None of these phenotypes appear in gonadectomized mice, indicating that the hCG-induced aberrations of ovarian function are responsible for the extragonadal phenotypes. PRL receptor-deficient (PRLR(-/-)) female mice are sterile, despite ovulating, due to a failure of embryo implantation, as a consequence of decreased ovarian LH receptor (Lhcgr) expression and inadequate corpus luteum formation and progesterone production. To study further the presumed permissive role of PRL in the maintenance of gonadal responsiveness to LH/hCG stimulation, we crossed the hCGβ(+) and PRLR(-/-) mice. The double-mutant hCGβ(+)/PRLR(-/-) females remained sterile with an ovarian phenotype similar to PRLR(-/-) mice, indicating that LH action, Lhcgr expression, and consequent luteinization are not possible without simultaneous PRL signaling. The high frequency of pituitary prolactinomas in PRLR(-/-) mice was not affected by transgenic hCGβ expression. In contrast, none of the hCGβ(+)/PRLR(-/-) females showed either mammary gland lobuloalveolar development or tumors, and the increased mammary gland Wnt-5b expression, possibly responsible for the tumorigenesis in hCGβ(+) mice, was absent in double-mutant mice. Hence, high LH/hCG stimulation is unable to compensate for missing PRL signaling in the maintenance of luteal function. PRL thus appears to be a major permissive regulator of LH action in the ovary and of its secondary extragonadal effects.
Collapse
MESH Headings
- Adenocarcinoma/genetics
- Adenocarcinoma/metabolism
- Adenocarcinoma/pathology
- Animals
- Carcinogenesis/metabolism
- Carcinogenesis/pathology
- Chorionic Gonadotropin, beta Subunit, Human/genetics
- Chorionic Gonadotropin, beta Subunit, Human/metabolism
- Corpus Luteum/metabolism
- Female
- Luteinizing Hormone/metabolism
- Mammary Glands, Animal/metabolism
- Mammary Glands, Animal/pathology
- Mammary Neoplasms, Animal/genetics
- Mammary Neoplasms, Animal/metabolism
- Mammary Neoplasms, Animal/pathology
- Mice
- Mice, Transgenic
- Ovary/metabolism
- Progesterone/metabolism
- Prolactin/blood
- Prolactin/metabolism
- Receptors, Prolactin/genetics
- Receptors, Prolactin/metabolism
Collapse
Affiliation(s)
- Anne Bachelot
- AP-HP, Endocrinology and Reproductive Medicine, Pitié-Salpêtrière Hospital, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Nautiyal J, Steel JH, Mane MR, Oduwole O, Poliandri A, Alexi X, Wood N, Poutanen M, Zwart W, Stingl J, Parker MG. The transcriptional co-factor RIP140 regulates mammary gland development by promoting the generation of key mitogenic signals. Development 2013; 140:1079-89. [PMID: 23404106 PMCID: PMC3583043 DOI: 10.1242/dev.085720] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Nuclear receptor interacting protein (Nrip1), also known as RIP140, is a co-regulator for nuclear receptors that plays an essential role in ovulation by regulating the expression of the epidermal growth factor-like family of growth factors. Although several studies indicate a role for RIP140 in breast cancer, its role in the development of the mammary gland is unclear. By using RIP140-null and RIP140 transgenic mice, we demonstrate that RIP140 is an essential factor for normal mammary gland development and that it functions by mediating oestrogen signalling. RIP140-null mice exhibit minimal ductal elongation with no side-branching, whereas RIP140-overexpressing mice show increased cell proliferation and ductal branching with age. Tissue recombination experiments demonstrate that RIP140 expression is required in both the mammary epithelial and stromal compartments for ductal elongation during puberty and that loss of RIP140 leads to a catastrophic loss of the mammary epithelium, whereas RIP140 overexpression augments the mammary basal cell population and shifts the progenitor/differentiated cell balance within the luminal cell compartment towards the progenitors. For the first time, we present a genome-wide global view of oestrogen receptor-α (ERα) binding events in the developing mammary gland, which unravels 881 ERα binding sites. Unbiased evaluation of several ERα binding sites for RIP140 co-occupancy reveals selectivity and demonstrates that RIP140 acts as a co-regulator with ERα to regulate directly the expression of amphiregulin (Areg), the progesterone receptor (Pgr) and signal transducer and activator of transcription 5a (Stat5a), factors that influence key mitogenic pathways that regulate normal mammary gland development.
Collapse
Affiliation(s)
- Jaya Nautiyal
- Institute of Reproductive and Developmental Biology, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Synergistic activation of innate and adaptive immune mechanisms in the treatment of gonadotropin-sensitive tumors. PLoS One 2013; 8:e61288. [PMID: 23593454 PMCID: PMC3620410 DOI: 10.1371/journal.pone.0061288] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 03/06/2013] [Indexed: 11/25/2022] Open
Abstract
Human chorionic gonadotropin (hCG) prolongs the secretion of progesterone from the corpus luteum, providing a critical stimulus for the sustenance of pregnancy. hCG (or individual subunits) is also secreted by a variety of trophoblastic and non-trophoblastic cancers and has been associated with poor prognosis. Early clinical studies have indicated merit in anti-hCG vaccination as potential immunotherapy, but anti-tumor efficacy is believed to be compromised by sub-optimal immunogenecity. In the present study, enhanced tumorigenesis was observed when SP2/O cells were subcutaneously injected in either male or female BALB/c x FVB/JβhCG/- F1 transgenic mice, establishing the growth-promoting effects of the gonadotropin for implanted tumors in vivo. The utility of Mycobacterium indicus pranii (MIP) was evaluated, as an innate anti-tumor immunomodulator as well as adjuvant in mice. MIP elicited the secretion of the inflammatory cytokines IFNγ, IL-6, IL-12p40, KC and TNFα from murine antigen presenting cells. When MIP was incorporated into an anti-hCG vaccine formulation previously employed in humans (a βhCG-TT conjugate adsorbed on alum), elevated T cell recall proliferative and cytokine responses to hCG, βhCG and TT were observed. MIP increased vaccine immunogenicity in mice of diverse genetic background (including in traditionally low-responder murine strains), leading to enhanced titres of bioneutralizing anti-hCG antibodies which exhibited cytotoxicity towards tumor cells. Individual administration of MIP and βhCG-TT to BALB/c mice subcutaneously implanted with SP2/O cells resulted in anti-tumor effects; significantly, immunization with βhCG-TT supplemented with MIP invoked synergistic benefits in terms of tumor volume, incidence and survival. The development of novel vaccine formulations stimulating both adaptive and innate anti-tumor immunity to induce collaborative beneficial effects may fill a niche in the adjunct treatment of hCG-sensitive tumors that are resistant to conventional therapy.
Collapse
|
38
|
Ratner LD, Gonzalez B, Ahtiainen P, Di Giorgio NP, Poutanen M, Calandra RS, Huhtaniemi IT, Rulli SB. Short-term pharmacological suppression of the hyperprolactinemia of infertile hCG-overproducing female mice persistently restores their fertility. Endocrinology 2012; 153:5980-92. [PMID: 23117930 PMCID: PMC3544356 DOI: 10.1210/en.2012-1393] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Female infertility is often associated with deregulation of hormonal networks, and hyperprolactinemia is one of the most common endocrine disorders of the hypothalamic-pituitary axis affecting the reproductive functions. We have shown previously that transgenic female mice overexpressing human chorionic gonadotropin β-subunit (hCGβ+ mice), and producing elevated levels of bioactive LH/hCG, exhibit increased production of testosterone and progesterone, are overweight and infertile, and develop hyperprolactinemia associated with pituitary lactotrope adenomas in adult age. In the present study, we analyzed the influence of the hyperprolactinemia of hCGβ+ females on their reproductive phenotype by treating them with the dopamine agonists, bromocriptine and cabergoline. Long-term bromocriptine treatment of adult mice was effective in the control of obesity, pituitary growth, and disturbances in the hormone profile, demonstrating that hyperprolactinemia was the main cause of the hCGβ+ female phenotype. Interestingly, short-term treatment (1 wk) with cabergoline applied on 5-wk-old mice corrected hyperprolactinemia, hyperandrogenism, and hyperprogesteronemia, prevented pituitary overgrowth, normalized gonadal function, and recovered fertility of adult hCGβ+ females after hormone-induced and natural ovulation. The same cabergoline treatment in the short term applied on 3-month-old hCGβ+ females failed to recover their reproductive function. Hence, we demonstrated that the short-term cabergoline treatment applied at a critical early stage of the phenotype progression effectively prevented the hyperprolactinemia-associated reproductive dysfunction of hCG-overproducing females.
Collapse
Affiliation(s)
- Laura D Ratner
- Instituto de Biología y Medicina Experimental-Consejo Nacional de Investigaciones Científicas y Técnicas, Vuelta de Obligado 2490, C1428ADN Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Sachdeva R, Bhardwaj N, Huhtaniemi I, Aggrawal U, Jain SK, Zaidi R, Singh O, Pal R. Transgenesis-mediated reproductive dysfunction and tumorigenesis: effects of immunological neutralization. PLoS One 2012; 7:e51125. [PMID: 23226476 PMCID: PMC3511405 DOI: 10.1371/journal.pone.0051125] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 10/31/2012] [Indexed: 02/01/2023] Open
Abstract
Human chorionic gonadotropin (hCG) was initially thought to be made only during pregnancy, but is now known to also be synthesized by a variety of cancers and is associated with poor patient prognosis. Transgenic expression of βhCG in mice causes hyper-luteinized ovaries, a loss in estrous cyclicity and infertility, increased body weight, prolactinomas and mammary gland tumors. Strategies were devised to generate antibody responses against hCG to investigate whether reversal of the molecular processes driving tumorigenesis would follow. hCG-immunized transgenic mice did not exhibit increases in body weight or serum prolactin levels, and gross ovarian and pituitary morphology remained normal. While non-immunized transgenic animals demonstrated heightened levels of transcripts associated with pituitary tumorigenesis (HMG2A, E2F1, CCND1, PRL, GH, GAL, PTTG1, BMP4) and decreased levels of CDK inhibitors CDKN1B (p27), CDKN2A (p16) and CDKN2c (p18), immunization led to a reversal to levels found in non-transgenic animals. Serum derived from transgenic (but not non-transgenic) mice led to enhanced transcription as well as expression of VEGF, IL-8, KC (murine IL-8) and MMP-9 in tumor cells, effects not seen when sera derived from hCG-immunized transgenic mice was employed. As the definitive indication of the restoration of the reproductive axis, immunization led to the resumption of estrous cyclicity as well as fertility in transgenic mice. These results indicate that hCG may influence cancer pathogenesis and progression via several distinct mechanisms. Using a stringent in vivo system in which βhCG acts both a “self” antigen and a tumor-promoting moiety (putatively akin to the situation in humans), the data builds a case for anti-gonadotropin vaccination strategies in the treatment of gonadotropin-dependent or secreting malignancies that frequently acquire resistance to conventional therapy.
Collapse
Affiliation(s)
- Ruchi Sachdeva
- Department of Biochemistry, Faculty of Science, Jamia Hamdard, New Delhi, India
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Neetu Bhardwaj
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Ilpo Huhtaniemi
- Department of Physiology, University of Turku, Turku, Finland
- Department of Reproductive and Developmental Biology, Imperial College, London, Hammersmith Campus, London, United Kingdom
| | - Usha Aggrawal
- Institute of Pathology, Safdarjung Hospital, New Delhi, India
| | | | - Rana Zaidi
- Department of Biochemistry, Faculty of Science, Jamia Hamdard, New Delhi, India
- * E-mail: (RZ); (OS); (RP)
| | - Om Singh
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
- * E-mail: (RZ); (OS); (RP)
| | - Rahul Pal
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
- * E-mail: (RZ); (OS); (RP)
| |
Collapse
|
40
|
Krachulec J, Vetter M, Schrade A, Löbs AK, Bielinska M, Cochran R, Kyrönlahti A, Pihlajoki M, Parviainen H, Jay PY, Heikinheimo M, Wilson DB. GATA4 is a critical regulator of gonadectomy-induced adrenocortical tumorigenesis in mice. Endocrinology 2012; 153:2599-611. [PMID: 22461617 PMCID: PMC3359595 DOI: 10.1210/en.2011-2135] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In response to gonadectomy certain inbred mouse strains develop sex steroidogenic adrenocortical neoplasms. One of the hallmarks of neoplastic transformation is expression of GATA4, a transcription factor normally present in gonadal but not adrenal steroidogenic cells of the adult mouse. To show that GATA4 directly modulates adrenocortical tumorigenesis and is not merely a marker of gonadal-like differentiation in the neoplasms, we studied mice with germline or conditional loss-of-function mutations in the Gata4 gene. Germline Gata4 haploinsufficiency was associated with attenuated tumor growth and reduced expression of sex steroidogenic genes in the adrenal glands of ovariectomized B6D2F1 and B6AF1 mice. At 12 months after ovariectomy, wild-type B6D2F1 mice had biochemical and histological evidence of adrenocortical estrogen production, whereas Gata4(+/-) B6D2F1 mice did not. Germline Gata4 haploinsufficiency exacerbated the secondary phenotype of postovariectomy obesity in B6D2F1 mice, presumably by limiting ectopic estrogen production in the adrenal glands. Amhr2-cre-mediated deletion of floxed Gata4 (Gata4(F)) in nascent adrenocortical neoplasms of ovariectomized B6.129 mice reduced tumor growth and the expression of gonadal-like markers in a Gata4(F) dose-dependent manner. We conclude that GATA4 is a key modifier of gonadectomy-induced adrenocortical neoplasia, postovariectomy obesity, and sex steroidogenic cell differentiation.
Collapse
Affiliation(s)
- Justyna Krachulec
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Walters KA, Allan CM, Handelsman DJ. Rodent models for human polycystic ovary syndrome. Biol Reprod 2012; 86:149, 1-12. [PMID: 22337333 DOI: 10.1095/biolreprod.111.097808] [Citation(s) in RCA: 196] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most frequent female endocrine disorder, affecting 5%-10% of women, causing infertility due to dysfunctional follicular maturation and ovulation, distinctive multicystic ovaries and hyperandrogenism, together with metabolic abnormalities including obesity, hyperinsulinism, an increased risk of type 2 diabetes, and cardiovascular disease. The etiology of PCOS is unclear, and decisive clinical studies are limited by ethical and logistic constraints. Consequently treatment is palliative rather than curative and focuses on symptomatic approaches. Hence, a suitable animal model could provide a valuable means with which to study the pathogenesis of the characteristic reproductive and metabolic abnormalities and thereby identify novel and more effective treatments. So far there is no consensus on the best experimental animal model, which should ideally reproduce the key features associated with human PCOS. The prenatally androgenized rhesus monkey displays many characteristics of the human condition, including hyperandrogenism, anovulation, polycystic ovaries, increased adiposity, and insulin insensitivity. However, the high cost of nonhuman primate studies limits the practical utility of these large-animal models. Rodent models, on the other hand, are inexpensive, provide well-characterized and stable genetic backgrounds readily accessible for targeted genetic manipulation, and shorter reproductive life spans and generation times. Recent rodent models display both reproductive and metabolic disturbances associated with human PCOS. This review aimed to evaluate the rodent models reported to identify the advantages and disadvantages of the distinct rodent models used to investigate this complex endocrine disorder.
Collapse
Affiliation(s)
- Kirsty A Walters
- Andrology Laboratory, ANZAC Research Institute, Concord Hospital, University of Sydney, Sydney, New South Wales, Australia.
| | | | | |
Collapse
|
42
|
Iezzi M, Quaglino E, Cappello P, Toto V, Sabatini F, Curcio C, Garotta G, Musiani P, Cavallo F. HCG hastens both the development of mammary carcinoma and the metastatization of HCG/LH and ERBB-2 receptor-positive cells in mice. Int J Immunopathol Pharmacol 2011; 24:621-30. [PMID: 21978694 DOI: 10.1177/039463201102400308] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Breast cancer is more frequent in human nulliparae, whereas its incidence is reduced by early fullterm pregnancy. Rodent studies suggest that chorionic gonadotropin secretion during pregnancy affords protection by inducing breast structure differentiation. Opposite effects, however, have been observed in cancer prone transgenic mice overexpressing the β subunit of chorionic gonadotropin or pituitary luteinic hormone (LH). Here we assessed the effect of administration of human chorionic gonadotropin (hCG) for 21 days (corresponding to the duration of a mouse pregnancy) in virgin female mice transgenic for the activated rat (r-) ERBB-2 oncogene (BALB-neuT). In these mice, the onset of atypical mammary duct hyperplasia and its progression towards multiple mammary carcinomas is accelerated by hCG. hCG enhances the in vitro proliferation and in vivo metastatization of tumor cells from a BALB-neuT mammary tumor expressing the hCG/LH as well as the ERBB-2 receptors. These findings suggest that hCG favours the growth and progression of hCG/LH and ERBB-2 receptor-positive breast tumors.
Collapse
Affiliation(s)
- Manuela Iezzi
- Aging Research Center, G. d'Annunzio University Foundation, Chieti, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
During the last two decades a large number of genetically modified mouse lines with altered gonadotropin action have been generated. These mouse lines fall into three categories: the lack-of-function mice, gain-of-function mice, and the mice generated by breeding the abovementioned lines with other disease model lines. The mouse strains lacking gonadotropin action have elucidated the necessity of the pituitary hormones in pubertal development and function of gonads, and revealed the processes from the original genetic defect to the pathological phenotype such as hypo- or hypergonadotropic hypogonadism. Conversely, the strains of the second group depict consequences of chronic gonadotropin action. The lines vary from those expressing constitutively active receptors and those secreting follicle-stimulating hormone (FSH) with slowly increasing amounts to those producing human choriogonadotropin (hCG), amount of which corresponds to 2000-fold luteinizing hormone (LH)/hCG biological activity. Accordingly, the phenotypes diverge from mild anomalies and enhanced fertility to disrupted gametogenesis, but eventually chronic, enhanced and non-pulsatile action of both FSH and LH leads to female and male infertility and/or hyper- and neoplasias in most of the gonadotropin gain-of-function mice. Elevated gonadotropin levels also alter the function of several extra-gonadal tissues either directly or indirectly via increased sex steroid production. These effects include promotion of tumorigenesis in tissues such as the pituitary, mammary and adrenal glands. Finally, the crossbreedings of the current mouse strains with other disease models are likely to uncover the contribution of gonadotropins in novel biological systems, as exemplified by the recent crossbreed of LHCG receptor deficient mice with Alzheimer disease mice.
Collapse
Affiliation(s)
- Hellevi Peltoketo
- Institute of Reproductive and Developmental Biology, Imperial College London, DuCane Road, London, W12 0NN, UK.
| | | | | |
Collapse
|
44
|
Overexpression of the β subunit of human chorionic gonadotropin promotes the transformation of human ovarian epithelial cells and ovarian tumorigenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:1385-93. [PMID: 21763678 DOI: 10.1016/j.ajpath.2011.05.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 04/26/2011] [Accepted: 05/09/2011] [Indexed: 01/22/2023]
Abstract
Ovarian carcinoma is the most lethal gynecologic malignancy, however underlying molecular events remain elusive. Expression of human chorionic gonadotropin β subunit (β-hCG) is clinically significant for both trophoblastic and nontrophoblastic cancers; however, whether β-hCG facilitates ovarian epithelial cell tumorigenic potential remains uncharacterized. Immortalized nontumorigenic ovarian epithelial T29 and T80 cells stably overexpressing β-hCG were examined for alterations in cell cycle and apoptotic status by flow cytometry, expression of proteins regulating cell cycle and apoptosis by Western blot, proliferation status by MTT assay, anchorage-independent colony formation, and mouse tumor formation. Immunoreactivity for β-hCG was evaluated using mouse xenografts and on human normal ovarian, fallopian tube, endometrium, and ovarian carcinoma tissues. T29 and T80 cells overexpressing β-hCG demonstrated significantly increased proliferation, anchorage-independent colony formation, prosurvival Bcl-X(L) protein expression, G2-checkpoint progression, elevated cyclins E/D1 and Cdk 2/4/6, and decreased apoptosis. Collectively, these transformational alterations in phenotype facilitated increased xenograft tumorigenesis (P < 0.05). Furthermore, β-hCG immunoreactivity was elevated in malignant ovarian tumors, compared with normal epithelial expression in ovaries, fallopian tube, and endometrium (P < 0.001). Our data indicate that elevated β-hCG transforms ovarian surface epithelial cells, facilitating proliferation, cell cycle progression, and attenuated apoptosis to promote tumorigenesis. Our results further decipher the functional role and molecular mechanism of β-hCG in ovarian carcinoma. β-hCG may contribute to ovarian cancer etiology, which introduces a new therapeutic intervention target for ovarian cancer.
Collapse
|
45
|
Gonzalez B, Ratner LD, Di Giorgio NP, Poutanen M, Huhtaniemi IT, Calandra RS, Lux-Lantos VAR, Rulli SB. Endogenously elevated androgens alter the developmental programming of the hypothalamic-pituitary axis in male mice. Mol Cell Endocrinol 2011; 332:78-87. [PMID: 20933053 DOI: 10.1016/j.mce.2010.09.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 09/14/2010] [Accepted: 09/28/2010] [Indexed: 01/09/2023]
Abstract
Transgenic male mice that express human chorionic gonadotropin (hCG) α and β subunits constitutively hypersecrete hCG and produce elevated levels of androgens. The aim of this study was to characterize the hypothalamic-pituitary function of these transgenic (hCGαβ+) males by focusing on FSH regulation. Serum FSH levels and pituitary mRNA expression of Fshb, Lhb, Cga, Gnrhr and Esr1 were reduced, whereas Fst expression was increased in prepubertal hCGαβ+ males as compared with wild-type. In the hypothalamus, Cyp19a1 expression, GnRH concentration and ex-vivo GnRH pulsatility were elevated in prepubertal hCGαβ+ mice, whereas Kiss1 expression was decreased prepubertally and Gad67 expression was elevated neonatally. The effect of androgens on the developmental programming of the hypothalamic-pituitary axis of hCGαβ+ males was evaluated by perinatal and prepubertal antiandrogen (flutamide) administration. Our studies identified a critical window between gestational day 18 and postnatal day 14, during which chronically elevated androgens and/or their locally produced metabolites activate the hypothalamus and concomitantly shut-down the gonadotropin axis.
Collapse
Affiliation(s)
- Betina Gonzalez
- Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490 (1428), Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Huhtaniemi I. Are gonadotrophins tumorigenic--a critical review of clinical and experimental data. Mol Cell Endocrinol 2010; 329:56-61. [PMID: 20471448 DOI: 10.1016/j.mce.2010.04.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 04/12/2010] [Accepted: 04/26/2010] [Indexed: 01/17/2023]
Abstract
The growth of many gonadal and extragonadal tumors is stimulated by gonadal sex hormones. Because gonadal hormone production is regulated by pituitary gonadotrophins, the latter hormones can be considered as indirect tumor promoters. In addition, there is a growing body of evidence that both gonadal (e.g. ovarian cancer) and extragonadal (e.g. breast, uterus, prostate and adrenal) tumors express gonadotrophin receptors, indicating the possibility of a direct tumorigenic role for FSH and LH. The purpose of this brief review is to present a critical evaluation of the current information, both clinical and experimental, about the direct involvement of gonadotrophins in the induction and growth of gonadal and extragonadal tumors.
Collapse
Affiliation(s)
- Ilpo Huhtaniemi
- Department of Surgery and Cancer, IRDB Building, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK.
| |
Collapse
|
47
|
Ahtiainen P, Sharp V, Rulli SB, Rivero-Müller A, Mamaeva V, Röyttä M, Huhtaniemi I. Enhanced LH action in transgenic female mice expressing hCGbeta-subunit induces pituitary prolactinomas; the role of high progesterone levels. Endocr Relat Cancer 2010; 17:611-21. [PMID: 20453081 PMCID: PMC2881531 DOI: 10.1677/erc-10-0016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The etiology of pituitary adenomas remains largely unknown, with the exception of involvement of estrogens in the formation of prolactinomas. We have examined the molecular pathogenesis of prolactin-producing pituitary adenomas in transgenic female mice expressing the human choriongonadotropin (hCG) beta-subunit. The LH/CG bioactivity is elevated in the mice, with consequent highly stimulated ovarian progesterone (P(4)) production, in the face of normal estrogen secretion. Curiously, despite normal estrogen levels, large prolactinomas developed in these mice, and we provide here several lines of evidence that the elevated P(4) levels are involved in the growth of these estrogen-dependent tumors. The antiprogestin mifepristone inhibited tumor growth, and combined postgonadectomy estradiol/P(4) treatment was more effective than estrogen alone in inducing tumor growth. Evidence for direct growth-promoting effect of P(4) was obtained from cultures of primary mouse pituitary cells and rat somatomammotroph GH3 cells. The mouse tumors and cultured cells revealed stimulation of the cyclin D1/cyclin-dependent kinase 4/retinoblastoma protein/transcription factor E2F1 pathway in the growth response to P(4). If extrapolated to humans, and given the importance of endogenous P(4) and synthetic progestins in female reproductive functions and their pharmacotherapy, it is relevant to revisit the potential role of these hormones in the origin and growth of prolactinomas.
Collapse
Affiliation(s)
- Petteri Ahtiainen
- Department of PhysiologyUniversity of TurkuFIN-20520, TurkuFinland
- Turku Graduate School of Biomedical ScienceUniversity of TurkuFIN-20520, TurkuFinland
| | - Victoria Sharp
- Department of Surgery and CancerImperial College LondonHammersmith Campus, Du Cane Road, London, W12 0NNUK
| | - Susana B Rulli
- Department of PhysiologyUniversity of TurkuFIN-20520, TurkuFinland
- Institute of Biology and Experimental Medicine-CONICETVuelta de Obligado 2490, , Buenos Aires, 1428Argentina
| | | | - Veronika Mamaeva
- Department of PhysiologyUniversity of TurkuFIN-20520, TurkuFinland
| | - Matias Röyttä
- Department of PathologyUniversity of TurkuTurku, FIN-20520Finland
| | - Ilpo Huhtaniemi
- Department of PhysiologyUniversity of TurkuFIN-20520, TurkuFinland
- Department of Surgery and CancerImperial College LondonHammersmith Campus, Du Cane Road, London, W12 0NNUK
- Correspondence should be addressed to I Huhtaniemi at Department of Surgery and Cancer, Imperial College London, London W12 ONN, UK ()
| |
Collapse
|
48
|
Gonzalez CR, Gonzalez B, Rulli SB, Huhtaniemi I, Calandra RS, Gonzalez-Calvar SI. TGF-beta1 system in Leydig cells. Part I: effect of hCG and progesterone. J Reprod Dev 2010; 56:389-95. [PMID: 20431248 DOI: 10.1262/jrd.09-166n] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transforming growth factor beta 1 (TGF-beta1) modulates male reproductive function. Genetically modified mice overexpressing alpha/beta subunits of hCG (hCG+) show Leydig cell hyperplasia/hypertrophy at prepuberty that disappears as the mice approach adulthood. In this study we analyzed the gene expression of TGF-beta1, its specific receptors, type II (TGF-betaRII) and type I (activin receptor-like kinase 1 and 5: ALK1 and ALK5), and co-receptor endoglin (CD105) in purified Leydig cells from hCG+ and wild-type mice at 3 and 8 weeks of age and the occurrence of TGF-beta1, ALK1 and ALK5 by immunohistochemistry. The expression of TGF-beta1 was higher in hCG+ mice at both ages studied, and no changes were observed in TGF-betaRII. ALK5 diminished with age in wild-type mice, whereas ALK1 decreased in hCG+ mice at 8 weeks of age. Endoglin expression showed a marked increase in 3-week-old hCG+ animals. In vitro incubation of Leydig cells from wild-type animals with hCG (10 IU/ml) increased TGF-beta1 and ALK5 expression. Progesterone (10(-6) M) induced endoglin expression. These studies provide novel evidence for differential gene and protein expression of ALK1 and ALK5 at different ages and endoglin expression and hormonal, in purified Leydig cells.
Collapse
|
49
|
Consequences of genetic manipulations of gonadotrophins and gonadotrophin receptors in mice. ANNALES D'ENDOCRINOLOGIE 2010; 71:170-6. [PMID: 20362970 DOI: 10.1016/j.ando.2010.02.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 02/11/2010] [Accepted: 02/12/2010] [Indexed: 11/23/2022]
Abstract
We have produced over the years several genetically modified mouse models (transgenic [TG], knockout [KO] and knockin [KI]) for the study of normal and aberrant functions of gonadotrophins and their receptors. We summarise in the present review some of our recent findings on these animal models. One is the cascade of extragonadal phenotypes triggered by ovarian hyperstimulation in TG mice overexpressing the human choriongonadotrophin (hCG) beta-subunit and presenting with elevated levels of serum luteinising hormone (LH)/hCG bioactivity. Massively elevated levels of serum progesterone, rather than oestrogens, are responsible for the induction of pituitary prolactinomas and the subsequently elevated prolactin (PRL) levels. Along with normal oestradiol and elevated progesterone levels, the increased concentration of PRL induces lobuloalveolar development of the mammary gland, with ultimate formation of oestrogen and progesterone receptor-negative malignant tumours. Another TG mouse model expressing a constitutively activating mutant form of the follicle-stimulating hormone receptor (FSHR) presents with a strong ovarian phenotype inducing advanced follicular development and depletion, haemorrhagic follicles, teratomas and infertility. A third TG mouse model, coexpressing binding- and signalling-deficient mutants of LHCGR in the KO background for the same receptor (R) gene provided convincing evidence that functional complementation through homo-di/oligomerisation is a physiologically relevant mode of activation of class A G protein-coupled receptors (GPCR). Taken together, genetically modified mouse models provide powerful tools for the elucidation of normal and pathological functions of gonadotrophins and their R.
Collapse
|
50
|
Peltoketo H, Strauss L, Karjalainen R, Zhang M, Stamp GW, Segaloff DL, Poutanen M, Huhtaniemi IT. Female mice expressing constitutively active mutants of FSH receptor present with a phenotype of premature follicle depletion and estrogen excess. Endocrinology 2010; 151:1872-83. [PMID: 20172968 PMCID: PMC2851188 DOI: 10.1210/en.2009-0966] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Strong gain-of-function mutations have not been identified in humans in the FSH receptor (FSHR), whereas such mutations are common among many other G protein-coupled receptors. In order to predict consequences of such mutations on humans, we first identified constitutively activated mutants of the mouse (m) Fshr and then expressed them under the human anti-Müllerian hormone promoter in transgenic mice or created knock-in mutation into the mouse genome. We show here that mutations of Asp580 in the mFSHR significantly increase the basal receptor activity. D580H and D580Y mutations of mFSHR bind FSH, but the activity of the former is neither ligand-dependent nor promiscuous towards LH/human choriogonadotropin stimulation. Transgenic expression of mFshr(D580H) in granulosa cells leads to abnormal ovarian structure and function in the form of hemorrhagic cysts, accelerated loss of small follicles, augmented granulosa cell proliferation, increased estradiol biosynthesis, and occasional luteinized unruptured follicles or teratomas. The most affected mFshr(D580H) females are infertile with disturbed estrous cycle and decreased gonadotropin and increased prolactin levels. Increased estradiol and prolactin apparently underlie the enhanced development of the mammary glands, adenomatous pituitary growth, and lipofuscin accumulation in the adrenal gland. The influence of the mFSHR(D580Y) mutation is milder, mainly causing hemorrhagic cysts in transgenic mFSHR(D580Y) and mFSHR(D580Y) -knock-in mice. The results demonstrate that gain-of-function mutations of the FSHR in mice bring about distinct and clear changes in ovarian function, informative in the search of similar mutations in humans.
Collapse
Affiliation(s)
- Hellevi Peltoketo
- Institute of Reproductive and Developmental Biology, 2nd floor, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|