1
|
Bathaei P, Imenshahidi M, Hosseinzadeh H. Effects of Berberis vulgaris, and its active constituent berberine on cytochrome P450: a review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:179-202. [PMID: 39141022 DOI: 10.1007/s00210-024-03326-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/22/2024] [Indexed: 08/15/2024]
Abstract
The cytochrome P450 (CYP450) family is crucial for metabolizing drugs and natural substances. Numerous compounds, such as pharmaceuticals and dietary items, can influence CYP activity by either enhancing or inhibiting these enzymes, potentially leading to interactions between drugs or between drugs and food. This research explores the impact of barberry and its primary component "berberine" on key human CYP450 enzymes. The text discusses the effects of this plant on the 12 primary human CYP450 enzymes, with summarized data presented in tables. Berberine exerts an influence on the function of various CYP450 isoforms, including CYP3A4/5, CYP2D6, CYP2C9, CYP2E1, CYP1A1/2, and most isoforms within the CYP2B subfamily. Given the significant role of these CYP450 isoforms in metabolizing commonly used drugs and endogenous substances, as well as activating procarcinogens into carcinogenic metabolites, the influence of barberry and its active constituent on these enzymes may impact the pharmacokinetics and toxicity profiles of various compounds. More specifically, regarding the crucial role of CYP2D6 and CYP3A4 in metabolizing clinically used drugs, and the inhibitory effects of berberine on these two CYP450 isoforms, it seems that the most important drug interaction of berberine that should be considered is related to its inhibitory effect on CYP2D6 and CYP3A4. In conclusion, due to the impact of barberry on multiple CYP450 isoforms, healthcare providers should conduct thorough consultations and investigations to ensure patient safety and prevent any potential adverse interactions before recommending the consumption of these herbs. Additional research, particularly clinical trials is crucial for preventing any potentially adverse interactions in patients who consume this herb.
Collapse
Affiliation(s)
- Pooneh Bathaei
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Imenshahidi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Majumder P, Hsu TI, Hu CJ, Huang JK, Lee YC, Hsieh YC, Ahsan A, Huang CC. Potential role of solid lipid curcumin particle (SLCP) as estrogen replacement therapy in mitigating TDP-43-related neuropathy in the mouse model of ALS disease. Exp Neurol 2024; 383:114999. [PMID: 39419433 DOI: 10.1016/j.expneurol.2024.114999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/10/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) was first identified in 1869, but it wasn't until the 2014 Ice Bucket Challenge that widespread attention was drawn to the disease. Since then, substantial research has been dedicated to developing treatments for ALS. Despite this, only three drugs - riluzole, edaravone and AMX0035, have been approved for clinical use, and they can only temporarily alleviate mild symptoms without significant disease modification or cure. Therefore, there remains a critical unmet need to identify disease modifying or curative therapies for ALS. The higher incidence and more severe progression of ALS and FTLD (frontotemporal lobar degeneration) observed in men and postmenopausal woman compared to young women suggests that sex hormones may significantly influence disease onset and progression. In both animal models and human clinical studies, 17β estradiol (E2) has been shown to delay and improve the outcomes of many neurodegenerative diseases. Here, we examined the role of TDP-43 in the regulation of estrogen-related enzymes, CYP19A1 and CYP3A4. In addition, we examined the impact of curcumin on the regulation of estrogen E2 levels and TDP-43-associated neuropathy as a potential therapeutic strategy for the treatment of FTLD and ALS. METHODS Prp-TDP-43A315T mice was used as a model of ALS/FTLD to examine the expression patterns of E2 and its biosynthesis and degradation enzymes, CYP19A1 and CYP3A4. Moreover, the molecular mechanisms and the potency of solid lipid curcumin particles (SLCP) as an E2 replacement therapy for TDP-43 associated neuropathy was analyzed. We further examined the survival rates and the pathological TDP43 patterns in female and male Prp-TDP-43A315T mice administrated with or without SLCP. In addition, the changed expression levels of enzymes corresponding to E2 biosynthesis and degradation in the spinal cord of female and male Prp-TDP-43A315T mice with or without SLCP were determined. RESULTS We found that in addition to E2, the expression patterns of CYP19A1 and CYP3A4 proteins differed between Prp-TDP-43A315T mice compared to wild-type control, suggesting that toxic phosphorylated TDP43 oligomers may disrupt the balance between CYP19A1 and CYP3A4 expression, leading to reduced estrogen biosynthesis and accelerated degradation. In addition, we found that oral administration of SLCP prolonged the survival rates in female Prp-TDP-43A315T mice and significantly reduced the pathological insoluble phosphorylated TDP-43 species. Furthermore, SLCP attenuated disease progression associated with TDP-43-related neuropathies through modulating estrogen biosynthesis and the activity of CYP450 enzymes. CONCLUSIONS Our results showed that Prp-TDP-43A315T mice exhibit altered estradiol levels. Moreover, we demonstrated the efficacy of SLCP as an estrogen replacement therapy in mitigating TDP-43-associated disease progression and pathogenesis. These findings suggest that SLCP could be a promising strategy to induce E2 expression for the treatment of ALS and FTLD.
Collapse
Affiliation(s)
- Pritha Majumder
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110, Taiwan; International Master Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; TMU Research Center of Neuroscience, Taipei Medical University, Taipei 110, Taiwan
| | - Tsung-I Hsu
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110, Taiwan; International Master Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan; TMU Research Center of Neuroscience, Taipei Medical University, Taipei 110, Taiwan
| | - Chaur-Joug Hu
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110, Taiwan; Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; Taipei Neuroscience Institute, Taipei Medical University, Taipei 110, Taiwan; Neurology Department, Shuang-Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan
| | - Jeffrey K Huang
- Department of Biology, Georgetown University, Washington, DC 20057, USA
| | - Yi-Chao Lee
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110, Taiwan; International Master Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; TMU Research Center of Neuroscience, Taipei Medical University, Taipei 110, Taiwan
| | - Yi-Chen Hsieh
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110, Taiwan; International Master Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; TMU Research Center of Neuroscience, Taipei Medical University, Taipei 110, Taiwan
| | - Asmar Ahsan
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110, Taiwan
| | - Chi-Chen Huang
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110, Taiwan; International Master Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; TMU Research Center of Neuroscience, Taipei Medical University, Taipei 110, Taiwan.
| |
Collapse
|
3
|
Berner AM, Atkinson SE. The implications of hormone treatment for cancer risk, screening and treatment in transgender individuals. Best Pract Res Clin Endocrinol Metab 2024; 38:101909. [PMID: 38964988 DOI: 10.1016/j.beem.2024.101909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
There is evidence that gender-affirming hormone treatment (GAHT) for transgender individuals modulates their risk for specific malignancies including breast and prostate cancer, and meningiomas. However, there is insufficient data to make precise risk estimates accounting for age and inherited cancer risk. As such, screening recommendations remain broad. Even less evidence exists for best practice in the management of active or historical cancers in the transgender population. Guidance is therefore mainly extrapolated from cisgender populations but with considerations of the significant benefits of GAHT in the face of any hormonal risk. Clinical experience, the multidisciplinary team and shared decision making with the patient are vital in providing person-centred care, while further research is acquired.
Collapse
Affiliation(s)
- Alison May Berner
- Barts Cancer Institute, Queen Mary University of London, United Kingdom; Gender Identity Clinic London, Tavistock and Portman NHS Trust, United Kingdom.
| | | |
Collapse
|
4
|
Lei S, Guo A, Lu J, Qi Q, Devanathan AS, Zhu J, Ma X. Activation of PXR causes drug interactions with Paxlovid in transgenic mice. Acta Pharm Sin B 2023; 13:4502-4510. [PMID: 37969744 PMCID: PMC10638548 DOI: 10.1016/j.apsb.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/11/2023] [Accepted: 07/28/2023] [Indexed: 11/17/2023] Open
Abstract
Paxlovid is a nirmatrelvir (NMV) and ritonavir (RTV) co-packaged medication used for the treatment of coronavirus disease 2019 (COVID-19). The active component of Paxlovid is NMV and RTV is a pharmacokinetic booster. Our work aimed to investigate the drug/herb-drug interactions associated with Paxlovid and provide mechanism-based guidance for the clinical use of Paxlovid. By using recombinant human cytochrome P450s (CYPs), we confirmed that CYP3A4 and 3A5 are the major enzymes responsible for NMV metabolism. The role of CYP3A in Paxlovid metabolism were further verified in Cyp3a-null mice, which showed that the deficiency of CYP3A significantly suppressed the metabolism of NMV and RTV. Pregnane X receptor (PXR) is a ligand-dependent transcription factor that upregulates CYP3A4/5 expression. We next explored the impact of drug- and herb-mediated PXR activation on Paxlovid metabolism in a transgenic mouse model expressing human PXR and CYP3A4/5. We found that PXR activation increased CYP3A4/5 expression, accelerated NMV metabolism, and reduced the systemic exposure of NMV. In summary, our work demonstrated that PXR activation can cause drug interactions with Paxlovid, suggesting that PXR-activating drugs and herbs should be used cautiously in COVID-19 patients receiving Paxlovid.
Collapse
Affiliation(s)
- Saifei Lei
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Alice Guo
- School of Nursing, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jie Lu
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Qian Qi
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Aaron S. Devanathan
- Department of Pharmacy and Therapeutics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Junjie Zhu
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Xiaochao Ma
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
5
|
Poudel S, Huber AD, Chen T. Regulation of Nuclear Receptors PXR and CAR by Small Molecules and Signal Crosstalk: Roles in Drug Metabolism and Beyond. Drug Metab Dispos 2023; 51:228-236. [PMID: 36116789 PMCID: PMC9900866 DOI: 10.1124/dmd.122.000858] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/16/2022] [Accepted: 08/29/2022] [Indexed: 01/31/2023] Open
Abstract
Pregnane X receptor (PXR) and constitutive androstane receptor (CAR) are ligand-activated transcription factors that regulate the expression of drug metabolizing enzymes and drug transporters. Since their discoveries, they have been studied as important factors for regulating processes related to drug efficacy, drug toxicity, and drug-drug interactions. However, their vast ligand-binding profiles extend into additional spaces, such as endogenously produced chemicals, microbiome metabolites, dietary compounds, and environmental pollutants. Therefore, PXR and CAR can respond to an enormous abundance of stimuli, resulting in significant shifts in metabolic programs and physiologic homeostasis. Naturally, PXR and CAR have been implicated in various diseases related to homeostatic perturbations, such as inflammatory bowel disorders, diabetes, and certain cancers. Recent findings have injected the field with new signaling mechanisms and tools to dissect the complex PXR and CAR biology and have strengthened the potential for future PXR and CAR modulators in the clinic. Here, we describe the historical and ongoing importance of PXR and CAR in drug metabolism pathways and how this history has evolved into new mechanisms that regulate and are regulated by these xenobiotic receptors, with a specific focus on small molecule ligands. To effectively convey the impact of newly emerging research, we have arranged five diverse and representative key recent advances, four specific challenges, and four perspectives on future directions. SIGNIFICANCE STATEMENT: PXR and CAR are key transcription factors that regulate homeostatic detoxification of the liver and intestines. Diverse chemicals bind to these nuclear receptors, triggering their transcriptional tuning of the cellular metabolic response. This minireview revisits the importance of PXR and CAR in pharmaceutical drug responses and highlights recent results with implications beyond drug metabolism.
Collapse
Affiliation(s)
- Shyaron Poudel
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Andrew D Huber
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
6
|
Klyushova LS, Perepechaeva ML, Grishanova AY. The Role of CYP3A in Health and Disease. Biomedicines 2022; 10:2686. [PMID: 36359206 PMCID: PMC9687714 DOI: 10.3390/biomedicines10112686] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Abstract
CYP3A is an enzyme subfamily in the cytochrome P450 (CYP) superfamily and includes isoforms CYP3A4, CYP3A5, CYP3A7, and CYP3A43. CYP3A enzymes are indiscriminate toward substrates and are unique in that these enzymes metabolize both endogenous compounds and diverse xenobiotics (including drugs); almost the only common characteristic of these compounds is lipophilicity and a relatively large molecular weight. CYP3A enzymes are widely expressed in human organs and tissues, and consequences of these enzymes' activities play a major role both in normal regulation of physiological levels of endogenous compounds and in various pathological conditions. This review addresses these aspects of regulation of CYP3A enzymes under physiological conditions and their involvement in the initiation and progression of diseases.
Collapse
Affiliation(s)
| | - Maria L. Perepechaeva
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Timakova Str. 2, 630117 Novosibirsk, Russia
| | | |
Collapse
|
7
|
Ballester P, Muriel J, Peiró AM. CYP2D6 phenotypes and opioid metabolism: the path to personalized analgesia. Expert Opin Drug Metab Toxicol 2022; 18:261-275. [PMID: 35649041 DOI: 10.1080/17425255.2022.2085552] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Opioids play a fundamental role in chronic pain, especially considering when 1 of 5 Europeans adults, even more in older females, suffer from it. However, half of them do not reach an adequate pain relief. Could pharmacogenomics help to choose the most appropriate analgesic drug? AREAS COVERED The objective of the present narrative review was to assess the influence of cytochrome P450 2D6 (CYP2D6) phenotypes on pain relief, analgesic tolerability, and potential opioid misuse. Until December 2021, a literature search was conducted through the MEDLINE, PubMed database, including papers from the last 10 years. CYP2D6 plays a major role in metabolism that directly impacts on opioid (tramadol, codeine, or oxycodone) concentration with differences between sexes, with a female trend toward poorer pain control. In fact, CYP2D6 gene variants are the most actionable to be translated into clinical practice according to regulatory drug agencies and international guidelines. EXPERT OPINION CYP2D6 genotype can influence opioids' pharmacokinetics, effectiveness, side effects, and average opioid dose. This knowledge needs to be incorporated in pain management. Environmental factors, psychological together with genetic factors, under a sex perspective, must be considered when you are selecting the most personalized pain therapy for your patients.
Collapse
Affiliation(s)
- Pura Ballester
- Neuropharmacology on Pain (NED) group, Alicante Institute for Health and Biomedical Research (ISABIAL Foundation), Alicante, Spain
| | - Javier Muriel
- Neuropharmacology on Pain (NED) group, Alicante Institute for Health and Biomedical Research (ISABIAL Foundation), Alicante, Spain
| | - Ana M Peiró
- Neuropharmacology on Pain (NED) group, Alicante Institute for Health and Biomedical Research (ISABIAL Foundation), Alicante, Spain.,Clinical Pharmacology Unit, Department of Health of Alicante, General Hospital, Alicante, Spain
| |
Collapse
|
8
|
Ye X, Peng T, Li Y, Huang T, Wang H, Hu Z. Identification of an important function of CYP123: Role in the monooxygenase activity in a novel estradiol degradation pathway in bacteria. J Steroid Biochem Mol Biol 2022; 215:106025. [PMID: 34775032 DOI: 10.1016/j.jsbmb.2021.106025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/27/2021] [Accepted: 11/09/2021] [Indexed: 11/15/2022]
Abstract
Nowadays, 17β-estradiol (E2) biodegradation pathway has still not been identified in bacteria. To bridge this gap, we have described a novel E2 degradation pathway in Rhodococcus sp. P14 in this study, which showed that estradiol could be first transferred to estrone (E1) and thereby further converted into 16-hydroxyestrone, and then transformed into opened estrogen D ring. In order to identify the genes, which may be responsible for the pathway, transcriptome analysis was performed during E2 degradation in strain P14. The results showed that the expression of a short-chain dehydrogenase (SDR) gene and a CYP123 gene in the same gene cluster could be induced significantly by E2. Based on gene analysis, this gene cluster was found to play an important role in transforming E2 to 16-hydroxyestrone. The function of CYP123 was unknown before this study, and was found to harbor the activity of 16-estrone hydratase. Moreover, the global response to E2 in strain P14 was also analyzed by transcriptome analysis. It was observed that various genes involved in the metabolism processes, like the TCA cycle, lipid and amino acid metabolism, as well as glycolysis showed a significant increase in mRNA levels in response to strain P14 that can use E2 as the single carbon source. Overall, this study provides us an in depth understanding of the E2 degradation mechanisms in bacteria and also sheds light about the ability of strain P14 to effectively use E2 as the major carbon source for promoting its growth.
Collapse
Affiliation(s)
- Xueying Ye
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China
| | - Tao Peng
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China.
| | - Yuan Li
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China
| | - Tongwang Huang
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China
| | - Hui Wang
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China
| | - Zhong Hu
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China; Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China.
| |
Collapse
|
9
|
Fujino C, Sanoh S, Katsura T. Variation in Expression of Cytochrome P450 3A Isoforms and Toxicological Effects: Endo- and Exogenous Substances as Regulatory Factors and Substrates. Biol Pharm Bull 2021; 44:1617-1634. [PMID: 34719640 DOI: 10.1248/bpb.b21-00332] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The CYP3A subfamily, which includes isoforms CYP3A4, CYP3A5, and CYP3A7 in humans, plays important roles in the metabolism of various endogenous and exogenous substances. Gene and protein expression of CYP3A4, CYP3A5, and CYP3A7 show large inter-individual differences, which are caused by many endogenous and exogenous factors. Inter-individual differences can cause negative outcomes, such as adverse drug events and disease development. Therefore, it is important to understand the variations in CYP3A expression caused by endo- and exogenous factors, as well as the variation in the metabolism and kinetics of endo- and exogenous substrates. In this review, we summarize the factors regulating CYP3A expression, such as bile acids, hormones, microRNA, inflammatory cytokines, drugs, environmental chemicals, and dietary factors. In addition, variations in CYP3A expression under pathological conditions, such as coronavirus disease 2019 and liver diseases, are described as examples of the physiological effects of endogenous factors. We also summarize endogenous and exogenous substrates metabolized by CYP3A isoforms, such as cholesterol, bile acids, hormones, arachidonic acid, vitamin D, and drugs. The relationship between the changes in the kinetics of these substrates and the toxicological effects in our bodies are discussed. The usefulness of these substrates and metabolites as endogenous biomarkers for CYP3A activity is also discussed. Notably, we focused on discrimination between CYP3A4, CYP3A5, and CYP3A7 to understand inter-individual differences in CYP3A expression and function.
Collapse
Affiliation(s)
- Chieri Fujino
- Laboratory of Clinical Pharmaceutics and Therapeutics, College of Pharmaceutical Sciences, Ritsumeikan University
| | - Seigo Sanoh
- Graduate School of Biomedical and Health Sciences, Hiroshima University.,School of Pharmaceutical Sciences, Wakayama Medical University
| | - Toshiya Katsura
- Laboratory of Clinical Pharmaceutics and Therapeutics, College of Pharmaceutical Sciences, Ritsumeikan University
| |
Collapse
|
10
|
Lee HS, Lee IH, Kang K, Park SI, Kwon TW, Lee DY. A Network Pharmacology Analysis of the Systems-Perspective Anticancer Mechanisms of the Herbal Drug FDY2004 for Breast Cancer. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211049133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Breast cancer is a malignant tumor with high incidence, prevalence, and mortality rates in women. In recent years, herbal drugs have been assessed as anticancer therapy against breast cancer, owing to their promising therapeutic effects and reduced toxicity. However, their pharmacological mechanisms have not been fully explored at the systemic level. Here, we conducted a network pharmacology analysis of the systems-perspective molecular mechanisms of FDY2004, an anticancer herbal formula that consists of Moutan Radicis Cortex, Persicae Semen , and Rhei Radix et Rhizoma, against breast cancer. We determined that FDY2004 may contain 28 active compounds that exert pharmacological effects by targeting 113 breast cancer-related human genes/proteins. Based on the gene ontology terms, the FDY2004 targets were involved in modulating biological processes such as cell growth, cell proliferation, and apoptosis. Pathway enrichment analysis identified various breast cancer-associated pathways that may mediate the anticancer activity of FDY2004, including the PI3K-Akt, MAPK, TNF, HIF-1, focal adhesion, estrogen, ErbB, NF-kappa B, p53, and VEGF signaling pathways. Thus, our analysis offers novel insights into the anticancer properties of herbal drugs for breast cancer treatment from a systemic perspective.
Collapse
Affiliation(s)
- Ho-Sung Lee
- The Fore, 87 Ogeum-ro, Songpa-gu, Seoul 05542, Republic of Korea
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| | - In-Hee Lee
- The Fore, 87 Ogeum-ro, Songpa-gu, Seoul 05542, Republic of Korea
| | - Kyungrae Kang
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| | - Sang-In Park
- Forestheal Hospital, 173 Ogeum-ro, Songpa-gu, Seoul 05641, Republic of Korea
| | - Tae-Wook Kwon
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| | - Dae-Yeon Lee
- The Fore, 87 Ogeum-ro, Songpa-gu, Seoul 05542, Republic of Korea
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| |
Collapse
|
11
|
Lee HS, Lee IH, Kang K, Park SI, Moon SJ, Lee CH, Lee DY. A Network Pharmacology Study on the Molecular Mechanisms of FDY003 for Breast Cancer Treatment. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:3919143. [PMID: 33628298 PMCID: PMC7881938 DOI: 10.1155/2021/3919143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023]
Abstract
Herbal medicines have drawn considerable attention with regard to their potential applications in breast cancer (BC) treatment, a frequently diagnosed malignant disease, considering their anticancer efficacy with relatively less adverse effects. However, their mechanisms of systemic action have not been understood comprehensively. Based on network pharmacology approaches, we attempted to unveil the mechanisms of FDY003, an herbal drug comprised of Lonicera japonica Thunberg, Artemisia capillaris Thunberg, and Cordyceps militaris, against BC at a systemic level. We found that FDY003 exhibited pharmacological effects on human BC cells. Subsequently, detailed data regarding the biochemical components contained in FDY003 were obtained from comprehensive herbal medicine-related databases, including TCMSP and CancerHSP. By evaluating their pharmacokinetic properties, 18 chemical compounds in FDY003 were shown to be potentially active constituents interacting with 140 BC-associated therapeutic targets to produce the pharmacological activity. Gene ontology enrichment analysis using g:Profiler indicated that the FDY003 targets were involved in the modulation of cellular processes, involving the cell proliferation, cell cycle process, and cell apoptosis. Based on a KEGG pathway enrichment analysis, we further revealed that a variety of oncogenic pathways that play key roles in the pathology of BC were significantly enriched with the therapeutic targets of FDY003; these included PI3K-Akt, MAPK, focal adhesion, FoxO, TNF, and estrogen signaling pathways. Here, we present a network-perspective of the molecular mechanisms via which herbal drugs treat BC.
Collapse
Affiliation(s)
- Ho-Sung Lee
- The Fore, 87 Ogeum-ro, Songpa-gu, Seoul 05542, Republic of Korea
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| | - In-Hee Lee
- The Fore, 87 Ogeum-ro, Songpa-gu, Seoul 05542, Republic of Korea
| | - Kyungrae Kang
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| | - Sang-In Park
- Forestheal Hospital, 173 Ogeum-ro, Songpa-gu, Seoul 05641, Republic of Korea
| | - Seung-Joon Moon
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| | - Chol Hee Lee
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| | - Dae-Yeon Lee
- The Fore, 87 Ogeum-ro, Songpa-gu, Seoul 05542, Republic of Korea
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| |
Collapse
|
12
|
Pandey SK, Nakka H, Ambhore SR, Londhe S, Goyal VK, Nirogi R. Short-term toxicity study of 1-aminobenzotraizole, a CYP inhibitor, in Wistar rats. Drug Chem Toxicol 2020; 45:1597-1605. [PMID: 33249936 DOI: 10.1080/01480545.2020.1850755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
1-Aminobenzotriazole (ABT) is a pan-specific, mechanism-based inhibitor of CYP P450 enzymes, often used as co-treatment to investigate the metabolism-dependent toxicity of drugs or chemicals. To assess the confounding effects of ABT in such kind of mechanistic studies, a repeated dose toxicity study with ABT following 7 days oral administration at 0, 25, 50 and 100 mg/kg/day was performed in Wistar rats (5 rats/sex/group). Wistar rat is selected as a model being one of the well characterized rodent species, widely used for toxicity and toxicokinetics studies. The standard parameters of general toxicity study viz. clinical signs, body weight, feed consumption, clinical, gross and histopathology were evaluated. The ABT was tolerated up to the highest tested dose of 100 mg/kg/day. No clinical signs, mortality or effect on feed consumption at any dose. Slight increase in body weight gain was noted in ABT treated females. Increased reticulocyte, and decreased triglycerides, BUN, A/G ratio and plasma potassium; increased weight of liver, kidneys, adrenals and thyroid was noted in ABT treated animals. Microscopically, hypertrophic findings were noted in liver, thyroid, adrenal glands, pituitary and uterus. Some of these changes were observed at as low as 25 mg/kg/day, therefore, NOEL could not be established. Based on this study, it is concluded that ABT is tolerable up to 100 mg/kg/day with some variations in clinical pathology, organ weight and histopathology; these changes should be considered during the assessment of any mechanistic study with ABT. Findings of this manuscript were presented at 58th meeting of the Society of Toxicology, Baltimore, 11 March 2019.
Collapse
Affiliation(s)
| | - Harish Nakka
- Discovery Toxicology, Suven Life Sciences, Hyderabad, India
| | | | - Shalini Londhe
- Discovery Toxicology, Suven Life Sciences, Hyderabad, India
| | | | | |
Collapse
|
13
|
The Multifarious Link between Cytochrome P450s and Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3028387. [PMID: 31998435 PMCID: PMC6964729 DOI: 10.1155/2020/3028387] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 12/08/2019] [Accepted: 12/18/2019] [Indexed: 02/07/2023]
Abstract
Cancer is a leading cause of death worldwide. Cytochrome P450s (P450s) play an important role in the metabolism of endogenous as well as exogenous substances, especially drugs. Moreover, many P450s can serve as targets for disease therapy. Increasing reports of epidemiological, diagnostic, and clinical research indicate that P450s are enzymes that play a major part in the formation of cancer, prevention, and metastasis. The purposes of this review are to shed light on the current state of knowledge about the cancer molecular mechanism involving P450s and to summarize the link between the cancer effects and the participation of P450s.
Collapse
|
14
|
Leutner M, Matzhold C, Bellach L, Deischinger C, Harreiter J, Thurner S, Klimek P, Kautzky-Willer A. Response to: 'Association between osteoporosis and statin therapy: the story continues' by Burden and Weiler. Ann Rheum Dis 2019; 80:e205. [PMID: 31801740 DOI: 10.1136/annrheumdis-2019-216627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 11/17/2019] [Accepted: 11/20/2019] [Indexed: 11/04/2022]
Affiliation(s)
- Michael Leutner
- Department of Internal Medicine III, Clinical Division of Endocrinology and Metabolism, Unit of Gender Medicine, Medical University of Vienna, Vienna, Austria
| | - Caspar Matzhold
- Section for Science of Complex Systems, CeMSIIS, Medical University of Vienna, Vienna, Austria.,Complexity Science Hub Vienna, Vienna, Austria
| | - Luise Bellach
- Department of Internal Medicine III, Clinical Division of Endocrinology and Metabolism, Unit of Gender Medicine, Medical University of Vienna, Vienna, Austria
| | - Carola Deischinger
- Department of Internal Medicine III, Clinical Division of Endocrinology and Metabolism, Unit of Gender Medicine, Medical University of Vienna, Vienna, Austria
| | - Jürgen Harreiter
- Department of Internal Medicine III, Clinical Division of Endocrinology and Metabolism, Unit of Gender Medicine, Medical University of Vienna, Vienna, Austria
| | - Stefan Thurner
- Section for Science of Complex Systems, CeMSIIS, Medical University of Vienna, Vienna, Austria.,Complexity Science Hub Vienna, Vienna, Austria.,Santa Fe Institute, Santa Fe, NM, USA.,IIASA, Laxenburg, Austria
| | - Peter Klimek
- Section for Science of Complex Systems, CeMSIIS, Medical University of Vienna, Vienna, Austria.,Complexity Science Hub Vienna, Vienna, Austria
| | - Alexandra Kautzky-Willer
- Department of Internal Medicine III, Clinical Division of Endocrinology and Metabolism, Unit of Gender Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
15
|
Fujino C, Watanabe Y, Sanoh S, Hattori S, Nakajima H, Uramaru N, Kojima H, Yoshinari K, Ohta S, Kitamura S. Comparative study of the effect of 17 parabens on PXR-, CAR- and PPARα-mediated transcriptional activation. Food Chem Toxicol 2019; 133:110792. [DOI: 10.1016/j.fct.2019.110792] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/27/2019] [Accepted: 08/23/2019] [Indexed: 12/24/2022]
|
16
|
Crosby M, Riddick DS. Suppression of Hepatic CYP3A4 Expression and Activity by 3-Methylcholanthrene in Humanized PXR-CAR-CYP3A4/3A7 Mice. Drug Metab Dispos 2018; 47:279-282. [PMID: 30573465 DOI: 10.1124/dmd.118.084509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 12/19/2018] [Indexed: 11/22/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are environmental pollutants that activate the aryl hydrocarbon receptor, thereby triggering a range of biologic responses, exemplified by the induction of CYP1A1 PAHs can also regulate the expression of members of the CYP3A subfamily, with reports of mainly suppressive effects on mouse hepatic Cyp3a11 expression, but paradoxically both inductive and suppressive effects on human hepatic CYP3A4 expression. Understanding the regulation of CYP3A4 expression by PAHs is important because of the widespread exposure of humans to these chemicals and the central role of the CYP3A4 enzyme in the metabolism of clinically important drugs and endogenous substances. The present study used 3-methylcholanthrene (MC) as a model PAH to characterize the in vivo regulation of CYP3A4 expression and activity in humanized pregnane X receptor-constitutive androstane receptor-CYP3A4/3A7 mice. Adult mice were treated by intraperitoneal injection with MC (80 mg/kg), or corn oil vehicle, and euthanized 24 or 72 hours later. As a positive control response, pronounced induction of hepatic Cyp1a1 by MC was confirmed at both time points in males and females at the mRNA, protein, and catalytic activity levels. Basal hepatic CYP3A4 expression and activity were significantly higher in female versus male mice. MC treatment suppressed hepatic CYP3A4 in female mice at 72 hours postdosing at the mRNA, protein, and catalytic activity levels. A similar response was observed in male mice, although the suppression of CYP3A4 protein levels did not achieve statistical significance. This mouse model will facilitate further studies of the mechanisms and consequences of CYP3A4 suppression by PAHs.
Collapse
Affiliation(s)
- Michael Crosby
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - David S Riddick
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Bissig KD, Han W, Barzi M, Kovalchuk N, Ding L, Fan X, Pankowicz FP, Zhang QY, Ding X. P450-Humanized and Human Liver Chimeric Mouse Models for Studying Xenobiotic Metabolism and Toxicity. Drug Metab Dispos 2018; 46:1734-1744. [PMID: 30093418 DOI: 10.1124/dmd.118.083303] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/03/2018] [Indexed: 01/01/2023] Open
Abstract
Preclinical evaluation of drug candidates in experimental animal models is an essential step in drug development. Humanized mouse models have emerged as a promising alternative to traditional animal models. The purpose of this mini-review is to provide a brief survey of currently available mouse models for studying human xenobiotic metabolism. Here, we describe both genetic humanization and human liver chimeric mouse models, focusing on the advantages and limitations while outlining their key features and applications. Although this field of biomedical science is relatively young, these humanized mouse models have the potential to transform preclinical drug testing and eventually lead to a more cost-effective and rapid development of new therapies.
Collapse
Affiliation(s)
- Karl-Dimiter Bissig
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Weiguo Han
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Mercedes Barzi
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Nataliia Kovalchuk
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Liang Ding
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Xiaoyu Fan
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Francis P Pankowicz
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Qing-Yu Zhang
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Xinxin Ding
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| |
Collapse
|
18
|
Satoh D, Abe S, Kobayashi K, Nakajima Y, Oshimura M, Kazuki Y. Human and mouse artificial chromosome technologies for studies of pharmacokinetics and toxicokinetics. Drug Metab Pharmacokinet 2018; 33:17-30. [DOI: 10.1016/j.dmpk.2018.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/29/2017] [Accepted: 12/21/2017] [Indexed: 12/27/2022]
|
19
|
Yu AM, Tian Y, Tu MJ, Ho PY, Jilek JL. MicroRNA Pharmacoepigenetics: Posttranscriptional Regulation Mechanisms behind Variable Drug Disposition and Strategy to Develop More Effective Therapy. Drug Metab Dispos 2016; 44:308-19. [PMID: 26566807 PMCID: PMC4767381 DOI: 10.1124/dmd.115.067470] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/12/2015] [Indexed: 12/11/2022] Open
Abstract
Knowledge of drug absorption, distribution, metabolism, and excretion (ADME) or pharmacokinetics properties is essential for drug development and safe use of medicine. Varied or altered ADME may lead to a loss of efficacy or adverse drug effects. Understanding the causes of variations in drug disposition and response has proven critical for the practice of personalized or precision medicine. The rise of noncoding microRNA (miRNA) pharmacoepigenetics and pharmacoepigenomics has come with accumulating evidence supporting the role of miRNAs in the modulation of ADME gene expression and then drug disposition and response. In this article, we review the advances in miRNA pharmacoepigenetics including the mechanistic actions of miRNAs in the modulation of Phase I and II drug-metabolizing enzymes, efflux and uptake transporters, and xenobiotic receptors or transcription factors after briefly introducing the characteristics of miRNA-mediated posttranscriptional gene regulation. Consequently, miRNAs may have significant influence on drug disposition and response. Therefore, research on miRNA pharmacoepigenetics shall not only improve mechanistic understanding of variations in pharmacotherapy but also provide novel insights into developing more effective therapeutic strategies.
Collapse
Affiliation(s)
- Ai-Ming Yu
- Department of Biochemistry & Molecular Medicine, University of California Davis School of Medicine, Sacramento, California
| | - Ye Tian
- Department of Biochemistry & Molecular Medicine, University of California Davis School of Medicine, Sacramento, California
| | - Mei-Juan Tu
- Department of Biochemistry & Molecular Medicine, University of California Davis School of Medicine, Sacramento, California
| | - Pui Yan Ho
- Department of Biochemistry & Molecular Medicine, University of California Davis School of Medicine, Sacramento, California
| | - Joseph L Jilek
- Department of Biochemistry & Molecular Medicine, University of California Davis School of Medicine, Sacramento, California
| |
Collapse
|
20
|
von Schaewen M, Hrebikova G, Ploss A. Generation of Human Liver Chimeric Mice for the Study of Human Hepatotropic Pathogens. Methods Mol Biol 2016; 1438:79-101. [PMID: 27150085 DOI: 10.1007/978-1-4939-3661-8_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Human liver chimeric mice have become valuable tools for the study of human hepatotropic pathogens and for the investigation of metabolism and pharmacokinetics of novel drugs. The evolution of the underlying mouse models has been rapid in the past years. The diverse fields of applications of those model systems and their technical challenges will be discussed in this chapter.
Collapse
Affiliation(s)
- Markus von Schaewen
- Department of Molecular Biology, Princeton University, 110 Lewis Thomas Laboratory, Washington Road, Princeton, NJ, 08544, USA
| | - Gabriela Hrebikova
- Department of Molecular Biology, Princeton University, 110 Lewis Thomas Laboratory, Washington Road, Princeton, NJ, 08544, USA
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, 110 Lewis Thomas Laboratory, Washington Road, Princeton, NJ, 08544, USA.
| |
Collapse
|
21
|
Scheer N, Kapelyukh Y, Rode A, Oswald S, Busch D, McLaughlin LA, Lin D, Henderson CJ, Wolf CR. Defining Human Pathways of Drug Metabolism In Vivo through the Development of a Multiple Humanized Mouse Model. Drug Metab Dispos 2015; 43:1679-90. [PMID: 26265742 DOI: 10.1124/dmd.115.065656] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/10/2015] [Indexed: 11/22/2022] Open
Abstract
Variability in drug pharmacokinetics is a major factor in defining drug efficacy and side effects. There remains an urgent need, particularly with the growing use of polypharmacy, to obtain more informative experimental data predicting clinical outcomes. Major species differences in multiplicity, substrate specificity, and regulation of enzymes from the cytochrome P450-dependent mono-oxygenase system play a critical role in drug metabolism. To develop an in vivo model for predicting human responses to drugs, we generated a mouse, where 31 P450 genes from the Cyp2c, Cyp2d, and Cyp3a gene families were exchanged for their relevant human counterparts. The model has been improved through additional humanization for the nuclear receptors constitutive androgen receptor and pregnane X receptor that control the expression of key drug metabolizing enzymes and transporters. In this most complex humanized mouse model reported to date, the cytochromes P450 function as predicted and we illustrate how these mice can be applied to predict drug-drug interactions in humans.
Collapse
Affiliation(s)
- Nico Scheer
- Taconic Biosciences GmbH, Köln, Germany (N.S., A.R.); University Medicine of Greifswald, Center of Drug Absorption and Transport (C_DAT), Department of Clinical Pharmacology, Greifswald, Germany (S.O., D.B); and Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom (Y.K., L.A.M., D.L., C.H., C.R.W)
| | - Yury Kapelyukh
- Taconic Biosciences GmbH, Köln, Germany (N.S., A.R.); University Medicine of Greifswald, Center of Drug Absorption and Transport (C_DAT), Department of Clinical Pharmacology, Greifswald, Germany (S.O., D.B); and Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom (Y.K., L.A.M., D.L., C.H., C.R.W)
| | - Anja Rode
- Taconic Biosciences GmbH, Köln, Germany (N.S., A.R.); University Medicine of Greifswald, Center of Drug Absorption and Transport (C_DAT), Department of Clinical Pharmacology, Greifswald, Germany (S.O., D.B); and Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom (Y.K., L.A.M., D.L., C.H., C.R.W)
| | - Stefan Oswald
- Taconic Biosciences GmbH, Köln, Germany (N.S., A.R.); University Medicine of Greifswald, Center of Drug Absorption and Transport (C_DAT), Department of Clinical Pharmacology, Greifswald, Germany (S.O., D.B); and Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom (Y.K., L.A.M., D.L., C.H., C.R.W)
| | - Diana Busch
- Taconic Biosciences GmbH, Köln, Germany (N.S., A.R.); University Medicine of Greifswald, Center of Drug Absorption and Transport (C_DAT), Department of Clinical Pharmacology, Greifswald, Germany (S.O., D.B); and Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom (Y.K., L.A.M., D.L., C.H., C.R.W)
| | - Lesley A McLaughlin
- Taconic Biosciences GmbH, Köln, Germany (N.S., A.R.); University Medicine of Greifswald, Center of Drug Absorption and Transport (C_DAT), Department of Clinical Pharmacology, Greifswald, Germany (S.O., D.B); and Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom (Y.K., L.A.M., D.L., C.H., C.R.W)
| | - De Lin
- Taconic Biosciences GmbH, Köln, Germany (N.S., A.R.); University Medicine of Greifswald, Center of Drug Absorption and Transport (C_DAT), Department of Clinical Pharmacology, Greifswald, Germany (S.O., D.B); and Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom (Y.K., L.A.M., D.L., C.H., C.R.W)
| | - Colin J Henderson
- Taconic Biosciences GmbH, Köln, Germany (N.S., A.R.); University Medicine of Greifswald, Center of Drug Absorption and Transport (C_DAT), Department of Clinical Pharmacology, Greifswald, Germany (S.O., D.B); and Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom (Y.K., L.A.M., D.L., C.H., C.R.W)
| | - C Roland Wolf
- Taconic Biosciences GmbH, Köln, Germany (N.S., A.R.); University Medicine of Greifswald, Center of Drug Absorption and Transport (C_DAT), Department of Clinical Pharmacology, Greifswald, Germany (S.O., D.B); and Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom (Y.K., L.A.M., D.L., C.H., C.R.W)
| |
Collapse
|
22
|
Scheer N, Wilson ID. A comparison between genetically humanized and chimeric liver humanized mouse models for studies in drug metabolism and toxicity. Drug Discov Today 2015; 21:250-63. [PMID: 26360054 DOI: 10.1016/j.drudis.2015.09.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 08/07/2015] [Accepted: 09/01/2015] [Indexed: 12/12/2022]
Abstract
Mice that have been genetically humanized for proteins involved in drug metabolism and toxicity and mice engrafted with human hepatocytes are emerging and promising in vivo models for an improved prediction of the pharmacokinetic, drug-drug interaction and safety characteristics of compounds in humans. The specific advantages and disadvantages of these models should be carefully considered when using them for studies in drug discovery and development. Here, an overview on the corresponding genetically humanized and chimeric liver humanized mouse models described to date is provided and illustrated with examples of their utility in drug metabolism and toxicity studies. We compare the strength and weaknesses of the two different approaches, give guidance for the selection of the appropriate model for various applications and discuss future trends and perspectives.
Collapse
Affiliation(s)
| | - Ian D Wilson
- Imperial College London, South Kensington, London SW7 2AZ, UK.
| |
Collapse
|
23
|
Apellániz-Ruiz M, Inglada-Pérez L, Naranjo MEG, Sánchez L, Mancikova V, Currás-Freixes M, de Cubas AA, Comino-Méndez I, Triki S, Rebai A, Rasool M, Moya G, Grazina M, Opocher G, Cascón A, Taboada-Echalar P, Ingelman-Sundberg M, Carracedo A, Robledo M, Llerena A, Rodríguez-Antona C. High frequency and founder effect of the CYP3A4*20 loss-of-function allele in the Spanish population classifies CYP3A4 as a polymorphic enzyme. THE PHARMACOGENOMICS JOURNAL 2014; 15:288-92. [DOI: 10.1038/tpj.2014.67] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 09/11/2014] [Accepted: 09/19/2014] [Indexed: 11/09/2022]
|
24
|
Kuno S, Sakurai F, Shimizu K, Matsumura N, Kim S, Watanabe H, Tashiro K, Tachibana M, Yokoi T, Mizuguchi H. Development of mice exhibiting hepatic microsomal activity of human CYP3A4 comparable to that in human liver microsomes by intravenous administration of an adenovirus vector expressing human CYP3A4. Drug Metab Pharmacokinet 2014; 29:296-304. [PMID: 24492672 DOI: 10.2133/dmpk.dmpk-13-rg-109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cytochrome P450 3A4 (CYP3A4) plays a crucial role in the pharmacokinetic and safety profiles of drugs. However, it is difficult to properly predict the pharmacokinetics and hepatotoxicity of drugs in humans using data from experimental animals, because the catalytic activities of CYP3A4 and other drug-metabolizing enzymes differ between human and animal organs. In order to easily generate an animal model for proper evaluation of human CYP3A4-mediated drug metabolism, we developed a human CYP3A4-expressing adenovirus (Ad) vector based on our novel Ad vector exhibiting significantly lower hepatotoxicity (Ad-E4-122aT-hCYP3A4). Intravenous administration of Ad-E4-122aT-hCYP3A4 at a dose of 2 × 10(11) virus particles/mouse produced a mouse exhibiting human CYP3A4 activity at a level similar to that in the human liver, as shown in the dexamethasone metabolic experiment using liver microsomes. The area under the curve (AUC) of 6βOHD was 2.7-fold higher in the Ad-E4-122aT-hCYP3A4-administered mice, compared with the mice receiving a control Ad vector. This Ad vector-expressing human CYP3A4 would thus be a powerful tool for evaluating human CYP3A4-mediated drug metabolism in the livers of experimental animals.
Collapse
Affiliation(s)
- Shuichi Kuno
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Cheng J, Fang ZZ, Kim JH, Krausz KW, Tanaka N, Chiang JYL, Gonzalez FJ. Intestinal CYP3A4 protects against lithocholic acid-induced hepatotoxicity in intestine-specific VDR-deficient mice. J Lipid Res 2013; 55:455-65. [PMID: 24343899 DOI: 10.1194/jlr.m044420] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Vitamin D receptor (VDR) mediates vitamin D signaling involved in bone metabolism, cellular growth and differentiation, cardiovascular function, and bile acid regulation. Mice with an intestine-specific disruption of VDR (Vdr(ΔIEpC)) have abnormal body size, colon structure, and imbalance of bile acid metabolism. Lithocholic acid (LCA), a secondary bile acid that activates VDR, is among the most toxic of the bile acids that when overaccumulated in the liver causes hepatotoxicity. Because cytochrome P450 3A4 (CYP3A4) is a target gene of VDR-involved bile acid metabolism, the role of CYP3A4 in VDR biology and bile acid metabolism was investigated. The CYP3A4 gene was inserted into Vdr(ΔIEpC) mice to produce the Vdr(ΔIEpC)/3A4 line. LCA was administered to control, transgenic-CYP3A4, Vdr(ΔIEpC), and Vdr(ΔIEpC)/3A4 mice, and hepatic toxicity and bile acid levels in the liver, intestine, bile, and urine were measured. VDR deficiency in the intestine of the Vdr(ΔIEpC) mice exacerbates LCA-induced hepatotoxicity manifested by increased necrosis and inflammation, due in part to over-accumulation of hepatic bile acids including taurocholic acid and taurodeoxycholic acid. Intestinal expression of CYP3A4 in the Vdr(ΔIEpC)/3A4 mouse line reduces LCA-induced hepatotoxicity through elevation of LCA metabolism and detoxification, and suppression of bile acid transporter expression in the small intestine. This study reveals that intestinal CYP3A4 protects against LCA hepatotoxicity.
Collapse
Affiliation(s)
- Jie Cheng
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | | | | | | | | | | | | |
Collapse
|
26
|
|
27
|
Ingelman-Sundberg M, Zhong XB, Hankinson O, Beedanagari S, Yu AM, Peng L, Osawa Y. Potential role of epigenetic mechanisms in the regulation of drug metabolism and transport. Drug Metab Dispos 2013; 41:1725-31. [PMID: 23918665 PMCID: PMC3781370 DOI: 10.1124/dmd.113.053157] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 08/05/2013] [Indexed: 01/28/2023] Open
Abstract
This is a report of a symposium on the potential role of epigenetic mechanisms in the control of drug disposition sponsored by the American Society for Pharmacology and Experimental Therapeutics and held at the Experimental Biology 2013 meeting in Boston, MA, April 21, 2013. Epigenetics is a rapidly evolving area, and recent studies have revealed that expression of drug-metabolizing enzymes and transporters is regulated by epigenetic factors, including histone modification, DNA methylation, and noncoding RNAs. The symposium speakers provided an overview of genetic and epigenetic mechanisms underlying variable drug metabolism and drug response, as well as the implications for personalized medicine. Considerable insight into the epigenetic mechanisms in differential regulation of the dioxin-inducible drug and carcinogen-metabolizing enzymes CYP1A1 and 1B1 was provided. The role of noncoding microRNAs in the control of drug metabolism and disposition through targeting of cytochrome P450 (P450) enzymes and ATP-binding cassette membrane transporters was discussed. In addition, potential effects of xenobiotics on chromatin interactions and epigenomics, as well as the possible role of long noncoding RNAs in regulation of P450s during liver maturation were presented.
Collapse
Affiliation(s)
- Magnus Ingelman-Sundberg
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, Stockholm, Sweden (M.I.-S.); Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (X.-B.Z., L.P.); Interdepartmental Molecular Toxicology Program and the Department of Pathology and Laboratory Medicine, University of California, Los Angeles, California (O.H., S.B.); Department of Biochemistry and Molecular Medicine, University of California at Davis School of Medicine, Sacramento, California (A.-M.Y.); and Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan (Y.O.)
| | | | | | | | | | | | | |
Collapse
|
28
|
Zhu ZW, Ni SQ, Wang XM, Wang J, Zeng S, Zhao ZY. Hepatic CYP3A expression and activity in low birth weight developing female rats. World J Pediatr 2013; 9:266-72. [PMID: 23929256 DOI: 10.1007/s12519-013-0429-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 06/27/2013] [Indexed: 12/14/2022]
Abstract
BACKGROUND We aimed to investigate the effects of low birth weight (LBW) on the hepatic expression of cytochrome P-450 3A (CYP3A) in developing female rats. METHODS Pregnant rats were divided into two groups, a nourished group and an under-nourished group. The offspring of the nourished rats were defined as a normal weight, normal diet group (NN group). The offspring of the under-nourished rats were designated as a LBW, normal diet group (LN group). CYP3A mRNA expression, protein expression, protein localization and activity were determined. RESULTS The CYP3A1 mRNA expression levels of the LN group on days 3, 21, and 56 were significantly higher than those of the same age in the NN group (P≤0.01). The mRNA expression of CYP3A2 in the LN group on day 21 was higher than in rats of the same age in the NN group (P<0.01). The staining intensity and frequency of CYP3A1-positive hepatocytes were significantly lower on days 7 and 21 in the LN group than those of rats of the same age in the NN group (P<0.05). The staining intensity and frequency of CYP3A2-positive hepatocytes on days 14 and 21 were higher in the LN group than those on the same days in the NN group (P<0.05). The mean CYP3A activity of the LN group on day 3 was significantly higher than that of the NN group (P<0.001). CONCLUSIONS We found the effect of LBW on CYP3A activity was most prominent during the early days of life in rats. Investigators and clinicians should consider the effect of LBW on CYP3A in both pharmacokinetic study design and data interpretation, when prescribing drugs to LBW infants.
Collapse
Affiliation(s)
- Zhi-Wei Zhu
- Department of Children's Health and Care, Children's Hospital of Zhejiang University School of Medicine and Zhejiang Key Laboratory for Diagnosis and Therapy of Neonatal Diseases, Hangzhou 310003, China
| | | | | | | | | | | |
Collapse
|
29
|
Scheer N, Snaith M, Wolf CR, Seibler J. Generation and utility of genetically humanized mouse models. Drug Discov Today 2013; 18:1200-11. [PMID: 23872278 DOI: 10.1016/j.drudis.2013.07.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 06/20/2013] [Accepted: 07/11/2013] [Indexed: 01/15/2023]
Abstract
Identifying in vivo models that are naturally predictive for particular areas of study in humans can be challenging due to the divergence that has occurred during speciation. One solution to this challenge that is gaining increasing traction is the use of genetic engineering to introduce human genes into mice to generate superior models for predicting human responses. This review describes the state-of-the-art for generating such models, provides an overview of the types of genetically humanized mouse models described to date and their applications in basic research, drug discovery and development and to understand clinical drug toxicity. We discuss limitations and explore promising future directions for the use of genetically humanized mice to further improve translational research.
Collapse
Affiliation(s)
- Nico Scheer
- TaconicArtemis, Neurather Ring 1, Koeln 51063, Germany.
| | | | | | | |
Collapse
|
30
|
Scheer N, Wolf CR. Genetically humanized mouse models of drug metabolizing enzymes and transporters and their applications. Xenobiotica 2013; 44:96-108. [DOI: 10.3109/00498254.2013.815831] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
31
|
Kazuki Y, Kobayashi K, Aueviriyavit S, Oshima T, Kuroiwa Y, Tsukazaki Y, Senda N, Kawakami H, Ohtsuki S, Abe S, Takiguchi M, Hoshiya H, Kajitani N, Takehara S, Kubo K, Terasaki T, Chiba K, Tomizuka K, Oshimura M. Trans-chromosomic mice containing a human CYP3A cluster for prediction of xenobiotic metabolism in humans. Hum Mol Genet 2012; 22:578-92. [PMID: 23125282 DOI: 10.1093/hmg/dds468] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human CYP3A is the most abundant P450 isozyme present in the human liver and small intestine, and metabolizes around 50% of medical drugs on the market. The human CYP3A subfamily comprises four members (CYP3A4, CYP3A5, CYP3A7, CYP3A43) encoded on human chromosome 7. However, transgenic mouse lines carrying the entire human CYP3A cluster have not been constructed because of limitations in conventional cloning techniques. Here, we show that the introduction of a human artificial chromosome (HAC) containing the entire genomic human CYP3A locus recapitulates tissue- and stage-specific expression of human CYP3A genes and xenobiotic metabolism in mice. About 700 kb of the entire CYP3A genomic segment was cloned into a HAC (CYP3A-HAC), and trans-chromosomic (Tc) mice carrying a single copy of germline-transmittable CYP3A-HAC were generated via a chromosome-engineering technique. The tissue- and stage-specific expression profiles of CYP3A genes were consistent with those seen in humans. We further generated mice carrying the CYP3A-HAC in the background homozygous for targeted deletion of most endogenous Cyp3a genes. In this mouse strain with 'fully humanized' CYP3A genes, the kinetics of triazolam metabolism, CYP3A-mediated mechanism-based inactivation effects and formation of fetal-specific metabolites of dehydroepiandrosterone observed in humans were well reproduced. Thus, these mice are likely to be valuable in evaluating novel drugs metabolized by CYP3A enzymes and in studying the regulation of human CYP3A gene expression. Furthermore, this system can also be used for generating Tc mice carrying other human metabolic genes.
Collapse
Affiliation(s)
- Yasuhiro Kazuki
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Shen HW, Jiang XL, Gonzalez FJ, Yu AM. Humanized transgenic mouse models for drug metabolism and pharmacokinetic research. Curr Drug Metab 2012; 12:997-1006. [PMID: 22023319 DOI: 10.2174/138920011798062265] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 07/16/2011] [Accepted: 07/20/2011] [Indexed: 02/08/2023]
Abstract
Extrapolation of the metabolic, pharmacokinetic and toxicological data obtained from animals to humans is not always straightforward, given the remarkable species difference in drug metabolism that is due in large part to the differences in drug-metabolizing enzymes between animals and humans. Furthermore, genetic variations in drug-metabolizing enzymes may significantly alter pharmacokinetics, drug efficacy and safety. Thus, humanized transgenic mouse lines, in which the human drug-metabolizing enzymes are expressed in mouse tissues in the presence or absence of mouse orthologues, have been developed to address such challenges. These humanized transgenic mice are valuable animal models in understanding the significance of specific human drug-metabolizing enzymes in drug clearance and pharmacokinetics, as well as in predicting potential drug-drug interactions and chemical toxicity in humans. This review, therefore, aims to summarize the development and application of some humanized transgenic mouse models expressing human drug-metabolizing enzymes. The limitations of these genetically modified mouse models are also discussed.
Collapse
Affiliation(s)
- Hong-Wu Shen
- Department of Pharmaceutical Sciences University at Buffalo, The State University of New York, 541 Cooke Hall, Buffalo, NY 14260-1200, USA
| | | | | | | |
Collapse
|
33
|
Conforto TL, Waxman DJ. Sex-specific mouse liver gene expression: genome-wide analysis of developmental changes from pre-pubertal period to young adulthood. Biol Sex Differ 2012; 3:9. [PMID: 22475005 PMCID: PMC3350426 DOI: 10.1186/2042-6410-3-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 04/04/2012] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Early liver development and the transcriptional transitions during hepatogenesis are well characterized. However, gene expression changes during the late postnatal/pre-pubertal to young adulthood period are less well understood, especially with regards to sex-specific gene expression. METHODS Microarray analysis of male and female mouse liver was carried out at 3, 4, and 8 wk of age to elucidate developmental changes in gene expression from the late postnatal/pre-pubertal period to young adulthood. RESULTS A large number of sex-biased and sex-independent genes showed significant changes during this developmental period. Notably, sex-independent genes involved in cell cycle, chromosome condensation, and DNA replication were down regulated from 3 wk to 8 wk, while genes associated with metal ion binding, ion transport and kinase activity were up regulated. A majority of genes showing sex differential expression in adult liver did not display sex differences prior to puberty, at which time extensive changes in sex-specific gene expression were seen, primarily in males. Thus, in male liver, 76% of male-specific genes were up regulated and 47% of female-specific genes were down regulated from 3 to 8 wk of age, whereas in female liver 67% of sex-specific genes showed no significant change in expression. In both sexes, genes up regulated from 3 to 8 wk were significantly enriched (p < E-76) in the set of genes positively regulated by the liver transcription factor HNF4α, as determined in a liver-specific HNF4α knockout mouse model, while genes down regulated during this developmental period showed significant enrichment (p < E-65) for negative regulation by HNF4α. Significant enrichment of the developmentally regulated genes in the set of genes subject to positive and negative regulation by pituitary hormone was also observed. Five sex-specific transcriptional regulators showed sex-specific expression at 4 wk (male-specific Ihh; female-specific Cdx4, Cux2, Tox, and Trim24) and may contribute to the developmental changes that lead to global acquisition of liver sex-specificity by 8 wk of age. CONCLUSIONS Overall, the observed changes in gene expression during postnatal liver development reflect the deceleration of liver growth and the induction of specialized liver functions, with widespread changes in sex-specific gene expression primarily occurring in male liver.
Collapse
Affiliation(s)
- Tara L Conforto
- Division of Cell and Molecular Biology, Department of Biology, Boston University, Boston, MA 02215, USA.
| | | |
Collapse
|
34
|
Abstract
There are considerable interindividual variations in drug absorption, distribution, metabolism and excretion (ADME) in humans, which may lead to undesired drug effects in pharmacotherapy. Some of the mechanistic causes are known, e.g., genetic polymorphism, inhibition and induction of ADME enzymes and transporters, while others such as posttranscriptional regulation of ADME genes are under active study. MicroRNAs (miRNAs) are a large group of small, noncoding RNAs that control posttranscriptional expression of target genes. More than 1000 miRNAs have been identified in the human genome, which may regulate thousands of protein-coding genes. Some miRNAs directly or indirectly control the expression of xenobiotic-metabolizing cytochrome P450 enzymes, ATP-binding cassette or solute carrier transporters and/or nuclear receptors. Consequently, intervention of miRNA epigenetic signaling may alter ADME gene expression, change the capacity of drug metabolism and transport, and influence the sensitivity of cells to xenobiotics. In addition, the expression of some ADME regulatory miRNAs is significantly changed in cells following the exposure to a given drug, and the consequent changes in ADME gene expression might result in distinct ADME properties and drug response. In this review, we summarized recent findings on the role of noncoding miRNAs in epigenetic regulation of ADME genes and discussed the potential impact on pharmacokinetics and pharmacodynamics.
Collapse
Affiliation(s)
- Ai-Ming Yu
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260-1200, USA
| | - Yu-Zhuo Pan
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260-1200, USA
| |
Collapse
|
35
|
Tie Y, McPhail B, Hong H, Pearce BA, Schnackenberg LK, Ge W, Buzatu DA, Wilkes JG, Fuscoe JC, Tong W, Fowler BA, Beger RD, Demchuk E. Modeling chemical interaction profiles: II. Molecular docking, spectral data-activity relationship, and structure-activity relationship models for potent and weak inhibitors of cytochrome P450 CYP3A4 isozyme. Molecules 2012; 17:3407-60. [PMID: 22421793 PMCID: PMC6268819 DOI: 10.3390/molecules17033407] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 02/27/2012] [Accepted: 02/28/2012] [Indexed: 01/15/2023] Open
Abstract
Polypharmacy increasingly has become a topic of public health concern, particularly as the U.S. population ages. Drug labels often contain insufficient information to enable the clinician to safely use multiple drugs. Because many of the drugs are bio-transformed by cytochrome P450 (CYP) enzymes, inhibition of CYP activity has long been associated with potentially adverse health effects. In an attempt to reduce the uncertainty pertaining to CYP-mediated drug-drug/chemical interactions, an interagency collaborative group developed a consensus approach to prioritizing information concerning CYP inhibition. The consensus involved computational molecular docking, spectral data-activity relationship (SDAR), and structure-activity relationship (SAR) models that addressed the clinical potency of CYP inhibition. The models were built upon chemicals that were categorized as either potent or weak inhibitors of the CYP3A4 isozyme. The categorization was carried out using information from clinical trials because currently available in vitro high-throughput screening data were not fully representative of the in vivo potency of inhibition. During categorization it was found that compounds, which break the Lipinski rule of five by molecular weight, were about twice more likely to be inhibitors of CYP3A4 compared to those, which obey the rule. Similarly, among inhibitors that break the rule, potent inhibitors were 2–3 times more frequent. The molecular docking classification relied on logistic regression, by which the docking scores from different docking algorithms, CYP3A4 three-dimensional structures, and binding sites on them were combined in a unified probabilistic model. The SDAR models employed a multiple linear regression approach applied to binned 1D 13C-NMR and 1D 15N-NMR spectral descriptors. Structure-based and physical-chemical descriptors were used as the basis for developing SAR models by the decision forest method. Thirty-three potent inhibitors and 88 weak inhibitors of CYP3A4 were used to train the models. Using these models, a synthetic majority rules consensus classifier was implemented, while the confidence of estimation was assigned following the percent agreement strategy. The classifier was applied to a testing set of 120 inhibitors not included in the development of the models. Five compounds of the test set, including known strong inhibitors dalfopristin and tioconazole, were classified as probable potent inhibitors of CYP3A4. Other known strong inhibitors, such as lopinavir, oltipraz, quercetin, raloxifene, and troglitazone, were among 18 compounds classified as plausible potent inhibitors of CYP3A4. The consensus estimation of inhibition potency is expected to aid in the nomination of pharmaceuticals, dietary supplements, environmental pollutants, and occupational and other chemicals for in-depth evaluation of the CYP3A4 inhibitory activity. It may serve also as an estimate of chemical interactions via CYP3A4 metabolic pharmacokinetic pathways occurring through polypharmacy and nutritional and environmental exposures to chemical mixtures.
Collapse
Affiliation(s)
- Yunfeng Tie
- Division of Toxicology and Environmental Medicine, Agency for Toxic Substances and Disease Registry, Atlanta, GA 30333, USA; (Y.T.); (B.M.); (B.A.F.)
| | - Brooks McPhail
- Division of Toxicology and Environmental Medicine, Agency for Toxic Substances and Disease Registry, Atlanta, GA 30333, USA; (Y.T.); (B.M.); (B.A.F.)
| | - Huixiao Hong
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA; (H.H.); (B.A.P.); (L.K.S.); (W.G.); (D.A.B.); (J.G.W.); (J.C.F.); (W.T.); (R.D.B.)
| | - Bruce A. Pearce
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA; (H.H.); (B.A.P.); (L.K.S.); (W.G.); (D.A.B.); (J.G.W.); (J.C.F.); (W.T.); (R.D.B.)
| | - Laura K. Schnackenberg
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA; (H.H.); (B.A.P.); (L.K.S.); (W.G.); (D.A.B.); (J.G.W.); (J.C.F.); (W.T.); (R.D.B.)
| | - Weigong Ge
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA; (H.H.); (B.A.P.); (L.K.S.); (W.G.); (D.A.B.); (J.G.W.); (J.C.F.); (W.T.); (R.D.B.)
| | - Dan A. Buzatu
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA; (H.H.); (B.A.P.); (L.K.S.); (W.G.); (D.A.B.); (J.G.W.); (J.C.F.); (W.T.); (R.D.B.)
| | - Jon G. Wilkes
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA; (H.H.); (B.A.P.); (L.K.S.); (W.G.); (D.A.B.); (J.G.W.); (J.C.F.); (W.T.); (R.D.B.)
| | - James C. Fuscoe
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA; (H.H.); (B.A.P.); (L.K.S.); (W.G.); (D.A.B.); (J.G.W.); (J.C.F.); (W.T.); (R.D.B.)
| | - Weida Tong
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA; (H.H.); (B.A.P.); (L.K.S.); (W.G.); (D.A.B.); (J.G.W.); (J.C.F.); (W.T.); (R.D.B.)
| | - Bruce A. Fowler
- Division of Toxicology and Environmental Medicine, Agency for Toxic Substances and Disease Registry, Atlanta, GA 30333, USA; (Y.T.); (B.M.); (B.A.F.)
| | - Richard D. Beger
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA; (H.H.); (B.A.P.); (L.K.S.); (W.G.); (D.A.B.); (J.G.W.); (J.C.F.); (W.T.); (R.D.B.)
| | - Eugene Demchuk
- Division of Toxicology and Environmental Medicine, Agency for Toxic Substances and Disease Registry, Atlanta, GA 30333, USA; (Y.T.); (B.M.); (B.A.F.)
- Department of Basic Pharmaceutical Sciences, West Virginia University, Morgantown, WV 26506-9530, USA
- Author to whom correspondence should be addressed; ; Tel.: +1-770-488-3327; Fax: +1-404-248-4142
| |
Collapse
|
36
|
Ni S, Wang X, Wang J, Zhao Z, Zeng S. The effects of a high-fat and high-energy diet on the hepatic expression of CYP3A in developing female rats. Xenobiotica 2012; 42:587-95. [PMID: 22235918 DOI: 10.3109/00498254.2011.645907] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We aimed to investigate the effects of high-fat and high-energy (HFHE) diets on the hepatic expression of cytochrome P-450 3A (CYP3A) in developing female rats. The pups of the dams fed with the standard diet were defined as the NN group and those fed the HFHE diet were defined as the NH group. The mRNA and protein expression, the protein localization and activity was determined. The mRNA expression of CYP3A1 on day 3 in the NH group were higher versus NN groups (p < 0.05) and the expression of the NH group on days 28 and 56 were lower versus the NN group (p < 0.01). CYP3A1 immunolabeling had a zonal-restricted expressions pattern on day 28 and after in the NN groups, while the obvious zonal expression pattern was observed in the NH group on day 84. The mean activity for the NH groups on days 3, 7, 14 and 28 was higher versus the NN groups (p < 0.05). On day 84, the activity was lower for the NH group versus the NN group (p < 0.05). Our findings provide a basis for further studies on appropriate medication regimen in obese children.
Collapse
Affiliation(s)
- Shaoqing Ni
- The Children hospital of Zhejiang University School of Medicine, People's Republic of China
| | | | | | | | | |
Collapse
|
37
|
Cheng J, Ma X, Gonzalez FJ. Pregnane X receptor- and CYP3A4-humanized mouse models and their applications. Br J Pharmacol 2011; 163:461-8. [PMID: 21091656 DOI: 10.1111/j.1476-5381.2010.01129.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Pregnane X receptor (PXR) is a pivotal nuclear receptor modulating xenobiotic metabolism primarily through its regulation of CYP3A4, the most important enzyme involved in drug metabolism in humans. Due to the marked species differences in ligand recognition by PXR, PXR-humanized (hPXR) mice, and mice expressing human PXR and CYP3A4 (Tg3A4/hPXR) were established. hPXR and Tg3A4/hPXR mice are valuable models for investigating the role of PXR in xenobiotic metabolism and toxicity, in lipid, bile acid and steroid hormone homeostasis, and in the control of inflammation.
Collapse
Affiliation(s)
- Jie Cheng
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | |
Collapse
|
38
|
Hasegawa M, Kapelyukh Y, Tahara H, Seibler J, Rode A, Krueger S, Lee DN, Wolf CR, Scheer N. Quantitative prediction of human pregnane X receptor and cytochrome P450 3A4 mediated drug-drug interaction in a novel multiple humanized mouse line. Mol Pharmacol 2011; 80:518-28. [PMID: 21628639 DOI: 10.1124/mol.111.071845] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Cytochrome P450 (P450) 3A4 is the predominant P450 enzyme expressed in human liver and intestine, and it is involved in the metabolism of approximately 50% of clinically used drugs. Because of the differences in the multiplicity of CYP3A genes and the poor correlation of substrate specificity of CYP3A proteins between species, the extrapolation of CYP3A-mediated metabolism of a drug from animals to man is difficult. This situation is further complicated by the fact that the predictability of the clinically common drug-drug interaction of pregnane X receptor (PXR)-mediated CYP3A4 induction by animal studies is limited as a result of marked species differences in the interaction of many drugs with this receptor. Here we describe a novel multiple humanized mouse line that combines a humanization for PXR, the closely related constitutive androstane receptor, and a replacement of the mouse Cyp3a cluster with a large human genomic region carrying CYP3A4 and CYP3A7. We provide evidence that this model shows a human-like CYP3A4 induction response to different PXR activators, that it allows the ranking of these activators according to their potency to induce CYP3A4 expression in the human liver, and that it provides an experimental approach to quantitatively predict PXR/CYP3A4-mediated drug-drug interactions in humans.
Collapse
|
39
|
Boverhof DR, Chamberlain MP, Elcombe CR, Gonzalez FJ, Heflich RH, Hernández LG, Jacobs AC, Jacobson-Kram D, Luijten M, Maggi A, Manjanatha MG, Benthem JV, Gollapudi BB. Transgenic animal models in toxicology: historical perspectives and future outlook. Toxicol Sci 2011; 121:207-33. [PMID: 21447610 DOI: 10.1093/toxsci/kfr075] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Transgenic animal models are powerful tools for developing a more detailed understanding on the roles of specific genes in biological pathways and systems. Applications of these models have been made within the field of toxicology, most notably for the screening of mutagenic and carcinogenic potential and for the characterization of toxic mechanisms of action. It has long been a goal of research toxicologists to use the data from these models to refine hazard identification and characterization to better inform human health risk assessments. This review provides an overview on the applications of transgenic animal models in the assessment of mutagenicity and carcinogenicity, their use as reporter systems, and as tools for understanding the roles of xenobiotic-metabolizing enzymes and biological receptors in the etiology of chemical toxicity. Perspectives are also shared on the future outlook for these models in toxicology and risk assessment and how transgenic technologies are likely to be an integral tool for toxicity testing in the 21st century.
Collapse
Affiliation(s)
- Darrell R Boverhof
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, Michigan 48674, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Jiang XL, Gonzalez FJ, Yu AM. Drug-metabolizing enzyme, transporter, and nuclear receptor genetically modified mouse models. Drug Metab Rev 2010; 43:27-40. [PMID: 20854191 DOI: 10.3109/03602532.2010.512294] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Determining the in vivo significance of a specific enzyme, transporter, or xenobiotic receptor in drug metabolism and pharmacokinetics may be hampered by gene multiplicity and complexity, levels of expression, and interaction between various components involved. The development of knockout (loss-of-function) and transgenic (gain-of-function) mouse models opens the door to the improved understanding of gene function in a whole-body system. There is also growing interest in the development of humanized mice to overcome species differences in drug metabolism and disposition. This review, therefore, aims to summarize and discuss some successful examples of drug-metabolizing enzyme, transporter, and nuclear-receptor genetically modified mouse models. These genetically modified mouse models have been proven as invaluable models for understanding in vivo function of drug-metabolizing enzymes, transporters, and xenobiotic receptors in drug metabolism and transport, as well as predicting potential drug-drug interaction and toxicity in humans. Nevertheless, concerns remain about interpretation of data obtained from such genetically modified mouse models, in which the expression of related genes is altered significantly.
Collapse
Affiliation(s)
- Xi-Ling Jiang
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, USA
| | | | | |
Collapse
|
41
|
Ennulat D, Walker D, Clemo F, Magid-Slav M, Ledieu D, Graham M, Botts S, Boone L. Effects of Hepatic Drug-metabolizing Enzyme Induction on Clinical Pathology Parameters in Animals and Man. Toxicol Pathol 2010; 38:810-28. [DOI: 10.1177/0192623310374332] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hepatic drug-metabolizing enzyme (DME) induction is an adaptive response associated with changes in preclinical species; this response can include increases in liver weight, hepatocellular hyperplasia and hypertrophy, and upregulated tissue expression of DMEs. Effects of DME induction on clinical pathology markers of hepatobiliary injury and function in animals as well as humans are not well established. This component of a multipart review of the comparative pathology of xenobiotically mediated induction of hepatic metabolizing enzymes reviews pertinent data from retrospective and prospective preclinical and clinical studies. Particular attention is given to studies with confirmation of DME induction and concurrent evaluation of liver and/or serum hepatobiliary marker enzyme activities and histopathology. These results collectively indicate that in the rat, when histologic findings are limited to hepatocellular hypertrophy, DME induction is not expected to be associated with consistent or substantive changes in serum or plasma activity of hepatobiliary marker enzymes such as alanine aminotransferase, alkaline phosphatase, and gamma glutamyltransferase. In the dog and the monkey, published studies also do not demonstrate a consistent relationship across DME-inducing agents and changes in these clinical pathology parameters. However, increased liver alkaline phosphatase or gamma glutamyltransferase activity in dogs treated with phenobarbital or corticosteroids suggests that direct or indirect induction of select hepatobiliary injury markers can occur both in the absence of liver injury and independently of induction of DME activity. Although correlations between tissue and serum levels of these hepatobiliary markers are limited and inconsistent, increases in serum/plasma activities that are substantial or involve changes in other markers generally reflect hepatobiliary insult rather than DME induction. Extrahepatic effects, including disruption of the hypothalamic-pituitary-thyroid axis, can also occur as a direct outcome of hepatic DME induction in humans and animals. Importantly, hepatic DME induction and associated changes in preclinical species are not necessarily predictive of the occurrence, magnitude, or enzyme induction profile in humans.
Collapse
Affiliation(s)
| | - Dana Walker
- Bristol-Myers Squibb, East Syracuse, New York, USA
| | | | | | | | - Mark Graham
- AstraZeneca, Loughborough, Leicestershire, UK
| | | | - Laura Boone
- Covance Laboratories, Greenfield, Indiana, USA
| |
Collapse
|
42
|
Yu AM. Role of microRNAs in the regulation of drug metabolism and disposition. Expert Opin Drug Metab Toxicol 2009; 5:1513-28. [DOI: 10.1517/17425250903307448] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
43
|
Pan YZ, Gao W, Yu AM. MicroRNAs regulate CYP3A4 expression via direct and indirect targeting. Drug Metab Dispos 2009; 37:2112-7. [PMID: 19581388 DOI: 10.1124/dmd.109.027680] [Citation(s) in RCA: 200] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
CYP3A4 metabolizes many drugs on the market. Although transcriptional regulation of CYP3A4 is known to be tightly controlled by some nuclear receptors (NR) including vitamin D receptor (VDR/NR1I1), posttranscriptional regulation of CYP3A4 remains elusive. In this study, we show that noncoding microRNAs (miRNAs) may control posttranscriptional and transcriptional regulation of CYP3A4 by directly targeting the 3'-untranslated region (3'UTR) of CYP3A4 and indirectly targeting the 3'UTR of VDR, respectively. Luciferase reporter assays showed that CYP3A4 3'UTR-luciferase activity was significantly decreased in human embryonic kidney 293 cells transfected with plasmid that expressed microRNA-27b (miR-27b) or mouse microRNA-298 (mmu-miR-298), whereas the activity was unchanged in cells transfected with plasmid that expressed microRNA-122a or microRNA-328. Disruption of the corresponding miRNA response element (MRE) within CYP3A4 3'UTR led to a 2- to 3-fold increase in luciferase activity. Immunoblot analyses indicated that CYP3A4 protein was down-regulated over 30% by miR-27b and mmu-miR-298 in LS-180 and PANC1 cells. The decrease in CYP3A4 protein expression was associated with significantly decreased CYP3A4 mRNA levels, as determined by quantitative real-time PCR (qPCR) analyses. Likewise, interactions of miR-27b or mmu-miR-298 with VDR 3'UTR were supported by luciferase reporter assays. The mmu-miR-298 MRE site is well conserved within the 3'UTR of mouse, rat, and human VDR. Down-regulation of VDR by the two miRNAs was supported by immunoblot and qPCR analyses. Furthermore, overexpression of miR-27b or mmu-miR-298 in PANC1 cells led to a lower sensitivity to cyclophosphamide. Together, these findings suggest that CYP3A4 gene expression may be regulated by miRNAs at both the transcriptional and posttranscriptional level.
Collapse
Affiliation(s)
- Yu-Zhuo Pan
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260-1200, USA
| | | | | |
Collapse
|
44
|
Cheng J, Ma X, Krausz KW, Idle JR, Gonzalez FJ. Rifampicin-activated human pregnane X receptor and CYP3A4 induction enhance acetaminophen-induced toxicity. Drug Metab Dispos 2009; 37:1611-21. [PMID: 19460945 DOI: 10.1124/dmd.109.027565] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Acetaminophen (APAP) is safe at therapeutic levels but causes hepatotoxicity via N-acetyl-p-benzoquinone imine-induced oxidative stress upon overdose. To determine the effect of human (h) pregnane X receptor (PXR) activation and CYP3A4 induction on APAP-induced hepatotoxicity, mice humanized for PXR and CYP3A4 (TgCYP3A4/hPXR) were treated with APAP and rifampicin. Human PXR activation and CYP3A4 induction enhanced APAP-induced hepatotoxicity as revealed by hepatic alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities elevated in serum, and hepatic necrosis after coadministration of rifampicin and APAP, compared with APAP administration alone. In contrast, hPXR mice, wild-type mice, and Pxr-null mice exhibited significantly lower ALT/AST levels compared with TgCYP3A4/hPXR mice after APAP administration. Toxicity was coincident with depletion of hepatic glutathione and increased production of hydrogen peroxide, suggesting increased oxidative stress upon hPXR activation. Moreover, mRNA analysis demonstrated that CYP3A4 and other PXR target genes were significantly induced by rifampicin treatment. Urinary metabolomic analysis indicated that cysteine-APAP and its metabolite S-(5-acetylamino-2-hydroxyphenyl)mercaptopyruvic acid were the major contributors to the toxic phenotype. Quantification of plasma APAP metabolites indicated that the APAP dimer formed coincident with increased oxidative stress. In addition, serum metabolomics revealed reduction of lysophosphatidylcholine in the APAP-treated groups. These findings demonstrated that human PXR is involved in regulation of APAP-induced toxicity through CYP3A4-mediated hepatic metabolism of APAP in the presence of PXR ligands.
Collapse
Affiliation(s)
- Jie Cheng
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
45
|
di Masi A, De Marinis E, Ascenzi P, Marino M. Nuclear receptors CAR and PXR: Molecular, functional, and biomedical aspects. Mol Aspects Med 2009; 30:297-343. [PMID: 19427329 DOI: 10.1016/j.mam.2009.04.002] [Citation(s) in RCA: 217] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 04/28/2009] [Indexed: 12/31/2022]
Abstract
Nuclear receptors (NRs) are ligand-activated transcription factors sharing a common evolutionary history and having similar sequence features at the protein level. Selective ligand(s) for some NRs is not known, therefore these NRs have been named "orphan receptors". Whenever ligands have been recognized for any of the orphan receptor, it has been categorized and grouped as "adopted" orphan receptor. This group includes the constitutive androstane receptor (CAR) and the pregnane X receptor (PXR). They function as sensors of toxic byproducts derived from endogenous metabolites and of exogenous chemicals, in order to enhance their elimination. This unique function of CAR and PXR sets them apart from the steroid hormone receptors. The broad response profile has established that CAR and PXR are xenobiotic sensors that coordinately regulate xenobiotic clearance in the liver and intestine via induction of genes involved in drug and xenobiotic metabolism. In the past few years, research has revealed new and mostly unsuspected roles for CAR and PXR in modulating hormone, lipid, and energy homeostasis as well as cancer and liver steatosis. The purpose of this review is to highlight the structural and molecular bases of CAR and PXR impact on human health, providing information on mechanisms through which diet, chemical exposure, and environment ultimately impact health and disease.
Collapse
Affiliation(s)
- Alessandra di Masi
- Department of Biology, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy
| | | | | | | |
Collapse
|
46
|
Ni S, Wang X, Wang J, Lu S, Zeng S, Zhao Z, Yu L, Chen S. Effects of intrauterine undernutrition on the expression of CYP3A23/3A1, PXR, CAR and HNF4alpha in neonate rats. Biopharm Drug Dispos 2009; 29:501-10. [PMID: 19058292 DOI: 10.1002/bdd.635] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cytochrome P-450 3A (CYP3A) together with its nuclear receptors plays a critical role in drug metabolism. The present study investigated the effects of undernutrition in utero on hepatic mRNA and protein expression of the enzyme CYP3A23/3A1 and nuclear receptors including pregnane X receptor (PXR; NR1I2), constitutive androstane receptor (CAR; NR1I3) and nuclear factor-4alpha (HNF4alpha; HNF4A) in neonatal rats. At gestational day 2, pregnant rats were randomly divided into two groups: nourished (fed ad libitum) and undernourished (50% of nourished group). The pups delivered by nourished rats were designated as the normal-birth-weight group (NBW, n=15) and those delivered by undernourished rats were designated as the low-birth-weight group (LBW, n=15). Hepatic mRNA expression was detected by quantitative real-time PCR and the corresponding protein expression was examined by immunohistochemistry (IHC). Compared with NBW pups, LBW pups tended to have lower mRNA expression levels of CYP3A23/3A1, PXR and CAR but higher levels of HNF4alpha. Only the CAR mRNA expression differences were significant (p<0.05). mRNA expression of CYP3A23/3A1 correlated with that of HNF4alpha in both the LBW(r=0.808, p=0.007) and NBW (r=0.452, p=0.012) groups. CYP3A23/3A1 and CAR protein expression differed between the two groups (CYP3A23/3A1, chi(2)=7.87, p=0.005; CAR, chi(2)=12.069, p=0.001). In conclusion, these findings suggest that undernutrition may influence the mRNA expression of CAR and protein expression of both CYP3A23/3A1 and CAR in neonatal rats. Since CYP3A23/3A1 and CAR are critically involved in drug metabolism, these results may have clinical implications for optimal medication in LBW children.
Collapse
Affiliation(s)
- Shaoqing Ni
- Department of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences, Zhejiang University, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Ma X, Idle JR, Gonzalez FJ. The pregnane X receptor: from bench to bedside. Expert Opin Drug Metab Toxicol 2008; 4:895-908. [PMID: 18624678 DOI: 10.1517/17425255.4.7.895] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND The pregnane X receptor (PXR; NR1I2), a member of the nuclear receptor superfamily, regulates the expression of metabolic enzymes and transporters involved in the response of mammals to their chemical environment. OBJECTIVE To summarize the functions and clinical implications of PXR. METHODS In the current review, the clinical implications of PXR are discussed, and the use of genetically engineered PXR mouse models is highlighted. RESULTS/CONCLUSION Recent advances in mouse models, including Pxr-null and PXR-humanized mice, provide in vivo tools for evaluating the physiological functions of PXR and its role in controlling xenobiotic metabolism and transport. By using the PXR knockout and humanized mouse models, PXR was found to influence drug-drug interactions, hepatic steatosis, and the homeostasis of vitamin D, bile acids, and steroid hormones. PXR was also shown to influence inflammatory bowel diseases.
Collapse
Affiliation(s)
- Xiaochao Ma
- National Cancer Institute, Laboratory of Metabolism, Center for Cancer Research, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
48
|
Yu AM, Qu J, Felmlee MA, Cao J, Jiang XL. Quantitation of human cytochrome P450 2D6 protein with immunoblot and mass spectrometry analysis. Drug Metab Dispos 2008; 37:170-7. [PMID: 18832475 DOI: 10.1124/dmd.108.024166] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Accurate quantification of cytochrome P450 (P450) protein contents is essential for reliable assessment of drug safety, including the prediction of in vivo clearance from in vitro metabolism data, which may be hampered by the use of uncharacterized standards and existence of unknown allelic isozymes. Therefore, this study aimed to delineate the variability in absolute quantification of polymorphic CYP2D6 drug-metabolizing enzyme and compare immunoblot and nano liquid chromatography coupled to mass spectrometry (nano-LC/MS) methods in identification and relative quantification of CYP2D6.1 and CYP2D6.2 allelic isozymes. Holoprotein content of in-house purified CYP2D6 isozymes was determined according to carbon monoxide difference spectrum, and total protein was quantified with bicinchoninic acid protein assay. Holoprotein/total CYP2D6 protein ratio was markedly higher for purified CYP2D6.1 (71.0%) than that calculated for CYP2D6.1 Supersomes (35.5%), resulting in distinct linear calibration range (0.05-0.50 versus 0.025-0.25 pmol) that was determined by densitometric analysis of immunoblot bands. Likewise, purified CYP2D6.2 and CYP2D6.10 and the CYP2D6.10 Supersomes all showed different holoprotein/total CYP2D6 protein ratios and distinct immunoblot linear calibration ranges. In contrast to immunoblot, nano-LC/MS readily distinguished CYP2D6.2 (R296C and S486T) from CYP2D6.1 by isoform-specific proteolytic peptides that contain the altered amino acid residues. In addition, relative quantitation of the two allelic isozymes was successfully achieved with label-free protein quantification, consistent with the nominated ratio. Because immunoblot and nano-LC/MS analyses measure total P450 protein (holoprotein and apoprotein) in a sample, complete understanding of holoprotein and apoprotein contents in P450 standards is desired toward reliable quantification. Our data also suggest that nano-LC/MS not only facilitates P450 quantitation but also provides genotypic information.
Collapse
Affiliation(s)
- Ai-Ming Yu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York 14260-1200, USA.
| | | | | | | | | |
Collapse
|
49
|
Ma X, Cheung C, Krausz KW, Shah YM, Wang T, Idle JR, Gonzalez FJ. A double transgenic mouse model expressing human pregnane X receptor and cytochrome P450 3A4. Drug Metab Dispos 2008; 36:2506-12. [PMID: 18799805 DOI: 10.1124/dmd.108.022723] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cytochrome P450 3A4 (CYP3A4), the most abundant human cytochrome P450 in liver, participates in the metabolism of approximately 50% of clinically used drugs. The pregnane X receptor (PXR), a member of the nuclear receptor superfamily, is the major activator of CYP3A4 transcription. However, because of species differences in response to PXR ligands, it is problematic to use rodents to assess CYP3A4 regulation and function. The generation of double transgenic mice expressing human PXR and CYP3A4 (TgCYP3A4/hPXR) would provide a solution to this problem. In the current study, a TgCYP3A4/hPXR mouse model was generated by bacterial artificial chromosome transgenesis in Pxr-null mice. In TgCYP3A4/hPXR mice, CYP3A4 was strongly induced by rifampicin, a human-specific PXR ligand, but not by pregnenolone 16alpha-carbonitrile, a rodent-specific PXR ligand. Consistent with CYP3A expression, hepatic CYP3A activity increased approximately 5-fold in TgCYP3A4/hPXR mice pretreated with rifampicin. Most antihuman immunodeficiency virus protease inhibitors are CYP3A substrates and their interactions with rifamycins are a source of major concern in patients coinfected with human immunodeficiency virus and Mycobacterium tuberculosis. By using TgCYP3A4/hPXR mice, human PXR-CYP3A4-mediated rifampicin-protease inhibitor interactions were recapitulated, as the metabolic stability of amprenavir, nelfinavir, and saquinavir decreased 52, 53, and 99%, respectively, in the liver microsomes of TgCYP3A4/hPXR mice pretreated with rifampicin. In vivo, rifampicin pretreatment resulted in an approximately 80% decrease in the area under the serum amprenavir concentration-time curve in TgCYP3A4/hPXR mice. These results suggest that the TgCYP3A4/hPXR mouse model could serve as a useful tool for studies on CYP3A4 transcription and function in vivo.
Collapse
Affiliation(s)
- Xiaochao Ma
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Cheung C, Gonzalez FJ. Humanized mouse lines and their application for prediction of human drug metabolism and toxicological risk assessment. J Pharmacol Exp Ther 2008; 327:288-99. [PMID: 18682571 DOI: 10.1124/jpet.108.141242] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cytochrome P450s (P450s) are important enzymes involved in the metabolism of xenobiotics, particularly clinically used drugs, and are also responsible for metabolic activation of chemical carcinogens and toxins. Many xenobiotics can activate nuclear receptors that in turn induce the expression of genes encoding xenobiotic metabolizing enzymes and drug transporters. Marked species differences in the expression and regulation of cytochromes P450 and xenobiotic nuclear receptors exist. Thus, obtaining reliable rodent models to accurately reflect human drug and carcinogen metabolism is severely limited. Humanized transgenic mice were developed in an effort to create more reliable in vivo systems to study and predict human responses to xenobiotics. Human P450s or human xenobiotic-activated nuclear receptors were introduced directly or replaced the corresponding mouse gene, thus creating "humanized" transgenic mice. Mice expressing human CYP1A1/CYP1A2, CYP2E1, CYP2D6, CYP3A4, CY3A7, pregnane X receptor, and peroxisome proliferator-activated receptor alpha were generated and characterized. These humanized mouse models offer a broad utility in the evaluation and prediction of toxicological risk that may aid in the development of safer drugs.
Collapse
Affiliation(s)
- Connie Cheung
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 37, Room 3106, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | | |
Collapse
|