1
|
Zuloaga R, Ahumada-Langer L, Aedo JE, Molina A, Valdés JA. Early metabolic and transcriptomic regulation in rainbow trout (Oncorhynchus mykiss) liver by 11-deoxycorticosterone through two corticosteroid receptors pathways. Comp Biochem Physiol A Mol Integr Physiol 2024; 298:111746. [PMID: 39304115 DOI: 10.1016/j.cbpa.2024.111746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/27/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Cortisol hormone is considered the main corticosteroid in fish stress, acting through glucocorticoid (GR) or mineralocorticoid (MR) receptor. The 11-deoxycorticosterone (DOC) corticosteroid is also secreted during stress and could complement the cortisol effects, but this still not fully understood. Hence, we evaluated the early transcriptomic response of rainbow trout (Oncorhynchus mykiss) liver by DOC through GR or MR. Thirty juvenile trout were pretreated with an inhibitor of endogenous cortisol synthesis (metyrapone) by intraperitoneal injection in presence or absence of GR (mifepristone) and MR (eplerenone) pharmacological antagonists for one hour. Then, fish were treated with a physiological DOC dose or vehicle (DMSO-PBS1X as control) for three hours (n = 5 per group). We measured several metabolic parameters in plasma, together with the liver glycogen content. Additionally, we constructed cDNA libraries from liver of each group, sequenced by HiseqX Illumina technology and then analyzed by RNA-seq. Plasma pyruvate and cholesterol levels decreased in DOC-administered fish and only reversed by eplerenone. Meanwhile, DOC increased liver glycogen contents depending on both corticosteroid receptor pathways. RNA-seq analysis revealed differential expressed transcripts induced by DOC through GR (448) and MR (1901). The enriched biological processes to both were mainly related to stress response, protein metabolism, innate immune response and carbohydrates metabolism. Finally, we selected sixteen genes from enriched biological process for qPCR validation, presenting a high Pearson correlation (0.8734 average). These results describe novel physiological effects of DOC related to early metabolic and transcriptomic responses in fish liver and differentially modulated by MR and GR.
Collapse
Affiliation(s)
- Rodrigo Zuloaga
- Programa de Doctorado en Biotecnología, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile; Universidad Andres Bello, Facultad de Ciencias de la Vida, Departamento de Ciencias Biológicas, 8370146 Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), 4030000 Concepción, Chile
| | - Luciano Ahumada-Langer
- Universidad Andres Bello, Facultad de Ciencias de la Vida, Departamento de Ciencias Biológicas, 8370146 Santiago, Chile
| | - Jorge Eduardo Aedo
- Departamento de Biología y Química, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca 3466706, Chile
| | - Alfredo Molina
- Universidad Andres Bello, Facultad de Ciencias de la Vida, Departamento de Ciencias Biológicas, 8370146 Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), 4030000 Concepción, Chile
| | - Juan Antonio Valdés
- Universidad Andres Bello, Facultad de Ciencias de la Vida, Departamento de Ciencias Biológicas, 8370146 Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), 4030000 Concepción, Chile.
| |
Collapse
|
2
|
Zuloaga R, Ahumada-Langer L, Aedo JE, Molina A, Valdés JA. 11-Deoxycorticosterone (DOC)'s Action on the Gill Osmoregulation of Juvenile Rainbow Trout ( Oncorhynchus mykiss). BIOLOGY 2024; 13:107. [PMID: 38392325 PMCID: PMC10886319 DOI: 10.3390/biology13020107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024]
Abstract
In aquaculture, stress can negatively affect fish growth. For years, the cortisol hormone has been thought to play both glucocorticoid and mineralocorticoid functions. Nevertheless, recent research has suggested that 11-deoxycorticosterone (DOC) released during stress could contribute to cortisol actions, though this process is still misunderstood. Here, we evaluated the DOC effects on physiological and early transcriptional responses by RNA-seq. Juvenile rainbow trout were treated with DOC and/or glucocorticoids (mifepristone) or mineralocorticoid (eplerenone) receptor antagonists. Subsequently, plasma was collected, and cDNA libraries were generated from the gills of vehicle (control), DOC, mifepristone, mifepristone with DOC, eplerenone, and eplerenone with DOC groups. Calcium and phosphate levels in plasma were changed. Results revealed 914 differentially expressed transcripts (DETs) induced by DOC compared with control, mainly associated with sodium ion transmembrane transport, gluconeogenesis, negative regulation of transmembrane transport, and activation of innate immune response. DOC versus eplerenone with DOC comparison displayed 444 DETs related to cell-cell junction organization, canonical glycolysis, positive regulation of immune response, and potassium ion transport. Conversely, no DETs were detected in DOC versus mifepristone with DOC comparison. These data suggest that DOC has a relevant role in gill stress response and ion transport, which is differentially regulated by mineralocorticoid receptors.
Collapse
Affiliation(s)
- Rodrigo Zuloaga
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370146, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción 4030000, Chile
| | - Luciano Ahumada-Langer
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370146, Chile
| | - Jorge Eduardo Aedo
- Departamento de Biología y Química, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca 3466706, Chile
| | - Alfredo Molina
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370146, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción 4030000, Chile
| | - Juan Antonio Valdés
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370146, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción 4030000, Chile
| |
Collapse
|
3
|
Zuloaga R, Aravena-Canales D, Aedo JE, Osorio-Fuentealba C, Molina A, Valdés JA. Effect of 11-Deoxycorticosterone in the Transcriptomic Response to Stress in Rainbow Trout Skeletal Muscle. Genes (Basel) 2023; 14:512. [PMID: 36833439 PMCID: PMC9957386 DOI: 10.3390/genes14020512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
In aquaculture, many stressors can negatively affect growth in teleosts. It is believed that cortisol performs glucocorticoid and mineralocorticoid functions because teleosts do not synthesize aldosterone. However, recent data suggest that 11-deoxycorticosterone (DOC) released during stress events may be relevant to modulate the compensatory response. To understand how DOC modifies the skeletal muscle molecular response, we carried out a transcriptomic analysis. Rainbow trout (Oncorhynchus mykiss) were intraperitoneally treated with physiological doses of DOC in individuals pretreated with mifepristone (glucocorticoid receptor antagonist) or eplerenone (mineralocorticoid receptor antagonist). RNA was extracted from the skeletal muscles, and cDNA libraries were constructed from vehicle, DOC, mifepristone, mifepristone plus DOC, eplerenone, and eplerenone plus DOC groups. The RNA-seq analysis revealed 131 differentially expressed transcripts (DETs) induced by DOC with respect to the vehicle group, mainly associated with muscle contraction, sarcomere organization, and cell adhesion. In addition, a DOC versus mifepristone plus DOC analysis revealed 122 DETs related to muscle contraction, sarcomere organization, and skeletal muscle cell differentiation. In a DOC versus eplerenone plus DOC analysis, 133 DETs were associated with autophagosome assembly, circadian regulation of gene expression, and regulation of transcription from RNA pol II promoter. These analyses indicate that DOC has a relevant function in the stress response of skeletal muscles, whose action is differentially modulated by GR and MR and is complementary to cortisol.
Collapse
Affiliation(s)
- Rodrigo Zuloaga
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370146, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción 4030000, Chile
| | - Daniela Aravena-Canales
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370146, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción 4030000, Chile
| | - Jorge Eduardo Aedo
- Departamento de Biología y Química, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca 3466706, Chile
| | - Cesar Osorio-Fuentealba
- Núcleo de Bienestar y Desarrollo Humano (NUBIDEH), Centro de Investigación en Educación (CIE-UMCE), Universidad Metropolitana de Ciencias de la Educación, Santiago 7780450, Chile
| | - Alfredo Molina
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370146, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción 4030000, Chile
| | - Juan Antonio Valdés
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370146, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción 4030000, Chile
| |
Collapse
|
4
|
Aedo JE, Zuloaga R, Aravena-Canales D, Molina A, Valdés JA. Role of glucocorticoid and mineralocorticoid receptors in rainbow trout ( Oncorhynchus mykiss) skeletal muscle: A transcriptomic perspective of cortisol action. Front Physiol 2023; 13:1048008. [PMID: 36685183 PMCID: PMC9852899 DOI: 10.3389/fphys.2022.1048008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/22/2022] [Indexed: 01/07/2023] Open
Abstract
Cortisol is an essential regulator of neuroendocrine stress responses in teleost. Cortisol performs its effects through the modulation of glucocorticoid receptor (GR) and mineralocorticoid receptor (MR), activating gene expression. Until now the contribution of both receptors in the global transcriptional response in teleost skeletal muscle has not been explored. To understand in a comprehensive and global manner how GR and MR modulates the skeletal muscle transcriptomic response, we performed RNA-seq analysis. Juvenile rainbow trout (Oncorhynchus mykiss) pretreated with a suppressor of endogenous cortisol production were intraperitoneally injected with cortisol (10 mg/kg). We also included a treatment with mifepristone (GR antagonist) and eplerenone (MR antagonist) in the presence or absence of cortisol. cDNA libraries were constructed from the skeletal muscle of rainbow trout groups: vehicle, cortisol, mifepristone, eplerenone, mifepristone/cortisol and eplerenone/cortisol. RNA-seq analysis revealed that 135 transcripts were differentially expressed in cortisol vs. mifepristone/cortisol group, mainly associated to inflammatory response, ion transmembrane transport, and proteolysis. In the other hand, 68 transcripts were differentially expressed in cortisol vs. eplerenone/cortisol group, mainly associated to muscle contraction, and regulation of cell cycle. To validate these observations, we performed in vitro experiments using rainbow trout myotubes. In myotubes treated with cortisol, we found increased expression of cxcr2, c3, and clca3p mediated by GR, associated with inflammatory response, proteolysis, and ion transmembrane transport, respectively. Contrastingly, MR modulated the expression of myh2 and gadd45g mainly associated with muscle contraction and regulation of cell cycle, respectively. These results suggest that GR and MR have a differential participation in the physiological response to stress in teleost skeletal muscle.
Collapse
Affiliation(s)
- Jorge E. Aedo
- Departamento Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile,Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Chile
| | - Rodrigo Zuloaga
- Departamento Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile,Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Chile
| | - Daniela Aravena-Canales
- Departamento Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile,Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Chile
| | - Alfredo Molina
- Departamento Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile,Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Chile
| | - Juan Antonio Valdés
- Departamento Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile,Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Chile,*Correspondence: Juan Antonio Valdés,
| |
Collapse
|
5
|
Rousseau K, Dufour S, Sachs LM. Interdependence of Thyroid and Corticosteroid Signaling in Vertebrate Developmental Transitions. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.735487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Post-embryonic acute developmental processes mainly allow the transition from one life stage in a specific ecological niche to the next life stage in a different ecological niche. Metamorphosis, an emblematic type of these post-embryonic developmental processes, has occurred repeatedly and independently in various phylogenetic groups throughout metazoan evolution, such as in cnidarian, insects, molluscs, tunicates, or vertebrates. This review will focus on metamorphoses and developmental transitions in vertebrates, including typical larval metamorphosis in anuran amphibians, larval and secondary metamorphoses in teleost fishes, egg hatching in sauropsids and birth in mammals. Two neuroendocrine axes, the hypothalamic-pituitary-thyroid and the hypothalamic-pituitary-adrenal/interrenal axes, are central players in the regulation of these life transitions. The review will address the molecular and functional evolution of these axes and their interactions. Mechanisms of integration of internal and environmental cues, and activation of these neuroendocrine axes represent key questions in an “eco-evo-devo” perspective of metamorphosis. The roles played by developmental transitions in the innovation, adaptation, and plasticity of life cycles throughout vertebrates will be discussed. In the current context of global climate change and habitat destruction, the review will also address the impact of environmental factors, such as global warming and endocrine disruptors on hypothalamic-pituitary-thyroid and hypothalamic-pituitary-adrenal/interrenal axes, and regulation of developmental transitions.
Collapse
|
6
|
Rousseau K, Prunet P, Dufour S. Special features of neuroendocrine interactions between stress and reproduction in teleosts. Gen Comp Endocrinol 2021; 300:113634. [PMID: 33045232 DOI: 10.1016/j.ygcen.2020.113634] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/10/2020] [Accepted: 09/20/2020] [Indexed: 02/08/2023]
Abstract
Stress and reproduction are both essential functions for vertebrate survival, ensuring on one side adaptative responses to environmental changes and potential life threats, and on the other side production of progeny. With more than 25,000 species, teleosts constitute the largest group of extant vertebrates, and exhibit a large diversity of life cycles, environmental conditions and regulatory processes. Interactions between stress and reproduction are a growing concern both for conservation of fish biodiversity in the frame of global changes and for the development of sustainability of aquaculture including fish welfare. In teleosts, as in other vertebrates, adverse effects of stress on reproduction have been largely documented and will be shortly overviewed. Unexpectedly, stress notably via cortisol, may also facilitate reproductive function in some teleost species in relation to their peculiar life cyles and this review will provide some examples. Our review will then mainly address the neuroendocrine axes involved in the control of stress and reproduction, namely the corticotropic and gonadotropic axes, as well as their interactions. After reporting some anatomo-functional specificities of the neuroendocrine systems in teleosts, we will describe the major actors of the corticotropic and gonadotropic axes at the brain-pituitary-peripheral glands (interrenals and gonads) levels, with a special focus on the impact of teleost-specific whole genome duplication (3R) on the number of paralogs and their potential differential functions. We will finally review the current knowledge on the neuroendocrine mechanisms of the various interactions between stress and reproduction at different levels of the two axes in teleosts in a comparative and evolutionary perspective.
Collapse
Affiliation(s)
- Karine Rousseau
- Muséum National d'Histoire Naturelle, Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, SU, UCN, UA, Paris, France
| | - Patrick Prunet
- INRAE, UR1037, Laboratoire de Physiologie et de Génomique des Poissons (LPGP), Rennes, France
| | - Sylvie Dufour
- Muséum National d'Histoire Naturelle, Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, SU, UCN, UA, Paris, France.
| |
Collapse
|
7
|
Baker ME. Steroid receptors and vertebrate evolution. Mol Cell Endocrinol 2019; 496:110526. [PMID: 31376417 DOI: 10.1016/j.mce.2019.110526] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 07/23/2019] [Accepted: 07/26/2019] [Indexed: 12/22/2022]
Abstract
Considering that life on earth evolved about 3.7 billion years ago, vertebrates are young, appearing in the fossil record during the Cambrian explosion about 542 to 515 million years ago. Results from sequence analyses of genomes from bacteria, yeast, plants, invertebrates and vertebrates indicate that receptors for adrenal steroids (aldosterone, cortisol), and sex steroids (estrogen, progesterone, testosterone) also are young, with an estrogen receptor and a 3-ketosteroid receptor first appearing in basal chordates (cephalochordates: amphioxus), which are close ancestors of vertebrates. Duplication and divergence of the 3-ketosteroid receptor yielded an ancestral progesterone receptor and an ancestral corticoid receptor, the common ancestor of the glucocorticoid and mineralocorticoid receptors, in jawless vertebrates (cyclostomes: lampreys, hagfish). This was followed by evolution of an androgen receptor, distinct glucocorticoid and mineralocorticoid receptors and estrogen receptor-α and -β in cartilaginous fishes (Chondrichthyes: sharks). Further evolution of mineralocorticoid signaling occurred with the evolution of aldosterone synthase in lungfish, a forerunner of terrestrial vertebrates. Adrenal and sex steroid receptors are not found in echinoderms and hemichordates, which are ancestors in the lineage of cephalochordates and vertebrates. The evolution of steroid receptors at key nodes in the evolution of vertebrates, in which steroid receptors act as master switches to regulate differentiation, development, reproduction, immune responses, electrolyte homeostasis and stress responses, suggests an important role for steroid receptors in the evolutionary success of vertebrates, considering that the human genome contains about 22,000 genes, which is not much larger than genomes of invertebrates, such as Caenorhabditis elegans (~18,000 genes) and Drosophila (~14,000 genes).
Collapse
Affiliation(s)
- Michael E Baker
- Division of Nephrology-Hypertension, Department of Medicine, 0693, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0693, USA.
| |
Collapse
|
8
|
Hu YC, Chu KF, Hwang LY, Lee TH. Cortisol regulation of Na +, K +-ATPase β1 subunit transcription via the pre-receptor 11β-hydroxysteroid dehydrogenase 1-like (11β-Hsd1L) in gills of hypothermal freshwater milkfish, Chanos chanos. J Steroid Biochem Mol Biol 2019; 192:105381. [PMID: 31128249 DOI: 10.1016/j.jsbmb.2019.105381] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/15/2019] [Accepted: 05/21/2019] [Indexed: 12/31/2022]
Abstract
Hypothermal stress changes the balance of osmoregulation by affecting Na+, K+-ATPase (Na-K-ATPase) activity or inducing modulation to epithelium permeability in fish. Meanwhile, cellular concentrations of cortisol can be modulated by the pre-receptor enzymes 11β-hydroxysteroid dehydrogenase 1 and 2 (11β-Hsd1 and 2). In fish, increasing levels of exogenous cortisol stimulate Na+ uptake via specific interaction with cortisol. This study investigated cortisol effects on expression of Na-K-ATPase subunit proteins and activity in gills of milkfish under hypothermal stress and revealed that the plasma cortisol contents as well as gill 11β-hsd1l and na-k-atpase β1 mRNA abundance were decreased in fresh water (FW) milkfish. Meanwhile, in the seawater (SW) milkfish, the plasma cortisol contents and gill 11β-hsd1l and na-k-atpase β1 mRNA abundance was increased under hypothermal stress. On the other hand, the abundance of 11β-hsd2 mRNA increased in both FW and SW. In addition, 11β-hsd1l expression increased in FW milkfish but decreased in SW milkfish after cortisol injection. Accordingly, the results that gill Na-K-ATPase activity of FW milkfish was affected by environmental temperatures as well as cortisol-dependent Na-K-ATPase β1-subunit levels might be due to increased expression of 11β-hsd1l that elevated intracellular cortisol contents. In hypothermal SW milkfish, decreasing abundance of Na-K-ATPase β1 protein due to reduced expression of 11β-hsd1l was found after cortisol injection. Thus, under hypothermal stress, 11β-HSD1L in FW milkfish gills was used to modulate cortisol and the following effects on increasing the transcription of Na-K-ATPase β1 protein.
Collapse
Affiliation(s)
- Yau-Chung Hu
- Department of Life Sciences, National Chung Hsing University, Taichung, 402, Taiwan; The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan
| | - Keng-Fu Chu
- Department of Life Sciences, National Chung Hsing University, Taichung, 402, Taiwan
| | - Lie-Yueh Hwang
- Taishi Station, Mariculture Research Center, Fisheries Research Institute, Council of Agriculture, Yulin, 636, Taiwan
| | - Tsung-Han Lee
- Department of Life Sciences, National Chung Hsing University, Taichung, 402, Taiwan; The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan.
| |
Collapse
|
9
|
Katsu Y, Kohno S, Oka K, Lin X, Otake S, Pillai NE, Takagi W, Hyodo S, Venkatesh B, Baker ME. Transcriptional activation of elephant shark mineralocorticoid receptor by corticosteroids, progesterone, and spironolactone. Sci Signal 2019; 12:12/584/eaar2668. [DOI: 10.1126/scisignal.aar2668] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The mineralocorticoid receptor (MR) is a nuclear receptor and part of a large and diverse family of transcription factors that also includes receptors for glucocorticoids, progesterone, androgens, and estrogens. The corticosteroid aldosterone is the physiological activator of the MR in humans and other terrestrial vertebrates; however, its activator is not known in cartilaginous fish, the oldest group of extant jawed vertebrates. Here, we analyzed the ability of corticosteroids and progesterone to activate the full-length MR from the elephant shark (Callorhinchus milii). On the basis of their measured activities, aldosterone, cortisol, 11-deoxycorticosterone, corticosterone, 11-deoxcortisol, progesterone, and 19-norprogesterone are potential physiological mineralocorticoids. However, aldosterone, the physiological mineralocorticoid in humans and other terrestrial vertebrates, is not found in cartilaginous or ray-finned fish. Although progesterone activates MRs in ray-finned fish, progesterone does not activate MRs in humans, amphibians, or alligator, suggesting that during the transition to terrestrial vertebrates, progesterone lost the ability to activate the MR. Both elephant shark MR and human MR are expressed in the brain, heart, ovary, testis, and other nonepithelial tissues, suggesting that MR expression in diverse tissues evolved in the common ancestor of jawed vertebrates. Our data suggest that 19-norprogesterone– and progesterone-activated MR may have unappreciated functions in reproductive physiology.
Collapse
|
10
|
Lee HB, Schwab TL, Sigafoos AN, Gauerke JL, Krug RG, Serres MR, Jacobs DC, Cotter RP, Das B, Petersen MO, Daby CL, Urban RM, Berry BC, Clark KJ. Novel zebrafish behavioral assay to identify modifiers of the rapid, nongenomic stress response. GENES, BRAIN, AND BEHAVIOR 2019; 18:e12549. [PMID: 30588759 PMCID: PMC6446827 DOI: 10.1111/gbb.12549] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/30/2018] [Accepted: 12/18/2018] [Indexed: 12/23/2022]
Abstract
When vertebrates face acute stressors, their bodies rapidly undergo a repertoire of physiological and behavioral adaptations, which is termed the stress response. Rapid changes in heart rate and blood glucose levels occur via the interaction of glucocorticoids and their cognate receptors following hypothalamic-pituitary-adrenal axis activation. These physiological changes are observed within minutes of encountering a stressor and the rapid time domain rules out genomic responses that require gene expression changes. Although behavioral changes corresponding to physiological changes are commonly observed, it is not clearly understood to what extent hypothalamic-pituitary-adrenal axis activation dictates adaptive behavior. We hypothesized that rapid locomotor response to acute stressors in zebrafish requires hypothalamic-pituitary-interrenal (HPI) axis activation. In teleost fish, interrenal cells are functionally homologous to the adrenocortical layer. We derived eight frameshift mutants in genes involved in HPI axis function: two mutants in exon 2 of mc2r (adrenocorticotropic hormone receptor), five in exon 2 or 5 of nr3c1 (glucocorticoid receptor [GR]) and two in exon 2 of nr3c2 (mineralocorticoid receptor [MR]). Exposing larval zebrafish to mild environmental stressors, acute changes in salinity or light illumination, results in a rapid locomotor response. We show that this locomotor response requires a functioning HPI axis via the action of mc2r and the canonical GR encoded by nr3c1 gene, but not MR (nr3c2). Our rapid behavioral assay paradigm based on HPI axis biology can be used to screen for genetic and environmental modifiers of the hypothalamic-pituitary-adrenal axis and to investigate the effects of corticosteroids and their cognate receptor interactions on behavior.
Collapse
Affiliation(s)
- Han B. Lee
- Neuroscience Graduate ProgramMayo Clinic Graduate School of Biomedical SciencesRochesterMinnesota
| | - Tanya L. Schwab
- Department of Biochemistry and Molecular BiologyMayo ClinicRochesterMinnesota
| | - Ashley N. Sigafoos
- Department of Biochemistry and Molecular BiologyMayo ClinicRochesterMinnesota
| | - Jennifer L. Gauerke
- Department of Biochemistry and Molecular BiologyMayo ClinicRochesterMinnesota
| | - Randall G. Krug
- Neuroscience Graduate ProgramMayo Clinic Graduate School of Biomedical SciencesRochesterMinnesota
| | - MaKayla R. Serres
- Department of Biochemistry and Molecular BiologyMayo ClinicRochesterMinnesota
| | - Dakota C. Jacobs
- Department of Biochemistry and Molecular BiologyMayo ClinicRochesterMinnesota
| | - Ryan P. Cotter
- Department of Biochemistry and Molecular BiologyMayo ClinicRochesterMinnesota
| | - Biswadeep Das
- Department of Biochemistry and Molecular BiologyMayo ClinicRochesterMinnesota
| | - Morgan O. Petersen
- Department of Biochemistry and Molecular BiologyMayo ClinicRochesterMinnesota
| | - Camden L. Daby
- Department of Biochemistry and Molecular BiologyMayo ClinicRochesterMinnesota
| | - Rhianna M. Urban
- Department of Biochemistry and Molecular BiologyMayo ClinicRochesterMinnesota
| | - Bethany C. Berry
- Department of Biochemistry and Molecular BiologyMayo ClinicRochesterMinnesota
| | - Karl J. Clark
- Neuroscience Graduate ProgramMayo Clinic Graduate School of Biomedical SciencesRochesterMinnesota
- Department of Biochemistry and Molecular BiologyMayo ClinicRochesterMinnesota
| |
Collapse
|
11
|
Sakamoto T, Yoshiki M, Sakamoto H. The mineralocorticoid receptor knockout in medaka is further validated by glucocorticoid receptor compensation. Sci Data 2017; 4:170189. [PMID: 29231924 PMCID: PMC5726310 DOI: 10.1038/sdata.2017.189] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 10/30/2017] [Indexed: 11/18/2022] Open
Abstract
To study the critical role of mineralocorticoid signalling, we generated a constitutive mineralocorticoid receptor (MR)-knockout (KO) medaka as the first adult-viable MR-KO animal. This KO medaka displayed abnormal behaviours affected by visual stimuli. In contrast, the loss of MR did not result in overt phenotypic changes in osmoregulation, despite the well-known osmoregulatory functions of MR in mammals. Since glucocorticoid receptor (GR) has been suggested to compensate for loss of MR, we examined expression of duplicated GRs with markedly different ligand sensitivities, in various tissues. qRT-PCR results revealed that the absence of MR induced GR1 in the brain and eyes, but not in osmoregulatory organs. This reinforces the important functions of glucocorticoid signalling, but the minor role of mineralocorticoid signalling, in fish osmoregulation. Because both 11-deoxycorticosterone (DOC) and cortisol are ligands for MR, whereas GRs are specific to cortisol, GR1 signalling may compensate for the absence of cortisol-MR, rather than that of DOC-MR. Thus, this GR expression suggests that our MR-KO model can be used specifically to characterize DOC-MR signalling.
Collapse
Affiliation(s)
- Tatsuya Sakamoto
- Ushimado Marine Institute, Faculty of Science, Okayama University, Setouchi 701-4303, Japan
| | - Madoka Yoshiki
- Ushimado Marine Institute, Faculty of Science, Okayama University, Setouchi 701-4303, Japan
| | - Hirotaka Sakamoto
- Ushimado Marine Institute, Faculty of Science, Okayama University, Setouchi 701-4303, Japan
| |
Collapse
|
12
|
Principal function of mineralocorticoid signaling suggested by constitutive knockout of the mineralocorticoid receptor in medaka fish. Sci Rep 2016; 6:37991. [PMID: 27897263 PMCID: PMC5126551 DOI: 10.1038/srep37991] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/03/2016] [Indexed: 01/10/2023] Open
Abstract
As in osmoregulation, mineralocorticoid signaling is implicated in the control of brain-behavior actions. Nevertheless, the understanding of this role is limited, partly due to the mortality of mineralocorticoid receptor (MR)-knockout (KO) mice due to impaired Na+ reabsorption. In teleost fish, a distinct mineralocorticoid system has only been identified recently. Here, we generated a constitutive MR-KO medaka as the first adult-viable MR-KO animal, since MR expression is modest in osmoregulatory organs but high in the brain of adult medaka as for most teleosts. Hyper- and hypo-osmoregulation were normal in MR-KO medaka. When we studied the behavioral phenotypes based on the central MR localization, however, MR-KO medaka failed to track moving dots despite having an increase in acceleration of swimming. These findings reinforce previous results showing a minor role for mineralocorticoid signaling in fish osmoregulation, and provide the first convincing evidence that MR is required for normal locomotor activity in response to visual motion stimuli, but not for the recognition of these stimuli per se. We suggest that MR potentially integrates brain-behavioral and visual responses, which might be a conserved function of mineralocorticoid signaling through vertebrates. Importantly, this fish model allows for the possible identification of novel aspects of mineralocorticoid signaling.
Collapse
|
13
|
Corticosteroid and progesterone transactivation of mineralocorticoid receptors from Amur sturgeon and tropical gar. Biochem J 2016; 473:3655-3665. [DOI: 10.1042/bcj20160579] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/12/2016] [Indexed: 01/23/2023]
Abstract
The response to a panel of steroids by the mineralocorticoid receptor (MR) from Amur sturgeon and tropical gar, two basal ray-finned fish, expressed in HEK293 cells was investigated. Half-maximal responses (EC50s) for transcriptional activation of sturgeon MR by 11-deoxycorticosterone, corticosterone, 11-deoxycortisol, cortisol and aldosterone, and progesterone (Prog) were between 13 and 150 pM. For gar MR, EC50s were between 8 and 55 pM. Such low EC50s support physiological regulation by these steroids of the MR in sturgeon and gar. Companion studies with human and zebrafish MRs found higher EC50s compared with EC50s for sturgeon and gar MRs, with EC50s for zebrafish MR closer to gar and sturgeon MRs than was human MR. For zebrafish MR, EC50s were between 75 and 740 pM; for human MR, EC50s were between 65 pM and 2 nM. In addition to Prog, spironolactone (spiron) and 19nor-progesterone (19norP) were agonists for all three fish MRs, in contrast with their antagonist activity for human MR, which is hypothesized to involve serine-810 in human MR because all three steroids are agonists for a mutant human Ser810Leu-MR. Paradoxically, sturgeon, gar, and zebrafish MRs contain a serine corresponding to serine-810 in human MR. Our data suggest alternative mechanism(s) for Prog, spiron, and 19norP as MR agonists in these three ray-finned fishes and the need for caution in applying data for Prog signaling in zebrafish to human physiology.
Collapse
|
14
|
Espinoza MB, Aedo JE, Zuloaga R, Valenzuela C, Molina A, Valdés JA. Cortisol Induces Reactive Oxygen Species Through a Membrane Glucocorticoid Receptor in Rainbow Trout Myotubes. J Cell Biochem 2016; 118:718-725. [PMID: 27564718 DOI: 10.1002/jcb.25676] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 08/25/2016] [Indexed: 12/31/2022]
Abstract
Cortisol is an essential regulator of neuroendocrine stress responses in teleosts. Cortisol predominantly affects target tissues through the genomic pathway, which involves interacting with cytoplasmic glucocorticoid receptors, and thereby, modulating stress-response gene expressions. Cortisol also produces rapid effects via non-genomic pathways, which do not involve gene transcription. Although cortisol-mediated genomic pathways are well documented in teleosts, non-genomic pathways are not fully understood. Moreover, no studies have focused on the contribution of non-genomic cortisol pathways in compensatory stress responses in fish. In this study, rainbow trout (Oncorhynchus mykiss) skeletal myotubes were stimulated with physiological concentrations of cortisol and cortisol-BSA, a membrane-impermeable agent, resulting in an early induction of reactive oxygen species (ROS). This production was not suppressed by transcription or translation inhibitors, suggesting non-genomic pathway involvement. Moreover, myotube preincubation with RU486 and NAC completely suppressed cortisol- and cortisol-BSA-induced ROS production. Subcellular fractionation analysis revealed the presence of cell membrane glucocorticoid receptors. Finally, cortisol-BSA induced a significant increase in ERK1/2 and CREB phosphorylation, as well as in CREB-dependent transcriptional activation of the pgc1a gene expression. The obtained results strongly suggest that cortisol acts through a non-genomic glucocorticoid receptor-mediated pathway to induce ROS production and contribute to ERK/CREB/PGC1-α signaling pathway activation as stress compensation mechanisms. J. Cell. Biochem. 118: 718-725, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Marlen B Espinoza
- Laboratorio de Biotecnología Molecular, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile.,Interdisciplinary Center for Aquaculture Research (INCAR), P.O. Box 160-C, Concepción, Chile
| | - Jorge E Aedo
- Laboratorio de Biotecnología Molecular, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile.,Interdisciplinary Center for Aquaculture Research (INCAR), P.O. Box 160-C, Concepción, Chile
| | - Rodrigo Zuloaga
- Laboratorio de Biotecnología Molecular, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile.,Interdisciplinary Center for Aquaculture Research (INCAR), P.O. Box 160-C, Concepción, Chile
| | - Cristian Valenzuela
- Laboratorio de Biotecnología Molecular, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile.,Interdisciplinary Center for Aquaculture Research (INCAR), P.O. Box 160-C, Concepción, Chile
| | - Alfredo Molina
- Laboratorio de Biotecnología Molecular, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile.,Interdisciplinary Center for Aquaculture Research (INCAR), P.O. Box 160-C, Concepción, Chile.,Centro de Investigación Marina Quintay (CIMARQ), Universidad Andrés Bello, Quintay, Chile
| | - Juan A Valdés
- Laboratorio de Biotecnología Molecular, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile.,Interdisciplinary Center for Aquaculture Research (INCAR), P.O. Box 160-C, Concepción, Chile.,Centro de Investigación Marina Quintay (CIMARQ), Universidad Andrés Bello, Quintay, Chile
| |
Collapse
|
15
|
Sea lampreys elicit strong transcriptomic responses in the lake trout liver during parasitism. BMC Genomics 2016; 17:675. [PMID: 27558222 PMCID: PMC4997766 DOI: 10.1186/s12864-016-2959-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 07/21/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The sea lamprey (Petromyzon marinus) is a jawless vertebrate that parasitizes fish as an adult and, with overfishing, was responsible for the decline in lake trout (Salvelinus namaycush) populations in the Great Lakes. While laboratory studies have looked at the rates of wounding on various fish hosts, there have been few investigations on the physiological effects of lamprey wounding on the host. In the current study, two morphotypes of lake trout, leans and siscowets, were parasitized in the laboratory by sea lampreys and the liver transcriptomes of parasitized and nonparasitized fish were analyzed by RNA-seq (DESeq2 and edgeR) to determine which genes and gene pathways (Ingenuity Pathway Analysis) were altered by lamprey parasitism. RESULTS Overall, genes encoding molecules involved in catalytic (e.g., enzymatic) and binding activities (factors and regulators) predominated the regulated gene lists. In siscowets, the top upregulated gene was growth arrest and DNA-damage-inducible protein and for leans it was interleukin-18-binding protein. In leans, the most significantly downregulated gene was UDP-glucuronosyltransferase 2A2 - DESeq2 or phosphotriesterase related - edgeR. For siscowets, the top downregulated gene was C-C motif chemokine 19 - DESeq2 or GTP-binding protein Rhes - edgeR. Gene pathways associated with inflammatory-related responses or factors (cytokines, chemokines, oxidative stress, apoptosis) were regulated following parasitism in both morphotypes. However, pathways related to energy metabolism (glycolysis, gluconeogenesis, lipolysis, lipogenesis) were also regulated. These pathways or the intensity or direction (up/downregulation) of regulation were different between leans and siscowets. Finally, one of the most significantly downregulated pathways in both leans and siscowets was the kynurenine (tryptophan degradation) pathway. CONCLUSIONS The results indicate a strong transcriptional response in the lake trout to lamprey parasitism that entails genes involved in the regulation of inflammation and cellular damage. Responses to energy utilization as well as hydromineral balance also occurred indicating an adjustment in the host to energy demands and osmotic imbalances during parasitism. Given the role of the kynurenine pathway in promoting immunotolerance in mammals, the downregulation observed in this pathway during parasitism may signify an attempt by the host to inhibit any feedback suppression of the immune response to the lamprey.
Collapse
|
16
|
Tokarz J, Möller G, Hrabě de Angelis M, Adamski J. Steroids in teleost fishes: A functional point of view. Steroids 2015; 103:123-44. [PMID: 26102270 DOI: 10.1016/j.steroids.2015.06.011] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 06/11/2015] [Accepted: 06/15/2015] [Indexed: 01/23/2023]
Abstract
Steroid hormones are involved in the regulation of a variety of processes like embryonic development, sex differentiation, metabolism, immune responses, circadian rhythms, stress response, and reproduction in vertebrates. Teleost fishes and humans show a remarkable conservation in many developmental and physiological aspects, including the endocrine system in general and the steroid hormone related processes in particular. This review provides an overview of the current knowledge about steroid hormone biosynthesis and the steroid hormone receptors in teleost fishes and compares the findings to the human system. The impact of the duplicated genome in teleost fishes on steroid hormone biosynthesis and perception is addressed. Additionally, important processes in fish physiology regulated by steroid hormones, which are most dissimilar to humans, are described. We also give a short overview on the influence of anthropogenic endocrine disrupting compounds on steroid hormone signaling and the resulting adverse physiological effects for teleost fishes. By this approach, we show that the steroidogenesis, hormone receptors, and function of the steroid hormones are reasonably well understood when summarizing the available data of all teleost species analyzed to date. However, on the level of a single species or a certain fish-specific aspect of physiology, further research is needed.
Collapse
Affiliation(s)
- Janina Tokarz
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Experimental Genetics, Genome Analysis Center, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Gabriele Möller
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Experimental Genetics, Genome Analysis Center, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Martin Hrabě de Angelis
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Experimental Genetics, Genome Analysis Center, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany; Lehrstuhl für Experimentelle Genetik, Technische Universität München, 85350 Freising-Weihenstephan, Germany; Member of German Center for Diabetes Research (DZD), Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Jerzy Adamski
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Experimental Genetics, Genome Analysis Center, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany; Lehrstuhl für Experimentelle Genetik, Technische Universität München, 85350 Freising-Weihenstephan, Germany; Member of German Center for Diabetes Research (DZD), Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany.
| |
Collapse
|
17
|
Liew HJ, Fazio A, Faggio C, Blust R, De Boeck G. Cortisol affects metabolic and ionoregulatory responses to a different extent depending on feeding ration in common carp, Cyprinus carpio. Comp Biochem Physiol A Mol Integr Physiol 2015. [DOI: 10.1016/j.cbpa.2015.07.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
18
|
Rossier BC, Baker ME, Studer RA. Epithelial sodium transport and its control by aldosterone: the story of our internal environment revisited. Physiol Rev 2015; 95:297-340. [PMID: 25540145 DOI: 10.1152/physrev.00011.2014] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Transcription and translation require a high concentration of potassium across the entire tree of life. The conservation of a high intracellular potassium was an absolute requirement for the evolution of life on Earth. This was achieved by the interplay of P- and V-ATPases that can set up electrochemical gradients across the cell membrane, an energetically costly process requiring the synthesis of ATP by F-ATPases. In animals, the control of an extracellular compartment was achieved by the emergence of multicellular organisms able to produce tight epithelial barriers creating a stable extracellular milieu. Finally, the adaptation to a terrestrian environment was achieved by the evolution of distinct regulatory pathways allowing salt and water conservation. In this review we emphasize the critical and dual role of Na(+)-K(+)-ATPase in the control of the ionic composition of the extracellular fluid and the renin-angiotensin-aldosterone system (RAAS) in salt and water conservation in vertebrates. The action of aldosterone on transepithelial sodium transport by activation of the epithelial sodium channel (ENaC) at the apical membrane and that of Na(+)-K(+)-ATPase at the basolateral membrane may have evolved in lungfish before the emergence of tetrapods. Finally, we discuss the implication of RAAS in the origin of the present pandemia of hypertension and its associated cardiovascular diseases.
Collapse
Affiliation(s)
- Bernard C Rossier
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland; Division of Nephrology-Hypertension, University of California San Diego, La Jolla, California; and Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Michael E Baker
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland; Division of Nephrology-Hypertension, University of California San Diego, La Jolla, California; and Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Romain A Studer
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland; Division of Nephrology-Hypertension, University of California San Diego, La Jolla, California; and Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| |
Collapse
|
19
|
Tokarz J, Möller G, de Angelis MH, Adamski J. Zebrafish and steroids: what do we know and what do we need to know? J Steroid Biochem Mol Biol 2013; 137:165-73. [PMID: 23376612 DOI: 10.1016/j.jsbmb.2013.01.003] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 12/26/2012] [Accepted: 01/01/2013] [Indexed: 01/23/2023]
Abstract
Zebrafish, Danio rerio, has long been used as a model organism in developmental biology. Nowadays, due to their advantages compared to other model animals, the fish gain popularity and are also increasingly used in endocrinology. This review focuses on an important aspect of endocrinology in zebrafish by summarizing the progress in steroid hormone related research. We present the state of the art of research on steroidogenesis, the action of steroid hormones, and steroid catabolism and cover the incremental usage of zebrafish as a test animal in endocrine disruption research. By this approach, we demonstrate that some aspects of steroid hormone research are well characterized (e.g., expression patterns of the genes involved), while other aspects such as functional analyses of enzymes, steroid hormone elimination, or the impact of steroid hormones on embryonic development or sex differentiation have not been extensively studied and are poorly understood. This article is part of a Special Issue entitled 'CSR 2013'.
Collapse
Affiliation(s)
- Janina Tokarz
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Experimental Genetics, Genome Analysis Center, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | | | | | | |
Collapse
|
20
|
Dhanasiri AK, Fernandes JM, Kiron V. Acclimation of Zebrafish to Transport Stress. Zebrafish 2013; 10:87-98. [DOI: 10.1089/zeb.2012.0843] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
| | | | - Viswanath Kiron
- Faculty of Biosciences and Aquaculture, University of Nordland, Bodø, Norway
| |
Collapse
|
21
|
Nesan D, Vijayan MM. Role of glucocorticoid in developmental programming: evidence from zebrafish. Gen Comp Endocrinol 2013; 181:35-44. [PMID: 23103788 DOI: 10.1016/j.ygcen.2012.10.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 10/13/2012] [Indexed: 10/27/2022]
Abstract
The vertebrate corticosteroid stress response is highly conserved and a key function is to restore homeostasis by mobilizing and reallocating energy stores. This process is primarily initiated by activation of the hypothalamus-pituitary-adrenal axis, leading to the release of corticosteroids into the circulation. In teleosts, cortisol is the primary corticosteroid that is released into the circulation in response to stress. This steroid activates corticosteroid receptors that are ligand-bound transcription factors, modulating downstream gene expression in target tissues. Recent research in zebrafish (Danio rerio) has identified novel roles for cortisol in early developmental processes, including organogenesis and mesoderm formation. As cortisol biosynthesis commences only around the time of hatch in teleosts, the early developmental events are orchestrated by cortisol that is maternally deposited prior to fertilization. This review will highlight the molecular events leading to the development of the corticosteroid stress axis, and the possible role of cortisol in the developmental programming of stress axis function. Use of zebrafish as a model may lead to significant insights into the conserved role of glucocorticoids during early development with potential implications in biomedical research, including fetal stress syndromes in humans.
Collapse
Affiliation(s)
- Dinushan Nesan
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | | |
Collapse
|
22
|
Aruna A, Nagarajan G, Chang CF. Involvement of corticotrophin-releasing hormone and corticosteroid receptors in the brain-pituitary-gill of tilapia during the course of seawater acclimation. J Neuroendocrinol 2012; 24:818-30. [PMID: 22250893 DOI: 10.1111/j.1365-2826.2012.02282.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
The mRNA expression of genes for corticotrophin-releasing hormone (CRH) and the hormone receptors CRH-receptor/CRH-R, glucocorticoid receptor 1/2 (GR1/2) and mineralocorticoid receptor (MR) was studied in the brain, pituitary and gill of tilapia (Oreochromis mossambibus) during salinity and handling stress by real-time quantitative-polymerase chain reaction analysis. The results indicated that the transcripts of CRH and CRH-R were increased in the forebrain, midbrain and gill, whereas elevated hypothalamic CRH mRNA suppressed the CRH-R mRNA in the pituitary in seawater (SW) fish. The levels of plasma osmolality and cortisol were significantly increased in SW compared to freshwater fish. The up-regulation of GR1, GR2, MR and α-NKA (Na(+) /K(+) -ATPase) transcripts in SW fish provided evidence that cortisol responds to stress and involves ion-base regulation via the GR1, GR2 and MR receptors in the gill. These data suggest that GR1, GR2 and MR have a pivotal role in the brain and gill. GR1, GR2 and MR expression may be dependent on CRH and cortisol expression in the brain and gill. In addition, we performed in situ hybridisation analysis to localise and differentiate the CRH, CRH-R, GR1, GR2 and MR transcripts in the brain of FW- and SW-acute acclimated tilapia during salinity stress. In almost all transcripts, the hybridisation signal was significantly abundant in the SW-acute acclimated tilapia brain, especially in the dorsal ventral cephalon, dorsal nucleus preopticus pars magnocellularis and dorsal nucleus preopticus pars parvocellularis. Salinity stress induced differential and specific responses in the gill and brain compared to handling stress.
Collapse
Affiliation(s)
- A Aruna
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | | | | |
Collapse
|
23
|
Kassahn KS, Ragan MA, Funder JW. Mineralocorticoid receptors: evolutionary and pathophysiological considerations. Endocrinology 2011; 152:1883-90. [PMID: 21343255 DOI: 10.1210/en.2010-1444] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mineralocorticoid receptors (MR), glucocorticoid receptors (GR), progesterone receptors (PR), and androgen receptors (AR) comprise a closely related subfamily within the human 49-member nuclear receptor family. These receptors and their cognate ligands play major roles in homeostasis, reproduction, growth, and development, despite which their evolution and diversification remains incompletely understood. Several conflicting models have been advanced for the evolution of this subfamily. We have thus undertaken Bayesian and maximum likelihood phylogenetic analyses of this subfamily. The Bayesian consensus and maximum likelihood trees support a basal position for MR, with the PR and AR forming a sister clade. We next performed analyses using topological constraints to directly contrast the likelihood of seven phylogenetic models. In these analyses, three models have similar support: one proposes two sister clades (MR and GR, PR and AR); the other two propose a different subfamily member (MR or GR) to be the first to have diverged. Ancestral state reconstructions at sites critical for physiological function show that the S810L mutation in the MR, which results in the MR being similar to estrogen receptors and the more distantly related retinoic acid receptor-α is likely to reflect the ancestral receptor sequence before the divergence of this subfamily and provides further support for MR having been the first of the subfamily to diverge. Finally, we drew on pathophysiological comparisons to help to distinguish the different models. On the basis of our phylogenetic analyses and pathophysiological considerations, we propose that the MR was the first to diverge from the ancestral gene lineage from which this subfamily derived.
Collapse
MESH Headings
- Animals
- Bayes Theorem
- Evolution, Molecular
- Humans
- Models, Molecular
- Phylogeny
- Protein Conformation
- Receptors, Androgen/genetics
- Receptors, Androgen/physiology
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/physiology
- Receptors, Mineralocorticoid/chemistry
- Receptors, Mineralocorticoid/genetics
- Receptors, Mineralocorticoid/physiology
- Receptors, Progesterone/genetics
- Receptors, Progesterone/physiology
Collapse
Affiliation(s)
- Karin S Kassahn
- Institute for Molecular Bioscience and Australian Research Council Centre of Excellence in Bioinformatic, University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | |
Collapse
|
24
|
Löhr H, Hammerschmidt M. Zebrafish in Endocrine Systems: Recent Advances and Implications for Human Disease. Annu Rev Physiol 2011; 73:183-211. [DOI: 10.1146/annurev-physiol-012110-142320] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Heiko Löhr
- Institute for Developmental Biology, University of Cologne, D-50923 Cologne, Germany
| | - Matthias Hammerschmidt
- Institute for Developmental Biology, University of Cologne, D-50923 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CEDAD), University of Cologne, D-50923 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, D-50923 Cologne, Germany;
| |
Collapse
|
25
|
Pippal JB, Cheung CMI, Yao YZ, Brennan FE, Fuller PJ. Characterization of the zebrafish (Danio rerio) mineralocorticoid receptor. Mol Cell Endocrinol 2011; 332:58-66. [PMID: 20932876 DOI: 10.1016/j.mce.2010.09.014] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 09/06/2010] [Accepted: 09/28/2010] [Indexed: 01/21/2023]
Abstract
Comparison between evolutionarily distant receptors can provide critical insights into both structure and function. Sequence comparison between the mineralocorticoid receptors (MR) of the zebrafish (zMR) and human (hMR) reveals a high degree of sequence conservation in the major functional domains. We isolated a zMR cDNA to contrast the transcriptional response to a range of ligands and to establish whether a teleost MR exhibits the amino/carboxyl-terminal interaction (N/C-interaction) previously reported for the hMR. Aldosterone, deoxycorticosterone (DOC) and cortisol induced zMR transcriptional activity with similar efficacy to that observed with the hMR. The hMR antagonist, spironolactone, acted as an agonist with the zMR. The zMR exhibited an N/C-interaction in response to aldosterone but, in contrast to the hMR, cortisol and DOC predominantly stimulated the interaction in the zMR. Conservation of the N/C-interaction between evolutionarily distant MR provides evidence of functional significance.
Collapse
Affiliation(s)
- Jyotsna B Pippal
- Prince Henry's Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia
| | | | | | | | | |
Collapse
|
26
|
Milla S, Wang N, Mandiki SNM, Kestemont P. Corticosteroids: Friends or foes of teleost fish reproduction? Comp Biochem Physiol A Mol Integr Physiol 2009; 153:242-51. [PMID: 19254778 DOI: 10.1016/j.cbpa.2009.02.027] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 02/20/2009] [Accepted: 02/20/2009] [Indexed: 01/08/2023]
Affiliation(s)
- S Milla
- University of Namur (FUNDP), Unit of Research in Organismal Biology, Rue de Bruxelles 61, B-5000, Namur, Belgium.
| | | | | | | |
Collapse
|
27
|
Alsop D, Vijayan MM. Development of the corticosteroid stress axis and receptor expression in zebrafish. Am J Physiol Regul Integr Comp Physiol 2007; 294:R711-9. [PMID: 18077507 DOI: 10.1152/ajpregu.00671.2007] [Citation(s) in RCA: 277] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Using zebrafish embryos and larvae, we examined the temporal patterns of cortisol and expression of genes involved in corticosteroid synthesis and signaling. Embryonic cortisol levels decreased approximately 70% from 1.5 h postfertilization (hpf) to hatch (approximately 42 hpf) and then increased 27-fold by 146 hpf. The mRNA abundances of steroidogenic acute regulatory protein, 11beta-hydroxylase and 11beta-hydroxysteroid dehydrogenase type 2, increased severalfold after hatch and preceded the rise of cortisol levels. In contrast to other teleosts that possess two glucocorticoid receptors (GRs) and one mineralocorticoid receptor (MR), only one GR and MR were identified in zebrafish, which were cloned and sequenced. GR mRNA abundance decreased from 1.5 to 25 hpf, rebounded, and then was stable from 49 to 146 hpf. MR transcripts increased continuously from 1.5 hpf and were 52-fold higher by 97 hpf. An acute cortisol response to a stressor was not detected until 97 hpf, whereas melanocortin type 2 receptor mRNA increased between 25 and 49 hpf. Collectively, the patterns of cortisol and the expression of cortisol biosynthetic genes and melanocortin type 2 receptor suggest that the corticoid stress axis in zebrafish is fully developed only after hatch. The temporal differences in GR, MR, and 11beta-hydroxysteroid dehydrogenase type 2 gene expression lead us to propose a key role for MR signaling by maternal cortisol during embryogenesis, whereas cortisol secretion after hatch may be regulating GR expression and signaling in zebrafish.
Collapse
Affiliation(s)
- Derek Alsop
- Department of Biology, University of Waterloo, Waterloo, ON, Canada N2L 3G1
| | | |
Collapse
|
28
|
Veillette PA, Merino M, Marcaccio ND, Garcia MM, Specker JL. Cortisol is necessary for seawater tolerance in larvae of a marine teleost the summer flounder. Gen Comp Endocrinol 2007; 151:116-21. [PMID: 17292366 DOI: 10.1016/j.ygcen.2006.12.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Revised: 11/22/2006] [Accepted: 12/26/2006] [Indexed: 11/20/2022]
Abstract
Larval-stage summer flounder (Paralichthys dentatus) were immersed in the corticosteroid-receptor blocker RU486 to test the effects of cortisol deficiency on salinity tolerance. Premetamorphic larvae held at 10 (near isosmotic) or 30 (hyperosmotic) parts per thousand ( per thousand) seawater survived well over 5d in 0, 0.012, or 0.12 microM RU486. However, at concentrations of 1.2 or 3.6 microM RU486, mortality was significantly greater for larvae in 30 per thousand compared to larvae in 10 per thousand. In a separate experiment, the ability of RU486 to inhibit tolerance to hyperosmotic medium (30 per thousand) was confirmed; immersion at 1.2 microM RU486 induced mortality of larvae in the metamorphic climax stage held at 30 per thousand, but not 0 or 10 per thousand. Mortality due to RU486 in pre- or prometamorphic stage larvae was prevented by concurrent immersion in cortisol at concentrations approximately 10-200 times greater than RU486, indicating that the action of RU486 was specific to antagonism of cortisol. The efficacy of 1.2 microM RU486 in reducing survival in 30 per thousand was found to be stage-dependent and exhibited the following hierarchy for fastest time to 50% mortality: prometamorphosis>metamorphic climax>premetamorphosis. In a 5-d pretreatment of pre- or prometamorphic larvae by immersion in 20 microM cortisol and/or 0.12 microM RU486 at 30 per thousand, only RU486 had a limited effect on decreasing survival when larvae were challenged with abrupt exposure to 50 per thousand. In total, the results evidence for the first time a necessary role for cortisol in seawater tolerance of a larval marine teleost.
Collapse
Affiliation(s)
- Philip A Veillette
- Graduate School of Oceanography, University of Rhode Island, 218 South Ferry Rd., Narragansett, RI 02882-1197, USA.
| | | | | | | | | |
Collapse
|
29
|
Peripheral Endocrine Glands. II. The Adrenal Glands and the Corpuscles of Stannius. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/s1546-5098(07)26009-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
30
|
Scott GR, Keir KR, Schulte PM. Effects of spironolactone and RU486 on gene expression and cell proliferation after freshwater transfer in the euryhaline killifish. J Comp Physiol B 2005; 175:499-510. [PMID: 16088394 DOI: 10.1007/s00360-005-0014-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2005] [Revised: 04/20/2005] [Accepted: 06/14/2005] [Indexed: 10/25/2022]
Abstract
We have explored the possible mechanisms by which mineralocorticoid (MR) and glucocorticoid (GR) receptors regulate the response to freshwater transfer in the gills of the euryhaline killifish Fundulus heteroclitus. Killifish were implanted with RU486 (GR antagonist) or spironolactone (MR antagonist) at doses of 0.1-1.0 mg g(-1), and subsequently transferred from 10 per thousand brackish water to freshwater. Compared to brackish water sham fish, mRNA expression of CFTR and NKCC1 decreased in the gills of sham fish transferred to freshwater, whereas Na(+), K(+)-ATPase alpha(1a) mRNA expression and alpha protein abundance, as well as cell proliferation (detected using BrdU) increased. Spironolactone inhibited the normal increase in cell proliferation and Na(+), K(+)-ATPase expression after freshwater transfer. RU486 increased plasma cortisol levels and may have slightly inhibited Na(+), K(+)-ATPase activity, but did not change alpha(1a ) expression. RU486 had no effect on cell proliferation in the non-lamellar region of the gills, but increased proliferation in the lamellar region. Neither antagonist inhibited the suppression of CFTR or NKCC1 expression after freshwater transfer. Glucocorticoid receptor expression was reduced in all sham and antagonist treatments compared to untreated controls, but no other consistent differences were observed. The effects of spironolactone suggest that MR is important for regulating ion transport in killifish gills after freshwater transfer.
Collapse
Affiliation(s)
- Graham R Scott
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| | | | | |
Collapse
|
31
|
Metz JR, Geven EJW, van den Burg EH, Flik G. ACTH, α-MSH, and control of cortisol release: cloning, sequencing, and functional expression of the melanocortin-2 and melanocortin-5 receptor in Cyprinus carpio. Am J Physiol Regul Integr Comp Physiol 2005; 289:R814-26. [PMID: 15890786 DOI: 10.1152/ajpregu.00826.2004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cortisol release from fish head kidney during the acute phase of the stress response is controlled by the adrenocorticotropic hormone (ACTH) from the pituitary pars distalis (PD). Alpha-melanocyte-stimulating hormone (α-MSH) and β-endorphin, from the pars intermedia (PI), have been implicated in cortisol release during the chronic phase. The present study addresses the regulation of cortisol release by ACTH and α-MSH in common carp ( Cyprinus carpio) and includes characterization of their receptors, namely, the melanocortin-2 and melanocortin-5 receptors (MC2R and MC5R). We could not demonstrate corticotropic activity of α-MSH, β-endorphin, and combinations of these. We do show a corticotrope in the PI, but its identity is as yet uncertain. Carp restrained for 1 and 7 days showed elevated plasma cortisol and α-MSH levels; cortisol is still elevated but lower at day 7 than day 1 of restraint. Interrenal response capacity is unaffected, as estimated by stimulation with a maximum dose ACTH in a superfusion setup. MC2R and MC5R appear phylogenetically well conserved. MC2R is predominantly expressed in head kidney; a low abundance was found in spleen and kidney. MC5R is expressed in brain, pituitary PD, kidney, and skin. Quantitative PCR analysis of MC2R and MC5R expression in the head kidney of restrained fish reveals MC2R mRNA downregulation after 7 days restraint, in line with lower plasma cortisol levels seen. We discuss regulation of corticosteroid production from a phylogenetic perspective. We propose that increased levels of α-MSH exert a positive feedback on hypothalamic corticotropin-releasing hormone release to sustain a mild stress axis activity.
Collapse
MESH Headings
- Adrenocorticotropic Hormone/metabolism
- Adrenocorticotropic Hormone/pharmacology
- Amino Acid Sequence
- Animals
- Base Sequence
- Carps
- Cloning, Molecular
- Hydrocortisone/blood
- Hydrocortisone/metabolism
- Kidney/metabolism
- Molecular Sequence Data
- Phylogeny
- Receptor, Melanocortin, Type 2/genetics
- Receptor, Melanocortin, Type 2/metabolism
- Receptors, Corticotropin/genetics
- Receptors, Corticotropin/metabolism
- Receptors, Melanocortin
- Restraint, Physical
- Stress, Physiological/etiology
- Stress, Physiological/metabolism
- Tissue Distribution
- alpha-MSH/blood
- alpha-MSH/metabolism
- alpha-MSH/pharmacology
Collapse
Affiliation(s)
- Juriaan R Metz
- Dept. Organismal Animal Physiology, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
| | | | | | | |
Collapse
|