1
|
Magdy N, Abdelkader NF, Zaki HF, Kamel AS. Potential exacerbation of polycystic ovary syndrome by saccharin sodium Via taste receptors in a letrozole rat model. Food Chem Toxicol 2024; 191:114874. [PMID: 39032681 DOI: 10.1016/j.fct.2024.114874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/30/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
The most common cause of anovulatory infertility is polycystic ovarian syndrome (PCOS), which is closely associated with obesity and metabolic syndrome. Artificial sweetener, notably saccharin sodium (SS), has been utilized in management of obesity in PCOS. However, accumulating evidence points towards SS deleterious effects on ovarian physiology, potentially through activation of ovarian sweet and bitter taste receptors, culminating in a phenotype reminiscent of PCOS. This research embarked on exploration of SS influence on ovarian functions within a PCOS paradigm. Rats were categorized into six groups: Control, Letrozole-model, two SS groups at 2 dose levels, and two groups receiving 2 doses of SS with Letrozole. The study underscored SS capability to potentiate PCOS-related anomalies. Elevated cystic profile with outer thin granulosa cells, were discernible. This owed to increased apoptotic markers as cleaved CASP-3, mirrored by high BAX and low BCL-2, with enhanced p38-MAPK/ERK1/2 pathway. This manifestation was accompanied by activation of taste receptors and disruption of steroidogenic factors; StAR, CYP11A1, and 17β-HSD. Thus, SS showed an escalation in testosterone, progesterone, estrogen, and LH/FSH ratio, insinuating a perturbation in endocrine regulation. It is found that there is an impact of taste receptor downstream signaling on ovarian steroidogenesis and apoptosis instigating pathophysiological milieu of PCOS.
Collapse
Affiliation(s)
- Nourhan Magdy
- Quality Assurance, National Food Safety Authority, Bab El-Louq, Cairo, Egypt
| | - Noha F Abdelkader
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Egypt
| | - Hala F Zaki
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Egypt
| | - Ahmed S Kamel
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Egypt.
| |
Collapse
|
2
|
Mierzejewski K, Gerwel Z, Kurzyńska A, Golubska M, Bogacka I. In vitro effects of PPAR gamma ligands on gene expression in corpus luteum explants in non-pregnant pigs - Transcriptome analysis. Theriogenology 2023; 203:69-81. [PMID: 36977370 DOI: 10.1016/j.theriogenology.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/23/2023] [Accepted: 03/05/2023] [Indexed: 03/15/2023]
Abstract
The corpus luteum (CL) is a temporary endocrine structure in the female ovaries that develops cyclically in mature females during luteinization. This study aimed to determine the in vitro effects of peroxisome proliferator-activated receptor gamma (PPARγ) ligands on the transcriptomic profile of the porcine CL in the mid- and late-luteal phase of the estrous cycle using RNA-seq technology. The CL slices were incubated in the presence of PPARγ agonist - pioglitazone or antagonist - T0070907. We identified 40 differentially expressed genes after treatment with pioglitazone and 40 after treatment with T0070907 in the mid-luteal phase as well as 26 after pioglitazone and 29 after T0070907 treatment in the late-luteal phase of the estrous cycle. In addition, we detected differences in gene expression between the mid- and late-luteal phase without treatment (409 differentially expressed genes). This study revealed a number of novel candidate genes that may play a role in controlling the function of CL by regulating signaling pathways related to ovarian steroidogenesis, metabolic processes, cell differentiation, apoptosis, and immune responses. These findings become a basis for further studies to explain the mechanism of PPARγ action in the reproductive system.
Collapse
|
3
|
Gareis NC, Rodríguez FM, Cattaneo Moreyra ML, Stassi AF, Angeli E, Etchevers L, Salvetti NR, Ortega HH, Hein GJ, Rey F. Contribution of key elements of nutritional metabolism to the development of cystic ovarian disease in dairy cattle. Theriogenology 2023; 197:209-223. [PMID: 36525860 DOI: 10.1016/j.theriogenology.2022.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
The alteration of signaling molecules involved in the general metabolism of animals can negatively influence reproduction. In dairy cattle, the development of follicular cysts and the subsequent appearance of ovarian cystic disease (COD) often lead to decreased reproductive efficiency in the herd. The objective of this review is to summarize the contribution of relevant metabolic and nutritional sensors to the development of COD in dairy cows. In particular, we focus on the study of alterations of the insulin signaling pathway, adiponectin, and other sensors and metabolites relevant to ovarian functionality, which may be related to the development of follicular persistence and follicular formation of cysts in dairy cattle. The results of these studies support the hypothesis that systemic factors could alter the local scenario in the follicle, generating an adverse microenvironment for the resumption of ovarian activity and possibly leading to the persistence of follicles and to the development and recurrence of COD.
Collapse
Affiliation(s)
- N C Gareis
- Laboratorio de Biología Celular y Molecular Aplicada, ICiVet-Litoral (UNL-CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias - Universidad Nacional del Litoral, Esperanza, Santa Fe, Argentina
| | - F M Rodríguez
- Laboratorio de Biología Celular y Molecular Aplicada, ICiVet-Litoral (UNL-CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias - Universidad Nacional del Litoral, Esperanza, Santa Fe, Argentina
| | - M L Cattaneo Moreyra
- Laboratorio de Biología Celular y Molecular Aplicada, ICiVet-Litoral (UNL-CONICET), Esperanza, Santa Fe, Argentina
| | - A F Stassi
- Laboratorio de Biología Celular y Molecular Aplicada, ICiVet-Litoral (UNL-CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias - Universidad Nacional del Litoral, Esperanza, Santa Fe, Argentina
| | - E Angeli
- Laboratorio de Biología Celular y Molecular Aplicada, ICiVet-Litoral (UNL-CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias - Universidad Nacional del Litoral, Esperanza, Santa Fe, Argentina
| | - L Etchevers
- Laboratorio de Biología Celular y Molecular Aplicada, ICiVet-Litoral (UNL-CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias - Universidad Nacional del Litoral, Esperanza, Santa Fe, Argentina
| | - N R Salvetti
- Laboratorio de Biología Celular y Molecular Aplicada, ICiVet-Litoral (UNL-CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias - Universidad Nacional del Litoral, Esperanza, Santa Fe, Argentina
| | - H H Ortega
- Laboratorio de Biología Celular y Molecular Aplicada, ICiVet-Litoral (UNL-CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias - Universidad Nacional del Litoral, Esperanza, Santa Fe, Argentina
| | - G J Hein
- Laboratorio de Biología Celular y Molecular Aplicada, ICiVet-Litoral (UNL-CONICET), Esperanza, Santa Fe, Argentina; Centro Universitario Gálvez (CUG-UNL), Gálvez, Santa Fe, Argentina
| | - F Rey
- Laboratorio de Biología Celular y Molecular Aplicada, ICiVet-Litoral (UNL-CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias - Universidad Nacional del Litoral, Esperanza, Santa Fe, Argentina.
| |
Collapse
|
4
|
Hu S, Rong Y, Deng Y, Li L, Hu J, Yuan X, He H, Li L, Wang J. miR-27b-3p inhibits estrogen secretion of goose granulosa cells by targeting CYP1B1 through the AMPK signaling pathway. Poult Sci 2023; 102:102546. [PMID: 36842296 PMCID: PMC9984896 DOI: 10.1016/j.psj.2023.102546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/31/2022] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
Although miR-27b-3p has been evidenced to regulate the proliferation, apoptosis, and differentiation of a variety of mammalian cell types, its actions and mechanisms on ovarian cell steroidogenesis remains largely unknown in both mammalian and avian species. In this study, we aimed to determine the expression profiles of miR-27b-3p in granulosa cell layers during goose ovarian follicle development and to reveal its actions on estrogen (E2) secretion of goose granulosa cells as well as the underlying regulatory mechanisms. It was observed that miR-27b-3p was ubiquitously expressed throughout follicle development but exhibited much higher levels in hierarchical- than in prehierarchical follicles. In cultured granulosa cells from the fourth through second largest preovulatory (F4-F2) follicles of goose, up- and downregulation of miR-27b-3p by using its mimic and inhibitor significantly decreased and increased E2 secretion, respectively. Meanwhile, the mRNA levels of STAR and CYP19A1 were significantly reduced while those of CYP11A1 and 3βHSD were elevated in the mimic-transfected granulosa cells. By comparison, downregulation of miR-27b-3p enhanced the mRNA levels of STAR but had no significant effects on those of CYP19A1, CYP11A1, and 3βHSD. Results from bioinformatic prediction and luciferase reporter assay demonstrated that CYP1B1 was a downstream target of miR-27b-3p. Although the siRNA-mediated downregulation of CYP1B1 did not significantly change E2 secretion by goose granulosa cells, it reduced the mRNA levels of STAR and CYP19A1 as well as those of LKB1 and AMPKα, which are involved in the AMPK signaling pathway. Taken together, these data suggest that miR-27b-3p plays an inhibitory role in E2 secretion by goose F4-F2 granulosa cells, at least in part, by targeting CYP1B1 through the AMPK signaling pathway.
Collapse
Affiliation(s)
- Shenqiang Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yujing Rong
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yan Deng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Li Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Jiwei Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Xin Yuan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Hua He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Liang Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Jiwen Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, PR China.
| |
Collapse
|
5
|
Gupta M, Korde JP, Bahiram KB, Sardar VM, Kurkure NV. Expression and localization of apelin and apelin receptor (APJ) in buffalo ovarian follicles and corpus luteum and the in-vitro effect of apelin on steroidogenesis and survival of granulosa cells. Theriogenology 2023; 197:240-251. [PMID: 36525863 DOI: 10.1016/j.theriogenology.2022.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/04/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Apelin is an adipose tissue-derived hormone with many physiological functions, including the regulation of female reproduction. It acts through an orphan G protein-coupled receptor APJ/APLNR. The present study aimed to investigate the expression of apelin and its receptor APJ in the ovarian follicles and corpus luteum (CL) and the role of apelin on steroidogenesis and cell survival. Ovarian follicles were classified into four groups based on size and estradiol (E2) level in the follicular fluid as follows: (i) F1 (4-6 mm; <0.5 ng/mL) (ii) F2 (7-9 mm; 0.5-5 ng/mL) (iii) F3 (10-13 mm; 5-40 ng/mL) and (iv) F4 (dominant/pre-ovulatory follicle) (>13 mm; >180 ng/mL). The corpora lutea (CL) were categorized into early (CL1), mid (CL2), late luteal (CL3), and regressing (CL4) CL stages. Expression of apelin increased with follicle size, with significantly greatest in the dominant or pre-ovulatory follicle (P < 0.05). Expression of APJ was greater in large and dominant follicles than in small and medium follicles (P < 0.05). In CL, the mRNA and protein abundance of apelin and apelin receptor was greater during mid (CL2) and late luteal (CL3) stages as compared to early (CL1) and regressing (CL4) stages (P < 0.05). Both the factors were localized in granulosa and theca cells of follicles and small and large luteal cells of CL. The pattern of the intensity of immunofluorescence was similar to mRNA and protein expression. Granulosa cells were cultured in vitro and treated at 1, 10, and 10 ng/mL apelin-13 either alone or in the presence of the follicle-stimulating hormone (FSH) (30 ng/mL) or insulin-like growth factor-I (IGF-I) (10 ng/mL) for 48 h. The luteal cells were treated with apelin-13 at 1, 10, and 100 ng/mL doses for 48 h. Apelin treatment at 10 and 100 ng/ml significantly (P < 0.05) increased E2 secretion, cytochrome P450 aromatase or CYP19A1 expression in GC. In luteal cells, apelin at 10 ng/mL and 100 ng/mL significantly (P < 0.05) increased progesterone (P4) secretion and HSD3B1 expression. In GCs, apelin, either alone or in combination, increased PCNA expression and inhibited CASPASE3 expression suggesting its role in cell survival. In conclusion, this study provides novel evidence for the presence of apelin and receptor APJ in ovarian follicles and corpora lutea and the stimulatory effect on E2 and P4 production and promotes GC survival in buffalo, suggesting the role of apelin in follicular and luteal functions in buffalo.
Collapse
Affiliation(s)
- Mahesh Gupta
- Department of Veterinary Physiology, Nagpur Veterinary College, Nagpur, 440006, India.
| | - Jayant P Korde
- Department of Veterinary Physiology, Nagpur Veterinary College, Nagpur, 440006, India
| | - K B Bahiram
- Department of Veterinary Physiology, Nagpur Veterinary College, Nagpur, 440006, India
| | - V M Sardar
- Department of Veterinary Physiology, Nagpur Veterinary College, Nagpur, 440006, India
| | - Nitin V Kurkure
- Department of Veterinary Pathology, Nagpur Veterinary College, Nagpur, 440006, India
| |
Collapse
|
6
|
Zhao J, Yang PC, Yang H, Wang ZB, El-Samahy M, Wang F, Zhang YL. Dietary supplementation with metformin improves testis function and semen quality and increases antioxidants and autophagy capacity in goats. Theriogenology 2022; 188:79-89. [DOI: 10.1016/j.theriogenology.2022.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 04/10/2022] [Accepted: 05/30/2022] [Indexed: 11/25/2022]
|
7
|
Froment P, Plotton I, Giulivi C, Fabre S, Khoueiry R, Mourad NI, Horman S, Ramé C, Rouillon C, Grandhaye J, Bigot Y, Chevaleyre C, Le Guevel R, Mallegol P, Andriantsitohaina R, Guerif F, Tamburini J, Viollet B, Foretz M, Dupont J. At the crossroads of fertility and metabolism: the importance of AMPK-dependent signaling in female infertility associated with hyperandrogenism. Hum Reprod 2022; 37:1207-1228. [PMID: 35459945 DOI: 10.1093/humrep/deac067] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 03/01/2022] [Indexed: 03/25/2024] Open
Abstract
STUDY QUESTION What biological processes are linked to the signaling of the energy sensor 5'-AMP-activated protein kinase (AMPK) in mouse and human granulosa cells (GCs)? SUMMARY ANSWER The lack of α1AMPK in GCs impacted cell cycle, adhesion, lipid metabolism and induced a hyperandrogenic response. WHAT IS KNOWN ALREADY AMPK is expressed in the ovarian follicle, and its activation by pharmacological medications, such as metformin, inhibits the production of steroids. Polycystic ovary syndrome (PCOS) is responsible for infertility in approximately 5-20% of women of childbearing age and possible treatments include reducing body weight, improving lifestyle and the administration of a combination of drugs to improve insulin resistance, such as metformin. STUDY DESIGN, SIZE, DURATION AMPK signaling was evaluated by analyzing differential gene expression in immortalized human granulosa cells (KGNs) with and without silencing α1AMPK using CRISPR/Cas9. In vivo studies included the use of a α1AMPK knock-out mouse model to evaluate the role of α1AMPK in folliculogenesis and fertility. Expression of α1AMPK was evaluated in primary human granulosa-luteal cells retrieved from women undergoing IVF with and without a lean PCOS phenotype (i.e. BMI: 18-25 kg/m2). PARTICIPANTS/MATERIALS, SETTING, METHODS α1AMPK was disrupted in KGN cells and a transgenic mouse model. Cell viability, proliferation and metabolism were evaluated. Androgen production was evaluated by analyzing protein levels of relevant enzymes in the steroid pathway by western blots, and steroid levels obtained from in vitro and in vivo models by mass spectrometry. Differential gene expression in human GC was obtained by RNA sequencing. Analysis of in vivo murine folliculogenesis was performed by histology and immunochemistry, including evaluation of the anti-Müllerian hormone (AMH) marker. The α1AMPK gene expression was evaluated by quantitative RT-PCR in primary GCs obtained from women with the lean PCOS phenotype (n = 8) and without PCOS (n = 9). MAIN RESULTS AND THE ROLE OF CHANCE Silencing of α1AMPK in KGN increased cell proliferation (P < 0.05 versus control, n = 4), promoted the use of fatty acids over glucose, and induced a hyperandrogenic response resulting from upregulation of two of the enzymes involved in steroid production, namely 3β-hydroxysteroid dehydrogenase (3βHSD) and P450 side-chain cleavage enzyme (P450scc) (P < 0.05, n = 3). Female mice deficient in α1AMPK had a 30% decrease in their ovulation rate (P < 0.05, n = 7) and litter size, a hyperandrogenic response (P < 0.05, n = 7) with higher levels of 3βHSD and p450scc levels in the ovaries, and an increase in the population of antral follicles (P < 0.01, n = 10) compared to controls. Primary GCs from lean women with PCOS had lower α1AMPK mRNA expression levels than the control group (P < 0.05, n = 8-9). LARGE SCALE DATA The FastQ files and metadata were submitted to the European Nucleotide Archive (ENA) at EMBL-EBI under accession number PRJEB46048. LIMITATIONS, REASONS FOR CAUTION The human KGN is a not fully differentiated, transformed cell line. As such, to confirm the role of AMPK in GC and the PCOS phenotype, this model was compared to two others: an α1AMPK transgenic mouse model and primary differentiated granulosa-lutein cells from non-obese women undergoing IVF (with and without PCOS). A clear limitation is the small number of patients with PCOS utilized in this study and that the collection of human GCs was performed after hormonal stimulation. WIDER IMPLICATIONS OF THE FINDINGS Our results reveal that AMPK is directly involved in steroid production in human GCs. In addition, AMPK signaling was associated with other processes frequently reported as dysfunctional in PCOS models, such as cell adhesion, lipid metabolism and inflammation. Silencing of α1AMPK in KGN promoted folliculogenesis, with increases in AMH. Evaluating the expression of the α1AMPK subunit could be considered as a marker of interest in infertility cases related to hormonal imbalances and metabolic disorders, including PCOS. STUDY FUNDING/COMPETING INTEREST(S) This study was financially supported by the Institut National de la Recherche Agronomique (INRA) and the national programme « FERTiNERGY » funded by the French National Research Agency (ANR). The authors report no intellectual or financial conflicts of interest related to this work. R.K. is identified as personnel of the International Agency for Research on Cancer/World Health Organization. R.K. alone is responsible for the views expressed in this article and she does not necessarily represent the decisions, policy or views of the International Agency for Research on Cancer/World Health Organization. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Pascal Froment
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| | - Ingrid Plotton
- Molecular Endocrinology and Rare Diseases, University Hospital, Claude Bernard Lyon 1 University, Bron, France
| | - Cecilia Giulivi
- Department of Molecular Biosciences, University of California Davis, School of Veterinary Medicine, Davis, CA, USA
- The MIND Institute, University of California Davis Medical Center, Sacramento, CA, USA
| | - Stephane Fabre
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| | - Rita Khoueiry
- Epigenetics Group, International Agency for Research on Cancer (IARC), Lyon, France
| | - Nizar I Mourad
- Pôle de Chirurgie Expérimentale et Transplantation, Université Catholique de Louvain, Brussels, Belgium
| | - Sandrine Horman
- Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Christelle Ramé
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| | | | | | - Yves Bigot
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| | | | - Remy Le Guevel
- Plate-forme ImPACcell, Université de Rennes 1, Rennes, France
| | - Patricia Mallegol
- SOPAM, U1063, INSERM, UNIV Angers, Angers, France
- Federative Structure of Research Cellular Interactions and Therapeutic Applications, SFR 4208 ICAT, Univ Angers, Angers, France
| | - Ramaroson Andriantsitohaina
- SOPAM, U1063, INSERM, UNIV Angers, Angers, France
- Federative Structure of Research Cellular Interactions and Therapeutic Applications, SFR 4208 ICAT, Univ Angers, Angers, France
| | | | - Jérôme Tamburini
- Université de Paris, Institut Cochin, CNRS UMR8104, INSERM U1016, Paris, France
| | - Benoit Viollet
- Université de Paris, Institut Cochin, CNRS UMR8104, INSERM U1016, Paris, France
| | - Marc Foretz
- Université de Paris, Institut Cochin, CNRS UMR8104, INSERM U1016, Paris, France
| | - Joelle Dupont
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| |
Collapse
|
8
|
Guan X, Zhu J, Sun H, Zhao X, Yang M, Huang Y, Pan H, Zhao Y, Zhao S. Analysis of Gut Microbiota and Metabolites in Diannan Small Ear Sows at Diestrus and Metestrus. Front Microbiol 2022; 13:826881. [PMID: 35516431 PMCID: PMC9062660 DOI: 10.3389/fmicb.2022.826881] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
The physiological state of the host affects the gut microbes. The estrus cycle is critical to the reproductive cycle of sows. However, the association between gut microbes and animal estrus is poorly understood. Here, high-throughput 16S rRNA sequencing and liquid chromatography-mass spectrometry (LC-MS) non-targeted metabolome technology were used to study the estrous cycles in Diannan small ear pigs. Significantly different gut microbiota and metabolites of sows at estrous and diestrus were screened out and the correlation was analyzed. We found that the intestinal microbial composition and microbial metabolism of Diannan small ear sows were significantly different at diestrus and metestrus. The abundances of Spirochaetes, Spirochaetia, Spirochaetales, Spirochaetaceae, Deltaproteobacteria, unidentified_Alphaproteobacteria, Ruminococcus_sp_YE281, and Treponema_berlinense in intestinal microorganisms of Diannan small ear sows at metestrus are significantly higher than that at diestrus. Propionic acid, benzyl butyrate, sucrose, piperidine, and 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) were significantly enriched at metestrus compared with diestrus, which were involved in the energy metabolism-related pathways and activated protein kinase (AMPK) signaling pathway. At diestrus and metestrus, differential microbiota of unidentified_Alphaproteobacteria, Intestinimonas, Peptococcus, Terrisporobacter, and differential metabolites of piperidine, propionic acid, and benzyl butyrate, sucrose, 4-methyl catechol, and AICAR exist a certain degree of correlation. Therefore, unidentified_Alphaproteobacteria, Ruminococcus_sp_YE281, and Treponema_berlinense may have a potential role at metestrus of the Diannan small ear sows. AICAR may be apotential marker of estrus Diannan small ear sows feces, but further studies about the specific mechanism are needed. These findings provide a new perspective for sows production management and improving sows reproductive performance.
Collapse
Affiliation(s)
- Xuancheng Guan
- Yunnan Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Kunming, China
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
| | - Junhong Zhu
- Yunnan Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Kunming, China
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
| | - Haichao Sun
- Yunnan Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Kunming, China
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
| | - Xiaoqi Zhao
- Yunnan Academy of Animal Husbandry and Veterinary Sciences, Kunming, China
| | - Minghua Yang
- Yunnan Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Kunming, China
| | - Ying Huang
- Yunnan Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Kunming, China
| | - Hongbin Pan
- Yunnan Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Kunming, China
| | - Yanguang Zhao
- Shanghai Laboratory Animal Research Center, Shanghai, China
| | - Sumei Zhao
- Yunnan Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Kunming, China
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
9
|
Athar F, Templeman NM. C. elegans as a model organism to study female reproductive health. Comp Biochem Physiol A Mol Integr Physiol 2022; 266:111152. [PMID: 35032657 DOI: 10.1016/j.cbpa.2022.111152] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 12/17/2022]
Abstract
Female reproductive health has been historically understudied and underfunded. Here, we present the advantages of using a free-living nematode, Caenorhabditis elegans, as an animal system to study fundamental aspects of female reproductive health. C. elegans is a powerful high-throughput model organism that shares key genetic and physiological similarities with humans. In this review, we highlight areas of pressing medical and biological importance in the 21st century within the context of female reproductive health. These include the decline in female reproductive capacity with increasing chronological age, reproductive dysfunction arising from toxic environmental insults, and cancers of the reproductive system. C. elegans has been instrumental in uncovering mechanistic insights underlying these processes, and has been valuable for developing and testing therapeutics to combat them. Adopting a convenient model organism such as C. elegans for studying reproductive health will encourage further research into this field, and broaden opportunities for making advancements into evolutionarily conserved mechanisms that control reproductive function.
Collapse
Affiliation(s)
- Faria Athar
- Department of Biology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Nicole M Templeman
- Department of Biology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada.
| |
Collapse
|
10
|
Silva RS, Mattoso Miskulin Cardoso AP, Giometti IC, D'Aprile L, Garcia Santos FA, Maruyama AS, Medeiros de Carvalho Sousa LM, Unniappan S, Kowalewski MP, de Carvalho Papa P. Insulin induces steroidogenesis in canine luteal cells via PI3K-MEK-MAPK. Mol Cell Endocrinol 2022; 540:111518. [PMID: 34808277 DOI: 10.1016/j.mce.2021.111518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/25/2021] [Accepted: 11/17/2021] [Indexed: 11/26/2022]
Abstract
Glucose uptake increases in canine luteal cells under insulin treatment. We hypothesize that insulin also increases luteal cell steroidogenesis. Dogs underwent elective ovariohysterectomy from days 10-60 post ovulation and their corpora lutea (CL) and blood samples were collected. Deep RNA sequencing determined differentially expressed genes in CL; those related to insulin signaling and steroidogenesis were validated in vivo by qPCR and their respective proteins by Western blotting and immunofluorescence. Next, luteal cell cultures were stimulated with insulin with or without inhibition of MAPK14, MAP2K1 and PI3K. Studied proteins except P450 aromatase showed the same expression pattern of coding genes in vivo. The expression of HSD3B and CYP19A1 was higher in insulin-treated cells (P < 0.005). Following respective pathway blockades, the culture medium had decreased concentrations of progesterone (P4) and 17b-estradiol (E2) (P < 0.01). Our results indicate that insulin increases HSD3B and CYP19A1 expression via MAPK and PI3K, and contributes to the regulation of P4 and E2 production in canine luteal cells.
Collapse
Affiliation(s)
- Renata Santos Silva
- School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil; FAMESP, Faculdade Método de São Paulo, Sao Paulo, Brazil
| | | | | | - Loren D'Aprile
- School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | | | - Arnaldo Shindi Maruyama
- School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | | | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Depart. of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Mariusz P Kowalewski
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Paula de Carvalho Papa
- School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil; Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
11
|
Gholizadeh M, Esmaeili-Fard SM. Meta-analysis of genome-wide association studies for litter size in sheep. Theriogenology 2021; 180:103-112. [PMID: 34968818 DOI: 10.1016/j.theriogenology.2021.12.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 12/19/2021] [Accepted: 12/19/2021] [Indexed: 01/01/2023]
Abstract
Litter size and ovulation rate are important reproduction traits in sheep and have important impacts on the profitability of farm animals. To investigate the genetic architecture of litter size, we report the first meta-analysis of genome-wide association studies (GWAS) using 522 ewes and 564,377 SNPs from six sheep breeds. We identified 29 significant associations for litter size which 27 of which have not been reported in individual GWAS for each population. However, we could confirm the role of BMPR1B in prolificacy. Our gene set analysis discovered biological pathways related to cell signaling, communication, and adhesion. Functional clustering and enrichment using protein databases identified epidermal growth factor-like domain affecting litter size. Through analyzing protein-protein interaction data, we could identify hub genes like CASK, PLCB4, RPTOR, GRIA2, and PLCB1 that were enriched in most of the significant pathways. These genes have a role in cell proliferation, cell adhesion, cell growth and survival, and autophagy. Notably, identified SNPs were scattered on several different chromosomes implying different genetic mechanisms underlying variation of prolificacy in each breed. Given the different layers that make up the follicles and the need for communication and transfer of hormones and nutrients through these layers to the oocyte, the significance of pathways related to cell signaling and communication seems logical. Our results provide genetic insights into the litter size variation in different sheep breeds.
Collapse
Affiliation(s)
- Mohsen Gholizadeh
- Department of Animal Science, Faculty of Animal Science and Fisheries, Sari Agricultural Sciences and Natural Resources University, Sari, Iran.
| | - Seyed Mehdi Esmaeili-Fard
- Department of Animal Science, Faculty of Animal Science and Fisheries, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| |
Collapse
|
12
|
Griffiths RM, Pru CA, Behura SK, Cronrath AR, McCallum ML, Kelp NC, Winuthayanon W, Spencer TE, Pru JK. AMPK is required for uterine receptivity and normal responses to steroid hormones. Reproduction 2021; 159:707-717. [PMID: 32191914 DOI: 10.1530/rep-19-0402] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 03/19/2020] [Indexed: 12/11/2022]
Abstract
We previously demonstrated that 5'-AMP-activated protein kinase (AMPK) is essential for normal reproductive functions in female mice. Conditional ablation of Prkaa1 and Prkaa2, genes that encode the α1 and α2 catalytic domains of AMPK, resulted in early reproductive senescence, faulty artificial decidualization, uterine inflammation and fibrotic postparturient endometrial regeneration. We also noted a delay in the timing of embryo implantation in Prkaa1/2d/d female mice, suggesting a role for AMPK in establishing uterine receptivity. As outlined in new studies here, conditional uterine ablation of Prkaa1/2 led to an increase in ESR1 in the uteri of Prkaa1/2d/d mice, resulting in prolonged epithelial cell proliferation and retention of E2-induced gene expression (e.g. Msx1, Muc1, Ltf) through the implantation window. Within the stromal compartment, stromal cell proliferation was reduced by five-fold in Prkaa1/2d/d mice, and this was accompanied by a significant decrease in cell cycle regulatory genes and aberrant expression of decidualization marker genes such as Hand2, Bmp2, Fst and Inhbb. This phenotype is consistent with our prior study, demonstrating a failure of the Prkaa1/2d/d uterus to undergo decidualization. Despite these uterine defects, ovarian function seemed to be normal following ablation of Prkaa1/2 from peri-ovulatory follicles in which ovulation, luteinization and serum progesterone levels were not different on day 5 of pregnancy or pseudopregnancy between Prkaa1/2fl/fl and Prkaa1/2d/d mice. These cumulative findings demonstrate that AMPK activity plays a prominent role in mediating several steroid hormone-dependent events such as epithelial cell proliferation, uterine receptivity and decidualization as pregnancy is established.
Collapse
Affiliation(s)
- Richard M Griffiths
- Department of Animal Sciences, School of Molecular Biosciences, and Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Cindy A Pru
- Department of Animal Sciences, School of Molecular Biosciences, and Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Susanta K Behura
- Division of Animal Sciences and Department of Obstetrics, Gynecology, and Women's Health, University of Missouri, Columbia, Missouri, USA
| | - Andrea R Cronrath
- Department of Animal Sciences, School of Molecular Biosciences, and Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Melissa L McCallum
- Department of Animal Sciences, School of Molecular Biosciences, and Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Nicole C Kelp
- Department of Animal Sciences, School of Molecular Biosciences, and Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Wipawee Winuthayanon
- Department of Animal Sciences, School of Molecular Biosciences, and Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Thomas E Spencer
- Division of Animal Sciences and Department of Obstetrics, Gynecology, and Women's Health, University of Missouri, Columbia, Missouri, USA
| | - James K Pru
- Department of Animal Sciences, School of Molecular Biosciences, and Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| |
Collapse
|
13
|
Maucieri AM, Townson DH. Evidence and manipulation of O-GlcNAcylation in granulosa cells of bovine antral follicles†. Biol Reprod 2021; 104:914-923. [PMID: 33550377 PMCID: PMC8023420 DOI: 10.1093/biolre/ioab013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/02/2020] [Accepted: 01/26/2021] [Indexed: 01/15/2023] Open
Abstract
Glucose is a preferred energy substrate for metabolism by bovine granulosa cells (GCs). O-linked N-acetylglucosaminylation (O-GlcNAcylation), is a product of glucose metabolism that occurs as the hexosamine biosynthesis pathway (HBP) shunts O-GlcNAc sugars to serine and threonine residues of proteins. O-GlcNAcylation through the HBP is considered a nutrient sensing mechanism that regulates many cellular processes. Yet little is known of its importance in GCs. Here, O-GlcNAcylation in GCs and its effects on GC proliferation were determined. Bovine ovaries from a slaughterhouse, staged to the mid-to-late estrous period were used. Follicular fluid and GCs were aspirated from small (3-5 mm) and large (>10 mm) antral follicles. Freshly isolated GCs of small follicles exhibited greater expression of O-GlcNAcylation and O-GlcNAc transferase (OGT) than large follicles. Less glucose and more lactate was detectable in the follicular fluid of small versus large follicles. Culture of GCs revealed that inhibition of the HBP via the glutamine fructose-6-phosphate aminotransferase inhibitor, DON (50 μM), impaired O-GlcNAcylation and GC proliferation, regardless of follicle size. Direct inhibition of O-GlcNAcylation via the OGT inhibitor, OSMI-1 (50 μM), also prevented proliferation, but only in GCs of small follicles. Augmentation of O-GlcNAcylation via the O-GlcNAcase inhibitor, Thiamet-G (2.5 μM), had no effect on GC proliferation, regardless of follicle size. The results indicate GCs of bovine antral follicles undergo O-GlcNAcylation, and O-GlcNAcylation is associated with alterations of glucose and lactate in follicular fluid. Disruption of O-GlcNAcylation impairs GC proliferation. Thus, the HBP via O-GlcNAcylation constitutes a plausible nutrient-sensing pathway influencing bovine GC function and follicular growth.
Collapse
Affiliation(s)
- Abigail M Maucieri
- Department of Animal and Veterinary Sciences, The University of Vermont, Burlington, VT, USA
| | - David H Townson
- Department of Animal and Veterinary Sciences, The University of Vermont, Burlington, VT, USA
| |
Collapse
|
14
|
Jiang J, Liu S, Qi L, Wei Q, Shi F. Activation of Ovarian Taste Receptors Inhibits Progesterone Production Potentially via NO/cGMP and Apoptotic Signaling. Endocrinology 2021; 162:6052298. [PMID: 33367902 DOI: 10.1210/endocr/bqaa240] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Indexed: 12/25/2022]
Abstract
Taste receptors are not only expressed in the taste buds, but also in other nongustatory tissues, including the reproductive system. Taste receptors can be activated by various tastants, thereby exerting relatively physiologic functions. The aim of this study was to investigate the effects and potential mechanisms underlying ovarian taste receptor activation on progesterone production using saccharin sodium as the receptor agonist in a pseudopregnant rat model. Taste 1 receptor member 2 (TAS1R2) and taste 2 receptor member 31 (TAS2R31) were demonstrated to be abundantly expressed in the corpora lutea of rats, and intraperitoneal injection of saccharin sodium can activate both of them and initiate their downstream signaling cascades. The activation of these ovarian taste receptors promoted nitric oxide (NO) production via endothelial nitric oxide synthase (eNOS). NO production then increased ovarian cyclic guanosine 3',5'-monophosphate (cGMP) levels, which, in turn, decreased ovarian cyclic adenosine 3',5'-monophosphate levels. In addition, the activation of ovarian taste receptors induced apoptosis, possibly through NO and mitogen-activated protein kinase signaling. As a result, the activation of ovarian taste receptors reduced the protein expression of steroidogenesis-related factors, causing the inhibition of ovarian progesterone production. In summary, our data suggest that the activation of ovarian taste receptors inhibits progesterone production in pseudopregnant rats, potentially via NO/cGMP and apoptotic signaling.
Collapse
Affiliation(s)
- Jingle Jiang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Siyi Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Lina Qi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Quanwei Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Fangxiong Shi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
15
|
Estienne A, Bongrani A, Ramé C, Kurowska P, Błaszczyk K, Rak A, Ducluzeau PH, Froment P, Dupont J. Energy sensors and reproductive hypothalamo-pituitary ovarian axis (HPO) in female mammals: Role of mTOR (mammalian target of rapamycin), AMPK (AMP-activated protein kinase) and SIRT1 (Sirtuin 1). Mol Cell Endocrinol 2021; 521:111113. [PMID: 33301839 DOI: 10.1016/j.mce.2020.111113] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022]
Abstract
In female, energy metabolism influences reproductive function by modulating the Hypothalamic Pituitary Ovarian axis including the hypothalamic GnRH neuronal network, the pituitary gonadotropin secretion and the ovarian follicle growth and steroidogenesis. Several hormones and neuropeptides or metabolites are important signals between energy balance and reproduction. These energy sensors mediate their action on reproductive cells through specific kinases or signaling pathways. This review focuses on the role of three main enzymes-specifically, mTOR, AMPK, and SIRT1 at the hypothalamic pituitary and ovarian axis in normal female fertility and then we discuss their possible involvement in some women reproductive disorders known to be associated with metabolic complications, such as polycystic ovary syndrome (PCOS) and premature ovarian failure (POF).
Collapse
Affiliation(s)
- Anthony Estienne
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; Université François Rabelais de Tours, F-37041, Tours, France; IFCE, F-37380, Nouzilly, France
| | - Alice Bongrani
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; Université François Rabelais de Tours, F-37041, Tours, France; IFCE, F-37380, Nouzilly, France
| | - Christelle Ramé
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; Université François Rabelais de Tours, F-37041, Tours, France; IFCE, F-37380, Nouzilly, France
| | - Patrycja Kurowska
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387, Krakow, Poland
| | - Klaudia Błaszczyk
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387, Krakow, Poland
| | - Agnieszka Rak
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387, Krakow, Poland
| | - Pierre-Henri Ducluzeau
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; Université François Rabelais de Tours, F-37041, Tours, France; IFCE, F-37380, Nouzilly, France
| | - Pascal Froment
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; Université François Rabelais de Tours, F-37041, Tours, France; IFCE, F-37380, Nouzilly, France
| | - Joëlle Dupont
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; Université François Rabelais de Tours, F-37041, Tours, France; IFCE, F-37380, Nouzilly, France.
| |
Collapse
|
16
|
Seong HA, Ha H. Ablation of AMPK-Related Kinase MPK38/MELK Leads to Male-Specific Obesity in Aged Mature Adult Mice. Diabetes 2021; 70:386-399. [PMID: 33268463 DOI: 10.2337/db20-0436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 11/19/2020] [Indexed: 11/13/2022]
Abstract
Murine protein serine-threonine kinase 38 (MPK38)/maternal embryonic leucine zipper kinase (MELK) is implicated in diverse biological processes, including the cell cycle, apoptosis, and tumorigenesis; however, its physiological role is unknown. Using mice lacking MPK38 (MPK38-/-), we found that MPK38-/- male, but not female, mice (7 months of age) became obese while consuming a standard diet, displayed impairments in metabolism and inflammation, became more obese than wild-type mice while consuming a high-fat diet, and exhibited no castration/testosterone replacement-induced metabolic changes. The adenoviral restoration of MPK38 ameliorated the obesity-induced adverse metabolic profile of the obese male, but not female, mice. Seven-month-old MPK38-/- males displayed typical postcastration concentrations of serum testosterone with an accompanying decrease in serum luteinizing hormone (LH) levels, suggesting a role for MPK38 in the age-related changes in serum testosterone in aged mature adult male mice. The stability and activity of MPK38 were increased by dihydrotestosterone but reduced by estradiol (E2). These findings suggest MPK38 as a therapeutic target for obesity-related metabolic disorders in males.
Collapse
Affiliation(s)
- Hyun-A Seong
- Department of Biochemistry, School of Life Sciences, Chungbuk National University, Cheongju, Republic of Korea
| | - Hyunjung Ha
- Department of Biochemistry, School of Life Sciences, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
17
|
Oringanje C, Delacruz LR, Han Y, Luckhart S, Riehle MA. Overexpression of Activated AMPK in the Anopheles stephensi Midgut Impacts Mosquito Metabolism, Reproduction and Plasmodium Resistance. Genes (Basel) 2021; 12:genes12010119. [PMID: 33478058 PMCID: PMC7835765 DOI: 10.3390/genes12010119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial integrity and homeostasis in the midgut are key factors controlling mosquito fitness and anti-pathogen resistance. Targeting genes that regulate mitochondrial dynamics represents a potential strategy for limiting mosquito-borne diseases. AMP-activated protein kinase (AMPK) is a key cellular energy sensor found in nearly all eukaryotic cells. When activated, AMPK inhibits anabolic pathways that consume ATP and activates catabolic processes that synthesize ATP. In this study, we overexpressed a truncated and constitutively active α-subunit of AMPK under the control of the midgut-specific carboxypeptidase promotor in the midgut of female Anopheles stephensi. As expected, AMPK overexpression in homozygous transgenic mosquitoes was associated with changes in nutrient storage and metabolism, decreasing glycogen levels at 24 h post-blood feeding when transgene expression was maximal, and concurrently increasing circulating trehalose at the same time point. When transgenic lines were challenged with Plasmodium falciparum, we observed a significant decrease in the prevalence and intensity of infection relative to wild type controls. Surprisingly, we did not observe a significant difference in the survival of adult mosquitoes fed either sugar only or both sugar and bloodmeals throughout adult life. This may be due to the limited period that the transgene was activated before homeostasis was restored. However, we did observe a significant decrease in egg production, suggesting that manipulation of AMPK activity in the mosquito midgut resulted in the re-allocation of resources away from egg production. In summary, this work identifies midgut AMPK activity as an important regulator of metabolism, reproduction, and innate immunity in An. stephensi, a highly invasive and important malaria vector species.
Collapse
Affiliation(s)
| | | | - Yunan Han
- Department of Health Sciences, ECPI University, Virginia Beach, VA 23462, USA;
| | - Shirley Luckhart
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID 83844, USA;
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Michael A. Riehle
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA;
- Correspondence: ; Tel.: +1-520-626-8500
| |
Collapse
|
18
|
Grandhaye J, Hmadeh S, Plotton I, Levasseur F, Estienne A, LeGuevel R, Levern Y, Ramé C, Jeanpierre E, Guerif F, Dupont J, Froment P. The adiponectin agonist, AdipoRon, inhibits steroidogenesis and cell proliferation in human luteinized granulosa cells. Mol Cell Endocrinol 2021; 520:111080. [PMID: 33189865 DOI: 10.1016/j.mce.2020.111080] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/13/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022]
Abstract
During obesity, excess body weight is not only associated with an increased risk of type 2-diabetes, but also several other pathological processes, such as infertility. Adipose tissue is the largest endocrine organ of the body that produces adipokines, including adiponectin. Adiponectin has been reported to control fertility through the hypothalamic-pituitary-gonadal axis, and folliculogenesis in the ovaries. In this study, we focused on a recent adiponectin-like synthetic agonist called AdipoRon, and its action in human luteinized granulosa cells. We demonstrated that AdipoRon activated the adenosine monophosphate-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor alpha (PPAR) signalling pathways in human luteinized granulosa cells. A 25 μM AdipoRon stimulation reduced granulosa cell proliferation by inducing cell cycle arrest in G1, associated with PTEN and p53 pathway activation. In addition, AdipoRon perturbed cell metabolism by decreasing mitochondrial activity and ATP production. In human luteinized granulosa cells, AdipoRon increased phosphodiesterase activity, leading to a drop in cyclic adenosine monophosphate (cAMP) production, aromatase expression and oestrogens secretion. In conclusion, AdipoRon impacted folliculogenesis by altering human luteinized granulosa cell function, via steroid production and cell proliferation. This agonist may have applications for improving ovarian function in metabolic disorders or granulosa cancers.
Collapse
Affiliation(s)
- Jérémy Grandhaye
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France; CNRS UMR7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France; Université de Tours, Tours, France; IFCE, Nouzilly, France
| | - Sandy Hmadeh
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France; CNRS UMR7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France; Université de Tours, Tours, France; IFCE, Nouzilly, France
| | - Ingrid Plotton
- Molecular Endocrinology and Rare Diseases, University Hospital, Claude Bernard Lyon 1 University, Bron, France
| | - Floriane Levasseur
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France; CNRS UMR7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France; Université de Tours, Tours, France; IFCE, Nouzilly, France
| | - Anthony Estienne
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France; CNRS UMR7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France; Université de Tours, Tours, France; IFCE, Nouzilly, France
| | - Rémy LeGuevel
- Plate-forme ImPACcell, Université de Rennes 1, France
| | - Yves Levern
- INRA UMR Infectiologie et Santé Publique, Service de Cytométrie, Nouzilly, France
| | - Christelle Ramé
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France; CNRS UMR7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France; Université de Tours, Tours, France; IFCE, Nouzilly, France
| | - Eric Jeanpierre
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France; CNRS UMR7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France; Université de Tours, Tours, France; IFCE, Nouzilly, France
| | | | - Joëlle Dupont
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France; CNRS UMR7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France; Université de Tours, Tours, France; IFCE, Nouzilly, France
| | - Pascal Froment
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France; CNRS UMR7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France; Université de Tours, Tours, France; IFCE, Nouzilly, France.
| |
Collapse
|
19
|
Shpakov AO. Improvement Effect of Metformin on Female and Male Reproduction in Endocrine Pathologies and Its Mechanisms. Pharmaceuticals (Basel) 2021; 14:ph14010042. [PMID: 33429918 PMCID: PMC7826885 DOI: 10.3390/ph14010042] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/02/2021] [Accepted: 01/06/2021] [Indexed: 02/07/2023] Open
Abstract
Metformin (MF), a first-line drug to treat type 2 diabetes mellitus (T2DM), alone and in combination with other drugs, restores the ovarian function in women with polycystic ovary syndrome (PCOS) and improves fetal development, pregnancy outcomes and offspring health in gestational diabetes mellitus (GDM) and T2DM. MF treatment is demonstrated to improve the efficiency of in vitro fertilization and is considered a supplementary drug in assisted reproductive technologies. MF administration shows positive effect on steroidogenesis and spermatogenesis in men with metabolic disorders, thus MF treatment indicates prospective use for improvement of male reproductive functions and fertility. MF lacks teratogenic effects and has positive health effect in newborns. The review is focused on use of MF therapy for restoration of female and male reproductive functions and improvement of pregnancy outcomes in metabolic and endocrine disorders. The mechanisms of MF action are discussed, including normalization of metabolic and hormonal status in PCOS, GDM, T2DM and metabolic syndrome and restoration of functional activity and hormonal regulation of the gonadal axis.
Collapse
Affiliation(s)
- Alexander O Shpakov
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of Russian Academy of Sciences, 194223 Saint Petersburg, Russia
| |
Collapse
|
20
|
Hussain T, Tan B, Murtaza G, Metwally E, Yang H, Kalhoro MS, Kalhoro DH, Chughtai MI, Yin Y. Role of Dietary Amino Acids and Nutrient Sensing System in Pregnancy Associated Disorders. Front Pharmacol 2020; 11:586979. [PMID: 33414718 PMCID: PMC7783402 DOI: 10.3389/fphar.2020.586979] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/23/2020] [Indexed: 12/16/2022] Open
Abstract
Defective implantation is related to pregnancy-associated disorders such as spontaneous miscarriage, intrauterine fetal growth restriction and others. Several factors proclaimed to be involved such as physiological, nutritional, environmental and managemental that leads to cause oxidative stress. Overloading of free radicals promotes oxidative stress, and the internal body system could not combat its ability to encounter the damaging effects and subsequently leading to pregnancy-related disorders. During pregnancy, essential amino acids display important role for optimum fetal growth and other necessary functions for continuing fruitful pregnancy. In this context, dietary amino acids have received much attention regarding the nutritional concerns during pregnancy. Arginine, glutamine, tryptophan and taurine play a crucial role in fetal growth, development and survival while ornithine and proline are important players for the regulation of gene expression, protein synthesis and angiogenesis. Moreover, amino acids also stimulate the mammalian target of rapamycin (mTOR) signaling pathway which plays a central role in the synthesis of proteins in placenta, uterus and fetus. This review article explores the significances of dietary amino acids in pregnancy development, regulation of nutrient-sensing pathways such as mTOR, peroxisome proliferator-activated receptors (PPARs), insulin/insulin-like growth factor signaling pathway (IIS) and 5' adenosine monophosphate-activated protein kinase (AMPK) which exhibit important role in reproduction and its related problems. In addition, the antioxidant function of dietary amino acids against oxidative stress triggering pregnancy disorders and their possible outcomes will also be enlightened. Dietary supplementation of amino acids during pregnancy could help mitigate reproductive disorders and thereby improving fertility in animals as well as humans.
Collapse
Affiliation(s)
- Tarique Hussain
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Animal Sciences Division, Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C,PIEAS), Faisalabad, Pakistan
| | - Bie Tan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Ghulam Murtaza
- Department of Animal Reproduction, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Sindh, Pakistan
| | - Elsayed Metwally
- Department of Cytology & Histology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Huansheng Yang
- Hunan International Joint laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Muhammad Saleem Kalhoro
- Department of Animal Products Technology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Sindh, Pakistan
| | - Dildar Hussain Kalhoro
- Department of Veterinary Microbiology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Sindh, Pakistan
| | - Muhammad Ismail Chughtai
- Animal Sciences Division, Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C,PIEAS), Faisalabad, Pakistan
| | - Yulong Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
21
|
Yang W, Wang L, Wang F, Yuan S. Roles of AMP-Activated Protein Kinase (AMPK) in Mammalian Reproduction. Front Cell Dev Biol 2020; 8:593005. [PMID: 33330475 PMCID: PMC7710906 DOI: 10.3389/fcell.2020.593005] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 10/23/2020] [Indexed: 12/01/2022] Open
Abstract
Reproduction is an energy demanding function and only take place in case of sufficient available energy status in mammals. Metabolic diseases such as anorexia nervosa are clinically associated with reduced fertility. AMP-activated protein kinase (AMPK), as a major regulator of cellular energy homeostasis, is activated in limited energy reserves to ensure the orderly progress of various physiological activities. In recent years, mounting evidence shows that AMPK is involved in the regulation of reproductive function through multiple mechanisms. AMPK is likely to be a metabolic sensor integrating central and peripheral signals. In this review, we aim to explore the preclinical studies published in the last decade that investigate the role of AMP-activated protein kinase in the reproductive field, and its role as a target for drug therapy of reproductive system-related diseases. We also emphasized the emerging roles of AMPK in transcriptional regulation of reproduction processes and metabolisms, which are tightly related to the energy state and fertility of an organism.
Collapse
Affiliation(s)
- Weina Yang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingjuan Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fengli Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
22
|
McCallum ML, Pru CA, Smith AR, Kelp NC, Foretz M, Viollet B, Du M, Pru JK. A functional role for AMPK in female fertility and endometrial regeneration. Reproduction 2020; 156:501-513. [PMID: 30328345 DOI: 10.1530/rep-18-0372] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 09/12/2018] [Indexed: 12/12/2022]
Abstract
Adenosine monophosphate-activated protein kinase (AMPK) is a highly conserved heterotrimeric complex that acts as an intracellular energy sensor. Based on recent observations of AMPK expression in all structures of the female reproductive system, we hypothesized that AMPK is functionally required for maintaining fertility in the female. This hypothesis was tested by conditionally ablating the two catalytic alpha subunits of AMPK, Prkaa1 and Prkaa2, using Pgr-cre mice. After confirming the presence of PRKAA1, PRKAA2 and the active phospho-PRKAA1/2 in the gravid uterus by immunohistochemistry, control (Prkaa1/2 fl/fl ) and double conditional knockout mice (Prkaa1/2 d/d ) were placed into a six-month breeding trial. While the first litter size was comparable between Prkaa1/2 fl/fl and Prkaa1/2 d/d female mice (P = 0.8619), the size of all subsequent litters was dramatically reduced in Prkaa1/2 d/d female mice (P = 0.0015). All Prkaa1/2 d/d female mice experienced premature reproductive senescence or dystocia by the fourth parity. This phenotype manifested despite no difference in estrous cycle length, ovarian histology in young and old nulliparous or multiparous animals, mid-gestation serum progesterone levels or uterine expression of Esr1 or Pgr between Prkaa1/2 fl/fl and Prkaa1/2 d/d female mice suggesting that the hypothalamic-pituitary-ovary axis remained unaffected by PRKAA1/2 deficiency. However, an evaluation of uterine histology from multiparous animals identified extensive endometrial fibrosis and disorganized stromal-glandular architecture indicative of endometritis, a condition that causes subfertility or infertility in most mammals. Interestingly, Prkaa1/2 d/d female mice failed to undergo artificial decidualization. Collectively, these findings suggest that AMPK plays an essential role in endometrial regeneration following parturition and tissue remodeling that accompanies decidualization.
Collapse
Affiliation(s)
- Melissa L McCallum
- Department of Animal Sciences, Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Cindy A Pru
- Department of Animal Sciences, Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Andrea R Smith
- Department of Animal Sciences, Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Nicole C Kelp
- Department of Animal Sciences, Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Marc Foretz
- INSERM, U1016, Institut Cochin, Paris, France.,CNRS, UMR 8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Benoit Viollet
- INSERM, U1016, Institut Cochin, Paris, France.,CNRS, UMR 8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Min Du
- Department of Animal Sciences, Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - James K Pru
- Department of Animal Sciences, Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| |
Collapse
|
23
|
Kurowska P, Mlyczyńska E, Dawid M, Opydo-Chanek M, Dupont J, Rak A. In Vitro Effects of Vaspin on Porcine Granulosa Cell Proliferation, Cell Cycle Progression, and Apoptosis by Activation of GRP78 Receptor and Several Kinase Signaling Pathways Including MAP3/1, AKT, and STAT3. Int J Mol Sci 2019; 20:E5816. [PMID: 31752432 PMCID: PMC6888539 DOI: 10.3390/ijms20225816] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/15/2019] [Accepted: 11/17/2019] [Indexed: 12/30/2022] Open
Abstract
Vaspin, a visceral adipose tissue-derived serine protease inhibitor, is expressed in the porcine ovary; it induces the activation of various kinases and steroidogenesis. The aim of this study was to examine the effect of vaspin on granulosa (Gc) proliferation, cell cycle regulation, and apoptosis. Porcine Gc was incubated with vaspin (0.01-10 ng/mL) for 24 to 72 h, proliferation was measured using alamarBlue assay, cell cycle progression was assessed using flow cytometry, and cyclin (D, E, and A) protein expression was measured using immunoblotting. Apoptosis was assessed by measuring caspase activity using Caspase-glo 3/7 assay. Furthermore, histone-associated DNA fragments levels were measured using a cell-death detection ELISA; BAX (bcl-2-like protein 4), BCL2 (B-cell lymphoma 2), caspases (-3, -8, and -9), p53 mRNA, and protein expression were assessed using real time PCR and immunoblotting. We found that vaspin significantly enhanced Gc proliferation and cell cycle progression into the S and G2/M phases and decreased apoptosis. We observed that siRNA silencing of the glucose-regulated protein (GRP78) receptor and pharmacological inhibitors of mitogen-activated kinase (MAP3/1/ERK1/2), Janus kinase (STAT3) and protein kinase B (AKT) blocked the ability of vaspin cell proliferation and enhanced caspase-3/7 activities. These results suggest that vaspin via mitogenic effect on porcine Gc acts as a new regulator of ovarian growth, development, or folliculogenesis.
Collapse
Affiliation(s)
- Patrycja Kurowska
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (P.K.); (E.M.); (M.D.)
| | - Ewa Mlyczyńska
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (P.K.); (E.M.); (M.D.)
| | - Monika Dawid
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (P.K.); (E.M.); (M.D.)
| | - Małgorzata Opydo-Chanek
- Department of Experimental Hematology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland;
| | - Joelle Dupont
- INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, F37380 Nouzilly, France;
| | - Agnieszka Rak
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (P.K.); (E.M.); (M.D.)
| |
Collapse
|
24
|
Inhibition by fluoxetine of LH-stimulated cyclic AMP synthesis in tumor Leydig cells partly involves AMPK activation. PLoS One 2019; 14:e0217519. [PMID: 31163038 PMCID: PMC6548379 DOI: 10.1371/journal.pone.0217519] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/13/2019] [Indexed: 12/21/2022] Open
Abstract
Fluoxetine (FLX), a widely used antidepressant primarily acting as a selective serotonin reuptake inhibitor (SSRI), has been shown to exhibit other mechanisms of action in various cell types. Consequently, it might have unexpected adverse effects not related to its intended use, possibly in the endocrine regulation of reproduction. We show in the present report that after a 1-hour preincubation of MLTC-1 Leydig cells with FLX, the intracellular cyclic adenosine monophosphate (cAMP) responses to Luteinizing Hormone (LH) and forskolin (FSK) are reduced through AMPK-dependent and -independent pathways respectively. FLX at low concentrations (12.5μM and 25μM) induced this inhibition without triggering AMPK phosphorylation, while higher FLX concentrations (50μM and 100μM) induced AMPK phosphorylation and lowered ATP concentration similarly to Metformin. Pretreatment with the specific AMPK inhibitor Compound C (CpdC), significantly diminished the inhibition of cAMP synthesis caused by high concentration of FLX. Moreover, as expected FLX also caused a decline of steroidogenesis which is under the control of cAMP. Taken together, these findings demonstrate that the inhibition of cAMP synthesis by FLX is dose-dependent and occurs in MLTC-1 cells through two mechanisms, AMPK-independent and AMPK-dependent, at low and high concentrations, respectively. FLX also inhibited hormone-induced steroidogenesis in MLTC-1 cells and mouse testicular Leydig cells, suggesting similar mechanisms in both cell types.
Collapse
|
25
|
Role of AMPK in mammals reproduction: Specific controls and whole-body energy sensing. C R Biol 2018; 342:1-6. [PMID: 30580936 DOI: 10.1016/j.crvi.2018.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 10/10/2018] [Accepted: 10/31/2018] [Indexed: 01/02/2023]
Abstract
AMP-activated protein kinase (AMPK) is a key enzyme involved in linking the energy sensing to metabolic pathways. As such, it plays a central role at the whole-body level to translate endocrine communications into adapted responses aimed either at saving energy when food is scarce or at allocating it to various functions, particularly reproduction, when food is available. AMPK also plays major roles in the energy individual cells use in order to realize their specific functions. This is of course especially true for all cells involved in the reproductive function (gonads, gametes) or in its control (hypothalamus, pituitary). In the present review, I report a survey of the various roles of AMPK functions in reproduction, either directly in reproductive organs, or indirectly in organs controlling reproduction, particularly at hypothalamus level.
Collapse
|
26
|
Faure M, Bertoldo MJ, Khoueiry R, Bongrani A, Brion F, Giulivi C, Dupont J, Froment P. Metformin in Reproductive Biology. Front Endocrinol (Lausanne) 2018; 9:675. [PMID: 30524372 PMCID: PMC6262031 DOI: 10.3389/fendo.2018.00675] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 10/29/2018] [Indexed: 12/19/2022] Open
Abstract
Initially produced in Europe in 1958, metformin is still one of the most widely prescribed drugs to treat type II diabetes and other comorbidities associated with insulin resistance. Metformin has been shown to improve fertility outcomes in females with insulin resistance associated with polycystic ovary syndrome (PCOS) and in obese males with reduced fertility. Metformin treatment reinstates menstrual cyclicity, decreases the incidence of cesareans, and limits the number of premature births. Notably, metformin reduces steroid levels in conditions associated with hyperandrogenism (e.g., PCOS and precocious puberty) in females and improves fertility of adult men with metabolic syndrome through increased testosterone production. While the therapeutical use of metformin is considered to be safe, in the last 10 years some epidemiological studies have described phenotypic differences after prenatal exposure to metformin. The goals of this review are to briefly summarize the current knowledge on metformin focusing on its effects on the female and male reproductive organs, safety concerns, including the potential for modulating fetal imprinting via epigenetics.
Collapse
Affiliation(s)
- Melanie Faure
- Unité de Physiologie de la Reproduction et des Comportements, Centre Val de Loire, Institut National de la Recherche Agronomique, UMR85, Nouzilly, France
| | - Michael J Bertoldo
- Discipline of Obstetrics and Gynaecology, School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia
| | - Rita Khoueiry
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Alice Bongrani
- Unité de Physiologie de la Reproduction et des Comportements, Centre Val de Loire, Institut National de la Recherche Agronomique, UMR85, Nouzilly, France
| | - François Brion
- INERIS, Direction des Risques Chroniques, Pole VIVA, Unite d'ecotoxicologie in vitro et in vivo, BP2, Verneuil-en-Halatte, France
| | - Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
- Medical Investigations of Neurodevelopmental Disorders Institute, University of California, Davis, Davis, CA, United States
| | - Joelle Dupont
- Unité de Physiologie de la Reproduction et des Comportements, Centre Val de Loire, Institut National de la Recherche Agronomique, UMR85, Nouzilly, France
| | - Pascal Froment
- Unité de Physiologie de la Reproduction et des Comportements, Centre Val de Loire, Institut National de la Recherche Agronomique, UMR85, Nouzilly, France
| |
Collapse
|
27
|
Xie Y, Wu B, Jin Y, Zhang A, Sun X, Zhang X, Gao X, Dong R, Li H, Gao J. Oocyte-specific deletion of G sα induces oxidative stress and deteriorates oocyte quality in mice. Exp Cell Res 2018; 370:579-590. [PMID: 30026030 DOI: 10.1016/j.yexcr.2018.07.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 11/29/2022]
Abstract
The stimulatory heterotrimeric Gs protein alpha subunit (Gsα) is a ubiquitous guanine nucleotide-binding protein that regulates the intracellular cAMP signaling pathway and consequently participates in a wide range of biological events. In the reproductive system, despite Gsα being associated with oocyte meiotic arrest in vitro, the exact role of Gsα in female fertility in vivo remains largely unknown. Here, we generated oocyte-specific Gsα knockout mice by using the Cre/LoxP system. We observed that the deletion of Gsα caused complete female infertility. Exclusion of post-implantation abnormalities, oogenesis, fertilization, and early embryo development was subsequently monitored; meiosis in Gsα-deficient oocytes precociously resumed in only 43% of antral follicles from mutant mice, indicating that alteration of meiotic pause was not the key factor in infertility. Ovulation process and number were normal, but the rate of morphological abnormal oocytes was apparently increased; spindle organization, fertilization, and early embryo development were impaired. Furthermore, the level of ROS (reactive oxygen species) and the mitochondrial aggregation increased, and antioxidant glutathione (GSH) content, ATP level, mtDNA copy number, and mitochondrial membrane potential decreased in Gsα-deficient oocytes. GV oocytes from mutant mice showed early-stage apoptosis. Meanwhile, the Gsα knockout-induced decline in oocyte quality and low developmental potential was partially rescued by antioxidant supplementation. To sum up, our results are the first to reveal that the profile of Gsα oocyte-specific deletion caused female infertility in vivo, and oxidative stress plays an important role in this event.
Collapse
Affiliation(s)
- Yue Xie
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan 250100, PR China
| | - Bin Wu
- Reproductive Medicine Department, Jinan Central Hospital Affiliated to Shandong University, Jinan 250100, PR China
| | - Yecheng Jin
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan 250100, PR China
| | - Aizhen Zhang
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan 250100, PR China
| | - Xiaoyang Sun
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan 250100, PR China
| | - Xinyan Zhang
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan 250100, PR China
| | - Xiaotong Gao
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan 250100, PR China
| | - Ran Dong
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan 250100, PR China
| | - Huashun Li
- SARITEX Center for Stem Cell, Engineering Translational Medicine, Shanghai East Hospital, Advanced Institute of Translational Medicine, Tongji University School of Medicine, Shanghai 200123, PR China; Center for Stem Cell&Nano-Medicine, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 200123, PR China
| | - Jiangang Gao
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan 250100, PR China.
| |
Collapse
|
28
|
Bakhshalizadeh S, Amidi F, Shirazi R, Shabani Nashtaei M. Vitamin D3 regulates steroidogenesis in granulosa cells through AMP-activated protein kinase (AMPK) activation in a mouse model of polycystic ovary syndrome. Cell Biochem Funct 2018; 36:183-193. [PMID: 29676471 DOI: 10.1002/cbf.3330] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 02/20/2018] [Accepted: 03/04/2018] [Indexed: 01/11/2023]
Abstract
Polycystic ovary syndrome (PCOS) is an endocrine and metabolic disorder in reproductive-aged women. Hormonal abnormality caused by steroidogenesis disturbances appears to be the main culprit of the clinical picture in PCOS. Vitamin D3 could regulate steroidogenesis in granulosa cells, but the mechanism of action of vitamin D3 on steroidogenesis remains unknown. AMP-activated protein kinase (AMPK) has a modulating role in steroid hormone production. We investigated the effect of vitamin D3 on steroidogenesis in cultured granulosa cells of dehydroepiandrosterone-induced PCOS mice and studied the involvement of AMPK signalling pathway in the current process. Immunoblotting assay showed that vitamin D3 could increase phosphorylation of AMPK alpha and acetyl-CoA carboxylase, main substrate of AMPK. Vitamin D3 and 5-aminoimidazole-4-carboxamide-1-β-D-riboside or Aicar (AMPK activator) not only reduced gene expression of steroidogenic enzymes (P450scc or Cyp11a1, StAR, Cyp19a1 and 3B-HSD), but also reduced production of progesterone and 17B-estradiol assessed by radioimmunoassay. Pretreatment with compound C (AMPK inhibitor) decreased APMK phosphorylation and eliminated the effects of vitamin D3 and Aicar on steroidogenic enzymes expression and estradiol and progesterone production. This study showed that vitamin D3 has the main role in regulating of steroidogenesis in granulosa cells of mouse polycystic ovary through activation of the AMPK signalling pathway. SIGNIFICANCE OF THE STUDY Polycystic ovarian syndrome (PCOS) is an endocrine disorder of women in reproductive age. This disorder is partly related to disruption in steroidogenesis pathway and dysregulation of estradiol and progesterone production in granulosa cells of polycystic ovaries. Previously, we have shown that vitamin D3 could modulate steroidogenesis pathway in PCOS granulosa cells. In this study, we investigate the molecular mechanism of vitamin D3 in regulation of steroidogenesis pathway. We have shown that vitamin D3 has a modulating role in steroidogenesis pathway of granulosa cells by regulation of AMP-activated protein kinase (AMPK) as an underlying molecular mechanism in mouse polycystic ovary.
Collapse
Affiliation(s)
- Shabnam Bakhshalizadeh
- Department of Anatomical Sciences, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Fardin Amidi
- Department of Anatomy, School of medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Infertility, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Shirazi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Shabani Nashtaei
- Department of Anatomy, School of medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Dietary Supplementation of Leucine in Premating Diet Improves the Within-Litter Birth Weight Uniformity, Antioxidative Capability, and Immune Function of Primiparous SD Rats. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1523147. [PMID: 29850484 PMCID: PMC5932505 DOI: 10.1155/2018/1523147] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 03/13/2018] [Indexed: 11/18/2022]
Abstract
The high within-litter birth weight variation has become a big issue in multiparous animals. The present study was conducted to investigate the effects of leucine supplementation in premating diet on the reproductive performance, maternal antioxidative capability, and immune function in primiparous rats. Six-week-old female SD rats were assigned to basal diet or 0.6% leucine supplemented diet for two weeks. After mating during the eighth week of age, the rats were fed with regular gestation diet. Maternal blood samples were collected on the day before mating (day −1) and day 7 and day 20 of pregnancy, while ovaries and uteruses were obtained on day −1 and on day 7, respectively. The results indicate that, compared with control group, within-litter birth weight variation was significantly decreased, while birth weights were significantly increased in the leucine group (P < 0.01). Also, leucine improved the embryo distribution uniformity and the number of implantation sites in uterine. The ovarian gene expressions of LHR, CYP19A1, and VEGFA were upregulated, while Mucin-1 was decreased significantly (P < 0.05). Leucine also increased the maternal antioxidant capacity and immune function. Conclusively, leucine supplementation in premating diet could improve the reproductive performance, which could be attributed to the improved oxidative and immune status.
Collapse
|
30
|
Templeman NM, Murphy CT. Regulation of reproduction and longevity by nutrient-sensing pathways. J Cell Biol 2018; 217:93-106. [PMID: 29074705 PMCID: PMC5748989 DOI: 10.1083/jcb.201707168] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/02/2017] [Accepted: 10/04/2017] [Indexed: 12/23/2022] Open
Abstract
Nutrients are necessary for life, as they are a crucial requirement for biological processes including reproduction, somatic growth, and tissue maintenance. Therefore, signaling systems involved in detecting and interpreting nutrient or energy levels-most notably, the insulin/insulin-like growth factor 1 (IGF-1) signaling pathway, mechanistic target of rapamycin (mTOR), and adenosine monophosphate-activated protein kinase (AMPK)-play important roles in regulating physiological decisions to reproduce, grow, and age. In this review, we discuss the connections between reproductive senescence and somatic aging and give an overview of the involvement of nutrient-sensing pathways in controlling both reproductive function and lifespan. Although the molecular mechanisms that affect these processes can be influenced by distinct tissue-, temporal-, and pathway-specific signaling events, the progression of reproductive aging and somatic aging is systemically coordinated by integrated nutrient-sensing signaling pathways regulating somatic tissue maintenance in conjunction with reproductive capacity.
Collapse
Affiliation(s)
- Nicole M Templeman
- Lewis-Sigler Institute for Integrative Genomics and Department of Molecular Biology, Princeton University, Princeton, NJ
| | - Coleen T Murphy
- Lewis-Sigler Institute for Integrative Genomics and Department of Molecular Biology, Princeton University, Princeton, NJ
| |
Collapse
|
31
|
Coyral-Castel S, Ramé C, Cognié J, Lecardonnel J, Marthey S, Esquerré D, Hennequet-Antier C, Elis S, Fritz S, Boussaha M, Jaffrézic F, Dupont J. KIRREL is differentially expressed in adipose tissue from 'fertil+' and 'fertil-' cows: in vitro role in ovary? Reproduction 2017; 155:183-198. [PMID: 29170164 DOI: 10.1530/rep-17-0649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 11/18/2017] [Accepted: 11/23/2017] [Indexed: 01/10/2023]
Abstract
We have previously shown that dairy cows carrying the 'fertil-' haplotype for one quantitative trait locus affecting female fertility located on the bovine chromosome three (QTL-F-Fert-BTA3) have a significantly lower conception rate and body weight after calving than cows carrying the 'fertil+' haplotype. Here, we compared by Tiling Array the expression of genes included in the QTL-F-Fert-BTA3 in 'fertil+' and 'fertil-' adipose tissue one week after calving when plasma non-esterified fatty acid concentrations were greater in 'fertil-' animals. We observed that thirty-one genes were overexpressed whereas twelve were under-expressed in 'fertil+' as compared to 'fertil-' cows (P < 0.05). By quantitative PCR and immunoblot we confirmed that adipose tissue KIRREL mRNA and protein were significantly greater expressed in 'fertil+' than in 'fertil-'. KIRREL mRNA is abundant in bovine kidney, adipose tissue, pituitary, and ovary and detectable in hypothalamus and mammary gland. Its expression (mRNA and protein) is greater in kidney of 'fertil+' than 'fertil-' cows (P < 0.05). KIRREL (mRNA and protein) is also present in the different ovarian cells with a greater expression in granulosa cells of 'fertil+' than 'fertil-' cows. In cultured granulosa cells, recombinant KIRREL halved steroid secretion in basal state (P < 0.05). It also decreased cell proliferation (P < 0.05) and in vitro oocyte maturation (P < 0.05). These results were associated to a rapid increase in MAPK1/3 and MAPK14 phosphorylation in granulosa cells and to a decrease in MAPK1/3 phosphorylation in oocyte. Thus, KIRREL could be a potential metabolic messenger linking body composition and fertility.
Collapse
Affiliation(s)
- S Coyral-Castel
- INRAUMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France.,CNRSUMR7247, Nouzilly, France.,Université François Rabelais de ToursTours, France.,IFCENouzilly, France.,Département GIPSIEInstitut de l'Elevage, Paris Cedex 12, France
| | - C Ramé
- INRAUMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France.,CNRSUMR7247, Nouzilly, France.,Université François Rabelais de ToursTours, France.,IFCENouzilly, France
| | - J Cognié
- INRAUMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France.,CNRSUMR7247, Nouzilly, France.,Université François Rabelais de ToursTours, France.,IFCENouzilly, France
| | - J Lecardonnel
- INRAUMR1313, Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France.,AgroParisTechUMR1313 Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | - S Marthey
- INRAUMR1313, Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France.,AgroParisTechUMR1313 Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | - D Esquerré
- INRAUMR1313, Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France.,AgroParisTechUMR1313 Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | | | - S Elis
- INRAUMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France.,CNRSUMR7247, Nouzilly, France.,Université François Rabelais de ToursTours, France.,IFCENouzilly, France
| | - S Fritz
- ALLICEParis Cedex 12, France
| | - M Boussaha
- INRAUMR1313, Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France.,AgroParisTechUMR1313 Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | - F Jaffrézic
- INRAUMR1313, Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France.,AgroParisTechUMR1313 Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | - J Dupont
- INRAUMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France .,CNRSUMR7247, Nouzilly, France.,Université François Rabelais de ToursTours, France.,IFCENouzilly, France
| |
Collapse
|
32
|
Bowdridge EC, Vernon MW, Flores JA, Clemmer MJ. In vitro progesterone production by luteinized human mural granulosa cells is modulated by activation of AMPK and cause of infertility. Reprod Biol Endocrinol 2017; 15:76. [PMID: 28938894 PMCID: PMC5610539 DOI: 10.1186/s12958-017-0295-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 09/13/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mural granulosa cells from IVF patients were provided by the West Virginia University Center for Reproductive Medicine in Morgantown, WV. The effect of adenosine monophosphate activated protein kinase (AMPK) activation, primary cause of infertility, age, BMI, and pregnancy outcome on production of progesterone were examined separately. METHODS Isolated mural sheets from IVF patients (n = 26) were centrifuged, supernatant discarded, and the pellet re-suspended in 500 μl of DMEM/F12. Mural granulosa cells were plated at 10,000 cells/well in triplicate per treatment group with 300 μl DMEM/F12 media at 37 °C and 5% CO2 in a humidified incubator to permit luteinization. Four days after initial plating, cells were treated with either an AMPK inhibitor, DM; an AMPK activator, AICAR; or hCG. Cells were cultured for 24 h after treatment when medium was collected and frozen at -20 °C until assayed for P4 by radioimmunoassay. RESULTS The AMPK activator, AICAR, inhibited P4 production (P < 0.001), whereas the AMPK inhibitor, DM, did not affect basal P4 (P < 0.05). Progesterone production increased when cells from patients whose primary cause of infertility was a partner having male infertility were treated with hCG compared to control (P = 0.0045), but not in patients with other primary infertility factors (P > 0.05). Additionally, hCG increased P4 production in patients between the ages 30-35 (P = 0.008) and 36-39 (P = 0.04), but not in patients ages 25-29 (P = 0.73). Patients with normal BMI had increased P4 production when treated with hCG (P < 0.0001), however there was no change in P4 production from cells of patients who were overweight or obese (P > 0.05). Cells from patients who became pregnant to IVF had greater P4 production when stimulated with hCG than those who did not become pregnant when compared to controls (P > 0.05). CONCLUSIONS Understanding how AMPK activation is regulated in ovarian cells could lead to alternative or novel infertility treatments. Human mural granulosa cells can serve as a valuable model for understanding how AMPK affects P4 production in steroidogenic cells. Additionally, when stimulated with hCG, P4 production by mural granulosa cells differed among infertility type, age, BMI, and pregnancy outcome.
Collapse
Affiliation(s)
- E. C. Bowdridge
- 0000 0001 2156 6140grid.268154.cDepartment of Physiology and Pharmacology, West Virginia University, P.O. Box 4992, Morgantown, WV 26506 USA
| | - M. W. Vernon
- 0000 0001 2156 6140grid.268154.cDepartment of Obstetrics and Gynecology, West Virginia University, Morgantown, WV 26506 USA
| | - J. A. Flores
- 0000 0001 2156 6140grid.268154.cDepartment of Biology West Virginia University, Morgantown, WV 26505 USA
| | - M. J. Clemmer
- 0000 0001 2156 6140grid.268154.cDepartment of Obstetrics and Gynecology, West Virginia University, Morgantown, WV 26506 USA
| |
Collapse
|
33
|
Insulin signalling and glucose transport in the ovary and ovarian function during the ovarian cycle. Biochem J 2017; 473:1483-501. [PMID: 27234585 PMCID: PMC4888492 DOI: 10.1042/bcj20160124] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 03/03/2016] [Indexed: 12/16/2022]
Abstract
Data derived principally from peripheral tissues (fat, muscle and liver) show that insulin signals via diverse interconnecting intracellular pathways and that some of the major intersecting points (known as critical nodes) are the IRSs (insulin receptor substrates), PI3K (phosphoinositide kinase)/Akt and MAPK (mitogen-activated protein kinase). Most of these insulin pathways are probably also active in the ovary and their ability to interact with each other and also with follicle-stimulating hormone (FSH) and luteinizing hormone (LH) signalling pathways enables insulin to exert direct modulating influences on ovarian function. The present paper reviews the intracellular actions of insulin and the uptake of glucose by ovarian tissues (granulosa, theca and oocyte) during the oestrous/menstrual cycle of some rodent, primate and ruminant species. Insulin signals through diverse pathways and these are discussed with specific reference to follicular cell types (granulosa, theca and oocyte). The signalling pathways for FSH in granulosa cells and LH in granulosa and theca cells are summarized. The roles of glucose and of insulin-mediated uptake of glucose in folliculogenesis are discussed. It is suggested that glucose in addition to its well-established role of providing energy for cellular function may also have insulin-mediated signalling functions in ovarian cells, involving AMPK (AMP-dependent protein kinase) and/or hexosamine. Potential interactions of insulin signalling with FSH or LH signalling at critical nodes are identified and the available evidence for such interactions in ovarian cells is discussed. Finally the action of the insulin-sensitizing drugs metformin and the thiazolidinedione rosiglitazone on follicular cells is reviewed.
Collapse
|
34
|
Roche J, Ramé C, Reverchon M, Mellouk N, Rak A, Froment P, Dupont J. Apelin (APLN) regulates progesterone secretion and oocyte maturation in bovine ovarian cells. Reproduction 2017; 153:589-603. [PMID: 28250234 DOI: 10.1530/rep-16-0677] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 02/14/2017] [Accepted: 02/28/2017] [Indexed: 11/08/2022]
Abstract
APLN and its G-protein coupled receptor APLNR are expressed in the bovine ovary. However their role in granulosa cells and oocytes is unknown. Here, we studied their expression in bovine ovarian cells and investigated their regulation in cultured luteinizing granulosa cells in response to IGF1 and FSH. We determined the effect and the molecular mechanism of APLN (isoforms 17 and 13) on bovine granulosa cell progesterone secretion and on oocyte maturation. By RT-qPCR and immunoblot, we showed that the expression of both APLN and APLNR in granulosa and oocytes significantly increased with ovarian follicles size whereas it was similar in theca interstitial cells. In vitro, in unstimulated luteinizing bovine granulosa cells and in response to IGF1 (10-8 M) but not to FSH (10-8 M), we observed that APLN (-17 and -13) (10-9 M) increased progesterone production; this was abolished in response to the APLNR antagonist ML221. These latter effects were dependent on the MAPK ERK1/2 kinase. Furthermore, we showed that APLN (-17 and -13) (10-9 M) increased cell proliferation through AKT signaling. Conversely, the addition of APLN-13 and APLN-17 to in vitro maturation medium containing IGF1 (10-8 M) but not FSH (10-8 M) arrested most oocytes at the germinal vesicle stage, which was associated with a decrease in progesterone secretion, an inhibition in MAPK ERK1/2 phosphorylation and an increase in PRKA phosphorylation in oocytes. Thus, APLN can increase progesterone secretion and cell proliferation in bovine luteinizing granulosa cells in vitro, while it blocks meiotic progression at the germinal vesicle stage during bovine oocyte in vitro maturation.
Collapse
Affiliation(s)
- J Roche
- INRAUMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France.,CNRSUMR7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France.,Université François Rabelais de ToursTours, France
| | - C Ramé
- INRAUMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France.,CNRSUMR7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France.,Université François Rabelais de ToursTours, France
| | - M Reverchon
- INRAUMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France.,CNRSUMR7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France.,Université François Rabelais de ToursTours, France
| | - N Mellouk
- INRAUMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France.,CNRSUMR7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France.,Université François Rabelais de ToursTours, France
| | - A Rak
- Department of Physiology and Toxicology of ReproductionInstitute of Zoology, Jagiellonian University of Krakow, Krakow, Poland
| | - P Froment
- INRAUMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France.,CNRSUMR7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France.,Université François Rabelais de ToursTours, France
| | - J Dupont
- INRAUMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France .,CNRSUMR7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France.,Université François Rabelais de ToursTours, France
| |
Collapse
|
35
|
Taibi N, Dupont J, Bouguermouh Z, Froment P, Ramé C, Anane A, Amirat Z, Khammar F. Expression of adenosine 5'-monophosphate-Activated protein kinase (AMPK) in ovine testis (Ovis aries): In vivo regulation by nutritional state. Anim Reprod Sci 2017; 178:9-22. [PMID: 28122665 DOI: 10.1016/j.anireprosci.2017.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 01/04/2017] [Accepted: 01/07/2017] [Indexed: 12/26/2022]
Abstract
In the present study, we identified AMPK and investigated its potential role in steroidogenesis in vivo in the ovine testis in response to variation in nutritional status (fed control vs. restricted). We performed immunoblotting to show that both active and non-active forms of AMPK exist in ovine testis and liver. In testis, we confirmed these results by immunohistochemistry. We found a correlation between ATP (Adenosine-Triphosphate) levels and the expression of AMPK in liver. Also, low and high caloric diets induce isoform-dependent AMPK expression, with an increase in α2, ß1ß2 and γ1 activity levels. Although the restricted group exhibited an increase in lipid balance, only the triglyceride and HC-VLDL (Cholesterol-Very low density lipoprotein) fractions showed significant differences between groups, suggesting an adaptive mechanism. Moreover, the relatively low rate of non-esterified fatty acid released into the circulation implies re-esterification to compensate for the physiological need. In the fed control group, AMPK activates the production of testosterone in Leydig cells; this is, in turn, associated with an increase in the expression of 3ß-HSD (3 beta hydroxy steroid deshydrogenase), p450scc (Cholesterol side-chain cleavage enzyme) and StAR (Steroidogenic acute regulatory protein) proteins induced by decreased MAPK ERK½ (Extracellular signal-regulated kinase -Mitogen-activated protein kinase) phosphorylation. In contrast, in the restricted group, testosterone secretion was reduced but intracellular cholesterol concentration was not. Furthermore, the combination of high levels of lipoproteins and emergence of the p38 MAP kinase pathway suggest the involvement of pro-inflammatory cytokines, as confirmed by transcriptional repression of the StAR protein. Taken together, these results suggest that AMPK expression is tissue dependent.
Collapse
Affiliation(s)
- N Taibi
- Université des Sciences et de la Technologie Houari Boumediene (USTHB), Faculté des Sciences Biologiques (FSB), Laboratoire de Recherche sur les Zones Arides, (LRZA), BP 32 El Alia 16111, Bab Ezzouar 16111, Algérie; Centre de Recherche Scientifique et Technique en Analyses Physico-chimiques (C.R.A.P.C), BP 384, Zone industrielle de Bou-Ismail, RP 42004 w., Tipaza, Algérie.
| | - J Dupont
- Unité de Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, 37380 Nouzilly, France.
| | | | - P Froment
- Unité de Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, 37380 Nouzilly, France.
| | - C Ramé
- Unité de Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, 37380 Nouzilly, France.
| | - A Anane
- Université des Sciences et de la Technologie Houari Boumediene (USTHB), Faculté des Sciences Biologiques (FSB), Laboratoire de Recherche sur les Zones Arides, (LRZA), BP 32 El Alia 16111, Bab Ezzouar 16111, Algérie.
| | - Z Amirat
- Université des Sciences et de la Technologie Houari Boumediene (USTHB), Faculté des Sciences Biologiques (FSB), Laboratoire de Recherche sur les Zones Arides, (LRZA), BP 32 El Alia 16111, Bab Ezzouar 16111, Algérie.
| | - F Khammar
- Université des Sciences et de la Technologie Houari Boumediene (USTHB), Faculté des Sciences Biologiques (FSB), Laboratoire de Recherche sur les Zones Arides, (LRZA), BP 32 El Alia 16111, Bab Ezzouar 16111, Algérie.
| |
Collapse
|
36
|
Expression of genes involved in BMP and estrogen signaling and AMPK production can be important factors affecting total number of antral follicles in ewes. Theriogenology 2016; 91:36-43. [PMID: 28215684 DOI: 10.1016/j.theriogenology.2016.12.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 12/16/2016] [Accepted: 12/21/2016] [Indexed: 11/24/2022]
Abstract
Follicular growth and ovulation of healthy oocytes is a complicated process which is regulated by several endocrine and paracrine factors as well as cross-talk between the oocyte and its surrounding somatic cells. This study compared the expression profile of some candidate genes involved in BMP signaling as well as estrogen and AMPK production in cumulus-oocyte complex (COC) of small and large antral follicles and their associated somatic cell layers in ovaries from ewes with high- and low-antral follicle count (AFC). Expression of GDF9 was increased by increasing the size of antral follicles, while BMP15 expression was decreased by follicular size. It should be noteworthy that transcription of both GDF9 and BMP15 was also detected in the adjacent cellular layers under the follicles. There was a very strong positive correlation between BMP15 and BMPR2 in ovary tissues. Expression of GDF9 was highly correlated with BMP15, BMPR1B, and BMPR2 in large antral follicles. Expression of BMP7 in small antral follicles and BMPR2 in ovary tissues was significantly increased in the high-AFC group. Expression of ESR1 and ESR2 involved in estrogen production as well as PRKAA1 which involved in AMPK production were significantly greater in large antral follicles of high-AFC. There was a very high correlation between Cyp19 and ESR1 in large antral follicles and ovary tissues. Expression of Cyp19 and PRKAA1 were positively correlated with GDF9, BMP15, and BMP7 in large follicles. In conclusion, this study suggests that apart from the BMP signaling, genes involved in AMPK and estrogen production can be pivotal players in ewe's follicular development process. In addition, a strong cross-talk can exist among AMPK, BMP signaling, and estrogen synthesis systems in ewe ovary.
Collapse
|
37
|
Nguyen TMD, Froment P, Combarnous Y, Blesbois É. [AMPK, regulator of sperm energy and functions]. Med Sci (Paris) 2016; 32:491-6. [PMID: 27225922 DOI: 10.1051/medsci/20163205016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The 5'-AMP-activated protein kinase, AMPK, is a key protein kinase in the metabolism of the cell that regulates many metabolic pathways. The involvement of cell metabolism in sperm ability to fertilize is well established, but only a few studies have focused on the role of AMPK in the control of male fertility. This article summarizes the known role of AMPK in this area. AMPK is involved in the regulation of sperm quality by its action on the proliferation of Sertoli cells. AMPK also directly controls the quality of sperm by its involvement in the regulation of motility and acrosome reaction. It is also involved in the management of lipid peroxidation and gametes antioxidant enzymes. Thus, AMPK appears as a key signaling protein for sperm and male fertility control.
Collapse
Affiliation(s)
- Thi Mong Diep Nguyen
- INRA, UMR85 CNRS, UMR7247, Physiologie de la reproduction et des comportements, F-37380 Nouzilly, France - Université de Tours François Rabelais, F-37000 Tours, France - Quy Nhon university, VietNam
| | - Pascal Froment
- INRA, UMR85 CNRS, UMR7247, Physiologie de la reproduction et des comportements, F-37380 Nouzilly, France - Université de Tours François Rabelais, F-37000 Tours, France
| | - Yves Combarnous
- INRA, UMR85 CNRS, UMR7247, Physiologie de la reproduction et des comportements, F-37380 Nouzilly, France - Université de Tours François Rabelais, F-37000 Tours, France
| | - Élisabeth Blesbois
- INRA, UMR85 CNRS, UMR7247, Physiologie de la reproduction et des comportements, F-37380 Nouzilly, France - Université de Tours François Rabelais, F-37000 Tours, France
| |
Collapse
|
38
|
Fontana R, Della Torre S. The Deep Correlation between Energy Metabolism and Reproduction: A View on the Effects of Nutrition for Women Fertility. Nutrients 2016; 8:87. [PMID: 26875986 PMCID: PMC4772050 DOI: 10.3390/nu8020087] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/21/2016] [Accepted: 02/02/2016] [Indexed: 01/01/2023] Open
Abstract
In female mammals, mechanisms have been developed, throughout evolution, to integrate environmental, nutritional and hormonal cues in order to guarantee reproduction in favorable energetic conditions and to inhibit it in case of food scarcity. This metabolic strategy could be an advantage in nutritionally poor environments, but nowadays is affecting women's health. The unlimited availability of nutrients, in association with reduced energy expenditure, leads to alterations in many metabolic pathways and to impairments in the finely tuned inter-relation between energy metabolism and reproduction, thereby affecting female fertility. Many energetic states could influence female reproductive health being under- and over-weight, obesity and strenuous physical activity are all conditions that alter the profiles of specific hormones, such as insulin and adipokines, thus impairing women fertility. Furthermore, specific classes of nutrients might affect female fertility by acting on particular signaling pathways. Dietary fatty acids, carbohydrates, proteins and food-associated components (such as endocrine disruptors) have per se physiological activities and their unbalanced intake, both in quantitative and qualitative terms, might impair metabolic homeostasis and fertility in premenopausal women. Even though we are far from identifying a "fertility diet", lifestyle and dietary interventions might represent a promising and invaluable strategy to manage infertility in premenopausal women.
Collapse
Affiliation(s)
- Roberta Fontana
- Department of Pharmacological and Biomolecular Sciences, University of Milan, via Balzaretti 9, Milan 20133, Italy.
- Department of Drug Discovery and Development, Italian Institute of Technology, via Morego 30, Genova 16163, Italy.
| | - Sara Della Torre
- Department of Pharmacological and Biomolecular Sciences, University of Milan, via Balzaretti 9, Milan 20133, Italy.
- Center of Excellence of Neurodegenerative Diseases, University of Milan, via Balzaretti 9, Milan 20133, Italy.
| |
Collapse
|
39
|
Cooperative Effects of FOXL2 with the Members of TGF-β Superfamily on FSH Receptor mRNA Expression and Granulosa Cell Proliferation from Hen Prehierarchical Follicles. PLoS One 2015; 10:e0141062. [PMID: 26496659 PMCID: PMC4619702 DOI: 10.1371/journal.pone.0141062] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 10/01/2015] [Indexed: 11/19/2022] Open
Abstract
Forkhead box L2 (FOXL2) is a member of the forkhead nuclear factor 3 gene family and plays an essential role in ovarian growth and maturation in mammals. However, its potential effects and regulative mechanism in development of chicken ovarian prehierarchical follicles remain unexplored. In this study, the cooperative effects of FOXL2 with activin A, growth differentiation factor-9 (GDF9) and follistatin, three members of the transforming growth factor beta (TGF-β) superfamily that were previously suggested to exert a critical role in follicle development was investigated. We demonstrated herein, using in-situ hybridization, Northern blot and immunohistochemical analyses of oocytes and granulosa cells in various sizes of prehierarchical follicles that both FOXL2 transcripts and FOXL2 proteins are predominantly expressed in a highly similar expression pattern to that of GDF9 gene. In addition, the FOXL2 transcript was found at lower levels in theca cells in the absence of GDF9. Furthermore, culture of granulosa cells (GCs) from the prehierarchical follicles (6–8 mm) in conditioned medium revealed that in the pcDNA3.0-FOXL2 transfected GCs, there was a more dramatic increase in FSHR mRNA expression after treatment with activin A (10 ng/ml) or GDF9 (100 ng/ml) for 24 h which caused a stimulatory effect on the GC proliferation. In contrast, a significant decrease of FSHR mRNA was detected after treatment with follistatin (50 ng/ml) and resulted in an inhibitory effect on the cell proliferation. The results of this suggested that FOXL2 plays a bidirectional modulating role involved in the intracellular FSHR transcription and GC proliferation via an autocrine regulatory mechanism in a positive or negative manner through cooperation with activin A and/or GDF9, and follistatin in the hen follicle development. This cooperative action may be mediated by the examined Smad signals and simultaneously implicated in modulation of the StAR, CCND2, and CYP11A1 expression.
Collapse
|
40
|
Bertoldo MJ, Faure M, Dupont J, Froment P. AMPK: a master energy regulator for gonadal function. Front Neurosci 2015; 9:235. [PMID: 26236179 PMCID: PMC4500899 DOI: 10.3389/fnins.2015.00235] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 06/19/2015] [Indexed: 12/11/2022] Open
Abstract
From C. elegans to mammals (including humans), nutrition and energy metabolism significantly influence reproduction. At the cellular level, some detectors of energy status indicate whether energy reserves are abundant (obesity), or poor (diet restriction). One of these detectors is AMPK (5′ AMP-activated protein kinase), a protein kinase activated by ATP deficiency but also by several natural substances such as polyphenols or synthetic molecules like metformin, used in the treatment of insulin resistance. AMPK is expressed in muscle and liver, but also in the ovary and testis. This review focuses on the main effects of AMPK identified in gonadal cells. We describe the role of AMPK in gonadal steroidogenesis, in proliferation and survival of somatic gonadal cells and in the maturation of oocytes or spermatozoa. We discuss also the role of AMPK in germ and somatic cell interactions within the cumulus-oocyte complex and in the blood testis barrier. Finally, the interface in the gonad between AMPK and modification of metabolism is reported and discussion about the role of AMPK on fertility, in regards to the treatment of infertility associated with insulin resistance (male obesity, polycystic ovary syndrome).
Collapse
Affiliation(s)
- Michael J Bertoldo
- Discipline of Obstetrics and Gynaecology, School of Women's and Children's Health, University of New South Wales Sydney, NSW, Australia
| | - Melanie Faure
- Unité de Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, UMR85 Nouzilly, France
| | - Joëlle Dupont
- Unité de Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, UMR85 Nouzilly, France
| | - Pascal Froment
- Unité de Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, UMR85 Nouzilly, France
| |
Collapse
|
41
|
Bowdridge EC, Goravanahally MP, Inskeep EK, Flores JA. Activation of Adenosine Monophosphate-Activated Protein Kinase Is an Additional Mechanism That Participates in Mediating Inhibitory Actions of Prostaglandin F2Alpha in Mature, but Not Developing, Bovine Corpora Lutea. Biol Reprod 2015; 93:7. [PMID: 25972015 DOI: 10.1095/biolreprod.115.129411] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 05/08/2015] [Indexed: 01/12/2023] Open
Abstract
Elevated cytosolic calcium and protein kinase C are well-established mediators of luteolytic actions of prostaglandin F2alpha (PGF2alpha). The objectives of this study were to determine 1) if calcium/calmodulin-dependent kinase kinase 2 (CAMKK2) participates in mediating PGF2alpha actions in developing (Day [d]-4) and mature (d-10) bovine corpus luteum (CL), 2) distal targets of CAMKK2, 3) developmental expression of adenosine monophosphate-activated protein kinase (AMPK), and 4) effects of AMPK activation on progesterone (P4) production. Expression of AMPK increased as the CL matured. Activation of the prostaglandin receptor (FP) induced rapid phosphorylation of AMPK, which was blocked by a CAMKK2 inhibitor. Changes in basal P4 secretion in vitro were determined in response to AMPK activation via metformin (met) or 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) in d-4 and d-10 CL. Production of P4 in d-10 CL decreased with met or AICAR compared to control, similar to activation by PGF2alpha. Therefore, potential distal targets of AMPK in d-10 CL were examined during induced functional regression via exogenous PGF2alpha. Serum and luteal P4 decreased at 2 and 4 h after administration of PGF2alpha. Protein expression of LDLR decreased at 2 and 4 h, while those of ACAT1 and STAR increased 4 h after PGF2alpha. During induced regression, alterations of cholesterol transport proteins contributed to decreased luteal and serum P4. Therefore, developmental differences in signal transduction associated with FP, specifically CAMKK2 and AMPK, partially contribute to differences in the ability of PGF2alpha to induce regression in mature, but not developing, bovine CL. Multiple cholesterol transport proteins, including LDLR, were altered by PGF2alpha and could be potential AMPK targets.
Collapse
Affiliation(s)
- Elizabeth C Bowdridge
- Animal and Nutritional Sciences, West Virginia University, Morgantown, West Virginia
| | | | - E Keith Inskeep
- Animal and Nutritional Sciences, West Virginia University, Morgantown, West Virginia
| | - Jorge A Flores
- Department of Biology, West Virginia University, Morgantown, West Virginia
| |
Collapse
|
42
|
Diot M, Reverchon M, Ramé C, Baumard Y, Dupont J. Expression and effect of NAMPT (visfatin) on progesterone secretion in hen granulosa cells. Reproduction 2015; 150:53-63. [PMID: 25918435 DOI: 10.1530/rep-15-0021] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 04/24/2015] [Indexed: 12/12/2022]
Abstract
In mammals, nicotinamide phosphoribosyltransferase (NAMPT) is an adipokine produced by adipose tissue that is found in intracellular and extracellular compartments. The intracellular form of NAMPT is a nicotinamide phosphoribosyltransferase, whereas the extracellular form is considered an adipokine. In humans, NAMPT regulates energy metabolism and reproductive functions, such as ovarian steroidogenesis. To date, no study has investigated the role of NAMPT in hen ovaries. We investigated whether NAMPT is present in hen ovarian follicles and its role in granulosa cells. Using RT-PCR, western blotting and immunocytochemistry, we detected mRNA transcripts and proteins related to NAMPT in theca and granulosa cells from pre-ovulatory follicles. Using RT-PCR, we demonstrated that mRNA NAMPT levels were higher in granulosa cells than they were in theca cells and that during follicle development, theca cell levels decreased, whereas levels remained unchanged in granulosa cells. NAMPT protein quantities were significantly higher in theca cells than they were in granulosa cells, but they were unchanged during follicular development. Plasma NAMPT levels, as determined by ELISA and immunoblotting, were significantly lower in adult hens than they were in juveniles. In vitro, treatment with human recombinant NAMPT (100 ng/ml, 48 h) halved basal and IGF1-induced progesterone secretion, and this was associated with a reduction in STAR and HSD3B protein levels and MAPK3/1 phosphorylation levels in granulosa cells. These effects were abolished by the addition of FK866, a specific inhibitor of NAMPT enzymatic activity. Moreover, NAMPT had no effect on granulosa cell proliferation. In conclusion, NAMPT is present in hen ovarian cells and inhibits progesterone production in granulosa cells.
Collapse
Affiliation(s)
- Mélodie Diot
- INRAUMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, FranceCNRSUMR7247, F-37380 Nouzilly, FranceUniversité François Rabelais de ToursF-37000 Tours, FranceIFCEF-37380 Nouzilly, FranceINRAUE 1295, Unité Expérimentale Pôle d'Expérimentation Avicole de Tours, F-37380 Nouzilly, France INRAUMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, FranceCNRSUMR7247, F-37380 Nouzilly, FranceUniversité François Rabelais de ToursF-37000 Tours, FranceIFCEF-37380 Nouzilly, FranceINRAUE 1295, Unité Expérimentale Pôle d'Expérimentation Avicole de Tours, F-37380 Nouzilly, France INRAUMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, FranceCNRSUMR7247, F-37380 Nouzilly, FranceUniversité François Rabelais de ToursF-37000 Tours, FranceIFCEF-37380 Nouzilly, FranceINRAUE 1295, Unité Expérimentale Pôle d'Expérimentation Avicole de Tours, F-37380 Nouzilly, France INRAUMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, FranceCNRSUMR7247, F-37380 Nouzilly, FranceUniversité François Rabelais de ToursF-37000 Tours, FranceIFCEF-37380 Nouzilly, FranceINRAUE 1295, Unité Expérimentale Pôle d'Expérimentation Avicole de Tours, F-37380 Nouzilly, France
| | - Maxime Reverchon
- INRAUMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, FranceCNRSUMR7247, F-37380 Nouzilly, FranceUniversité François Rabelais de ToursF-37000 Tours, FranceIFCEF-37380 Nouzilly, FranceINRAUE 1295, Unité Expérimentale Pôle d'Expérimentation Avicole de Tours, F-37380 Nouzilly, France INRAUMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, FranceCNRSUMR7247, F-37380 Nouzilly, FranceUniversité François Rabelais de ToursF-37000 Tours, FranceIFCEF-37380 Nouzilly, FranceINRAUE 1295, Unité Expérimentale Pôle d'Expérimentation Avicole de Tours, F-37380 Nouzilly, France INRAUMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, FranceCNRSUMR7247, F-37380 Nouzilly, FranceUniversité François Rabelais de ToursF-37000 Tours, FranceIFCEF-37380 Nouzilly, FranceINRAUE 1295, Unité Expérimentale Pôle d'Expérimentation Avicole de Tours, F-37380 Nouzilly, France INRAUMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, FranceCNRSUMR7247, F-37380 Nouzilly, FranceUniversité François Rabelais de ToursF-37000 Tours, FranceIFCEF-37380 Nouzilly, FranceINRAUE 1295, Unité Expérimentale Pôle d'Expérimentation Avicole de Tours, F-37380 Nouzilly, France
| | - Christelle Ramé
- INRAUMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, FranceCNRSUMR7247, F-37380 Nouzilly, FranceUniversité François Rabelais de ToursF-37000 Tours, FranceIFCEF-37380 Nouzilly, FranceINRAUE 1295, Unité Expérimentale Pôle d'Expérimentation Avicole de Tours, F-37380 Nouzilly, France INRAUMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, FranceCNRSUMR7247, F-37380 Nouzilly, FranceUniversité François Rabelais de ToursF-37000 Tours, FranceIFCEF-37380 Nouzilly, FranceINRAUE 1295, Unité Expérimentale Pôle d'Expérimentation Avicole de Tours, F-37380 Nouzilly, France INRAUMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, FranceCNRSUMR7247, F-37380 Nouzilly, FranceUniversité François Rabelais de ToursF-37000 Tours, FranceIFCEF-37380 Nouzilly, FranceINRAUE 1295, Unité Expérimentale Pôle d'Expérimentation Avicole de Tours, F-37380 Nouzilly, France INRAUMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, FranceCNRSUMR7247, F-37380 Nouzilly, FranceUniversité François Rabelais de ToursF-37000 Tours, FranceIFCEF-37380 Nouzilly, FranceINRAUE 1295, Unité Expérimentale Pôle d'Expérimentation Avicole de Tours, F-37380 Nouzilly, France
| | - Yannick Baumard
- INRAUMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, FranceCNRSUMR7247, F-37380 Nouzilly, FranceUniversité François Rabelais de ToursF-37000 Tours, FranceIFCEF-37380 Nouzilly, FranceINRAUE 1295, Unité Expérimentale Pôle d'Expérimentation Avicole de Tours, F-37380 Nouzilly, France
| | - Joëlle Dupont
- INRAUMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, FranceCNRSUMR7247, F-37380 Nouzilly, FranceUniversité François Rabelais de ToursF-37000 Tours, FranceIFCEF-37380 Nouzilly, FranceINRAUE 1295, Unité Expérimentale Pôle d'Expérimentation Avicole de Tours, F-37380 Nouzilly, France INRAUMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, FranceCNRSUMR7247, F-37380 Nouzilly, FranceUniversité François Rabelais de ToursF-37000 Tours, FranceIFCEF-37380 Nouzilly, FranceINRAUE 1295, Unité Expérimentale Pôle d'Expérimentation Avicole de Tours, F-37380 Nouzilly, France INRAUMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, FranceCNRSUMR7247, F-37380 Nouzilly, FranceUniversité François Rabelais de ToursF-37000 Tours, FranceIFCEF-37380 Nouzilly, FranceINRAUE 1295, Unité Expérimentale Pôle d'Expérimentation Avicole de Tours, F-37380 Nouzilly, France INRAUMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, FranceCNRSUMR7247, F-37380 Nouzilly, FranceUniversité François Rabelais de ToursF-37000 Tours, FranceIFCEF-37380 Nouzilly, FranceINRAUE 1295, Unité Expérimentale Pôle d'Expérimentation Avicole de Tours, F-37380 Nouzilly, France
| |
Collapse
|
43
|
Bertoldo MJ, Guibert E, Faure M, Ramé C, Foretz M, Viollet B, Dupont J, Froment P. Specific deletion of AMP-activated protein kinase (α1AMPK) in murine oocytes alters junctional protein expression and mitochondrial physiology. PLoS One 2015; 10:e0119680. [PMID: 25767884 PMCID: PMC4359026 DOI: 10.1371/journal.pone.0119680] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Accepted: 01/15/2015] [Indexed: 12/30/2022] Open
Abstract
Oogenesis and folliculogenesis are dynamic processes that are regulated by endocrine, paracrine and autocrine signals. These signals are exchanged between the oocyte and the somatic cells of the follicle. Here we analyzed the role of AMP-activated protein kinase (AMPK), an important regulator of cellular energy homeostasis, by using transgenic mice deficient in α1AMPK specifically in the oocyte. We found a decrease of 27% in litter size was observed in ZP3-α1AMPK-/- (ZP3-KO) female mice. Following in vitro fertilization, where conditions are stressful for the oocyte and embryo, ZP3-KO oocytes were 68% less likely to pass the 2-cell stage. In vivo and in cumulus-oocyte complexes, several proteins involved in junctional communication, such as connexin37 and N-cadherin were down-regulated in the absence of α1AMPK. While the two signalling pathways (PKA and MAPK) involved in the junctional communication between the cumulus/granulosa cells and the oocyte were stimulated in control oocytes, ZP3-KO oocytes exhibited only low phosphorylation of MAPK or CREB proteins. In addition, MII oocytes deficient in α1AMPK had a 3-fold lower ATP concentration, an increase in abnormal mitochondria, and a decrease in cytochrome C and PGC1α levels, suggesting perturbed energy production by mitochondria. The absence of α1AMPK also induced a reduction in histone deacetylase activity, which was associated with an increase in histone H3 acetylation (K9/K14 residues). Together, the results of the present study suggest that absence of AMPK, modifies oocyte quality through energy processes and oocyte/somatic cell communication. The limited effect observed in vivo could be partly due to a favourable follicle microenvironment where nutrients, growth factors, and adequate cell interaction were present. Whereas in a challenging environment such as that of in vitro culture following IVF, the phenotype is revealed.
Collapse
Affiliation(s)
- Michael J. Bertoldo
- UMR 7247 INRA CNRS Université de Tours Haras Nationaux Physiologie de la Reproduction et des Comportements, 37380, Nouzilly, France
- School of Women’s and Children’s Health, Discipline of Obstetrics and Gynaecology, University of New South Wales, Sydney, NSW, Australia
| | - Edith Guibert
- UMR 7247 INRA CNRS Université de Tours Haras Nationaux Physiologie de la Reproduction et des Comportements, 37380, Nouzilly, France
| | - Melanie Faure
- UMR 7247 INRA CNRS Université de Tours Haras Nationaux Physiologie de la Reproduction et des Comportements, 37380, Nouzilly, France
| | - Christelle Ramé
- UMR 7247 INRA CNRS Université de Tours Haras Nationaux Physiologie de la Reproduction et des Comportements, 37380, Nouzilly, France
| | - Marc Foretz
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Benoit Viollet
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Joëlle Dupont
- UMR 7247 INRA CNRS Université de Tours Haras Nationaux Physiologie de la Reproduction et des Comportements, 37380, Nouzilly, France
| | - Pascal Froment
- UMR 7247 INRA CNRS Université de Tours Haras Nationaux Physiologie de la Reproduction et des Comportements, 37380, Nouzilly, France
| |
Collapse
|
44
|
Roa J, Tena-Sempere M. Connecting metabolism and reproduction: roles of central energy sensors and key molecular mediators. Mol Cell Endocrinol 2014; 397:4-14. [PMID: 25289807 DOI: 10.1016/j.mce.2014.09.027] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/26/2014] [Accepted: 09/26/2014] [Indexed: 12/15/2022]
Abstract
It is well established that pubertal activation of the reproductive axis and maintenance of fertility are critically dependent on the magnitude of body energy reserves and the metabolic state of the organism. Hence, conditions of impaired energy homeostasis often result in deregulation of puberty and reproduction, whereas gonadal dysfunction can be associated with the worsening of the metabolic profile and, eventually, changes in body weight. While much progress has taken place in our knowledge about the neuroendocrine mechanisms linking metabolism and reproduction, our understanding of how such dynamic interplay happens is still incomplete. As paradigmatic example, much has been learned in the last two decades on the reproductive roles of key metabolic hormones (such as leptin, insulin and ghrelin), their brain targets and the major transmitters and neuropeptides involved. Yet, the molecular mechanisms whereby metabolic information is translated and engages into the reproductive circuits remain largely unsolved. In this work, we will summarize recent developments in the characterization of the putative central roles of key cellular energy sensors, such as mTOR, in this phenomenon, and will relate these with other molecular mechanisms likely contributing to the brain coupling of energy balance and fertility. In doing so, we aim to provide an updated view of an area that, despite still underdeveloped, may be critically important to fully understand how reproduction and metabolism are tightly connected in health and disease.
Collapse
Affiliation(s)
- Juan Roa
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Córdoba, Spain; Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/Hospital Universitario Reina Sofia, 14004 Córdoba, Spain
| | - Manuel Tena-Sempere
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Córdoba, Spain; Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/Hospital Universitario Reina Sofia, 14004 Córdoba, Spain.
| |
Collapse
|
45
|
Nguyen TMD, Alves S, Grasseau I, Métayer-Coustard S, Praud C, Froment P, Blesbois E. Central role of 5'-AMP-activated protein kinase in chicken sperm functions. Biol Reprod 2014; 91:121. [PMID: 25297543 DOI: 10.1095/biolreprod.114.121855] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Avian gametes present specific features related to their internal long-term mode of fertilization. Among other central actors of energetic metabolism control, it has been suspected that 5'-AMP-activated protein kinase (AMPK) influences sperm functions and thus plays a key role in fertilization success. In the present work, we studied AMPK localization and function in chicken sperm incubated in vitro. Effects of the pharmacological AMPK activators (AICAR, metformin) and the AMPK inhibitor compound C were assessed by evaluating AMPKalpha (Thr(172)) phosphorylation (by Western blotting), semen quality (by viability, motility, and ability to perform acrosome reaction), and energetic metabolism indicators (lactate, ATP). Localization of AMPK in subcellular sperm compartments was evaluated by immunocytochemistry. Total AMPK was found in all compartments except for the nucleus, but the phosphorylated form phospho-Thr(172)-AMPK was essentially localized in the flagellum and acrosome. AMPK activators significantly improved AMPK phosphorylation, sperm motility (increased by 40% motile, 90% progressive, and 60% rapid sperm), acrosome reaction and lactate production (increased by 40%) and viability. The AMPK inhibitor significantly reduced AMPK phosphorylation and percentages of motility (decrease by 25%), progressive energy (decrease by 35%), and rapid sperm (decreased by 30%), acrosome reaction, lactate production, and ATP release. The two activators differed in their effect on ATP concentration: AICAR stimulated ATP formation, whereas metformin did not. Our results indicate that AMPK plays a key role in the regulation of chicken sperm functions and metabolism. This action differs from that suggested in mammals, mainly by its crucial involvement in the acrosome reaction process.
Collapse
Affiliation(s)
- Thi Mong Diep Nguyen
- INRA, Unité Mixte de Recherche de Physiologie de la Reproduction et des Comportements, Nouzilly, France Université François Rabelais, Tours, France
| | - Sabine Alves
- INRA, Unité Mixte de Recherche de Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Isabelle Grasseau
- INRA, Unité Mixte de Recherche de Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | | | | | - Pascal Froment
- INRA, Unité Mixte de Recherche de Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Elisabeth Blesbois
- INRA, Unité Mixte de Recherche de Physiologie de la Reproduction et des Comportements, Nouzilly, France
| |
Collapse
|
46
|
A cell-autonomous molecular cascade initiated by AMP-activated protein kinase represses steroidogenesis. Mol Cell Biol 2014; 34:4257-71. [PMID: 25225331 DOI: 10.1128/mcb.00734-14] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Steroid hormones regulate essential physiological processes, and inadequate levels are associated with various pathological conditions. In testosterone-producing Leydig cells, steroidogenesis is strongly stimulated by luteinizing hormone (LH) via its receptor leading to increased cyclic AMP (cAMP) production and expression of the steroidogenic acute regulatory (STAR) protein, which is essential for the initiation of steroidogenesis. Steroidogenesis then passively decreases with the degradation of cAMP into AMP by phosphodiesterases. In this study, we show that AMP-activated protein kinase (AMPK) is activated following cAMP-to-AMP breakdown in MA-10 and MLTC-1 Leydig cells. Activated AMPK then actively inhibits cAMP-induced steroidogenesis by repressing the expression of key regulators of steroidogenesis, including Star and Nr4a1. Similar results were obtained in Y-1 adrenal cells and in the constitutively steroidogenic R2C cells. We have also determined that maximum AMPK activation following stimulation of steroidogenesis in MA-10 Leydig cells occurs when steroid hormone production has reached a plateau. Our data identify AMPK as a molecular rheostat that actively represses steroid hormone biosynthesis to preserve cellular energy homeostasis and prevent excess steroid production.
Collapse
|
47
|
Cloix L, Reverchon M, Cornuau M, Froment P, Ramé C, Costa C, Froment G, Lecomte P, Chen W, Royère D, Guerif F, Dupont J. Expression and Regulation of INTELECTIN1 in Human Granulosa-Lutein Cells: Role in IGF-1-Induced Steroidogenesis Through NAMPT1. Biol Reprod 2014; 91:50. [DOI: 10.1095/biolreprod.114.120410] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
48
|
Martin LJ. Implications of adiponectin in linking metabolism to testicular function. Endocrine 2014; 46:16-28. [PMID: 24287788 DOI: 10.1007/s12020-013-0102-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 10/23/2013] [Indexed: 12/16/2022]
Abstract
Obesity is a major health problem, contributing to the development of various diseases with aging. In humans, obesity has been associated with reduced testosterone production and subfertility. Adipose tissue is an important source of hormones having influences on both metabolism and reproduction. Among them, the production and secretion of adiponectin is inversely correlated to the severity of obesity. The purpose of this review of literature is to present the current state of knowledge on adiponectin research to determine whether this hormone affects reproduction in men. Surprisingly, evidences show negative influences of adiponectin on GnRH secretion from the hypothalamus, LH and FSH secretion from the pituitary and testosterone at the testicular level. Thus far, the involvement of adiponectin in the influence of metabolism on reproduction in men is limited. However, adiponectin and its receptors are expressed by different cell types of the male gonad, including Leydig cells, spermatozoa, and epididymis. In addition, actions of adiponectin at the testicular level have been shown to promote spermatogenesis and sperm maturation. Therefore, autocrine/paracrine actions of adiponectin in the testis may contribute to support male reproductive function.
Collapse
Affiliation(s)
- Luc J Martin
- Biology Department, Université de Moncton, 18, Avenue Antonine Maillet, Moncton, NB, E1A 3E9, Canada,
| |
Collapse
|
49
|
Reverchon M, Bertoldo MJ, Ramé C, Froment P, Dupont J. CHEMERIN (RARRES2) decreases in vitro granulosa cell steroidogenesis and blocks oocyte meiotic progression in bovine species. Biol Reprod 2014; 90:102. [PMID: 24671882 DOI: 10.1095/biolreprod.113.117044] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
CHEMERIN, or RARRES2, is a new adipokine that is involved in the regulation of adipogenesis, energy metabolism, and inflammation. Recent data suggest that it also plays a role in reproductive function in rats and humans. Here we studied the expression of CHEMERIN and its three receptors (CMKLR1, GPR1, and CCRL2) in the bovine ovary and investigated the in vitro effects of this hormone on granulosa cell steroidogenesis and oocyte maturation. By RT-PCR, immunoblotting, and immunohistochemistry, we found CHEMERIN, CMKLR1, GPR1, and CCRL2 in various ovarian cells, including granulosa and theca cells, corpus luteum, and oocytes. In cultured bovine granulosa cells, INSULIN, IGF1, and two insulin sensitizers-metformin and rosiglitazone-increased rarres2 mRNA expression whereas they decreased cmklr1, gpr1, and cclr2 mRNA expression. Furthermore, TNF alpha and ADIPONECTIN significantly increased rarres2 and cmklr1 expression, respectively. In cultured bovine granulosa cells, human recombinant CHEMERIN (hRec, 200 ng/ml) reduced production of both progesterone and estradiol, cholesterol content, STAR abundance, CYP19A1 and HMGCR proteins, and the phosphorylation levels of MAPK3/MAPK1 in the presence or absence of FSH (10(-8) M) and IGF1 (10(-8) M). All of these effects were abolished by using an anti-CMKLR1 antibody. In bovine cumulus-oocyte complexes, the addition of hRec (200 ng/ml) in the maturation medium arrested most oocytes at the germinal vesicle stage, and this was associated with a decrease in MAPK3/1 phosphorylation in both oocytes and cumulus cells. Thus, in cultured bovine granulosa cells, hRec decreases steroidogenesis, cholesterol synthesis, and MAPK3/1 phosphorylation, probably through CMKLR1. Moreover, in cumulus-oocyte complexes, it blocked meiotic progression at the germinal vesicle stage and inhibited MAPK3/1 phosphorylation in both the oocytes and cumulus cells during in vitro maturation.
Collapse
Affiliation(s)
- Maxime Reverchon
- Unité Mixte de Recherches 7247 Institut National de la Recherche Agronomique-Centre National de la Recherche Scientifique-Université de Tours-Institut Français du Cheval et de l'Equitation, Nouzilly, France
| | - Michael J Bertoldo
- Unité Mixte de Recherches 7247 Institut National de la Recherche Agronomique-Centre National de la Recherche Scientifique-Université de Tours-Institut Français du Cheval et de l'Equitation, Nouzilly, France
| | - Christelle Ramé
- Unité Mixte de Recherches 7247 Institut National de la Recherche Agronomique-Centre National de la Recherche Scientifique-Université de Tours-Institut Français du Cheval et de l'Equitation, Nouzilly, France
| | - Pascal Froment
- Unité Mixte de Recherches 7247 Institut National de la Recherche Agronomique-Centre National de la Recherche Scientifique-Université de Tours-Institut Français du Cheval et de l'Equitation, Nouzilly, France
| | - Joëlle Dupont
- Unité Mixte de Recherches 7247 Institut National de la Recherche Agronomique-Centre National de la Recherche Scientifique-Université de Tours-Institut Français du Cheval et de l'Equitation, Nouzilly, France
| |
Collapse
|
50
|
Burnstock G. Purinergic signalling in endocrine organs. Purinergic Signal 2014; 10:189-231. [PMID: 24265070 PMCID: PMC3944044 DOI: 10.1007/s11302-013-9396-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/24/2013] [Indexed: 01/08/2023] Open
Abstract
There is widespread involvement of purinergic signalling in endocrine biology. Pituitary cells express P1, P2X and P2Y receptor subtypes to mediate hormone release. Adenosine 5'-triphosphate (ATP) regulates insulin release in the pancreas and is involved in the secretion of thyroid hormones. ATP plays a major role in the synthesis, storage and release of catecholamines from the adrenal gland. In the ovary purinoceptors mediate gonadotrophin-induced progesterone secretion, while in the testes, both Sertoli and Leydig cells express purinoceptors that mediate secretion of oestradiol and testosterone, respectively. ATP released as a cotransmitter with noradrenaline is involved in activities of the pineal gland and in the neuroendocrine control of the thymus. In the hypothalamus, ATP and adenosine stimulate or modulate the release of luteinising hormone-releasing hormone, as well as arginine-vasopressin and oxytocin. Functionally active P2X and P2Y receptors have been identified on human placental syncytiotrophoblast cells and on neuroendocrine cells in the lung, skin, prostate and intestine. Adipocytes have been recognised recently to have endocrine function involving purinoceptors.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| |
Collapse
|