1
|
Draicchio F, Behrends V, Tillin NA, Hurren NM, Sylow L, Mackenzie R. Involvement of the extracellular matrix and integrin signalling proteins in skeletal muscle glucose uptake. J Physiol 2022; 600:4393-4408. [PMID: 36054466 PMCID: PMC9826115 DOI: 10.1113/jp283039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/03/2022] [Indexed: 01/11/2023] Open
Abstract
Whole-body euglycaemia is partly maintained by two cellular processes that encourage glucose uptake in skeletal muscle, the insulin- and contraction-stimulated pathways, with research suggesting convergence between these two processes. The normal structural integrity of the skeletal muscle requires an intact actin cytoskeleton as well as integrin-associated proteins, and thus those structures are likely fundamental for effective glucose uptake in skeletal muscle. In contrast, excessive extracellular matrix (ECM) remodelling and integrin expression in skeletal muscle may contribute to insulin resistance owing to an increased physical barrier causing reduced nutrient and hormonal flux. This review explores the role of the ECM and the actin cytoskeleton in insulin- and contraction-mediated glucose uptake in skeletal muscle. This is a clinically important area of research given that defects in the structural integrity of the ECM and integrin-associated proteins may contribute to loss of muscle function and decreased glucose uptake in type 2 diabetes.
Collapse
Affiliation(s)
- Fulvia Draicchio
- School of Life and Health SciencesWhitelands CollegeUniversity of RoehamptonLondonUK
| | - Volker Behrends
- School of Life and Health SciencesWhitelands CollegeUniversity of RoehamptonLondonUK
| | - Neale A. Tillin
- School of Life and Health SciencesWhitelands CollegeUniversity of RoehamptonLondonUK
| | - Nicholas M. Hurren
- School of Life and Health SciencesWhitelands CollegeUniversity of RoehamptonLondonUK
| | - Lykke Sylow
- Molecular Metabolism in Cancer & Ageing Research GroupDepartment of Biomedical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Richard Mackenzie
- School of Life and Health SciencesWhitelands CollegeUniversity of RoehamptonLondonUK
| |
Collapse
|
2
|
Martín-Estal I, Castorena-Torres F. Gestational Diabetes Mellitus and Energy-Dense Diet: What Is the Role of the Insulin/IGF Axis? Front Endocrinol (Lausanne) 2022; 13:916042. [PMID: 35813659 PMCID: PMC9259869 DOI: 10.3389/fendo.2022.916042] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/24/2022] [Indexed: 01/02/2023] Open
Abstract
Gestational diabetes mellitus (GDM), is one of the most important pregnancy complications affecting approximately 15% of pregnant women. It is related to several gestational adverse outcomes in the fetus, e.g., macrosomia, shoulder dystocia, stillbirth, neonatal hypoglycemia, and respiratory distress. Women with GDM have a high risk of developing type 2 diabetes in the future. The pathogenesis of GDM is not completely understood; nevertheless, two factors could contribute to its development: β-cell dysfunction and failure in insulin secretion in response to insulin resistance induced by gestation. Both processes, together with the physiological activities of the insulin-like growth factors (IGFs), play a crucial role in glucose transport to the fetus and hence, fetal growth and development. IGFs (both IGF-1 and IGF-2) and their binding proteins (IGFBPs) regulate glucose metabolism and insulin sensitivity. Maternal nutritional status determines the health of the newborn, as it has substantial effects on fetal growth and development. Maternal obesity and an energy-dense diet can cause an increase in insulin and IGF-1 serum levels, producing metabolic disorders, such as insulin resistance, GDM, and high birth weight (> 4,000 g) due to a higher level of body fat. In this way, in GDM pregnancies there is an increase in IGF-1 and IGF-2 serum levels, and a decrease in IGFBP-1 and 4 serum levels, suggesting the crucial role of the insulin/IGF system in this gestational outcome. Here, the present review tries to elucidate the role that energy-dense diets and the insulin/IGF-1 signaling pathway perform in GDM pregnancies.
Collapse
|
3
|
Draicchio F, van Vliet S, Ancu O, Paluska SA, Wilund KR, Mickute M, Sathyapalan T, Renshaw D, Watt P, Sylow L, Burd NA, Mackenzie RW. Integrin-associated ILK and PINCH1 protein content are reduced in skeletal muscle of maintenance haemodialysis patients. J Physiol 2020; 598:5701-5716. [PMID: 32969494 DOI: 10.1113/jp280441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/09/2020] [Indexed: 12/17/2022] Open
Abstract
KEY POINTS Patients with renal failure undergoing maintenance haemodialysis are associated with insulin resistance and protein metabolism dysfunction. Novel research suggests that disruption to the transmembrane protein linkage between the cytoskeleton and the extracellular matrix in skeletal muscle may contribute to reduced amino acid metabolism and insulin resistance in haemodialysis. ILK, PINCH1 and pFAKTyr397 were significantly decreased in haemodialysis compared to controls, whereas Rac1 and Akt2 showed no different between groups. Rac1 deletion in the Rac1 knockout model did not alter the expression of integrin-associated proteins. Phenylalanine kinetics were reduced in the haemodialysis group at 30 and 60 min post meal ingestion compared to controls; both groups showed similar levels of insulin sensitivity and β-cell function. Key proteins in the integrin-cytoskeleton linkage are reduced in haemodialysis patients, suggesting for the first time that integrin-associated proteins dysfunction may contribute to reduced phenylalanine flux without affecting insulin resistance in haemodialysis patients. ABSTRACT Muscle atrophy, insulin resistance and reduced muscle phosphoinositide 3-kinase-Akt signalling are common characteristics of patients undergoing maintenance haemodialysis (MHD). Disruption to the transmembrane protein linkage between the cytoskeleton and the extracellular matrix in skeletal muscle may contribute to reduced amino acid metabolism and insulin resistance in MHD patients. Eight MHD patients (age: 56 ± 5 years: body mass index: 32 ± 2 kg m-2 ) and non-diseased controls (age: 50 ± 2 years: body mass index: 31 ± 1 kg m-2 ) received primed continuous l-[ring-2 H5 ]phenylalanine before consuming a mixed meal. Phenylalanine metabolism was determined using two-compartment modelling. Muscle biopsies were collected prior to the meal and at 300 min postprandially. In a separate experiment, skeletal muscle tissue from muscle-specific Rac1 knockout (Rac1 mKO) was harvested to investigate whether Rac1 depletion disrupted the cytoskeleton-integrin linkage, allowing for cross-model examination of proteins of interest. ILK, PINCH1 and pFAKTyr397 were significantly lower in MHD (P < 0.01). Rac1 and Akt showed no difference between groups for the human trial. Rac1 deletion in the Rac1 mKO model did not alter the expression of integrin-associated proteins. Phenylalanine rates of appearance and disappearance, as well as metabolic clearance rates, were lower in the MHD group at 30 and 60 min post meal ingestion compared to controls (P < 0.05). Both groups showed similar levels of insulin sensitivity and β-cell function. Key proteins in the integrin-cytoskeleton linkage are reduced in MHD patients, suggesting for the first time that integrin-associated proteins dysfunction may contribute to reduced phenylalanine flux without affecting insulin resistance in haemodialysis patients.
Collapse
Affiliation(s)
- Fulvia Draicchio
- Department of Life Sciences, Sport and Exercise Science Research Center, University of Roehampton, London, UK
| | - Stephan van Vliet
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Oana Ancu
- Department of Life Sciences, Sport and Exercise Science Research Center, University of Roehampton, London, UK
| | - Scott A Paluska
- Department of Family Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Kenneth R Wilund
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Monika Mickute
- Leicester Diabetes Center, Leicester General Hospital, Leicester, UK
| | | | - Derek Renshaw
- Centre for Sport, Exercise and Life Sciences, Coventry University, Coventry, UK
| | - Peter Watt
- Sport and Exercise Science and Sports Medicine research and enterprise group, Welkin Laboratories, University of Brighton, Eastbourne, UK
| | - Lykke Sylow
- Department of Nutrition, Exercise and Sport, August Krogh Bygningen, University of Copenhagen, Denmark
| | - Nicholas A Burd
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Richard Wa Mackenzie
- Department of Life Sciences, Sport and Exercise Science Research Center, University of Roehampton, London, UK
| |
Collapse
|
4
|
Wilburn DT, Machek SB, Cardaci TD, Willoughby DS. Carbohydrate-Induced Insulin Signaling Activates Focal Adhesion Kinase: A Nutrient and Mechanotransduction Crossroads. Nutrients 2020; 12:nu12103145. [PMID: 33076263 PMCID: PMC7602406 DOI: 10.3390/nu12103145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/03/2020] [Accepted: 10/13/2020] [Indexed: 12/17/2022] Open
Abstract
Research has suggested that nutrient, exercise, and metabolism-related proteins interact to regulate mammalian target of rapamycin complex one (mTOR) post-exercise and their interactions needs clarification. In a double-blind, cross-over, repeated measures design, ten participants completed four sets to failure at 70% of 1-repitition maximum (1-RM) with 45 s rest on angled leg press with or without pre-exercise maltodextrin (2 g/kg) after a 3 h fast. Vastus lateralis biopsies were collected at baseline before supplementation and 1 h post-exercise to analyze Focal Adhesion Kinase (FAK), ribosomal protein S6 kinase beta-1 (p70S6K), insulin receptor substrate 1 (IRS-1), phosphatidylinositol 3-kinase (PI3K), and 5' AMP-activated protein kinase (AMPK) activation. FAK and IRS-1 activity were only elevated 1 h post-exercise with carbohydrate ingestion (p < 0.05). PI3K and p70S6K activation were both elevated after exercise in both conditions (p < 0.05). However, AMPK activity did not change from baseline in both conditions (p > 0.05). We conclude that FAK does not induce mTOR activation through PI3K crosstalk in response to exercise alone. In addition, FAK may not be regulated by AMPK catalytic activity, but this needs further research. Interestingly, carbohydrate-induced insulin signaling appears to activate FAK at the level of IRS-1 but did not enhance mTOR activity 1 h post-exercise greater than the placebo condition. Future research should investigate these interactions under different conditions and within different time frames to clearly understand the interactions between these signaling molecules.
Collapse
Affiliation(s)
- Dylan T. Wilburn
- Exercise and Biochemical Nutrition Laboratory, Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX 76706, USA; (D.T.W.); (S.B.M.); (T.D.C.)
| | - Steven B. Machek
- Exercise and Biochemical Nutrition Laboratory, Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX 76706, USA; (D.T.W.); (S.B.M.); (T.D.C.)
| | - Thomas D. Cardaci
- Exercise and Biochemical Nutrition Laboratory, Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX 76706, USA; (D.T.W.); (S.B.M.); (T.D.C.)
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Darryn S. Willoughby
- Exercise and Biochemical Nutrition Laboratory, Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX 76706, USA; (D.T.W.); (S.B.M.); (T.D.C.)
- School of Exercise and Sport Science, University of Mary Hardin-Baylor, Belton, TX 76513, USA
- Correspondence:
| |
Collapse
|
5
|
Luca E, Turcekova K, Hartung A, Mathes S, Rehrauer H, Krützfeldt J. Genetic deletion of microRNA biogenesis in muscle cells reveals a hierarchical non-clustered network that controls focal adhesion signaling during muscle regeneration. Mol Metab 2020; 36:100967. [PMID: 32240622 PMCID: PMC7139120 DOI: 10.1016/j.molmet.2020.02.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE Decreased muscle mass is a major contributor to age-related morbidity, and strategies to improve muscle regeneration during ageing are urgently needed. Our aim was to identify the subset of relevant microRNAs (miRNAs) that partake in critical aspects of muscle cell differentiation, irrespective of computational predictions, genomic clustering or differential expression of the miRNAs. METHODS miRNA biogenesis was deleted in primary myoblasts using a tamoxifen-inducible CreLox system and combined with an add-back miRNA library screen. RNA-seq experiments, cellular signalling events, and glycogen synthesis, along with miRNA inhibitors, were performed in human primary myoblasts. Muscle regeneration in young and aged mice was assessed using the cardiotoxin (CTX) model. RESULTS We identified a hierarchical non-clustered miRNA network consisting of highly (miR-29a), moderately (let-7) and mildly active (miR-125b, miR-199a, miR-221) miRNAs that cooperate by directly targeting members of the focal adhesion complex. Through RNA-seq experiments comparing single versus combinatorial inhibition of the miRNAs, we uncovered a fundamental feature of this network, that miRNA activity inversely correlates to miRNA cooperativity. During myoblast differentiation, combinatorial inhibition of the five miRNAs increased activation of focal adhesion kinase (FAK), AKT, and p38 mitogen-activated protein kinase (MAPK), and improved myotube formation and insulin-dependent glycogen synthesis. Moreover, antagonizing the miRNA network in vivo following CTX-induced muscle regeneration enhanced muscle mass and myofiber formation in young and aged mice. CONCLUSION Our results provide novel insights into the dynamics of miRNA cooperativity and identify a miRNA network as therapeutic target for impaired focal adhesion signalling and muscle regeneration during ageing.
Collapse
Affiliation(s)
- Edlira Luca
- Division of Endocrinology, Diabetes, and Clinical Nutrition, University Hospital Zurich, 8091, Switzerland
| | - Katarina Turcekova
- Division of Endocrinology, Diabetes, and Clinical Nutrition, University Hospital Zurich, 8091, Switzerland; Competence Center Personalized Medicine UZH/ETH, ETH Zurich and University of Zurich, 8091, Switzerland
| | - Angelika Hartung
- Division of Endocrinology, Diabetes, and Clinical Nutrition, University Hospital Zurich, 8091, Switzerland
| | - Sebastian Mathes
- Division of Endocrinology, Diabetes, and Clinical Nutrition, University Hospital Zurich, 8091, Switzerland; Zurich Center for Integrative Human Physiology, University of Zurich, 8091, Switzerland
| | - Hubert Rehrauer
- Functional Genomics Center Zurich UZH/ETH, ETH Zurich and University of Zurich, 8091, Switzerland
| | - Jan Krützfeldt
- Division of Endocrinology, Diabetes, and Clinical Nutrition, University Hospital Zurich, 8091, Switzerland; Competence Center Personalized Medicine UZH/ETH, ETH Zurich and University of Zurich, 8091, Switzerland; Zurich Center for Integrative Human Physiology, University of Zurich, 8091, Switzerland.
| |
Collapse
|
6
|
Millward DJ, Smith K. The application of stable-isotope tracers to study human musculoskeletal protein turnover: a tale of bag filling and bag enlargement. J Physiol 2019; 597:1235-1249. [PMID: 30097998 PMCID: PMC6395420 DOI: 10.1113/jp275430] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/09/2018] [Indexed: 01/15/2023] Open
Abstract
The nutritional regulation of protein and amino acid balance in human skeletal muscle carried out by the authors with Mike Rennie is reviewed in the context of a simple physiological model for the regulation of the maintenance and growth of skeletal muscle, the "Bag Theory". Beginning in London in the late 1970s the work has involved the use of stable isotopes to probe muscle protein synthesis and breakdown with two basic experimental models, primed-dose continuous tracer infusions combined with muscle biopsies and arterio-venous (A-V) studies across a limb, most often the leg, allowing both protein synthesis and breakdown as well as net balance to be measured. In this way, over a 30 year period, the way in which amino acids and insulin mediate the anabolic effect of a meal has been elaborated in great detail confirming the original concepts of bag filling within the muscle endomysial "bag", which is limited by the "bag" size unless bag enlargement occurs requiring new collagen synthesis. Finally we briefly review some new developments involving 2 H2 O labelling of muscle proteins.
Collapse
Affiliation(s)
- D. Joe Millward
- Department of Nutritional SciencesSchool of Biosciences and MedicineFaculty of Health and Medical SciencesUniversity of SurreyGuildfordUK
- MRC/ARUK Centre of Excellence for Musculoskeletal Ageing ResearchNational Institute for Health Research Nottingham Biomedical Research CentreUniversity of NottinghamDerbyUK
| | - Ken Smith
- Department of Nutritional SciencesSchool of Biosciences and MedicineFaculty of Health and Medical SciencesUniversity of SurreyGuildfordUK
- MRC/ARUK Centre of Excellence for Musculoskeletal Ageing ResearchNational Institute for Health Research Nottingham Biomedical Research CentreUniversity of NottinghamDerbyUK
| |
Collapse
|
7
|
Graae AS, Grarup N, Ribel-Madsen R, Lystbæk SH, Boesgaard T, Staiger H, Fritsche A, Wellner N, Sulek K, Kjolby M, Backe MB, Chubanava S, Prats C, Serup AK, Birk JB, Dubail J, Gillberg L, Vienberg SG, Nykjær A, Kiens B, Wojtaszewski JFP, Larsen S, Apte SS, Häring HU, Vaag A, Zethelius B, Pedersen O, Treebak JT, Hansen T, Holst B. ADAMTS9 Regulates Skeletal Muscle Insulin Sensitivity Through Extracellular Matrix Alterations. Diabetes 2019; 68:502-514. [PMID: 30626608 PMCID: PMC6385758 DOI: 10.2337/db18-0418] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 12/14/2018] [Indexed: 12/17/2022]
Abstract
The ADAMTS9 rs4607103 C allele is one of the few gene variants proposed to increase the risk of type 2 diabetes through an impairment of insulin sensitivity. We show that the variant is associated with increased expression of the secreted ADAMTS9 and decreased insulin sensitivity and signaling in human skeletal muscle. In line with this, mice lacking Adamts9 selectively in skeletal muscle have improved insulin sensitivity. The molecular link between ADAMTS9 and insulin signaling was characterized further in a model where ADAMTS9 was overexpressed in skeletal muscle. This selective overexpression resulted in decreased insulin signaling presumably mediated through alterations of the integrin β1 signaling pathway and disruption of the intracellular cytoskeletal organization. Furthermore, this led to impaired mitochondrial function in mouse muscle-an observation found to be of translational character because humans carrying the ADAMTS9 risk allele have decreased expression of mitochondrial markers. Finally, we found that the link between ADAMTS9 overexpression and impaired insulin signaling could be due to accumulation of harmful lipid intermediates. Our findings contribute to the understanding of the molecular mechanisms underlying insulin resistance and type 2 diabetes and point to inhibition of ADAMTS9 as a potential novel mode of treating insulin resistance.
Collapse
Affiliation(s)
- Anne-Sofie Graae
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niels Grarup
- Section for Metabolic Genetics, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Ribel-Madsen
- Section for Metabolic Genetics, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Endocrinology, Rigshospitalet, Copenhagen, Denmark
- Danish Diabetes Academy, Novo Nordisk Foundation, Odense, Denmark
- Steno Diabetes Center, Gentofte, Denmark
| | - Sara H Lystbæk
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Trine Boesgaard
- Section for Metabolic Genetics, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Harald Staiger
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Centre Munich, University of Tübingen, Tübingen, Germany
- German Centre for Diabetes Research, Tübingen, Germany
- Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Andreas Fritsche
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Centre Munich, University of Tübingen, Tübingen, Germany
- German Centre for Diabetes Research, Tübingen, Germany
- Department of Internal Medicine IV, University Hospital of Tübingen, Tübingen, Germany
| | - Niels Wellner
- The Lundbeck Foundation Research Center MIND, Danish Research Institute of Translational Neuroscience, Nordic EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Karolina Sulek
- Section for Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mads Kjolby
- Danish Diabetes Academy, Novo Nordisk Foundation, Odense, Denmark
- The Lundbeck Foundation Research Center MIND, Danish Research Institute of Translational Neuroscience, Nordic EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Marie Balslev Backe
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sabina Chubanava
- Section for Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Clara Prats
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Annette K Serup
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Jesper B Birk
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Johanne Dubail
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH
| | | | - Sara G Vienberg
- Section for Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders Nykjær
- The Lundbeck Foundation Research Center MIND, Danish Research Institute of Translational Neuroscience, Nordic EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Bente Kiens
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen F P Wojtaszewski
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Steen Larsen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Suneel S Apte
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH
| | - Hans-Ulrich Häring
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Centre Munich, University of Tübingen, Tübingen, Germany
- German Centre for Diabetes Research, Tübingen, Germany
- Department of Internal Medicine IV, University Hospital of Tübingen, Tübingen, Germany
| | - Allan Vaag
- Cardiovascular and Metabolic Disease Translational Medicine Unit, Early Clinical Development, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Björn Zethelius
- Geriatrics, Department of Public Health and Caring Services, Uppsala University, Uppsala, Sweden
| | - Oluf Pedersen
- Section for Metabolic Genetics, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonas T Treebak
- Section for Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Torben Hansen
- Section for Metabolic Genetics, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Birgitte Holst
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Haywood NJ, Slater TA, Matthews CJ, Wheatcroft SB. The insulin like growth factor and binding protein family: Novel therapeutic targets in obesity & diabetes. Mol Metab 2018; 19:86-96. [PMID: 30392760 PMCID: PMC6323188 DOI: 10.1016/j.molmet.2018.10.008] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/12/2018] [Accepted: 10/18/2018] [Indexed: 12/12/2022] Open
Abstract
Background Recent changes in nutrition and lifestyle have provoked an unprecedented increase in the prevalence of obesity and metabolic disorders. Recognition of the adverse effects on health has prompted intense efforts to understand the molecular determinants of insulin sensitivity and dysglycemia. In many respects, actions of insulin-like growth factors (IGFs) mirror those of insulin in metabolic regulation. Unlike insulin, however, the bioactivity of IGFs is regulated by a family of seven high-affinity binding proteins (IGFBPs) which confer temporospatial modulation with implications for metabolic homeostasis. In addition, evidence is accumulating that IGF-independent actions of certain of the IGFBPs can directly modulate insulin sensitivity. Scope of review In this review, we discuss the experimental data indicating a critical role for IGF/IGFBP axis in metabolic regulation. We highlight key discoveries through which IGFBPs have emerged as biomarkers or putative therapeutic targets in obesity and diabetes. Major conclusions Growing evidence suggests that several components of the IGF-IGFBP system could be explored for therapeutic potential in metabolic disorders. Both IGFBP-1 and IGFBP-2 have been favorably linked with insulin sensitivity in humans and preclinical data implicate direct involvement in the molecular regulation of insulin signaling and adiposity respectively. Further studies are warranted to evaluate clinical translation of these findings.
Collapse
Affiliation(s)
- Natalie J Haywood
- Division of Cardiovascular and Diabetes Research, Leeds Multidisciplinary Cardiovascular Research Centre, Faculty of Medicine and Health, University of Leeds, United Kingdom
| | - Thomas A Slater
- Division of Cardiovascular and Diabetes Research, Leeds Multidisciplinary Cardiovascular Research Centre, Faculty of Medicine and Health, University of Leeds, United Kingdom
| | - Connor J Matthews
- Division of Cardiovascular and Diabetes Research, Leeds Multidisciplinary Cardiovascular Research Centre, Faculty of Medicine and Health, University of Leeds, United Kingdom
| | - Stephen B Wheatcroft
- Division of Cardiovascular and Diabetes Research, Leeds Multidisciplinary Cardiovascular Research Centre, Faculty of Medicine and Health, University of Leeds, United Kingdom.
| |
Collapse
|
9
|
Ferreira R, Nogueira-Ferreira R, Trindade F, Vitorino R, Powers SK, Moreira-Gonçalves D. Sugar or fat: The metabolic choice of the trained heart. Metabolism 2018; 87:98-104. [PMID: 30077622 DOI: 10.1016/j.metabol.2018.07.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/13/2018] [Accepted: 07/19/2018] [Indexed: 12/13/2022]
Abstract
Mammals respond to muscular exercise by increasing cardiac output to meet the increased demand for oxygen in the working muscles and it is well-established that regular bouts of exercise results in myocardial remodeling. Depending on exercise type, intensity and duration, these cardiac adaptations lead to changes in the energetic substrates required to sustain cardiac contractility. In contrast to the failing heart, fatty acids are the preferred substrate in the trained heart, though glucose metabolism is also enhanced to support oxidative phosphorylation. The participation of AMPK/eNOS and PPARα/PGC-1α pathways in the regulation of cardiac metabolism is well known but other players also contribute including sirtuins and integrins-mediated outside-in activation of FAK and other kinases. These regulatory players act by up-regulating fatty acid uptake, transport to mitochondria and oxidation, and glucose uptake via GLUT4. This exercise-induced increase in mitochondria metabolic flexibility is important to sustain the energetic demand associated with cardiomyocyte hypertrophy and hyperplasia promoted by IGF-1 and neuregulin-1-induced PI3K/Akt signaling. So, the timeless advice of Hippocrates "walking is the best medicine" seems to be justified by the promotion of mitochondrial health and, consequently, the beneficial metabolic remodeling of the heart.
Collapse
Affiliation(s)
- Rita Ferreira
- QOPNA, Department of Chemistry, University of Aveiro, Aveiro, Portugal.
| | - Rita Nogueira-Ferreira
- Unidade de Investigação Cardiovascular, Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Fábio Trindade
- Unidade de Investigação Cardiovascular, Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Porto, Portugal; iBiMED, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Rui Vitorino
- Unidade de Investigação Cardiovascular, Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Porto, Portugal; iBiMED, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Scott K Powers
- Department of Applied Physiology and Kinesiology, University of Florida, United States
| | - Daniel Moreira-Gonçalves
- Unidade de Investigação Cardiovascular, Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Porto, Portugal; CIAFEL, Faculty of Sport, University of Porto, Porto, Portugal.
| |
Collapse
|
10
|
Russell J, Du Toit EF, Peart JN, Patel HH, Headrick JP. Myocyte membrane and microdomain modifications in diabetes: determinants of ischemic tolerance and cardioprotection. Cardiovasc Diabetol 2017; 16:155. [PMID: 29202762 PMCID: PMC5716308 DOI: 10.1186/s12933-017-0638-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/22/2017] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular disease, predominantly ischemic heart disease (IHD), is the leading cause of death in diabetes mellitus (DM). In addition to eliciting cardiomyopathy, DM induces a ‘wicked triumvirate’: (i) increasing the risk and incidence of IHD and myocardial ischemia; (ii) decreasing myocardial tolerance to ischemia–reperfusion (I–R) injury; and (iii) inhibiting or eliminating responses to cardioprotective stimuli. Changes in ischemic tolerance and cardioprotective signaling may contribute to substantially higher mortality and morbidity following ischemic insult in DM patients. Among the diverse mechanisms implicated in diabetic impairment of ischemic tolerance and cardioprotection, changes in sarcolemmal makeup may play an overarching role and are considered in detail in the current review. Observations predominantly in animal models reveal DM-dependent changes in membrane lipid composition (cholesterol and triglyceride accumulation, fatty acid saturation vs. reduced desaturation, phospholipid remodeling) that contribute to modulation of caveolar domains, gap junctions and T-tubules. These modifications influence sarcolemmal biophysical properties, receptor and phospholipid signaling, ion channel and transporter functions, contributing to contractile and electrophysiological dysfunction, cardiomyopathy, ischemic intolerance and suppression of protective signaling. A better understanding of these sarcolemmal abnormalities in types I and II DM (T1DM, T2DM) can inform approaches to limiting cardiomyopathy, associated IHD and their consequences. Key knowledge gaps include details of sarcolemmal changes in models of T2DM, temporal patterns of lipid, microdomain and T-tubule changes during disease development, and the precise impacts of these diverse sarcolemmal modifications. Importantly, exercise, dietary, pharmacological and gene approaches have potential for improving sarcolemmal makeup, and thus myocyte function and stress-resistance in this ubiquitous metabolic disorder.
Collapse
Affiliation(s)
- Jake Russell
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Eugene F Du Toit
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Jason N Peart
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Hemal H Patel
- VA San Diego Healthcare System and Department of Anesthesiology, University of California San Diego, San Diego, USA
| | - John P Headrick
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia. .,School of Medical Science, Griffith University, Southport, QLD, 4217, Australia.
| |
Collapse
|
11
|
Haywood NJ, Cordell PA, Tang KY, Makova N, Yuldasheva NY, Imrie H, Viswambharan H, Bruns AF, Cubbon RM, Kearney MT, Wheatcroft SB. Insulin-Like Growth Factor Binding Protein 1 Could Improve Glucose Regulation and Insulin Sensitivity Through Its RGD Domain. Diabetes 2017; 66:287-299. [PMID: 28108607 DOI: 10.2337/db16-0997] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 10/26/2016] [Indexed: 11/13/2022]
Abstract
Low circulating levels of insulin-like growth factor binding protein 1 (IGFBP-1) are associated with insulin resistance and predict the development of type 2 diabetes. IGFBP-1 can affect cellular functions independently of IGF binding through an Arg-Gly-Asp (RGD) integrin-binding motif. Whether causal mechanisms underlie the favorable association of high IGFBP-1 levels with insulin sensitivity and whether these could be exploited therapeutically remain unexplored. We used recombinant IGFBP-1 and a synthetic RGD-containing hexapeptide in complementary in vitro signaling assays and in vivo metabolic profiling in obese mice to investigate the effects of IGFBP-1 and its RGD domain on insulin sensitivity, insulin secretion, and whole-body glucose regulation. The RGD integrin-binding domain of IGFBP-1, through integrin engagement, focal adhesion kinase, and integrin-linked kinase, enhanced insulin sensitivity and insulin secretion in C2C12 myotubes and INS-1 832/13 pancreatic β-cells. Both acute administration and chronic infusion of an RGD synthetic peptide to obese C57BL/6 mice improved glucose clearance and insulin sensitivity. These favorable effects on metabolic homeostasis suggest that the RGD integrin-binding domain of IGFBP-1 may be a promising candidate for therapeutic development in the field of insulin resistance.
Collapse
Affiliation(s)
- Natalie J Haywood
- Division of Cardiovascular and Diabetes Research, Leeds Multidisciplinary Cardiovascular Research Centre, Faculty of Medicine and Health, University of Leeds, Leeds, West Yorkshire, U.K
| | - Paul A Cordell
- Division of Cardiovascular and Diabetes Research, Leeds Multidisciplinary Cardiovascular Research Centre, Faculty of Medicine and Health, University of Leeds, Leeds, West Yorkshire, U.K
| | - Kar Yeun Tang
- Division of Cardiovascular and Diabetes Research, Leeds Multidisciplinary Cardiovascular Research Centre, Faculty of Medicine and Health, University of Leeds, Leeds, West Yorkshire, U.K
| | - Natallia Makova
- Division of Cardiovascular and Diabetes Research, Leeds Multidisciplinary Cardiovascular Research Centre, Faculty of Medicine and Health, University of Leeds, Leeds, West Yorkshire, U.K
| | - Nadira Y Yuldasheva
- Division of Cardiovascular and Diabetes Research, Leeds Multidisciplinary Cardiovascular Research Centre, Faculty of Medicine and Health, University of Leeds, Leeds, West Yorkshire, U.K
| | - Helen Imrie
- Division of Cardiovascular and Diabetes Research, Leeds Multidisciplinary Cardiovascular Research Centre, Faculty of Medicine and Health, University of Leeds, Leeds, West Yorkshire, U.K
| | - Hema Viswambharan
- Division of Cardiovascular and Diabetes Research, Leeds Multidisciplinary Cardiovascular Research Centre, Faculty of Medicine and Health, University of Leeds, Leeds, West Yorkshire, U.K
| | - Alexander F Bruns
- Division of Cardiovascular and Diabetes Research, Leeds Multidisciplinary Cardiovascular Research Centre, Faculty of Medicine and Health, University of Leeds, Leeds, West Yorkshire, U.K
| | - Richard M Cubbon
- Division of Cardiovascular and Diabetes Research, Leeds Multidisciplinary Cardiovascular Research Centre, Faculty of Medicine and Health, University of Leeds, Leeds, West Yorkshire, U.K
| | - Mark T Kearney
- Division of Cardiovascular and Diabetes Research, Leeds Multidisciplinary Cardiovascular Research Centre, Faculty of Medicine and Health, University of Leeds, Leeds, West Yorkshire, U.K
| | - Stephen B Wheatcroft
- Division of Cardiovascular and Diabetes Research, Leeds Multidisciplinary Cardiovascular Research Centre, Faculty of Medicine and Health, University of Leeds, Leeds, West Yorkshire, U.K.
| |
Collapse
|
12
|
Abd-Elrahman KS, Colinas O, Walsh EJ, Zhu HL, Campbell CM, Walsh MP, Cole WC. Abnormal myosin phosphatase targeting subunit 1 phosphorylation and actin polymerization contribute to impaired myogenic regulation of cerebral arterial diameter in the type 2 diabetic Goto-Kakizaki rat. J Cereb Blood Flow Metab 2017; 37:227-240. [PMID: 26721393 PMCID: PMC5363741 DOI: 10.1177/0271678x15622463] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/26/2015] [Accepted: 11/17/2015] [Indexed: 12/11/2022]
Abstract
The myogenic response of cerebral resistance arterial smooth muscle to intraluminal pressure elevation is a key physiological mechanism regulating blood flow to the brain. Rho-associated kinase plays a critical role in the myogenic response by activating Ca2+ sensitization mechanisms: (i) Rho-associated kinase inhibits myosin light chain phosphatase by phosphorylating its targeting subunit myosin phosphatase targeting subunit 1 (at T855), augmenting 20 kDa myosin regulatory light chain (LC20) phosphorylation and force generation; and (ii) Rho-associated kinase stimulates cytoskeletal actin polymerization, enhancing force transmission to the cell membrane. Here, we tested the hypothesis that abnormal Rho-associated kinase-mediated myosin light chain phosphatase regulation underlies the dysfunctional cerebral myogenic response of the Goto-Kakizaki rat model of type 2 diabetes. Basal levels of myogenic tone, LC20, and MYPT1-T855 phosphorylation were elevated and G-actin content was reduced in arteries of pre-diabetic 8-10 weeks Goto-Kakizaki rats with normal serum insulin and glucose levels. Pressure-dependent myogenic constriction, LC20, and myosin phosphatase targeting subunit 1 phosphorylation and actin polymerization were suppressed in both pre-diabetic Goto-Kakizaki and diabetic (18-20 weeks) Goto-Kakizaki rats, whereas RhoA, ROK2, and MYPT1 expression were unaffected. We conclude that abnormal Rho-associated kinase-mediated Ca2+ sensitization contributes to the dysfunctional cerebral myogenic response in the Goto-Kakizaki model of type 2 diabetes.
Collapse
Affiliation(s)
- Khaled S Abd-Elrahman
- The Smooth Muscle Research Group, Departments of Physiology & Pharmacology, Libin Cardiovascular Institute & Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Olaia Colinas
- The Smooth Muscle Research Group, Departments of Physiology & Pharmacology, Libin Cardiovascular Institute & Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Emma J Walsh
- The Smooth Muscle Research Group, Departments of Physiology & Pharmacology, Libin Cardiovascular Institute & Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Hai-Lei Zhu
- The Smooth Muscle Research Group, Departments of Physiology & Pharmacology, Libin Cardiovascular Institute & Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Christine M Campbell
- The Smooth Muscle Research Group, Departments of Physiology & Pharmacology, Libin Cardiovascular Institute & Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Michael P Walsh
- The Smooth Muscle Research Group, Department of Biochemistry & Molecular Biology, Libin Cardiovascular Institute & Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - William C Cole
- The Smooth Muscle Research Group, Departments of Physiology & Pharmacology, Libin Cardiovascular Institute & Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta, Canada
| |
Collapse
|
13
|
Viglino C, Montessuit C. A Role for Focal Adhesion Kinase in the Stimulation of Glucose Transport in Cardiomyocytes. J Cell Biochem 2016; 118:670-677. [PMID: 27428469 DOI: 10.1002/jcb.25655] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 07/15/2016] [Indexed: 11/11/2022]
Abstract
Stimulation of glucose transport is markedly impaired in cardiomyocytes exposed to free fatty acids (FFA), despite relative preservation of canonical insulin- or metabolic stress signaling. We determined whether Focal Adhesion Kinase (FAK) activity is required for stimulation of glucose transport in cardiomyocytes, and whether FAK downregulation participates in FFA-induced impairment of glucose transport stimulation. Glucose transport, measured in isolated cultured cardiomyocytes, was acutely stimulated either by insulin treatment, or by metabolic inhibition with oligomycin resulting in AMP-activated kinase (AMPK) activation. FAK activity was inhibited pharmacologically by preincubation with PF-573,228 (PF). FAK activity was assessed from its autophosphorylation on residue Y397, and from the phosphorylation of its target paxillin on Y118. Y397 FAK phosphorylation was reduced in cultured cardiomyocytes chronically exposed to FFA. Preincubation with PF prior to determination of glucose transport resulted in a significant reduction of oligomycin-stimulated glucose transport, with a lesser reduction in insulin-stimulated glucose transport. Insulin and AMPK signaling was unaffected by PF preincubation. siRNA-mediated FAK knockdown also resulted in reduced oligomycin-stimulated glucose transport. Chronic treatment of FFA-exposed cardiomyocytes with phenylephrine or a phorbol ester restored FAK activity and improved glucose transport. In conclusion, stimulation of glucose transport in cardiomyocytes requires FAK activity prior to stimulation. The chronic reduction of FAK activity in cardiomyocytes exposed to FFA contributes to the loss of glucose transport responsiveness to insulin or metabolic inhibition. J. Cell. Biochem. 118: 670-677, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Christelle Viglino
- Division of Cardiology, Department of Medical Specialties, University of Geneva School of Medecine, Geneva, Switzerland
| | - Christophe Montessuit
- Division of Cardiology, Department of Medical Specialties, University of Geneva School of Medecine, Geneva, Switzerland
| |
Collapse
|
14
|
Graham ZA, Gallagher PM, Cardozo CP. Focal adhesion kinase and its role in skeletal muscle. J Muscle Res Cell Motil 2015; 36:305-15. [PMID: 26142360 PMCID: PMC4659753 DOI: 10.1007/s10974-015-9415-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 06/15/2015] [Indexed: 10/23/2022]
Abstract
Skeletal muscle has a remarkable ability to respond to different physical stresses. Loading muscle through exercise, either anaerobic or aerobic, can lead to increases in muscle size and function while, conversely, the absence of muscle loading stimulates rapid decreases in size and function. A principal mediator of this load-induced change is focal adhesion kinase (FAK), a downstream non-receptor tyrosine kinase that translates the cytoskeletal stress and strain signals transmitted across the cytoplasmic membrane by integrins to activate multiple anti-apoptotic and cell growth pathways. Changes in FAK expression and phosphorylation have been found to correlate to specific developmental states in myoblast differentiation, muscle fiber formation and muscle size in response to loading and unloading. With the capability to regulate costamere formation, hypertrophy and glucose metabolism, FAK is a molecule with diverse functions that are important in regulating muscle cell health.
Collapse
Affiliation(s)
- Zachary A Graham
- Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, 130 W. Kingsbridge Rd., Bronx, NY, 10468, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Christopher P Cardozo
- Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, 130 W. Kingsbridge Rd., Bronx, NY, 10468, USA.
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
15
|
Reyer A, Schindler N, Ohde D, Walz C, Kunze M, Tuchscherer A, Wirthgen E, Brenmoehl J, Hoeflich A. The RGD sequence present in IGFBP-2 is required for reduced glucose clearance after oral glucose administration in female transgenic mice. Am J Physiol Endocrinol Metab 2015; 309:E409-17. [PMID: 26105006 DOI: 10.1152/ajpendo.00168.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 06/22/2015] [Indexed: 12/21/2022]
Abstract
Recent studies suggest that insulin-like growth factor-binding protein-2 (IGFBP-2) affects both growth and metabolism. Whereas negative growth effects are primarily due to negative interference with IGF-I, the mechanisms for metabolic interference of IGFBP-2 are less clear. As we demonstrate, overexpression of IGFBP-2 in transgenic mice is correlated with a decelerated clearance of blood glucose after oral administration. IGFBP-2 carries an integrin-binding domain (RGD motif), which has been shown to also mediate IGF-independent effects. We thus asked if higher serum levels of IGFBP-2 without an intact RGD motif would also partially block blood glucose clearance after oral glucose application. In fact, transgenic mice overexpressing mutated IGFBP-2 with higher levels of IGFBP-2 carrying an RGE motif instead of an RGD were not characterized by decelerated glucose clearance. Impaired glucose tolerance was correlated with lower levels of GLUT4 present in plasma membranes isolated from muscle tissues after glucose challenge. At the same time, activation of TBC1D1 was depressed in mice overexpressing wild-type but not mutated IGFBP-2. Although we do not have reason to assume altered activation of IGF-I receptor or PDK1/Akt activation in both models, we have identified increased levels of integrin-linked kinase and focal adhesion kinase dependent on the presence of the RGD motif. From our results we conclude that impaired glucose clearance in female IGFBP-2 transgenic mice is dependent on the presence of the RGD motif and that translocation of GLUT4 in the muscle may be regulated by IGFBP-2 via RGD-dependent mechanisms.
Collapse
Affiliation(s)
- Anja Reyer
- Institute for Genome Biology, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Nancy Schindler
- Institute for Genome Biology, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Daniela Ohde
- Institute for Genome Biology, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Christina Walz
- Institute for Genome Biology, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Martin Kunze
- Institute for Genome Biology, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Armin Tuchscherer
- Institute for Genetics and Biometry, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany; and
| | - Elisa Wirthgen
- Institute for Genome Biology, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany; Ligandis GbR, Gülzow-Prüzen, Germany
| | - Julia Brenmoehl
- Institute for Genome Biology, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Andreas Hoeflich
- Institute for Genome Biology, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany;
| |
Collapse
|
16
|
Williams AS, Kang L, Wasserman DH. The extracellular matrix and insulin resistance. Trends Endocrinol Metab 2015; 26:357-66. [PMID: 26059707 PMCID: PMC4490038 DOI: 10.1016/j.tem.2015.05.006] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 05/13/2015] [Accepted: 05/14/2015] [Indexed: 12/14/2022]
Abstract
The extracellular matrix (ECM) is a highly-dynamic compartment that undergoes remodeling as a result of injury and repair. Over the past decade, mounting evidence in humans and rodents suggests that ECM remodeling is associated with diet-induced insulin resistance in several metabolic tissues. In addition, integrin receptors for the ECM have also been implicated in the regulation of insulin action. This review addresses what is currently known about the ECM, integrins, and insulin action in the muscle, liver, and adipose tissue. Understanding how ECM remodeling and integrin signaling regulate insulin action may aid in the development of new therapeutic targets for the treatment of insulin resistance and type 2 diabetes (T2D).
Collapse
Affiliation(s)
- Ashley S Williams
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Li Kang
- Division of Cardiovascular and Diabetes Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - David H Wasserman
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA; Mouse Metabolic Phenotyping Center, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
17
|
Paxillin and focal adhesion kinase colocalise in human skeletal muscle and its associated microvasculature. Histochem Cell Biol 2014; 142:245-56. [PMID: 24671495 DOI: 10.1007/s00418-014-1212-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2014] [Indexed: 01/15/2023]
Abstract
Focal adhesion kinase (FAK) and paxillin are functionally linked hormonal- and mechano-sensitive proteins. We aimed to describe paxillin's subcellular distribution using widefield and confocal immunofluorescence microscopy and test the hypothesis that FAK and paxillin colocalise in human skeletal muscle and its associated microvasculature. Percutaneous muscle biopsies were collected from the m. vastus lateralis of seven healthy males, and 5-μm cryosections were stained with anti-paxillin co-incubated with anti-dystrophin to identify the sarcolemma, anti-myosin heavy chain type I for fibre-type differentiation, anti-dihydropyridine receptor to identify T-tubules, lectin UEA-I to identify the endothelium of microvessels and anti-α-smooth muscle actin to identify vascular smooth muscle cells (VSMC). Colocalisation of anti-paxillin with anti-dystrophin or anti-FAK was quantified using Pearson's correlation coefficient on confocal microscopy images. Paxillin was primarily present in (sub)sarcolemmal regions of skeletal muscle fibres where it colocalised with dystrophin (r = 0.414 ± 0.026). The (sub)sarcolemmal paxillin immunofluorescence intensity was ~2.4-fold higher than in sarcoplasmic regions (P < 0.001) with sarcoplasmic paxillin immunofluorescence intensity ~10 % higher in type I than in type II fibres (P < 0.01). In some longitudinally orientated fibres, paxillin formed striations that corresponded to the I-band region. Paxillin immunostaining was highest in endothelial and VSMC and distributed heterogeneously in both cell types. FAK and paxillin colocalised at (sub)sarcolemmal regions and within the microvasculature (r = 0.367 ± 0.036). The first images of paxillin in human skeletal muscle suggest paxillin is present in (sub)sarcolemmal and I-band regions of muscle fibres and within the microvascular endothelium and VSMC. Colocalisation of FAK and paxillin supports their suggested role in hormonal and mechano-sensitive signalling.
Collapse
|
18
|
Malenczyk K, Jazurek M, Keimpema E, Silvestri C, Janikiewicz J, Mackie K, Di Marzo V, Redowicz MJ, Harkany T, Dobrzyn A. CB1 cannabinoid receptors couple to focal adhesion kinase to control insulin release. J Biol Chem 2013; 288:32685-32699. [PMID: 24089517 DOI: 10.1074/jbc.m113.478354] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Endocannabinoid signaling has been implicated in modulating insulin release from β cells of the endocrine pancreas. β Cells express CB1 cannabinoid receptors (CB1Rs), and the enzymatic machinery regulating anandamide and 2-arachidonoylglycerol bioavailability. However, the molecular cascade coupling agonist-induced cannabinoid receptor activation to insulin release remains unknown. By combining molecular pharmacology and genetic tools in INS-1E cells and in vivo, we show that CB1R activation by endocannabinoids (anandamide and 2-arachidonoylglycerol) or synthetic agonists acutely or after prolonged exposure induces insulin hypersecretion. In doing so, CB1Rs recruit Akt/PKB and extracellular signal-regulated kinases 1/2 to phosphorylate focal adhesion kinase (FAK). FAK activation induces the formation of focal adhesion plaques, multimolecular platforms for second-phase insulin release. Inhibition of endocannabinoid synthesis or FAK activity precluded insulin release. We conclude that FAK downstream from CB1Rs mediates endocannabinoid-induced insulin release by allowing cytoskeletal reorganization that is required for the exocytosis of secretory vesicles. These findings suggest a mechanistic link between increased circulating and tissue endocannabinoid levels and hyperinsulinemia in type 2 diabetes.
Collapse
Affiliation(s)
- Katarzyna Malenczyk
- From the Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland,; the Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Magdalena Jazurek
- From the Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland
| | - Erik Keimpema
- the Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Cristoforo Silvestri
- the Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, I-80078 Pozzuoli, Naples, Italy
| | | | - Ken Mackie
- the Department of Psychological and Brain Sciences, Gill Center for Neuroscience, Indiana University, Bloomington, Indiana 47405
| | - Vincenzo Di Marzo
- the Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, I-80078 Pozzuoli, Naples, Italy
| | - Maria J Redowicz
- From the Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland
| | - Tibor Harkany
- the Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, SE-17177 Stockholm, Sweden,; the School of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom.
| | - Agnieszka Dobrzyn
- From the Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland,.
| |
Collapse
|
19
|
Goustin AS, Derar N, Abou-Samra AB. Ahsg-fetuin blocks the metabolic arm of insulin action through its interaction with the 95-kD β-subunit of the insulin receptor. Cell Signal 2013; 25:981-8. [PMID: 23314177 DOI: 10.1016/j.cellsig.2012.12.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 11/10/2012] [Accepted: 12/19/2012] [Indexed: 12/22/2022]
Abstract
We previously have shown that Ahsg, a liver glycoprotein, inhibits insulin receptor (InsR) tyrosine kinase (TK) activity and the ERK1/2 mitogenic signaling arm of insulin signaling. Here we show that Ahsg blocks insulin-stimulated GLUT4 translocation and Akt activation in intact cells (mouse myoblasts). Furthermore, Ahsg inhibits InsR autophosphorylation of highly-purified insulin holoreceptors in a cell-free, ATP-dependent system, with an IC50 within the range of single-chain Ahsg concentrations in human serum. Binding of (125)I-insulin to living cells overexpressing the InsR shows a dissociation constant (KD) of 250pM, unaltered in the presence of 300 nM Ahsg. A mutant InsR cDNA encoding the signal peptide, the β-subunit and the furin processing site, but deleting the α-subunit, was stably expressed in HEK293 cells. Treatment with peroxovanadate, but not insulin, dramatically increased the 95 kD β-subunit tyrosine phosphoryation. The level of tyrosine phosphorylation of the 95-kD β-subunit can be driven down sharply by treatment of living HEK293 transfectant cells with physiological doses of Ahsg. Treatment of myogenic cells with Ahsg blunts insulin-stimulated InsR autophosphorylation and AKT phosphorylation. Taken together, we show that Ahsg antagonizes the metabolic functions initiated by InsR activation without interference in insulin binding. The experiments suggest a direct interaction of Ahsg with the InsR ectodomain β-subunit in a mode that does not significantly alter the high-affinity binding of insulin to the holoreceptor's two complementing α-subunits.
Collapse
Affiliation(s)
- Anton Scott Goustin
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Wayne State University School of Medicine, Detroit, MI, USA.
| | | | | |
Collapse
|
20
|
Millward DJ. Knowledge gained from studies of leucine consumption in animals and humans. J Nutr 2012; 142:2212S-2219S. [PMID: 23077184 DOI: 10.3945/jn.111.157370] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Leucine's wide-ranging metabolic influences have made it subject to special interest. It is abundant in the diet, especially in some milk and cereal proteins, in part due to its allocation of 6 codons in the genetic code, and individual dietary intakes range up to >250 mg · kg(-1) · d(-1). It influences many cell functions by various mechanisms, which include allosteric activation of enzymes, enabling ATP generation and insulin secretion from the pancreatic islet cell, and activation of signaling pathways. It is a mediator of the anabolic drive of dietary amino acids, stimulating anabolic hormone secretion and directly signaling protein deposition and growth through the stimulation of protein synthesis and restraint of proteolysis. Its signaling may involve the mammalian target of rapamycin complex and rapamycin-insensitive pathways responding to a leucine "transceptor," which combines leucine cellular transport, fueled by the intracellular-extracellular glutamine gradient, and a signaling response to changes in ionic and water balance and cell volume. In animal studies, dietary leucine supplementation has reversed many of the adverse influences of a high-fat diet, consistent with a benefit for healthy weight maintenance in humans for which evidence is accumulating. The implications for safety of leucine-supplemented diets are discussed in terms of adversely lowering valine and isoleucine concentrations and inducing hyperammonemia through overloading peripheral glutamine synthetic pathways. Finally, the apparently high human leucine requirement is explained in terms of both an adaptive metabolic demand model of requirements and the design and analysis of human studies, which may overestimate values.
Collapse
Affiliation(s)
- D Joe Millward
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK.
| |
Collapse
|
21
|
Grzelkowska-Kowalczyk K, Wieteska-Skrzeczyńska W, Grabiec K, Tokarska J. High glucose-mediated alterations of mechanisms important in myogenesis of mouse C2C12 myoblasts. Cell Biol Int 2012; 37:29-35. [PMID: 23319319 DOI: 10.1002/cbin.10004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 09/17/2012] [Indexed: 11/07/2022]
Abstract
We have examined the progression and regulation of myogenesis, cellular levels of IGFBP-4, -5, -6, and several extracellular matrix (ECM) proteins (fibronectin, integrin α5, β1 subunits and a disintegrin metalloprotease ADAM12) in murine C2C12 myoblasts during 3-day differentiation under high glucose alone or combined with high insulin, factors characteristic for type 1 and 2 diabetes. High ambient glucose inhibited myogenesis of C2C12 myoblasts, an effect manifested by a twofold decrease in myoblast fusion, a drop in intracellular MyoD, myogenin and MHC levels, and increased cellular content of active myostatin isoform. Reduction in myogenesis by high glucose is accompanied by increase in cellular levels of IGFBP-4 and -6 and decrease in IGFBP-5. High glucose could modify ECM components assembly, by the increase in fibronectin levels and the decrease in metalloprotease ADAM12, without the effect on integrin α5 and β1 subunits. In contrast, high glucose and high insulin activate myoblast differentiation, manifested by an increase in fusion index and myogenin, as well as a drop in myostatin levels. The presence of high insulin prevented high-glucose-dependent changes in IGFBPs and ECM proteins. The data indicate the potential mechanisms of the influence of extracellular environment associated with maternal diabetes and insulin resistance on foetal myogenesis.
Collapse
Affiliation(s)
- K Grzelkowska-Kowalczyk
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | | | | | | |
Collapse
|
22
|
Gupta A, Dey CS. PTEN, a widely known negative regulator of insulin/PI3K signaling, positively regulates neuronal insulin resistance. Mol Biol Cell 2012; 23:3882-98. [PMID: 22875989 PMCID: PMC3459864 DOI: 10.1091/mbc.e12-05-0337] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Lipid and protein tyrosine phosphatase, phosphatase and tension homologue (PTEN), is a widely known negative regulator of insulin/phosphoinositide 3-kinase signaling. Down-regulation of PTEN is thus widely documented to ameliorate insulin resistance in peripheral tissues such as skeletal muscle and adipose. However, not much is known about its exact role in neuronal insulin signaling and insulin resistance. Moreover, alterations of PTEN in neuronal systems have led to discovery of several unexpected outcomes, including in the neurodegenerative disorder Alzheimer's disease (AD), which is increasingly being recognized as a brain-specific form of diabetes. In addition, contrary to expectations, its neuron-specific deletion in mice resulted in development of diet-sensitive obesity. The present study shows that PTEN, paradoxically, positively regulates neuronal insulin signaling and glucose uptake. Its down-regulation exacerbates neuronal insulin resistance. The positive role of PTEN in neuronal insulin signaling is likely due to its protein phosphatase actions, which prevents the activation of focal adhesion kinase (FAK) and extracellular signal-regulated kinase (ERK), the kinases critically involved in neuronal energy impairment and neurodegeneration. Results suggest that PTEN acting through FAK, the direct protein substrate of PTEN, prevents ERK activation. Our findings provide an explanation for unexpected outcomes reported earlier with PTEN alterations in neuronal systems and also suggest a novel molecular pathway linking neuronal insulin resistance and AD, the two pathophysiological states demonstrated to be closely linked.
Collapse
Affiliation(s)
- Amit Gupta
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Punjab, India
| | | |
Collapse
|
23
|
Immunofluorescent visualisation of focal adhesion kinase in human skeletal muscle and its associated microvasculature. Histochem Cell Biol 2012; 138:617-26. [PMID: 22752263 DOI: 10.1007/s00418-012-0980-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2012] [Indexed: 10/28/2022]
Abstract
Within animal skeletal muscle, focal adhesion kinase (FAK) has been associated with load-dependent molecular and metabolic adaptation including the regulation of insulin sensitivity. This study aimed to generate the first visual images of the localisation of FAK within human skeletal muscle fibres and its associated microvasculature using widefield and confocal immunofluorescence microscopy. Percutaneous muscle biopsies, taken from five lean, active males, were frozen and 5-μm cryosections were incubated with FAK antibodies for visualisation in muscle fibres and the microvasculature. Anti-myosin heavy chain type I was used for fibre-type differentiation. Muscle sections were also incubated with anti-dihydropyridine receptor (DHPR) to investigate co-localisation of FAK with the t-tubules. FITC-conjugated Ulex europaeus Agglutinin I stained the endothelium of the capillaries, whilst anti-smooth muscle actin stained the vascular smooth muscle of arterioles. Fibre-type differences in the intensity of FAK immunofluorescence were determined with image analysis software. In transversely and longitudinally orientated fibres, FAK was localised at the sarcolemmal regions. In longitudinally orientated fibres, FAK staining also showed uniform striations across the fibre and co-staining with DHPR suggests FAK associates with the t-tubules. There was no fibre-type difference in sarcoplasmic FAK content. Within the capillary endothelium and arteriolar smooth muscle, FAK was distributed heterogeneously as clusters. This is the first study to visualise FAK in human skeletal muscle microvasculature and within the (sub)sarcolemmal and t-tubule regions using immunofluorescence microscopy. This technique will be an important tool for investigating the role of FAK in the intracellular signalling of human skeletal muscle and the endothelium of its associated microvasculature.
Collapse
|
24
|
Gupta A, Bisht B, Dey CS. Focal adhesion kinase negatively regulates neuronal insulin resistance. Biochim Biophys Acta Mol Basis Dis 2012; 1822:1030-7. [DOI: 10.1016/j.bbadis.2012.02.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 02/09/2012] [Accepted: 02/10/2012] [Indexed: 12/13/2022]
|
25
|
Wheatcroft SB, Kearney MT. IGF-dependent and IGF-independent actions of IGF-binding protein-1 and -2: implications for metabolic homeostasis. Trends Endocrinol Metab 2009; 20:153-62. [PMID: 19349193 DOI: 10.1016/j.tem.2009.01.002] [Citation(s) in RCA: 215] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Revised: 01/05/2009] [Accepted: 01/05/2009] [Indexed: 11/16/2022]
Abstract
Insulin-like growth factor (IGF)-binding proteins (IGFBPs) confer temporospatial regulation to IGF bioactivity. Both stimulatory and inhibitory effects of IGFBPs on IGF actions have been described, and IGF-independent effects of several IGFBPs are emerging. Accumulating evidence indicates important roles for members of the IGFBP family in metabolic homeostasis. For example, IGFBP-1 concentrations fluctuate inversely in response to changes in plasma insulin levels, implicating IGFBP-1 in glucoregulation, and fasting levels of IGFBP-1 predict insulin sensitivity at the population level. IGFBP-2 concentrations reflect long-term insulin sensitivity and are reduced in the presence of obesity. Here, we review the evolving roles of IGFBP-1 and IGFBP-2 in metabolic homeostasis, summarize their effects on IGF bioactivity and explore putative mechanisms by which they might exert IGF-independent cellular actions.
Collapse
Affiliation(s)
- Stephen B Wheatcroft
- Division of Cardiovascular & Diabetes Research, Leeds Institute of Genetics, Health & Therapeutics, University of Leeds, Leeds, UK
| | | |
Collapse
|
26
|
Manso AM, Kang SM, Plotnikov SV, Thievessen I, Oh J, Beggs HE, Ross RS. Cardiac fibroblasts require focal adhesion kinase for normal proliferation and migration. Am J Physiol Heart Circ Physiol 2009; 296:H627-38. [PMID: 19136609 PMCID: PMC2660223 DOI: 10.1152/ajpheart.00444.2008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Accepted: 01/05/2009] [Indexed: 01/18/2023]
Abstract
Migration and proliferation of cardiac fibroblasts (CFs) play an important role in the myocardial remodeling process. While many factors have been identified that regulate CF growth and migration, less is known about the signaling mechanisms involved in these processes. Here, we utilized Cre-LoxP technology to obtain focal adhesion kinase (FAK)-deficient adult mouse CFs and studied how FAK functioned in modulating cell adhesion, proliferation, and migration of these cells. Treatment of FAK(flox/flox) CFs with Ad/Cre virus caused over 70% reduction of FAK protein levels within a cell population. FAK-deficient CFs showed no changes in focal adhesions, cell morphology, or protein expression levels of vinculin, talin, or paxillin; proline-rich tyrosine kinase 2 (Pyk2) expression and activity were increased. Knockdown of FAK protein in CFs increased PDGF-BB-induced proliferation, while it reduced PDGF-BB-induced migration. Adhesion to fibronectin was not altered. To distinguish between the function of FAK and Pyk2, FAK function was inhibited via adenoviral-mediated overexpression of the natural FAK inhibitor FAK-related nonkinase (FRNK). Ad/FRNK had no effect on Pyk2 expression, inhibited the PDGF-BB-induced migration, but did not change the PDGF-BB-induced proliferation. FAK deficiency had only modest effects on increasing PDGF-BB activation of p38 and JNK MAPKs, with no alteration in the ERK response vs. control cells. These results demonstrate that FAK is required for the PDGF-BB-induced migratory response of adult mouse CFs and suggest that FAK could play an essential role in the wound-healing response that occurs in numerous cardiac pathologies.
Collapse
Affiliation(s)
- Ana Maria Manso
- Department of Medicine, University of California-San Diego School of Medicine, La Jolla, California, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Zong H, Bastie CC, Xu J, Fassler R, Campbell KP, Kurland IJ, Pessin JE. Insulin resistance in striated muscle-specific integrin receptor beta1-deficient mice. J Biol Chem 2009; 284:4679-88. [PMID: 19064993 PMCID: PMC2640962 DOI: 10.1074/jbc.m807408200] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 12/01/2008] [Indexed: 01/19/2023] Open
Abstract
Integrin receptor plays key roles in mediating both inside-out and outside-in signaling between cells and the extracellular matrix. We have observed that the tissue-specific loss of the integrin beta1 subunit in striated muscle results in a near complete loss of integrin beta1 subunit protein expression concomitant with a loss of talin and to a lesser extent, a reduction in F-actin content. Muscle-specific integrin beta1-deficient mice had no significant difference in food intake, weight gain, fasting glucose, and insulin levels with their littermate controls. However, dynamic analysis of glucose homeostasis using euglycemichyperinsulinemic clamps demonstrated a 44 and 48% reduction of insulin-stimulated glucose infusion rate and glucose clearance, respectively. The whole body insulin resistance resulted from a specific inhibition of skeletal muscle glucose uptake and glycogen synthesis without any significant effect on the insulin suppression of hepatic glucose output or insulin-stimulated glucose uptake in adipose tissue. The reduction in skeletal muscle insulin responsiveness occurred without any change in GLUT4 protein expression levels but was associated with an impairment of the insulin-stimulated protein kinase B/Akt serine 473 phosphorylation but not threonine 308. The inhibition of insulin-stimulated serine 473 phosphorylation occurred concomitantly with a decrease in integrin-linked kinase expression but with no change in the mTOR.Rictor.LST8 complex (mTORC2). These data demonstrate an in vivo crucial role of integrin beta1 signaling events in mediating cross-talk to that of insulin action.
Collapse
Affiliation(s)
- Haihong Zong
- Departments of Medicine and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Genua M, Pandini G, Cassarino MF, Messina RL, Frasca F. c-Abl and insulin receptor signalling. VITAMINS AND HORMONES 2009; 80:77-105. [PMID: 19251035 DOI: 10.1016/s0083-6729(08)00604-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Insulin Receptor (IR) and IGF-I receptor (IGF-IR) are homolog but display distinct functions: IR is mainly metabolic, while IGF-IR is mitogenic. However, in some conditions like foetal growth, cancer and diabetes, IR may display some non-metabolic effects like proliferation and migration. The molecular mechanisms underlying this 'functional switch of IR' have been attributed to several factors including overexpression of ligands and receptors, predominant IR isoform expression, preferential recruitment of intracellular substrates. Here, we report that c-Abl, a cytoplasmic tyrosine kinase regulating several signal transduction pathways, is involved in this functional switch of IR. Indeed, c-Abl tyrosine kinase is involved in IR signalling as it shares with IR some substrates like Tub and SORBS1 and is activated upon insulin stimulation. Inhibition of c-Abl tyrosine kinase by STI571 attenuates the effect of insulin on Akt/GSK-3beta phosphorylation and glycogen synthesis, and at the same time, it enhances the effect of insulin on ERK activation, cell proliferation and migration. This effect of STI571 is specific to c-Abl inhibition, because it does not occur in Abl-null cells and is restored in c-Abl-reconstituted cells. Numerous evidences suggest that focal adhesion kinase (FAK) is involved in mediating this c-Abl effect. First, c-Abl tyrosine kinase activation is concomitant with FAK dephosphorylation in response to insulin, whereas c-Abl inhibition is accompanied by FAK phosphorylation in response to insulin, a response similar to that observed with IGF-I. Second, the c-Abl effects on insulin signalling are not observed in cells devoid of FAK (FAK(-/-) cells). Taken together these results suggest that c-Abl activation by insulin, via a modification of FAK response, may play an important role in directing mitogenic versus metabolic insulin receptor signalling.
Collapse
Affiliation(s)
- Marco Genua
- Department of Internal Medicine, University of Catania, Catania, Italy
| | | | | | | | | |
Collapse
|
29
|
Bisht B, Dey CS. Focal Adhesion Kinase contributes to insulin-induced actin reorganization into a mesh harboring Glucose transporter-4 in insulin resistant skeletal muscle cells. BMC Cell Biol 2008; 9:48. [PMID: 18771597 PMCID: PMC2551595 DOI: 10.1186/1471-2121-9-48] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Accepted: 09/04/2008] [Indexed: 01/04/2023] Open
Abstract
Background Focal Adhesion Kinase (FAK) is recently reported to regulate insulin resistance by regulating glucose uptake in C2C12 skeletal muscle cells. However, the underlying mechanism for FAK-mediated glucose transporter-4 translocation (Glut-4), responsible for glucose uptake, remains unknown. Recently actin remodeling was reported to be essential for Glut-4 translocation. Therefore, we investigated whether FAK contributes to insulin-induced actin remodeling and harbor Glut-4 for glucose transport and whether downregulation of FAK affects the remodeling and causes insulin resistance. Results To address the issue we employed two approaches: gain of function by overexpressing FAK and loss of function by siRNA-mediated silencing of FAK. We observed that overexpression of FAK induces actin remodeling in skeletal muscle cells in presence of insulin. Concomitant to this Glut-4 molecules were also observed to be present in the vicinity of remodeled actin, as indicated by the colocalization studies. FAK-mediated actin remodeling resulted into subsequent glucose uptake via PI3K-dependent pathway. On the other hand FAK silencing reduced actin remodeling affecting Glut-4 translocation resulting into insulin resistance. Conclusion The data confirms that FAK regulates glucose uptake through actin reorganization in skeletal muscle. FAK overexpression supports actin remodeling and subsequent glucose uptake in a PI3K dependent manner. Inhibition of FAK prevents insulin-stimulated remodeling of actin filaments resulting into decreased Glut-4 translocation and glucose uptake generating insulin resistance. To our knowledge this is the first study relating FAK, actin remodeling, Glut-4 translocation and glucose uptake and their interrelationship in generating insulin resistance.
Collapse
Affiliation(s)
- Bharti Bisht
- Signal Transduction Research Laboratory, Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Sector 67, SAS Nagar, Punjab, 160 062, India.
| | | |
Collapse
|
30
|
Bridger PS, Haupt S, Leiser R, Johnson GA, Burghardt RC, Tinneberg HR, Pfarrer C. Integrin Activation in Bovine Placentomes and in Caruncular Epithelial Cells Isolated from Pregnant Cows. Biol Reprod 2008; 79:274-82. [DOI: 10.1095/biolreprod.108.067637] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
31
|
Bisht B, Srinivasan K, Dey CS. In vivo inhibition of focal adhesion kinase causes insulin resistance. J Physiol 2008; 586:3825-37. [PMID: 18587052 DOI: 10.1113/jphysiol.2008.157107] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Focal adhesion kinase (FAK), a non-receptor tyrosine kinase, has recently been implicated in the regulation of insulin resistance in vitro. However, its in vivo validation has not been attempted due to lethality of FAK knockout. Hence, to ascertain the role of FAK in the development of insulin resistance in vivo, we have down-regulated FAK expression by delivering FAK-specific small interfering RNA (siRNA) in mice using hydrodynamic tail vein injection. Here, we show for the first time that FAK silencing (57 +/- 0.05% in muscle and 80 +/- 0.08% in liver) exacerbates insulin signalling and causes hyperglycaemia (251.68 +/- 8.1 mg dl(-1)) and hyperinsulinaemia (3.48 +/- 0.06 ng ml(-1)) in vivo. FAK-silenced animals are less glucose tolerant and have physiological and biochemical parameters similar to that of high fat diet (HFD)-fed insulin-resistant animals. Phosphorylation and expression of insulin receptor substrate 1 (IRS-1) was attenuated by 40.2 +/- 0.03% and 35.2 +/- 0.6% in muscle and 52.3 +/- 0.04% and 40.2 +/- 0.03% in liver in FAK-silenced mice. Akt-Ser473-phosphorylation decreased in muscle and liver (50.3 +/- 0.03% and 70.2 +/- 0.02%, respectively) in FAK-silenced mice. This, in part, explains the mechanism of development of insulin resistance in FAK-silenced mice. The present study provides direct evidence that FAK is a crucial mediator of insulin resistance in vivo. Considering the lethality of FAK gene knockout the approach of this study will provide a new strategy for in vivo inhibition of FAK. Furthermore, the study should certainly motivate chemists to synthesize new chemical entities for FAK activation. This may shed light on new drug development against insulin resistance.
Collapse
Affiliation(s)
- Bharti Bisht
- Signal Transduction Research Laboratory, Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab 160 062, India
| | | | | |
Collapse
|
32
|
KENNERLY ERIN, BALLMANN ANNE, MARTIN STANTON, WOLFINGER RUSS, GREGORY SIMON, STOSKOPF MICHAEL, GIBSON GREG. A gene expression signature of confinement in peripheral blood of red wolves (Canis rufus). Mol Ecol 2008; 17:2782-91. [DOI: 10.1111/j.1365-294x.2008.03775.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Frasca F, Pandini G, Malaguarnera R, Mandarino A, Messina RL, Sciacca L, Belfiore A, Vigneri R. Role of c-Abl in Directing Metabolic versus Mitogenic Effects in Insulin Receptor Signaling. J Biol Chem 2007; 282:26077-88. [PMID: 17620332 DOI: 10.1074/jbc.m705008200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
c-Abl is a cytoplasmic tyrosine kinase involved in several signal transduction pathways. Here we report that c-Abl is involved also in insulin receptor signaling. Indeed, c-Abl tyrosine kinase is activated upon insulin stimulation. Inhibition of c-Abl tyrosine kinase by STI571 attenuates the effect of insulin on Akt/GSK-3beta phosphorylation and glycogen synthesis, and at the same time, it enhances the effect of insulin on ERK activation, cell proliferation, and migration. This effect of STI571 is specific to c-Abl inhibition, because it does not occur in Abl-null cells and is restored in c-Abl-reconstituted cells. Numerous evidences suggest that focal adhesion kinase (FAK) is involved in mediating this c-Abl effect. First, anti-phosphotyrosine blots indicate that c-Abl tyrosine kinase activation is concomitant with FAK dephosphorylation in response to insulin, whereas c-Abl inhibition is accompanied by FAK phosphorylation in response to insulin, a response similar to that observed with IGF-I. Second, the c-Abl effects on insulin signaling are not observed in cells devoid of FAK (FAK(-/-) cells). Taken together these results suggest that c-Abl activation by insulin, via a modification of FAK response, may play an important role in directing mitogenic versus metabolic insulin receptor signaling.
Collapse
Affiliation(s)
- Francesco Frasca
- Endocrinologia, Dipartimento di Medicina Interna e di Medicina Specialistica, Università di Catania, Ospedale Garibaldi, Nesima, 95122 Catania, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Bibliography. Current world literature. Diabetes and the endocrine pancreas II. Curr Opin Endocrinol Diabetes Obes 2007; 14:329-57. [PMID: 17940461 DOI: 10.1097/med.0b013e3282c3a898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Bisht B, Goel HL, Dey CS. Focal adhesion kinase regulates insulin resistance in skeletal muscle. Diabetologia 2007; 50:1058-69. [PMID: 17333113 DOI: 10.1007/s00125-007-0591-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Accepted: 10/15/2006] [Indexed: 10/23/2022]
Abstract
AIMS/HYPOTHESIS On the basis of our previous studies, we investigated the possible role of focal adhesion kinase (FAK) in the development of insulin resistance in skeletal muscle, a major organ responsible for insulin-stimulated glucose uptake. MATERIALS AND METHODS Insulin-resistant C2C12 skeletal muscle cells were transfected with FAK wild-type or FAK mutant plasmids, knocked down using small interfering RNA (siRNA), and their effects on the levels and activities of insulin-signalling molecules and on glucose uptake were determined. RESULTS A significant decrease in tyrosine phosphorylation of FAK in insulin-resistant C2C12 cells was observed. A similar decrease was observed in skeletal muscle obtained from insulin-resistant Sprague-Dawley rats fed a high-fat diet. Increased levels of FAK in insulin-resistant C2C12 skeletal muscle cells increased insulin sensitivity and glucose uptake. These effects were reversed by an increase in the level of kinase activity mutant FAK or suppression of endogenous FAK by siRNA. FAK was also found to interact downstream with insulin receptor substrate-1, phosphatidylinositol 3-kinase and protein kinase C and glycogen synthase kinase 3beta, leading to translocation of glucose transporter 4 and resulting in the regulation of glucose uptake. CONCLUSIONS/INTERPRETATION The present study provides strong evidence that the modulation of FAK level regulates the insulin sensitivity of skeletal muscle cells. The results demonstrate a direct role of FAK in insulin-resistant skeletal muscle cells for the first time.
Collapse
Affiliation(s)
- B Bisht
- Signal Transduction Research Laboratory, Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Chandigarh 160062, India
| | | | | |
Collapse
|
36
|
Huang D, Khoe M, Befekadu M, Chung S, Takata Y, Ilic D, Bryer-Ash M. Focal adhesion kinase mediates cell survival via NF-kappaB and ERK signaling pathways. Am J Physiol Cell Physiol 2006; 292:C1339-52. [PMID: 17135301 DOI: 10.1152/ajpcell.00144.2006] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Focal adhesion kinase (FAK) is important to cellular functions such as proliferation, migration, and survival of anchorage-dependent cells. We investigated the role of FAK in modulating normal cellular responses, specifically cell survival in response to inflammatory stimuli and serum withdrawal, using FAK-knockout (FAK(-/-)) embryonic fibroblasts. FAK(-/-) fibroblasts were more vulnerable to TNF-alpha-induced apoptosis, as measured by terminal deoxynucleotidyl transferase positivity. FAK(-/-) fibroblasts also demonstrated increased procaspase-3 cleavage to p17 subunit, whereas this was undetectable in FAK(+/+) fibroblasts. Insulin receptor substrate-1 expression was completely abolished and NF-kappaB activity was reduced, with a concomitant decrease in abundance of the anti-apoptotic protein Bcl-x(L) in FAK(-/-) cells. Upon serum withdrawal, FAK(+/+) cells exhibited marked attenuation of basal ERK phosphorylation, while FAK(-/-) cells, in contrast, maintained high basal ERK phosphorylation. Moreover, inhibition of ERK phosphorylation potentiated serum withdrawal-induced caspase-3 activity. This was paralleled by increased insulin receptor substrate (IRS)-2 expression in FAK(-/-) cells, although both insulin- and IGF-1-mediated phosphorylation of Akt/PKB and GSK-3 were impaired. This suggests that IRS-2 protects against apoptosis upon serum withdrawal via the ERK signaling pathway. The specific role of FAK to protect cells from apoptosis is regulated by activation and phosphorylation of NF-kappaB and interaction between activated growth factor anti-apoptotic signaling pathways involving both phosphatidylinositol 3-kinase/Akt and MAPK/ERK1/2. We demonstrate that FAK is necessary for upregulation of the anti-apoptotic NF-kappaB response, as well as for normal expression of growth factor signaling proteins. Thus we propose a novel role for FAK in protection from cytokine-mediated apoptosis.
Collapse
Affiliation(s)
- Danshan Huang
- West Los Angeles Veterans Administration Medical Center, Los Angeles, CA, USA
| | | | | | | | | | | | | |
Collapse
|