1
|
Rabbani N, Thornalley PJ. Hexokinase-linked glycolytic overload and unscheduled glycolysis in hyperglycemia-induced pathogenesis of insulin resistance, beta-cell glucotoxicity, and diabetic vascular complications. Front Endocrinol (Lausanne) 2024; 14:1268308. [PMID: 38292764 PMCID: PMC10824962 DOI: 10.3389/fendo.2023.1268308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/12/2023] [Indexed: 02/01/2024] Open
Abstract
Hyperglycemia is a risk factor for the development of insulin resistance, beta-cell glucotoxicity, and vascular complications of diabetes. We propose the hypothesis, hexokinase-linked glycolytic overload and unscheduled glycolysis, in explanation. Hexokinases (HKs) catalyze the first step of glucose metabolism. Increased flux of glucose metabolism through glycolysis gated by HKs, when occurring without concomitant increased activity of glycolytic enzymes-unscheduled glycolysis-produces increased levels of glycolytic intermediates with overspill into effector pathways of cell dysfunction and pathogenesis. HK1 is saturated with glucose in euglycemia and, where it is the major HK, provides for basal glycolytic flux without glycolytic overload. HK2 has similar saturation characteristics, except that, in persistent hyperglycemia, it is stabilized to proteolysis by high intracellular glucose concentration, increasing HK activity and initiating glycolytic overload and unscheduled glycolysis. This drives the development of vascular complications of diabetes. Similar HK2-linked unscheduled glycolysis in skeletal muscle and adipose tissue in impaired fasting glucose drives the development of peripheral insulin resistance. Glucokinase (GCK or HK4)-linked glycolytic overload and unscheduled glycolysis occurs in persistent hyperglycemia in hepatocytes and beta-cells, contributing to hepatic insulin resistance and beta-cell glucotoxicity, leading to the development of type 2 diabetes. Downstream effector pathways of HK-linked unscheduled glycolysis are mitochondrial dysfunction and increased reactive oxygen species (ROS) formation; activation of hexosamine, protein kinase c, and dicarbonyl stress pathways; and increased Mlx/Mondo A signaling. Mitochondrial dysfunction and increased ROS was proposed as the initiator of metabolic dysfunction in hyperglycemia, but it is rather one of the multiple downstream effector pathways. Correction of HK2 dysregulation is proposed as a novel therapeutic target. Pharmacotherapy addressing it corrected insulin resistance in overweight and obese subjects in clinical trial. Overall, the damaging effects of hyperglycemia are a consequence of HK-gated increased flux of glucose metabolism without increased glycolytic enzyme activities to accommodate it.
Collapse
Affiliation(s)
| | - Paul J. Thornalley
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
2
|
Cheng C, Sun Q, Wang X, He B, Jiang T. Enzyme-manipulated hydrogelation of small molecules for biomedical applications. Acta Biomater 2022; 151:88-105. [PMID: 35970483 DOI: 10.1016/j.actbio.2022.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/26/2022] [Accepted: 08/08/2022] [Indexed: 11/26/2022]
Abstract
Enzyme-manipulated hydrogelation based on self-assembly of small molecules is an attractive methodology for development of functional biomaterials. Upon the catalysis of enzymes, small-molecular precursors are converted into assemblable building blocks, which arrange into high-ordered nanofibers via non-covalent interactions at the molecular level, and further trap water to form hydrogels at the macroscopic level. Such approach has numerous advantages of region- and enantioselectivity, and mild reaction conditions for encapsulation of biomedications or cells that are fragile to environmental change. In addition to the common applications as drug reservoirs or cell scaffolds, the utilization of endogenous enzymes as stimuli to initiate self-assembly in the living cells and tissue is considered as an intelligent spatiotemporally controllable hydrogelation strategy for biomedical applications. The enzyme-instructed in situ self-assembly and hydrogelation can modulate the cell behavior, and even present therapeutic bioactivities, which provides a new perspective in the field of disease treatment. In this review, we categorize distinct enzymatic stimuli and elaborate substrate design, catalytic characteristics, and mechanisms of self-assembly and hydrogelation. The biomedical applications in drug delivery, tissue engineering, bioimaging, and in situ gelation-produced bioactivity are outlined. Advantages and limitations regarding the state-of-the-art enzyme-driven hydrogelation technologies and future perspectives are also discussed. STATEMENT OF SIGNIFICANCE: Hydrogel is a semi-solid soft material containing a large amount of water. Due to the features of adjustable flexibility, extremely porous architecture, and the high similarity of structure to natural extracellular matrices, the hydrogel has broad application prospects in biomedicine. In recent 20 years, enzyme-manipulated hydrogelation based on self-assembly of small molecules has developed rapidly as an attractive methodology for the construction of functional biomaterials. Upon the catalysis of enzymes, small-molecular precursors are converted into assemblable building blocks, which arrange into high-ordered nanofibers via non-covalent interactions at the molecular level, and further trap water to form hydrogels at the macroscopic level. This review summarized the characteristics of enzymatic hydrogel, as well as the traditional application and emerging prospect of enzyme-instructed self-assembly and hydrogelation.
Collapse
Affiliation(s)
- Cheng Cheng
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Qingyun Sun
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Xiuping Wang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Bingfang He
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
| | - Tianyue Jiang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
3
|
Nourbakhsh M, Sharifi R, Heydari N, Nourbakhsh M, Ezzati-Mobasser S, Zarrinnahad H. Circulating TRB3 and GRP78 levels in type 2 diabetes patients: crosstalk between glucose homeostasis and endoplasmic reticulum stress. J Endocrinol Invest 2022; 45:649-655. [PMID: 34591271 DOI: 10.1007/s40618-021-01683-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 09/23/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Endoplasmic reticulum (ER) stress is implicated in the development of type 2 diabetes mellitus (T2DM) and insulin resistance. Tribbles homolog 3 (TRB3) is a pseudokinase upregulated by ER stress and hyperglycemia. Glucose-regulated protein 78 (GRP78) is an ER stress protein that is overexpressed under ER stress conditions. The current study aimed to investigate serum levels of TRB3 and GRP78, as an ER stress marker, in T2DM patients and their correlations with the metabolic profile. METHODS Fifty-seven patients with type 2 diabetes and 23 healthy control subjects were evaluated for serum concentrations of TRB3, GRP78, and AGEs by enzyme-linked immunosorbent assay (ELISA). Fasting plasma glucose (FPG), HbA1c, lipid profile, TNF-α and insulin were also measured, and insulin resistance was calculated using a homeostasis model assessment of insulin resistance (HOMA-IR). RESULTS Serum concentrations of TRB3, GRP78, AGEs, and TNF-α were significantly higher in T2DM patients compared to the healthy controls. Moreover, a statistically significant positive correlation was observed between plasma concentrations of TRB3 and FPG, HbA1c, HOMA-IR, and AGE. GRP78 levels were positively correlated with HbA1c and AGEs. There was also a positive correlation between GRP78 and TRB3. AGEs levels were positively correlated with the levels of FPG, HbA1c, HOMA-IR, and TNF-α. CONCLUSION The current findings suggest that TRB3 and GRP78 may contribute to the pathogenesis of T2DM and might be considered as a therapeutic targets for the treatment of this disease.
Collapse
Affiliation(s)
- M Nourbakhsh
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - R Sharifi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Iran University of Medical Sciences, 1449614535, Tehran, Iran.
| | - N Heydari
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - M Nourbakhsh
- Hazrat Aliasghar Children's Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - S Ezzati-Mobasser
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - H Zarrinnahad
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Catestatin improves insulin sensitivity by attenuating endoplasmic reticulum stress: In vivo and in silico validation. Comput Struct Biotechnol J 2020; 18:464-481. [PMID: 32180905 PMCID: PMC7063178 DOI: 10.1016/j.csbj.2020.02.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 12/18/2022] Open
Abstract
An endogenous peptide catestatin alleviates obesity-induced ER stress. Alleviation of ER stress by catestatin improves insulin sensitivity. PID controller based model of ER stress is supported by experimental findings. It predicts AKT phosphorylation achieves insulin sensitivity overcoming ER stress.
Obesity is characterized by a state of chronic, unresolved inflammation in insulin-targeted tissues. Obesity-induced inflammation causes accumulation of proinflammatory macrophages in adipose tissue and liver. Proinflammatory cytokines released from tissue macrophages inhibits insulin sensitivity. Obesity also leads to inflammation-induced endoplasmic reticulum (ER) stress and insulin resistance. In this scenario, based on the data (specifically patterns) generated by our in vivo experiments on both diet-induced obese (DIO) and normal chow diet (NCD) mice, we developed an in silico state space model to integrate ER stress and insulin signaling pathways. Computational results successfully followed the experimental results for both DIO and NCD conditions. Chromogranin A (CgA) peptide catestatin (CST: hCgA352-372) improves obesity-induced hepatic insulin resistance by reducing inflammation and inhibiting proinflammatory macrophage infiltration. We reasoned that the anti-inflammatory effects of CST would alleviate ER stress. CST decreased obesity-induced ER dilation in hepatocytes and macrophages. On application of Proportional-Integral-Derivative (PID) controllers on the in silico model, we checked whether the reduction of phosphorylated PERK resulting in attenuation of ER stress, resembling CST effect, could enhance insulin sensitivity. The simulation results clearly pointed out that CST not only decreased ER stress but also enhanced insulin sensitivity in mammalian cells. In vivo experiment validated the simulation results by depicting that CST caused decrease in phosphorylation of UPR signaling molecules and increased phosphorylation of insulin signaling molecules. Besides simulation results predicted that enhancement of AKT phosphorylation helps in both overcoming ER stress and achieving insulin sensitivity. These effects of CST were verified in hepatocyte culture model.
Collapse
|
5
|
Jayabalan N, Lai A, Ormazabal V, Adam S, Guanzon D, Palma C, Scholz-Romero K, Lim R, Jansson T, McIntyre HD, Lappas M, Salomon C. Adipose Tissue Exosomal Proteomic Profile Reveals a Role on Placenta Glucose Metabolism in Gestational Diabetes Mellitus. J Clin Endocrinol Metab 2019; 104:1735-1752. [PMID: 30517676 DOI: 10.1210/jc.2018-01599] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/28/2018] [Indexed: 01/03/2023]
Abstract
CONTEXT Molecules produced by adipose tissue (AT) function as an endocrine link between maternal AT and fetal growth by regulating placental function in normal women and women with gestational diabetes mellitus (GDM). OBJECTIVE We hypothesized that AT-derived exosomes (exo-AT) from women with GDM would carry a specific set of proteins that influences glucose metabolism in the placenta. DESIGN Exosomes were isolated from omental AT-conditioned media from normal glucose tolerant (NGT) pregnant women (n = 65) and pregnant women with GDM (n = 82). Sequential window acquisition of all theoretical fragment ion spectra mass spectrometry was used to construct a small ion library from AT and exosomal proteins, followed by ingenuity pathway analysis to determine the canonical pathways and biofunctions. The effect of exosomes on human placental cells was determined using a Human Glucose Metabolism RT2 Profiler PCR array. RESULTS The number of exosomes (vesicles/μg of tissue/24 hours) was substantially (1.7-fold) greater in GDM than in NGT, and the number of exosomes correlated positively with the birthweight Z score. Ingenuity pathway analysis of the exosomal proteins revealed differential expression of the proteins targeting the sirtuin signaling pathway, oxidative phosphorylation, and mechanistic target of rapamycin signaling pathway in GDM compared with NGT. GDM exo-AT increased the expression of genes associated with glycolysis and gluconeogenesis in placental cells compared with the effect of NGT exo-AT. CONCLUSIONS Our findings are consistent with the possibility that AT exosomes play an important role in mediating the changes in placental function in GDM and might be responsible for some of the adverse consequences in this pregnancy complication, such as fetal overgrowth.
Collapse
Affiliation(s)
- Nanthini Jayabalan
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, University of Queensland, Brisbane, Queensland, Australia
| | - Andrew Lai
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, University of Queensland, Brisbane, Queensland, Australia
| | - Valeska Ormazabal
- Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Stefanie Adam
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, University of Queensland, Brisbane, Queensland, Australia
| | - Dominic Guanzon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, University of Queensland, Brisbane, Queensland, Australia
| | - Carlos Palma
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, University of Queensland, Brisbane, Queensland, Australia
| | - Katherin Scholz-Romero
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, University of Queensland, Brisbane, Queensland, Australia
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, Concepción, Chile
| | - Ratana Lim
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia
- Mercy Perinatal Research Centre, Mercy Hospital for Women, Victoria, Australia
| | - Thomas Jansson
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Harold David McIntyre
- Mater Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Martha Lappas
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia
- Mercy Perinatal Research Centre, Mercy Hospital for Women, Victoria, Australia
| | - Carlos Salomon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, University of Queensland, Brisbane, Queensland, Australia
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, Concepción, Chile
| |
Collapse
|
6
|
Hasan MZ, Kitamura M, Kawai M, Ohira M, Mori K, Shoju S, Takagi K, Tsukamoto K, Kawai Y, Inoue A. Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro 2019; 57:164-173. [PMID: 30851411 DOI: 10.1016/j.tiv.2019.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/22/2019] [Accepted: 03/04/2019] [Indexed: 12/31/2022]
Abstract
The incidence of sensitive skin with stinging and itch following chemical exposure in products such as cosmetics is increasing, but molecular mechanisms underlying this pathophysiology remain understudied. Here we performed transcriptional analysis of reconstructed human epidermis (RHE) 1, 6, and 24 h following topical lactic acid (LA) application, a known inducer of the sensitive skin reaction. Since little is known about the specific role of keratinocyte transcriptional changes in mediating stinging and itch, we performed pathway analysis using several publically available databases and then focused on significantly changed transcripts involved in stress responses and itch signaling using the Comparative Toxicogenomics Database. LA treatment induced damage-associated genes HSPA1A, DDIT3, IL1A, and HMGB2. Neurotrophic factors including BDNF, ARTN, PGE2, and chemokines were also upregulated. Stimulation of the RHE with 5% LA did not reduce cell viability, but reduced the trans-epidermal electric resistance, suggesting barrier dysfunction. Accordingly, skin barrier formation genes such as filaggrins (FLG, FLG2) and corneodesmosin (CDSN) were downregulated. To our knowledge, this is the first study focusing on transcriptional changes underlying the stinging response of keratinocytes upon LA stimulation. While follow-up research is needed, this study provides new insight into the mechanisms underlying the sensitive skin reaction.
Collapse
Affiliation(s)
- Md Zobaer Hasan
- Rohto Pharmaceutical CO., Ltd, Safety Design Center, Research Village Kyoto, 6-5-4 Kunimidai, Kizugawa, Kyoto 619-0216, Japan.
| | - Miho Kitamura
- Rohto Pharmaceutical CO., Ltd, Safety Design Center, Research Village Kyoto, 6-5-4 Kunimidai, Kizugawa, Kyoto 619-0216, Japan
| | - Mami Kawai
- Rohto Pharmaceutical CO., Ltd, Safety Design Center, Research Village Kyoto, 6-5-4 Kunimidai, Kizugawa, Kyoto 619-0216, Japan
| | - Moto Ohira
- Rohto Pharmaceutical CO., Ltd, Safety Design Center, Research Village Kyoto, 6-5-4 Kunimidai, Kizugawa, Kyoto 619-0216, Japan
| | - Kazuya Mori
- Rohto Pharmaceutical CO., Ltd, Safety Design Center, Research Village Kyoto, 6-5-4 Kunimidai, Kizugawa, Kyoto 619-0216, Japan
| | - Shintaro Shoju
- Rohto Pharmaceutical CO., Ltd, Safety Design Center, Research Village Kyoto, 6-5-4 Kunimidai, Kizugawa, Kyoto 619-0216, Japan
| | - Kohei Takagi
- Rohto Pharmaceutical CO., Ltd, Safety Design Center, Research Village Kyoto, 6-5-4 Kunimidai, Kizugawa, Kyoto 619-0216, Japan
| | - Kosei Tsukamoto
- Rohto Pharmaceutical CO., Ltd, Safety Design Center, Research Village Kyoto, 6-5-4 Kunimidai, Kizugawa, Kyoto 619-0216, Japan
| | - Yu Kawai
- Rohto Pharmaceutical CO., Ltd, Safety Design Center, Research Village Kyoto, 6-5-4 Kunimidai, Kizugawa, Kyoto 619-0216, Japan
| | - Amane Inoue
- Rohto Pharmaceutical CO., Ltd, Safety Design Center, Research Village Kyoto, 6-5-4 Kunimidai, Kizugawa, Kyoto 619-0216, Japan
| |
Collapse
|
7
|
Villalobos-Labra R, Subiabre M, Toledo F, Pardo F, Sobrevia L. Endoplasmic reticulum stress and development of insulin resistance in adipose, skeletal, liver, and foetoplacental tissue in diabesity. Mol Aspects Med 2018; 66:49-61. [PMID: 30472165 DOI: 10.1016/j.mam.2018.11.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/27/2018] [Accepted: 11/21/2018] [Indexed: 02/06/2023]
Abstract
Diabesity is an abnormal metabolic condition shown by patients with obesity that develop type 2 diabetes mellitus. Patients with diabesity present with insulin resistance, reduced vascular response to insulin, and vascular endothelial dysfunction. Along with the several well-described mechanisms of insulin resistance, a state of endoplasmic reticulum (ER) stress, where the primary human targets are the adipose tissue, liver, skeletal muscle, and the foetoplacental vasculature, is apparent. ER stress characterises by the activation of the unfolded protein response via three canonical ER stress sensors, i.e., the protein kinase RNA-like endoplasmic reticulum kinase (PERK), inositol-requiring enzyme 1α (IRE1α), and activating transcription factor 6. Slightly different cell signalling mechanisms preferentially enable in diabesity in the ER stress-associated insulin resistance for adipose tissue (IRE1α/X-box binding protein 1 mRNA splicing/c-jun N-terminal kinase 1 activation), skeletal muscle (tribbles-like protein 3 (TRB3)/proinflammatory cytokines activation), and liver (PERK/activating transcription factor 4/TRB3 activation). There is no information in human subjects with diabesity in the foetoplacental vasculature. However, the available literature shows that pregnant women with pre-pregnancy obesity or overweight that develop gestational diabetes mellitus (GDM) and their newborn show insulin resistance. ER stress is recently reported to be triggered in endothelial cells from the human umbilical vein from mothers with pre-pregnancy obesity. However, whether a different metabolic alteration to obesity in pregnancy or GDM is present in women with pre-pregnancy obesity that develop GDM, is unknown. In this review, we summarised the findings on diabesity-associated mechanisms of insulin resistance with emphasis in the primary targets adipose, skeletal muscle, liver, and foetoplacental tissues. We also give evidence on the possibility of a new GDM-associated metabolic condition triggered in pregnancy by maternal obesity, i.e. gestational diabesity, leading to ER stress-associated insulin resistance in the human foetoplacental vasculature.
Collapse
Affiliation(s)
- Roberto Villalobos-Labra
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, 8330024, Chile.
| | - Mario Subiabre
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, 8330024, Chile
| | - Fernando Toledo
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, 8330024, Chile; Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, Chillán, 3780000, Chile
| | - Fabián Pardo
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, 8330024, Chile; Metabolic Diseases Research Laboratory, Interdisciplinary Center of Territorial Health Research (CIISTe), San Felipe Campus, School of Medicine, Faculty of Medicine, Universidad de Valparaíso, 2172972, San Felipe, Chile
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, 8330024, Chile; Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville, E-41012, Spain; University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, QLD 4029, Queensland, Australia.
| |
Collapse
|
8
|
Rossi M, Zhu L, McMillin SM, Pydi SP, Jain S, Wang L, Cui Y, Lee RJ, Cohen AH, Kaneto H, Birnbaum MJ, Ma Y, Rotman Y, Liu J, Cyphert TJ, Finkel T, McGuinness OP, Wess J. Hepatic Gi signaling regulates whole-body glucose homeostasis. J Clin Invest 2018; 128:746-759. [PMID: 29337301 PMCID: PMC5785257 DOI: 10.1172/jci94505] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 11/17/2017] [Indexed: 01/12/2023] Open
Abstract
An increase in hepatic glucose production (HGP) is a key feature of type 2 diabetes. Excessive signaling through hepatic Gs-linked glucagon receptors critically contributes to pathologically elevated HGP. Here, we tested the hypothesis that this metabolic impairment can be counteracted by enhancing hepatic Gi signaling. Specifically, we used a chemogenetic approach to selectively activate Gi-type G proteins in mouse hepatocytes in vivo. Unexpectedly, activation of hepatic Gi signaling triggered a pronounced increase in HGP and severely impaired glucose homeostasis. Moreover, increased Gi signaling stimulated glucose release in human hepatocytes. A lack of functional Gi-type G proteins in hepatocytes reduced blood glucose levels and protected mice against the metabolic deficits caused by the consumption of a high-fat diet. Additionally, we delineated a signaling cascade that links hepatic Gi signaling to ROS production, JNK activation, and a subsequent increase in HGP. Taken together, our data support the concept that drugs able to block hepatic Gi-coupled GPCRs may prove beneficial as antidiabetic drugs.
Collapse
Affiliation(s)
- Mario Rossi
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), Bethesda, Maryland, USA
| | - Lu Zhu
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), Bethesda, Maryland, USA
| | - Sara M. McMillin
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), Bethesda, Maryland, USA
| | - Sai Prasad Pydi
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), Bethesda, Maryland, USA
| | - Shanu Jain
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), Bethesda, Maryland, USA
| | - Lei Wang
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), Bethesda, Maryland, USA
| | - Yinghong Cui
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), Bethesda, Maryland, USA
| | - Regina J. Lee
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), Bethesda, Maryland, USA
| | - Amanda H. Cohen
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), Bethesda, Maryland, USA
| | - Hideaki Kaneto
- Osaka University Graduate School of Medicine, Osaka, Japan
| | - Morris J. Birnbaum
- Cardiovascular and Metabolic Diseases (CVMED), Pfizer Inc., Cambridge, Massachusetts, USA
| | - Yanling Ma
- Liver and Energy Metabolism Unit, Liver Diseases Branch, NIDDK, Bethesda, Maryland, USA
| | - Yaron Rotman
- Liver and Energy Metabolism Unit, Liver Diseases Branch, NIDDK, Bethesda, Maryland, USA
| | - Jie Liu
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute (NHLBI), Bethesda, Maryland, USA
| | - Travis J. Cyphert
- Departments of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Toren Finkel
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute (NHLBI), Bethesda, Maryland, USA
| | - Owen P. McGuinness
- Departments of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), Bethesda, Maryland, USA
| |
Collapse
|
9
|
Lindholm D, Korhonen L, Eriksson O, Kõks S. Recent Insights into the Role of Unfolded Protein Response in ER Stress in Health and Disease. Front Cell Dev Biol 2017; 5:48. [PMID: 28540288 PMCID: PMC5423914 DOI: 10.3389/fcell.2017.00048] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 04/13/2017] [Indexed: 12/20/2022] Open
Abstract
Unfolded stress response (UPR) is a conserved cellular pathway involved in protein quality control to maintain homeostasis under different conditions and disease states characterized by cell stress. Although three general schemes of and genes induced by UPR are rather well-established, open questions remain including the precise role of UPR in human diseases and the interactions between different sensor systems during cell stress signaling. Particularly, the issue how the normally adaptive and pro-survival UPR pathway turns into a deleterious process causing sustained endoplasmic reticulum (ER) stress and cell death requires more studies. UPR is also named a friend with multiple personalities that we need to understand better to fully recognize its role in normal physiology and in disease pathology. UPR interacts with other organelles including mitochondria, and with cell stress signals and degradation pathways such as autophagy and the ubiquitin proteasome system. Here we review current concepts and mechanisms of UPR as studied in different cells and model systems and highlight the relevance of UPR and related stress signals in various human diseases.
Collapse
Affiliation(s)
- Dan Lindholm
- Medicum, Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of HelsinkiHelsinki, Finland.,Minerva Foundation Institute for Medical ResearchHelsinki, Finland
| | - Laura Korhonen
- Minerva Foundation Institute for Medical ResearchHelsinki, Finland.,Division of Child Psychiatry, Helsinki University Central HospitalHelsinki, Finland
| | - Ove Eriksson
- Medicum, Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of HelsinkiHelsinki, Finland
| | - Sulev Kõks
- Department of Pathophysiology, University of TartuTartu, Estonia.,Department of Reproductive Biology, Estonian University of Life SciencesTartu, Estonia
| |
Collapse
|
10
|
Wu T, Zhang F, Yang Q, Zhang Y, Liu Q, Jiang W, Cao H, Li D, Xie S, Tong N, He J. Circulating mesencephalic astrocyte-derived neurotrophic factor is increased in newly diagnosed prediabetic and diabetic patients, and is associated with insulin resistance. Endocr J 2017; 64:403-410. [PMID: 28216543 DOI: 10.1507/endocrj.ej16-0472] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Evidence has shown that endoplasmic reticulum (ER) stress was involved in the progression to type 2 diabetes mellitus (T2DM) and development of insulin resistance. Mesencephalic astrocyte-derived neurotrophic factor (MANF) is a novel secreted protein upregulated by ER stress. This study aimed to assess serum level of MANF in normal glucose tolerance (NGT) participants and newly diagnosed prediabetic and T2DM patients. A total of 257 participants with NGT, newly diagnosed prediabetes or T2DM were recruited from Yinchao and Hangtian communities of Chengdu, Sichuan, China. Serum MANF level was quantified by enzyme-linked immunosorbent assay (ELISA). The mean age for the 257 participants (147 females) was 62±8 years (range 44-78): 71 with NGT, 115 with newly diagnosed prediabetes and 71 with T2DM. Mean serum MANF level was significantly higher with newly diagnosed prediabetes and T2DM than NGT (2.89±1.09 and 3.03±1.73 vs 2.13±1.37 ng/mL, both p<0.001). MANF level was not correlated with insulin sensitivity indexes (homeostasis model assessment for insulin resistance [HOMA-IR], Matsuda Index and quantitative insulin sensitivity check index [QUICKI]) for NGT and T2DM participants but was correlated with such indexes for prediabetes patients. We concluded that serum MANF level was higher in patients with newly diagnosed prediabetes and T2DM than in NGT controls. MANF appears to be associated with Matsuda Index, QUICKI and HOMA-IR in prediabetes patients.
Collapse
Affiliation(s)
- Tong Wu
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
| | - Fang Zhang
- Division of Endocrinology and Metabolism, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
| | - Qiu Yang
- Division of Endocrinology and Metabolism, The fifth Hospital of Chengdu, Chengdu, Sichuan 610041, China
| | - Yuwei Zhang
- Division of Endocrinology and Metabolism, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
| | - Qinhui Liu
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
| | - Wei Jiang
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
| | - Hongyi Cao
- Division of Endocrinology and Metabolism, The fifth Hospital of Chengdu, Chengdu, Sichuan 610041, China
| | - Daigang Li
- The Yinchao Community Hospital of Chengdu, Chengdu, Sichuan 610041, China
| | - Shugui Xie
- Chengdu Aerospace Hospital, Chengdu, Sichuan 610041, China
| | - Nanwei Tong
- Division of Endocrinology and Metabolism, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
| | - Jinhan He
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
| |
Collapse
|
11
|
Hu F, Gao X, She R, Chen J, Mao J, Xiao P, Shi R. Effects of antimicrobial peptides on growth performance and small intestinal function in broilers under chronic heat stress. Poult Sci 2017; 96:798-806. [DOI: 10.3382/ps/pew379] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 09/15/2016] [Indexed: 12/31/2022] Open
|
12
|
Functional Analysis of Mouse G6pc1 Mutations Using a Novel In Situ Assay for Glucose-6-Phosphatase Activity and the Effect of Mutations in Conserved Human G6PC1/G6PC2 Amino Acids on G6PC2 Protein Expression. PLoS One 2016; 11:e0162439. [PMID: 27611587 PMCID: PMC5017610 DOI: 10.1371/journal.pone.0162439] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 08/23/2016] [Indexed: 11/19/2022] Open
Abstract
Elevated fasting blood glucose (FBG) has been associated with increased risk for development of type 2 diabetes. Single nucleotide polymorphisms (SNPs) in G6PC2 are the most important common determinants of variations in FBG in humans. Studies using G6pc2 knockout mice suggest that G6pc2 regulates the glucose sensitivity of insulin secretion. G6PC2 and the related G6PC1 and G6PC3 genes encode glucose-6-phosphatase catalytic subunits. This study describes a functional analysis of 22 non-synonymous G6PC2 SNPs, that alter amino acids that are conserved in human G6PC1, mouse G6pc1 and mouse G6pc2, with the goal of identifying variants that potentially affect G6PC2 activity/expression. Published data suggest strong conservation of catalytically important amino acids between all four proteins and the related G6PC3 isoform. Because human G6PC2 has very low glucose-6-phosphatase activity we used an indirect approach, examining the effect of these SNPs on mouse G6pc1 activity. Using a novel in situ functional assay for glucose-6-phosphatase activity we demonstrate that the amino acid changes associated with the human G6PC2 rs144254880 (Arg79Gln), rs149663725 (Gly114Arg) and rs2232326 (Ser324Pro) SNPs reduce mouse G6pc1 enzyme activity without affecting protein expression. The Arg79Gln variant alters an amino acid mutation of which, in G6PC1, has previously been shown to cause glycogen storage disease type 1a. We also demonstrate that the rs368382511 (Gly8Glu), rs138726309 (His177Tyr), rs2232323 (Tyr207Ser) rs374055555 (Arg293Trp), rs2232326 (Ser324Pro), rs137857125 (Pro313Leu) and rs2232327 (Pro340Leu) SNPs confer decreased G6PC2 protein expression. In summary, these studies identify multiple G6PC2 variants that have the potential to be associated with altered FBG in humans.
Collapse
|
13
|
de Castro Barra PM, Sabarense CM, Alvarenga MB, de Sousa RA, de Oliveira MAL. Selenium Content in the Liver of Wistar Rats Fed Diets of Different Fatty Acid Quality. Biol Trace Elem Res 2015; 168:441-6. [PMID: 25957597 DOI: 10.1007/s12011-015-0359-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 04/28/2015] [Indexed: 11/24/2022]
Abstract
The purpose of this work was to measure the amounts of selected mineral elements (sodium, calcium, iron, selenium, magnesium, zinc, copper, and manganese) in the liver of Wistar rats and evaluate possible correlations between the levels of these minerals and the lipid metabolism in the studied animals. Three experimental groups each containing six Wistar rats were designed. Each group was fed a different diet. The control group was fed a diet prepared with fresh soybean oil and named control group--CG. The second group (named experimental group B--EGB) and third group (named experimental group C--EGC) were fed a diet containing soybean oil that had been used to fry different foods for four or ten cycles, respectively. The mineral elements in Wistar rat livers were measured by inductively coupled plasma optical emission spectrometry (ICP OES). Only the elements calcium and selenium differed significantly between the control and experimental groups. There was a significant reduction of 33% for Ca and 41% for Se in the EGB in comparison to the control group. The reduction in mineral concentration, especially Se, is the result of interactions with fatty acid metabolism. The animals in the EGC exhibited more intracytoplasmic accumulation of fat and more intense vasodilatation, in relation to the other groups. Collectively, evidence hereby collected suggests that impaired dietary lipid quality in otherwise balanced diets can reduce hepatic Se levels and potentially harm liver function.
Collapse
Affiliation(s)
| | | | | | - Rafael Arromba de Sousa
- Chemistry Department, Institute of Exact Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | | |
Collapse
|
14
|
Qian D, Tian L, Qu L. Proteomic analysis of endoplasmic reticulum stress responses in rice seeds. Sci Rep 2015; 5:14255. [PMID: 26395408 PMCID: PMC4585792 DOI: 10.1038/srep14255] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 08/21/2015] [Indexed: 01/15/2023] Open
Abstract
The defects in storage proteins secretion in the endosperm of transgenic rice seeds often leads to endoplasmic reticulum (ER) stress, which produces floury and shrunken seeds, but the mechanism of this response remains unclear. We used an iTRAQ-based proteomics analysis of ER-stressed rice seeds due to the endosperm-specific suppression of OsSar1 to identify changes in the protein levels in response to ER stress. ER stress changed the expression of 405 proteins in rice seed by >2.0- fold compared with the wild-type control. Of these proteins, 140 were upregulated and 265 were downregulated. The upregulated proteins were mainly involved in protein modification, transport and degradation, and the downregulated proteins were mainly involved in metabolism and stress/defense responses. A KOBAS analysis revealed that protein-processing in the ER and degradation-related proteasome were the predominant upregulated pathways in the rice endosperm in response to ER stress. Trans-Golgi protein transport was also involved in the ER stress response. Combined with bioinformatic and molecular biology analyses, our proteomic data will facilitate our understanding of the systemic responses to ER stress in rice seeds.
Collapse
Affiliation(s)
- Dandan Qian
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Lihong Tian
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Leqing Qu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
15
|
Rieusset J. Contribution of mitochondria and endoplasmic reticulum dysfunction in insulin resistance: Distinct or interrelated roles? DIABETES & METABOLISM 2015; 41:358-68. [PMID: 25797073 DOI: 10.1016/j.diabet.2015.02.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 01/07/2015] [Accepted: 02/01/2015] [Indexed: 12/31/2022]
Abstract
Mitochondria and the endoplasmic reticulum (ER) regulate numerous cellular processes, and are critical contributors to cellular and whole-body homoeostasis. More important, mitochondrial dysfunction and ER stress are both closely associated with hepatic and skeletal muscle insulin resistance, thereby playing crucial roles in altered glucose homoeostasis in type 2 diabetes mellitus (T2DM). The accumulated evidence also suggests a potential interrelationship between alterations in both types of organelles, as mitochondrial dysfunction could participate in activation of the unfolded protein response, whereas ER stress could influence mitochondrial function. The fact that mitochondria and the ER are physically and functionally interconnected via mitochondria-associated membranes (MAMs) supports their interrelated roles in the pathophysiology of T2DM. However, the mechanisms that coordinate the interplay between mitochondrial dysfunction and ER stress, and its relevance to the control of glucose homoeostasis, are still unknown. This review evaluates the involvement of mitochondria and ER independently in the development of peripheral insulin resistance, as well as their potential roles in the disruption of organelle crosstalk at MAM interfaces in the alteration of insulin signalling.
Collapse
Affiliation(s)
- J Rieusset
- INSERM UMR-1060, CarMeN Laboratory, Lyon 1 University, INRA U1235, INSA of Lyon, Rockefeller and Charles-Merieux Lyon-Sud medical Universities, 69003 Lyon, France; Endocrinology, diabetology and nutrition service, Lyon-Sud Hospital, Hospices Civils de Lyon, 69310 Pierre-Bénite, France.
| |
Collapse
|
16
|
Nivala AM, Reese L, Frye M, Gentile CL, Pagliassotti MJ. Fatty acid-mediated endoplasmic reticulum stress in vivo: differential response to the infusion of Soybean and Lard Oil in rats. Metabolism 2013; 62:753-60. [PMID: 23312405 PMCID: PMC3633667 DOI: 10.1016/j.metabol.2012.12.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 11/30/2012] [Accepted: 12/01/2012] [Indexed: 12/19/2022]
Abstract
BACKGROUND In cell systems, saturated fatty acids, compared to unsaturated fatty acids, induce a greater degree of ER stress and inflammatory signaling in a number of cell types, including hepatocytes and adipocytes. The aim of the present study was to determine the effects of infusions of lard oil (enriched in saturated fatty acids) and soybean oil (enriched in unsaturated fatty acids) on liver and adipose tissue ER stress and inflammatory signaling in vivo. METHODS Lipid emulsions containing glycerol, phosphatidylcholine, antibiotics (Control, n=7) and either soybean oil (Soybean, n=7) or lard oil (Lard, n=7) were infused intravenously into rats over a 4 h period. RESULTS Plasma free fatty acid levels were 0.5±0.1 mmol/L (mean±SD) in Control and were increased to 1.0±0.3 mmol/L and 1.1±0.3 mmol/L in Soybean and Lard, respectively. Glucose and insulin levels were not different among groups. Markers of endoplasmic reticulum (ER) stress and activation of inflammatory pathway signaling were increased in liver and adipose tissue from Soybean and Lard compared to Control, but were increased to a greater extent in Lard compared to Soybean. CONCLUSIONS These data suggest that elevated plasma free fatty acids can induce hepatic and adipose tissue ER stress and inflammation in vivo. In addition, saturated fatty acids appear to be more cytotoxic than unsaturated fatty acids in vivo.
Collapse
Affiliation(s)
- Angela M Nivala
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523-1571, USA
| | | | | | | | | |
Collapse
|
17
|
De Minicis S, Candelaresi C, Agostinelli L, Taffetani S, Saccomanno S, Rychlicki C, Trozzi L, Marzioni M, Benedetti A, Svegliati-Baroni G. Endoplasmic Reticulum stress induces hepatic stellate cell apoptosis and contributes to fibrosis resolution. Liver Int 2012; 32:1574-84. [PMID: 22938186 DOI: 10.1111/j.1478-3231.2012.02860.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 07/07/2012] [Indexed: 12/11/2022]
Abstract
BACKGROUND Survival of hepatic stellate cells (HSCs) is a hallmark of liver fibrosis, while the induction of HSC apoptosis may induce recovery. Activated HSC are resistant to many pro-apoptotic stimuli. To this issue, the role of Endoplasmic Reticulum (ER) stress in promoting apoptosis of HSCs and consequently fibrosis resolution is still debated. AIM To evaluate the potential ER stress-mediated apoptosis of HSCs and fibrosis resolution METHODS HSCs were incubated with the ER stress agonists, tunicamycin or thapsigargin. In vivo, HSC were isolated from normal, bile duct-ligated (BDL) and bile duct-diverted (BDD) rats. RESULTS In activated HSC, the specific inhibitor of ER stress-induced apoptosis, calpastatin, is significantly increased vs. quiescent HSCs. Calpain is conversely reduced in activated HSCs. This pattern of protein expression provides HSCs resistance to the ER stress signals of apoptosis (apoptosis-resistant phenotype). However, both tunicamycin and thapsigargin are able to induce apoptosis in HSCs in vitro, completely reversing the calpain/calpastatin pattern expression. Furthermore, in vivo, the fibrosis resolution observed in rat livers subjected to bile duct ligation (BDL) and subsequent bile duct diversion (BDD), leads to fibrosis resolution through a mechanism of HSCs apoptosis, potentially associated with ER stress: in fact, BDD rat liver shows an increased number of apoptotic HSCs associated with reduced calapstatin and increased calpain protein expression, leading to an apoptosis-sensible phenotype. CONCLUSIONS ER stress sensitizes HSC to apoptosis both in vitro and in vivo. Thus, ER stress represents a key target to trigger cell death in activated HSC and promotes fibrosis resolution.
Collapse
Affiliation(s)
- Samuele De Minicis
- Department of Gastroenterology, Polytechnic University of Marche, Ancona, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Flamment M, Hajduch E, Ferré P, Foufelle F. New insights into ER stress-induced insulin resistance. Trends Endocrinol Metab 2012; 23:381-90. [PMID: 22770719 DOI: 10.1016/j.tem.2012.06.003] [Citation(s) in RCA: 233] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 06/01/2012] [Accepted: 06/02/2012] [Indexed: 12/12/2022]
Abstract
Insulin resistance is a major characteristic of obesity and type 2 diabetes (T2DM). During the last decade, endoplasmic reticulum (ER) stress has emerged as a new player in this field and a considerable number of recent studies have pointed out its role in the onset of insulin resistance (IR). ER stress appears to act directly as a negative modulator of the insulin signaling pathway but also indirectly by promoting lipid accumulation. This review aims to summarize and decipher the abundant new literature concerning the emerging and multifaceted involvement of ER stress in the development of metabolic dysfunctions in insulin target tissues.
Collapse
Affiliation(s)
- Mélissa Flamment
- Institut National de la Santé et de la Recherche Médicale (INSERM), Centre de Recherche des Cordeliers, Unité Mixte de Recherche en Santé (UMR-S) 872, Paris, F-75006 France
| | | | | | | |
Collapse
|
19
|
Ellis F, Nivala A, Pfaffenbach KT, Gentile CL, Wang D, Wei Y, Pagliassotti MJ. C-reactive protein does not impair insulin suppression of glucose release in primary hepatocytes. Nutr Metab Cardiovasc Dis 2012; 22:115-119. [PMID: 20691575 PMCID: PMC2978270 DOI: 10.1016/j.numecd.2010.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 03/29/2010] [Accepted: 04/25/2010] [Indexed: 10/19/2022]
Abstract
Recent studies have suggested that CRP may interfere with insulin signaling in skeletal muscle and endothelial cells. The aim of this study was to determine whether highly purified CRP increased the rate of glucose appearance in primary hepatocytes in the absence or presence of insulin. Primary rat hepatocytes were provided glucose-free media containing 10 mM lactate, 1 mM pyruvate, 0, 1 or 10 nM insulin, and 0 or 10 μg/ml of purified CRP for 6h. Purified CRP did not increase glucose release in the absence of insulin and did not reduce the ability of insulin to suppress glucose release.
Collapse
Affiliation(s)
- F Ellis
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523-1571, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Tsoi B, He RR, Yang DH, Li YF, Li XD, Li WX, Abe K, Kurihara H. Carnosine ameliorates stress-induced glucose metabolism disorder in restrained mice. J Pharmacol Sci 2011; 117:223-9. [PMID: 22123261 DOI: 10.1254/jphs.11131fp] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
Abstract
Carnosine is a natural dipeptide that has shown multiple benefits in the treatment of various diseases. This study investigated the ameliorative effects of carnosine on glucose metabolism in restraint-stressed mice. Our results showed that restraint stress could significantly influence glucose metabolism, as reflected by lowered glucose tolerance, hepatic and muscle glycogen content, and increased plasma corticosterone concentration in mice. Oral administration of carnosine (150 and 300 mg/kg) not only reverted stress-induced decline in glucose tolerance and glycogen content in liver and muscle, but also reduced plasma corticosterone level. Carnosine has also significantly suppressed mRNA expression of glucose-6-phosphatase, while elevating glycogen synthase 2, glucokinase and glucose transporter 2 expressions in the liver. The obtained results demonstrated the harmful effects induced by restraint stress, while proving that carnosine could ameliorate stress-induced glucose metabolism disturbance. It is presumable that carnosine exerts its anti-stress effects by indirectly affecting the histaminergic neuron system, modulating the stress-activated hypothalamic-pituitary-adrenal axis and improving glucose metabolism through regulation of the enzymes in the glucose metabolic pathways.
Collapse
Affiliation(s)
- Bun Tsoi
- Institute of Traditional Chinese Medicine and Natural Products, Jinan University, Guangzhou 510632, China
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Fougeray S, Loriot MA, Nicaud V, Legendre C, Thervet E, Pallet N. Increased Body Mass Index After Kidney Transplantation in Activating Transcription Factor 6 Single Polymorphism Gene Carriers. Transplant Proc 2011; 43:3418-22. [PMID: 22099811 DOI: 10.1016/j.transproceed.2011.09.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
22
|
Gentile CL, Nivala AM, Gonzales JC, Pfaffenbach KT, Wang D, Wei Y, Jiang H, Orlicky DJ, Petersen DR, Pagliassotti MJ, Maclean KN. Experimental evidence for therapeutic potential of taurine in the treatment of nonalcoholic fatty liver disease. Am J Physiol Regul Integr Comp Physiol 2011; 301:R1710-22. [PMID: 21957160 DOI: 10.1152/ajpregu.00677.2010] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The incidence of obesity is now at epidemic proportions and has resulted in the emergence of nonalcoholic fatty liver disease (NAFLD) as a common metabolic disorder that can lead to liver injury and cirrhosis. Excess sucrose and long-chain saturated fatty acids in the diet may play a role in the development and progression of NAFLD. One factor linking sucrose and saturated fatty acids to liver damage is dysfunction of the endoplasmic reticulum (ER). Although there is currently no proven, effective therapy for NAFLD, the amino sulfonic acid taurine is protective against various metabolic disturbances, including alcohol-induced liver damage. The present study was undertaken to evaluate the therapeutic potential of taurine to serve as a preventative treatment for diet-induced NAFLD. We report that taurine significantly mitigated palmitate-mediated caspase-3 activity, cell death, ER stress, and oxidative stress in H4IIE liver cells and primary hepatocytes. In rats fed a high-sucrose diet, dietary taurine supplementation significantly reduced hepatic lipid accumulation, liver injury, inflammation, plasma triglycerides, and insulin levels. The high-sucrose diet resulted in an induction of multiple components of the unfolded protein response in the liver consistent with ER stress, which was ameliorated by taurine supplementation. Treatment of mice with the ER stress-inducing agent tunicamycin resulted in liver injury, unfolded protein response induction, and hepatic lipid accumulation that was significantly ameliorated by dietary supplementation with taurine. Our results indicate that dietary supplementation with taurine offers significant potential as a preventative treatment for NAFLD.
Collapse
Affiliation(s)
- Christopher L Gentile
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, Colorado 80523, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Liu WJ, Ma LQ, Liu WH, Zhou W, Zhang KQ, Zou CG. Inhibition of hepatic glycogen synthesis by hyperhomocysteinemia mediated by TRB3. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:1489-99. [PMID: 21435438 DOI: 10.1016/j.ajpath.2010.12.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 12/21/2010] [Accepted: 12/30/2010] [Indexed: 01/13/2023]
Abstract
Recently, epidemiological and experimental studies have linked hyperhomocysteinemia (HHcy) to insulin resistance. However, whether HHcy impairs glucose homeostasis by affecting glycogenesis in the liver is not clear. In the present study, we investigated the effect of HHcy on hepatic glycogen synthesis. Hyperhomocysteinemia was induced in mice by drinking water containing two percent methionine. Mice with HHcy showed an increase in the phosphorylation of glycogen synthase and a significant decrease in hepatic glycogen content and the rate of glycogen synthesis. The expression of TRB3 (tribbles-related protein 3) was up-regulated in the liver of mice with HHcy, concomitantly with the dephosphorylation of glycogen synthase kinase-3β and Akt. The knockdown of TRB3 by short hairpin RNA suppressed the dephosphorylation of these two kinases. Homocysteine induced an increase in the levels of hepatic cAMP and cAMP response element-binding protein phosphorylation, which in turn up-regulated the expression of peroxisome proliferator-activated receptor (PPAR)-γ coactivator-1α and TRB3. The inhibition of PPAR-α by its inhibitor, MK886, or knockdown of PPAR-α by small interfering RNA significantly inhibited the expression of TRB3 induced by homocysteine. The current study demonstrates that HHcy impairs hepatic glycogen synthesis by inducing the expression of TRB3. These results provide a novel explanation for the development and progression of insulin resistance in HHcy.
Collapse
Affiliation(s)
- Wen-Jing Liu
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Yunnan, China
| | | | | | | | | | | |
Collapse
|
24
|
Chanda D, Kim DK, Li T, Kim YH, Koo SH, Lee CH, Chiang JYL, Choi HS. Cannabinoid receptor type 1 (CB1R) signaling regulates hepatic gluconeogenesis via induction of endoplasmic reticulum-bound transcription factor cAMP-responsive element-binding protein H (CREBH) in primary hepatocytes. J Biol Chem 2011; 286:27971-9. [PMID: 21693703 DOI: 10.1074/jbc.m111.224352] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Activated cannabinoid 1 receptor (CB1R) signaling has been implicated in the development of phenotypes associated with fatty liver, insulin resistance, and impaired suppression of hepatic glucose output. Endoplasmic reticulum stress-associated liver-specific transcription factor CREBH is emerging as a critical player in various hepatic metabolic pathways and regulates hepatic gluconeogenesis in diet-induced obese settings. In this study, we elucidated the critical role of CREBH in mediating CB1R signaling to regulate glucose homeostasis in primary rat and human hepatocytes. mRNA and protein levels and glucose production were analyzed in primary rat and human hepatocytes. ChIP assays were performed together with various transcriptional analyses using standard techniques. CB1R activation by 2-arachidonoylglycerol (2-AG) specifically induced CREBH gene expression via phosphorylation of the JNK signaling pathway and c-Jun binding to the AP-1 binding site in the CREBH gene promoter. 2-AG treatment significantly induced hepatic gluconeogenic gene expression and glucose production in primary hepatocytes, and we demonstrated that the CREBH binding site mutant significantly attenuated 2-AG-mediated activation of the gluconeogenic gene promoter. Endogenous knockdown of CREBH led to ablation of 2-AG-induced gluconeogenic gene expression and glucose production, and the CB1R antagonist AM251 or insulin exhibited repression of CREBH gene induction and subsequently inhibited gluconeogenesis in both rat and human primary hepatocytes. These results demonstrate a novel mechanism of action of activated CB1R signaling to induce hepatic gluconeogenesis via direct activation of CREBH, thereby contributing to a better understanding of the endocannabinoid signaling mechanism involved in regulating the hepatic glucose metabolism.
Collapse
Affiliation(s)
- Dipanjan Chanda
- National Creative Research Initiatives Center for Nuclear Receptor Signals, Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Nogueira TC, Lellis-Santos C, Jesus DS, Taneda M, Rodrigues SC, Amaral FG, Lopes AMS, Cipolla-Neto J, Bordin S, Anhê GF. Absence of melatonin induces night-time hepatic insulin resistance and increased gluconeogenesis due to stimulation of nocturnal unfolded protein response. Endocrinology 2011; 152:1253-63. [PMID: 21303940 DOI: 10.1210/en.2010-1088] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
It is known that the circadian rhythm in hepatic phosphoenolpyruvate carboxykinase expression (a limiting catalytic step of gluconeogenesis) and hepatic glucose production is maintained by both daily oscillation in autonomic inputs to the liver and night feeding behavior. However, increased glycemia and reduced melatonin (Mel) levels have been recently shown to coexist in diabetic patients at the end of the night period. In parallel, pinealectomy (PINX) is known to cause glucose intolerance with increased basal glycemia exclusively at the end of the night. The mechanisms that underlie this metabolic feature are not completely understood. Here, we demonstrate that PINX rats show night-time hepatic insulin resistance characterized by reduced insulin-stimulated RAC-α serine/threonine-protein kinase phosphorylation and increased phosphoenolpyruvate carboxykinase expression. In addition, PINX rats display increased conversion of pyruvate into glucose at the end of the night. The regulatory mechanism suggests the participation of unfolded protein response (UPR), because PINX induces night-time increase in activating transcription factor 6 expression and prompts a circadian fashion of immunoglobulin heavy chain-binding protein, activating transcription factor 4, and CCAAT/enhancer-binding protein-homologous protein expression with Zenith values at the dark period. PINX also caused a night-time increase in Tribble 3 and regulatory-associated protein of mammalian target of rapamycin; both were reduced in liver of PINX rats treated with Mel. Treatment of PINX rats with 4-phenyl butyric acid, an inhibitor of UPR, restored night-time hepatic insulin sensitivity and abrogated gluconeogenesis in PINX rats. Altogether, the present data show that a circadian oscillation of UPR occurs in the liver due to the absence of Mel. The nocturnal UPR activation is related with night-time hepatic insulin resistance and increased gluconeogenesis in PINX rats.
Collapse
Affiliation(s)
- Tatiane C Nogueira
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-900, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Gentile CL, Frye MA, Pagliassotti MJ. Fatty acids and the endoplasmic reticulum in nonalcoholic fatty liver disease. Biofactors 2011; 37:8-16. [PMID: 21328622 PMCID: PMC3080031 DOI: 10.1002/biof.135] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 10/10/2010] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) represents a burgeoning public health concern in westernized nations. The obesity-related disorder is associated with an increased risk of cardiovascular disease, type 2 diabetes and liver failure. Although the underlying pathogenesis of NAFLD is unclear, increasing evidence suggests that excess saturated fatty acids presented to or stored within the liver may play a role in both the development and progression of the disorder. A putative mechanism linking saturated fatty acids to NAFLD may be endoplasmic reticulum (ER) stress. Specifically, excess saturated fatty acids may induce an ER stress response that, if left unabated, can activate stress signaling pathways, cause hepatocyte cell death, and eventually lead to liver dysfunction. In the current review we discuss the involvement of saturated fatty acids in the pathogenesis of NAFLD with particular emphasis on the role of ER stress.
Collapse
Affiliation(s)
- Christopher L. Gentile
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523
| | - Melinda A. Frye
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523
| | - Michael J. Pagliassotti
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523
| |
Collapse
|
27
|
Shankar BS, Pandey R, Amin P, Misra HS, Sainis KB. Role of glutathione in augmenting the anticancer activity of pyrroloquinoline quinone (PQQ). Redox Rep 2010; 15:146-54. [PMID: 20663290 DOI: 10.1179/174329210x12650506623762] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Pyrroloquinoline quinone (PQQ), a bacterial redox co-factor and antioxidant, is highly reactive with nucleophilic compounds present in biological fluids. PQQ induced apoptosis in human promonocytic leukemia U937 cells and this was accompanied by depletion of the major cellular antioxidant glutathione and increase in intracellular reactive oxygen species (ROS). Treatment with glutathione (GSH) or N-acetyl-L-cysteine (NAC) did not spare PQQ toxicity but resulted in a 2-5-fold increase in PQQ-induced apoptosis in U937 cells. Cellular GSH levels increased following treatment by NAC alone but were severely depleted by co-treatment with NAC and PQQ. This was accompanied by an increase in intracellular ROS. Alternatively, depletion of glutathione also resulted in increased PQQ cytotoxicity. However, the cells underwent necrosis as evidenced by dual labeling with annexin V and propidium iodide. PQQ-induced cytotoxicity is thus critically regulated by the cellular redox status. An increase in GSH can augment apoptosis and its depletion can switch the mode of cell death to necrosis in the presence of PQQ. Our data suggest that modulation of intracellular GSH can be used as an effective strategy to potentiate cytotoxicity of quinones like PQQ.
Collapse
Affiliation(s)
- Bhavani S Shankar
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
| | | | | | | | | |
Collapse
|
28
|
Fatty acids regulate CREBh via transcriptional mechanisms that are dependent on proteasome activity and insulin. Mol Cell Biochem 2010; 344:99-107. [PMID: 20607591 DOI: 10.1007/s11010-010-0533-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 06/23/2010] [Indexed: 10/19/2022]
Abstract
Excess fatty acids are closely associated with metabolic dysfunction. The deleterious effects of fatty acids relate, in part, to their ability to up-regulate pro-inflammatory cytokines and propagate a state of systemic inflammation. CREBh is a recently identified transcription factor that appears to be required for hepatic synthesis of C-reactive protein. Recent data suggest that fatty acids can up-regulate CREBh, thus establishing a potential molecular link between fatty acids and inflammation. The aim of this study was to examine the nature and mechanisms of fatty acid-mediated regulation of CREBh. H4IIE liver cells were incubated in the absence or presence of varying concentrations (50-500 μM) of albumin-bound, long-chain saturated (palmitate, stearate) or unsaturated (oleate, linoleate) fatty acids (1-16 h). All fatty acids significantly increased CREBh gene expression via transcriptional mechanisms, at concentrations as low as 50 μM. Palmitate- or oleate-mediated up-regulation of CREBh was not inhibited by triacsin C, an inhibitor of long-chain fatty acyl CoA synthetase, or by the PPARα antagonist, MK886. Inhibition of proteasome activity with MG132 or lactacystin, or inclusion of insulin reduced palmitate- and oleate-mediated increases in CREBh mRNA. Finally, we examined fatty acid regulation of CREBh in vivo. Male Wistar rats were exposed to a 4-h pancreatic clamp combined with infusion of saline or a mixed lipid emulsion. CREBh mRNA and protein were significantly increased in rats exposed to the lipid infusion compared to the saline group. Collectively, these results may have important implications for metabolic diseases characterized by excess fatty acids, insulin resistance, and inflammation.
Collapse
|
29
|
Pfaffenbach KT, Gentile CL, Nivala AM, Wang D, Wei Y, Pagliassotti MJ. Linking endoplasmic reticulum stress to cell death in hepatocytes: roles of C/EBP homologous protein and chemical chaperones in palmitate-mediated cell death. Am J Physiol Endocrinol Metab 2010; 298:E1027-35. [PMID: 20159858 PMCID: PMC2867372 DOI: 10.1152/ajpendo.00642.2009] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Accepted: 02/11/2010] [Indexed: 12/14/2022]
Abstract
Prolonged endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR) have been linked to apoptosis via several mechanisms, including increased expression of C/EBP homologous protein (Chop). Increased long-chain fatty acids, in particular saturated fatty acids, induce ER stress, Chop expression, and apoptosis in liver cells. The first aim of the present study was to determine the role of Chop in lipid-induced hepatocyte cell death and liver injury induced by a methionine-choline-deficient diet. Albumin-bound palmitate increased Chop gene and protein expression in a dose-dependent fashion in H4IIE liver cells. siRNA-mediated silencing of Chop in H4IIE liver cells reduced thapsigargin-mediated cell death by approximately 40% and delayed palmitate-mediated cell death, but only at high concentrations of palmitate (400-500 microM). Similar results were observed in primary hepatocytes isolated from Chop-knockout mice. Indices of liver injury were also not reduced in Chop-knockout mice provided a methionine-choline-deficient diet. To ascertain whether ER stress was linked to palmitate-induced cell death, primary hepatocytes were incubated in the absence or presence of the chemical chaperones taurine-conjugated ursodeoxycholic acid or 4-phenylbutyric acid. The presence of either of these chemical chaperones protected liver cells from palmitate-mediated ER stress and cell death, in part, via inhibition of JNK activation. These data suggest that ER stress is linked to palmitate-mediated cell death via mechanisms that include JNK activation.
Collapse
Affiliation(s)
- Kyle T Pfaffenbach
- Colorado State University, Department of Food Science and Human Nutrition, Gifford 234, Fort Collins, CO 80523-1571, USA
| | | | | | | | | | | |
Collapse
|
30
|
Pfaffenbach KT, Nivala AM, Reese L, Ellis F, Wang D, Wei Y, Pagliassotti MJ. Rapamycin inhibits postprandial-mediated X-box-binding protein-1 splicing in rat liver. J Nutr 2010; 140:879-84. [PMID: 20237065 PMCID: PMC2855259 DOI: 10.3945/jn.109.119883] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Recent studies have linked the unfolded protein response (UPR), in particular the inositol-requiring, endoplasmic reticulum-to-nucleus signaling protein 1alpha (IRE1alpha)-X-box-binding protein-1 (XBP1) branch of the UPR, to the regulation of lipogenesis and hepatic steatosis. In this study, we examined the hypothesis that the postprandial environment can activate the IRE1alpha-XBP1 branch of the UPR in the liver via a mammalian target of rapamycin complex 1 (mTORC1)-dependent mechanism. Toward this end, rats were fed a high-carbohydrate diet (68% of energy from corn starch) for 3 h in the absence or presence of rapamycin (intraperitoneal injection of 1 mg/kg) and liver tissue was taken 1 or 7 h following the feeding period. Feeding activated the mTORC1 pathway and IRE1alpha, induced XBP1 splicing, and increased the expression of XBP1 target genes and lipogenic genes in the liver. The presence of rapamycin prevented the activation of mTORC1 and IRE1alpha, XBP1 splicing, and the increased expression of XBP1 target genes and lipogenic genes. Rapamycin also prevented the feeding-induced increase in nuclear sterol regulatory element binding protein 1c. These data suggest that the postprandial environment promotes activation of the IRE1-XBP1 branch of the UPR in the liver. This activation appears to be mediated in part by mTORC1.
Collapse
|
31
|
Seo HY, Kim MK, Min AK, Kim HS, Ryu SY, Kim NK, Lee KM, Kim HJ, Choi HS, Lee KU, Park KG, Lee IK. Endoplasmic reticulum stress-induced activation of activating transcription factor 6 decreases cAMP-stimulated hepatic gluconeogenesis via inhibition of CREB. Endocrinology 2010; 151:561-8. [PMID: 20022930 DOI: 10.1210/en.2009-0641] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The expression of genes encoding key hepatic gluconeogenic enzymes, including phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase), is regulated at the transcriptional level by a network of transcription factors and cofactors, including cAMP response element-binding protein (CREB). It has been suggested that increased endoplasmic reticulum (ER) stress in the liver impairs hepatic glucose metabolism. However, the direct effect of ER stress on hepatic gluconeogenesis is still not clear. Here, we investigated whether ER stress influences hepatic gluconeogenesis and whether this process is mediated by activating transcription factor 6 (ATF6) through the inhibition of cAMP-mediated activation of CREB. A cAMP stimulant, forskolin, and 8-bromoadenosine-cAMP increased PEPCK and G6Pase mRNA expression in H4IIE rat hepatoma cells, and ER stress induced by tunicamycin or thapsigargin decreased the expression of these genes in forskolin or 8-bromoadenosine-cAMP-treated cells. In a transient transfection study, ATF6 inhibited the PEPCK and G6Pase promoters. Also, adenovirus-mediated overexpression of ATF6 in H4IIE cells decreased forskolin-stimulated PEPCK and G6Pase gene expression. Moreover, the inhibition of endogenous ATF6 expression by small interfering RNAs restored the ER stress-induced suppression of PEPCK and G6Pase gene expression. Transient transfection of ATF6 inhibited transactivation by CREB on the PEPCK and G6Pase promoters, and a gel shift assay showed that Ad-ATF6 inhibits forskolin-stimulated CREB DNA-binding activity. Finally, we found that expression of ATF6 decreased fasting-induced PEPCK, G6Pase mRNA expression, and blood glucose levels in mice. Taken together, these data extend our understanding of ER stress and the regulation of liver gluconeogenesis by ATF6.
Collapse
Affiliation(s)
- Hye-Young Seo
- Department of Internal Medicine, Keimyung University School of Medicine, 194 Dongsan-dong, Jung-gu, Daegu, 700-712, South Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Rutkowski DT. A Gluconeogenic Tryst in the Nucleus, with ER Stress as the Third Wheel. Sci Signal 2009; 2:pe72. [DOI: 10.1126/scisignal.296pe72] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
33
|
Lee YJ, Suh HN, Han HJ. Effect of BSA-induced ER stress on SGLT protein expression levels and α-MG uptake in renal proximal tubule cells. Am J Physiol Renal Physiol 2009; 296:F1405-16. [DOI: 10.1152/ajprenal.90652.2008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Recent studies demonstrated that endoplasmic reticulum (ER) stress regulates glucose homeostasis and that ER stress preconditioning which induces an adaptive, protective unfolded protein response (UPR) offers cytoprotection against nephrotoxins. Thus the aim of the present study was to use renal proximal tubule cells (PTCs) to further elucidate the link between the BSA-induced ER stress and α-methyl-d-glucopyranoside (α-MG) uptake and to identify related signaling pathways. Among ER stress inducers such as high glucose, BSA, H2O2, or tumicamycin, BSA pretreatment ameliorated the reduction of Na+-glucose cotransporter (SGLT) expression and α-MG uptake by gentamicin or cyclosporine A. Immunofluorescence studies revealed that BSA (10 mg/ml) stimulated the expression of glucose-regulated protein 78 (GRP78), an ER stress biomarker. In addition, BSA increased levels of GRP78 protein expression and eukaryotic initiation factor 2α (eIF2α) phosphorylation in a time-dependent manner. Furthermore, transfection with a GRP78-specific small interfering RNA (siRNA) inhibited BSA-stimulated SGLT expression and α-MG uptake. In experiments designed to unravel the mechanisms underlying BSA-induced ER stress, BSA stimulated the production of cellular reactive oxygen species (ROS), and antioxidants such as ascorbic acid or N-acetylcysteine (NAC) blocked BSA-induced increases in GRP78 activation, eIF2α phosphorylation, SGLT expression, and α-MG uptake. Moreover, the cells upregulated peroxisome proliferator-activated receptor-γ (PPARγ) mRNA levels in response to BSA or troglitazone (a PPARγ agonist), but BSA was ineffective in the presence of GW9662 (a PPARγ antagonist). In addition, both BSA and troglitazone stimulated GRP78 and eIF2α activation, SGLT expression, and α-MG uptake, whereas GW9662 inhibited the effects of BSA. BSA also stimulated phosphorylation of JNK and NF-κB, and GW9662 or GRP78 siRNA attenuated this response. Moreover, SP600125 or SN50 effectively blocked SGLT expression and α-MG uptake in BSA- or PPARγ agonists (troglitazone or PGJ2)-treated PTCs. We conclude that BSA induces ER stress through ROS production and PPARγ activation, which subsequently activates JNK/NF-κB signaling to enhance glucose uptake in renal PTCs.
Collapse
|
34
|
Wei Y, Wang D, Gentile CL, Pagliassotti MJ. Reduced endoplasmic reticulum luminal calcium links saturated fatty acid-mediated endoplasmic reticulum stress and cell death in liver cells. Mol Cell Biochem 2009; 331:31-40. [PMID: 19444596 DOI: 10.1007/s11010-009-0142-1] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Accepted: 04/23/2009] [Indexed: 12/18/2022]
Abstract
Chronic exposure to elevated free fatty acids, in particular long chain saturated fatty acids, provokes endoplasmic reticulum (ER) stress and cell death in a number of cell types. The perturbations to the ER that instigate ER stress and activation of the unfolded protein in response to fatty acids in hepatocytes have not been identified. The present study employed H4IIE liver cells and primary rat hepatocytes to examine the hypothesis that saturated fatty acids induce ER stress via effects on ER luminal calcium stores. Exposure of H4IIE liver cells and primary hepatocytes to palmitate and stearate reduced thapsigargin-sensitive calcium stores and increased biochemical markers of ER stress over similar time courses (6 h). These changes preceded cell death, which was only observed at later time points (16 h). Co-incubation with oleate prevented the reduction in calcium stores, induction of ER stress markers and cell death observed in response to palmitate. Inclusion of calcium chelators, BAPTA-AM or EGTA, reduced palmitate- and stearate-mediated enrichment of cytochrome c in post-mitochondrial supernatant fractions and cell death. These data suggest that redistribution of ER luminal calcium contributes to long chain saturated fatty acid-mediated ER stress and cell death.
Collapse
Affiliation(s)
- Yuren Wei
- Department of Food Science and Human Nutrition, Colorado State University, Gifford 234, Fort Collins, CO, 80523-1571, USA
| | | | | | | |
Collapse
|
35
|
Gonzales JC, Gentile CL, Pfaffenbach KT, Wei Y, Wang D, Pagliassotti MJ. Chemical induction of the unfolded protein response in the liver increases glucose production and is activated during insulin-induced hypoglycaemia in rats. Diabetologia 2008; 51:1920-9. [PMID: 18651128 PMCID: PMC2597049 DOI: 10.1007/s00125-008-1094-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Accepted: 06/06/2008] [Indexed: 01/28/2023]
Abstract
AIMS/HYPOTHESIS Endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) can regulate insulin secretion, insulin action and in vitro hepatocyte glucose release. The aims of this study were to determine whether chemical agents that induce ER stress regulate glucose production in vivo and to identify a physiological setting in which this may be important. METHODS A pancreatic clamp test was performed in anaesthetised rats, and insulin and glucagon were replaced at basal levels. [6,6-(2)H(2)]Glucose was infused in the absence (CON, n = 10) or presence of ER stress-inducing agents, namely, tunicamycin (Tun, n = 10) or thapsigargin (Thap, n = 10). RESULTS Arterial insulin, glucagon, corticosterone and NEFA concentrations were constant throughout experiments and not different among groups. After 1 h, the glucose concentration was significantly increased in Tun and Thap rats (1.5 +/- 0.2 and 2.1 +/- 0.3 mmol/l, respectively; mean +/- SD), but did not change in CON rats. Glucose production increased (p < 0.05) by 11.0 +/- 1.6 and 13.2 +/- 2.2 micromol kg(-1) min(-1) in Tun and Thap rats, respectively, but did not change in CON rats. When glucose was infused in a fourth group (HYPER) to match the increase in glucose observed in the Tun and Thap rats, glucose production decreased by approximately 22 micromol kg(-1) min(-1). Liver phosphorylase activity was increased and glycogen decreased in the Tun and Thap groups compared with the CON and HYPER groups. Given that glucose deprivation induces ER stress in cells, we hypothesised that hypoglycaemia, a condition that elicits increased glucose production, would activate the UPR in the liver. Three hour hyperinsulinaemic (5 mU kg(-1) min(-1)) -euglycaemic (EUG, approximately 7.2 mmol/l, n = 6) or -hypoglycaemic (HYPO, approximately 2.8 mmol/l, n = 6) clamps were performed in conscious rats. Several biochemical markers of the UPR were significantly increased in the liver, but not in kidney or pancreas, in HYPO vs EUG rats. CONCLUSIONS/INTERPRETATION Based on our findings that the chemical induction of the UPR increased glucose production and that prolonged hypoglycaemia activated the UPR in the liver, we propose that the UPR in the liver may contribute to the regulation of glucose production during prolonged hypoglycaemia.
Collapse
Affiliation(s)
- J. C. Gonzales
- Department of Food Science and Human Nutrition, Colorado State University, Gifford 234, Fort Collins, CO 80523-1571, USA
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - C. L. Gentile
- Department of Food Science and Human Nutrition, Colorado State University, Gifford 234, Fort Collins, CO 80523-1571, USA
| | - K. T. Pfaffenbach
- Department of Food Science and Human Nutrition, Colorado State University, Gifford 234, Fort Collins, CO 80523-1571, USA
| | - Y. Wei
- Department of Food Science and Human Nutrition, Colorado State University, Gifford 234, Fort Collins, CO 80523-1571, USA
| | - D. Wang
- Department of Food Science and Human Nutrition, Colorado State University, Gifford 234, Fort Collins, CO 80523-1571, USA
| | - M. J. Pagliassotti
- Department of Food Science and Human Nutrition, Colorado State University, Gifford 234, Fort Collins, CO 80523-1571, USA, e-mail:
| |
Collapse
|
36
|
The role of fatty acids in the development and progression of nonalcoholic fatty liver disease. J Nutr Biochem 2008; 19:567-76. [PMID: 18430557 DOI: 10.1016/j.jnutbio.2007.10.001] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Revised: 08/27/2007] [Accepted: 10/02/2007] [Indexed: 12/14/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has emerged as a serious obesity-related disorder. NAFLD encompasses a wide spectrum of hepatic derangements ranging from a surfeit of fat in the liver (steatosis) to lipid surplus accompanied by fibrosis and cellular death (nonalcoholic steatohepatitis or NASH). The most widely accepted model to explain the progression from simple NAFLD to NASH is the "two-hit hypothesis," wherein fat over accumulation per se is not sufficient to induce the progression to statohepatitis, but renders the liver more susceptible to "second hits" that, once imposed upon the steatotic liver, cause further aberrations that culminate in the development of NASH. However, in light of recent data from our laboratory and elsewhere, we propose that an increased ratio of saturated-to-unsaturated fatty acids delivered to or stored within the liver may, in part, mediate the progression from simple steatosis to NASH. The molecular mechanisms that mediate the effect of saturated fatty acids are unclear, although proinflammatory cytokines, reactive oxygen species, and endoplasmic reticulum stress may all play a role. Collectively, these data suggest that saturated fatty acids may represent an intrinsic second hit to the liver that hastens the development of NASH.
Collapse
|
37
|
Abstract
Accumulating evidence suggests that endoplasmic reticulum (ER) stress plays a role in the pathogenesis of diabetes, contributing to pancreatic beta-cell loss and insulin resistance. Components of the unfolded protein response (UPR) play a dual role in beta-cells, acting as beneficial regulators under physiological conditions or as triggers of beta-cell dysfunction and apoptosis under situations of chronic stress. Novel findings suggest that "what makes a beta-cell a beta-cell", i.e., its enormous capacity to synthesize and secrete insulin, is also its Achilles heel, rendering it vulnerable to chronic high glucose and fatty acid exposure, agents that contribute to beta-cell failure in type 2 diabetes. In this review, we address the transition from physiology to pathology, namely how and why the physiological UPR evolves to a proapoptotic ER stress response and which defenses are triggered by beta-cells against these challenges. ER stress may also link obesity and insulin resistance in type 2 diabetes. High fat feeding and obesity induce ER stress in liver, which suppresses insulin signaling via c-Jun N-terminal kinase activation. In vitro data suggest that ER stress may also contribute to cytokine-induced beta-cell death. Thus, the cytokines IL-1beta and interferon-gamma, putative mediators of beta-cell loss in type 1 diabetes, induce severe ER stress through, respectively, NO-mediated depletion of ER calcium and inhibition of ER chaperones, thus hampering beta-cell defenses and amplifying the proapoptotic pathways. A better understanding of the pathways regulating ER stress in beta-cells may be instrumental for the design of novel therapies to prevent beta-cell loss in diabetes.
Collapse
Affiliation(s)
- Décio L Eizirik
- Laboratory of Experimental Medicine, Université Libre de Bruxelles, Route de Lennik, 808-CP-618, 1070 Brussels, Belgium.
| | | | | |
Collapse
|
38
|
Pagliassotti MJ, Wei Y, Wang D. Insulin protects liver cells from saturated fatty acid-induced apoptosis via inhibition of c-Jun NH2 terminal kinase activity. Endocrinology 2007; 148:3338-45. [PMID: 17431009 DOI: 10.1210/en.2006-1710] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hepatocyte apoptosis is increased in patients with nonalcoholic steatohepatitis and correlates with disease severity. Long-chain saturated fatty acids, such as palmitate and stearate, induce apoptosis in liver cells. The present study examined insulin-mediated protection against saturated fatty acid-induced apoptosis in the rat hepatoma cell line, H4IIE, and primary rat hepatocytes. Cells were provided a control media (no fatty acids) or the same media containing 250 micromol/liter of albumin-bound oleate or palmitate for 16 h. Insulin concentrations were 0, 1, 10, or 100 nmol/liter (n=4-6/treatment). Palmitate, but not oleate, activated caspase-3 and induced DNA fragmentation in the absence of insulin. Insulin reduced palmitate-mediated activation of caspase-3 and DNA fragmentation in a dose-dependent manner. Phosphatidylinositol 3-kinase inhibitors abolished these effects of insulin. Insulin-mediated inhibition of palmitate-induced apoptosis was not due to an augmentation in the unfolded protein response or increased expression of genes encoding the inhibitor of apoptosis proteins, inhibitor of apoptosis protein-2 and X-linked mammalian inhibitor of apoptosis protein. Palmitate, but not oleate, increased c-Jun NH2 terminal kinase activity in the absence of insulin. Insulin or SP600125, a chemical inhibitor of c-Jun NH2 terminal kinase, blocked palmitate-mediated activation of c-Jun NH2 terminal kinase and reduced apoptosis. These data suggest that insulin is an important determinant of saturated fatty acid-induced apoptosis in liver cells and may have implications for fatty acid-mediated liver cell injury in insulin-deficient and/or -resistant states.
Collapse
Affiliation(s)
- M J Pagliassotti
- Department of Food Science and Human Nutrition, Colorado State University, Campus Deliver 1571, Fort Collins, Colorado 80526, USA.
| | | | | |
Collapse
|
39
|
Wei Y, Wang D, Pagliassotti MJ. Saturated fatty acid-mediated endoplasmic reticulum stress and apoptosis are augmented by trans-10, cis-12-conjugated linoleic acid in liver cells. Mol Cell Biochem 2007; 303:105-13. [PMID: 17426927 DOI: 10.1007/s11010-007-9461-2] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Accepted: 03/21/2007] [Indexed: 12/20/2022]
Abstract
Lipid accumulation in non-adipose tissues leads to cell dysfunction and apoptosis, a phenomenon known as lipotoxicity. Recent evidence suggests that lipotoxicity in hepatocytes involves endoplasmic reticulum (ER) stress and c-Jun NH(2)-terminal kinase-mediated apoptosis. The present study examined (1) the dose-response and time course characteristics of fatty acid-mediated ER stress and apoptosis in H4IIE liver cells; (2) whether saturated fatty acid-induced apoptosis involved the ER-associated caspase-12; and (3) whether trans-10, cis-12-conjugated linoleic acid, an inhibitor of stearoyl-CoA desaturase, influenced fatty acid-mediated ER stress and apoptosis. Saturated fatty acids induced ER stress in a dose-dependent manner with a time course that was delayed relative to chemical-induction of ER stress. Saturated fatty acids increased caspase-9 and caspase-3 activity, however increased caspase-12 activity was not observed. Inhibition of stearoyl-CoA desaturase, using conjugated linoleic acid (trans-10, cis-12), augmented saturated fatty acid-induced ER stress and apoptosis. These data suggest that saturated fatty acids induce ER stress and apoptosis at physiologic concentrations and with a relatively rapid time course. It would appear that saturated fatty acid-mediated apoptosis occurs independently of caspase-12 activation. Since conjugated linoleic acid inhibited stearoyl-CoA desaturase activity, it is hypothesized that saturation, per se, plays a role in lipotoxicity in liver cells.
Collapse
Affiliation(s)
- Yuren Wei
- Department of Food Science and Human Nutrition, Colorado State University, Gifford 234, Campus Delivery 1571, Fort Collins, CO 80523-1571, USA
| | | | | |
Collapse
|
40
|
Gautier-Stein A, Zitoun C, Lalli E, Mithieux G, Rajas F. Transcriptional Regulation of the Glucose-6-phosphatase Gene by cAMP/Vasoactive Intestinal Peptide in the Intestine. J Biol Chem 2006. [DOI: 10.1016/s0021-9258(19)84039-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
41
|
Gautier-Stein A, Zitoun C, Lalli E, Mithieux G, Rajas F. Transcriptional Regulation of the Glucose-6-phosphatase Gene by cAMP/Vasoactive Intestinal Peptide in the Intestine. J Biol Chem 2006; 281:31268-78. [PMID: 16893891 DOI: 10.1074/jbc.m603258200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gluconeogenesis is induced in both the liver and intestine by increased cAMP levels. However, hepatic and intestinal glucose production can have opposite effects on glucose homeostasis. Glucose release into the portal vein by the intestine increases glucose uptake and reduces food intake. In contrast, glucose production by the liver contributes to hyperglycemia in type II diabetes. Glucose-6-phosphatase (Glc6Pase) is the key enzyme of gluconeogenesis in both the liver and intestine. Here we specify the cAMP/protein kinase A regulation of the Glc6Pase gene in the intestine compared with the liver. Similarly to the liver, the molecular mechanism of cAMP/protein kinase A regulation involves cAMP-response element-binding protein, HNF4alpha, CAAT/enhancer-binding protein, and HNF1. In contrast to the situation in the liver, we find that different isoforms of CAAT/enhancer-binding protein and HNF1 contribute to the specific regulation of the Glc6Pase gene in the intestine. Moreover, we show that cAMP-response element binding modulator specifically contributes to the regulation of the Glc6Pase gene in the intestine but not in the liver. These results allow us to identify intestine-specific regulators of the Glc6Pase gene and to improve the understanding of the differences in the regulation of gluconeogenesis in the intestine compared with the liver.
Collapse
|
42
|
Wei Y, Wang D, Topczewski F, Pagliassotti MJ. Saturated fatty acids induce endoplasmic reticulum stress and apoptosis independently of ceramide in liver cells. Am J Physiol Endocrinol Metab 2006; 291:E275-81. [PMID: 16492686 DOI: 10.1152/ajpendo.00644.2005] [Citation(s) in RCA: 524] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Accumulation of lipids in nonadipose tissues can lead to cell dysfunction and cell death, a phenomenon known as lipotoxicity. However, the signaling pathways and mechanisms linking lipid accumulation to cell death are poorly understood. The present study examined the hypothesis that saturated fatty acids disrupt endoplasmic reticulum (ER) homeostasis and promote apoptosis in liver cells via accumulation of ceramide. H4IIE liver cells were exposed to varying concentrations of saturated (palmitate or stearate) or unsaturated (oleate or linoleate) fatty acids. ER homeostasis was monitored using markers of the ER stress response pathway, including phosphorylation of IRE1alpha and eIF2alpha, splicing of XBP1 mRNA, and expression of molecular chaperone (e.g., GRP78) and proapoptotic (CCAAT/enhancer-binding protein homologous protein) genes. Apoptosis was monitored using caspase activity and DNA laddering. Palmitate and stearate induced ER stress, caspase activity, and DNA laddering. Inhibition of caspase activation prevented DNA laddering. Unsaturated fatty acids did not induce ER stress or apoptosis. Saturated fatty acids increased ceramide concentration; however, inhibition of de novo ceramide synthesis did not prevent saturated fatty acid-induced ER stress and apoptosis. Unsaturated fatty acids rescued palmitate-induced ER stress and apoptosis. These data demonstrate that saturated fatty acids disrupt ER homeostasis and induce apoptosis in liver cells via mechanisms that do not involve ceramide accumulation.
Collapse
Affiliation(s)
- Yuren Wei
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523-1571, USA
| | | | | | | |
Collapse
|
43
|
Abstract
Hepatocytes contain abundant endoplasmic reticulum (ER) which is essential for protein metabolism and stress signaling. Hepatic viral infections, metabolic disorders, mutations of genes encoding ER-resident proteins, and abuse of alcohol or drugs can induce ER stress. Liver cells cope with ER stress by an adaptive protective response termed unfolded protein response (UPR), which includes enhancing protein folding and degradation in the ER and down-regulating overall protein synthesis. When the UPR adaptation to ER stress is insufficient, the ER stress response unleashes pathological consequences including hepatic fat accumulation, inflammation and cell death which can lead to liver disease or worsen underlying causes of liver injury, such as viral or diabetes-obesity-related liver disease.
Collapse
Affiliation(s)
- Cheng Ji
- Gastroenterology/Liver Division, Keck School of Medicine and the Research Center for Liver Disease, University of Southern California and the USC-UCLA Research Center for Alcoholic Liver and Pancreatic Disease, Los Angeles, CA 90033, USA.
| | | |
Collapse
|
44
|
Qiao L, MacDougald OA, Shao J. CCAAT/enhancer-binding protein alpha mediates induction of hepatic phosphoenolpyruvate carboxykinase by p38 mitogen-activated protein kinase. J Biol Chem 2006; 281:24390-7. [PMID: 16807249 DOI: 10.1074/jbc.m603038200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Excessive hepatic gluconeogenesis and glucose production are important contributors to hyperglycemia in both type 1 and type 2 diabetes. In diabetic humans and animal models, elevated levels of p38 mitogen-activated protein kinase (p38) are observed in several tissues. Our study shows that activity of p38 is significantly elevated in livers of db/db or streptozocin-induced type 1 diabetic mice. Using cultured hepatoma cells, we find that activation of p38 enhances expression of hepatic gluconeogenic gene phosphoenolpyruvate carboxykinase (PEPCK). Furthermore, our studies demonstrate that activation of p38 stimulates phosphorylation of CCAAT/enhancer-binding protein alpha (C/EBPalpha) at serine 21 and increases its transactivation activity in the context of PEPCK gene transcription. Our results indicate that C/EBPalpha mediates p38-stimulated PEPCK transcription in liver cells.
Collapse
Affiliation(s)
- Liping Qiao
- Graduate Center for Nutritional Sciences, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | |
Collapse
|