1
|
Guibourdenche J, Leguy MC, Pidoux G, Hebert-Schuster M, Laguillier C, Anselem O, Grangé G, Bonnet F, Tsatsaris V. Biochemical Screening for Fetal Trisomy 21: Pathophysiology of Maternal Serum Markers and Involvement of the Placenta. Int J Mol Sci 2023; 24:ijms24087669. [PMID: 37108840 PMCID: PMC10146970 DOI: 10.3390/ijms24087669] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
It is now well established that maternal serum markers are often abnormal in fetal trisomy 21. Their determination is recommended for prenatal screening and pregnancy follow-up. However, mechanisms leading to abnormal maternal serum levels of such markers are still debated. Our objective was to help clinicians and scientists unravel the pathophysiology of these markers via a review of the main studies published in this field, both in vivo and in vitro, focusing on the six most widely used markers (hCG, its free subunit hCGβ, PAPP-A, AFP, uE3, and inhibin A) as well as cell-free feto-placental DNA. Analysis of the literature shows that mechanisms underlying each marker's regulation are multiple and not necessarily directly linked with the supernumerary chromosome 21. The crucial involvement of the placenta is also highlighted, which could be defective in one or several of its functions (turnover and apoptosis, endocrine production, and feto-maternal exchanges and transfer). These defects were neither constant nor specific for trisomy 21, and might be more or less pronounced, reflecting a high variability in placental immaturity and alteration. This explains why maternal serum markers can lack both specificity and sensitivity, and are thus restricted to screening.
Collapse
Affiliation(s)
- Jean Guibourdenche
- Hormonologie CHU Cochin AP-HP, 75014 Paris, France
- Faculté de Santé, Université Paris Cité, 75014 Paris, France
- FHU Préma, 75014 Paris, France
| | | | | | | | - Christelle Laguillier
- Hormonologie CHU Cochin AP-HP, 75014 Paris, France
- Faculté de Santé, Université Paris Cité, 75014 Paris, France
- UMR-S1139, 75014 Paris, France
| | - Olivia Anselem
- FHU Préma, 75014 Paris, France
- Maternité Port Royal CHU Cochin AP-HP, 75014 Paris, France
| | - Gilles Grangé
- FHU Préma, 75014 Paris, France
- Maternité Port Royal CHU Cochin AP-HP, 75014 Paris, France
| | - Fidéline Bonnet
- Hormonologie CHU Cochin AP-HP, 75014 Paris, France
- Faculté de Santé, Université Paris Cité, 75014 Paris, France
| | - Vassilis Tsatsaris
- Faculté de Santé, Université Paris Cité, 75014 Paris, France
- FHU Préma, 75014 Paris, France
- Maternité Port Royal CHU Cochin AP-HP, 75014 Paris, France
| |
Collapse
|
2
|
Wang LQ, Fernandez-Boyano I, Robinson WP. Genetic variation in placental insufficiency: What have we learned over time? Front Cell Dev Biol 2022; 10:1038358. [PMID: 36313546 PMCID: PMC9613937 DOI: 10.3389/fcell.2022.1038358] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/03/2022] [Indexed: 11/28/2022] Open
Abstract
Genetic variation shapes placental development and function, which has long been known to impact fetal growth and pregnancy outcomes such as miscarriage or maternal pre-eclampsia. Early epidemiology studies provided evidence of a strong heritable component to these conditions with both maternal and fetal-placental genetic factors contributing. Subsequently, cytogenetic studies of the placenta and the advent of prenatal diagnosis to detect chromosomal abnormalities provided direct evidence of the importance of spontaneously arising genetic variation in the placenta, such as trisomy and uniparental disomy, drawing inferences that remain relevant to this day. Candidate gene approaches highlighted the role of genetic variation in genes influencing immune interactions at the maternal-fetal interface and angiogenic factors. More recently, the emergence of molecular techniques and in particular high-throughput technologies such as Single-Nucleotide Polymorphism (SNP) arrays, has facilitated the discovery of copy number variation and study of SNP associations with conditions related to placental insufficiency. This review integrates past and more recent knowledge to provide important insights into the role of placental function on fetal and perinatal health, as well as into the mechanisms leading to genetic variation during development.
Collapse
Affiliation(s)
- Li Qing Wang
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Icíar Fernandez-Boyano
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Wendy P. Robinson
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
3
|
Matsukawa H, Ikezaki M, Nishioka K, Iwahashi N, Fujimoto M, Nishitsuji K, Ihara Y, Ino K. Calnexin Is Involved in Forskolin-induced Syncytialization in Cytotrophoblast Model BeWo Cells. Biomolecules 2022; 12:biom12081050. [PMID: 36008943 PMCID: PMC9405722 DOI: 10.3390/biom12081050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
Calnexin (CNX), a membrane-bound molecular chaperone, is involved in protein folding and quality control of nascent glycoproteins in the endoplasmic reticulum. We previously suggested critical roles of calreticulin, a functional paralogue of CNX, in placentation, including invasion of extravillous trophoblasts and syncytialization of cytotrophoblasts. However, the roles of CNX in placentation are unclear. In human choriocarcinoma BeWo cells, which serve as an experimental model of syncytialization, CNX knockdown suppressed forskolin-induced cell fusion and β-human chorionic gonadotropin (β-hCG) induction. Cell-surface luteinizing hormone/chorionic gonadotropin receptor, a β-hCG receptor, was significantly down-regulated in CNX-knockdown cells, which suggested the presence of a dysfunctional autocrine loop of β-hCG up-regulation. In this study, we also found abundant CNX expression in normal human placentas. Collectively, our results revealed the critical role of CNX in the syncytialization-related signaling in a villous trophoblast model and suggest a link between CNX expression and placenta development.
Collapse
Affiliation(s)
- Hitomi Matsukawa
- Department of Obstetrics and Gynecology, School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; (H.M.); (K.N.); (N.I.); (K.I.)
| | - Midori Ikezaki
- Department of Biochemistry, School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; (M.I.); (K.N.)
| | - Kaho Nishioka
- Department of Obstetrics and Gynecology, School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; (H.M.); (K.N.); (N.I.); (K.I.)
| | - Naoyuki Iwahashi
- Department of Obstetrics and Gynecology, School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; (H.M.); (K.N.); (N.I.); (K.I.)
| | - Masakazu Fujimoto
- Department of Diagnostic Pathology, Kyoto University, Kyoto 606-8507, Japan;
| | - Kazuchika Nishitsuji
- Department of Biochemistry, School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; (M.I.); (K.N.)
| | - Yoshito Ihara
- Department of Biochemistry, School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; (M.I.); (K.N.)
- Correspondence: ; Tel.: +81-73-441-0628
| | - Kazuhiko Ino
- Department of Obstetrics and Gynecology, School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; (H.M.); (K.N.); (N.I.); (K.I.)
| |
Collapse
|
4
|
Involvement of the HERV-derived cell-fusion inhibitor, suppressyn, in the fusion defects characteristic of the trisomy 21 placenta. Sci Rep 2022; 12:10552. [PMID: 35732788 PMCID: PMC9218086 DOI: 10.1038/s41598-022-14104-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/01/2022] [Indexed: 01/10/2023] Open
Abstract
Suppressyn (SUPYN) is the first host-cell encoded mammalian protein shown to inhibit cell–cell fusion. Its expression is restricted to the placenta, where it negatively regulates syncytia formation in villi. Since its chromosomal localization overlaps with the Down syndrome critical region and the TS21 placenta is characterized by delayed maturation of cytotrophoblast cells and reduced syncytialization, we hypothesized a potential link between changes in SUPYN expression and morphologic abnormalities in the TS21 placenta. Here we demonstrate that an increase in chromosomal copy number in the TS21 placenta is associated with: (1) reduced fusion of cytotrophoblast cells into syncytiotrophoblast in vivo, (2) increased SUPYN transcription, translation and secretion in vivo, (3) increased SUPYN/syncytin-1 receptor degradation in vivo, (4) increased SUPYN transcription and secretion ex vivo, (5) decreased cytotrophoblast cell fusion ex vivo, and (6) reciprocal response of changes in SUPYN and CGB in TS21 placental cells ex vivo. These data suggest direct links between immature placentation in Down syndrome and increased SUPYN. Finally, we report a significant increase in secreted SUPYN concentration in maternal serum in women with pregnancies affected by Down syndrome, suggesting that SUPYN may be useful as an alternate or additional diagnostic marker for this disease.
Collapse
|
5
|
Goldman-Wohl D, Greenfield C, Eisenberg-Loebl I, Denichenko P, Jbara A, Karni R, Ariel I, Yagel S. Trophoblast lineage specific expression of the alternative splicing factor RBFOX2 suggests a role in placental development. Placenta 2020; 100:142-149. [PMID: 32762877 DOI: 10.1016/j.placenta.2020.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 06/30/2020] [Accepted: 07/06/2020] [Indexed: 12/17/2022]
Abstract
INTRODUCTION RBFOX2, an RNA-binding protein, controls tissue-specific alternative splicing of exons in diverse processes of development. The progenitor cytotrophoblast of the human placenta differentiates into either the syncytiotrophoblast, formed via cell fusion, or the invasive extravillous trophoblast lineage. The placenta affords a singular system where a role for RBFOX2 in both cell invasion and cell fusion may be studied. We investigated a role for RBFOX2 in trophoblast cell differentiation, as a foundation for investigations of RBFOX2 in embryo implantation and placental development. METHODS Immunohistochemistry of RBFOX2 was performed on placental tissue sections from three trimesters of pregnancy and from pathological pregnancies. Primary trophoblast cell culture and immunofluorescence were employed to determine RBFOX2 expression upon cell fusion. Knockdown of RBFOX2 expression was performed with βhCG and syncytin-1 as molecular indicators of fusion. RESULTS In both normal and pathological placentas, RBFOX2 expression was confined to the cytotrophoblast and the extravillous trophoblast, but absent from the syncytiotrophoblast. Additionally, we showed that primary trophoblasts that spontaneously fused in cell culture downregulated RBFOX2 expression. In functional experiments, knockdown expression of RBFOX2 significantly upregulated βhCG, while the upregulation of syncytin-1 did not reach statistical significance. DISCUSSION RBFOX2, by conferring mRNA diversity, may act as a regulator switch in trophoblast differentiation to either the fusion or invasive pathways. By studying alternative splicing we further our understanding of placental development, yielding possible insights into preeclampsia, where expression of antiangiogenic isoforms produced through alternative splicing play a critical role in disease development and severity.
Collapse
Affiliation(s)
- Debra Goldman-Wohl
- The Magda and Richard Hoffman Center for Human Placenta Research, Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Caryn Greenfield
- The Magda and Richard Hoffman Center for Human Placenta Research, Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Iris Eisenberg-Loebl
- The Magda and Richard Hoffman Center for Human Placenta Research, Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Polina Denichenko
- IMRIC Hadassah-Hebrew University School of Medicine, Jerusalem, Israel
| | - Amina Jbara
- IMRIC Hadassah-Hebrew University School of Medicine, Jerusalem, Israel
| | - Rotem Karni
- IMRIC Hadassah-Hebrew University School of Medicine, Jerusalem, Israel
| | - Ilana Ariel
- Department of Pathology Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Simcha Yagel
- The Magda and Richard Hoffman Center for Human Placenta Research, Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| |
Collapse
|
6
|
Leon-Martinez D, Robinson JF, Zdravkovic T, Genbacev O, Gormley M, Mcmaster M, Fisher SJ, Bianco K. Trisomy 21 is Associated with Caspase-2 Upregulation in Cytotrophoblasts at the Maternal-Fetal Interface. Reprod Sci 2020; 27:100-109. [PMID: 32046398 DOI: 10.1007/s43032-019-00002-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 02/28/2019] [Indexed: 11/26/2022]
Abstract
Impaired placentation is implicated in poor perinatal outcomes associated with Trisomy 21. Earlier studies revealed abnormal cytotrophoblast differentiation along the invasive pathway as a contributing mechanism. To further elucidate the causes, we evaluated Caspase-2 expression at the protein level (immunolocalization and immunoblot) in samples from Trisomy 21 (n = 9) and euploid (n = 4) age-matched placentas. Apoptosis was investigated via the TUNEL assay. An immunolocalization approach was used to characterize Caspase-3, Fas (CD95), and Fas ligand in the same samples. Caspase-2 was significantly overexpressed in Trisomy 21 placentas, with the highest expression in villous cores and invasive cytotrophoblasts. Immunolocalization showed that Caspase-3 had a similar expression pattern as Caspase-2. Using the TUNEL approach, we observed high variability in the number of apoptotic cells in biopsies from different regions of the same placenta and among different placentas. However, Trisomy 21 placentas had more apoptotic cells, specifically in cell columns and basal plates. Furthermore, Caspase-2 co-immunolocalized with Fas (CD95) and FasL in TUNEL-positive extravillous cytotrophoblasts, but not in villous cores. These results help explain the higher levels of apoptosis among placental cells of Trisomy 21 pregnancies in molecular terms. Specifically, the co-expression of Caspase-2 and Caspase-3 with other regulators of the apoptotic process in TUNEL-positive cells suggests these molecules may cooperate in launching the observed apoptosis. Among trophoblasts, only the invasive subpopulation showed this pattern, which could help explain the higher rates of adverse outcomes in these pregnancies. In future experiments, this relationship will be further examined at a functional level in cultured human trophoblasts.
Collapse
Affiliation(s)
- Daisy Leon-Martinez
- Department of Obstetrics and Gynecology, Yale University, New Haven, CT, USA
| | - Joshua F Robinson
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, 94143, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Tamara Zdravkovic
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, 94143, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Olga Genbacev
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, 94143, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Matthew Gormley
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, 94143, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Michael Mcmaster
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, 94143, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Susan J Fisher
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, 94143, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Katherine Bianco
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Stanford University, 300 Pasteur Dr. HH333 MC 5317, Stanford, CA, 94305, USA.
| |
Collapse
|
7
|
Del Gobbo GF, Konwar C, Robinson WP. The significance of the placental genome and methylome in fetal and maternal health. Hum Genet 2019; 139:1183-1196. [PMID: 31555906 DOI: 10.1007/s00439-019-02058-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 08/29/2019] [Indexed: 01/15/2023]
Abstract
The placenta is a crucial organ for supporting a healthy pregnancy, and defective development or function of the placenta is implicated in a number of complications of pregnancy that affect both maternal and fetal health, including maternal preeclampsia, fetal growth restriction, and spontaneous preterm birth. In this review, we highlight the role of the placental genome in mediating fetal and maternal health by discussing the impact of a variety of genetic alterations, from large whole-chromosome aneuploidies to single-nucleotide variants, on placental development and function. We also discuss the placental methylome in relation to its potential applications for refining diagnosis, predicting pathology, and identifying genetic variants with potential functional significance. We conclude that understanding the influence of the placental genome on common placental-mediated pathologies is critical to improving perinatal health outcomes.
Collapse
Affiliation(s)
- Giulia F Del Gobbo
- BC Children's Hospital Research Institute, 950 West 28th Ave, Vancouver, BC, V5Z 4H4, Canada.,Department of Medical Genetics, University of British Columbia, 4500 Oak Street, Vancouver, BC, V6H 3N1, Canada
| | - Chaini Konwar
- BC Children's Hospital Research Institute, 950 West 28th Ave, Vancouver, BC, V5Z 4H4, Canada.,Department of Medical Genetics, University of British Columbia, 4500 Oak Street, Vancouver, BC, V6H 3N1, Canada
| | - Wendy P Robinson
- BC Children's Hospital Research Institute, 950 West 28th Ave, Vancouver, BC, V5Z 4H4, Canada. .,Department of Medical Genetics, University of British Columbia, 4500 Oak Street, Vancouver, BC, V6H 3N1, Canada.
| |
Collapse
|
8
|
Gerbaud P, Murthi P, Guibourdenche J, Guimiot F, Sarazin B, Evain-Brion D, Badet J, Pidoux G. Study of Human T21 Placenta Suggests a Potential Role of Mesenchymal Spondin-2 in Placental Vascular Development. Endocrinology 2019; 160:684-698. [PMID: 30715257 DOI: 10.1210/en.2018-00826] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/25/2019] [Indexed: 12/12/2022]
Abstract
Placental development is particularly altered in trisomy of chromosome 21 (T21)-affected pregnancies. We previously described in T21-affected placentae an abnormal paracrine crosstalk between the villus mesenchymal core and villus trophoblasts. T21-affected placentae are known to be characterized by their hypovascularity. However, the causes of this anomaly remain not fully elucidated. Therefore, the hypothesis of an abnormal paracrine crosstalk between fetal mesenchymal core and placental endothelial cells (PLECs) was evocated. Villus mesenchymal cells from control (CMCs) and T21 placentae (T21MCs) were isolated and grown in culture to allow their characterization and collection of conditioned media for functional analyses (CMC-CM and T21MC-CM, respectively). Interestingly, PLEC proliferation and branching ability were less stimulated by T21MC-CM than by CMC-CM. Protein array analysis identified secreted proangiogenic growth factors in CMC-CM, which were reduced in T21MC-CM. Combined mass spectrometry and biochemical analysis identified spondin-2 as a factor decreased in T21MC-CM compared with CMC-CM. We found that exogenous spondin-2 stimulated PLEC proliferation and established that T21MC-CM supplemented with spondin-2 recovered conditioned media ability to induce PLEC proliferation and angiogenesis. Hence, this study demonstrates a crosstalk between villus mesenchymal and fetal endothelial cells, in which spondin-2 secreted from mesenchymal cells plays a central role in placental vascular functions. Furthermore, our results also suggest that a reduction in spondin-2 secretion may contribute to the pathogenesis of T21 placental hypovascularity.
Collapse
Affiliation(s)
- Pascale Gerbaud
- INSERM, UMR-S 1139, Paris, France
- INSERM, UMR-S 1180, Châtenay-Malabry, France
| | - Padma Murthi
- Department of Maternal-Fetal Medicine, Pregnancy Research Centre, Royal Women's Hospital, University of Melbourne, Parkville, Victoria, Australia
- Department of Obstetrics and Gynaecology, Royal Women's Hospital, University of Melbourne, Parkville, Victoria, Australia
- Department of Physiology, Monash University, Clayton, Victoria, Australia
- Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Jean Guibourdenche
- INSERM, UMR-S 1139, Paris, France
- Faculté de Pharmacie, Université Paris Descartes, Paris, France
- Service d'Hormonologie, Assistance Publique-Hôpitaux de Paris, CHU Cochin, Paris, France
- Fondation PremUP, Paris, France
| | - Fabien Guimiot
- Unité de Foetopathologie, Assistance Publique-Hôpitaux de Paris, CHU Robert Debré, Paris, France
| | | | - Danièle Evain-Brion
- INSERM, UMR-S 1139, Paris, France
- Faculté de Pharmacie, Université Paris Descartes, Paris, France
- Fondation PremUP, Paris, France
| | - Josette Badet
- INSERM, UMR-S 1139, Paris, France
- Faculté de Pharmacie, Université Paris Descartes, Paris, France
| | - Guillaume Pidoux
- INSERM, UMR-S 1139, Paris, France
- INSERM, UMR-S 1180, Châtenay-Malabry, France
| |
Collapse
|
9
|
Shoaito H, Petit J, Chissey A, Auzeil N, Guibourdenche J, Gil S, Laprévote O, Fournier T, Degrelle SA. The Role of Peroxisome Proliferator–Activated Receptor Gamma (PPARγ) in Mono(2-ethylhexyl) Phthalate (MEHP)-Mediated Cytotrophoblast Differentiation. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:27003. [PMID: 30810372 PMCID: PMC6752943 DOI: 10.1289/ehp3730] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
BACKGROUND Phthalates are environmental contaminants commonly used as plasticizers in polyvinyl chloride (PVC) products. Recently, exposure to phthalates has been associated with preterm birth, low birth weight, and pregnancy loss. There is limited information about the possible mechanisms linking maternal phthalate exposure and placental development, but one such mechanism may be mediated by peroxisome proliferator–activated receptor γ (PPARγ). PPARγ belongs to the nuclear receptor superfamily that regulates, in a ligand-dependent manner, the transcription of target genes. Studies of PPARγ-deficient mice have demonstrated its essential role in lipid metabolism and placental development. In the human placenta, PPARγ is expressed in the villous cytotrophoblast (VCT) and is activated during its differentiation into syncytiotrophoblast. OBJECTIVES The goal of this study was to investigate the action of mono(2-ethylhexyl) phthalate (MEHP) on PPARγ activity during in vitro differentiation of VCTs. METHODS We combined immunofluorescence, PPARγ activity/hCG assays, western blotting, and lipidomics analyses to characterize the impacts of physiologically relevant concentrations of MEHP (0.1, 1, and 10 μM) on cultured VCTs isolated from human term placentas. RESULTS Doses of 0.1 and 1 μM MEHP showed significantly lower PPARγ activity and less VCT differentiation in comparison with controls, whereas, surprisingly, a 10 μM dose had the opposite effect. MEHP exposure inhibited hCG production and significantly altered lipid composition. In addition, MEHP had significant effects on the mitogen-activated protein kinase (MAPK) pathway. CONCLUSIONS This study suggests that MEHP has a U-shaped dose–response effect on trophoblast differentiation that is mediated by the PPARγ pathway and acts as an endocrine disruptor in the human placenta. https://doi.org/10.1289/EHP3730.
Collapse
Affiliation(s)
- Hussein Shoaito
- UMR-S1139, Faculté de Pharmacie de Paris, Institut national de la santé et de la recherché médicale (Inserm, National Institute of Health & Medical Research), Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Julia Petit
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- UMR 8638, Faculté de Pharmacie de Paris, Centre national de la recherche scientifique (Cnrs, National Center for Scientific Research), Paris, France
| | - Audrey Chissey
- UMR-S1139, Faculté de Pharmacie de Paris, Institut national de la santé et de la recherché médicale (Inserm, National Institute of Health & Medical Research), Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Nicolas Auzeil
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- UMR 8638, Faculté de Pharmacie de Paris, Centre national de la recherche scientifique (Cnrs, National Center for Scientific Research), Paris, France
| | - Jean Guibourdenche
- UMR-S1139, Faculté de Pharmacie de Paris, Institut national de la santé et de la recherché médicale (Inserm, National Institute of Health & Medical Research), Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- Fondation PremUp, Paris, France
- Department of Biological Endocrinology, CHU Cochin, Assistance publique - Hôpitaux de Paris (AP-HP), Paris, France
| | - Sophie Gil
- UMR-S1139, Faculté de Pharmacie de Paris, Institut national de la santé et de la recherché médicale (Inserm, National Institute of Health & Medical Research), Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- Fondation PremUp, Paris, France
| | - Olivier Laprévote
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- UMR 8638, Faculté de Pharmacie de Paris, Centre national de la recherche scientifique (Cnrs, National Center for Scientific Research), Paris, France
- Department of Biochemistry, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Thierry Fournier
- UMR-S1139, Faculté de Pharmacie de Paris, Institut national de la santé et de la recherché médicale (Inserm, National Institute of Health & Medical Research), Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- Fondation PremUp, Paris, France
| | - Séverine A. Degrelle
- UMR-S1139, Faculté de Pharmacie de Paris, Institut national de la santé et de la recherché médicale (Inserm, National Institute of Health & Medical Research), Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- Fondation PremUp, Paris, France
- Inovarion, Paris, France
| |
Collapse
|
10
|
Berveiller P, Mir O, Degrelle SA, Tsatsaris V, Selleret L, Guibourdenche J, Evain-Brion D, Fournier T, Gil S. Chemotherapy in pregnancy: exploratory study of the effects of paclitaxel on the expression of placental drug transporters. Invest New Drugs 2018; 37:1075-1085. [PMID: 30367323 DOI: 10.1007/s10637-018-0677-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 10/02/2018] [Indexed: 12/19/2022]
Abstract
Introduction The use of paclitaxel in pregnant cancer patients is feasible in terms of fetal safety, but little is known about the effects of paclitaxel on the placenta. Using three experimental models, we aimed to assess the effects of paclitaxel on the expression of placental drug transporters. Methods In the in vitro model (human primary trophoblast culture), trophoblasts were isolated from normal term placentas and subsequently exposed to paclitaxel. The transcriptional regulation of 84 genes encoding for drug transporters, and the protein expression of ABCB1/P-gp and ABCG2/BCRP were assessed. In the in vivo model, placental tissues isolated from pregnant cancer patients treated with paclitaxel were analyzed to assess the protein expression of ABCB1/P-gp and ABCG2/BCRP. The same parameters were assessed in extracts from human placental cotyledons perfused ex vivo with paclitaxel. Results In the in vitro model, the expression of twelve drug-transporters genes was found to be significantly down-regulated after exposure to paclitaxel, including ABCC10, SLC28A3, SLC29A2, and ATP7B (involved in the transport of taxanes, antimetabolites, and cisplatin, respectively). The protein expression of ABCB1/P-gp increased by 1.3-fold after paclitaxel administration. Finally, the protein expression of ABCB1/P-gp and ABCG2/BCRP was higher in cotyledons from mothers treated with multiple doses of paclitaxel during pregnancy than in cotyledons perfused with a single dose of paclitaxel. Discussion Paclitaxel modulates the expression of placental drug transporters involved in the disposition of various anticancer agents. Further studies will be needed to assess the impact of repeated or prolonged exposure to paclitaxel on the expression and function of placental drug transporters.
Collapse
Affiliation(s)
- Paul Berveiller
- INSERM, UMR-S1139, Paris, France.
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
- Department of Gynecology and Obstetrics, Centre Hospitalier Intercommunal de Poissy Saint Germain, 10, rue du champ Gaillard, F78300, Poissy, France.
| | - Olivier Mir
- Department of Cancer Medicine, Gustave Roussy Cancer Campus, Villejuif, France
| | - Séverine A Degrelle
- INSERM, UMR-S1139, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Vassilis Tsatsaris
- INSERM, UMR-S1139, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- Department of Obstetrics, Port-Royal Maternity, Cochin Teaching Hospital, Assistance Publique - Hôpitaux de Paris, Paris, France
- PremUp Foundation, Paris, France
| | - Lise Selleret
- Department of Obstetrics and Gynecology, Tenon Teaching Hospital, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Jean Guibourdenche
- Department of Hormonal Biology, Cochin Teaching Hospital, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Danièle Evain-Brion
- INSERM, UMR-S1139, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- PremUp Foundation, Paris, France
| | - Thierry Fournier
- INSERM, UMR-S1139, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- PremUp Foundation, Paris, France
| | - Sophie Gil
- INSERM, UMR-S1139, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- PremUp Foundation, Paris, France
| |
Collapse
|
11
|
Wong OGW, Cheung CLY, Ip PPC, Ngan HYS, Cheung ANY. Amyloid Precursor Protein Overexpression in Down Syndrome Trophoblast Reduces Cell Invasiveness and Interferes with Syncytialization. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:2307-2317. [PMID: 30031727 DOI: 10.1016/j.ajpath.2018.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 06/01/2018] [Accepted: 07/02/2018] [Indexed: 11/26/2022]
Abstract
The placentas of Down syndrome (DS) pregnancies exhibit morphologic and functional abnormalities. Although the increase in dosage of certain genes on chromosome 21 has been associated with the DS phenotype, the effects on placenta have seldom been studied. Herein, we examine the expression of four dosage-sensitive genes (APP, ETS2, SOD1, and HMGN1) in normal and DS placentas. We demonstrated significant overexpression of amyloid precursor protein (APP) in DS placentas at RNA and protein levels by real-time quantitative PCR, Western blot analysis, and immunohistochemistry. Inducible APP overexpression trophoblast cell line models were established using a Tet-On system. APP induction in HTR-8/SVneo dose-dependently decelerated cell growth, enhanced apoptosis, and reduced cell migration and invasion when compared with the uninduced controls. Concomitantly, decreased β-human chorionic gonadotropin in the culture medium was also detected on induction. Moreover, although forskolin treatment induced α/β-human chorionic gonadotropin and syncytin expression in BeWo cells, such induction of syncytialization was inhibited by APP overexpression. E-cadherin immunofluorescence also demonstrated a decrease in syncytia formation in forskolin-treated BeWo-overexpressing APP. By liquid chromatography-tandem mass spectrometry, proteins related to cell-cell adhesion, protein translation, processing, and folding were found to be up-regulated in APP-induced HTR-8/SVneo clones. Our data demonstrated, for the first time, the effects of increased APP expression in DS placenta.
Collapse
Affiliation(s)
- Oscar G W Wong
- Department of Pathology, The University of Hong Kong, Hong Kong, People's Republic of China.
| | - Claire L Y Cheung
- Department of Pathology, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Philip P C Ip
- Department of Pathology, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Hextan Y S Ngan
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Annie N Y Cheung
- Department of Pathology, The University of Hong Kong, Hong Kong, People's Republic of China.
| |
Collapse
|
12
|
|
13
|
Degrelle SA, Gerbaud P, Leconte L, Ferreira F, Pidoux G. Annexin-A5 organized in 2D-network at the plasmalemma eases human trophoblast fusion. Sci Rep 2017; 7:42173. [PMID: 28176826 PMCID: PMC5297248 DOI: 10.1038/srep42173] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 11/30/2016] [Indexed: 12/13/2022] Open
Abstract
Only a limited number of human cells can fuse to form a multinucleated syncytium. Cell fusion occurs as part of the differentiation of some cell types, including myotubes in muscle and osteoclasts in remodeling bone. In the differentiation of the human placenta, mononuclear cytotrophoblasts aggregate and fuse to form endocrinologically active, non-proliferative, multinucleated syncytia. These syncytia allow the exchange of nutrients and gases between the maternal and fetal circulation. Alteration of syncytial formation during pregnancy affects fetal growth and the outcome of the pregnancy. Here, we demonstrate the role of annexin A5 (AnxA5) in syncytial formation by cellular delivery of recombinant AnxA5 and RNA interference. By a variety of co-immunoprecipitation, immunolocalization and proximity experiments, we show that a pool of AnxA5 organizes at the inner-leaflet of the plasma membrane in the vicinity of a molecular complex that includes E-Cadherin, α-Catenin and β-Catenin, three proteins previously shown to form adherens junctions implicated in cell fusion. A combination of knockdown and reconstitution experiments with AnxA5, with or without the ability to self-assemble in 2D-arrays, demonstrate that this AnxA5 2D-network mediates E-Cadherin mobility in the plasmalemma that triggers human trophoblasts aggregation and thereby cell fusion.
Collapse
Affiliation(s)
- Severine A Degrelle
- INSERM, U767, Cell fusion, Paris, F-75006 France.,Université Paris Descartes, Paris, F-75006 France.,PremUp, Paris, F-75006 France
| | - Pascale Gerbaud
- INSERM, U767, Cell fusion, Paris, F-75006 France.,Université Paris Descartes, Paris, F-75006 France.,UMR-S1180, Inserm, Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Ludovic Leconte
- UMR144, Institut Curie/CNRS, Cell and Tissue Imaging Platform, Paris, France
| | - Fatima Ferreira
- INSERM, U767, Cell fusion, Paris, F-75006 France.,Université Paris Descartes, Paris, F-75006 France
| | - Guillaume Pidoux
- INSERM, U767, Cell fusion, Paris, F-75006 France.,Université Paris Descartes, Paris, F-75006 France.,PremUp, Paris, F-75006 France.,UMR-S1180, Inserm, Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| |
Collapse
|
14
|
Svobodová I, Korabečná M, Calda P, Břešťák M, Pazourková E, Pospíšilová Š, Krkavcová M, Novotná M, Hořínek A. Differentially expressed miRNAs in trisomy 21 placentas. Prenat Diagn 2016; 36:775-84. [PMID: 27323694 DOI: 10.1002/pd.4861] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/30/2016] [Accepted: 06/16/2016] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Molecular pathogenesis of Down syndrome (DS) is still incompletely understood. Epigenetic mechanisms, including miRNAs gene expression regulation, belong to potential influencing factors. The aims of this study were to compare miRNAs expressions in placentas with normal and trisomic karyotype and to associate differentially expressed miRNAs with concrete biological pathways. METHODS A total of 80 CVS samples - 41 with trisomy 21 and 39 with normal karyotype - were included in our study. Results obtained in the pilot study using real-time PCR technology and TaqMan Human miRNA Array Cards were subsequently validated on different samples using individual TaqMan miRNA Assays. RESULTS Seven miRNAs were verified as upregulated in DS placentas (miR-99a, miR-542-5p, miR-10b, miR-125b, miR-615, let-7c and miR-654); three of these miRNAs are located on chromosome 21 (miR-99a, miR-125b and let-7c). Many essential biological processes, transcriptional regulation or apoptosis, were identified as being potentially influenced by altered miRNA levels. Moreover, miRNAs overexpressed in DS placenta apparently regulate genes involved in placenta development (GJA1, CDH11, EGF, ERVW-1, ERVFRD-1, LEP or INHA). CONCLUSION These findings suggest the possible participation of miRNAs in Down syndrome impaired placentation and connected pregnancy pathologies. © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Iveta Svobodová
- Institute of Biology and Medical Genetics of the First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Marie Korabečná
- Institute of Biology and Medical Genetics of the First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Pavel Calda
- Department of Obstetrics and Gynecology of the First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Miroslav Břešťák
- Department of Obstetrics and Gynecology of the First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic.,Screening Center ProfiG2, Prague, Czech Republic
| | - Eva Pazourková
- Institute of Biology and Medical Genetics of the First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Šárka Pospíšilová
- Institute of Biology and Medical Genetics of the First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | | | - Michaela Novotná
- Department of Obstetrics and Gynecology of the First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Aleš Hořínek
- Institute of Biology and Medical Genetics of the First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic.,3rd Medical Department of Internal Medicine of the First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| |
Collapse
|
15
|
Fournier T. Human chorionic gonadotropin: Different glycoforms and biological activity depending on its source of production. ANNALES D'ENDOCRINOLOGIE 2016; 77:75-81. [PMID: 27177499 DOI: 10.1016/j.ando.2016.04.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 04/11/2016] [Indexed: 01/05/2023]
Abstract
Human chorionic gonadotropin (hCG) is the first hormonal message from the placenta to the mother. It is detectable in maternal blood two days after implantation and behaves like a super LH agonist stimulating progesterone secretion by the corpus luteum. In addition to maintaining the production of progesterone until the placenta itself produces it, hCG also has a role in myometrial quiescence and local immune tolerance. Specific to humans, hCG is a complex glycoprotein composed of two highly glycosylated subunits. The α-subunit is identical to the pituitary gonadotropin hormones (LH, FSH, TSH), contains two N-glycosylation sites, and is encoded by a single gene (CGA). By contrast, the β-subunits are distinct for each hormones and confer both receptor and biological specificity, although LH and hCG bind to the same receptor (LH/CG-R). The hCG ß-subunit is encoded by a cluster of genes (CGB) and contains two sites of N-glycosylation and four sites of O-glycosylation. The hCG glycosylation state varies with the stage of pregnancy, its source of production and in the pathology. It is well established that hCG is mainly secreted into maternal blood, where it peaks at 8-10weeks of gestation (WG), by the syncytiotrophoblast (ST), which represents the endocrine tissue of the human placenta. The invasive extravillous trophoblast (iEVT) also secretes hCG, and in particular hyperglycosylated forms of hCG (hCG-H) also produced by choriocarcinoma cells. In maternal blood, hCG-H is elevated during early first trimester corresponding to the trophoblastic cell invasion process and then decreases. In addition to its endocrine role, hCG has autocrine and paracrine roles. It promotes formation of the ST and angiogenesis through LH/CG-R but has no effect on trophoblast invasion in vitro. By contrast, hCG-H stimulates trophoblast invasion and angiogenesis by interacting with the TGFß receptor in a LH/CG-R independent signalling pathway. hCG is largely used in antenatal screening and hCG-H might represent a serum marker of implantation and early trophoblast invasion. In conclusion, hCG is the major pregnancy glycoprotein hormone, whose maternal concentration and glycan structure change all along pregnancy. Depending on its source of production, glycoforms of hCG display different biological activities and functions that are essential for pregnancy outcome.
Collapse
Affiliation(s)
- Thierry Fournier
- Inserm, U1139, PremUp Foundation, université Paris Descartes, UMR-S1139, Sorbonne Paris Cité, DHU "Risk & pregnancy", 75006 Paris, France.
| |
Collapse
|
16
|
Abstract
The human placenta is characterized by the intensity of the trophoblast invasion into the uterus wall and the specificity of its hormonal functions. Placental hormones are required for the establishment and maintenance of pregnancy, adaptation of the maternal organism to pregnancy and fetal growth. In the early placenta at the maternofetal interface, the human trophoblast differentiates along two pathways: 1/ the villous trophoblast pathway including the cytotrophoblastic cells which differentiate by fusion to form the syncytiotrophoblast that covers the entire surface of the villi; 2/ the extravillous trophoblast pathway. The cytotrophoblastic cells of the anchoring villi in contact with the uterus wall proliferate and then migrate into the decidua and the myometrium but also participate to the remodeling of the spiral arteries. During the first trimester of pregnancy the spiral arteries are plugged by trophoblastic cells, allowing the development of the fetoplacental unit in low oxygen environment. At this stage of pregnancy the extravillous trophoblast secretes a large amount of hormones such as particular hyperglycosylated forms of hCG directly involved in the quality of the placentation. At 10-12 weeks of pregnancy, the trophoblastic plugs are progressively dislocated and the syncytiotrophoblast starts to bath in maternal blood. It secretes the major part of its polypeptide hormones in maternal circulation taking over the maternal metabolism in order to increase the energetic flux to the fetus. As example the placental GH (growth hormone) secreted continuously by the syncytiotrophoblast is directly involved in the insulino-resistance of pregnancy. Capturing the cholesterol from the maternal lipoproteins, the syncytiotrophoblast synthesizes also large amount of progesterone essential for the uterine quiescence. Deprived of cytochrome P450 17alpha-hydroxylase-17:20 lyase, it uses the maternal and fetal adrenal androgens to synthesize estrogens. The differentiation and hormonal functions of the human trophoblast are regulated by the environmental O2 and reflect mammalian evolution.
Collapse
|
17
|
Costa MA. Scrutinising the regulators of syncytialization and their expression in pregnancy-related conditions. Mol Cell Endocrinol 2016; 420:180-93. [PMID: 26586208 DOI: 10.1016/j.mce.2015.11.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/05/2015] [Accepted: 11/09/2015] [Indexed: 12/16/2022]
Abstract
The placenta is important for the success of gestation and foetal development. In fact, this specialized pregnancy organ is essential for foetal nourishment, support, and protection. In the placenta, there are different cell populations, including four subtypes of trophoblasts. Cytotrophoblasts fuse and differentiate into the multinucleated syncytiotrophoblast (syncytialization). Syncytialization is a hallmark of placentation and is highly regulated by numerous molecules with distinct roles. Placentas from pregnancies complicated by preeclampsia, intrauterine growth restriction or trisomy 21 have been associated with a defective syncytialization and an altered expression of its modulators. This work proposes to review the molecules that promote or inhibit both fusion and biochemical differentiation of cytotrophoblasts. Moreover, it will also analyse the syncytialization modulators abnormally expressed in pathological placentas, highlighting the molecules that may contribute to the aetiology of these diseases.
Collapse
Affiliation(s)
- M A Costa
- Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
18
|
Gerbaud P, Taskén K, Pidoux G. Spatiotemporal regulation of cAMP signaling controls the human trophoblast fusion. Front Pharmacol 2015; 6:202. [PMID: 26441659 PMCID: PMC4569887 DOI: 10.3389/fphar.2015.00202] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/02/2015] [Indexed: 01/01/2023] Open
Abstract
During human placentation, mononuclear cytotrophoblasts fuse to form multinucleated syncytia ensuring hormonal production and nutrient exchanges between the maternal and fetal circulation. Syncytial formation is essential for the maintenance of pregnancy and for fetal growth. The cAMP signaling pathway is the major route to trigger trophoblast fusion and its activation results in phosphorylation of specific intracellular target proteins, in transcription of fusogenic genes and assembly of macromolecular protein complexes constituting the fusogenic machinery at the plasma membrane. Specificity in cAMP signaling is ensured by generation of localized pools of cAMP controlled by cAMP phosphodiesterases (PDEs) and by discrete spatial and temporal activation of protein kinase A (PKA) in supramolecular signaling clusters inside the cell organized by A-kinase-anchoring proteins (AKAPs) and by organization of signal termination by protein phosphatases (PPs). Here we present original observations on the available components of the cAMP signaling pathway in the human placenta including PKA, PDE, and PP isoforms as well as AKAPs. We continue to discuss the current knowledge of the spatiotemporal regulation of cAMP signaling triggering trophoblast fusion.
Collapse
Affiliation(s)
- Pascale Gerbaud
- INSERM, UMR-S-1139, Group Cell Fusion, Université Paris Descartes Paris, France ; Université Paris Descartes Paris, France
| | - Kjetil Taskén
- Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo and Oslo University Hospital Oslo, Norway ; Biotechnology Centre, University of Oslo Oslo, Norway ; K.G. Jebsen Inflammation Research Centre, University of Oslo Oslo, Norway ; K.G. Jebsen Centre for Cancer Immunotherapy, University of Oslo Oslo, Norway ; Department of Infectious Diseases, Oslo University Hospital Oslo, Norway
| | - Guillaume Pidoux
- INSERM, UMR-S-1139, Group Cell Fusion, Université Paris Descartes Paris, France ; Université Paris Descartes Paris, France ; INSERM, U1180 Châtenay-Malabry, France ; Faculté de Pharmacie, Université Paris-Sud Châtenay-Malabry, France
| |
Collapse
|
19
|
Malhotra SS, Suman P, Gupta SK. Alpha or beta human chorionic gonadotropin knockdown decrease BeWo cell fusion by down-regulating PKA and CREB activation. Sci Rep 2015; 5:11210. [PMID: 26053549 PMCID: PMC4459146 DOI: 10.1038/srep11210] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 05/01/2015] [Indexed: 01/01/2023] Open
Abstract
The aim of the present study is to delineate the role of human chorionic gonadotropin (hCG) in trophoblast fusion. In this direction, using shRNA lentiviral particles, α- and β-hCG silenced ‘BeWo’ cell lines were generated. Treatment of both α- and β-hCG silenced BeWo cells with either forskolin or exogenous hCG showed a significant reduction in cell fusion as compared with control shRNA treated cells. Studies by qRT-PCR, Western blotting and immunofluorescence revealed down-regulation of fusion-associated proteins such as syncytin-1 and syndecan-1 in the α- and β-hCG silenced cells. Delineation of downstream signaling pathways revealed that phosphorylation of PKA and CREB were compromised in the silenced cells whereas, no significant changes in p38MAPK and ERK1/2 phosphorylation were observed. Moreover, β-catenin activation was unaffected by either α- or β-hCG silencing. Further, inhibition of PKA by H89 inhibitor led to a significant decrease in BeWo cell fusion but had no effect on β-catenin activation suggesting the absence of non-canonical β-catenin stabilization via PKA. Interestingly, canonical activation of β-catenin was associated with the up-regulation of Wnt 10b expression. In summary, this study establishes the significance of hCG in the fusion of trophoblastic BeWo cells, but there may be additional factors involved in this process.
Collapse
Affiliation(s)
- Sudha Saryu Malhotra
- Reproductive Cell Biology Laboratory, National Institute of Immunology, New Delhi-110 067, India
| | - Pankaj Suman
- Amity Institute of Biotechnology, Amity University, Sector-125, Noida, Uttar Pradesh-201 301, India
| | - Satish Kumar Gupta
- Reproductive Cell Biology Laboratory, National Institute of Immunology, New Delhi-110 067, India
| |
Collapse
|
20
|
|
21
|
Fournier T, Guibourdenche J, Evain-Brion D. Review: hCGs: different sources of production, different glycoforms and functions. Placenta 2015; 36 Suppl 1:S60-5. [PMID: 25707740 DOI: 10.1016/j.placenta.2015.02.002] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 02/03/2015] [Accepted: 02/06/2015] [Indexed: 01/26/2023]
Abstract
Human chorionic gonadotropin (hCG) is the first hormonal message from the placenta to the mother. It is detectable in maternal blood two days after implantation and behaves like an agonist of LH stimulating progesterone secretion by the corpus luteum. hCG has also a role in quiescence of the myometrium and local immune tolerance. Specific to humans, hCG is a complex glycoprotein composed of two glycosylated subunits. The α-subunit is identical to the pituitary gonadotropin hormones (LH, FSH, TSH), contains two N-glycosylation sites, and is encoded by a single gene (CGA). By contrast the β-subunits are distinct in each of the hormones and confer receptor and biological specificity. The hCG β-subunit contains two sites of N-glycosylation and four sites of O-glycosylation and is encoded by a cluster of genes (CGB). In this review, we will stress the importance of hCG glycosylation state, which varies with the stage of pregnancy, its source of production and in the pathology. It is well established that hCG is mainly secreted by the syncytiotrophoblast into maternal blood where it peaks around 8-10 weeks of gestation (WG). The invasive extravillous trophoblast also secretes hCG, and in particular like choriocarcinoma cells, hyperglycosylated forms of hCG (hCG-H). In maternal blood hCG-H is high during early first trimester. In addition to its endocrine role, hCG has autocrine and paracrine roles. It promotes formation of the syncytiotrophoblast and angiogenesis through LHCG receptor. In contrast, hCG-H stimulates trophoblast invasion and angiogenesis by interacting with the TGFβ receptor 2. hCG is largely used in antenatal screening and hCG-H represents a serum marker of early trophoblast invasion. Other abnormally glycosylated hCG are described in aneuploidies. In conclusion, hCG is the major pregnancy glycoprotein hormone, whose maternal concentration and glycan structure change all along pregnancy. Depending on its source of production, glycoforms of hCG display different biological activities and functions that are essential for pregnancy outcome.
Collapse
Affiliation(s)
- T Fournier
- INSERM, U1139, Paris, F-75006, France; Université Paris Descartes, UMR-S1139, Sorbonne Paris Cité, Paris, F-75006, France; PremUP Foundation, Paris, F-75006, France.
| | - J Guibourdenche
- INSERM, U1139, Paris, F-75006, France; Université Paris Descartes, UMR-S1139, Sorbonne Paris Cité, Paris, F-75006, France; PremUP Foundation, Paris, F-75006, France; Biologie Hormonale, Cochin, Paris, F-75006, France
| | - D Evain-Brion
- INSERM, U1139, Paris, F-75006, France; Université Paris Descartes, UMR-S1139, Sorbonne Paris Cité, Paris, F-75006, France; PremUP Foundation, Paris, F-75006, France
| |
Collapse
|
22
|
Gerbaud P, Pidoux G. Review: An overview of molecular events occurring in human trophoblast fusion. Placenta 2014; 36 Suppl 1:S35-42. [PMID: 25564303 DOI: 10.1016/j.placenta.2014.12.015] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 11/28/2014] [Accepted: 12/17/2014] [Indexed: 01/19/2023]
Abstract
During human placentation, mononuclear cytotrophoblasts fuse to form a multinucleated syncytia ensuring hormonal production and nutrient exchanges between the maternal and fetal circulation. Syncytia formation is essential for the maintenance of pregnancy and for fetal growth. The trophoblast cell fusion process first requires the acquisition of cell fusion properties, then cells set up plasma membrane protein macrocomplexes and fusogen machinery that trigger cell-cell fusion. Numerous proteins have been shown to be directly involved in the initiation of trophoblast cell fusion. These proteins must expressed at the right time and in the right place to trigger cell-cell fusion. In this review, we describe the role of certain fusogenic protein macrocomplexes that form the scaffold for the fusogen machinery underlying human trophoblastic-lipid mixing and merging of cell contents that lead to cell fusion in physiological conditions.
Collapse
Affiliation(s)
- P Gerbaud
- INSERM, U1139, Paris F-75006, France; Université Paris Descartes, Paris F-75006, France
| | - G Pidoux
- INSERM, U1139, Paris F-75006, France; Université Paris Descartes, Paris F-75006, France.
| |
Collapse
|
23
|
Angiogenin expression during early human placental development; association with blood vessel formation. BIOMED RESEARCH INTERNATIONAL 2014; 2014:781632. [PMID: 25093183 PMCID: PMC4100457 DOI: 10.1155/2014/781632] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 05/19/2014] [Indexed: 02/02/2023]
Abstract
The placenta is a transient organ essential for fetal development. During human placental development, chorionic villi grow in coordination with a large capillary network resulting from both vasculogenesis and angiogenesis. Angiogenin is one of the most potent inducers of neovascularisation in experimental models in vivo. We and others have previously mapped angiogenin expression in the human term placenta. Here, we explored angiogenin involvement in early human placental development. We studied, angiogenin expression by in situ hybridisation and/or by RT-PCR in tissues and primary cultured trophoblastic cells and angiogenin cellular distribution by coimmunolabelling with cell markers: CD31 (PECAM-1), vascular endothelial cadherin (VE-cadherin), vascular endothelial growth factor receptor-2 (VEGF-R2), Tie-2, von Willebrand factor, CD34, erythropoeitin receptor (Epo-R), alpha-smooth muscle actin, CD45, cytokeratin 7, and Ki-67. Extravillous and villous cytotrophoblasts, isolated and differentiated in vitro, expressed and secreted angiogenin. Angiogenin was detected in villous trophoblastic layers, and structured and nascent fetal vessels. In decidua, it was expressed by glandular epithelial cells, vascular cells and macrophages. The observed pattern of angiogenin expression is compatible with a role in blood vessel formation and in cross-talk between trophoblasts and endothelial cells. In view of angiogenin properties, we suggest that angiogenin may participate in placental vasculogenesis and organogenesis.
Collapse
|
24
|
Chambers AE, Mills WE, Mercadé I, Crovetto F, Crispi F, Bodi LRR, Pugia M, Mira A, Lasalvia L, Banerjee S, Casals E, Gratacos E. The utility of circulating LHCGR as a predictor of Down's syndrome in early pregnancy. BMC Pregnancy Childbirth 2014; 14:197. [PMID: 24906955 PMCID: PMC4061320 DOI: 10.1186/1471-2393-14-197] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 05/29/2014] [Indexed: 12/11/2022] Open
Abstract
Background Previous studies showed that soluble LHCGR/hCG-sLHCGR concentrations in serum or plasma combined with PAPP-A and free βhCG significantly increased the sensitivity of Down’s syndrome screen at early pregnancy without altering the false positive rate. The goal of the present study was to further examine the role of sLHCGR forms as combinatorial markers and to investigate whether sLHCGR could serve as an independent biomarker for Down’s syndrome in first trimester pregnancy screens. Methods The PAPP-A, free βhCG, and hCG-sLHCGR concentrations together with nuchal translucency (NT) were measured in 40 Down’s and 300 control pregnancies. The sLHCGR concentration was analysed in 40 Down’s and 206 control pregnancies. Results The hCG-LHCGR in combination with PAPP-A and free βhCG increased the detection rate (DR) by 35% without altering the false positive rate (FPR). The sLHCGR: hCG-sLHCGR ratio alone detected 80% of Down’s pregnancies in first trimester screening, with a false positive rate of 0.5%. Conclusions While measurement of sLHCGR forms in combination with PAPP-A and free βhCG significantly increases the detection rate of Down’s syndrome at first trimester, the ratio of sLHCGR: hCG-sLHCGR acts as an independent marker with a detection rate that is significantly higher than the existing biochemical markers individually for prenatal first trimester screening of Down’s syndrome.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Subhasis Banerjee
- Origin Biomarkers, Biocity Scotland, Bo'Ness Road, Newhouse, Lanarkshire ML1 5UH, UK.
| | | | | |
Collapse
|
25
|
Brun S, Leguy M, Bruneel A, Fournier T, Anselem O, Guibourdenche J. hCG in screening for aneuploidy: A possible role for its glycoforms? Placenta 2014; 35:425-7. [DOI: 10.1016/j.placenta.2014.03.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 03/11/2014] [Accepted: 03/13/2014] [Indexed: 11/30/2022]
|
26
|
Goldman-Wohl D, Greenfield C, Eisenberg-Loebl I, Skarzinski G, Haimov-Kochman R, Imbar T, Ariel I, Yagel S. snRNAs are reduced in the syncytiotrophoblast: a possible mechanism for regulation of human placental protein production. Mol Hum Reprod 2013; 19:737-44. [DOI: 10.1093/molehr/gat049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
27
|
Degrelle S, Guibourdenche J, Galland F, Bidart J, Fournier T, Evain-Brion D. Iodide transporters expression in early human invasive trophoblast. Placenta 2013; 34:29-34. [DOI: 10.1016/j.placenta.2012.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 10/09/2012] [Accepted: 11/01/2012] [Indexed: 11/17/2022]
|
28
|
Chambers AE, Griffin C, Naif SA, Mills I, Mills WE, Syngelaki A, Nicolaides KH, Banerjee S. Quantitative ELISAs for serum soluble LHCGR and hCG-LHCGR complex: potential diagnostics in first trimester pregnancy screening for stillbirth, Down's syndrome, preterm delivery and preeclampsia. Reprod Biol Endocrinol 2012; 10:113. [PMID: 23245345 PMCID: PMC3570453 DOI: 10.1186/1477-7827-10-113] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 12/14/2012] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Soluble LH/hCG receptor (sLHCGR) released from placental explants and transfected cells can be detected in sera from pregnant women. To determine whether sLHCGR has diagnostic potential, quantitative ELISAs were developed and tested to examine the correlation between pregnancy outcome and levels of serum sLHCGR and hCG-sLHCGR complex. METHODS Anti-LHCGR poly- and monoclonal antibodies recognizing defined LHCGR epitopes, commerical anti-hCGbeta antibody, together with recombinant LHCGR and yoked hCGbeta-LHCGR standard calibrators were used to develop two ELISAs. These assays were employed to quantify serum sLHCGR and hCG-sLHCGR at first trimester human pregnancy. RESULTS Two ELISAs were developed and validated. Unlike any known biomarker, sLHCGR and hCG-sLHCGR are unique because Down's syndrome (DS), preeclampsia and preterm delivery are linked to both low (less than or equal to 5 pmol/mL), and high (equal to or greater than 170 pmol/mL) concentrations. At these cut-off values, serum hCG-sLHCGR together with PAPP-A detected additional DS pregnancies (21%) which were negative by free hCGbeta plus PAPP-A screening procedure. Therefore, sLHCGR/hCG-sLHCGR has an additive effect on the current primary biochemical screening of aneuploid pregnancies. More than 88% of pregnancies destined to end in fetal demise (stillbirth) exhibited very low serum hCG-sLHCGR(less than or equal to 5 pmol/mL) compared to controls (median 16.15 pmol/mL, n = 390). The frequency of high hCG-sLHCGR concentrations (equal to or greater than 170 pmol/mL) in pathological pregnancies was at least 3-6-fold higher than that of the control, suggesting possible modulation of the thyrotropic effect of hCG by sLHCGR. CONCLUSIONS Serum sLHCGR/hCG-sLHCGR together with PAPP-A, have significant potential as first trimester screening markers for predicting pathological outcomes in pregnancy.
Collapse
Affiliation(s)
- Anne E Chambers
- Department of Clinical Biochemistry, Heartlands Hospital, Birmingham, B9 5SS, UK
- Present address: Origin Biomarkers, BioPark, Broadwater Road, Welwyn Garden City, Hertfordshire, AL7 3AX, UK
| | | | | | - Ian Mills
- Birmingham Women’s Hospital, Edgbaston, Birmingham, UK
| | - Walter E Mills
- Department of Clinical Biochemistry, Heartlands Hospital, Birmingham, B9 5SS, UK
- Present address: Origin Biomarkers, BioPark, Broadwater Road, Welwyn Garden City, Hertfordshire, AL7 3AX, UK
| | - Argyro Syngelaki
- Harris Birthright Research Centre for Fetal Medicine, King’s College Hospital, London, UK
| | - Kypros H Nicolaides
- Harris Birthright Research Centre for Fetal Medicine, King’s College Hospital, London, UK
| | - Subhasis Banerjee
- Department of Clinical Biochemistry, Heartlands Hospital, Birmingham, B9 5SS, UK
- Present address: Origin Biomarkers, BioPark, Broadwater Road, Welwyn Garden City, Hertfordshire, AL7 3AX, UK
| |
Collapse
|
29
|
Chen L, Zhu H, Pan Y, Tang C, Watanabe M, Ruan H, Wang Y, Wang J, Yao HY, Iguchi T, Wu X. Ascorbic acid uptaken by sodium-dependent vitamin C transporter 2 induces βhCG expression through Sp1 and TFAP2A transcription factors in human choriocarcinoma cells. J Clin Endocrinol Metab 2012; 97:E1667-76. [PMID: 22745243 DOI: 10.1210/jc.2012-1753] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Vitamin C [ascorbic acid (AA)] is transported by sodium-dependent vitamin C transporters (SVCT) 1 and 2, and our previous studies show AA induces a dramatic production of steroid hormones in human choriocarcinoma cells. However, whether AA induces the production of placental polypeptide hormones remains unknown. Here we investigated the mechanisms governing AA-induced β-human chorionic gonadotropin (hCG) expression. METHODS Frozen sections from human term placentas were used for immunostaining of SVCT, and βhCG mRNA expression and its production in primary human placental cytotrophoblasts and JEG-3 cells were examined by quantitative RT-PCR and ELISA, respectively. Knockdown of SVCT2, transcription factor activating enhancer-binding protein 2α (TFAP2A), or specificity protein-1 (Sp1) expression was achieved by retrovirus-mediated short hairpin RNA, and the transcriptional factors responsible for AA-induced βhCG expression was identified by reporter constructs. RESULTS Both SVCT1 and SVCT2 are expressed in human term placentas. SVCT2 is predominantly localized in the syncytial layer, whereas SVCT1 is predominantly distributed in the villous core. AA dramatically induces βhCG mRNA expression and its production in JEG-3 cells and primary human cytotrophoblasts, and knockdown of SVCT2 expression in JEG-3 cells significantly decreases AA-induced βhCG expression. Data from βhCG5 construct and its deletion mutants further indicate that AA induces βhCG5 transactivation through Sp1 and TFAP2A transcriptional factors, and silence of Sp1 and/or TFAP2A expression significantly decreased AA-induced βhCG5 reporter activity and βhCG expression as well. CONCLUSIONS The present study revealed the novel effects of AA on polypeptide hormone, βhCG, production and the potential mechanisms governing AA-induced βhCG expression, suggesting the potentially indispensable roles of AA in placental endocrine and pregnant maintenance.
Collapse
Affiliation(s)
- Lihua Chen
- Department of Pharmacology, School of Medicine, Zhejiang University, No. 866, Yuhangtang Road, Hangzhou 310058, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Rosario FJ, Sadovsky Y, Jansson T. Gene targeting in primary human trophoblasts. Placenta 2012; 33:754-62. [PMID: 22831880 DOI: 10.1016/j.placenta.2012.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 07/04/2012] [Accepted: 07/05/2012] [Indexed: 12/18/2022]
Abstract
Studies in primary human trophoblasts provide critical insights into placental function in normal and complicated pregnancies. Mechanistic studies in these cells require experimental tools to modulate gene expression. Lipid-based methods to transfect primary trophoblasts are fairly simple to use and allow for the efficient delivery of nucleic acids, but potential toxic effects limit these methods. Viral vectors are versatile transfection tools of native trophoblastic or foreign cDNAs, providing high transfection efficiency, low toxicity and stable DNA integration into the trophoblast genome. RNA interference (RNAi), using small interfering RNA (siRNA) or microRNA, constitutes a powerful approach to silence trophoblast genes. However, off-target effects, such as regulation of unintended complementary transcripts, inflammatory responses and saturation of the endogenous RNAi machinery, are significant concerns. Strategies to minimize off-target effects include using multiple individual siRNAs, elimination of pro-inflammatory sequences in the siRNA construct and chemical modification of a nucleotide in the guide strand or of the ribose moiety. Tools for efficient gene targeting in primary human trophoblasts are currently available, albeit not yet extensively validated. These methods are critical for exploring the function of human trophoblast genes and may provide a foundation for the future application of gene therapy that targets placental trophoblasts.
Collapse
Affiliation(s)
- F J Rosario
- Center for Pregnancy and Newborn Research, Department of Obstetrics and Gynecology, University of Texas Health Science Center San Antonio, Mail Code 7836, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | | | | |
Collapse
|
31
|
Brouillet S, Hoffmann P, Chauvet S, Salomon A, Chamboredon S, Sergent F, Benharouga M, Feige JJ, Alfaidy N. Revisiting the role of hCG: new regulation of the angiogenic factor EG-VEGF and its receptors. Cell Mol Life Sci 2012; 69:1537-50. [PMID: 22138749 PMCID: PMC11115148 DOI: 10.1007/s00018-011-0889-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 11/02/2011] [Accepted: 11/14/2011] [Indexed: 11/25/2022]
Abstract
Endocrine gland-derived vascular endothelial growth factor (EG-VEGF) is an angiogenic factor reported to be specific for endocrine tissues, including the placenta. Its biological activity is mediated via two G protein-coupled receptors, prokineticin receptor 1 (PROKR1) and prokineticin receptor 2 (PROKR2). We have recently shown that (i) EG-VEGF expression peaks between the 8th and 11th weeks of gestation, (ii) its mRNA and protein levels are up-regulated by hypoxia, (iii) EG-VEGF is a negative regulator of trophoblast invasion and (iv) its circulating levels are increased in preeclampsia (PE), the most threatening pathology of pregnancy. Here, we investigated the regulation of the expression of EG-VEGF and its receptors by hCG, a key pregnancy hormone that is also deregulated in PE. During the first trimester of pregnancy, hCG and EG-VEGF exhibit the same pattern of expression, suggesting that EG-VEGF is potentially regulated by hCG. Both placental explants (PEX) and primary cultures of trophoblasts from the first trimester of pregnancy were used to investigate this hypothesis. Our results show that (i) LHCGR, the hCG receptor, is expressed both in cyto- and syncytiotrophoblasts, (ii) hCG increases EG-VEGF, PROKR1 and PROKR2 mRNA and protein expression in a dose- and time-dependent manner, (iii) hCG increases the release of EG-VEGF from PEX conditioned media, (iv) hCG effects are transcriptional and post-transcriptional and (v) the hCG effects are mediated by cAMP via cAMP response elements present in the EG-VEGF promoter region. Altogether, these results demonstrate a new role for hCG in the regulation of EG-VEGF and its receptors, an emerging regulatory system in placental development.
Collapse
MESH Headings
- Base Sequence
- Cells, Cultured
- Chorionic Gonadotropin/metabolism
- Chorionic Gonadotropin/pharmacology
- DNA Primers/genetics
- Female
- Gene Expression/drug effects
- Humans
- In Vitro Techniques
- Models, Biological
- Molecular Sequence Data
- Placenta/drug effects
- Placenta/metabolism
- Placentation
- Pregnancy
- Pregnancy Trimester, First
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, LH/metabolism
- Receptors, Peptide/genetics
- Receptors, Peptide/metabolism
- Trophoblasts/drug effects
- Trophoblasts/metabolism
- Vascular Endothelial Growth Factor, Endocrine-Gland-Derived/genetics
- Vascular Endothelial Growth Factor, Endocrine-Gland-Derived/metabolism
Collapse
Affiliation(s)
- S Brouillet
- Institut National de la Santé et de la Recherche Médicale, Unité 1036, Laboratoire Biologie du Cancer et de l'Infection, Grenoble, France
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Chambers AE, Nayini KP, Mills WE, Lockwood GM, Banerjee S. Circulating LH/hCG receptor (LHCGR) may identify pre-treatment IVF patients at risk of OHSS and poor implantation. Reprod Biol Endocrinol 2011; 9:161. [PMID: 22195987 PMCID: PMC3285531 DOI: 10.1186/1477-7827-9-161] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 12/23/2011] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Successful pregnancy via in vitro fertilization (IVF) depends on the recovery of an adequate number of healthy oocytes and on blastocyst implantation following uterine transfer. Two hormones, LH and hCG, utilize a common LH/hCG receptor (LHCGR), variations in which have profound implications in human reproduction. Soluble LHCGR (sLHCGR) is released from experimental cell lines and placental explants and it can be detected in the follicular fluid and serum. METHODS To evaluate the impact of circulating soluble LHCGR (sLHCGR) in fertility treatment, we measured sLHCGR and LH-sLHCGR complex in serum from women seeking IVF using specifically developed quantitative enzyme-linked immunosorbent assays (ELISA). Following an IVF cycle of treatment, patients were grouped according to oocyte yield into low (lower than or equal to 7 oocytes), intermediate (8-14 oocytes) and high (greater than or equal to 15 oocytes) responders and pregnancy outcome noted. RESULTS Pre-treatment sLHCGR identified many women at risk of ovarian hyperstimulation. Low levels of sLHCGR were associated with pregnancy in both high and low responders but sLHCGR did not significantly affect the treatment outcome of intermediate responders. Low responders who failed to become pregnant had high levels of circulating sLHCGR bound to LH (LH-sLHCGR). CONCLUSIONS Pre-treatment measurement of sLHCGR could be used to tailor individual fertility treatment programs and improve outcomes by avoiding ovarian hyperstimulation and poor embryo implantation.
Collapse
Affiliation(s)
- Anne E Chambers
- Department of Clinical Biochemistry, Heartlands Hospital, Birmingham B9 5SS, UK
- Origin Biomarkers, BioPark, Broadwater Road, Welwyn Garden City, Hertfordshire, AL7 3AX, UK
| | | | - Walter E Mills
- Origin Biomarkers, BioPark, Broadwater Road, Welwyn Garden City, Hertfordshire, AL7 3AX, UK
| | | | - Subhasis Banerjee
- Department of Clinical Biochemistry, Heartlands Hospital, Birmingham B9 5SS, UK
- Origin Biomarkers, BioPark, Broadwater Road, Welwyn Garden City, Hertfordshire, AL7 3AX, UK
| |
Collapse
|
33
|
Pidoux G, Gerbaud P, Cocquebert M, Segond N, Badet J, Fournier T, Guibourdenche J, Evain-Brion D. Review: Human trophoblast fusion and differentiation: lessons from trisomy 21 placenta. Placenta 2011; 33 Suppl:S81-6. [PMID: 22138060 DOI: 10.1016/j.placenta.2011.11.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 11/14/2011] [Accepted: 11/14/2011] [Indexed: 01/22/2023]
Abstract
The syncytiotrophoblast layer plays a major role throughout pregnancy, since it is the site of numerous placental functions, including ion and nutrient exchange and the synthesis of steroid and peptide hormones required for fetal growth and development. Inadequate formation and regeneration of this tissue contributes to several pathologies of pregnancy such as intrauterine growth restriction and preeclampsia, which may lead to iatrogenic preterm delivery in order to prevent fetal death and maternal complications. Syncytiotrophoblast formation can be reproduced in vitro using different models. For the last ten years we have routinely purified villous cytotrophoblastic cells (CT) from normal first, second and third trimester placentas and from gestational age-matched Trisomy 21 placentas. We cultured villous CT on plastic dishes to follow the molecular and biochemical aspects of their morphological and functional differentiation. Taking advantage of this unique collection of samples, we here discuss the concept that trophoblast fusion and functional differentiation may be two differentially regulated processes, which are linked but quite distinct. We highlight the major role of mesenchymal-trophoblast cross talk in regulating trophoblast cell fusion. We suggest that the oxidative status of the trophoblast may regulate glycosylation of proteins, including hCG, and thereby modulate major trophoblast cell functions.
Collapse
Affiliation(s)
- G Pidoux
- INSERM, UMR-S 767, Faculté des Sciences Pharmaceutiques et Biologiques, 4 Avenue de l'Observatoire, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Gerbaud P, Pidoux G, Guibourdenche J, Pathirage N, Costa JM, Badet J, Frendo JL, Murthi P, Evain-Brion D. Mesenchymal activin-A overcomes defective human trisomy 21 trophoblast fusion. Endocrinology 2011; 152:5017-28. [PMID: 21952245 DOI: 10.1210/en.2011-1193] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Placental development is markedly abnormal in trisomy 21 (T21) pregnancies. We hypothesized that abnormal paracrine cross talk between the fetal mesenchymal core and the trophoblast might be involved in the defect of syncytiotrophoblast formation and function. In a large series of primary cultured human cytotrophoblasts isolated from second-trimester control (n = 44) and T21 placentae (n = 71), abnormal trophoblast fusion and differentiation was observed in more than 90% of T21 cases. We then isolated and cultured villous mesenchymal cells from control (n = 10) and T21 placentae (n = 8) and confirmed their fetal origin. Conditioned medium of control mesenchymal cells overcame the abnormal trophoblast fusion of T21 cytotrophoblasts by activating the TGFβ signaling pathway, as shown by the phosphospecific protein microarray analysis and the use of TGFβ signaling pathway antagonists. Using protein arrays, we further analyzed the cytokines present in the conditioned medium from control and T21 mesenchymal cells. Activin-A was identified as strongly secreted by cells from both sources, but at a significantly (P < 0.01) lower level in the case of T21 mesenchymal cells. Recombinant activin-A stimulated T21 trophoblast fusion. Blocking activin-A antibody inhibited the fusion induced by conditioned medium and exogenous activin-A. Furthermore, follistatin, an activin-A binding protein largely secreted by T21 mesenchymal cells, inhibited the conditioned medium fusogenic activity. These results show that the defective trophoblast fusion and differentiation associated with T21 can be overcome in vitro and reveal the key role of the fetal mesenchymal core in human trophoblast differentiation.
Collapse
Affiliation(s)
- Pascale Gerbaud
- Institut National de la Santé et de la Recherche Médicale Unité 767, 4 Avenue de l'Observatoire, 75006 Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Chambers AE, Stanley PF, Randeva H, Banerjee S. Microvesicle-mediated release of soluble LH/hCG receptor (LHCGR) from transfected cells and placenta explants. Reprod Biol Endocrinol 2011; 9:64. [PMID: 21575145 PMCID: PMC3112408 DOI: 10.1186/1477-7827-9-64] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 05/15/2011] [Indexed: 12/24/2022] Open
Abstract
Placental hCG and pitutary LH transduce signals in target tissues through a common receptor (LHCGR). We demonstrate that recombinant LHCGR proteins which include the hormone-binding domain are secreted from transfected cells and that natural LHCGR is also secreted from human placental explants. LHCGR recombinant proteins representing varying lengths of the N-terminal extracellular domain were expressed in Chinese Hamster Ovary cells in suspension culture. Secretion was minimal up to 72h but by 96h 24-37% of the LHCGR had been released into the culture medium. The secreted proteins were folded and sensitive to glycosidases suggesting N-linked glycosylation. Secretion was independent of recombinant size and was mediated via structurally defined membrane vesicles (50-150nm). Similarly cultured human early pregnancy placental explants also released LHCGR via microvesicles. These studies provide the first experimental evidence of the possible mechanistic basis of the secretion of LHCGR.
Collapse
Affiliation(s)
- Anne E Chambers
- Department of Clinical Biochemistry, Laboratory Medicine, Birmingham Heartlands Hospital, Bordesley Green East, Birmingham B9 5SS, UK
| | - Paul F Stanley
- Centre for Electron Microscopy Metallurgy and Materials Building, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Harpal Randeva
- Clinical Sciences Research Institute, Medical School Building, Gibbet Hill Campus, University of Warwick, Coventry, UK
| | - Subhasis Banerjee
- Department of Clinical Biochemistry, Laboratory Medicine, Birmingham Heartlands Hospital, Bordesley Green East, Birmingham B9 5SS, UK
| |
Collapse
|
36
|
Yang H, Taylor HS, Lei C, Cheng C, Zhang W. Hormonal Regulation of Galectin 3 in Trophoblasts and Its Effects on Endometrium. Reprod Sci 2011; 18:1118-27. [DOI: 10.1177/1933719111407212] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Huan Yang
- Department of Reproductive Endocrinology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Hugh S. Taylor
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology and Reproductive Sciences, and Department of Molecular, Cellular and Developmental Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Caixia Lei
- Shanghai Ji Ai Genetics and IVF China-USA Centre, Shanghai, China
| | - Chao Cheng
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Wei Zhang
- Department of Reproductive Endocrinology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| |
Collapse
|
37
|
Yuen R, Robinson W. Review: A high capacity of the human placenta for genetic and epigenetic variation: Implications for assessing pregnancy outcome. Placenta 2011; 32 Suppl 2:S136-41. [DOI: 10.1016/j.placenta.2011.01.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 12/31/2010] [Accepted: 01/05/2011] [Indexed: 10/18/2022]
|
38
|
Human trophoblast in trisomy 21: a model for cell-cell fusion dynamic investigation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 714:103-12. [PMID: 21506009 DOI: 10.1007/978-94-007-0782-5_4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Trophoblastic cell fusion is one essential step of the human trophoblast differentiation leading to formation of the syncytiotrophoblast, site of the numerous placental functions. This process is multifactorial and finely regulated. Using the physiological model of primary culture of trophoblastic cells isolated from human placenta, we have identified different membrane proteins directly involved in trophoblastic cell fusion: connexin 43, ZO-1 and recently syncytins. These fusogenic membrane retroviral envelop glycoproteins: syncytin-1 (encoded by the HERV-W gene) and syncytin-2 (encoded by the FRD gene) and their receptors are major factors involved in human placental development. Disturbances of syncytiotrophoblast formation are observed in trisomy 21-affected placentas. Overexpression of the copper/zinc superoxide dismutase (SOD-1), encoded by chromosome 21 as well as an abnormal hCG signaling are implicated in the defect of syncytiotrophoblast formation. This abnormal trophoblast fusion and differentiation in trisomy 21-affected placenta is reversible in vitro by different ways.
Collapse
|
39
|
New Insights into the Mechanisms and Roles of Cell–Cell Fusion. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 289:149-209. [DOI: 10.1016/b978-0-12-386039-2.00005-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
40
|
Pidoux G, Gerbaud P, Gnidehou S, Grynberg M, Geneau G, Guibourdenche J, Carette D, Cronier L, Evain-Brion D, Malassiné A, Frendo JL. ZO-1 is involved in trophoblastic cell differentiation in human placenta. Am J Physiol Cell Physiol 2010; 298:C1517-26. [PMID: 20200207 DOI: 10.1152/ajpcell.00484.2008] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Trophoblastic cell-cell fusion is an essential event required during human placental development. Several membrane proteins have been described to be directly involved in this process, including connexin 43 (Cx43), syncytin 1 (Herv-W env), and syncytin 2 (Herv-FRD env glycoprotein). Recently, zona occludens (ZO) proteins (peripheral membrane proteins associated with tight junctions, adherens junctions, and gap junctions) were shown to be involved in mouse placental development. Moreover, zona occludens 1 (ZO-1) was localized mainly at the intercellular boundaries between human trophoblastic cells. Therefore the role of ZO-1 in the dynamic process of human trophoblastic cell-cell fusion was investigated using primary trophoblastic cells in culture. In vitro as in situ, ZO-1 was localized mainly at the intercellular boundaries between trophoblastic cells where its expression substantially decreased during differentiation and during fusion. At the same time, Cx43 was localized at the interface of trophoblastic cells and its expression increased during differentiation. To determine a functional role for ZO-1 during trophoblast differentiation, small interfering RNA (siRNA) was used to knock down ZO-1 expression. Cytotrophoblasts treated with ZO-1 siRNA fused poorly, but interestingly, decreased Cx43 expression without altering the functionality of trophoblastic cell-cell communication as measured by relative permeability time constant determined using gap-FRAP experiments. Because kinetics of Cx43 and ZO-1 proteins show a mirror image, a potential association of these two proteins was investigated. By using coimmunoprecipitation experiments, a physical interaction between ZO-1 and Cx43 was demonstrated. These results demonstrate that a decrease in ZO-1 expression reduces human trophoblast cell-cell fusion and differentiation.
Collapse
Affiliation(s)
- Guillaume Pidoux
- Institut National de la Santé et de la Recherche Médicale, U767, Paris, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
|
42
|
Cole LA. New discoveries on the biology and detection of human chorionic gonadotropin. Reprod Biol Endocrinol 2009; 7:8. [PMID: 19171054 PMCID: PMC2649930 DOI: 10.1186/1477-7827-7-8] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Accepted: 01/26/2009] [Indexed: 12/19/2022] Open
Abstract
Human chorionic gonadotropin (hCG) is a glycoprotein hormone comprising 2 subunits, alpha and beta joined non covalently. While similar in structure to luteinizing hormone (LH), hCG exists in multiple hormonal and non-endocrine agents, rather than as a single molecule like LH and the other glycoprotein hormones. These are regular hCG, hyperglycosylated hCG and the free beta-subunit of hyperglycosylated hCG. For 88 years regular hCG has been known as a promoter of corpus luteal progesterone production, even though this function only explains 3 weeks of a full gestations production of regular hCG. Research in recent years has explained the full gestational production by demonstration of critical functions in trophoblast differentiation and in fetal nutrition through myometrial spiral artery angiogenesis. While regular hCG is made by fused villous syncytiotrophoblast cells, extravillous invasive cytotrophoblast cells make the variant hyperglycosylated hCG. This variant is an autocrine factor, acting on extravillous invasive cytotrophoblast cells to initiate and control invasion as occurs at implantation of pregnancy and the establishment of hemochorial placentation, and malignancy as occurs in invasive hydatidiform mole and choriocarcinoma. Hyperglycosylated hCG inhibits apoptosis in extravillous invasive cytotrophoblast cells promoting cell invasion, growth and malignancy. Other non-trophoblastic malignancies retro-differentiate and produce a hyperglycosylated free beta-subunit of hCG (hCG free beta). This has been shown to be an autocrine factor antagonizing apoptosis furthering cancer cell growth and malignancy. New applications have been demonstrated for total hCG measurements and detection of the 3 hCG variants in pregnancy detection, monitoring pregnancy outcome, determining risk for Down syndrome fetus, predicting preeclampsia, detecting pituitary hCG, detecting and managing gestational trophoblastic diseases, diagnosing quiescent gestational trophoblastic disease, diagnosing placental site trophoblastic tumor, managing testicular germ cell malignancies, and monitoring other human malignancies. There are very few molecules with such wide and varying functions as regular hCG and its variants, and very few tests with such a wide spectrum of clinical applications as total hCG.
Collapse
Affiliation(s)
- Laurence A Cole
- USA hCG Reference Service, Obstetrics and Gynecology, and Biochemistry and Molecular Biology, University of New Mexico, Albuquerque, NM, USA.
| |
Collapse
|
43
|
de Medeiros S, Norman R. Human choriogonadotrophin protein core and sugar branches heterogeneity: basic and clinical insights. Hum Reprod Update 2008; 15:69-95. [DOI: 10.1093/humupd/dmn036] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
44
|
Malassiné A, Frendo JL, Blaise S, Handschuh K, Gerbaud P, Tsatsaris V, Heidmann T, Evain-Brion D. Human endogenous retrovirus-FRD envelope protein (syncytin 2) expression in normal and trisomy 21-affected placenta. Retrovirology 2008; 5:6. [PMID: 18215254 PMCID: PMC2245979 DOI: 10.1186/1742-4690-5-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Accepted: 01/23/2008] [Indexed: 11/25/2022] Open
Abstract
Human trophoblast expresses two fusogenic retroviral envelope proteins, the widely studied syncytin 1, encoded by HERV-W and the recently characterized syncytin 2 encoded by HERV-FRD. Here we studied syncytin 2 in normal and Trisomy 21-affected placenta associated with abnormal trophoblast differentiation. Syncytin 2 immunolocalization was restricted throughout normal pregnancy to some villous cytotrophoblastic cells (CT). During the second trimester of pregnancy, syncytin 2 was immunolocalized in some cuboidal CT in T21 placentas, whereas in normal placentas it was observed in flat CT, extending into their cytoplasmic processes. In vitro, CT isolated from normal placenta fuse and differentiate into syncytiotrophoblast. At the same time, syncytin 2 transcript levels decreased significantly with syncytiotrophoblast formation. In contrast, CT isolated from T21-affected placentas fused and differentiated poorly and no variation in syncytin 2 transcript levels was observed. Syncytin 2 expression illustrates the abnormal trophoblast differentiation observed in placenta of fetal T21-affected pregnancies.
Collapse
Affiliation(s)
- André Malassiné
- INSERM, U767, 4 avenue de l'Observatoire 75006 Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|