1
|
Salazar C, Ojeda N, Mercado L. Dysregulated proinflammatory cytokines and immune-related miRNAs in ASK cells exposed to 17⍺-Ethynyl estradiol and 4-nonylphenol. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 162:105282. [PMID: 39437900 DOI: 10.1016/j.dci.2024.105282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 10/02/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Endocrine Disruptor Compounds (EDCs) in the aquatic environment have acquired pronounced relevance due to their toxic effect on the aquatic flora and fauna. Xenoestrogens are EDCs that possess estrogenic activity and, thus, disrupt normal estrogen signaling, affecting different functions, such as immune system processes. Two relevant xenoestrogens discarded into fresh and seawater are 4-nonylphenol (NP) and 17⍺-Ethynyl Estradiol (EE2). Considering that the piscicultures of Salmo salar can be located at sites of potential exposure to xenoestrogen-containing effluxes, it is crucial to understand the effect of xenoestrogens on the immune response and its possible molecular mechanism in this species. Our studies reveal an increase in the expression of the receptor era and erb at early times of exposure, a disrupted expression of pro-inflammatory cytokines (il1b and tnfa), an upregulation of ssa-miR-146a-5p, ssa-miR-125 b-5p, and downregulation of ssa-miR-145-5p in ASK cells exposed to estrogen and xenoestrogen, could potentially lead to new strategies for mitigating the effects of xenoestrogens on Salmo salar immune response.
Collapse
Affiliation(s)
- Carolina Salazar
- Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.
| | - Nicolás Ojeda
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.
| | - Luis Mercado
- Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.
| |
Collapse
|
2
|
Goharitaban S, Abedelahi A, Hamdi K, Khazaei M, Esmaeilivand M, Niknafs B. Role of endometrial microRNAs in repeated implantation failure (mini-review). Front Cell Dev Biol 2022; 10:936173. [PMID: 36060804 PMCID: PMC9437697 DOI: 10.3389/fcell.2022.936173] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/12/2022] [Indexed: 11/28/2022] Open
Abstract
MicroRNAs (miRNAs) play various roles in the implantation and pregnancy process. Abnormal regulation of miRNAs leads to reproductive disorders such as repeated implantation failure (RIF). During the window of implantation, different miRNAs are released from the endometrium, which can potentially reflect the status of the endometrium for in vitro fertilization (IVF). The focus of this review is to determine whether endometrial miRNAs may be utilized as noninvasive biomarkers to predict the ability of endometrium to implant and provide live birth during IVF cycles. The levels of certain miRNAs in the endometrium have been linked to implantation potential and pregnancy outcomes in previous studies. Endometrial miRNAs could be employed as non-invasive biomarkers in the assisted reproductive technology (ART) cycle to determine the optimal time for implantation. Few human studies have evaluated the association between ART outcomes and endometrial miRNAs in RIF patients. This review may pave the way for more miRNA transcriptomic studies on human endometrium and introduce a specific miRNA profile as a multivariable prediction model for choosing the optimal time in the IVF cycle.
Collapse
Affiliation(s)
- Sepide Goharitaban
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Ali Abedelahi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Kobra Hamdi
- Womens Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mozafar Khazaei
- Fertility and Infertility Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Masoumeh Esmaeilivand
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behrooz Niknafs
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- *Correspondence: Behrooz Niknafs, , 0000-0003-4438-1880
| |
Collapse
|
3
|
Da Costa KDA, Malvezzi H, Dobo C, Neme RM, Filippi RZ, Aloia TPA, Prado ER, Meola J, Piccinato CDA. Site-Specific Regulation of Sulfatase and Aromatase Pathways for Estrogen Production in Endometriosis. Front Mol Biosci 2022; 9:854991. [PMID: 35591944 PMCID: PMC9110888 DOI: 10.3389/fmolb.2022.854991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Endometriosis is a highly prevalent gynecological disease characterized by lesions in different sites. Regulation of specific estrogen pathways may favor the formation of distinct microenvironments and the progression of endometriosis. However, no study has simultaneously evaluated the gene and protein regulation of the main estrogen-synthesizing enzymes in endometriosis. Thus, our goals were to study the relationship between gene and protein expression of aromatase (CYP19A1 or ARO), steroid sulfatase (STS), and hydroxysteroid 17-beta dehydrogenase (HSD17B1) in superficial (SUP), ovarian (OMA), and deep infiltrating (DIE) endometriotic lesion sites as well as in the eutopic endometrium of patients with (EE) and without (control) endometriosis in the same and large cohort of patients. The site-specific expression of these enzymes within different cells (glandular and stromal components) was also explored. The study included 108 patients surgically diagnosed with endometriosis who provided biopsies of EE and endometriotic lesions and 16 disease-free patients who collected normal endometrium tissue. Our results showed that CYP19A1 was detected in all endometriosis tissues and was in higher levels than in control. Unique patterns of the STS and HSD17B1 levels showed that they were most closely regulated in all tissues, with manifestation at greater levels in DIE compared to the other endometriotic lesion sites, OMA and SUP. Gene and protein expression of ARO, STS, and HSD17B1 occurred at different rates in endometriotic sites or EE. The distinctive levels of these estrogen-synthesizing enzymes in each endometriotic site support the hypothesis of a tissue microenvironment that can both influence and be influenced by the expression of different estrogenic pathways, locally affecting the availability of estrogen needed for maintenance and progression of endometriotic lesions.
Collapse
Affiliation(s)
| | | | - Cristine Dobo
- Hospital Israelita Albert Einstein, São Paulo, Brazil
- Department of Clinical Pathology, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Rosa Maria Neme
- Hospital Israelita Albert Einstein, São Paulo, Brazil
- Centro de Endometriose São Paulo, Av. República Do Líbano, São Paulo, Brazil
| | - Renée Zon Filippi
- Hospital Israelita Albert Einstein, São Paulo, Brazil
- Department of Clinical Pathology, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | | | | | - Juliana Meola
- Department of Gynaecology & Obstetrics, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Carla de Azevedo Piccinato
- Hospital Israelita Albert Einstein, São Paulo, Brazil
- Department of Gynaecology & Obstetrics, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- *Correspondence: Carla de Azevedo Piccinato,
| |
Collapse
|
4
|
Kolanska K, Bendifallah S, Canlorbe G, Mekinian A, Touboul C, Aractingi S, Chabbert-Buffet N, Daraï E. Role of miRNAs in Normal Endometrium and in Endometrial Disorders: Comprehensive Review. J Clin Med 2021; 10:jcm10163457. [PMID: 34441754 PMCID: PMC8396961 DOI: 10.3390/jcm10163457] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/15/2021] [Accepted: 07/29/2021] [Indexed: 12/12/2022] Open
Abstract
The molecular responses to hormonal stimuli in the endometrium are modulated at the transcriptional and post-transcriptional stages. Any imbalance in cellular and molecular endometrial homeostasis may lead to gynecological disorders. MicroRNAs (miRNAs) are involved in a wide variety of physiological mechanisms and their expression patterns in the endometrium are currently attracting a lot of interest. miRNA regulation could be hormone dependent. Conversely, miRNAs could regulate the action of sexual hormones. Modifications to miRNA expression in pathological situations could either be a cause or a result of the existing pathology. The complexity of miRNA actions and the diversity of signaling pathways controlled by numerous miRNAs require rigorous analysis and findings need to be interpreted with caution. Alteration of miRNA expression in women with endometriosis has been reported. Thus, a potential diagnostic test supported by a specific miRNA signature could contribute to early diagnosis and a change in the therapeutic paradigm. Similarly, specific miRNA profile signatures are expected for RIF and endometrial cancer, with direct implications for associated therapies for RIF and adjuvant therapies for endometrial cancer. Advances in targeted therapies based on the regulation of miRNA expression are under evaluation.
Collapse
Affiliation(s)
- Kamila Kolanska
- Service de Gynécologie Obstétrique et Médecine de la Reproduction, Hôpital Tenon, AP-HP, Sorbonne Université, 4 Rue de la Chine, 75020 Paris, France; (S.B.); (C.T.); (N.C.-B.); (E.D.)
- INSERM UMRS 938, Sorbonne Université, Site Saint-Antoine, 27 Rue Chaligny, CEDEX 12, 75571 Paris, France; (G.C.); (S.A.)
- Centre Expert En Endométriose (C3E), Groupe de Recherche Clinique en Endométriose (GRC6), Sorbonne Université, 4 Rue de la Chine, 75020 Paris, France
- Correspondence:
| | - Sofiane Bendifallah
- Service de Gynécologie Obstétrique et Médecine de la Reproduction, Hôpital Tenon, AP-HP, Sorbonne Université, 4 Rue de la Chine, 75020 Paris, France; (S.B.); (C.T.); (N.C.-B.); (E.D.)
- INSERM UMRS 938, Sorbonne Université, Site Saint-Antoine, 27 Rue Chaligny, CEDEX 12, 75571 Paris, France; (G.C.); (S.A.)
- Centre Expert En Endométriose (C3E), Groupe de Recherche Clinique en Endométriose (GRC6), Sorbonne Université, 4 Rue de la Chine, 75020 Paris, France
| | - Geoffroy Canlorbe
- INSERM UMRS 938, Sorbonne Université, Site Saint-Antoine, 27 Rue Chaligny, CEDEX 12, 75571 Paris, France; (G.C.); (S.A.)
- Service de Chirurgie et Cancérologie Gynécologique et Mammaire, Hôpitaux Universitaires Pitié-Salpêtrière, Charles-Foix, Sorbonne Université, 47/83, Boulevard de l’Hôpital, 75013 Paris, France
| | - Arsène Mekinian
- Service de Médecine Interne, Hôpital Saint Antoine, AP-HP, 184 Rue du Faubourg Saint Antoine, Sorbonne Université, 75012 Paris, France;
| | - Cyril Touboul
- Service de Gynécologie Obstétrique et Médecine de la Reproduction, Hôpital Tenon, AP-HP, Sorbonne Université, 4 Rue de la Chine, 75020 Paris, France; (S.B.); (C.T.); (N.C.-B.); (E.D.)
- INSERM UMRS 938, Sorbonne Université, Site Saint-Antoine, 27 Rue Chaligny, CEDEX 12, 75571 Paris, France; (G.C.); (S.A.)
- Centre Expert En Endométriose (C3E), Groupe de Recherche Clinique en Endométriose (GRC6), Sorbonne Université, 4 Rue de la Chine, 75020 Paris, France
| | - Selim Aractingi
- INSERM UMRS 938, Sorbonne Université, Site Saint-Antoine, 27 Rue Chaligny, CEDEX 12, 75571 Paris, France; (G.C.); (S.A.)
- Faculté de Médecine Paris 5 Descartes, 12 Rue de l’Ecole de Médecine, 75006 Paris, France
| | - Nathalie Chabbert-Buffet
- Service de Gynécologie Obstétrique et Médecine de la Reproduction, Hôpital Tenon, AP-HP, Sorbonne Université, 4 Rue de la Chine, 75020 Paris, France; (S.B.); (C.T.); (N.C.-B.); (E.D.)
- INSERM UMRS 938, Sorbonne Université, Site Saint-Antoine, 27 Rue Chaligny, CEDEX 12, 75571 Paris, France; (G.C.); (S.A.)
- Centre Expert En Endométriose (C3E), Groupe de Recherche Clinique en Endométriose (GRC6), Sorbonne Université, 4 Rue de la Chine, 75020 Paris, France
| | - Emile Daraï
- Service de Gynécologie Obstétrique et Médecine de la Reproduction, Hôpital Tenon, AP-HP, Sorbonne Université, 4 Rue de la Chine, 75020 Paris, France; (S.B.); (C.T.); (N.C.-B.); (E.D.)
- INSERM UMRS 938, Sorbonne Université, Site Saint-Antoine, 27 Rue Chaligny, CEDEX 12, 75571 Paris, France; (G.C.); (S.A.)
- Centre Expert En Endométriose (C3E), Groupe de Recherche Clinique en Endométriose (GRC6), Sorbonne Université, 4 Rue de la Chine, 75020 Paris, France
| |
Collapse
|
5
|
Li Y, Li J, Liu Z, Zhang Y. High Expression of miR-196b Predicts Poor Prognosis in Patients with Ovarian Cancer. Onco Targets Ther 2020; 13:9797-9806. [PMID: 33061458 PMCID: PMC7534859 DOI: 10.2147/ott.s254942] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 08/20/2020] [Indexed: 12/21/2022] Open
Abstract
Background/Aims To analyze the clinical significance of miR-196b expression in ovarian cancer and predict the function and possible mechanism of miR-196b. Methods Both Kaplan–Meier (K-M) and Cox proportional hazards regression model were used to analyze the prognostic factors of patients with ovarian cancer. MiR196-b was modulated in ovarian cancer cells, and the cell viability, cell cycle, and cell cycle-related gene expression were analyzed. The target genes of miR-196b were then predicted and checked the relationship between the target genes. Results MiR-196b was an independent risk factor, while high expression of miR-196b was associated with poor prognosis of ovarian cancer. MiR-196b overexpression increased cancer cell proliferation. Cdkn1b, as one of the targets of miR-196b, was related to cell viability and mitosis. Conclusion High expression of miR-196b was significantly associated with poor prognosis of the patients with ovarian cancer. MiR-196b could increase the cell proliferation of ovarian cancer by modulating Cdkn1b expression.
Collapse
Affiliation(s)
- Yang Li
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, Tianjin 300192, People's Republic of China
| | - Jing Li
- Department of Gynaecology, Tianjin First Central Hospital, Tianjin 300192, People's Republic of China
| | - Zirong Liu
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, Tianjin 300192, People's Republic of China
| | - Yamin Zhang
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, Tianjin 300192, People's Republic of China
| |
Collapse
|
6
|
Milon A, Knapczyk-Stwora K, Pawlicki P, Duliban M, Gorowska-Wojtowicz E, Kotula-Balak M, Bilinska B. Effect of estrogen-related receptor silencing on miRNA protein machinery expression, global methylation, and deacetylation in bank vole (Myodes glareolus) and mouse tumor Leydig cells. Theriogenology 2019; 139:178-190. [PMID: 31421412 DOI: 10.1016/j.theriogenology.2019.07.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 06/25/2019] [Accepted: 07/31/2019] [Indexed: 12/21/2022]
Abstract
The function of estrogen-related receptor (ERR) in testicular cells is at the beginning of exploration. Our previous findings showed that expression pattern of estrogen-related receptor (ERR) in mouse Leydig cell depends on physiological status of the cell. Exogenous hormones/hormonally active chemicals affect ERR expression. In Leydig cells in vitro, ERRα and ERRγ show opposing regulatory properties. The aim of this study was to examine the role of ERR in epigenetic processes in cells with altered level of secreted estrogens; mouse tumor Leydig cells and bank vole Leydig cells, respectively. In Leydig cells, ERRα and ERRγ were silenced via siRNA. mRNA and protein expression and protein localization of molecules required for miRNA biogenesis and function (Exportin 5, Dicer, Drosha and Argonaute 2; Ago2) were studied with the use of qRT-PCR, Western blotting, and immunohistochemistry. Global DNA methylation and histone deacetylation status together with estradiol secretion were determined with fluorometric, and immunoenzymatic assays. Regardless of ERR type knockdown in tumor Leydig cells, downregulation (P < 0.05; P < 0.01; P < 0.001) of Exportin5, Dicer, Drosha but not Ago2 was revealed while at protein level only Drosha was downregulated (P < 0.01) by both ERRα and ERRγ. Oppositely, Exportin5, Dicer and Ago2 showed ERR type-dependent regulation (downregulation; P < 0.01 by ERRα and upregulation; P < 0.01; P < 0.001 by ERRγ). In ERR-silenced vole Leydig cells, expression of Exportin5, endonucleases and Ago2 was not changed. Immunolocalization of Dicer and Ago2 was independent of the cell origin in contrast to localization of Exportin5 and Drosha which was dependent on the cell origin and ERR type knockdown. Absence of ERR effected on cell methylation status (ERRα increased it; P < 0.01 while ERRγ decreased it; P < 0.01, P < 0.001) but it not changed histone deacetylates activity. ERRα and ERRγ silencing decreased (P < 0.01, P < 0.001) estradiol secretion in both tumor and vole Leydig cells. In mouse and bank vole Leydig cell, Exportin5, Dicer, Drosha and Ago2 expression as well as methylation status are regulated by ERR in a manner related to receptor type, molecule type, cell origin and level of secreted estrogen.
Collapse
Affiliation(s)
- Agnieszka Milon
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland
| | - Katarzyna Knapczyk-Stwora
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland
| | - Piotr Pawlicki
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland
| | - Michal Duliban
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland
| | - Ewelina Gorowska-Wojtowicz
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland
| | - Malgorzata Kotula-Balak
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland; University Centre of Veterinary Medicine, University of Agriculture in Kraków, Mickiewicza 24/28, 30-059, Krakow, Poland.
| | - Barbara Bilinska
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland
| |
Collapse
|
7
|
Dai R, Edwards MR, Heid B, Ahmed SA. 17β-Estradiol and 17α-Ethinyl Estradiol Exhibit Immunologic and Epigenetic Regulatory Effects in NZB/WF1 Female Mice. Endocrinology 2019; 160:101-118. [PMID: 30418530 PMCID: PMC6305969 DOI: 10.1210/en.2018-00824] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 11/06/2018] [Indexed: 02/07/2023]
Abstract
17α-Ethinyl estradiol (EE), a synthetic analog of natural estrogen 17β-estradiol (E2), is extensively used in hormonal contraceptives and estrogen replacement therapy, and it has also been found in sewage effluents. Given that E2 is a well-known immunomodulator, surprisingly there has been only limited information on the cellular and molecular immunologic consequences of exposure to EE. To address this fundamental gap, we directly compared the effects of EE with E2 on splenic leukocytes of New Zealand Black × New Zealand White F1 progeny (NZB/WF1) mice during the preautoimmune period. We found that EE and E2 have common, as well as distinctive, immunologic effects, with EE exposure resulting in more profound effects. Both EE and E2 increased numbers of splenic neutrophils, enhanced neutrophil serine proteases and myeloperoxidase expression, promoted the production of nitric oxide and monocyte chemoattractant protein-1, and altered adaptive immune T cell subsets. However, activation of splenic leukocytes through the T cell receptor or Toll-like receptor (TLR)4 revealed not only common (IL-10), but also hormone-specific alterations of cytokines (IFNγ, IL-1β, ΤΝFα, IL-2). Furthermore, in EE-exposed mice, TLR9 stimulation suppressed IFNα, in contrast to increased IFNα from E2-exposed mice. EE and E2 regulated common and hormone-specific expression of immune-related genes. Furthermore, EE exposure resulted in more marked alterations in miRNA expression levels than for E2. Only EE was able to reduce global DNA methylation significantly in splenic leukocytes. Taken together, our novel data revealed that EE and E2 exposure confers more similar effects in innate immune system-related cell development and responses, but has more differential regulatory effects in adaptive immune-related cell development and responses.
Collapse
Affiliation(s)
- Rujuan Dai
- Department of Biomedical Sciences and Pathobiology, Infectious Disease Research Facility (IDRF), Virginia-Maryland College of Veterinary Medicine, Virginia Tech/Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Michael R Edwards
- Department of Biomedical Sciences and Pathobiology, Infectious Disease Research Facility (IDRF), Virginia-Maryland College of Veterinary Medicine, Virginia Tech/Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Bettina Heid
- Department of Biomedical Sciences and Pathobiology, Infectious Disease Research Facility (IDRF), Virginia-Maryland College of Veterinary Medicine, Virginia Tech/Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - S Ansar Ahmed
- Department of Biomedical Sciences and Pathobiology, Infectious Disease Research Facility (IDRF), Virginia-Maryland College of Veterinary Medicine, Virginia Tech/Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| |
Collapse
|
8
|
Burgos-Aceves MA, Cohen A, Paolella G, Lepretti M, Smith Y, Faggio C, Lionetti L. Modulation of mitochondrial functions by xenobiotic-induced microRNA: From environmental sentinel organisms to mammals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 645:79-88. [PMID: 30015121 DOI: 10.1016/j.scitotenv.2018.07.109] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/09/2018] [Accepted: 07/09/2018] [Indexed: 06/08/2023]
Abstract
Mitochondria play a crucial role in energetic metabolism, signaling pathways, and overall cell viability. They are in the first line in facing cellular energy requirements in stress conditions, such as in response to xenobiotic exposure. Recently, a novel regulatory key role of microRNAs (miRNAs) in important signaling pathways in mitochondria has been proposed. Consequently, alteration in miRNAs expression by xenobiotics could outcome into mitochondrial dysfunction, reactive oxygen species overexpression, and liberation of apoptosis or necrosis activating proteins. The aim of this review is to show the highlights about mitochondria-associated miRNAs in cellular processes exposed to xenobiotic stress in different cell types involved in detoxification processes or sensitive to environmental hazards in marine sentinel organisms and mammals.
Collapse
Affiliation(s)
- Mario Alberto Burgos-Aceves
- Department of Chemistry and Biology, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Amit Cohen
- Genomic Data Analysis Unit, The Hebrew University of Jerusalem-Hadassah Medical School, P.O. Box 12272, Jerusalem 91120, Israel
| | - Gaetana Paolella
- Department of Chemistry and Biology, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Marilena Lepretti
- Department of Chemistry and Biology, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Yoav Smith
- Genomic Data Analysis Unit, The Hebrew University of Jerusalem-Hadassah Medical School, P.O. Box 12272, Jerusalem 91120, Israel
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres, 31, 98166 Messina, Italy.
| | - Lillà Lionetti
- Department of Chemistry and Biology, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| |
Collapse
|
9
|
Sohrabji F, Selvamani A. Sex differences in miRNA as therapies for ischemic stroke. Neurochem Int 2018; 127:56-63. [PMID: 30391509 DOI: 10.1016/j.neuint.2018.10.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 10/25/2018] [Accepted: 10/26/2018] [Indexed: 01/12/2023]
Abstract
MicroRNAs, a subset of non-coding RNAs, are present in virtually all tissues including body fluids and are global regulators of the transcriptome. In view of the expanding number of microRNAs and the large number of gene targets that each microRNA can potentially regulate, they have been compared to hormones in the scope of their effects. MicroRNA have been implicated as biomarkers for several diseases including stroke, as well as chronic conditions that are associated with stroke. Recent research has focused on manipulating miRNA to improve stroke outcomes. Although several miRNAs have been shown to have neuroprotective properties, the overwhelming majority of these studies have employed only male animals. This review will focus on two miRNAs, Let7f and mir363-3p, whose effectiveness as a stroke neuroprotectant is sex-specific.
Collapse
Affiliation(s)
- Farida Sohrabji
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M College of Medicine, Bryan, TX, 77807, USA.
| | - Amutha Selvamani
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M College of Medicine, Bryan, TX, 77807, USA
| |
Collapse
|
10
|
Shao B, Fu X, Yu Y, Yang D. Regulatory effects of miRNA‑181a on FasL expression in bone marrow mesenchymal stem cells and its effect on CD4+T lymphocyte apoptosis in estrogen deficiency‑induced osteoporosis. Mol Med Rep 2018; 18:920-930. [PMID: 29845202 PMCID: PMC6059724 DOI: 10.3892/mmr.2018.9026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 04/19/2018] [Indexed: 12/29/2022] Open
Abstract
Post-menopausal osteoporosis is a bone formation disorder induced by estrogen deficiency. Estrogen deficiency facilitates the differentiation and maturation of osteoclasts by activating T lymphocytes. In our previous study, it was demonstrated that estrogen promotes bone marrow mesenchymal stem cell (BMMSC)‑induced osteoclast apoptosis through downregulation of microRNA (miR)‑181a and subsequent Fas ligand (FasL) protein accumulation. In the present study, the regulatory effects of miR‑181a on FasL expression in BMMSCs and the apoptotic effects of BMMSCs on cluster of differentiation (CD)4+T lymphocytes were investigated. An ovariectomized mouse model of osteoporosis (OVX) was established and CD4+T lymphocytes were isolated from the bones of these mice. The results demonstrated that the number of CD4+T lymphocytes was increased in the OVX group compared within the control group, thus suggesting that estrogen deficiency may increase CD4+T lymphocyte number. CD4+T lymphocytes were subsequently co‑cultured with estrogen‑treated BMMSCs, after which it was demonstrated that estrogen significantly promoted the apoptosis of CD4+T lymphocytes. Western blot analysis indicated that estrogen promoted the apoptosis of CD4+T lymphocytes through regulation of FasL expression in BMMSCs in a concentration‑dependent manner. Finally, miR‑181a was transfected into BMMSCs, which were co‑cultured with CD4+T lymphocytes in vitro and in vivo. The results revealed that miR‑181a exerted a negative regulatory effect on BMMSC‑induced CD4+T lymphocyte apoptosis by regulating FasL protein expression in BMMSCs; this maybe a key mechanism underlying the development of estrogen deficiency‑induced osteoporosis.
Collapse
Affiliation(s)
- Bingyi Shao
- Department of Operative Dentistry and Endodontics, Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing 401147, P.R. China
| | - Xiaohui Fu
- Department of Orthodontics, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Yang Yu
- Department of Operative Dentistry and Endodontics, Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing 401147, P.R. China
| | - Deqin Yang
- Department of Operative Dentistry and Endodontics, Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing 401147, P.R. China
| |
Collapse
|
11
|
Flöter VL, Lorenz AK, Kirchner B, Pfaffl MW, Bauersachs S, Ulbrich SE. Impact of preimplantational oral low-dose estradiol-17β exposure on the endometrium: The role of miRNA. Mol Reprod Dev 2018. [DOI: 10.1002/mrd.22975] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Veronika L. Flöter
- ETH Zurich, Animal Physiology; Institute of Agricultural Sciences; Zürich Switzerland
- Department of Animal Physiology and Immunology, School of Life Sciences, Life Science Center Weihenstephan; Technical University Munich; Freising-Weihenstephan Germany
| | - Anne-Kathrin Lorenz
- ETH Zurich, Animal Physiology; Institute of Agricultural Sciences; Zürich Switzerland
- Department of Animal Physiology and Immunology, School of Life Sciences, Life Science Center Weihenstephan; Technical University Munich; Freising-Weihenstephan Germany
| | - Benedikt Kirchner
- Department of Animal Physiology and Immunology, School of Life Sciences, Life Science Center Weihenstephan; Technical University Munich; Freising-Weihenstephan Germany
| | - Michael W. Pfaffl
- Department of Animal Physiology and Immunology, School of Life Sciences, Life Science Center Weihenstephan; Technical University Munich; Freising-Weihenstephan Germany
| | - Stefan Bauersachs
- ETH Zurich, Animal Physiology; Institute of Agricultural Sciences; Zürich Switzerland
| | - Susanne E. Ulbrich
- ETH Zurich, Animal Physiology; Institute of Agricultural Sciences; Zürich Switzerland
| |
Collapse
|
12
|
Pelka KE, Henn K, Keck A, Sapel B, Braunbeck T. Size does matter - Determination of the critical molecular size for the uptake of chemicals across the chorion of zebrafish (Danio rerio) embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 185:1-10. [PMID: 28142078 DOI: 10.1016/j.aquatox.2016.12.015] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 11/19/2016] [Accepted: 12/16/2016] [Indexed: 06/06/2023]
Abstract
In order to identify the upper limits of the molecular size of chemicals to cross the chorion of zebrafish, Danio rerio, differently sized, non-toxic and chemically inert polyethylene glycols (PEGs; 2000-12,000Da) were applied at concentrations (9.76mM) high enough to provoke osmotic pressure. Whereas small PEGs were expected to be able to cross the chorion, restricted uptake of large PEGs was hypothesized to result in shrinkage of the chorion. Due to a slow, but gradual uptake of PEGs over time, molecular size-dependent equilibration in conjunction with a regain of the spherical chorion shape was observed. Thus, the size of molecules able to cross the chorion could be narrowed down precisely to ≤4000Da, and the time-dependency of the movement across the chorion could be described. To account for associated alterations in embryonic development, fish embryo toxicity tests (FETs) according to OECD test guideline 236 (OECD, 2013) were performed with special emphasis to changes in chorion shape. FETs revealed clear-cut size-effects: the higher the actual molecular weight (=size) of the PEG, the more effects (both acutely toxic and sublethal) were found. No effects were seen with PEGs of 2000 and 3000Da. In contrast, PEG 8000 and PEG 12,000 were found to be most toxic with LC50 values of 16.05 and 16.40g/L, respectively. Likewise, the extent of chorion shrinkage due to increased osmotic pressure strictly depended on PEG molecular weight and duration of exposure. A reflux of water and PEG molecules into the chorion and a resulting re-shaping of the chorion could only be observed for eggs exposed to PEGs ≤4000Da. Results clearly indicate a barrier function of the zebrafish chorion for molecules larger than 3000 to 4,000Da.
Collapse
Affiliation(s)
- Katharina E Pelka
- Aquatic Ecology and Toxicology, Centre for Organismal Studies (COS), Im Neuenheimer Feld 504, University Heidelberg, Germany
| | - Kirsten Henn
- Aquatic Ecology and Toxicology, Centre for Organismal Studies (COS), Im Neuenheimer Feld 504, University Heidelberg, Germany
| | - Andreas Keck
- Aquatic Ecology and Toxicology, Centre for Organismal Studies (COS), Im Neuenheimer Feld 504, University Heidelberg, Germany
| | - Benjamin Sapel
- Aquatic Ecology and Toxicology, Centre for Organismal Studies (COS), Im Neuenheimer Feld 504, University Heidelberg, Germany
| | - Thomas Braunbeck
- Aquatic Ecology and Toxicology, Centre for Organismal Studies (COS), Im Neuenheimer Feld 504, University Heidelberg, Germany.
| |
Collapse
|
13
|
Koganti PP, Wang J, Cleveland B, Ma H, Weber GM, Yao J. Estradiol regulates expression of miRNAs associated with myogenesis in rainbow trout. Mol Cell Endocrinol 2017; 443:1-14. [PMID: 28011237 DOI: 10.1016/j.mce.2016.12.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/14/2016] [Accepted: 12/13/2016] [Indexed: 10/20/2022]
Abstract
17β-Estradiol (E2) is a steroid hormone that negatively affects muscle growth in rainbow trout, but the mechanism associated with this response is not fully understood. To better characterize the effects of E2 on muscle, we identified differentially regulated microRNAs (miRNAs) and muscle atrophy-related transcripts in juvenile rainbow trout exposed to E2. Small RNA-Seq analysis of E2-treated vs. control muscle identified 36 differentially expressed miRNAs including those known to be involved in myogenesis, cell cycle, apoptosis, and cell death. Some important myogenic miRNAs, such as miR-133 and miR-206, are upregulated while others like miR-145 and miR-499, are downregulated. Gene Ontology analysis of the target genes regulated by the miRNAs involved in atrophy and cell cycle indicates that E2 influence leads to expansion of quiescent myogenic precursor cell population to address atrophying mature muscle in rainbow trout during sexual development.
Collapse
Affiliation(s)
- Prasanthi P Koganti
- Genetics and Developmental Biology, West Virginia University, Morgantown, WV, United States
| | - Jian Wang
- Genetics and Developmental Biology, West Virginia University, Morgantown, WV, United States
| | - Beth Cleveland
- USDA/ARS, National Center for Cool and Cold Water Aquaculture Research, Kearneysville, WV, United States
| | - Hao Ma
- USDA/ARS, National Center for Cool and Cold Water Aquaculture Research, Kearneysville, WV, United States
| | - Gregory M Weber
- USDA/ARS, National Center for Cool and Cold Water Aquaculture Research, Kearneysville, WV, United States
| | - Jianbo Yao
- Genetics and Developmental Biology, West Virginia University, Morgantown, WV, United States.
| |
Collapse
|
14
|
Burgos-Aceves MA, Cohen A, Smith Y, Faggio C. Estrogen regulation of gene expression in the teleost fish immune system. FISH & SHELLFISH IMMUNOLOGY 2016; 58:42-49. [PMID: 27633675 DOI: 10.1016/j.fsi.2016.09.006] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 09/01/2016] [Accepted: 09/10/2016] [Indexed: 05/02/2023]
Abstract
Elucidating the mechanisms of estrogens-induced immunomodulation in teleost fish is of great importance due to the observed worldwide continuing decrease in pristine environments. However, little is know about the immunotoxicological consequences of exposure to these chemicals in fish, or of the mechanisms through which these effects are mediated. In this review, we summarize the results showing estrogens (natural or synthetic) acting through estrogen receptors and regulating specific target genes, also through microRNAs (miRNAs), leading to modulation of the immune functioning. The identification and characterization of miRNAs will provide new opportunities for functional genome research on teleost immune system and can also be useful when screening for novel molecule biomarkers for environmental pollution.
Collapse
Affiliation(s)
- Mario Alberto Burgos-Aceves
- Centro de Investigaciones Biológicas de Noroeste, S.C., Mar Bermejo 195, Col. Playa Palo de Sta. Rita, La Paz BCS, 23090, México
| | - Amit Cohen
- Genomic Data Analysis Unit, The Hebrew University of Jerusalem-Hadassah Medical School, P.O. Box 12272, Jerusalem 91120, Israel
| | - Yoav Smith
- Genomic Data Analysis Unit, The Hebrew University of Jerusalem-Hadassah Medical School, P.O. Box 12272, Jerusalem 91120, Israel
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres, 31, 98166 Messina, Italy.
| |
Collapse
|
15
|
Derghal A, Djelloul M, Trouslard J, Mounien L. An Emerging Role of micro-RNA in the Effect of the Endocrine Disruptors. Front Neurosci 2016; 10:318. [PMID: 27445682 PMCID: PMC4928026 DOI: 10.3389/fnins.2016.00318] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 06/23/2016] [Indexed: 12/15/2022] Open
Abstract
Endocrine-disrupting chemicals (EDCs) are diverse natural and synthetic chemicals that may alter various mechanisms of the endocrine system and produce adverse developmental, reproductive, metabolic, and neurological effects in both humans and wildlife. Research on EDCs has revealed that they use a variety of both nuclear receptor-mediated and non-receptor-mediated mechanisms to modulate different components of the endocrine system. The molecular mechanisms underlying the effects of EDCs are still under investigation. Interestingly, some of the effects of EDCs have been observed to pass on to subsequent unexposed generations, which can be explained by the gametic transmission of deregulated epigenetic marks. Epigenetics is the study of heritable changes in gene expression that occur without a change in the DNA sequence. Epigenetic mechanisms, including histone modifications, DNA methylation, and specific micro-RNAs (miRNAs) expression, have been proposed to mediate transgenerational transmission and can be triggered by environmental factors. MiRNAs are short non-coding RNA molecules that post-transcriptionally repress the expression of genes by binding to 3′-untranslated regions of the target mRNAs. Given that there is mounting evidence that miRNAs are regulated by hormones, then clearly it is important to investigate the potential for environmental EDCs to deregulate miRNA expression and action.
Collapse
Affiliation(s)
- Adel Derghal
- Aix Marseille University, PPSN Marseille, France
| | - Mehdi Djelloul
- Aix Marseille University, PPSNMarseille, France; Department of Cell and Molecular Biology, Karolinska InstituteStockholm, Sweden
| | | | | |
Collapse
|
16
|
Ali HO, Arroyo AB, González-Conejero R, Stavik B, Iversen N, Sandset PM, Martínez C, Skretting G. The role of microRNA-27a/b and microRNA-494 in estrogen-mediated downregulation of tissue factor pathway inhibitor α. J Thromb Haemost 2016; 14:1226-37. [PMID: 26999003 DOI: 10.1111/jth.13321] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 03/04/2016] [Indexed: 12/01/2022]
Abstract
UNLABELLED Essentials Estrogens are known to influence the expression of microRNAs in breast cancer cells. We looked at microRNAs in estrogenic regulation of tissue factor pathway inhibitor α (TFPIα). Estrogen upregulated microRNA-27a/b and microRNA-494 through the estrogen receptor α. MicroRNA-27a/b and microRNA-494 are partly involved in estrogenic downregulation of TFPIα. SUMMARY Background Tissue factor pathway inhibitor (TFPI) has been linked to breast cancer pathogenesis. We have recently reported TFPI mRNA levels to be downregulated by estrogens in a breast cancer cell line (MCF7) through the estrogen receptor α (ERα). Accumulating evidence also indicates that activation of ERα signaling by estrogens may modulate the expression of target genes indirectly through microRNAs (miRNAs). Objectives To examine if miRNAs are involved in the estrogenic downregulation of TFPIα. Methods Computational analysis of the TFPI 3'-untranslated region (UTR) identified potential binding sites for miR-19a/b, miR-27a/b, miR-494, and miR-24. Transient overexpression or inhibition of the respective miRNAs was achieved by transfection of miRNA mimics or inhibitors. Direct targeting of TFPI 3'-UTR by miR-27a/b and miR-494 was determined by luciferase reporter assay in HEK293T cells. Effects of 17α-ethinylestradiol (EE2) and fulvestrant on relative miR-27a/b, miR-494, and TFPI mRNA levels in MCF7 cells were determined by qRT-PCR and secreted TFPIα protein by ELISA. Transient knockdown of ERα was achieved by siRNA transfection. Results EE2 treatment lead to a significant increase in miR-19a, miR-27a/b, miR-494, and miR-24 mRNA levels in MCF7 cells through ERα. miR-27a/b and miR-494 mimics lead to reduced TFPI mRNA and protein levels. Luciferase assay showed direct targeting of miR-27a/b and miR-494 on TFPI mRNA. Impaired estrogen-mediated downregulation of TFPI mRNA was detected in anti-miR-27a/b and anti-miR-494 transfected cells. Conclusions Our results provide evidence that miR-27a/b and miR-494 regulate TFPIα expression and suggest a possible role of these miRNAs in the estrogen-mediated downregulation of TFPIα.
Collapse
Affiliation(s)
- H O Ali
- Department of Haematology, Oslo University Hospital, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - A B Arroyo
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, IMIB-Arrixaca, University of Murcia, Murcia, Spain
| | - R González-Conejero
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, IMIB-Arrixaca, University of Murcia, Murcia, Spain
| | - B Stavik
- Department of Haematology, Oslo University Hospital, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| | - N Iversen
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - P M Sandset
- Department of Haematology, Oslo University Hospital, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - C Martínez
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, IMIB-Arrixaca, University of Murcia, Murcia, Spain
| | - G Skretting
- Department of Haematology, Oslo University Hospital, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
17
|
Cohen A, Burgos-Aceves MA, Smith Y. Estrogen repression of microRNA as a potential cause of cancer. Biomed Pharmacother 2016; 78:234-238. [PMID: 26898447 DOI: 10.1016/j.biopha.2016.01.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 12/29/2015] [Accepted: 01/13/2016] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRNAs) are endogenous small molecules that regulate gene expression and have been implicated in the pathogenesis of many human diseases, including cancer. This review describes the results that show a global repression in miRNA expression in various tumors and cancer cell lines. Intriguingly, recent discoveries have shown a widespread downregulation of miRNA after exposure to the steroid hormone estrogen. The integration of the results suggests that estrogen-dependent repression of miRNA is a potential cause of cancer.
Collapse
Affiliation(s)
- Amit Cohen
- Genomic Data Analysis Unit, The Hebrew University of Jerusalem-Hadassah Medical School, P.O. Box 12272, Jerusalem 91120, Israel
| | - Mario Alberto Burgos-Aceves
- Centro de Investigaciones Biolόgicas del Noroeste, S.C. Mar Bermejo 195, Col. Playa Palo de Sta. Rita, La Paz, BCS, 23090, México.
| | - Yoav Smith
- Genomic Data Analysis Unit, The Hebrew University of Jerusalem-Hadassah Medical School, P.O. Box 12272, Jerusalem 91120, Israel
| |
Collapse
|
18
|
Topper VY, Walker DM, Gore AC. Sexually dimorphic effects of gestational endocrine-disrupting chemicals on microRNA expression in the developing rat hypothalamus. Mol Cell Endocrinol 2015; 414:42-52. [PMID: 26190835 PMCID: PMC4553128 DOI: 10.1016/j.mce.2015.07.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 06/30/2015] [Accepted: 07/14/2015] [Indexed: 12/11/2022]
Abstract
This study examined developmental changes and sexual dimorphisms in hypothalamic microRNAs, and whether gestational exposures to environmental endocrine-disrupting chemicals (EDCs) altered their expression patterns. Pregnant rat dams were treated on gestational days 16 and 18 with vehicle, estradiol benzoate, or a mixture of polychlorinated biphenyls. Male and female offspring were euthanized on postnatal days (P) 15, 30, 45, or 90, and microRNA and mRNA targets were quantified in the medial preoptic nucleus (MPN) and ventromedial nucleus (VMN) of the hypothalamus. MicroRNAs showed robust developmental changes in both regions, and were sexually dimorphic in the MPN, but not VMN. Importantly, microRNAs in females were up-regulated by EDCs at P30, and down-regulated in males at P90. Few changes in mRNAs were found. Thus, hypothalamic microRNAs are sensitive to prenatal EDC treatment in a sex-, developmental age-, and brain region-specific manner.
Collapse
Affiliation(s)
- Viktoria Y Topper
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Deena M Walker
- Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
| | - Andrea C Gore
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA; Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA; Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
19
|
Mennigen JA. Micromanaging metabolism-a role for miRNAs in teleost energy metabolism. Comp Biochem Physiol B Biochem Mol Biol 2015; 199:115-125. [PMID: 26384523 DOI: 10.1016/j.cbpb.2015.09.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/08/2015] [Accepted: 09/08/2015] [Indexed: 10/23/2022]
Abstract
MicroRNAs (miRNAs) are small, non-protein coding RNA sequences, which are found in most eukaryotes. Since their initial discovery, miRNAs have emerged as important regulators of many biological processes. One of the most important processes profoundly regulated by miRNAs is energy metabolism. Traditionally, metabolic functions of miRNAs have been studied in genome-sequenced mammalian organisms, especially the mouse model. However, partially driven by commercial interest in aquaculture, increasingly feasible large-scale molecular techniques have resulted in the characterization of miRNA repertoires, and importantly, several genome sequences of several (commercially important) teleost species, which also hold important roles as research models in the comparative physiology of energy metabolism. This review aims to introduce the recent advances in miRNA research in teleost fish and to describe the current knowledge of miRNA function in teleost energy metabolism. The most pressing research needs and questions to determine metabolic roles of miRNAs in teleost models are presented, as well as applicable technical approaches and current bottlenecks. Rainbow trout, which possess the advantages of newly available molecular tools and a long history as comparative research model in teleost energy metabolism, are discussed as a promising research model to address these questions.
Collapse
Affiliation(s)
- Jan A Mennigen
- College of Pharmacy, Department of Toxicology and Pharmacology, University of Austin at Texas, 107 W Dean Keeton, Austin, TX 78712, USA
| |
Collapse
|
20
|
Farlora R, Valenzuela-Miranda D, Alarcón-Matus P, Gallardo-Escárate C. Identification of microRNAs associated with sexual maturity in rainbow trout brain and testis through small RNA deep sequencing. Mol Reprod Dev 2015; 82:651-62. [DOI: 10.1002/mrd.22499] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 04/29/2015] [Indexed: 12/30/2022]
Affiliation(s)
- Rodolfo Farlora
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), Department of Oceanography; University of Concepción; Concepción Chile
| | - Diego Valenzuela-Miranda
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), Department of Oceanography; University of Concepción; Concepción Chile
| | - Pamela Alarcón-Matus
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), Department of Oceanography; University of Concepción; Concepción Chile
| | - Cristian Gallardo-Escárate
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), Department of Oceanography; University of Concepción; Concepción Chile
| |
Collapse
|
21
|
Wang N, Sun LY, Zhang SC, Wei R, Xie F, Liu J, Yan Y, Duan MJ, Sun LL, Sun YH, Niu HF, Zhang R, Ai J. MicroRNA-23a participates in estrogen deficiency induced gap junction remodeling of rats by targeting GJA1. Int J Biol Sci 2015; 11:390-403. [PMID: 25798059 PMCID: PMC4366638 DOI: 10.7150/ijbs.10930] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/21/2015] [Indexed: 01/07/2023] Open
Abstract
Increased incidence of arrhythmias in women after menopause has been widely documented, which is considered to be related to estrogen (E2) deficiency induced cardiac electrophysiological abnormalities. However, its molecular mechanism remains incompletely clear. In the present study, we found cardiac conduction blockage in post-menopausal rats. Thereafter, the results showed that cardiac gap junctions were impaired and Connexin43 (Cx43) expression was reduced in the myocardium of post-menopausal rats. The phenomenon was also observed in ovariectomized (OVX) rats, which was attenuated by E2 supplement. Further study displayed that microRNA-23a (miR-23a) level was significantly increased in both post-menopausal and OVX rats, which was reversed by daily E2 treatment after OVX. Importantly, forced overexpression of miR-23a led to gap junction impairment and Cx43 downregulation in cultured cardiomyocytes, which was rescued by suppressing miR-23a by transfection of miR-23a specific inhibitory oligonucleotide (AMO-23a). GJA1 was identified as the target gene of miR-23a by luciferase assay and miRNA-masking antisense ODN (miR-Mask) assay. We also found that E2 supplement could reverse cardiac conduction blockage, Cx43 downregulation, gap junction remodeling and miR-23a upregulation in post-menopausal rats. These findings provide the evidence that miR-23a mediated repression of Cx43 participates in estrogen deficiency induced damages of cardiac gap junction, and highlights a new insight into molecular mechanism of post-menopause related arrhythmia at the microRNA level.
Collapse
Affiliation(s)
- Ning Wang
- 1. Department of Pharmacology, Harbin Medical University (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, People's Republic of China, 150081
| | - Lu-Yao Sun
- 1. Department of Pharmacology, Harbin Medical University (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, People's Republic of China, 150081
| | - Shou-Chen Zhang
- 3. Electron Microscopy Center, Harbin Medical University, Harbin, People's Republic of China, 150081
| | - Ran Wei
- 1. Department of Pharmacology, Harbin Medical University (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, People's Republic of China, 150081
| | - Fang Xie
- 1. Department of Pharmacology, Harbin Medical University (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, People's Republic of China, 150081 ; 2. Laboratory of Cardiovascular Medicine Research (Harbin Medical University), Ministry of Education, Harbin, People's Republic of China, 150081
| | - Jing Liu
- 1. Department of Pharmacology, Harbin Medical University (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, People's Republic of China, 150081
| | - Yan Yan
- 1. Department of Pharmacology, Harbin Medical University (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, People's Republic of China, 150081
| | - Ming-Jing Duan
- 1. Department of Pharmacology, Harbin Medical University (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, People's Republic of China, 150081
| | - Lin-Lin Sun
- 1. Department of Pharmacology, Harbin Medical University (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, People's Republic of China, 150081
| | - Ying-Hui Sun
- 1. Department of Pharmacology, Harbin Medical University (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, People's Republic of China, 150081
| | - Hui-Fang Niu
- 1. Department of Pharmacology, Harbin Medical University (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, People's Republic of China, 150081
| | - Rong Zhang
- 1. Department of Pharmacology, Harbin Medical University (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, People's Republic of China, 150081
| | - Jing Ai
- 1. Department of Pharmacology, Harbin Medical University (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, People's Republic of China, 150081
| |
Collapse
|
22
|
Yu RMK, Chaturvedi G, Tong SKH, Nusrin S, Giesy JP, Wu RSS, Kong RYC. Evidence for microRNA-mediated regulation of steroidogenesis by hypoxia. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:1138-47. [PMID: 25496461 DOI: 10.1021/es504676s] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Environmental hypoxia can occur in both natural and occupational environments. Over the recent years, the ability of hypoxia to cause endocrine disruption via perturbations in steroid synthesis (steroidogenesis) has become increasingly clear. To further understand the molecular mechanism underlying hypoxia-induced endocrine disruption, the steroid-producing human cell line H295R was used to identify microRNAs (miRNAs) affecting steroidogenic gene expression under hypoxia. Hypoxic treatment of H295R cells resulted in the downregulation of seven steroidogenic genes and one of these, CYP19A1 (aromatase), was shown to be regulated by the transcription factor hypoxia-inducible factor-1 (HIF-1). Using bioinformatic and luciferase reporter analyses, miR-98 was identified to be a CYP19A1-targeting miRNA from a subset of HIF-1-inducible miRNAs. Gain- and loss-of-function analysis suggested that under hypoxia, the increased expression of miR-98 led to the downregulation of CYP19A1 mRNA and protein expression and that it may have contributed to a reduction in estradiol (E2) production. Intriguingly, luciferase reporter assays using deletion constructs of a proximal 5′-flanking region of miR-98 did not reveal a hypoxia-responsive element (HRE)-containing promoter. Overall, this study provided evidence for the role of miRNAs in regulating steroidogenesis and novel insights into the molecular mechanisms of hypoxia-induced endocrine disruption.
Collapse
|
23
|
Vrtačnik P, Ostanek B, Mencej-Bedrač S, Marc J. The many faces of estrogen signaling. Biochem Med (Zagreb) 2014; 24:329-42. [PMID: 25351351 PMCID: PMC4210253 DOI: 10.11613/bm.2014.035] [Citation(s) in RCA: 262] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 08/14/2014] [Indexed: 12/21/2022] Open
Abstract
Estrogens have long been known as important regulators of the female reproductive functions; however, our understanding of the role estrogens play in the human body has changed significantly over the past years. It is now commonly accepted that estrogens and androgens have important functions in both female and male physiology and pathology. This is in part due to the local synthesis and action of estrogens that broadens the role of estrogen signaling beyond that of the endocrine system. Furthermore, there are several different mechanisms through which the three estrogen receptors (ERs), ERα, ERβ and G protein-coupled estrogen receptor 1 (GPER1) are able to regulate target gene transcription. ERα and ERβ are mostly associated with the direct and indirect genomic signaling pathways that result in target gene expression. Membrane-bound GPER1 is on the other hand responsible for the rapid non-genomic actions of estrogens that activate various protein-kinase cascades. Estrogen signaling is also tightly connected with another important regulatory entity, i.e. epigenetic mechanisms. Posttranslational histone modifications, microRNAs (miRNAs) and DNA methylation have been shown to influence gene expression of ERs as well as being regulated by estrogen signaling. Moreover, several coregulators of estrogen signaling also exhibit chromatin-modifying activities further underlining the importance of epigenetic mechanisms in estrogen signaling. This review wishes to highlight the newer aspects of estrogen signaling that exceed its classical endocrine regulatory role, especially emphasizing its tight intertwinement with epigenetic mechanisms.
Collapse
Affiliation(s)
- Peter Vrtačnik
- University of Ljubljana, Faculty of Pharmacy, Department of Clinical Biochemistry, Ljubljana, Slovenia
| | - Barbara Ostanek
- University of Ljubljana, Faculty of Pharmacy, Department of Clinical Biochemistry, Ljubljana, Slovenia
| | - Simona Mencej-Bedrač
- University of Ljubljana, Faculty of Pharmacy, Department of Clinical Biochemistry, Ljubljana, Slovenia
| | - Janja Marc
- University of Ljubljana, Faculty of Pharmacy, Department of Clinical Biochemistry, Ljubljana, Slovenia
| |
Collapse
|
24
|
Fletcher CE, Dart DA, Bevan CL. Interplay between steroid signalling and microRNAs: implications for hormone-dependent cancers. Endocr Relat Cancer 2014; 21:R409-29. [PMID: 25062737 DOI: 10.1530/erc-14-0208] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hormones are key drivers of cancer development. To date, interest has largely been focussed on the classical model of hormonal gene regulation, but there is increasing evidence for a role of hormone signalling pathways in post-translational regulation of gene expression. In particular, a complex and dynamic network of bi-directional interactions with microRNAs (miRs) at all stages of biogenesis and during target gene repression is emerging. miRs, which act mainly by negatively regulating gene expression through association with 3'-UTRs of mRNA species, are increasingly understood to be important in development, normal physiology and pathogenesis. Given recent demonstrations of altered miR profiles in a diverse range of cancers, their ability to function as oncogenes or tumour suppressors, and hormonal regulation of miRs, understanding mechanisms by which miRs are generated and regulated is vitally important. miRs are transcribed by RNA polymerase II and then processed in the nucleus by the Drosha-containing Microprocessor complex and in the cytoplasm by Dicer, before mature miRs are incorporated into the RNA-induced silencing complex. It is increasingly evident that multiple cellular signalling pathways converge upon the miR biogenesis cascade, adding further layers of regulatory complexity to modulate miR maturation. This review summarises recent advances in identification of novel components and regulators of the Microprocessor and Dicer complexes, with particular emphasis on the role of hormone signalling pathways in regulating their activity. Understanding hormone regulation of miR production and how this is perturbed in cancer are critical for the development of miR-based therapeutics and biomarkers.
Collapse
Affiliation(s)
- Claire E Fletcher
- Department of Surgery and CancerImperial College London, Imperial Centre for Translational and Experimental Medicine, Du Cane Road, London W12 0NN, UKCardiff University School of MedicineCardiff University Peking University Cancer Institute, Cardiff CF14 4XN, UK
| | - D Alwyn Dart
- Department of Surgery and CancerImperial College London, Imperial Centre for Translational and Experimental Medicine, Du Cane Road, London W12 0NN, UKCardiff University School of MedicineCardiff University Peking University Cancer Institute, Cardiff CF14 4XN, UK Department of Surgery and CancerImperial College London, Imperial Centre for Translational and Experimental Medicine, Du Cane Road, London W12 0NN, UKCardiff University School of MedicineCardiff University Peking University Cancer Institute, Cardiff CF14 4XN, UK
| | - Charlotte L Bevan
- Department of Surgery and CancerImperial College London, Imperial Centre for Translational and Experimental Medicine, Du Cane Road, London W12 0NN, UKCardiff University School of MedicineCardiff University Peking University Cancer Institute, Cardiff CF14 4XN, UK
| |
Collapse
|
25
|
Tay JW, Romeo G, Hughes QW, Baker RI. Micro-ribonucleic Acid 494 regulation of protein S expression. J Thromb Haemost 2013; 11:1547-55. [PMID: 23789915 DOI: 10.1111/jth.12331] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Indexed: 01/24/2023]
Abstract
BACKGROUND Acquired protein S (PS) deficiency is highly associated with elevated circulating estrogen levels resulting from pregnancy, oral contraceptives, and estrogen replacement therapy; however, the mechanism of estrogen-mediated acquired PS deficiency remains poorly understood. Increasing evidence indicates that estrogen receptor signaling can indirectly modulate the expression of target genes at the post-transcriptional level by modulating the expression of microRNAs (miRNAs), and miRNAs have also been demonstrated to be involved in the regulation of hemostasis. OBJECTIVES To investigate the mechanism of estrogen-mediated downregulation of PROS1 expression by the microRNA miR-494. METHODS Computational analyses of the PROS1 3'-untranslated region (UTR) were performed to identify putative miRNA-binding sites, and direct targeting of the PROS1 3'-UTR by miR-494 was determined with dual luciferase reporter assays in HuH-7 cells. Reporter vectors containing the PROS1 3'-UTR sequence with deleted miR-494-binding sites were also analyzed with luciferase reporter assays. The effects of estrogen on miR-494 and PROS1 mRNA levels in HuH-7 cells were determined by quantitative real-time PCR, and estrogen-mediated changes to secreted PS levels in culture supernatant of HuH-7 cells were measured with an ELISA. RESULTS The PROS1 3'-UTR sequence contains three putative miR-494-binding sites. miR-494 directly targets PROS1, and miR-494 levels are upregulated following estrogen treatment in HuH-7 liver cells in association with downregulated PROS1 mRNA and PS levels. CONCLUSIONS The results from this study provide the first evidence for miRNA downregulation of PROS1 by miR-494, and suggest that miR-494 is involved in the mechanism of estrogen-mediated downregulation of PS expression.
Collapse
Affiliation(s)
- J W Tay
- Department of Hematology, PathWest Laboratory Medicine, Royal Perth Hospital, Perth, WA, Australia
| | | | | | | |
Collapse
|
26
|
Cohen A, Smith Y. Estrogen regulation of microRNAs, target genes, and microRNA expression associated with vitellogenesis in the zebrafish. Zebrafish 2013; 11:462-78. [PMID: 23767875 DOI: 10.1089/zeb.2013.0873] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Estrogen is a steroid hormone that has been implicated in a variety of cellular and physiological processes and in the development of diseases such as cancer. Here we show a remarkable widespread microRNA (miRNA) downregulation in the zebrafish (Danio rerio) liver following 17β-estradiol (E2) treatment. This unique miRNA expression signature in the fish liver was further supported by a combination of computational predictions with gene expression microarray data, showing a significant bias toward upregulation of miRNA target genes after E2 treatment. Using pathway analysis of target genes, their involvement in the processes of cell cycle, DNA replication, and proteasome was observed, suggesting that miRNAs are incorporated into robust regulatory networks controlled by estrogen. In oviparous vertebrates, including fish, the formation of yolky eggs during a process known as vitellogenesis is regulated by estrogen. Microarrays were used to compare miRNA expression profiles between the livers of vitellogenic and nonvitellogenic zebrafish females. Among the upregulated miRNAs in vitellogenic females, were five members of the miR-17-92, a polycistronic miRNA cluster with a role in cell proliferation and cancer. Furthermore, a number of miRNA target genes related to fish vitellogenesis were revealed, including vtg3, a putative target of miR-122; the most abundant miRNA in the liver. Moreover, several of the differentially expressed miRNAs were only conserved in oviparous animals, which suggest an additional novel level of regulation during vitellogenesis by miRNAs and consequently, improves our knowledge of the process of oocyte growth in egg-laying animals.
Collapse
Affiliation(s)
- Amit Cohen
- Genomic Data Analysis Unit, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem , Jerusalem, Israel
| | | |
Collapse
|
27
|
Zhao J, Imbrie GA, Baur WE, Iyer LK, Aronovitz MJ, Kershaw TB, Haselmann GM, Lu Q, Karas RH. Estrogen receptor-mediated regulation of microRNA inhibits proliferation of vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 2012; 33:257-65. [PMID: 23175673 DOI: 10.1161/atvbaha.112.300200] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
OBJECTIVE Estradiol (E2) regulates gene transcription by activating estrogen receptor-α and estrogen receptor-β. Many of the genes regulated by E2 via estrogen receptors are repressed, yet the molecular mechanisms that mediate E2-induced gene repression are currently unknown. We hypothesized that E2, acting through estrogen receptors, regulates expression of microRNAs (miRs) leading to repression of expression of specific target genes. METHODS AND RESULTS Here, we report that E2 significantly upregulates the expression of 26 miRs and downregulates the expression of 6 miRs in mouse aorta. E2-mediated upregulation of one of these miRs, miR-203, was chosen for further study. In cultured vascular smooth muscle cells (VSMC), E2-mediated upregulation of miR-203 is mediated by estrogen receptor-α (but not estrogen receptor-β) via transcriptional upregulation of the primary miR. We demonstrate that the transcription factors Zeb-1 and AP-1 play critical roles in mediating E2-induced upregulation of miR-203 transcription. We show further that miR-203 mediates E2-induced repression of Abl1, and p63 protein abundance in VSMC. Finally, knocking-down miR-203 abolishes E2-mediated inhibition of VSMC proliferation, and overexpression of miR-203 inhibits cultured VSMC proliferation, but not vascular endothelial cell proliferation. CONCLUSIONS Our findings demonstrate that E2 regulates expression of miRs in the vasculature and support the estrogen receptors-dependent induction of miRs as a mechanism for E2-mediated gene repression. Furthermore, our findings demonstrate that miR-203 contributes to E2-induced inhibition of VSMC proliferation and highlight the potential of miR-203 as a therapeutic agent in the treatment of proliferative cardiovascular diseases.
Collapse
Affiliation(s)
- Jin Zhao
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA 02111, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Cochrane DR, Spoelstra NS, Richer JK. The role of miRNAs in progesterone action. Mol Cell Endocrinol 2012; 357:50-9. [PMID: 21952083 DOI: 10.1016/j.mce.2011.09.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 08/09/2011] [Accepted: 09/11/2011] [Indexed: 12/21/2022]
Abstract
Small non-coding RNAs termed microRNAs (miRNAs) are mediators of post-transcriptional gene silencing and are involved in all aspects of cell biology. Progesterone receptors (PR) are intimately involved in the normal physiology and diseases of hormone responsive tissues including the uterus and the breast. Recent evidence suggests that hormone regulated miRNAs play a substantial role in hormone receptor mediated gene regulation. However, relatively little is known regarding miRNAs regulated by PR or that target PR as compared to those regulated by or targeting estrogen receptors (ER). We summarize the state of current knowledge regarding miRNAs and PR action. We also delineate how progesterone regulated miRNAs might provide an additional level of control and fine tuning of gene regulation by hormone receptors and also facilitate cell- and tissue-specific gene regulation PR.
Collapse
Affiliation(s)
- Dawn R Cochrane
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Denver 80045, USA
| | | | | |
Collapse
|
29
|
Cochrane DR, Jacobsen BM, Connaghan KD, Howe EN, Bain DL, Richer JK. Progestin regulated miRNAs that mediate progesterone receptor action in breast cancer. Mol Cell Endocrinol 2012; 355:15-24. [PMID: 22330642 PMCID: PMC4716679 DOI: 10.1016/j.mce.2011.12.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 11/23/2011] [Accepted: 12/29/2011] [Indexed: 01/01/2023]
Abstract
Progesterone receptors (PRs) mediate response to progestins in the normal breast and breast cancer. To determine if liganded PR regulate microRNAs (miRNAs) as a component of their action, we profiled mature miRNA levels following progestin treatment. Indeed, 28 miRNAs are significantly altered by 6h of progestin treatment. Many progestin-responsive genes are putative targets of progestin-regulated miRNAs; for example, progestin treatment decreases miR-29, thereby relieving repression of one of its direct targets, the gene encoding ATPase, Na(+)/K(+) transporting, beta 1 polypeptide (ATP1B1). Thus, liganded PR regulates ATP1B1 through sites in the promoter and the 3'UTR, to achieve maximal tight hormonal regulation of ATP1B1 protein via both transcriptional and translational control. We find that ATP1B1 serves to limit migration and invasion in breast cancer cells. Lastly, we demonstrate that PR itself is regulated by a progestin-upregulated miRNA, miR-513a-5p, providing a novel mechanism for tight control of PR protein expression.
Collapse
Affiliation(s)
- Dawn R. Cochrane
- Department of Pathology, University of Colorado Denver Anschutz Medical Campus, Denver, USA
| | - Britta M. Jacobsen
- Department of Medicine, University of Colorado Denver Anschutz Medical Campus, Denver, USA
| | - Keith D. Connaghan
- Department of Pharmaceutical Sciences, University of Colorado Denver Anschutz Medical Campus, Denver, USA
| | - Erin N. Howe
- Department of Pathology, University of Colorado Denver Anschutz Medical Campus, Denver, USA
| | - David L. Bain
- Department of Pharmaceutical Sciences, University of Colorado Denver Anschutz Medical Campus, Denver, USA
| | - Jennifer K. Richer
- Department of Pathology, University of Colorado Denver Anschutz Medical Campus, Denver, USA
| |
Collapse
|
30
|
Tilghman SL, Bratton MR, Segar HC, Martin EC, Rhodes LV, Li M, McLachlan JA, Wiese TE, Nephew KP, Burow ME. Endocrine disruptor regulation of microRNA expression in breast carcinoma cells. PLoS One 2012; 7:e32754. [PMID: 22403704 PMCID: PMC3293845 DOI: 10.1371/journal.pone.0032754] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 01/30/2012] [Indexed: 12/27/2022] Open
Abstract
Background Several environmental agents termed “endocrine disrupting compounds” or EDCs have been reported to bind and activate the estrogen receptor-α (ER). The EDCs DDT and BPA are ubiquitously present in the environment, and DDT and BPA levels in human blood and adipose tissue are detectable in most if not all women and men. ER-mediated biological responses can be regulated at numerous levels, including expression of coding RNAs (mRNAs) and more recently non-coding RNAs (ncRNAs). Of the ncRNAs, microRNAs have emerged as a target of estrogen signaling. Given the important implications of EDC-regulated ER function, we sought to define the effects of BPA and DDT on microRNA regulation and expression levels in estrogen-responsive human breast cancer cells. Methodology/Principal Findings To investigate the cellular effects of DDT and BPA, we used the human MCF-7 breast cancer cell line, which is ER (+) and hormone sensitive. Our results show that DDT and BPA potentiate ER transcriptional activity, resulting in an increased expression of receptor target genes, including progesterone receptor, bcl-2, and trefoil factor 1. Interestingly, a differential increase in expression of Jun and Fas by BPA but not DDT or estrogen was observed. In addition to ER responsive mRNAs, we investigated the ability of DDT and BPA to alter the miRNA profiles in MCF-7 cells. While the EDCs and estrogen similarly altered the expression of multiple microRNAs in MCF-7 cells, including miR-21, differential patterns of microRNA expression were induced by DDT and BPA compared to estrogen. Conclusions/Significance We have shown, for the first time, that BPA and DDT, two well known EDCs, alter the expression profiles of microRNA in MCF-7 breast cancer cells. A better understanding of the molecular mechanisms of these compounds could provide important insight into the role of EDCs in human disease, including breast cancer.
Collapse
Affiliation(s)
- Syreeta L Tilghman
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana, United States of America
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Zucchi S, Oggier DM, Fent K. Global gene expression profile induced by the UV-filter 2-ethyl-hexyl-4-trimethoxycinnamate (EHMC) in zebrafish (Danio rerio). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2011; 159:3086-3096. [PMID: 21601967 DOI: 10.1016/j.envpol.2011.04.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 03/26/2011] [Accepted: 04/03/2011] [Indexed: 05/30/2023]
Abstract
Residues of the UV-filter 2-ethyl-hexyl-4-trimethoxycinnamate (EHMC) are ubiquitously found in aquatic biota but potential adverse effects in fish are fairly unknown. To identify molecular effects and modes of action of EHMC we applied a gene expression profiling in zebrafish using whole genome microarrays. Transcriptome analysis and validation of targeted genes were performed after 14 days of exposure of male zebrafish. Concentrations of 2.2 μg/L and 890 μg/L EHMC lead to alteration of 1096 and 1137 transcripts, respectively, belonging to many pathways. Genes involved in lipid metabolism and estrogenic pathway (vtg1), lipid biosynthesis (ptgds), vitamin A metabolic process (rbp2a), DNA damage and apoptosis (gadd45b), and regulation of cell growth (igfbp1a) were investigated by qRT-PCR analysis in whole body, liver, brain and testis. The analysis showed tissue-specific gene profiles and revealed that EHMC slightly affects the transcription of genes involved in hormonal pathways including vtg1, esr1, esr2b, ar, cyp19b and hsd17β3.
Collapse
Affiliation(s)
- Sara Zucchi
- University of Applied Sciences Northwestern Switzerland, School of Life Sciences, Gründensrasse 40, CH-4132 Muttenz, Switzerland
| | | | | |
Collapse
|
32
|
Sanchez BC, Carter B, Hammers HR, Sepúlveda MS. Transcriptional response of hepatic largemouth bass (Micropterus salmoides) mRNA upon exposure to environmental contaminants. J Appl Toxicol 2011; 31:108-16. [PMID: 20589742 DOI: 10.1002/jat.1553] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Microarrays enable gene transcript expression changes in near-whole genomes to be assessed in response to environmental stimuli. We utilized oligonucleotide microarrays and subsequent gene set enrichment analysis (GSEA) to assess patterns of gene expression changes in male largemouth bass (Micropterus salmoides) hepatic tissues after a 96 h exposure to common environmental contaminants. Fish were exposed to atrazine, cadmium chloride, PCB 126, phenanthrene and toxaphene via intraperitoneal injection with target body burdens of 3.0, 0.00067, 2.5, 50 and 100 µg g(-1), respectively. This was conducted in an effort to identify potential biomarkers of exposure. The expressions of 4, 126, 118, 137 and 58 mRNA transcripts were significantly (P ≤ 0.001, fold change ≥2×) affected by exposure to atrazine, cadmium chloride, PCB 126, phenanthrene and toxaphene exposures, respectively. GSEA revealed that none, four, five, five and three biological function gene ontology categories were significantly influenced by exposure to these chemicals, respectively. We observed that cadmium chloride elicited ethanol metabolism responses, and along with PCB 126 and phenanthrene affected transcripts associated with protein biosynthesis. PCB 126, phenanthrene and toxaphene also influenced one-carbon compound metabolism while PCB 126 and phenanthrene affected mRNA transcription and mRNA export from the nucleus and may have induced an antiestrogenic response. Atrazine was found to alter the expression of few hepatic transcripts. This work has highlighted several biological processes of interest that may be helpful in the development of gene transcript biomarkers of chemical exposure in fish.
Collapse
Affiliation(s)
- Brian C Sanchez
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | |
Collapse
|
33
|
Cochrane DR, Cittelly DM, Richer JK. Steroid receptors and microRNAs: relationships revealed. Steroids 2011; 76:1-10. [PMID: 21093468 DOI: 10.1016/j.steroids.2010.11.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 10/22/2010] [Accepted: 11/10/2010] [Indexed: 01/04/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that serve as post-transcriptional regulators of gene expression. They work predominantly by binding to complementary sequences in target messenger RNA (mRNA) 3' untranslated regions (UTRs) where they prevent translation or cause degradation of the message. Steroid hormone receptors (SHRs) are ligand-activated transcription factors that regulate genes in steroid responsive tissues. Recent studies demonstrate that SHRs regulate miRNAs, and in turn, miRNAs can regulate SHR expression and function. Mounting evidence indicates that miRNAs are intimately involved with SHRs, as they are with other transcription factors, often in double negative feedback loops. Investigators are just beginning to expose the details of these complex relationships and reveal the extent to which miRNAs are involved with SHRs in normal physiology and the pathobiology of steroid hormone responsive tissues.
Collapse
Affiliation(s)
- Dawn R Cochrane
- Department of Pathology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | | |
Collapse
|
34
|
Yao N, Yang BQ, Liu Y, Tan XY, Lu CL, Yuan XH, Ma X. Follicle-stimulating hormone regulation of microRNA expression on progesterone production in cultured rat granulosa cells. Endocrine 2010; 38:158-66. [PMID: 20734245 DOI: 10.1007/s12020-010-9345-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 04/19/2010] [Indexed: 12/16/2022]
Abstract
MicroRNAs (miRNAs) regulate gene expression post-transcriptionally by interacting with the 3' untranslated regions of their target mRNAs. Previously, miRNAs have been shown to regulate genes involved in cell growth, apoptosis, and differentiation, but their role in ovarian granulosa cell follicle-stimulating hormone (FSH)-stimulated steroidogenesis is unclear. Here we show that expression of 31 miRNAs is altered during FSH-mediated progesterone secretion of cultured granulosa cells. Specifically, 12 h after FSH treatment, miRNAs mir-29a and mir-30d were significantly down-regulated. However, their expression increased after 48 h. Bioinformatic analysis used to predict potential targets of mir-29a and mir-30d revealed a wide array of potential mRNA target genes, including those encoding genes involved in multiple signaling pathways. Taken together, our results pointed to a novel mechanism for the pleiotropic effects of FSH.
Collapse
Affiliation(s)
- Nan Yao
- Graduate School of Peking Union Medical College, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
35
|
Sukardi H, Ung CY, Gong Z, Lam SH. Incorporating zebrafish omics into chemical biology and toxicology. Zebrafish 2010; 7:41-52. [PMID: 20384484 DOI: 10.1089/zeb.2009.0636] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In this communication, we describe the general aspects of omics approaches for analyses of transcriptome, proteome, and metabolome, and how they can be strategically incorporated into chemical screening and perturbation studies using the zebrafish system. Pharmacological efficacy and selectivity of chemicals can be evaluated based on chemical-induced phenotypic effects; however, phenotypic observation has limitations in identifying mechanistic action of chemicals. We suggest adapting gene-expression-based high-throughput screening as a complementary strategy to zebrafish-phenotype-based screening for mechanistic insights about the mode of action and toxicity of a chemical, large-scale predictive applications and comparative analysis of chemical-induced omics signatures, which are useful to identify conserved biological responses, signaling pathways, and biomarkers. The potential mechanistic, predictive, and comparative applications of omics approaches can be implemented in the zebrafish system. Examples of these using the omics approaches in zebrafish, including data of ours and others, are presented and discussed. Omics also facilitates the translatability of zebrafish studies across species through comparison of conserved chemical-induced responses. This review is intended to update interested readers with the current omics approaches that have been applied in chemical studies on zebrafish and their potential in enhancing discovery in chemical biology.
Collapse
Affiliation(s)
- Hendrian Sukardi
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | | | | | | |
Collapse
|
36
|
Fine-tuning the brain: MicroRNAs. Front Neuroendocrinol 2010; 31:128-33. [PMID: 19683017 DOI: 10.1016/j.yfrne.2009.08.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 08/04/2009] [Accepted: 08/06/2009] [Indexed: 01/21/2023]
Abstract
The brain is of bewildering complexity and numerous genes and signaling molecules have been described that affect the architecture and functioning of specific neuronal circuits. Recent evidence from genome analysis revealed the existence of a large group of novel RNA molecules with unexpected properties. One such group is called microRNAs, which are small 21-23 nucleotides RNA molecules that are transcribed by the genome. However, they are not translated into proteins but rather control translation of coding mRNA. Particularly in the brain, numerous different microRNAs are expressed in a cell type specific fashion both during development and in adulthood. Aberrant microRNA expression has been implicated in several human diseases including CNS diseases. The aim of this review is to emphasize their role in the development of the brain and their function. In addition, we highlight recent findings on the evolution of mammalian microRNAs and their effect on steroid signaling in the brain.
Collapse
|
37
|
Maillot G, Lacroix-Triki M, Pierredon S, Gratadou L, Schmidt S, Bénès V, Roché H, Dalenc F, Auboeuf D, Millevoi S, Vagner S. Widespread Estrogen-Dependent Repression of microRNAs Involved in Breast Tumor Cell Growth. Cancer Res 2009; 69:8332-40. [DOI: 10.1158/0008-5472.can-09-2206] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
Klinge CM. Estrogen Regulation of MicroRNA Expression. Curr Genomics 2009; 10:169-83. [PMID: 19881910 PMCID: PMC2705850 DOI: 10.2174/138920209788185289] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 02/18/2009] [Accepted: 03/16/2009] [Indexed: 02/07/2023] Open
Abstract
Women outlive men, but life expectancy is not influenced by hormone replacement (estrogen + progestin) therapy. Estrogens appear to protect brain, cardiovascular tissues, and bone from aging. Estrogens regulate genes directly through binding to estrogen receptors alpha and beta (ERalpha and ERbeta) that are ligand-activated transcription factors and indirectly by activating plasma membrane-associated ER which, in turns, activates intracellular signaling cascades leading to altered gene expression. MicroRNAs (miRNAs) are short (19-25 nucleotides), naturally-occurring, non-coding RNA molecules that base-pair with the 3' untranslated region of target mRNAs. This interaction either blocks translation of the mRNA or targets the mRNA transcript to be degraded. The human genome contains ~ 700-1,200 miRNAs. Aberrant patterns of miRNA expression are implicated in human diseases including breast cancer. Recent studies have identified miRNAs regulated by estrogens in human breast cancer cells, human endometrial stromal and myometrial smooth muscle cells, rat mammary gland, and mouse uterus. The decline of estradiol levels in postmenopausal women has been implicated in various age-associated disorders. The role of estrogen-regulated miRNA expression, the target genes of these miRNAs, and the role of miRNAs in aging has yet to be explored.
Collapse
Affiliation(s)
- Carolyn M Klinge
- />Department of Biochemistry & Molecular Biology, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| |
Collapse
|
39
|
Levi L, Pekarski I, Gutman E, Fortina P, Hyslop T, Biran J, Levavi-Sivan B, Lubzens E. Revealing genes associated with vitellogenesis in the liver of the zebrafish (Danio rerio) by transcriptome profiling. BMC Genomics 2009; 10:141. [PMID: 19335895 PMCID: PMC2678157 DOI: 10.1186/1471-2164-10-141] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Accepted: 03/31/2009] [Indexed: 11/20/2022] Open
Abstract
Background In oviparous vertebrates, including fish, vitellogenesis consists of highly regulated pathways involving 17β-estradiol (E2). Previous studies focused on a relatively small number of hepatic expressed genes during vitellogenesis. This study aims to identify hepatic genes involved in vitellogenesis and regulated by E2, by using zebrafish microarray gene expression profiling, and to provide information on functional distinctive genes expressed in the liver of a vitellogenic female, using zebrafish as a model fish. Results Genes associated with vitellogenesis were revealed by the following paired t-tests (SAM) comparisons: a) two-month old vitellogenic (Vit2) females were compared with non-vitellogenic (NV) females, showing 825 differentially expressed transcripts during early stages of vitellogenesis, b) four-month old vitellogenic (Vit4) females were compared with NV females, showing 1,046 differentially expressed transcripts during vitellogenesis and c) E2-treated males were compared with control males, showing 1,828 differentially expressed transcripts regulated by E2. A Venn diagram revealed 822 common transcripts in the three groups, indicating that these transcripts were involved in vitellogenesis and putatively regulated by E2. In addition, 431 transcripts were differentially expressed in Vit2 and Vit4 females but not in E2-treated males, indicating that they were putatively not up-regulated by E2. Correspondence analysis showed high similarity in expression profiles of Vit2 with Vit4 and of NV females with control males. The E2-treated males differed from the other groups. The repertoire of genes putatively regulated by E2 in vitellogenic females included genes associated with protein synthesis and reproduction. Genes associated with the immune system processes and biological adhesion, were among the genes that were putatively not regulated by E2. E2-treated males expressed a large array of transcripts that were not associated with vitellogenesis. The study revealed several genes that were not reported before as being regulated by E2. Also, the hepatic expression of several genes was reported here for the first time. Conclusion Gene expression profiling of liver samples revealed 1,046 differentially expressed transcripts during vitellogenesis of which at least ~64% were regulated by E2. The results raise the question on the regulation pattern and temporal pleiotropic expression of hepatic genes in vitellogenic females.
Collapse
Affiliation(s)
- Liraz Levi
- Department Marine Biology and Biotechnology, Israel Oceanographic and Limnological Research, Haifa, Israel.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Creighton CJ, Nagaraja AK, Hanash SM, Matzuk MM, Gunaratne PH. A bioinformatics tool for linking gene expression profiling results with public databases of microRNA target predictions. RNA (NEW YORK, N.Y.) 2008; 14:2290-2296. [PMID: 18812437 PMCID: PMC2578856 DOI: 10.1261/rna.1188208] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Accepted: 07/26/2008] [Indexed: 05/26/2023]
Abstract
MicroRNAs are short (approximately 22 nucleotides) noncoding RNAs that regulate the stability and translation of mRNA targets. A number of computational algorithms have been developed to help predict which microRNAs are likely to regulate which genes. Gene expression profiling of biological systems where microRNAs might be active can yield hundreds of differentially expressed genes. The commonly used public microRNA target prediction databases facilitate gene-by-gene searches. However, integration of microRNA-mRNA target predictions with gene expression data on a large scale using these databases is currently cumbersome and time consuming for many researchers. We have developed a desktop software application which, for a given target prediction database, retrieves all microRNA:mRNA functional pairs represented by an experimentally derived set of genes. Furthermore, for each microRNA, the software computes an enrichment statistic for overrepresentation of predicted targets within the gene set, which could help to implicate roles for specific microRNAs and microRNA-regulated genes in the system under study. Currently, the software supports searching of results from PicTar, TargetScan, and miRanda algorithms. In addition, the software can accept any user-defined set of gene-to-class associations for searching, which can include the results of other target prediction algorithms, as well as gene annotation or gene-to-pathway associations. A search (using our software) of genes transcriptionally regulated in vitro by estrogen in breast cancer uncovered numerous targeting associations for specific microRNAs-above what could be observed in randomly generated gene lists-suggesting a role for microRNAs in mediating the estrogen response. The software and Excel VBA source code are freely available at http://sigterms.sourceforge.net.
Collapse
Affiliation(s)
- Chad J Creighton
- The Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | | | | | |
Collapse
|
41
|
Suppression of LPS-induced Interferon-gamma and nitric oxide in splenic lymphocytes by select estrogen-regulated microRNAs: a novel mechanism of immune modulation. Blood 2008; 112:4591-7. [PMID: 18791161 DOI: 10.1182/blood-2008-04-152488] [Citation(s) in RCA: 169] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs), recently identified noncoding small RNAs, are emerging as key regulators in homeostasis of the immune system. Therefore, aberrant expression of miRNAs may be linked to immune dysfunction, such as in chronic inflammation and autoimmunity. In this study, we investigated the potential role of miRNAs in estrogen-mediated regulation of innate immune responses, as indicated by up-regulation of lipopolysaccharide (LPS)-induced interferon-gamma (IFNgamma), inducible nitric oxide synthase (iNOS), and nitric oxide in splenic lymphocytes from estrogen-treated mice. We found that miR-146a, a negative regulator of Toll-like receptor (TLR) signaling, was decreased in freshly isolated splenic lymphocytes from estrogen-treated mice compared with placebo controls. Increasing the activity of miR-146a significantly inhibited LPS-induced IFNgamma and iNOS expression in mouse splenic lymphocytes. Further, miRNA microarray and real-time reverse transcriptase-polymerase chain reaction (RT-PCR) analysis revealed that estrogen selectively up-regulates/down-regulates the expression of miRNAs in mouse splenic lymphocytes. miR-223, which is markedly enhanced by estrogen, regulates LPS-induced IFNgamma, but not iNOS or nitric oxide in splenic lymphocytes. Inhibition of miR-223 activity decreased LPS-induced IFNgamma in splenic lymphocytes from estrogen-treated mice. Our data are the first to demonstrate the selective regulation of miRNA expression in immune cells by estrogen and are indicative of an important role of miRNAs in estrogen-mediated immune regulation.
Collapse
|
42
|
Integration site preference of xenotropic murine leukemia virus-related virus, a new human retrovirus associated with prostate cancer. J Virol 2008; 82:9964-77. [PMID: 18684813 DOI: 10.1128/jvi.01299-08] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Xenotropic murine leukemia virus-related virus (XMRV) is a new human gammaretrovirus identified in prostate cancer tissue from patients homozygous for a reduced-activity variant of the antiviral enzyme RNase L. Neither a casual relationship between XMRV infection and prostate cancer nor a mechanism of tumorigenesis has been established. To determine the integration site preferences of XMRV and the potential risk of proviral insertional mutagenesis, we carried out a genome-wide analysis of viral integration sites in the prostate cell line DU145 after an acute XMRV infection and compared the integration site pattern of XMRV with those found for murine leukemia virus and two human retroviruses, human immunodeficiency virus type 1 and human T-cell leukemia virus type 1. Among all retroviruses analyzed, XMRV has the strongest preference for transcription start sites, CpG islands, DNase-hypersensitive sites, and gene-dense regions; all are features frequently associated with structurally open transcription regulatory regions of a chromosome. Analyses of XMRV integration sites in tissues from prostate cancer patients found a similar preference for the aforementioned chromosomal features. Additionally, XMRV integration sites in cancer tissues were associated with cancer breakpoints, common fragile sites, microRNA, and cancer-related genes, suggesting a selection process that favors certain chromosomal integration sites. In both acutely infected cells and cancer tissues, no common integration site was detected within or near proto-oncogenes or tumor suppressor genes. These results are consistent with a model in which XMRV may contribute to tumorigenicity via a paracrine mechanism.
Collapse
|
43
|
Affiliation(s)
- Gerrit Begemann
- LS Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|