1
|
Wu L, Huang X, Wang R, Li Y, Zhu H, Ouyang Y, Huang W. Increased Expression of TGF-β1 Contributes to the Downregulation of Progesterone Receptor Expression in the Eutopic Endometrium of Infertile Women with Minimal/Mild Endometriosis. Reprod Sci 2023; 30:3578-3589. [PMID: 37531067 DOI: 10.1007/s43032-023-01315-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 07/20/2023] [Indexed: 08/03/2023]
Abstract
Endometriosis is a hormone-dependent disease associated with impaired immunoregulation. In our recent study, we have characterized the trascriptomic transformation of eutopic endometrium from patients with minimal/mild endometriosis and controls across the menstrual cycle. However, the regulatory mechanism of altered immune microenvironment in eutopic endometrial stromal cells (ESCs) remains unclear. Here, we want to explore the regulation of immune cell to progesterone resistance and endometrial receptivity in the eutopic ESCs by cytokine (TGF-β1), and to understand the effect of TGF-β1 on the decidualization of the eutopic ESCs. Primary culture of eutopic ESCs was performed to explore the effects of TGF-β1 on the expression of Smad and progesterone receptor (PR) and the in vitro decidualization. Additionally, co-immunoprecipitation (Co-IP) was used to explore the direct interaction between Smad and PR. We found an attenuate expression of PRB protein (p=0.026) after using TGF-β1 in eutopic ESCs, although the difference of PRA before and after treatment was not significant (p=0.678). Similarly, the results of qRT-PCR showed that the mRNA level of PR (p<0.001), PRB (p=0.003) and HOXA10 (p<0.001) decreased significantly after TGF-β1 treatment, but that increased (p<0.023, for all) after SB431542 treatment in the eutopic ESCs. Moreover, TGF-β1 has a negative effect on the in vitro decidualization of eutopic ESCs (p=0.003). And the group with treatment of both TGF-β1 and SB435142 in eutopic ESCs showed significant decidual-like changes with increased prolactin level (p=0.01). We did not observe any physical interaction between the PR and p-Smad3/Smad3 proteins by using Co-IP. By activating TGF-β/Smad signaling in eutopic ESCs, elevated TGF-β1 from CD45+ immune cells could attenuate expression of PR, and further decrease endometrial receptivity.
Collapse
Affiliation(s)
- Lukanxuan Wu
- Department of Reproductive Medicine, West China Second University Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Chengdu, 610041, Sichuan, China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xin Huang
- Department of Reproductive Medicine, West China Second University Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Chengdu, 610041, Sichuan, China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ruiying Wang
- Department of Reproductive Medicine, West China Second University Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Chengdu, 610041, Sichuan, China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yujing Li
- Department of Reproductive Medicine, West China Second University Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Chengdu, 610041, Sichuan, China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Huili Zhu
- Department of Reproductive Medicine, West China Second University Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Chengdu, 610041, Sichuan, China
| | - Yunwei Ouyang
- Department of Reproductive Medicine, West China Second University Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Chengdu, 610041, Sichuan, China
| | - Wei Huang
- Department of Reproductive Medicine, West China Second University Hospital of Sichuan University, Chengdu, 610041, Sichuan, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Chengdu, 610041, Sichuan, China.
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
2
|
Daly AZ, Mortensen AH, Bando H, Camper SA. Pituitary Tumors and Immortalized Cell Lines Generated by Cre-Inducible Expression of SV40 T Antigen. Endocrinology 2021; 162:6219492. [PMID: 33837405 PMCID: PMC8183496 DOI: 10.1210/endocr/bqab073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Indexed: 02/07/2023]
Abstract
Targeted oncogenesis is the process of driving tumor formation by engineering transgenic mice that express an oncogene under the control of a cell-type specific promoter. Such tumors can be adapted to cell culture, providing immortalized cell lines. To make it feasible to follow the process of tumorigenesis and increase the opportunity for generating cell lines, we developed a mouse strain that expresses SV40 T antigens in response to Cre-recombinase. Using CRISPR/Cas9 we inserted a cassette with coding sequences for SV40 T antigens and an internal ribosome entry site with green fluorescent protein cassette (IRES-GFP) into the Rosa26 locus, downstream from a stop sequence flanked by loxP sites: Rosa26LSL-SV40-GFP. These mice were mated with previously established Prop1-cre and Tshb-cre transgenic lines. Both the Rosa26LSL-SV40-GFP/+; Prop1-cre and Rosa26LSL-SV40-GFP/+; Tshb-cre mice developed fully penetrant dwarfism and large tumors by 4 weeks. Tumors from both of these mouse lines were adapted to growth in cell culture. We have established a progenitor-like cell line (PIT-P1) that expresses Sox2 and Pitx1, and a thyrotrope-like cell line (PIT-T1) that expresses Pou1f1 and Cga. These studies demonstrate the utility of the novel, Rosa26LSL-SV40-GFP mouse line for reliable targeted oncogenesis and development of unique cell lines.
Collapse
Affiliation(s)
| | | | - Hironori Bando
- University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Sally A Camper
- University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Correspondence: Sally A. Camper, Ph.D., 5704 Medical Science Building II, 1301 Catherine St, Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
3
|
Bohaczuk SC, Cassin J, Slaiwa TI, Thackray VG, Mellon PL. Distal Enhancer Potentiates Activin- and GnRH-Induced Transcription of FSHB. Endocrinology 2021; 162:6213400. [PMID: 33824966 PMCID: PMC8157479 DOI: 10.1210/endocr/bqab069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Indexed: 11/19/2022]
Abstract
FSH is critical for fertility. Transcription of FSHB, the gene encoding the beta subunit, is rate-limiting in FSH production and is regulated by both GnRH and activin. Activin signals through SMAD transcription factors. Although the mechanisms and importance of activin signaling in mouse Fshb transcription are well-established, activin regulation of human FSHB is less well understood. We previously reported a novel enhancer of FSHB that contains a fertility-associated single nucleotide polymorphism (rs10031006) and requires a region resembling a full (8 base-pair) SMAD binding element (SBE). Here, we investigated the role of the putative SBE within the enhancer in activin and GnRH regulation of FSHB. In mouse gonadotrope-derived LβT2 cells, the upstream enhancer potentiated activin induction of both the human and mouse FSHB proximal promoters and conferred activin responsiveness to a minimal promoter. Activin induction of the enhancer required the SBE and was blocked by the inhibitory SMAD7, confirming involvement of the classical SMAD signaling pathway. GnRH induction of FSHB was also potentiated by the enhancer and dependent on the SBE, consistent with known activin/GnRH synergy regulating FSHB transcription. In DNA pull-down, the enhancer SBE bound SMAD4, and chromatin immunoprecipitation demonstrated SMAD4 enrichment at the enhancer in native chromatin. Combined activin/GnRH treatment elevated levels of the active transcriptional histone marker, histone 3 lysine 27 acetylation, at the enhancer. Overall, this study indicates that the enhancer is directly targeted by activin signaling and identifies a novel, evolutionarily conserved mechanism by which activin and GnRH can regulate FSHB transcription.
Collapse
Affiliation(s)
- Stephanie C Bohaczuk
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Jessica Cassin
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Theresa I Slaiwa
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Varykina G Thackray
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Pamela L Mellon
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California San Diego, La Jolla, California 92093, USA
- Correspondence: Pamela L. Mellon, Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA. E-mail:
| |
Collapse
|
4
|
Dulka EA, Burger LL, Moenter SM. Ovarian Androgens Maintain High GnRH Neuron Firing Rate in Adult Prenatally-Androgenized Female Mice. Endocrinology 2020; 161:5686883. [PMID: 31875912 PMCID: PMC7397485 DOI: 10.1210/endocr/bqz038] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/18/2019] [Indexed: 12/18/2022]
Abstract
Changes in gonadotropin-releasing hormone (GnRH) release frequency from the brain help drive reproductive cycles. In polycystic ovary syndrome (PCOS), persistent high GnRH/luteinizing hormone (LH) frequency disrupts cycles and exacerbates hyperandrogenemia. Adult prenatally-androgenized (PNA) mice exhibit increased GnRH neuron firing rate, elevated ovarian androgens, and disrupted cycles, but before puberty, GnRH neuron activity is reduced in PNA mice compared with controls. We hypothesized that ovarian feedback mediates the age-dependent change in GnRH neuron firing rate in PNA vs control mice. Extracellular recordings of green fluorescent protein (GFP)-identified GnRH neurons were made 5 to 7 days after sham-surgery, ovariectomy (OVX), or, in adults, after OVX plus replacement of sub-male androgen levels with dihydrotestosterone implants (OVX + DHT). In 3-week-old mice, OVX did not affect GnRH neuron firing rate in either group. In adult controls, OVX increased GnRH neuron firing rate, which was further enhanced by DHT. In adult PNA mice, however, OVX decreased GnRH neuron firing rate, and DHT restored firing rate to sham-operated levels. In contrast to the differential effects of ovarian feedback on GnRH neuron firing rate, serum LH increased after OVX in both control and PNA mice and was not altered by DHT. Pituitary gene expression largely reflected changes expected with OVX, although in PNA but not control mice, DHT treatment increased Lhb expression. These results suggest prenatal androgen exposure programs marked changes in GnRH neuron regulation by homeostatic steroid feedback. PNA lowers GnRH neuron activity in low-steroid states (before puberty, OVX), and renders activity in adulthood dependent upon ongoing exposure to elevated ovarian androgens.
Collapse
Affiliation(s)
- Eden A Dulka
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Laura L Burger
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Suzanne M Moenter
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan
- Correspondence: Suzanne M. Moenter, PhD; 7725 Med Sci II; 1137 E Catherine St; Ann Arbor, Michigan 48109-5622; phone: 734-647-1755;
| |
Collapse
|
5
|
Ongaro L, Schang G, Ho CC, Zhou X, Bernard DJ. TGF-β Superfamily Regulation of Follicle-Stimulating Hormone Synthesis by Gonadotrope Cells: Is There a Role for Bone Morphogenetic Proteins? Endocrinology 2019; 160:675-683. [PMID: 30715256 PMCID: PMC6388655 DOI: 10.1210/en.2018-01038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 01/28/2019] [Indexed: 02/08/2023]
Abstract
Bone morphogenetic proteins (BMPs) are pleiotropic ligands in the TGF-β superfamily. In the early to mid-2000s, several BMPs, including BMP2, were shown to regulate FSH synthesis alone and in synergy with activins in immortalized gonadotrope-like cell lines and primary pituitary cultures. Activins are also TGF-β family members, which were identified and named based on their abilities to stimulate FSH production selectively. Mechanistic analyses suggested that BMP2 promoted expression of the FSHβ subunit gene (Fshb) via at least two nonmutually exclusive mechanisms. First, BMP2 stimulated the production of the inhibitor of DNA-binding proteins 1, 2, and 3 (Id1, Id2, and Id3), which potentiated the stimulatory actions of homolog of Drosophila mothers against decapentaplegic 3 (SMAD3) on the Fshb promoter. SMAD3 is an intracellular signaling protein that canonically mediates the actions of activins and is an essential regulator of Fshb production in vitro and in vivo. Second, BMP2 was shown to activate SMAD3-dependent signaling via its canonical type IA receptor, BMPR1A (also known as ALK3). This was a surprising result, as ALK3 conventionally activates distinct SMAD proteins. Although these initial results were compelling, they were challenged by contemporaneous and subsequent observations. For example, inhibitors of BMP signaling did not specifically impair FSH production in cultured pituitary cells. Of perhaps greater significance, mice lacking ALK3 in gonadotrope cells produced FSH normally. Therefore, the physiological role of BMPs in FSH synthesis in vivo is presently uncertain.
Collapse
Affiliation(s)
- Luisina Ongaro
- Department of Pharmacology and Therapeutics, Centre for Research in Reproduction and Development, McGill University, Montreal, Quebec, Canada
| | - Gauthier Schang
- Department of Pharmacology and Therapeutics, Centre for Research in Reproduction and Development, McGill University, Montreal, Quebec, Canada
| | - Catherine C Ho
- Department of Pharmacology and Therapeutics, Centre for Research in Reproduction and Development, McGill University, Montreal, Quebec, Canada
| | - Xiang Zhou
- Department of Pharmacology and Therapeutics, Centre for Research in Reproduction and Development, McGill University, Montreal, Quebec, Canada
| | - Daniel J Bernard
- Department of Pharmacology and Therapeutics, Centre for Research in Reproduction and Development, McGill University, Montreal, Quebec, Canada
- Correspondence: Daniel J. Bernard, PhD, Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler, Room 1315, Montréal, Québec H3G 1Y6, Canada. E-mail:
| |
Collapse
|
6
|
Coss D. Regulation of reproduction via tight control of gonadotropin hormone levels. Mol Cell Endocrinol 2018; 463:116-130. [PMID: 28342855 PMCID: PMC6457911 DOI: 10.1016/j.mce.2017.03.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/16/2017] [Accepted: 03/21/2017] [Indexed: 01/04/2023]
Abstract
Mammalian reproduction is controlled by the hypothalamic-pituitary-gonadal axis. GnRH from the hypothalamus regulates synthesis and secretion of gonadotropins, LH and FSH, which then control steroidogenesis and gametogenesis. In females, serum LH and FSH levels exhibit rhythmic changes throughout the menstrual or estrous cycle that are correlated with pulse frequency of GnRH. Lack of gonadotropins leads to infertility or amenorrhea. Dysfunctions in the tightly controlled ratio due to levels slightly outside the normal range occur in a larger number of women and are correlated with polycystic ovaries and premature ovarian failure. Since the etiology of these disorders is largely unknown, studies in cell and mouse models may provide novel candidates for investigations in human population. Hence, understanding the mechanisms whereby GnRH regulates gonadotropin hormone levels will provide insight into the physiology and pathophysiology of the reproductive system. This review discusses recent advances in our understanding of GnRH regulation of gonadotropin synthesis.
Collapse
Affiliation(s)
- Djurdjica Coss
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521, United States.
| |
Collapse
|
7
|
Zheng W, Grafer CM, Kim J, Halvorson LM. Gonadotropin-Releasing Hormone and Gonadal Steroids Regulate Transcription Factor mRNA Expression in Primary Pituitary and Immortalized Gonadotrope Cells. Reprod Sci 2015; 22:285-99. [DOI: 10.1177/1933719114565031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Weiming Zheng
- Core Laboratories, St. Paul University Hospital, Dallas, TX, USA
| | - Constance M. Grafer
- Department of Obstetrics and Gynecology, Green Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | |
Collapse
|
8
|
Wu S, Chen Y, Fajobi T, DiVall SA, Chang C, Yeh S, Wolfe A. Conditional knockout of the androgen receptor in gonadotropes reveals crucial roles for androgen in gonadotropin synthesis and surge in female mice. Mol Endocrinol 2014; 28:1670-81. [PMID: 25157703 DOI: 10.1210/me.2014-1154] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Polycystic ovary syndrome is the major cause of infertility in reproductive aged women. Polycystic ovary syndrome is associated with high circulating levels of androgens and impaired metabolic function. The goal of this study was to understand how androgen signaling via the androgen receptor (AR) affects reproductive function. We knocked out the AR gene specifically in pituitary gonadotropes (PitARKO) to explore the role of androgen on the development of reproductive function in female mice. There was no difference in the age of puberty between control and PitARKO littermates, which was assessed by the ages of vaginal opening and first estrus. Cyclicity and fertility were also studied, and there was no significant difference between control and PitARKO mice. We observed a significant decrease in basal FSH serum and mRNA levels with no corresponding change in LH serum and mRNA levels. Although the numbers of litters born to control and PitARKO females were the same, the litter size was significantly smaller for PitARKO mice. The LH and FSH responses to ovariectomy was altered with reduced LH/FSH hormone and mRNA levels in PitARKO females. This reduction may be due to reduced expression of activin A/B and gnrhr. The preovulatory surge levels of LH and FSH were dramatically lower in PitARKO mice. The number of corpora lutea was decreased whereas the number of antral follicles was similar between control and PitARKO mice. Overall the pituitary AR contributes to the elaboration of the LH surge and normal reproductive function by regulating LH/FSH expression and secretion.
Collapse
Affiliation(s)
- Sheng Wu
- Pediatrics Department (S.W., Y.C., T.F., S.A.D., A.W.), Johns Hopkins School of Medicine, Baltimore, Maryland 21286; Department of Pathology and Laboratory Medicine (C.C.), University of Rochester Medical Center, Rochester, New York 14642; and Department of Urology and Pathology (S.Y.), University of Rochester, Rochester, New York 14642
| | | | | | | | | | | | | |
Collapse
|
9
|
Pincas H, Choi SG, Wang Q, Jia J, Turgeon JL, Sealfon SC. Outside the box signaling: secreted factors modulate GnRH receptor-mediated gonadotropin regulation. Mol Cell Endocrinol 2014; 385:56-61. [PMID: 23994024 PMCID: PMC3964483 DOI: 10.1016/j.mce.2013.08.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 08/13/2013] [Accepted: 08/19/2013] [Indexed: 12/24/2022]
Abstract
Control of gene expression following activation of membrane receptors results from the regulation of intracellular signaling pathways and transcription factors. Accordingly, research to elucidate the regulatory control circuits and cellular data processing mechanisms focuses on intracellular mechanisms. While autocrine and paracrine signaling are acknowledged in endocrinology, secreted factors are not typically recognized as fundamental components of the pathways connecting cell surface receptors to gene control in the nucleus. Studies of the gonadotrope suggest that extracellular regulatory loops may play a central role in the regulation of gonadotropin gene expression by gonadotropin-releasing hormone (GnRH) receptor activation. We review emerging evidence for this phenomenon, which we refer to as exosignaling, in gonadotropin gene control and in other receptor-mediated signaling systems. We propose that basic signaling circuit modules controlling gene expression can be seamlessly distributed across intracellular and exosignaling components that together orchestrate the precise physiological control of gene expression.
Collapse
Affiliation(s)
- Hanna Pincas
- Department of Neurology, Center for Translational Systems Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| | - Soon Gang Choi
- Department of Neurology, Center for Translational Systems Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| | - Qian Wang
- Department of Neurology, Center for Translational Systems Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| | - Jingjing Jia
- Department of Neurology, Center for Translational Systems Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| | - Judith L Turgeon
- Division of Endocrinology, Department of Internal Medicine, School of Medicine, University of California, Davis, CA 95616, United States.
| | - Stuart C Sealfon
- Department of Neurology, Center for Translational Systems Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| |
Collapse
|
10
|
Grafer CM, Halvorson LM. Androgen receptor drives transcription of rat PACAP in gonadotrope cells. Mol Endocrinol 2013; 27:1343-56. [PMID: 23798575 DOI: 10.1210/me.2012-1378] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Gonadotropin expression is precisely regulated within the hypothalamic-pituitary-gonadal axis through the complex interaction of neuropeptides, gonadal steroids. and both gonadal- and pituitary-derived peptides. In the anterior pituitary gland, the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) modulates gonadotropin biosynthesis and secretion, acting both alone and in conjunction with GnRH. Steroid hormone feedback also influences gonadotropin expression via both direct and indirect mechanisms. Evidence from nonpituitary tissues suggests that PACAP may be a target for gonadal steroid regulation. In the present study, we show that androgen markedly stimulates rat (r) PACAP promoter-reporter activity in the LβT2 mature mouse gonadotrope cell line. 5'-Serial deletion analysis of reporter constructs identifies 2 regions of androgen responsiveness located at (-915 to -818) and (-308 to -242) of the rPACAP promoter. Androgen receptor (AR) binds directly to DNA cis-elements in each of these regions in vitro. Site-directed mutagenesis of 3 conserved hormone response element half-sites straddling the (-308 to -242) region dramatically blunts androgen-dependent PACAP promoter activity and prevents AR binding at the mutated promoter element. Chromatin immunoprecipitation demonstrates that endogenous AR binds the homologous region on mouse chromatin in LβT2 cells in both the presence and absence of androgen. These data demonstrate that androgen stimulates PACAP gene expression in the pituitary gonadotrope via direct binding of AR to a specific cluster of evolutionarily conserved hormone response elements in the proximal rPACAP gene promoter. Thus, androgen regulation of pituitary PACAP expression may provide an additional layer of control over gonadotropin expression within the hypothalamic-pituitary-gonadal axis.
Collapse
Affiliation(s)
- Constance M Grafer
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9032, USA
| | | |
Collapse
|
11
|
Zheng W, Grafer CM, Halvorson LM. Interaction of gonadal steroids and gonadotropin-releasing hormone on pituitary adenylate cyclase-activating polypeptide (PACAP) and PACAP receptor expression in cultured rat anterior pituitary cells. Reprod Sci 2013; 21:41-51. [PMID: 23690336 DOI: 10.1177/1933719113488454] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) and its receptors are expressed in the hypothalamus, the gonadotrope cells of the anterior pituitary gland, and the gonads, forming an autocrine-paracrine system in these tissues. Within the pituitary, PACAP functions either alone or synergistically with gonadotropin-releasing hormone (GnRH) to stimulate gonadotropin gene expression and secretion. Our goal was to define the hormonal regulation of pituitary PACAP and PACAP receptor (PAC1) gene expression by dihydrotestosterone (DHT), estradiol, and progesterone alone or in conjunction with GnRH. Treatment of adult male rat pituitary cell cultures with DHT or progesterone augmented GnRH-mediated increase in PACAP messenger RNA (mRNA) levels, but neither had an effect when present alone. Conversely, estradiol treatment blunted PACAP gene expression but did not alter GnRH effects on PACAP expression. Expression of PACAP receptor mRNA was decreased by GnRH treatment, minimally increased by DHT treatment, but not altered by the addition of estradiol or progesterone. DHT and GnRH together blunted PACAP receptor gene expression. Taken together, these results suggest that the activity of the intrapituitary PACAP-PAC1 system is regulated via the complex interaction of gonadal steroids and hypothalamic GnRH.
Collapse
Affiliation(s)
- Weiming Zheng
- 1Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | |
Collapse
|
12
|
Bernard DJ, Tran S. Mechanisms of activin-stimulated FSH synthesis: the story of a pig and a FOX. Biol Reprod 2013; 88:78. [PMID: 23426431 DOI: 10.1095/biolreprod.113.107797] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Activins were discovered and, in fact, named more than a quarter century ago based on their abilities to stimulate pituitary follicle-stimulating hormone (FSH) synthesis and secretion. However, it is only in the last decade that we have finally come to understand their underlying mechanisms of action in gonadotroph cells. In this minireview, we chronicle the research that led to the recent discovery of forkhead box L2 (FOXL2) as an essential mediator of activin-regulated FSH beta subunit (Fshb) transcription in vitro and in vivo.
Collapse
Affiliation(s)
- Daniel J Bernard
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada.
| | | |
Collapse
|
13
|
Sandoval-Guzmán T, Göngrich C, Moliner A, Guo T, Wu H, Broberger C, Ibáñez CF. Neuroendocrine control of female reproductive function by the activin receptor ALK7. FASEB J 2012; 26:4966-76. [PMID: 22954591 DOI: 10.1096/fj.11-199059] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Activins are critical components of the signaling network that controls female reproduction. However, their roles in hypothalamus, and the specific functions of their different receptors, have not been elucidated. Here, we investigated the expression and function of the activin receptor ALK7 in the female reproductive axis using Alk7-knockout mice. ALK7 was found in subsets of SF1-expressing granulosa cells in the ovary, FSH gonadotrophs in the pituitary, and NPY-expressing neurons in the arcuate nucleus of the hypothalamus. Alk7-knockout females showed delayed onset of puberty and abnormal estrous cyclicity, had abnormal diestrous levels of FSH and LH in serum, and their ovaries showed premature depletion of follicles, oocyte degeneration, and impaired responses to exogenous gonadotropins. In the arcuate nucleus, mutant mice showed reduced expression of Npy mRNA and lower numbers of Npy-expressing neurons than wild-type controls. Alk7 knockouts showed a selective loss of arcuate NPY/AgRP innervation in the medial preoptic area, a key central regulator of reproduction. These results indicate that ALK7 is an important regulator of female reproductive function and reveal a new role for activin signaling in the control of hypothalamic gene expression and wiring. Alk7 gene variants may contribute to female reproductive disorders in humans, such as polycystic ovary syndrome.
Collapse
|
14
|
Smith AW, Asa CS, Edwards BS, Murdoch WJ, Skinner DC. Predominant suppression of follicle-stimulating hormone β-immunoreactivity after long-term treatment of intact and castrate adult male rats with the gonadotrophin-releasing hormone agonist deslorelin. J Neuroendocrinol 2012; 24:737-47. [PMID: 22172059 PMCID: PMC5559102 DOI: 10.1111/j.1365-2826.2011.02271.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Gonadotrophin-releasing hormone (GnRH) agonists are used to treat gonadal steroid-dependent disorders in humans and to contracept animals. These agonists are considered to work by desensitising gonadotrophs to GnRH, thereby suppressing follicle-stimulating hormone (FSH) and luteinising hormone (LH) secretion. It is not known whether changes occur in the cellular composition of the pituitary gland after chronic GnRH agonist exposure. Adult male Sprague-Dawley rats were treated with a sham, deslorelin, or deslorelin plus testosterone implant for 41.0 ± 0.6 days. In a second experiment, rats were castrated and treated with deslorelin and/or testosterone. Pituitary sections were labelled immunocytochemically for FSHβ and LHβ, or gonadotrophin α subunit (αGSU). Deslorelin suppressed testis weight by two-thirds and reduced plasma FSH and LH in intact rats. Deslorelin decreased the percentage of gonadotrophs, although the effect was specific to the FSHβ-immunoreactive (-ir) cells. Testosterone did not reverse the deslorelin-induced reduction in the overall gonadotroph population. However, in the presence of testosterone, the proportion of gonadotrophs that was FSHβ-ir increased in the remaining gonadotrophs. There was no effect of treatment on the total LHβ-ir cell population, although the loss of FSHβ in bi-hormonal cells increased the proportion of mono-hormonal LHβ-ir gonadotrophs. The castration-induced plasma LH and FSH increases were suppressed by deslorelin, testosterone or both. Castration increased both LH-ir and FSH-ir without increasing the overall gonadotroph population, thus increasing the proportion of bi-hormonal cells. Deslorelin suppressed these increases. Testosterone increased FSH-ir in deslorelin-treated castrate rats. Deslorelin did not affect αGSU immunoreactivity, suggesting that the gonadotroph population per se is not eliminated by deslorelin, although the ability of gonadotrophs to synthesise FSHβ is compromised. We hypothesise that the FSH dominant suppression may be central to the long-term contraceptive efficacy of deslorelin in the male.
Collapse
Affiliation(s)
- Arik W. Smith
- Neurobiology Program and Department of Zoology and Physiology, University of Wyoming, 1000 E Univ. Ave., Dept. 3166, Laramie, WY 82071, USA
| | - Cheryl S. Asa
- Research Department, Saint Louis Zoo, 1 Government Drive, Saint Louis, MO 63110, USA
| | - Brian S. Edwards
- Neurobiology Program and Department of Zoology and Physiology, University of Wyoming, 1000 E Univ. Ave., Dept. 3166, Laramie, WY 82071, USA
| | - William J. Murdoch
- Reproductive Biology Program and Department of Animal Science, University of Wyoming, 1000 E Univ. Ave., Dept. 3684, Laramie, WY 82071, USA
| | - Donal C. Skinner
- Neurobiology Program and Department of Zoology and Physiology, University of Wyoming, 1000 E Univ. Ave., Dept. 3166, Laramie, WY 82071, USA
| |
Collapse
|
15
|
Ghochani Y, Saini JK, Mellon PL, Thackray VG. FOXL2 is involved in the synergy between activin and progestins on the follicle-stimulating hormone β-subunit promoter. Endocrinology 2012; 153:2023-33. [PMID: 22294749 PMCID: PMC3320250 DOI: 10.1210/en.2011-1763] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Differential regulation of gonadotropin hormone production in the pituitary is critical for fertility. Activin and progesterone signaling in gonadotrope cells is important for Fshb gene expression. Previously, we reported that synergy between activin and progestins required the binding of SMAD proteins and the progesterone receptor (PR) to the murine Fshb promoter. In this study, we demonstrate that the FOXL2 transcription factor is also necessary for the full synergistic response between activin and progestins. We show that this synergy occurs in a species-specific manner and that multiple elements in the Fshb promoter that bind forkhead box L2 (FOXL2), SMA/mothers against decapentaplegic homologs (SMAD), and PR are required. Furthermore, we demonstrate that FOXL2 can physically interact with PR and SMAD3. Thus, it is likely that protein-protein interactions among FOXL2, SMAD, and PR recruited to the Fshb promoter play a key role in facilitating Fshb transcription before the secondary FSH surge in rodents.
Collapse
Affiliation(s)
- Yasmin Ghochani
- Department of Reproductive Medicine and the Center for Reproductive Science and Medicine, University of California San Diego, La Jolla, California 92093, USA
| | | | | | | |
Collapse
|
16
|
Brayman MJ, Pepa PA, Berdy SE, Mellon PL. Androgen receptor repression of GnRH gene transcription. Mol Endocrinol 2012; 26:2-13. [PMID: 22074952 PMCID: PMC3248321 DOI: 10.1210/me.2011-1015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 10/13/2011] [Indexed: 11/19/2022] Open
Abstract
Alterations in androgen levels lead to reproductive defects in both males and females, including hypogonadotropic hypogonadism, anovulation, and infertility. Androgens have been shown to down-regulate GnRH mRNA levels through an androgen receptor (AR)-dependent mechanism. Here, we investigate how androgen regulates expression from the GnRH regulatory region in the GT1-7 cell line, a model of GnRH neurons. A synthetic androgen, R1881, repressed transcription from the GnRH promoter (GnRH-P) in an AR-dependent manner, and liganded AR associated with the chromatin at the GnRH-P in live GT1-7 cells. The three known octamer-binding transcription factor-1 (Oct-1) binding sites in GnRH-P were required for AR-mediated repression, although other sequences were also involved. Although a multimer of the consensus Oct-1 binding site was not repressed, a multimer of the cluster of Oct-1, Pre-B cell leukemia transcription factor (Pbx)/Prep, and NK2 homeobox 1 (Nkx2.1) binding sites, found at -106/-91 in GnRH-P, was sufficient for repression. In fact, overexpression of any of these factors disrupted the androgen response, indicating that a balance of factors in this tripartite complex is required for AR repression. AR bound to this region in EMSA, indicating a direct interaction of AR with DNA or with other transcription factors bound to GnRH-P at this sequence. Collectively, our data demonstrate that GnRH transcription is repressed by AR via multiple sequences in GnRH-P, including three Oct-1 binding sites, and that this repression requires the complex interaction of several transcription factors.
Collapse
Affiliation(s)
- Melissa J Brayman
- Department of Reproductive Medicine and The Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, California 92093-0674, USA
| | | | | | | |
Collapse
|
17
|
Calcineurin mediates the gonadotropin-releasing hormone effect on expression of both subunits of the follicle-stimulating hormone through distinct mechanisms. Mol Cell Biol 2011; 31:5023-36. [PMID: 21986493 DOI: 10.1128/mcb.06083-11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Gonadotropin-releasing hormone (GnRH) regulates the expression of all three gonadotropin genes, encoding the common α subunit (αGSU) and hormone-specific β subunits, through the activation of several signal transduction pathways. We have shown that GnRH also upregulates calcineurin, and we hypothesized that calcineurin mediates the effects of GnRH on the transcription of the αGSU and follicle-stimulating hormone β (FSHβ) genes through two of its targets: nuclear factor of activated T cells (NFAT) and CREB-regulated transcription coactivator (TORC). We show that calcineurin is essential for GnRH-induced expression of both genes but that NFAT and TORC1 play quite distinct roles in activating each gene. GnRH induces calcineurin-dependent nuclear import of NFAT3, which activates the αGSU promoter, while TORC1 also mediates GnRH activation of this promoter, but not through CREB. GnRH initially stimulates the degradation of TORC1 but protects the N terminus of the newly synthesized protein to enhance its activity. Calcineurin induces Nur77 expression, likely via NFAT3, and Nur77 interacts synergistically with TORC1 and CREB to increase FSHβ promoter activity. Although TORC plays a role in the basal activity of the FSHβ promoter, it does not interact with phosphorylated CREB and probably does not play a major role in direct GnRH signaling to this gene. TORC may be part of an alternatively regulated pathway, possibly involving cross talk with other stimulatory hormones.
Collapse
|
18
|
Justice NJ, Blount AL, Pelosi E, Schlessinger D, Vale W, Bilezikjian LM. Impaired FSHbeta expression in the pituitaries of Foxl2 mutant animals. Mol Endocrinol 2011; 25:1404-15. [PMID: 21700720 DOI: 10.1210/me.2011-0093] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Forkhead box L2 (FoxL2) is required for ovarian development and differentiation. FoxL2 is also expressed in the pituitary where it has been implicated in the development and regulation of gonadotropes, which secrete LH and FSH, the endocrine signals that regulate folliculogenesis in the ovary and spermatogenesis in the testis. Here, we show that FoxL2 is not required for the specification of gonadotropes; the pituitaries of Foxl2 mutant mice contain normal numbers of gonadotropes that express glycoprotein α subunit and LHβ. Whereas the specification of gonadotropes and all other hormonal cell types is normal in the pituitaries of Foxl2 mutant animals, FSHβ levels are severely impaired in both male and female animals, suggesting that FoxL2 is required for normal Fshb expression. The size of the pituitary is reduced in proportion to the smaller body size of Foxl2 mutants, with a concomitant increase in the pituitary cellular density. In primary pituitary cultures, activin induces FSH secretion and Fshb mRNA expression in cells from wild-type mice. In cells from Foxl2 mutant mice, however, FSH secretion is not detected, and activin is unable to drive Fshb expression, suggesting that the mechanism of activin-dependent activation of Fshb transcription is impaired. However, a small number of gonadotropes in the ventromedial region of the pituitaries from Foxl2 mutant mice maintain FSHβ expression, suggesting that a FoxL2- and activin-independent mechanism can drive Fshb transcription. These data indicate that, in addition to its role in the ovary, FoxL2 function in the pituitary is required for normal expression of FSH.
Collapse
Affiliation(s)
- Nicholas J Justice
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
19
|
Wu Y, Luo H, Liu J, Kang D, McNeilly AS, Cui S. LIM homeodomain transcription factor Isl-1 enhances follicle stimulating hormone-beta and luteinizing hormone-beta gene expression and mediates the activation of leptin on gonadotropin synthesis. Endocrinology 2010; 151:4787-800. [PMID: 20702576 DOI: 10.1210/en.2010-0208] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The Lin-11, Isl-1, and Mec-3 (LIM) homeodomain transcription factor Isl-1 has been reported to be involved in pituitary development in the early stages of mouse embryogenesis. Our recent studies have shown that Isl-1 is mainly located in the pituitary gonadotropes throughout pituitary development and persists to adulthood. We still do not know the physiological functions of Isl-1 expression and its related mechanisms in the pituitary gland. The aim of the present study was to examine the hypothesis that Isl-1 is involved in regulating pituitary gonadotropin hormone (FSH/LH) production by activating FSHβ and LHβ gene expressions. We have shown that Isl-1 activates FSHβ and LHβ subunit promoters and endogenous gene transcription in LβT2 cells. In addition, Isl-1 overexpression significantly increased FSH synthesis and secretion but not LH. The actions of Isl-1 were not observed when the homeodomain or LIM1 domains are mutated. This demonstrates that Isl-1 induction of FSHβ and LHβ is by both direct and indirect binding of Isl-1 to DNA sequences. Furthermore, Isl-1 expressional level was up-regulated in LβT2 cells after exposure to GnRH, activin, and leptin. However, RNA interference-induced knockdown of Isl-1 significantly reduced the effect of leptin but did not obviously influence the stimulating effects of GnRH and activin on LH and FSH production. In conclusion, the results demonstrate that the LIM-homeodomain transcription factor Isl-1 functions to increase FSHβ/LHβ gene transcription, and mediates the effects of leptin on gonadotropin synthesis.
Collapse
Affiliation(s)
- Yingjie Wu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, People's Republic of China
| | | | | | | | | | | |
Collapse
|
20
|
Coss D, Mellon PL, Thackray VG. A FoxL in the Smad house: activin regulation of FSH. Trends Endocrinol Metab 2010; 21:562-8. [PMID: 20598900 PMCID: PMC2933269 DOI: 10.1016/j.tem.2010.05.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 05/26/2010] [Accepted: 05/27/2010] [Indexed: 10/19/2022]
Abstract
Follicle-stimulating hormone (FSH), produced by pituitary gonadotrope cells, is required for maturation of ovarian follicles. The FSHbeta subunit is the limiting factor for production of mature hormone and provides biological specificity. Activin dramatically induces FSHbeta transcription and the secondary rise in FSH, important for follicular development, is dependent on this induction. Thus, regulation of FSHbeta levels by activin is crucial for female reproductive fitness. This review discusses activin signaling pathways, transcription factors and FSHbeta promoter elements required for activin responsiveness. Because FoxL2, a forkhead transcription factor, was recently shown to be instrumental in relaying activin signaling to the FSHbeta promoter, we focus in this paper on its role and the inter-relatedness of several key players in activin responsiveness on the FSHbeta promoter.
Collapse
|
21
|
Fink MY, Pincas H, Choi SG, Nudelman G, Sealfon SC. Research resource: Gonadotropin-releasing hormone receptor-mediated signaling network in LbetaT2 cells: a pathway-based web-accessible knowledgebase. Mol Endocrinol 2010; 24:1863-71. [PMID: 20592162 DOI: 10.1210/me.2009-0530] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The GnRH receptor (GnRHR), expressed at the cell surface of the anterior pituitary gonadotrope, is critical for normal secretion of gonadotropins LH and FSH, pubertal development, and reproduction. The signaling network downstream of the GnRHR and the molecular bases of the regulation of gonadotropin expression have been the subject of intense research. The murine LbetaT2 cell line represents a mature gonadotrope and therefore is an important model for the study of GnRHR-signaling pathways and modulation of the gonadotrope cell by physiological regulators. In order to facilitate access to the information contained in this complex and evolving literature, we have developed a pathway-based knowledgebase that is web hosted. At present, using 106 relevant primary publications, we curated a comprehensive knowledgebase of the GnRHR signaling in the LbetaT2 cell in the form of a process diagram. Positive and negative controls of gonadotropin gene expression, which included GnRH itself, hypothalamic factors, gonadal steroids and peptides, as well as other hormones, were illustrated. The knowledgebase contains 187 entities and 206 reactions. It was assembled using CellDesigner software, which provides an annotated graphic representation of interactions, stored in Systems Biology Mark-up Language. We then utilized Biological Pathway Publisher, a software suite previously developed in our laboratory, to host the knowledgebase in a web-accessible format as a public resource. In addition, the network entities were linked to a public wiki, providing a forum for discussion, updating, and error correction. The GnRHR-signaling network is openly accessible at http://tsb.mssm.edu/pathwayPublisher/GnRHR_Pathway/GnRHR_Pathway_ index.html.
Collapse
Affiliation(s)
- Marc Y Fink
- Center for Translational Systems Biology and Department of Neurology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | |
Collapse
|
22
|
Bernard DJ, Fortin J, Wang Y, Lamba P. Mechanisms of FSH synthesis: what we know, what we don't, and why you should care. Fertil Steril 2010; 93:2465-85. [DOI: 10.1016/j.fertnstert.2010.03.034] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Accepted: 03/11/2010] [Indexed: 12/17/2022]
|
23
|
Corpuz PS, Lindaman LL, Mellon PL, Coss D. FoxL2 Is required for activin induction of the mouse and human follicle-stimulating hormone beta-subunit genes. Mol Endocrinol 2010; 24:1037-51. [PMID: 20233786 DOI: 10.1210/me.2009-0425] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Activin is a major physiological regulator of FSH. We identify FoxL2 as a critical component in activin induction of FSHbeta, both for the mouse gene, induction of which is Sma- and Mad-related protein (Smad) dependent, and for the human gene that is Smad independent. FoxL2 has been shown to regulate gonadotrope gene expression (GnRH receptor, alpha-glycoprotein subunit, porcine FSHbeta, and follistatin), but the mechanisms of action are not well understood. We identify novel sites required for activin action in both the mouse and human FSHbeta promoters, some of which bind FoxL2, and show that the FoxL2-binding element encompasses a larger region (12 bp) than the previously identified forkhead-binding consensus (7 bp). Remarkably, although required for activin induction, FoxL2 sites neither contribute to basal FSHbeta promoter activity nor confer activin response to a heterologous promoter; thus, they are neither classical activin-response elements nor is their role solely to recruit Smads to the promoter. FoxL2 overexpression can potentiate activin induction in gonadotropes and can confer activin responsiveness to FSHbeta in heterologous cells where this promoter is normally refractory to activin induction. Although Smad3 requires the presence of FoxL2 sites to induce mouse FSHbeta, even through its consensus Smad-binding element; the human promoter, which is induced by activin independently of Smad3, also requires FoxL2 sites for its induction by activin; thus the actions of FoxL2 are not exclusively through interactions with the Smad pathway. Thus, FoxL2 plays a key role in activin induction of the FSHbeta gene, by binding to sites conserved across multiple species.
Collapse
Affiliation(s)
- Patrick S Corpuz
- Department of Reproductive Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0674, USA
| | | | | | | |
Collapse
|
24
|
Thackray VG, Mellon PL, Coss D. Hormones in synergy: regulation of the pituitary gonadotropin genes. Mol Cell Endocrinol 2010; 314:192-203. [PMID: 19747958 PMCID: PMC2815122 DOI: 10.1016/j.mce.2009.09.003] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 09/02/2009] [Accepted: 09/02/2009] [Indexed: 11/23/2022]
Abstract
The precise interplay of hormonal influences that governs gonadotropin hormone production by the pituitary includes endocrine, paracrine and autocrine actions of hypothalamic gonadotropin-releasing hormone (GnRH), activin and steroids. However, most studies of hormonal regulation of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) in the pituitary gonadotrope have been limited to analyses of the isolated actions of individual hormones. LHbeta and FSHbeta subunits have distinct patterns of expression during the menstrual/estrous cycle as a result of the integration of activin, GnRH, and steroid hormone action. In this review, we focus on studies that delineate the interplay among these hormones in the regulation of LHbeta and FSHbeta gene expression in gonadotrope cells and discuss how signaling cross-talk contributes to differential expression. We also discuss how recent technological advances will help identify additional factors involved in the differential hormonal regulation of LH and FSH.
Collapse
Affiliation(s)
| | | | - Djurdjica Coss
- To whom the correspondence should be addressed: Djurdjica Coss, Department of Reproductive Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0674, Phone: (858) 534-1762, Fax: (858) 534-1438,
| |
Collapse
|
25
|
Melamed P. Hormonal signaling to follicle stimulating hormone beta-subunit gene expression. Mol Cell Endocrinol 2010; 314:204-12. [PMID: 19481581 DOI: 10.1016/j.mce.2009.05.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2009] [Revised: 05/20/2009] [Accepted: 05/21/2009] [Indexed: 11/27/2022]
Abstract
Expression of the hormone-specific beta-subunit of follicle stimulating hormone (FSHbeta) is regulated primarily by gonadotropin releasing hormone (GnRH) and activin, with additional feedback by various steroids. While the nature of this hormonal regulation appears conserved, the molecular mechanisms mediating these effects appear less so. This is apparent from the diverse cis-elements required for hormonal stimulation in different species, distinct transcription factors that seem to mediate the effects, as well as the lack of conservation of several reportedly functional cis-elements across species. Recent additional information on the molecular mechanisms through which these regulatory hormones exert their effects, supports the possibility of species-specific mechanisms of regulation, while some redundancy may exist in signaling by the activated transcription factors which allows preservation of the hormonal regulation in these different promoter contexts.
Collapse
Affiliation(s)
- Philippa Melamed
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
26
|
Abstract
Activin was discovered in the 1980s as a gonadal protein that stimulated FSH release from pituitary gonadotropes and was thought of as a reproductive hormone. In the ensuing decades, many additional activities of activin were described and it was found to be produced in a wide variety of cell types at nearly all stages of development. Its signaling and actions are regulated intracellularly and by extracellular antagonists. Over the past 5 years, a number of important advances have been made that clarify our understanding of the structural basis for signaling and regulation, as well as the biological roles of activin in stem cells, embryonic development and in adults. These include the crystallization of activin in complex with the activin type II receptor ActRIIB, or with the binding proteins follistatin and follistatin-like 3, as well as identification of activin's roles in gonadal sex development, follicle development, luteolysis, beta-cell proliferation and function in the islet, stem cell pluripotency and differentiation into different cell types and in immune cells. These advances are reviewed to provide perspective for future studies.
Collapse
Affiliation(s)
- Yin Xia
- Program in Membrane Biology and Division of Nephrology, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | |
Collapse
|
27
|
An BS, Poon SL, So WK, Hammond GL, Leung PCK. Rapid effect of GNRH1 on follicle-stimulating hormone beta gene expression in LbetaT2 mouse pituitary cells requires the progesterone receptor. Biol Reprod 2009; 81:243-9. [PMID: 19357364 DOI: 10.1095/biolreprod.109.076216] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Gonadotropin-releasing hormone (GNRH) activates the progesterone receptor (PGR) in pituitary cells and accentuates gonadotropin expression. We show that GNRH1 increases Fshb mRNA levels in LbetaT2 mouse pituitary cells within 8 h and is three times more effective than GNRH2. By contrast, GNRH1 and GNRH2 do not affect Lhb gene expression in these cells. Within the same time frame, small interfering RNA (siRNA) knockdown of the PGR in LbetaT2 cells reduced GNRH1 activation of a PGR response element (PRE)-driven luciferase reporter gene and Fshb mRNA levels by >50%. Chromatin immunoprecipitation (ChIP) assays also demonstrated that PGR loading on the PRE within the Fshb gene promoter in LbetaT2 cells occurred within 8 h after GNRH1 treatment and was lost by 24 h. While the GNRH1-induced upregulation of the PRE reporter gene and Fshb mRNA levels was attenuated by cotreatment with protein kinase A (H-89) and protein kinase C (GF109203X) inhibitors, only GF109203X inhibited PGR phosphorylation at Ser249 in LbetaT2 cells. Immunoprecipitation assays also showed a progressive increase in the interaction between the PGR and its coactivator NCOA3 that peaked at 8 h coincident with the increase in Fshb mRNA after GNRH1 treatment. The siRNA-mediated knockdown of NCOA3 in LbetaT2 cells also reduced Fshb mRNA levels after GNRH1 treatment and loading of NCOA3 on the Fshb promoter PRE in a ChIP assay. We conclude that the rapid effect of GNRH1 on Fshb expression in LbetaT2 cells is mediated by PGR phosphorylation and loading at the PRE within the Fshb promoter together with NCOA3.
Collapse
Affiliation(s)
- Beum-Soo An
- Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | |
Collapse
|
28
|
Avelino-Cruz JE, Flores A, Cebada J, Mellon PL, Felix R, Monjaraz E. Leptin increases L-type Ca2+ channel expression and GnRH-stimulated LH release in LbetaT2 gonadotropes. Mol Cell Endocrinol 2009; 298:57-65. [PMID: 18834922 PMCID: PMC2659688 DOI: 10.1016/j.mce.2008.09.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2008] [Revised: 08/29/2008] [Accepted: 09/02/2008] [Indexed: 12/16/2022]
Abstract
Leptin, a mediator of long-term regulation of energy balance, has been implicated in the release of adenohypophyseal gonadotropins by regulating gonadotropin-releasing hormone (GnRH) secretion from the hypothalamus. However, a direct effect of leptin on hormone release from gonadotropes remains virtually unexplored. In the current report, we assessed the long-term (48 h) actions of leptin on voltage-gated channel activity and luteinizing hormone (LH) production in mouse pituitary gonadotrope LbetaT2 cells. Electrophysiological recordings showed that leptin treatment significantly increased whole-cell patch-clamp Ba(2+) current through L-type Ca(2+) channels. Quantitative RT-PCR analysis revealed increased levels of L-type (alpha(1D)) Ca(2+) channel mRNA. Likewise, radioimmunoassays using specific antibodies provided evidence that leptin alone had no effect on LH release but did enhance GnRH-induced secretion of the hormone. Leptin had no apparent effects on LH gene transcription in absence of GnRH, as measured by transient transfection assays using a LH promoter-reporter gene and real-time RT-PCR. These observations suggest that leptin might affect LH release by acting directly on the gonadotropes, favoring hormone production by enhancing responsiveness to GnRH as a result of increased Ca(2+) channel expression.
Collapse
Affiliation(s)
- José E. Avelino-Cruz
- Laboratory of Neuroendocrinology, Institute of Physiology, Autonomous University of Puebla (BUAP), Puebla, Mexico
| | - Amira Flores
- Laboratory of Neurobiology, Institute of Physiology, Autonomous University of Puebla (BUAP), Puebla, Mexico
| | | | - Pamela L. Mellon
- Department of Reproductive Medicine, Center for Reproductive Science and Medicine, University of California, San Diego, USA
| | - Ricardo Felix
- Department of Cell Biology, Center for Research and Advanced Studies of The National Polytechnic Institute, Mexico City, Mexico
| | - Eduardo Monjaraz
- Laboratory of Neuroendocrinology, Institute of Physiology, Autonomous University of Puebla (BUAP), Puebla, Mexico
- Correspondence: Dr. Eduardo Monjaraz, Laboratorio de Neuroendocrinología, Instituto de Fisiología - BUAP, 14 sur 6301, CU, San Manuel, Puebla, Pue. CP 72570, México, Tel: 52 (222) 2295500 ext. 7311, Fax: 52 (222) 2295500 ext. 7301, e-mail:
| |
Collapse
|