1
|
Mizuno Y, Tamaru S, Tochigi H, Sato T, Kishi M, Ohtake A, Ishihara O, Kajihara T. Decidualized Endometrial Stromal Cells Promote Mitochondrial Beta-Oxidation to Produce the Octanoic Acid Required for Implantation. Biomolecules 2024; 14:1014. [PMID: 39199401 PMCID: PMC11353187 DOI: 10.3390/biom14081014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 09/01/2024] Open
Abstract
Decidualization denotes the morphological and biological differentiating process of human endometrial stromal cells (HESCs). Fatty acid pathways are critical for endometrial decidualization. However, the participation of fatty acids as an energy source and their role in endometrial decidualization have received little attention. To identify fatty acids and clarify their role in decidualization, we comprehensively evaluated free fatty acid profiles using liquid chromatography/Fourier transform mass spectrometry (LC/FT-MS). LC/FT-MS analysis detected 26 kinds of fatty acids in the culture medium of decidualized or un-decidualized HESCs. Only the production of octanoic acid, which is an essential energy source for embryonic development, was increased upon decidualization. The expressions of genes related to octanoic acid metabolism including ACADL, ACADM, and ACADS; genes encoding proteins catalyzing the first step of mitochondrial fatty acid beta-oxidation; and ACSL5 and ACSM5; genes encoding fatty acid synthesis proteins were significantly altered upon decidualization. These results suggest that decidualization promotes lipid metabolism, implying that decidualized HESCs require energy metabolism of the mitochondria in embryo implantation.
Collapse
Affiliation(s)
- Yumi Mizuno
- Department of Obstetrics and Gynecology, Faculty of Medicine, Saitama Medical University, Iruma, Moroyama 350-0495, Saitama, Japan; (Y.M.); (S.T.); (H.T.); (T.S.); (M.K.); (O.I.)
- Biomedical Research Center, Faculty of Medicine, Saitama Medical University, Iruma, Moroyama 350-0495, Saitama, Japan
| | - Shunsuke Tamaru
- Department of Obstetrics and Gynecology, Faculty of Medicine, Saitama Medical University, Iruma, Moroyama 350-0495, Saitama, Japan; (Y.M.); (S.T.); (H.T.); (T.S.); (M.K.); (O.I.)
| | - Hideno Tochigi
- Department of Obstetrics and Gynecology, Faculty of Medicine, Saitama Medical University, Iruma, Moroyama 350-0495, Saitama, Japan; (Y.M.); (S.T.); (H.T.); (T.S.); (M.K.); (O.I.)
| | - Tomomi Sato
- Department of Obstetrics and Gynecology, Faculty of Medicine, Saitama Medical University, Iruma, Moroyama 350-0495, Saitama, Japan; (Y.M.); (S.T.); (H.T.); (T.S.); (M.K.); (O.I.)
- Department of Anatomy, Saitama Medical University, Iruma, Moroyama 350-0495, Saitama, Japan
| | - Miyuko Kishi
- Department of Obstetrics and Gynecology, Faculty of Medicine, Saitama Medical University, Iruma, Moroyama 350-0495, Saitama, Japan; (Y.M.); (S.T.); (H.T.); (T.S.); (M.K.); (O.I.)
| | - Akira Ohtake
- Department of Clinical Genomics, Faculty of Medicine, Saitama Medical University, Iruma, Moroyama 350-0495, Saitama, Japan;
- Department of Pediatrics, Faculty of Medicine, Saitama Medical University, Iruma, Moroyama 350-0495, Saitama, Japan
| | - Osamu Ishihara
- Department of Obstetrics and Gynecology, Faculty of Medicine, Saitama Medical University, Iruma, Moroyama 350-0495, Saitama, Japan; (Y.M.); (S.T.); (H.T.); (T.S.); (M.K.); (O.I.)
- Nutrition Clinic, Kagawa Nutrition University, Toshima 170-8481, Tokyo, Japan
| | - Takeshi Kajihara
- Department of Obstetrics and Gynecology, Faculty of Medicine, Saitama Medical University, Iruma, Moroyama 350-0495, Saitama, Japan; (Y.M.); (S.T.); (H.T.); (T.S.); (M.K.); (O.I.)
| |
Collapse
|
2
|
Li MY, Shen HH, Cao XY, Gao XX, Xu FY, Ha SY, Sun JS, Liu SP, Xie F, Li MQ. Targeting a mTOR/autophagy axis: a double-edged sword of rapamycin in spontaneous miscarriage. Biomed Pharmacother 2024; 177:116976. [PMID: 38906022 DOI: 10.1016/j.biopha.2024.116976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/02/2024] [Accepted: 06/15/2024] [Indexed: 06/23/2024] Open
Abstract
Immune dysfunction is a primary culprit behind spontaneous miscarriage (SM). To address this, immunosuppressive agents have emerged as a novel class of tocolytic drugs, modulating the maternal immune system's tolerance towards the embryo. Rapamycin (PubChem CID:5284616), a dual-purpose compound, functions as an immunosuppressive agent and triggers autophagy by targeting the mTOR pathway. Its efficacy in treating SM has garnered significant research interest in recent times. Autophagy, the cellular process of self-degradation and recycling, plays a pivotal role in numerous health conditions. Research indicates that autophagy is integral to endometrial decidualization, trophoblast invasion, and the proper functioning of decidual immune cells during a healthy pregnancy. Yet, in cases of SM, there is a dysregulation of the mTOR/autophagy axis in decidual stromal cells or immune cells at the maternal-fetal interface. Both in vitro and in vivo studies have highlighted the potential benefits of low-dose rapamycin in managing SM. However, given mTOR's critical role in energy metabolism, inhibiting it could potentially harm the pregnancy. Moreover, while low-dose rapamycin has been deemed safe for treating recurrent implant failure, its potential teratogenic effects remain uncertain due to insufficient data. In summary, rapamycin represents a double-edged sword in the treatment of SM, balancing its impact on autophagy and immune regulation. Further investigation is warranted to fully understand its implications.
Collapse
Affiliation(s)
- Meng-Ying Li
- Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Hui-Hui Shen
- Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Xiao-Yan Cao
- Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Xiao-Xiao Gao
- Department of Obstetrics and Gynecology, Jinshan Hospital, Fudan University, Shanghai 201508, People's Republic of China
| | - Feng-Yuan Xu
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
| | - Si-Yao Ha
- Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510235, China
| | - Jian-Song Sun
- School of Life Science and Health Engineering, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Song-Ping Liu
- Department of Obstetrics and Gynecology, Jinshan Hospital, Fudan University, Shanghai 201508, People's Republic of China.
| | - Feng Xie
- Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, People's Republic of China.
| | - Ming-Qing Li
- Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China; Department of Gynecologic Endocrinology and Reproductive Immunology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, People's Republic of China.
| |
Collapse
|
3
|
Jia Z, Wei Y, Zhang Y, Song K, Yuan J. Metabolic reprogramming and heterogeneity during the decidualization process of endometrial stromal cells. Cell Commun Signal 2024; 22:385. [PMID: 39080628 PMCID: PMC11290078 DOI: 10.1186/s12964-024-01763-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024] Open
Abstract
The human endometrial decidualization is a transformative event in the pregnant uterus that involves the differentiation of stromal cells into decidual cells. While crucial to the establishment of a successful pregnancy, the metabolic characteristics of decidual cells in vivo remain largely unexplored. Here, we integrated the single-cell RNA sequencing (scRNA-seq) datasets on the endometrium of the menstrual cycle and the maternal-fetal interface in the first trimester to comprehensively decrypt the metabolic characteristics of stromal fibroblast cells. Our results revealed that the differentiation of stromal cells into decidual cells is accompanied by increased amino acid and sphingolipid metabolism. Furthermore, metabolic heterogeneity exists in decidual cells with differentiation maturity disparities. Decidual cells with high metabolism exhibit higher cellular activity and show a strong propensity for signaling. In addition, significant metabolic reprogramming in amino acids and lipids also occurs during the transition from non-pregnancy to pregnancy in the uteri of pigs, cattle, and mice. Our analysis provides comprehensive insights into the dynamic landscape of stromal fibroblast cell metabolism, contributing to our understanding of the metabolism at the molecular dynamics underlying the decidualization process in the human endometrium.
Collapse
Affiliation(s)
- Zhaoyu Jia
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Yuan Wei
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Ye Zhang
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Kun Song
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China.
| | - Jia Yuan
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
4
|
Zhang H, Sun Q, Dong H, Jin Z, Li M, Jin S, Zeng X, Fan J, Kong Y. Long-chain acyl-CoA synthetase-4 regulates endometrial decidualization through a fatty acid β-oxidation pathway rather than lipid droplet accumulation. Mol Metab 2024; 84:101953. [PMID: 38710444 PMCID: PMC11099325 DOI: 10.1016/j.molmet.2024.101953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/08/2024] Open
Abstract
OBJECTIVE Lipid metabolism plays an important role in early pregnancy, but its effects on decidualization are poorly understood. Fatty acids (FAs) must be esterified by fatty acyl-CoA synthetases to form biologically active acyl-CoA in order to enter the anabolic and/or catabolic pathway. Long-chain acyl-CoA synthetase 4 (ACSL4) is associated with female reproduction. However, whether it is involved in decidualization is unknown. METHODS The expression of ACSL4 in human and mouse endometrium was detected by immunohistochemistry. ACSL4 levels were regulated by the overexpression of ACSL4 plasmid or ACSL4 siRNA, and the effects of ACSL4 on decidualization markers and morphology of endometrial stromal cells (ESCs) were clarified. A pregnant mouse model was established to determine the effect of ACSL4 on the implantation efficiency of mouse embryos. Modulation of ACSL4 detects lipid anabolism and catabolism. RESULTS Through examining the expression level of ACSL4 in human endometrial tissues during proliferative and secretory phases, we found that ACSL4 was highly expressed during the secretory phase. Knockdown of ACSL4 suppressed decidualization and inhibited the mesenchymal-to-epithelial transition induced by MPA and db-cAMP in ESCs. Further, the knockdown of ACSL4 reduced the efficiency of embryo implantation in pregnant mice. Downregulation of ACSL4 inhibited FA β-oxidation and lipid droplet accumulation during decidualization. Interestingly, pharmacological and genetic inhibition of lipid droplet synthesis did not affect FA β-oxidation and decidualization, while the pharmacological and genetic inhibition of FA β-oxidation increased lipid droplet accumulation and inhibited decidualization. In addition, inhibition of β-oxidation was found to attenuate the promotion of decidualization by the upregulation of ACSL4. The decidualization damage caused by ACSL4 knockdown could be reversed by activating β-oxidation. CONCLUSIONS Our findings suggest that ACSL4 promotes endometrial decidualization by activating the β-oxidation pathway. This study provides interesting insights into our understanding of the mechanisms regulating lipid metabolism during decidualization.
Collapse
Affiliation(s)
- Hongshuo Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China; Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Qianyi Sun
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Haojie Dong
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Zeen Jin
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Mengyue Li
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Shanyuan Jin
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Xiaolan Zeng
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Jianhui Fan
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China.
| | - Ying Kong
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China.
| |
Collapse
|
5
|
Fehsel K, Bouvier ML, Capobianco L, Lunetti P, Klein B, Oldiges M, Majora M, Löffler S. Neuroreceptor Inhibition by Clozapine Triggers Mitohormesis and Metabolic Reprogramming in Human Blood Cells. Cells 2024; 13:762. [PMID: 38727298 PMCID: PMC11083702 DOI: 10.3390/cells13090762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
The antipsychotic drug clozapine demonstrates superior efficacy in treatment-resistant schizophrenia, but its intracellular mode of action is not completely understood. Here, we analysed the effects of clozapine (2.5-20 µM) on metabolic fluxes, cell respiration, and intracellular ATP in human HL60 cells. Some results were confirmed in leukocytes of clozapine-treated patients. Neuroreceptor inhibition under clozapine reduced Akt activation with decreased glucose uptake, thereby inducing ER stress and the unfolded protein response (UPR). Metabolic profiling by liquid-chromatography/mass-spectrometry revealed downregulation of glycolysis and the pentose phosphate pathway, thereby saving glucose to keep the electron transport chain working. Mitochondrial respiration was dampened by upregulation of the F0F1-ATPase inhibitory factor 1 (IF1) leading to 30-40% lower oxygen consumption in HL60 cells. Blocking IF1 expression by cotreatment with epigallocatechin-3-gallate (EGCG) increased apoptosis of HL60 cells. Upregulation of the mitochondrial citrate carrier shifted excess citrate to the cytosol for use in lipogenesis and for storage as triacylglycerol in lipid droplets (LDs). Accordingly, clozapine-treated HL60 cells and leukocytes from clozapine-treated patients contain more LDs than untreated cells. Since mitochondrial disturbances are described in the pathophysiology of schizophrenia, clozapine-induced mitohormesis is an excellent way to escape energy deficits and improve cell survival.
Collapse
Affiliation(s)
- Karin Fehsel
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine-University, Bergische Landstrasse 2, 40629 Duesseldorf, Germany;
| | - Marie-Luise Bouvier
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine-University, Bergische Landstrasse 2, 40629 Duesseldorf, Germany;
| | - Loredana Capobianco
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (L.C.); (P.L.)
| | - Paola Lunetti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (L.C.); (P.L.)
| | - Bianca Klein
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Leo-Brandt-Straße, 52428 Jülich, Germany; (B.K.); (M.O.)
| | - Marko Oldiges
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Leo-Brandt-Straße, 52428 Jülich, Germany; (B.K.); (M.O.)
| | - Marc Majora
- Leibniz Research Institute for Environmental Medicine (IUF), Auf’m Hennekamp 50, 40225 Düsseldorf, Germany;
| | - Stefan Löffler
- Clinic for Psychiatry, Psychotherapy and Psychosomatics, Sana Klinikum Offenbach, Teaching Hospital of Goethe University, Starkenburgring 66, 63069 Offenbach, Germany;
| |
Collapse
|
6
|
Doi-Tanaka Y, Tamura I, Shiroshita A, Fujimura T, Shirafuta Y, Maekawa R, Taketani T, Sato S, Sugino N. Differential gene expression in decidualized human endometrial stromal cells induced by different stimuli. Sci Rep 2024; 14:7726. [PMID: 38565619 PMCID: PMC10987566 DOI: 10.1038/s41598-024-58065-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/25/2024] [Indexed: 04/04/2024] Open
Abstract
Decidualization can be induced by culturing human endometrial stromal cells (ESCs) with several decidualization stimuli, such as cAMP, medroxyprogesterone acetate (MPA) or Estradiol (E2). However, it has been unclear how decidualized cells induced by different stimuli are different. We compared transcriptomes and cellular functions of decidualized ESCs induced by different stimuli (MPA, E2 + MPA, cAMP, and cAMP + MPA). We also investigated which decidualization stimulus induces a closer in vivo decidualization. Differentially expressed genes (DEGs) and altered cellular functions by each decidualization stimuli were identified by RNA-sequence and gene-ontology analysis. DEGs was about two times higher for stimuli that use cAMP (cAMP and cAMP + MPA) than for stimuli that did not use cAMP (MPA and E2 + MPA). cAMP-using stimuli altered the cellular functions including angiogenesis, inflammation, immune system, and embryo implantation whereas MPA-using stimuli (MPA, E2 + MPA, and cAMP + MPA) altered the cellular functions associated with insulin signaling. A public single-cell RNA-sequence data of the human endometrium was utilized to analyze in vivo decidualization. The altered cellular functions by in vivo decidualization were close to those observed by cAMP + MPA-induced decidualization. In conclusion, decidualized cells induced by different stimuli have different transcriptome and cellular functions. cAMP + MPA may induce a decidualization most closely to in vivo decidualization.
Collapse
Affiliation(s)
- Yumiko Doi-Tanaka
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, 755-8505, Japan
| | - Isao Tamura
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, 755-8505, Japan.
| | - Amon Shiroshita
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, 755-8505, Japan
| | - Taishi Fujimura
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, 755-8505, Japan
| | - Yuichiro Shirafuta
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, 755-8505, Japan
| | - Ryo Maekawa
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, 755-8505, Japan
| | - Toshiaki Taketani
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, 755-8505, Japan
| | - Shun Sato
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, 755-8505, Japan
| | - Norihiro Sugino
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, 755-8505, Japan
| |
Collapse
|
7
|
de Castro T, van Heule M, Domingues RR, Jacob JCF, Daels PF, Meyers SA, Conley AJ, Dini P. Embryo-endometrial interaction associated with the location of the embryo during the mobility phase in mares. Sci Rep 2024; 14:3151. [PMID: 38326534 PMCID: PMC10850102 DOI: 10.1038/s41598-024-53578-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/02/2024] [Indexed: 02/09/2024] Open
Abstract
Embryo-maternal crosstalk is essential to establish pregnancy, with the equine embryo moving throughout the uterus on days 9-15 (ovulation = day 0) as part of this interaction. We hypothesized that the presence of a mobile embryo induces local changes in the gene expression of the endometrium. On Day 12, the endometrial transcripts were compared among three groups: uterine horn with an embryo (P+, n = 7), without an embryo (P-, n = 7) in pregnant mares, and both uterine horns of nonbred mares (NB, n = 6). We identified 1,101 differentially expressed genes (DEGs) between P+ vs. NB and 1,229 DEGs between P- vs. NB. The genes upregulated in both P+ and P- relative to NB were involved in growth factor pathway and fatty acid activation, while downregulated genes were associated with oxytocin signaling pathway and estrogen receptor signaling. Comparing the transcriptome of P+ to that of P-, we found 59 DEGs, of which 30 genes had a higher expression in P+. These genes are associated with regulating vascular growth factors and the immune system, all known to be essential in early pregnancy. Overall, this study suggests that the mobile embryo influences the endometrial gene expression locally.
Collapse
Affiliation(s)
- Thadeu de Castro
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Machteld van Heule
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, University of Ghent, 9820, Merelbeke, Belgium
| | - Rafael R Domingues
- Department of Animal and Dairy Sciences, The Ohio State University, Columbus, OH, 43210, USA
| | - Julio C F Jacob
- Departmento de Reprodução E Avalição Animal, Universidade Federal Rural Do Rio de Janeiro, Seropédica, Rio de Janiro, 23897-000, Brazil
| | - Peter F Daels
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, University of Ghent, 9820, Merelbeke, Belgium
| | - Stuart A Meyers
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Alan J Conley
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Pouya Dini
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
8
|
Ni C, Li J. Take metabolic heterogeneity into consideration when applying dietary interventions to cancer therapy: A review. Heliyon 2023; 9:e22814. [PMID: 38213585 PMCID: PMC10782175 DOI: 10.1016/j.heliyon.2023.e22814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/13/2023] [Accepted: 11/20/2023] [Indexed: 01/13/2024] Open
Abstract
In recent years, dietary interventions have attracted much attention in cancer therapy. Mechanistic studies suggest that dietary interventions can inhibit the progression of cancer through deprivation of essential metabolites, lowering the levels of protumor hormones, activation of anticancer immunity and synergistic effects with conventional anticancer therapies. The feasibility, safety and promising tumor outcomes have also been established in humans. However, the results from both preclinical and clinical studies are inconsistent or even conflicting, the reasons for which have not been extensively considered. In this review, we discuss the various heterogeneity, including dietary protocols, tissue of origin and cancer locations, spatial and temporal metabolic heterogeneity, and divergent combination treatment, that may affect the responses of different cancers to dietary interventions. Understanding this heterogeneity and taking them into consideration when applying dietary interventions to cancer therapy will allow us to deliver the right diet to the right patient at the right time to maximize compliance, safety and efficacy of conventional anticancer therapy and to improve the outcomes of patients with cancer.
Collapse
Affiliation(s)
- Chun Ni
- Department of General Surgery, Chong Gang General Hospital, 400016, Chongqing, China
| | - Jian Li
- Department of General Surgery, the Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, 621000, China
| |
Collapse
|
9
|
Gou R, Zhang X. Glycolysis: A fork in the path of normal and pathological pregnancy. FASEB J 2023; 37:e23263. [PMID: 37889786 DOI: 10.1096/fj.202301230r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/17/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023]
Abstract
Glucose metabolism is vital to the survival of living organisms. Since the discovery of the Warburg effect in the 1920s, glycolysis has become a major research area in the field of metabolism. Glycolysis has been extensively studied in the field of cancer and is considered as a promising therapeutic target. However, research on the role of glycolysis in pregnancy is limited. Recent evidence suggests that blastocysts, trophoblasts, decidua, and tumors all acquire metabolic energy at specific stages in a highly similar manner. Glycolysis, carefully controlled throughout pregnancy, maintains a dynamic and coordinated state, so as to maintain the homeostasis of the maternal-fetal interface and ensure normal gestation. In the present review, we investigate metabolic remodeling and the selective propensity of the embryo and placenta for glycolysis. We then address dysregulated glycolysis that occurs in the cellular interactive network at the maternal-fetal interface in miscarriage, preeclampsia, fetal growth restriction, and gestational diabetes mellitus. We provide new insights into the field of maternal-fetal medicine from a metabolic perspective, thus revealing the mystery of human pregnancy.
Collapse
Affiliation(s)
- Rui Gou
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, P.R. China
| | - Xiaohong Zhang
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, P.R. China
| |
Collapse
|
10
|
Meng X, Chen C, Qian J, Cui L, Wang S. Energy metabolism and maternal-fetal tolerance working in decidualization. Front Immunol 2023; 14:1203719. [PMID: 37404833 PMCID: PMC10315848 DOI: 10.3389/fimmu.2023.1203719] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/07/2023] [Indexed: 07/06/2023] Open
Abstract
One pivotal aspect of early pregnancy is decidualization. The decidualization process includes two components: the differentiation of endometrial stromal cells to decidual stromal cells (DSCs), as well as the recruitment and education of decidual immune cells (DICs). At the maternal-fetal interface, stromal cells undergo morphological and phenotypic changes and interact with trophoblasts and DICs to provide an appropriate decidual bed and tolerogenic immune environment to maintain the survival of the semi-allogeneic fetus without causing immunological rejection. Despite classic endocrine mechanism by 17 β-estradiol and progesterone, metabolic regulations do take part in this process according to recent studies. And based on our previous research in maternal-fetal crosstalk, in this review, we elaborate mechanisms of decidualization, with a special focus on DSC profiles from aspects of metabolism and maternal-fetal tolerance to provide some new insights into endometrial decidualization in early pregnancy.
Collapse
Affiliation(s)
| | | | | | - Liyuan Cui
- *Correspondence: Songcun Wang, ; Liyuan Cui,
| | | |
Collapse
|
11
|
Glucose and fatty acids catabolism during in vitro decidualization of human endometrial stromal cells. J Assist Reprod Genet 2022; 39:2689-2697. [PMID: 36308613 PMCID: PMC9790837 DOI: 10.1007/s10815-022-02637-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/12/2022] [Indexed: 12/30/2022] Open
Abstract
The differentiation of endometrial stromal cells, named decidualization, is essential for the proper formation of the materno-fetal interphase. One important feature of decidualization is the increased glucose consumption and its utilization by endometrial cells to produce energy. Besides glucose, fatty acids are another important energy source for living cells and it has been described that endometrial stromal cells rely on the proper function of the oxidation of fatty acids for the correct decidualization. It is, however, unknown whether the turn-over of fatty acid degradation is modified during decidualization. Furthermore, it is also unknown how the final products of glucose and fatty acid catabolism are related to the function of the tricarboxylic acid cycle for the efficient ATP production. In this study, we evaluated the content levels of different intermediate metabolites and the expression of the key enzymes related to the degradation of glucose and fatty acids during the in vitro decidualization of human endometrial stromal cells. Our results suggest that human endometrial stromal cells undergo energetic metabolic changes during decidualization and that decidualizing and non-decidualizing cells differ in the level of activation of different metabolic pathways and, probably, in the use of intermediate metabolites.
Collapse
|
12
|
Temre MK, Kumar A, Singh SM. An appraisal of the current status of inhibition of glucose transporters as an emerging antineoplastic approach: Promising potential of new pan-GLUT inhibitors. Front Pharmacol 2022; 13:1035510. [PMID: 36386187 PMCID: PMC9663470 DOI: 10.3389/fphar.2022.1035510] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/18/2022] [Indexed: 07/23/2023] Open
Abstract
Neoplastic cells displayed altered metabolism with accelerated glycolysis. Therefore, these cells need a mammoth supply of glucose for which they display an upregulated expression of various glucose transporters (GLUT). Thus, novel antineoplastic strategies focus on inhibiting GLUT to intersect the glycolytic lifeline of cancer cells. This review focuses on the current status of various GLUT inhibition scenarios. The GLUT inhibitors belong to both natural and synthetic small inhibitory molecules category. As neoplastic cells express multiple GLUT isoforms, it is necessary to use pan-GLUT inhibitors. Nevertheless, it is also necessary that such pan-GLUT inhibitors exert their action at a low concentration so that normal healthy cells are left unharmed and minimal injury is caused to the other vital organs and systems of the body. Moreover, approaches are also emerging from combining GLUT inhibitors with other chemotherapeutic agents to potentiate the antineoplastic action. A new pan-GLUT inhibitor named glutor, a piperazine-one derivative, has shown a potent antineoplastic action owing to its inhibitory action exerted at nanomolar concentrations. The review discusses the merits and limitations of the existing GLUT inhibitory approach with possible future outcomes.
Collapse
Affiliation(s)
- Mithlesh Kumar Temre
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ajay Kumar
- Deparment of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Sukh Mahendra Singh
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
13
|
The Regulators of Human Endometrial Stromal Cell Decidualization. Biomolecules 2022; 12:biom12091275. [PMID: 36139114 PMCID: PMC9496326 DOI: 10.3390/biom12091275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Several factors are important for implantation and subsequent placentation in the endometrium, including immunity, angiogenesis, extracellular matrix, glucose metabolism, reactive oxidative stress, and hormones. The involvement or abnormality of these factors can impair canonical decidualization. Unusual decidualization can lead to perinatal complications, such as disruption of trophoblast invasion. Drastic changes in the morphology and function of human endometrial stromal cells (hESCs) are important for decidualization of the human endometrium; hESCs are used to induce optimal morphological and functional decidualization in vitro because they contain estrogen and progesterone receptors. In this review, we will focus on the studies that have been conducted on hESC decidualization, including the results from our laboratory.
Collapse
|
14
|
Zhang X, Lu JJ, Abudukeyoumu A, Hou DY, Dong J, Wu JN, Liu LB, Li MQ, Xie F. Glucose transporters: Important regulators of endometrial cancer therapy sensitivity. Front Oncol 2022; 12:933827. [PMID: 35992779 PMCID: PMC9389465 DOI: 10.3389/fonc.2022.933827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 06/28/2022] [Indexed: 12/24/2022] Open
Abstract
Glucose is of great importance in cancer cellular metabolism. Working together with several glucose transporters (GLUTs), it provides enough energy for biological growth. The main glucose transporters in endometrial cancer (EC) are Class 1 (GLUTs 1-4) and Class 3 (GLUTs 6 and 8), and the overexpression of these GLUTs has been observed. Apart from providing abundant glucose uptake, these highly expressed GLUTs also participate in the activation of many crucial signaling pathways concerning the proliferation, angiogenesis, and metastasis of EC. In addition, overexpressed GLUTs may also cause endometrial cancer cells (ECCs) to be insensitive to hormone therapy or even resistant to radiotherapy and chemoradiotherapy. Therefore, GLUT inhibitors may hopefully become a sensitizer for EC precision-targeted therapies. This review aims to summarize the expression regulation, function, and therapy sensitivity of GLUTs in ECCs, aiming to provide a new clue for better diagnosis and treatment of EC.
Collapse
Affiliation(s)
- Xing Zhang
- Medical Center of Diagnosis and Treatment for Cervical and Intrauterine Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, China
| | - Jia-Jing Lu
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, China
| | - Ayitila Abudukeyoumu
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, China
| | - Ding-Yu Hou
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, China
| | - Jing Dong
- Medical Center of Diagnosis and Treatment for Cervical and Intrauterine Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Jiang-Nan Wu
- Clinical Epidemiology, Clinical Research Center, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Li-Bing Liu
- Department of Gynecology, Changzhou No. 2 People’s Hospital, affiliated with Nanjing Medical University, Changzhou, China
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, China
- National Health Commission (NHC) Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Feng Xie
- Medical Center of Diagnosis and Treatment for Cervical and Intrauterine Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| |
Collapse
|
15
|
Taylor SR, Falcone JN, Cantley LC, Goncalves MD. Developing dietary interventions as therapy for cancer. Nat Rev Cancer 2022; 22:452-466. [PMID: 35614234 DOI: 10.1038/s41568-022-00485-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/29/2022] [Indexed: 12/11/2022]
Abstract
Cancer cells acquire distinct metabolic preferences based on their tissue of origin, genetic alterations and degree of interaction with systemic hormones and metabolites. These adaptations support the increased nutrient demand required for increased growth and proliferation. Diet is the major source of nutrients for tumours, yet dietary interventions lack robust evidence and are rarely prescribed by clinicians for the treatment of cancer. Well-controlled diet studies in patients with cancer are rare, and existing studies have been limited by nonspecific enrolment criteria that inappropriately grouped together subjects with disparate tumour and host metabolic profiles. This imprecision may have masked the efficacy of the intervention for appropriate candidates. Here, we review the metabolic alterations and key vulnerabilities that occur across multiple types of cancer. We describe how these vulnerabilities could potentially be targeted using dietary therapies including energy or macronutrient restriction and intermittent fasting regimens. We also discuss recent trials that highlight how dietary strategies may be combined with pharmacological therapies to treat some cancers, potentially ushering a path towards precision nutrition for cancer.
Collapse
Affiliation(s)
- Samuel R Taylor
- Division of Endocrinology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell/Rockefeller/Sloan Kettering Tri-I MD-PhD program, New York, NY, USA
| | - John N Falcone
- Division of Endocrinology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Lewis C Cantley
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Marcus D Goncalves
- Division of Endocrinology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
16
|
Alawadhi M, Mouihate A, Kilarkaje N, Al-Bader M. Progesterone partially recovers placental glucose transporters in dexamethasone-induced intrauterine growth restriction. Reprod Biomed Online 2022; 44:595-607. [PMID: 35232674 DOI: 10.1016/j.rbmo.2021.10.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/17/2021] [Accepted: 10/20/2021] [Indexed: 10/20/2022]
Abstract
RESEARCH QUESTION How does progesterone improve fetal outcome and change the expression of placental glucose transporters (GLUT) in dexamethasone-induced intrauterine growth restriction (IUGR)? DESIGN A total of 64 rats were divided randomly into four different treatment groups based on daily i.p. injections of either saline or dexamethasone in the presence or absence of progesterone. Injections started on the 15th day of gestation (15dg) and lasted until the day of sacrifice at 19dg or 21dg. Maternal plasma progesterone concentrations were measured by enzyme-linked immunosorbent assay. The gene and protein expression of placental GLUT1 and GLUT3 were evaluated in the placental labyrinth and basal zones by real-time polymerase chain reaction and Western blotting, respectively. The localization of GLUT1 and GLUT3 was evaluated by immunohistochemistry. RESULTS Dexamethasone induced significant decreases in maternal serum progesterone concentrations (P = 0.029) and placental (P < 0.001) and fetal body (P = 0.009) weights. Dexamethasone also reduced the expression of GLUT1 in the labyrinth zone (P = 0.028) and GLUT3 in both the labyrinth (P = 0.002) and basal zones (P = 0.026). Coadministration of dexamethasone and progesterone prevented the reduction in fetal body weight, placental weight and placental GLUT expression compared with that seen in dexamethasone-treated groups. CONCLUSION These results suggest that progesterone prevents the significant reduction in fetal and placental weights in dexamethasone-induced IUGR, possibly through improving the expression of placental GLUT.
Collapse
Affiliation(s)
- Mariam Alawadhi
- Department of Physiology, Faculty of Medicine, Kuwait University Safat PO Box 13060, Kuwait
| | - Abdeslam Mouihate
- Department of Physiology, Faculty of Medicine, Kuwait University Safat PO Box 13060, Kuwait
| | - Narayana Kilarkaje
- Department of Anatomy, Faculty of Medicine, Kuwait University Safat PO Box 13060, Kuwait
| | - Maie Al-Bader
- Department of Physiology, Faculty of Medicine, Kuwait University Safat PO Box 13060, Kuwait.
| |
Collapse
|
17
|
Yang M, Li H, Rong M, Zhang H, Hou L, Zhang C. Dysregulated GLUT1 may be involved in the pathogenesis of preeclampsia by impairing decidualization. Mol Cell Endocrinol 2022; 540:111509. [PMID: 34801669 DOI: 10.1016/j.mce.2021.111509] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/09/2021] [Accepted: 11/15/2021] [Indexed: 01/07/2023]
Abstract
Preeclampsia (PE), a hypertensive complication in pregnancy, is a major contributor to maternal and fetal morbidity and mortality. PE has long been regarded a heterogeneous disorder with a pathogenesis that involves multiple genes and factors. Glucose transporter 1 (GLUT1) is a central rate-limiting pump that is involved in glucose uptake and subsequent utilization. Our previous RNA-seq results demonstrated GLUT1 was significantly downregulated in deciduas from patients with severe PE. Therefore, in this study, we aimed to explore the role of GLUT1 in the occurrence of PE. Our data showed that mRNA and protein levels of GLUT1 were significantly downregulated in the deciduas from patients with severe PE. Additionally, GLUT1 levels were substantially upregulated in human endometrial stromal cells (HESCs) during in vitro decidualization. Moreover, GLUT1 knockdown significantly reduced the mRNA levels of decidualization markers (IGFBP1 and PRL) and aerobic glycolysis-related genes (LDHA and MCT4), as well as decreased glucose uptake and lactate production. Furthermore, upon GLUT1 knockdown, the levels of apoptotic genes P53, P21, and BAX increased whereas the level of BCL2 decreased. Target prediction results and luciferase analysis showed that GLUT1 is one of the targets of miR-140-5p, which is partly responsible for downregulated GLUT1 levels. Collectively, these results demonstrate that GLUT1 exerts a pivotal role in human decidualization by participating in glycolysis, and that GLUT1 deficiency may trigger aberrant glycolysis, thereby leading to destructive decidualization that may impede blastocyst implantation, trophoblast invasion, and subsequent placental development, which are associated with PE. Taken together, these data suggest that GLUT1 might be a promising target for PE therapy.
Collapse
Affiliation(s)
- Man Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, Ji'nan, 250014, Shandong, China
| | - Hua Li
- Department of Gynecology and Obstetrics, Ji'nan Maternity and Child Care Hospital, Ji'nan, 250001, Shandong, China
| | - Miaomiao Rong
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, Ji'nan, 250014, Shandong, China
| | - Hongya Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, Ji'nan, 250014, Shandong, China
| | - Linlin Hou
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, Ji'nan, 250014, Shandong, China
| | - Cong Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, Ji'nan, 250014, Shandong, China; Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, China; Shandong Provincial Key Laboratory of Reproductive Medicine, Ji'nan, 250001, Shandong, China.
| |
Collapse
|
18
|
Mu Q, Zhang Y, Gu L, Gerner ST, Qiu X, Tao Q, Pang J, Dipritu G, Zhang L, Yin S, Jiang Y, Peng J. Transcriptomic Profiling Reveals the Antiapoptosis and Antioxidant Stress Effects of Fos in Ischemic Stroke. Front Neurol 2021; 12:728984. [PMID: 34744970 PMCID: PMC8566985 DOI: 10.3389/fneur.2021.728984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/09/2021] [Indexed: 12/02/2022] Open
Abstract
Arterial hypertension is considered the most prevalent risk factor for stroke. Both pathophysiologic and clinical data previously acquired suggest a strong correlation between the hemodynamic nature of arterial hypertension and an increase in the risk of ischemic insult to tissues. However, the knowledge of specific molecular interactions between hypertension and ischemic stroke (IS) is limited. In this study, we performed systematic bioinformatics analysis of stroke-prone spontaneous hypertensive brain tissue samples of rats (GSE41452), middle cerebral artery occlusion of brain tissue samples of rats (GSE97537), and peripheral blood array data of IS patients (GSE22255). We identified that Fos, an immediate-early gene (IEG) that responds to alterations in arterial blood pressure, has a strong correlation with the occurrence and prognosis of IS. To further evaluate the potential function of Fos, the oxygen–glucose deprivation model and RNA sequencing of HT22 neuronal cells were performed. Consistent with the sequencing results, real-time quantitative PCR and Western blot indicate that Fos was elevated at 3 h and returned to normal levels at 6 h after oxygen–glucose deprivation. Knock-down of Fos by lentivirus significantly increased the oxidative stress level, neuronal apoptosis, and inhibited the mitochondrial function. In conclusion, Fos acts as an important link between hypertension and IS. Furthermore, Fos can be used as a potential biomarker for target therapy in the prevention of stroke among hypertensive patients and also potential treatment targeting apoptosis and oxidative stress after its onset.
Collapse
Affiliation(s)
- Qiancheng Mu
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Luzhou Key Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yuxuan Zhang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Luzhou Key Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Long Gu
- Luzhou Key Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Stefan T Gerner
- Department of Neurology, University Hospital Erlangen-Nuremberg, Erlangen, Germany
| | - Xiancheng Qiu
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Luzhou Key Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Qianke Tao
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Luzhou Key Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jinwei Pang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Luzhou Key Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, China
| | - Ghosh Dipritu
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Luzhou Key Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lifang Zhang
- Luzhou Key Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Shigang Yin
- Luzhou Key Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, China
| | - Yong Jiang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Luzhou Key Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, China
| | - Jianhua Peng
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Luzhou Key Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, China.,Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
19
|
Vrhovac Madunić I, Karin-Kujundžić V, Madunić J, Šola IM, Šerman L. Endometrial Glucose Transporters in Health and Disease. Front Cell Dev Biol 2021; 9:703671. [PMID: 34552924 PMCID: PMC8450505 DOI: 10.3389/fcell.2021.703671] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/09/2021] [Indexed: 11/16/2022] Open
Abstract
Pregnancy loss is a frequent occurrence during the peri-implantation period, when there is high glucose demand for embryonic development and endometrial decidualization. Glucose is among the most essential uterine fluid components required for those processes. Numerous studies associate abnormal glucose metabolism in the endometrium with a higher risk of adverse pregnancy outcomes. The endometrium is incapable of synthesizing glucose, which thus must be delivered into the uterine lumen by glucose transporters (GLUTs) and/or the sodium-dependent glucose transporter 1 (SGLT1). Among the 26 glucose transporters (14 GLUTs and 12 SGLTs) described, 10 (9 GLUTs and SGLT1) are expressed in rodents and 8 (7 GLUTs and SGLT1) in the human uterus. This review summarizes present knowledge on the most studied glucose transporters in the uterine endometrium (GLUT1, GLUT3, GLUT4, and GLUT8), whose data regarding function and regulation are still lacking. We present the recently discovered SGLT1 in the mouse and human endometrium, responsible for controlling glycogen accumulation essential for embryo implantation. Moreover, we describe the epigenetic regulation of endometrial GLUTs, as well as signaling pathways included in uterine GLUT’s expression. Further investigation of the GLUTs function in different endometrial cells is of high importance, as numerous glucose transporters are associated with infertility, polycystic ovary syndrome, and gestational diabetes.
Collapse
Affiliation(s)
- Ivana Vrhovac Madunić
- Molecular Toxicology Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Valentina Karin-Kujundžić
- Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia.,Centre of Excellence in Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Josip Madunić
- Biochemistry and Organic Analytical Chemistry Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Ida Marija Šola
- Department of Gynecology and Obstetrics, Sisters of Charity University Hospital, Zagreb, Croatia
| | - Ljiljana Šerman
- Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia.,Centre of Excellence in Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
20
|
Oestreich AK, Chadchan SB, Medvedeva A, Lydon JP, Jungheim ES, Moley KH, Kommagani R. The autophagy protein, FIP200 (RB1CC1) mediates progesterone responses governing uterine receptivity and decidualization†. Biol Reprod 2021; 102:843-851. [PMID: 31901086 DOI: 10.1093/biolre/ioz234] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 10/08/2019] [Accepted: 12/27/2019] [Indexed: 12/16/2022] Open
Abstract
Successful establishment of pregnancy depends on steroid hormone-driven cellular changes in the uterus during the peri-implantation period. To become receptive to embryo implantation, uterine endometrial stromal cells (ESCs) must transdifferentiate into decidual cells that secrete factors necessary for embryo survival and trophoblast invasion. Autophagy is a key homeostatic process vital for cellular homeostasis. Although the uterus undergoes major cellular changes during early pregnancy, the precise role of autophagy in uterine function is unknown. Here, we report that conditional knockout of the autophagy protein FIP200 in the reproductive tract of female mice results in reduced fecundity due to an implantation defect. In the absence of FIP200, aberrant progesterone signaling results in sustained uterine epithelial proliferation and failure of stromal cells to decidualize. Additionally, loss of FIP200 impairs decidualization of human ESCs. We conclude that the autophagy protein FIP200 plays a crucial role in uterine receptivity, decidualization, and fertility. These data establish autophagy as a major cellular pathway required for uterine receptivity and decidualization in both mice and human ESCs.
Collapse
Affiliation(s)
- Arin K Oestreich
- Department Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA and
| | - Sangappa B Chadchan
- Department Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA and
| | - Alexandra Medvedeva
- Department Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA and
| | - John P Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Emily S Jungheim
- Department Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA and
| | - Kelle H Moley
- Department Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA and
| | - Ramakrishna Kommagani
- Department Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA and
| |
Collapse
|
21
|
He Y, Xiong T, Guo F, Du Z, Fan Y, Sun H, Feng Z, Zhang G. Interleukin-37b inhibits the growth of murine endometriosis-like lesions by regulating proliferation, invasion, angiogenesis and inflammation. Mol Hum Reprod 2021; 26:240-255. [PMID: 32119739 DOI: 10.1093/molehr/gaaa014] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/28/2020] [Accepted: 02/06/2020] [Indexed: 12/17/2022] Open
Abstract
Endometriosis is a gynecological disease with abnormal expression of interleukin (IL)-37 which can suppress inflammation and the immune system. Here we investigated the role of the IL-37b splice variant in endometriosis in vivo and in vitro. In a murine model of endometriosis, in vivo administration of IL-37b significantly inhibited the development of lesions judged by the number (P = 0.0213), size (P = 0.0130) and weight (P = 0.0152) of lesions. IL-37b had no effect on the early stage of lesion formation, however administration in the growth stage of lesions decreased the number (P = 0.0158), size (P = 0.0158) and weight (P = 0.0258) of lesions compared with PBS control, an effect that was not reversed by macrophage depletion. Expressions of inflammatory factors, matrix metalloproteinases and vascular endothelial growth factor-A mRNA/protein were significantly inhibited in ectopic lesions following IL-37b administration, and in uterine segments treated in vitro. In vitro treatment of uterine segments with IL-37b inhibited phosphorylation of Akt and Erk1/2 in uterine segments. Isolated mouse endometrial stromal treated with IL-37b and transfected with pIL-37b plasmid got suppressed cell proliferation, invasion, angiogenesis and the expression of inflammatory factors. In addition, transfection with pIL-37b significantly decreased the phosphorylation of Akt and Erk1/2. IL-37b also inhibited proliferation and the expression of inflammatory and angiogenesis factors in epithelial cell line RL95-2. These findings suggest that IL-37b may inhibit the growth of lesions by regulating proliferation, invasion, angiogenesis and inflammation through Akt and Erk1/2 signaling pathway.
Collapse
Affiliation(s)
- Yongpei He
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, The people's Republic of China
| | - Ting Xiong
- Department of Gynaecology and Obstetrics, Reproductive Medical center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, The People's Republic of China
| | - Fang Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, The people's Republic of China
| | - Zhenzhen Du
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, The people's Republic of China
| | - Yixian Fan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, The people's Republic of China
| | - Huanhuan Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, The people's Republic of China
| | - Zuohua Feng
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, The people's Republic of China
| | - Guimei Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, The people's Republic of China
| |
Collapse
|
22
|
Xiong Y, Lei F. SLC2A12 of SLC2 Gene Family in Bird Provides Functional Compensation for the Loss of SLC2A4 Gene in Other Vertebrates. Mol Biol Evol 2021; 38:1276-1291. [PMID: 33316072 PMCID: PMC8042760 DOI: 10.1093/molbev/msaa286] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Avian genomes are small and lack some genes that are conserved in the genomes of most other vertebrates including nonavian sauropsids. One hypothesis stated that paralogs may provide biochemical or physiological compensation for certain gene losses; however, no functional evidence has been reported to date. By integrating evolutionary analysis, physiological genomics, and experimental gene interference, we clearly demonstrate functional compensation for gene loss. A large-scale phylogenetic analysis of over 1,400 SLC2 gene sequences identifies six new SLC2 genes from nonmammalian vertebrates and divides the SLC2 gene family into four classes. Vertebrates retain class III SLC2 genes but partially lack the more recent duplicates of classes I and II. Birds appear to have completely lost the SLC2A4 gene that encodes an important insulin-sensitive GLUT in mammals. We found strong evidence for positive selection, indicating that the N-termini of SLC2A4 and SLC2A12 have undergone diversifying selection in birds and mammals, and there is a significant correlation between SLC2A12 functionality and basal metabolic rates in endotherms. Physiological genomics have uncovered that SLC2A12 expression and allelic variants are associated with insulin sensitivity and blood glucose levels in wild birds. Functional tests have indicated that SLC2A12 abrogation causes hyperglycemia, insulin resistance, and high relative activity, thus increasing energy expenditures that resemble a diabetic phenotype. These analyses suggest that the SLC2A12 gene not only functionally compensates insulin response for SLC2A4 loss but also affects daily physical behavior and basal metabolic rate during bird evolution, highlighting that older genes retain a higher level of functional diversification.
Collapse
Affiliation(s)
- Ying Xiong
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fumin Lei
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
23
|
Hyperandrogenic Milieu Dysregulates the Expression of Insulin Signaling Factors and Glucose Transporters in the Endometrium of Patients With Polycystic Ovary Syndrome. Reprod Sci 2020; 27:1637-1647. [PMID: 32430710 DOI: 10.1007/s43032-020-00194-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE Subfertility associated with polycystic ovary syndrome (PCOS) mainly originates from oligoovulation/anovulation. Although insulin resistance and androgen excess are known to cause PCOS-associated implantation failure, the consequences of PCOS on endometrial homeostasis and pathophysiology have not been comprehensively understood. In this study, we examined whether the pathophysiologic milieu of PCOS intrinsically affects expression profiles of genes related to insulin signaling and facilitative glucose transporters (GLUTs) in the human endometrium and/or during in vitro decidualization. STUDY DESIGN Seven healthy women with regular menstrual cycles and 13 patients with PCOS were recruited for this study. To mimic the hyperandrogenic or hyperinsulinemic milieu in the endometrium of patient with PCOS (PCOSE) in vitro, human endometrial stromal cells (hESCs) were treated with dihydrotestosterone (DHT) or insulin, respectively. RESULTS In PCOSE, messenger RNA (mRNA) levels of insulin receptor (IR), IR substrate (IRS) 1, and IRS2 were significantly increased. Furthermore, GLUT1 and GLUT12 were aberrantly increased. Chronic exposure to insulin or DHT aberrantly increased IRS1/IRS2 phosphorylation and protein levels of GLUT1 and GLUT12 in hESCs, suggesting that not only hyperinsulinemic but also hyperandrogenic conditions affect insulin signaling and glucose metabolism. The mRNA microarrays demonstrated that DHT dysregulates various gene sets, including cell cycle and glucose metabolism, in hESCs. Furthermore, DHT suppressed the expression of GLUT1 and GLUT12 as well as decidualization markers, IGFBP1 and prolactin, during in vitro decidualization. CONCLUSIONS The hyperandrogenic milieu affects gene expression profiles, including gene sets associated with insulin signaling, cell cycle, glucose metabolism, and/or glucose transport, in human endometrium and during in vitro decidualization.
Collapse
|
24
|
Xiong Y, Fan L, Hao Y, Cheng Y, Chang Y, Wang J, Lin H, Song G, Qu Y, Lei F. Physiological and genetic convergence supports hypoxia resistance in high-altitude songbirds. PLoS Genet 2020; 16:e1009270. [PMID: 33370292 PMCID: PMC7793309 DOI: 10.1371/journal.pgen.1009270] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 01/08/2021] [Accepted: 11/02/2020] [Indexed: 02/06/2023] Open
Abstract
Skeletal muscle plays a central role in regulating glucose uptake and body metabolism; however, highland hypoxia is a severe challenge to aerobic metabolism in small endotherms. Therefore, understanding the physiological and genetic convergence of muscle hypoxia tolerance has a potential broad range of medical implications. Here we report and experimentally validate a common physiological mechanism across multiple high-altitude songbirds that improvement in insulin sensitivity contributes to glucose homeostasis, low oxygen consumption, and relative activity, and thus increases body weight. By contrast, low-altitude songbirds exhibit muscle loss, glucose intolerance, and increase energy expenditures under hypoxia. This adaptive mechanism is attributable to convergent missense mutations in the BNIP3L gene, and METTL8 gene that activates MEF2C expression in highlanders, which in turn increases hypoxia tolerance. Together, our findings from wild high-altitude songbirds suggest convergent physiological and genetic mechanisms of skeletal muscle in hypoxia resistance, which highlights the potentially medical implications of hypoxia-related metabolic diseases.
Collapse
Affiliation(s)
- Ying Xiong
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liqing Fan
- National Forest Ecosystem Observation & Research Station of Nyingchi Tibet, Institute of Plateau Ecology, Tibet Agriculture & Animal Husbandry University, Linzhi City, China
- Key Laboratory of Forest Ecology in Tibet Plateau (Tibet Agriculture & Animal Husbandry University), Ministry of Education, Linzhi City, China
| | - Yan Hao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yalin Cheng
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yongbin Chang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jing Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haiyan Lin
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Gang Song
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yanhua Qu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Fumin Lei
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
25
|
Jakson I, Ujvari D, Brusell Gidlöf S, Lindén Hirschberg A. Insulin regulation of solute carrier family 2 member 1 (glucose transporter 1) expression and glucose uptake in decidualizing human endometrial stromal cells: an in vitro study. Reprod Biol Endocrinol 2020; 18:117. [PMID: 33218355 PMCID: PMC7679983 DOI: 10.1186/s12958-020-00674-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/13/2020] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Solute carrier family 2 member 1 (SLC2A1; previously known as glucose transporter 1), is the most abundant glucose transporter in human endometrium and is up-regulated during decidualization, whereas high insulin may have a negative impact on this process. The present study aimed to investigate the effect of insulin on the expression of SLC2A1 and glucose uptake in decidualizing human endometrial stromal cells. METHODS We induced in vitro decidualization of endometrial stromal cells obtained from regularly menstruating healthy non-obese women. The cells were treated with increasing concentrations of insulin, and the involvement of the transcription factor forkhead box O1 (FOXO1) was evaluated using a FOXO1 inhibitor. SLC2A1 mRNA levels were measured by Real-Time PCR and protein levels were evaluated by immunocytochemistry. Glucose uptake was estimated by an assay quantifying the cellular uptake of radioactive glucose. One-way ANOVA, Dunnett's multiple comparisons test and paired t-test were used to determine the statistical significance of the results. RESULTS We found that insulin dose-dependently decreased SLC2A1 mRNA levels and decreased protein levels of SLC2A1 in decidualizing human endometrial stromal cells. Transcriptional inactivation of FOXO1 seems to explain at least partly the down-regulation of SLC2A1 by insulin. Glucose uptake increased upon decidualization, whereas insulin treatment resulted in a slight inhibition of the glucose uptake, although not significant for all insulin concentrations. CONCLUSIONS These results indicate an impairment of decidualization by high concentrations of insulin. Future studies will determine the clinical significance of our results for endometrial function and decidualization in women with insulin resistance and hyperinsulinemia.
Collapse
Affiliation(s)
- Ivika Jakson
- Department of Women's and Children's Health, Karolinska Institutet, Karolinska vägen 37A, 171 76, Stockholm, Sweden.
- Women's Health Theme, Karolinska University Hospital, Stockholm, Sweden.
| | - Dorina Ujvari
- Department of Women's and Children's Health, Karolinska Institutet, Karolinska vägen 37A, 171 76, Stockholm, Sweden
| | - Sebastian Brusell Gidlöf
- Department of Clinical Science, Intervention and Technology, Karolinska University Hospital, Stockholm, Sweden
- Department of Obstetrics & Gynecology, Stockholm South General Hospital, Stockholm, Sweden
| | - Angelica Lindén Hirschberg
- Department of Women's and Children's Health, Karolinska Institutet, Karolinska vägen 37A, 171 76, Stockholm, Sweden
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
26
|
Wilsterman K, Bao X, Estrada AD, Comizzoli P, Bentley GE. Sex steroids influence organizational but not functional decidualization of feline endometrial cells in a 3D culture system†. Biol Reprod 2020; 101:906-915. [PMID: 31359037 DOI: 10.1093/biolre/ioz145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/21/2019] [Accepted: 07/24/2019] [Indexed: 01/23/2023] Open
Abstract
Successful implantation requires complex signaling between the uterine endometrium and the blastocyst. Prior to the blastocyst reaching the uterus, the endometrium is remodeled by sex steroids and other signals to render the endometrium receptive. In vitro models have facilitated major advances in our understanding of endometrium preparation and endometrial-blastocyst communication in mice and humans, but these systems have not been widely adapted for use in other models which might generate a deeper understanding of these processes. The objective of our study was to use a recently developed, three-dimensional culture system to identify specific roles of female sex steroids in remodeling the organization and function of feline endometrial cells. We treated endometrial cells with physiologically relevant concentrations of estradiol and progesterone, either in isolation or in combination, for 1 week. We then examined size and density of three-dimensional structures, and quantified expression of candidate genes known to vary in response to sex steroid treatments and that have functional relevance to the decidualization process. Combined sex steroid treatments recapitulated organizational patterns seen in vivo; however, sex steroid manipulations did not induce expected changes to expression of decidualization-related genes. Our results demonstrate that sex steroids may not be sufficient for complete decidualization and preparation of the feline endometrium, thereby highlighting key areas of opportunity for further study and suggesting some unique functions of felid uterine tissues.
Collapse
Affiliation(s)
- Kathryn Wilsterman
- Integrative Biology, University of California Berkeley, Berkeley, California, USA
| | - Xinmiao Bao
- Integrative Biology, University of California Berkeley, Berkeley, California, USA
| | - Allegra D Estrada
- Integrative Biology, University of California Berkeley, Berkeley, California, USA
| | - Pierre Comizzoli
- Smithsonian Conservation Biology Institute, National Zoological Park, Washington DC, USA
| | - George E Bentley
- Integrative Biology, University of California Berkeley, Berkeley, California, USA.,Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California, USA
| |
Collapse
|
27
|
Dean M. Glycogen in the uterus and fallopian tubes is an important source of glucose during early pregnancy†. Biol Reprod 2020; 101:297-305. [PMID: 31201425 DOI: 10.1093/biolre/ioz102] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/16/2019] [Accepted: 06/06/2019] [Indexed: 01/02/2023] Open
Abstract
Pregnancy loss is common during the peri-implantation period in mammals when glucose is required for both embryonic development and decidualization of the endometrium. As the uterus cannot synthesize glucose, all glucose must come directly from maternal circulation as needed or transiently stored as the macromolecule glycogen. Glycogen acts as a glucose reservoir, storing up to 55 000 glucose moieties per molecule. Endometrial glycogen concentrations are correlated with fertility in humans, indicating that glycogen is an essential source of glucose during early pregnancy. In humans and primates, endometrial glycogen concentrations peak during the luteal phase due to progesterone. In contrast, in rats and mink, estradiol triggers an accumulation of uterine glycogen during proestrus and estrus. In mated rats, the glycogen content of the endometrium increases again after implantation due to high levels of glycogen stored in the decidua. In mink, endometrial glycogen reserves are localized in the uterine epithelia at estrus. These reserves are mobilized before implantation, suggesting they are used to support embryonic growth. Uterine glycogen concentrations continue to decrease after implantation in mink, probably due to a lack of decidualization. How ovarian steroids stimulate glycogenesis in the endometrium is unclear, but current evidence suggests that estradiol/progesterone interacts with insulin or insulin-like growth factor signaling. In summary, endometrial glycogen is an essential source of glucose during the peri-implantation period. More work is needed to characterize differences among species, elucidate the fate of the glucose liberated from glycogen, and understand how ovarian steroids regulate glycogen metabolism in the uterus.
Collapse
Affiliation(s)
- Matthew Dean
- Department of Animal Science, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
28
|
Zhang H, Qi J, Wang Y, Sun J, Li Z, Sui L, Fan J, Liu C, Shang Y, Kong L, Kong Y. Progesterone Regulates Glucose Metabolism Through Glucose Transporter 1 to Promote Endometrial Receptivity. Front Physiol 2020; 11:543148. [PMID: 33101047 PMCID: PMC7546771 DOI: 10.3389/fphys.2020.543148] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 09/03/2020] [Indexed: 12/13/2022] Open
Abstract
Successful embryo implantation requires receptive endometrium, which is conducive to the process of embryo recognition, adhesion, and invasion within a certain period of time and is inseparable from the dynamic interaction between 17β-estradiol (E2) and progesterone (P4). Proper glucose metabolism is critical for the profound physiological changes in the endometrium entering the receptive state. And glucose transporters (GLUTs) are responsible for intracellular uptake of glucose and are the first step in glucose metabolism. Prior literature has reported the presence of GLUTs in the endometrium. However, we still do not understand the specific mechanisms of this process. In this study, we identified the effect of P4 on glucose transporter 1 (GLUT1) using in vivo animal models and determined the regulation of glucose metabolism by P4 in cells. We highly suspect that this pregnancy failure may be due to reduced GLUT1-mediated glucose metabolism, resulting in a decrease in endometrial receptivity caused by an inadequate energy supply and synthesis of substrate. Here, we propose a possible mechanism to explain how embryo implantation is affected by P4 and glucose utilization under abnormal endometrial conditions.
Collapse
Affiliation(s)
- Hongshuo Zhang
- Core Laboratory of Glycobiology and Glycoengineering, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Jia Qi
- Core Laboratory of Glycobiology and Glycoengineering, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Yufei Wang
- Core Laboratory of Glycobiology and Glycoengineering, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Jing Sun
- Department of Ultrasound, Xijing Hospital, Xi'an, China
| | - Zhen Li
- Core Laboratory of Glycobiology and Glycoengineering, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Linlin Sui
- Core Laboratory of Glycobiology and Glycoengineering, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Jianhui Fan
- Core Laboratory of Glycobiology and Glycoengineering, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Chao Liu
- Core Laboratory of Glycobiology and Glycoengineering, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Yuhong Shang
- Department of Gynecology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Li Kong
- Core Laboratory of Glycobiology and Glycoengineering, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Ying Kong
- Core Laboratory of Glycobiology and Glycoengineering, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
29
|
Kramer AC, Steinhauser CB, Gao H, Seo H, McLendon BA, Burghardt RC, Wu G, Bazer FW, Johnson GA. Steroids Regulate SLC2A1 and SLC2A3 to Deliver Glucose Into Trophectoderm for Metabolism via Glycolysis. Endocrinology 2020; 161:5859544. [PMID: 32556218 DOI: 10.1210/endocr/bqaa098] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/12/2020] [Indexed: 01/29/2023]
Abstract
The conceptuses (embryo/fetus and placental membranes) of pigs require energy to support elongation and implantation, and amounts of glucose and fructose increase in the uterine lumen during the peri-implantation period. Conceptuses from day 16 of pregnancy were incubated with either 14C-glucose or 14C-fructose and amounts of radiolabeled CO2 released from the conceptuses measured to determine rates of oxidation of glucose and fructose. Glucose and fructose both transport into conceptuses, and glucose is preferentially metabolized in the presence of fructose, whereas fructose is actively metabolized in the absence of glucose and to a lesser extent in the presence of glucose. Endometrial and placental expression of glucose transporters SLC2A1, SLC2A2, SCL2A3, and SLC2A4 were determined. SLC2A1 messenger RNA (mRNA) and protein, and SLC2A4 mRNA were abundant in the uterine luminal epithelium of pregnant compared to cycling gilts, and increased in response to progesterone and conceptus-secreted estrogen. SLC2A2 mRNA was expressed weakly by conceptus trophectoderm on day 15 of pregnancy, whereas SLC2A3 mRNA was abundant in trophectoderm/chorion throughout pregnancy. Therefore, glucose can be transported into the uterine lumen by SLC2A1, and then into conceptuses by SLC2A3. On day 60 of gestation, the cell-specific expression of these transporters was more complex, suggesting that glucose and fructose transporters are precisely regulated in a spatial-temporal pattern along the uterine-placental interface of pigs to maximize hexose sugar transport to the pig conceptus/placenta.
Collapse
Affiliation(s)
- Avery C Kramer
- Department of Veterinary Integrative Biosciences, College Station, Texas
| | | | - Haijun Gao
- Department of Animal Science, Texas A&M University, College Station, Texas
| | - Heewon Seo
- Department of Veterinary Integrative Biosciences, College Station, Texas
| | - Bryan A McLendon
- Department of Veterinary Integrative Biosciences, College Station, Texas
| | - Robert C Burghardt
- Department of Veterinary Integrative Biosciences, College Station, Texas
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, Texas
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, Texas
| | - Greg A Johnson
- Department of Veterinary Integrative Biosciences, College Station, Texas
| |
Collapse
|
30
|
Glucose transporter 1 is important for the glycolytic metabolism of human endometrial stromal cells in hypoxic environment. Heliyon 2020; 6:e03985. [PMID: 32548315 PMCID: PMC7286975 DOI: 10.1016/j.heliyon.2020.e03985] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/29/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022] Open
Abstract
Aim The study aimed to elucidate the glycolytic metabolism of human endometrial stromal cells (hESCs) in hypoxic environment. Main methods The hESCs were cultured in hypoxic environment, and their metabolic pathways were analyzed using metabolomics. We assessed glucose uptake using 2-deoxyglucose (2-DG) assay. The expression of glucose transporters (GLUTs) required for glucose uptake was determined using real-time quantitative polymerase chain reaction (qPCR) and western blotting. Furthermore, we knocked down GLUT1 and examined the uptake of 2-DG. Key findings Under hypoxia, glucose-6-phosphate, fructose-6-phosphate, and fructose-1,6-diphosphate were significantly elevated in hESCs (P < 0.05). This finding indicated enhancement in glycolysis. The volume of glucose uptake increased significantly under hypoxia (P < 0.05). Hypoxia simultaneously induced the expression of GLUT1 and GLUT3 mRNA (P < 0.05) and attenuated the expression of GLUT8 (P < 0.05). Glucose uptake was significantly inhibited upon knockdown of GLUT1 (P < 0.0001). Significance These results demonstrated a very important role of glucose transport under hypoxia. Also, hESCs utilize glycolysis to adapt to hypoxic conditions that could occur in menstrual and implantation period. These findings pave the way to study implantation failure and tumors originating from the endometrium.
Collapse
|
31
|
Novel nonclassic progesterone receptor PGRMC1 pulldown-precipitated proteins reveal a key role during human decidualization. Fertil Steril 2020; 113:1050-1066.e7. [DOI: 10.1016/j.fertnstert.2020.01.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/12/2019] [Accepted: 01/02/2020] [Indexed: 12/20/2022]
|
32
|
Factors affecting the fate of the canine corpus luteum: Potential contributors to pregnancy and non-pregnancy. Theriogenology 2020; 150:339-346. [PMID: 32089321 DOI: 10.1016/j.theriogenology.2020.01.081] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 12/20/2022]
Abstract
The fate of the canine corpus luteum (CL) differs from that of other domestic species: beyond the extended luteal regression observed in both pregnant and non-pregnant cycles, active luteolysis is observed only in pregnant dogs. Luteal regression in the absence of pregnancy lacks a luteolytic trigger. The CL lifespan during pregnancy is around 60 days, as long as that of the cyclic CL. Although they are already available in the first half of diestrus, LH and especially prolactin (PRL) play a decisive luteotropic role from approximately day 25 post-ovulation onwards. Nevertheless, many locally-produced factors are orchestrated to ensure a fully functional CL, which in the bitch produces progesterone (P4), 17b-estradiol, and other local regulators. Recently, insulin has been described as another luteotropic factor in this species, able to increase glucose uptake in luteal cells and contribute to steroid biosynthesis. The locally-produced PGE2 is also a potent luteotropic factor in the first half of diestrus, promoting STAR expression, as are also proliferating, vasoactive- and immunomodulatory factors. These, in turn, all contribute to the formation and maintenance of the canine CL. Meanwhile PGF2a, produced by the utero-placental compartment, participates actively in triggering pre-partum luteolysis. Cytokines play different roles, either contributing as luteotropic or as acute inflammation molecules. So far, the one clinically most efficient mechanism of interrupting a pregnancy in the dog is to block P4 receptors, using an antigestagen (e.g., aglepristone) in the second half of diestrus. To enhance the chances of pregnancy, however, several luteotropic factors could be used.
Collapse
|
33
|
Oestreich AK, Chadchan SB, Popli P, Medvedeva A, Rowen MN, Stephens CS, Xu R, Lydon JP, Demayo FJ, Jungheim ES, Moley KH, Kommagani R. The Autophagy Gene Atg16L1 is Necessary for Endometrial Decidualization. Endocrinology 2020; 161:5686885. [PMID: 31875883 PMCID: PMC6986551 DOI: 10.1210/endocr/bqz039] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/23/2019] [Indexed: 12/22/2022]
Abstract
Uterine receptivity is critical for establishing and maintaining pregnancy. For the endometrium to become receptive, stromal cells must differentiate into decidual cells capable of secreting factors necessary for embryo survival and placental development. Although there are multiple reports of autophagy induction correlated with endometrial stromal cell (ESC) decidualization, the role of autophagy in decidualization has remained elusive. To determine the role of autophagy in decidualization, we utilized 2 genetic models carrying mutations to the autophagy gene Atg16L1. Although the hypomorphic Atg16L1 mouse was fertile and displayed proper decidualization, conditional knockout in the reproductive tract of female mice reduced fertility by decreasing the implantation rate. In the absence of Atg16L1, ESCs failed to properly decidualize and fewer blastocysts were able to implant. Additionally, small interfering RNA knock down of Atg16L1 was detrimental to the decidualization response of human ESCs. We conclude that Atg16L1 is necessary for decidualization, implantation, and overall fertility in mice. Furthermore, considering its requirement for human endometrial decidualization, these data suggest Atg16L1 may be a potential mediator of implantation success in women.
Collapse
Affiliation(s)
- Arin K Oestreich
- Department Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, Missouri
| | - Sangappa B Chadchan
- Department Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, Missouri
| | - Pooja Popli
- Department Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, Missouri
| | - Alexandra Medvedeva
- Department Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, Missouri
| | - Marina N Rowen
- Department Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, Missouri
| | - Claire S Stephens
- Department Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, Missouri
| | - Ran Xu
- Department Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, Missouri
| | - John P Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Francesco J Demayo
- Reproductive & Developmental Laboratory, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina
| | - Emily S Jungheim
- Department Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, Missouri
| | - Kelle H Moley
- Department Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, Missouri
| | - Ramakrishna Kommagani
- Department Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
34
|
Hu M, Zhang Y, Egecioglu E, Li X, Shao LR, Billig H. Uterine glycolytic enzyme expression is affected by knockout of different estrogen receptor subtypes. Biomed Rep 2019; 11:135-144. [PMID: 31565219 PMCID: PMC6759582 DOI: 10.3892/br.2019.1234] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/01/2019] [Indexed: 12/11/2022] Open
Abstract
The estrogen signaling pathway via nuclear estrogen receptors (ER) α and β is considered to be the master regulator of the cellular glucose metabolism in the uterus. While in vivo animal studies have demonstrated that 17β-estradiol (E2) treatment increases the expression levels and activities of several glycolytic enzymes in the uterus, the specific ER subtype-dependent regulation of key glycolytic enzymes in the uterus has not been experimentally verified. In this study, the localization of ERα and ERβ in human and mouse endometria were evaluated using immunohistology. Given that ERα and ERβ are not functionally equivalent, ERα, ERβ and ERαβ knockout (ERα-/-, ERβ-/- and ERαβ-/-) mice were utilized to determine the expression pattern of glycolytic enzymes in the uterus. It was found that the level of ERα was higher than that of ERβ in the human and mouse endometrial epithelial and stromal cells, and both receptors were downregulated by E2 treatment in the mouse uterus. The expression of the hexokinase 1 and GAPDH was increased in ERα-/- and ERβ-/- mice compared with wild-type controls. Increased phosphofructokinase expression was observed in ERα-/- and ERαβ-/- mice, whereas increased pyruvate kinase isozyme M2 and pyruvate dehydrogenase expression was observed in ERβ-/- and ERαβ-/- mice. The findings indicated for the first time that while estrogen regulates ERα and ERβ expression in the uterus, ERα and ERβ selectively regulate uterine glycolytic enzyme expression during glycolysis. Additionally, the link between endometrial ER subtypes and glycolysis in women with polycystic ovary syndrome (PCOS) is discussed. The findings suggested that the E2-dependent ER-mediated regulation of glycolysis may be involved in the disturbance of the glucose metabolism in patients with PCOS with endometrial dysfunction.
Collapse
Affiliation(s)
- Min Hu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China.,Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Yuehui Zhang
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden.,Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Emil Egecioglu
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Xin Li
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden.,Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, P.R. China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai 200011, P.R. China
| | - Linus R Shao
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Håkan Billig
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| |
Collapse
|
35
|
Xu H, Zhou M, Cao Y, Zhang D, Han M, Gao X, Xu B, Zhang A. Genome-wide analysis of long noncoding RNAs, microRNAs, and mRNAs forming a competing endogenous RNA network in repeated implantation failure. Gene 2019; 720:144056. [PMID: 31437466 DOI: 10.1016/j.gene.2019.144056] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 12/11/2022]
Abstract
Repeated implantation failure (RIF) was mainly due to poor endometrium receptivity. Long noncoding RNAs (lncRNAs) could regulate endometrium receptivity and act in competing endogenous RNA (ceRNA) theory. However, the regulatory mechanism of the lncRNA-miRNA-mRNA network in repeated implantation failure (RIF) is unclear. We obtained RIF-related expression profiles of lncRNAs, mRNAs, and miRNAs using mid-secretory endometrial tissue samples from 5 women with RIF and 5 controls by RNA-sequencing. Co-expression analysis revealed that three functional modules were enriched in immune response/inflammation process; two functional modules were enriched in metabolic/ biosynthetic process, and one functional module were enriched in cell cycle pathway. By adding the miRNA data, ceRNA regulatory relationship of each module was reconstructed. The ceRNA network of the whole differentially expressed RNAs revealed 10 hub lncRNAs. Among them, TRG-AS1, SIMM25, and NEAT1 were involved in the module1, module2, and module3, respectively; LNC00511 and SLC26A4-AS1 in the module4; H19 in the module5. The real-time polymerase chain reaction (RT-PCR) results of 15 randomly selected RNAs were consistent with our sequencing data. These can be used as novel potential biomarkers for RIF. Furthermore, they might be involved in endometrium receptivity by acting as ceRNA.
Collapse
Affiliation(s)
- Huihui Xu
- Reproductive Medical Center of Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Mingjuan Zhou
- Reproductive Medical Center of Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Yi Cao
- Department of Obstetrics and Gynecology, The Minhang Hospital of Fudan University, The Central Hospital of Minhang District, 170 Xin Song Road, Shanghai 201100, China
| | - Dan Zhang
- Reproductive Medical Center of Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Mi Han
- Reproductive Medical Center of Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Xinxing Gao
- Reproductive Medical Center of Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Bufang Xu
- Reproductive Medical Center of Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China.
| | - Aijun Zhang
- Reproductive Medical Center of Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China; Department of Histo-Embryology, Genetics and Developmental Biology, Shanghai Jiao Tong University, School of Medicine, Shanghai Key Laboratory of Reproductive Medicine, 280 South Chongqing Road, Shanghai 200025, China.
| |
Collapse
|
36
|
Lee MH, Yoon JA, Kim HR, Kim YS, Lyu SW, Lee BS, Song H, Choi DH. Hyperandrogenic Milieu Dysregulates the Expression of Insulin Signaling Factors and Glucose Transporters in the Endometrium of Patients With Polycystic Ovary Syndrome. Reprod Sci 2019:1933719119833487. [PMID: 30832546 DOI: 10.1177/1933719119833487] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PURPOSE: Subfertility associated with polycystic ovary syndrome (PCOS) mainly originates from oligoovulation/anovulation. Although insulin resistance and androgen excess are known to cause PCOS-associated implantation failure, the consequences of PCOS on endometrial homeostasis and pathophysiology have not been comprehensively understood. In this study, we examined whether the pathophysiologic milieu of PCOS intrinsically affects expression profiles of genes related to insulin signaling and facilitative glucose transporters (GLUTs) in the human endometrium and/or during in vitro decidualization. STUDY DESIGN: Seven healthy women with regular menstrual cycles and 13 patients with PCOS were recruited for this study. To mimic the hyperandrogenic or hyperinsulinemic milieu in the endometrium of patient with PCOS (PCOSE) in vitro, human endometrial stromal cells (hESCs) were treated with dihydrotestosterone (DHT) or insulin, respectively. RESULTS: In PCOSE, messenger RNA (mRNA) levels of insulin receptor (IR), IR substrate (IRS) 1, and IRS2 were significantly increased. Furthermore, GLUT1 and GLUT12 were aberrantly increased. Chronic exposure to insulin or DHT aberrantly increased IRS1/IRS2 phosphorylation and protein levels of GLUT1 and GLUT12 in hESCs, suggesting that not only hyperinsulinemic but also hyperandrogenic conditions affect insulin signaling and glucose metabolism. The mRNA microarrays demonstrated that DHT dysregulates various gene sets, including cell cycle and glucose metabolism, in hESCs. Furthermore, DHT suppressed the expression of GLUT1 and GLUT12 as well as decidualization markers, IGFBP1 and prolactin, during in vitro decidualization. CONCLUSIONS: The hyperandrogenic milieu affects gene expression profiles, including gene sets associated with insulin signaling, cell cycle, glucose metabolism, and/or glucose transport, in human endometrium and during in vitro decidualization.
Collapse
Affiliation(s)
- Mee-Hwa Lee
- 1 Department of Obstetrics and Gynecology, CHA Bundang Medical Center, CHA University, Seongnam, Korea
- 2 Department of Medicine, The Graduate School of Yonsei University, Seoul, Korea
- Both the authors equally contributed to this work. Both authors should be considered as first authors
| | - Jung-Ah Yoon
- 3 Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul, Korea
- Both the authors equally contributed to this work. Both authors should be considered as first authors
| | - Hye-Ryun Kim
- 4 Department of Biomedical Science, CHA University, Seongnam, Korea
| | - Yeon Sun Kim
- 4 Department of Biomedical Science, CHA University, Seongnam, Korea
| | - Sang Woo Lyu
- 3 Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul, Korea
| | - Byung Seok Lee
- 2 Department of Medicine, The Graduate School of Yonsei University, Seoul, Korea
- 5 Department of Obstetrics and Gynecology, Yonsei University, Seoul, Korea
| | - Haengseok Song
- 4 Department of Biomedical Science, CHA University, Seongnam, Korea
| | - Dong Hee Choi
- 6 Fertility Center of CHA Bundang Medical Center, CHA University, Seongnam, Korea
| |
Collapse
|
37
|
Huang J, Xue M, Zhang J, Yu H, Gu Y, Du M, Ye W, Wan B, Jin M, Zhang Y. Protective role of GPR120 in the maintenance of pregnancy by promoting decidualization via regulation of glucose metabolism. EBioMedicine 2018; 39:540-551. [PMID: 30578080 PMCID: PMC6355327 DOI: 10.1016/j.ebiom.2018.12.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/28/2018] [Accepted: 12/11/2018] [Indexed: 12/22/2022] Open
Abstract
Background Intake of ω-3 PUFAs have been demonstrated to have positive effects on pregnancy outcome, whose receptor, GPR120, regulates several cellular functions including differentiation, metabolism and immune reaction. However, whether GPR120 is involved in decidualization and pregnancy remains unknown. Methods Decidua tissue from women with normal pregnancy and spontaneous abortion were collected to determine the expression profile of GPR120. Abortion mouse models and artificially induced deciduoma in mice were established to evaluate the effect of GPR120 on pregnancy outcome and in vivo decidualization. HESCs and primary DSCs were used to explore the roles of GPR120 in decidualization and mechanisms involved. Findings We found that GPR120 functioned to promote decidualization by upregulating glucose uptake and pentose-phosphate pathway (PPP) of human endometrial stromal cells. Firstly, the expression of GPR120 in decidua of spontaneous abortion was downregulated compared to normal decidua. Lack of GPR120 predisposed mice to LPS or RU486 induced abortion. Decidualization was augmented by GPR120 via improving GLUT1-mediated glucose uptake and G6PD- mediated PPP. FOXO1 was upregulated by GPR120 via activation of ERK1/2 and AMPK signaling and increased the expression of GLUT1. Furthermore, the expression of chemokines and cytokines in decidual stromal cells was enhanced by GPR120. Lastly, GPR120 agonist ameliorated LPS-induced abortion in the mice. Interpretation GPR120 plays significant roles in decidualization and the maintenance of pregnancy, which might be a potential target for diagnosis and treatment of spontaneous abortion. Fund Ministry of Science and Technology of China, National Natural Science Foundation of China, the Program of Science and Technology Commission of Shanghai Municipality.
Collapse
Affiliation(s)
- Jiefang Huang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China; Institutes for Translational Medicine, Soochow University, Suzhou, China
| | - Mingxing Xue
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jie Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hongshuang Yu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yuting Gu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Meirong Du
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Wenfeng Ye
- The First People's Hospital of Changzhou, Changzhou, China
| | - Bing Wan
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Min Jin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Yanyun Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China; Institutes for Translational Medicine, Soochow University, Suzhou, China.
| |
Collapse
|
38
|
Ferré-Dolcet L, Yeste M, Vendrell M, Rigau T, Rodríguez-Gil JE, Rivera del Álamo MM. Placental and uterine expression of GLUT3, but not GLUT1, is related with serum progesterone levels during the first stages of pregnancy in queens. Theriogenology 2018; 121:82-90. [DOI: 10.1016/j.theriogenology.2018.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 11/26/2022]
|
39
|
Strug MR, Su RW, Kim TH, Jeong JW, Fazleabas A. The Notch Family Transcription Factor, RBPJκ, Modulates Glucose Transporter and Ovarian Steroid Hormone Receptor Expression During Decidualization. Reprod Sci 2018; 26:774-784. [PMID: 30213224 DOI: 10.1177/1933719118799209] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
During decidualization, endometrial stromal cells differentiate into a secretory phenotype to modulate the uterine microenvironment and promote embryo implantation. This highly metabolic process relies on ovarian steroid receptors and glucose transporters. Canonical Notch signaling is mediated by the transcription factor Recombination Signal Binding Protein for Immunoglobulin Kappa J Region (RBPJ). Loss of RBPJ in the mouse uterus (Pgrcre/+Rbpjflox/flox; Rbpj c-KO) results in subfertility in part due to an abnormal uterine-embryonic axis during implantation and, as described herein, decidualization failure. Induced in vivo decidualization in Rbpj c-KO mice was impaired with the downregulation of decidual markers and decreased progesterone receptor (Pgr) signaling. Consistent with in vivo mouse data, RBPJ knockdown during in vitro Human uterine fibroblast (HuF) cell decidualization results in the reduced expression of decidual marker genes along with PGR. Expression of the glucose transporter, SLC2A1, was decreased in the RBPJ-silenced HuF cells, which corresponded to decreased Slc2a1 in the secondary decidual zone of Rbpj c-KO mouse uteri. Exogenous administration of pyruvate, which bypasses the need for glucose, rescues PRL expression in RBPJ-deficient HuF cells. In summary, Notch signaling through RBPJ controls both ovarian steroid receptor PGR and glucose transporter SLC2A1 expression during decidualization, and this dysregulation likely contributes to embryo implantation failure.
Collapse
Affiliation(s)
- Michael R Strug
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, 400 Monroe Avenue NW, GRRC, Room 3020, Grand Rapids, MI, 49503, USA.,Department of Obstetrics and Gynecology, Spectrum Health, Grand Rapids, MI, USA
| | - Ren-Wei Su
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, 400 Monroe Avenue NW, GRRC, Room 3020, Grand Rapids, MI, 49503, USA
| | - Tae Hoon Kim
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, 400 Monroe Avenue NW, GRRC, Room 3020, Grand Rapids, MI, 49503, USA
| | - Jae-Wook Jeong
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, 400 Monroe Avenue NW, GRRC, Room 3020, Grand Rapids, MI, 49503, USA
| | - Asgerally Fazleabas
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, 400 Monroe Avenue NW, GRRC, Room 3020, Grand Rapids, MI, 49503, USA.
| |
Collapse
|
40
|
Gibson C, de Ruijter-Villani M, Rietveld J, Stout TA. Expression of glucose transporters in the endometrium and early conceptus membranes of the horse. Placenta 2018; 68:23-32. [DOI: 10.1016/j.placenta.2018.06.308] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/28/2018] [Accepted: 06/25/2018] [Indexed: 11/17/2022]
|
41
|
Basak S, Vilasagaram S, Naidu K, Duttaroy AK. Insulin-dependent, glucose transporter 1 mediated glucose uptake and tube formation in the human placental first trimester trophoblast cells. Mol Cell Biochem 2018; 451:91-106. [DOI: 10.1007/s11010-018-3396-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 06/26/2018] [Indexed: 12/20/2022]
|
42
|
Yoshinaga K. A historical review of blastocyst implantation research. Biol Reprod 2018; 99:175-195. [PMID: 30010858 PMCID: PMC6279068 DOI: 10.1093/biolre/ioy093] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 04/17/2018] [Accepted: 04/23/2018] [Indexed: 02/07/2023] Open
Abstract
Research development on blastocyst implantation was reviewed in three sections: primate implantation, ungulate farm animal implantation, and the general process of blastocyst implantation in small rodents. Future research directions of this area are suggested.
Collapse
Affiliation(s)
- Koji Yoshinaga
- Fertility and Infertility Branch, Division of Extramural Research, NICHD, NIH,
Bethesda, Maryland, USA
| |
Collapse
|
43
|
Nelis H, Wojciechowicz B, Franczak A, Leemans B, D'Herde K, Goossens K, Cornillie P, Peelman L, Van Soom A, Smits K. Steroids affect gene expression, ciliary activity, glucose uptake, progesterone receptor expression and immunoreactive steroidogenic protein expression in equine oviduct explants in vitro. Reprod Fertil Dev 2018; 28:1926-1944. [PMID: 26085435 DOI: 10.1071/rd15044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 05/25/2015] [Indexed: 12/15/2022] Open
Abstract
The oviduct undergoes dramatic functional and morphological changes throughout the oestrous cycle of the mare. To unravel the effects of steroids on the morphology, functionality and gene expression of the equine oviduct, an in vitro oviduct explant culture system was stimulated with physiological concentrations of progesterone and 17β-oestradiol. Four conditions were compared: unsupplemented preovulatory explants, preovulatory explants that were stimulated with postovulatory hormone concentrations, unsupplemented postovulatory explants and postovulatory explants that were stimulated with preovulatory hormone concentrations. The modulating effects of both steroids on oviduct explants were investigated and the following parameters examined: (1) ciliary activity, (2) glucose consumption and lactate production pattern, (3) ultrastructure, (4) mRNA expression of embryotrophic genes, (5) steroidogenic capacities of oviductal explants and (6) progesterone receptor expression. The present paper shows that the equine oviduct is an organ with potential steroidogenic capacities, which is highly responsive to local changes in progesterone and 17β-oestradiol concentrations at the level of morphology, functionality and gene expression of the oviduct. These data provide a basis to study the importance of endocrine and paracrine signalling during early embryonic development in the horse.
Collapse
Affiliation(s)
- Hilde Nelis
- Ghent University, Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Bartosz Wojciechowicz
- University of Warmia and Mazury, Department of Animal Physiology, Faculty of Biology and Biotechnology, Oczapowskiego St. 1A, 10-719 Olsztyn, Poland
| | - Anita Franczak
- University of Warmia and Mazury, Department of Animal Physiology, Faculty of Biology and Biotechnology, Oczapowskiego St. 1A, 10-719 Olsztyn, Poland
| | - Bart Leemans
- Ghent University, Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Katharina D'Herde
- Ghent University, Department of Basic Medical Sciences, De Pintelaan 185 4B3, 9000 Ghent, Belgium
| | - Karen Goossens
- Ghent University, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Heidestraat 19, 9820 Merelbeke, Belgium
| | - Pieter Cornillie
- Ghent University, Department of Morphology, Faculty of Veterinary Medicine, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Luc Peelman
- Ghent University, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Heidestraat 19, 9820 Merelbeke, Belgium
| | - Ann Van Soom
- Ghent University, Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Katrien Smits
- Ghent University, Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Salisburylaan 133, 9820 Merelbeke, Belgium
| |
Collapse
|
44
|
Abstract
The Warburg effect describes how most cancer cells exhibit higher-than-normal glucose consumption, not only under hypoxic conditions, but also when normal oxygen levels are present. Although glucose transporter 1 (GLUT1) has been found to play a key role in the cellular uptake of glucose, especially in cancer cells, where it is generally overexpressed, it has not been given consideration as a suitable target for the development of anticancer drugs. In this chapter, an example of molecular design and realization of novel GLUT1 inhibitors, including in silico modeling, chemical synthesis, and biological characterization, is provided. This process started with the identification of a focused series of oxime derivatives, originally designed as estrogen receptor (ER) ligands, which were structurally optimized in order to direct their activity towards GLUT1 and to minimize their binding to the ERs, leading to the production of efficient and selective inhibitors of glucose uptake in cancer cells.
Collapse
Affiliation(s)
- Carlotta Granchi
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126, Pisa, Italy
| | - Tiziano Tuccinardi
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126, Pisa, Italy
| | - Filippo Minutolo
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126, Pisa, Italy.
| |
Collapse
|
45
|
Makker A, Goel MM, Nigam D, Mahdi AA, Das V, Agarwal A, Pandey A, Gautam A. Aberrant Akt Activation During Implantation Window in Infertile Women With Intramural Uterine Fibroids. Reprod Sci 2017; 25:1243-1253. [PMID: 29113583 DOI: 10.1177/1933719117737844] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The objective of the study was to examine the expression and cellular distribution of key signaling components of the phosphatidylinositol-3-kinase (PI3K)/Phosphatase and Tensin Homolog Deleted on Chromosome Ten (PTEN)/Protein Kinase B (PKB/Akt) pathway during the window of implantation in infertile women with noncavity-distorting intramural uterine fibroids (n = 21) as compared to fertile controls (n = 15). Relative gene expression analysis of PIK3CA, PTEN, Akt1, and Akt2 genes in midluteal endometrial biopsies was performed by real-time polymerase chain reaction. Immunohistochemistry was used to evaluate the expression of PIK3CA, PTEN, phospho-PTEN, Akt1, Akt2, phospho-Akt1 (serine 473), phospho-Akt1 (threonine 308), and Ki67 proteins. Terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end-labeling assay was performed for apoptosis detection. In comparison to fertile controls, significant upregulation of Akt1 messenger RNA levels (2.16-fold; P < .05); cell-specific upregulation of the proteins phospho-PTEN ( P < .05), Akt1 ( P < .05), Akt2 ( P < .05), and p-Akt (S473; P < .001); and downregulation of PTEN ( P < .01) were observed in endometrium of infertile women with intramural fibroids. The ratio of p-PTEN/PTEN and p-Akt1 (S473)/Akt1 was also significantly higher in infertile women. Increased Ki67 labeling index in the glandular epithelium and significantly lower apoptotic index in glandular epithelium and stroma were seen in infertile women during the window of implantation. Aberrant Akt activation and the associated imbalance in endometrial proliferation and apoptosis observed in infertile women with intramural fibroids during the midsecretory phase might contribute to impaired endometrial receptivity leading to infertility in these patients.
Collapse
Affiliation(s)
- Annu Makker
- 1 Department of Pathology, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Madhu Mati Goel
- 1 Department of Pathology, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Dipti Nigam
- 1 Department of Pathology, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Abbas Ali Mahdi
- 2 Department of Biochemistry, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Vinita Das
- 3 Department of Obstetrics and Gynecology, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Anjoo Agarwal
- 3 Department of Obstetrics and Gynecology, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Amita Pandey
- 3 Department of Obstetrics and Gynecology, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Abnish Gautam
- 4 Government Degree College, Mahona, Lucknow, Uttar Pradesh, India
| |
Collapse
|
46
|
Zhao D, Qu Q, Dai H, Liu Y, Jiang L, Huang X, Hao C. Effects of hypoxia‑inducible factor‑1α on endometrial receptivity of women with polycystic ovary syndrome. Mol Med Rep 2017; 17:414-421. [PMID: 29115598 DOI: 10.3892/mmr.2017.7890] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 09/13/2017] [Indexed: 11/06/2022] Open
Abstract
Embryo implantation is associated with an hypoxic endometrial microenvironment. Hypoxia‑inducible factor‑1α (HIF‑1α) is activated under hypoxic conditions. In the present study, the expression pattern of HIF‑1α in endometrial tissue was investigated and its effects on endometrial receptivity in patients with polycystic ovary syndrome (PCOS) were examined. A total of 81 patients were enrolled for in vitro fertilization and embryo transfer. They were divided into PCOS (n=40) and Control groups (n=41); both groups were further divided based on body weight (overweight and normal weight subgroups). The expressions of HIF‑1α, vascular endothelial growth factor (VEGF) and glucose transporter protein (GLUT)‑1 and GLUT4 were determined by reverse transcription‑quantitative polymerase chain reaction and immunohistochemistry. The results demonstrated that mRNA and protein expression levels of HIF‑1α and VEGF in the PCOS group were significantly lower compared with expression levels in the Control group. However, there were no statistically significant differences in the expression levels of GLUT1 and GLUT4 between groups. In patients with PCOS, GLUT1 and GLUT4 were mainly localized in the nuclei and cytoplasm, but not in the cell membrane. Overweight patients had the lowest expression levels of HIF‑1α, VEGF and GLUT1 expression compared with normal weight patients. In conclusion, HIF‑1α may be involved in the molecular mechanisms of endometrial dysfunction in women with PCOS, particularly in those who are overweight. HIF‑1α might therefore be a novel target for improving the endometrial receptivity and successful embryo implantation in PCOS women.
Collapse
Affiliation(s)
- Dongmei Zhao
- Medical College of Shandong University, Jinan, Shandong 250000, P.R. China
| | - Qinglan Qu
- Reproductive Medicine Center, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Huangguan Dai
- Reproductive Medicine Center, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Yueyang Liu
- Department of Obstetrics and Gynecology, The Technical University of Munich, D‑80333 Munich, Germany
| | - Lei Jiang
- Reproductive Medicine Center, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Xin Huang
- Reproductive Medicine Center, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Cuifang Hao
- Reproductive Medicine Center, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
47
|
Nishimura R, Hasegawa H, Yamashita M, Ito N, Okamoto Y, Takeuchi T, Kubo T, Iga K, Kimura K, Hishinuma M, Okuda K. Hypoxia increases glucose transporter 1 expression in bovine corpus luteum at the early luteal stage. J Vet Med Sci 2017; 79:1878-1883. [PMID: 29046497 PMCID: PMC5709568 DOI: 10.1292/jvms.17-0284] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
A major role of the corpus luteum (CL) is to produce progesterone (P4). The CL has immature vasculature shortly after ovulation, suggesting it exists under hypoxic conditions. Hypoxia-inducible factor-1 (HIF1) induces the expression of glucose transporter 1 (GLUT1). To clarify the physiological roles of GLUT1 in bovine CL, we examined GLUT1 mRNA expression in the CL under hypoxic conditions by quantitative RT-PCR. We also measured the effects of glucose (0-25 mM) and GLUT1 inhibitors (cytochalasin B, STF-31) on P4 production in bovine luteal cells. GLUT1 mRNA expression in bovine CL was higher at the early luteal stage compared to the other later stages. Hypoxia (3% O2) increased GLUT1 mRNA expression in early luteal cells, but not in mid luteal cells. Glucose (0-25 mM) increased P4 production in early luteal cells, but not in mid luteal cells. Both GLUT1 inhibitors decreased P4 production in early and mid luteal cells. Overall, the results suggest that GLUT1 (possibly induced by hypoxic conditions in the early CL) plays a role in the establishment and development of bovine CL, especially in supporting luteal P4 synthesis at the early luteal stage.
Collapse
Affiliation(s)
- Ryo Nishimura
- Laboratory of Theriogenology, Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8553, Japan.,Laboratory of Reproductive Physiology, Graduate School of Agriculture, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8553, Japan
| | - Hiroki Hasegawa
- Laboratory of Reproductive Physiology, Graduate School of Agriculture, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8553, Japan
| | - Masamichi Yamashita
- Joint Department of Veterinary Clinical Medicine, Faculty of Agriculture, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8553, Japan
| | - Norihiko Ito
- Joint Department of Veterinary Clinical Medicine, Faculty of Agriculture, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8553, Japan
| | - Yoshiharu Okamoto
- Joint Department of Veterinary Clinical Medicine, Faculty of Agriculture, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8553, Japan
| | - Takashi Takeuchi
- Joint Department of Veterinary Clinical Medicine, Faculty of Agriculture, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8553, Japan
| | - Tomoaki Kubo
- United Graduate School of Veterinary Science, Gifu University, Gifu 501-1193, Japan
| | - Kosuke Iga
- Division of Livestock and Forage Research, Beef Cattle Production Group, Tohoku Agricultural Research Center, NARO, Iwate 020-0198, Japan
| | - Koji Kimura
- Laboratory of Reproductive Physiology, Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Mitsugu Hishinuma
- Laboratory of Theriogenology, Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8553, Japan
| | - Kiyoshi Okuda
- Laboratory of Reproductive Physiology, Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan.,Obihiro University of Agriculture and Veterinary Medicine, Hokkaido 080-8555, Japan
| |
Collapse
|
48
|
Němejcová K, Rosmusová J, Bártů M, Důra M, Tichá I, Dundr P. Expression of Glut-1 in Normal Endometrium and Endometrial Lesions: Analysis of 336 Cases. Int J Surg Pathol 2016; 25:389-396. [DOI: 10.1177/1066896916683510] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background: Glucose transporter-1 (Glut-1) is a membrane glycoprotein that is, together with other glucose transporters, responsible for the regulation of glucose uptake. An increased expression of this protein seems to be a general feature of several malignant tumors that are able to reprogram their metabolism and switch from oxidative phosphorylation to aerobic glycolysis. Methods: We performed comprehensive immunohistochemical analysis of Glut-1 expression in 336 endometrial samples, including tumors, nontumor lesions, and normal tissues. Results: Expression of Glut-1 was found in 87% of endometrioid carcinomas (160/184 cases), 100% of serous carcinomas (29/29 cases), 100% of clear cell carcinomas (17/17 cases), 50% of polyps with atypical hyperplasia (8/16 cases), 12.5% of polyps with non-atypical hyperplasia (3/24 cases), 77% of hyperplasias with atypias (10/13 cases), 9% of hyperplasias without atypias (1/11 cases), 87% of secretory endometrium samples (13/15 cases), and in none of the nonsecretory endometrium samples (0/27 cases). In endometrioid carcinomas, Glut-1 was expressed in a marked geographical pattern. In nontumor lesions, its expression was more common in atypical hyperplasia and polyps with atypical hyperplasia compared with polyps with non-atypical hyperplasia and hyperplasias without atypia ( P = .00032). Conclusion: Our study confirms the high expression of Glut-1 not only in endometrioid carcinomas but also in other carcinomas of endometrium including clear cell and serous types. Glut-1 expression can be used as a surrogate marker in differential diagnosis between hyperplasia with and without atypia. Because of common Glut-1 expression in malignant tumors, therapeutic strategies influencing this protein or its signaling pathways can be beneficial.
Collapse
Affiliation(s)
- Kristýna Němejcová
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Jana Rosmusová
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Michaela Bártů
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Miroslav Důra
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
- Department of Dermatovenerology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Ivana Tichá
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Pavel Dundr
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| |
Collapse
|
49
|
RoyChoudhury S, Singh A, Gupta NJ, Srivastava S, Joshi MV, Chakravarty B, Chaudhury K. Repeated implantation failure versus repeated implantation success: discrimination at a metabolomic level. Hum Reprod 2016; 31:1265-74. [PMID: 27060172 DOI: 10.1093/humrep/dew064] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 03/03/2016] [Indexed: 12/14/2022] Open
Abstract
STUDY QUESTION Is there any difference at the serum metabolic level between women with recurrent implantation failure (RIF) and women with recurrent implantation success (RIS) when undergoing in vitro fertilization (IVF)? SUMMARY ANSWER Eight metabolites, including valine, adipic acid, l-lysine, creatine, ornithine, glycerol, d-glucose and urea, were found to be significantly up-regulated in women with RIF when compared with women with RIS. WHAT IS KNOWN ALREADY Despite transfer of three high-grade embryos per cycle, RIF following three or more consecutive IVF attempts occurs in a group of infertile women. Conversely, there is a group of women who undergo successful implantation each cycle, yet have a poor obstetric history. STUDY DESIGN, SIZE, DURATION This study was conducted over a period of 10 years (January 2004-October 2014). Groups of 28 women with RIF (age ≤40 years and BMI ≤28) and 24 women with RIS (age and BMI matched) were selected from couples with primary infertility reporting at the Institute of Reproductive Medicine, Kolkata, India. Women recruited in the RIF group had history of implantation failure in at least three consecutive IVF attempts, in which three embryos of high-grade quality were transferred in each cycle. PARTICIPANTS/MATERIALS, SETTING, METHODS Blood samples were collected from both the groups during the implantation window following overnight fasting for at least 10 h (7-10 days post ovulation). Samples were analyzed using a 700 MHz NMR spectrometer and acquired spectra were subjected to chemometric and statistical analysis. Serum levels of endothelial nitric oxide synthase (eNOS) were measured using an enzyme immunoassay technique. MAIN RESULTS AND THE ROLE OF CHANCE Valine, adipic acid, l-lysine, creatine, ornithine, glycerol, d-glucose and urea were found to be significantly down-regulated in women with RIS when compared with those with RIF, with fold change values of 0.81, 0.82, 0.79, 0.80, 0.78, 0.68, 0.76 and 0.74, respectively. Further, serum eNOS was found to be significantly lower in women with RIF when compared with RIS (P < 0.05), indicating possible impairment in nitric oxide production. Metabolites, mostly related to energy metabolism, lipid metabolism and the arginine metabolic pathway were found to be considerably altered and are likely to be associated with the RIF phenomenon. However, the interplay between these molecules in RIF is complex and holds merit for further exploration. LIMITATIONS, REASONS FOR CAUTION In-depth studies of the arginine metabolic pathway in endometrial tissues seem necessary to validate our findings. A limitation of the present study is that the metabolic level changes, eNOS and nitric oxide levels have not been investigated in the endometrial tissues of the two groups of women. It would be interesting to investigate whether there exists a direct link between metabolic dysregulation and genetic factors that affects implantation in RIF women. WIDER IMPLICATIONS OF THE FINDINGS We speculate that tissue metabolomics can provide an improved understanding of the metabolic dysfunction associated with RIF. The identification of serum metabolic marker(s) in women with RIS may help with strategies of early therapeutic intervention, which may improve the chances of implantation significantly in women otherwise susceptible to IVF failure. STUDY FUNDING/COMPETING INTERESTS One of the authors, S.R.C. acknowledges the Council of Scientific and Industrial Research (CSIR), Government of India [No: 9/81(1228)/14, EMR-I] for financial support.
Collapse
Affiliation(s)
- Sourav RoyChoudhury
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, India
| | - Apoorva Singh
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, India
| | | | - Sudha Srivastava
- National Facility for High-field NMR, Tata Institute of Fundamental Research, Mumbai, India
| | - Mamata V Joshi
- National Facility for High-field NMR, Tata Institute of Fundamental Research, Mumbai, India
| | | | - Koel Chaudhury
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, India
| |
Collapse
|
50
|
Jiang Y, Kong S, He B, Wang B, Wang H, Lu J. Uterine Prx2 restrains decidual differentiation through inhibiting lipolysis in mice. Cell Tissue Res 2016; 365:403-14. [PMID: 26987819 DOI: 10.1007/s00441-016-2383-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 02/19/2016] [Indexed: 11/29/2022]
Abstract
Uterine decidualization, characterized as extensive stromal cell proliferation, differentiation and polyploidization, is a crucial event for successful pregnancy and is tightly regulated by many different molecules and pathways. Prx2, an evolutionarily conserved homeobox transcription factor expressed in both embryos and adults, plays an important role during mesenchymal cell differentiation. However, it remains unclear what the exact function of Prx2 is in the uterine stromal cells, one type of mesenchymal cells. In the present study, employing in vivo and in vitro stromal cell decidualization models, combining adenovirus-mediated overexpression of Prx2, we found that the expression of Prx2 is initiated in the uterine stromal cells once the blastocyst attached to the epithelium and is always detected around the differentiated decidual zone in the anti-mesometrium of the uterus during post-implantation uterine development. Also, overexpression of Prx2 disturbed stromal-decidual differentiation, which is reflected by the decreased expression of decidual/trophoblast prolactin-related protein (Dtprp), the marker for uterine decidualization in mice. Further, we demonstrate that Prx2 overexpression disturbs lipolysis, leading to lipid droplets accumulation in uterine stromal cells, partially mediated by downregulated expression of adipocyte triglyceride lipase. Collectively, these data indicate that uterine Prx2 restrains uterine decidual differentiation through regulating lipid metabolism.
Collapse
Affiliation(s)
- Yufei Jiang
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350004, People's Republic of China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Shuangbo Kong
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Bo He
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Bingyan Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Haibin Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.
| | - Jinhua Lu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.
| |
Collapse
|