1
|
Sakali AK, Bargiota A, Bjekic-Macut J, Macut D, Mastorakos G, Papagianni M. Environmental factors affecting female fertility. Endocrine 2024; 86:58-69. [PMID: 38954374 DOI: 10.1007/s12020-024-03940-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/21/2024] [Indexed: 07/04/2024]
Abstract
INTRODUCTION Over the recent years, scientific community has increased its interest on solving problems of female fertility pathology. Many factors acting separately or in combination affect significantly the reproductive life of a woman. This review summarizes current evidence regarding the direct and/or indirect action of environmental factors and endocrine disrupting chemicals (EDCs; i.e. heavy metals, plasticizers, parabens, industrial chemicals, pesticides, or medications, by-products, anti-bacterial agents, perfluorochemicals) upon assisted and non-assisted female fertility, extracted from in vivo and in vitro animal and human published data. Transgenerational effects which could have been caused epigenetically by the action of EDCs have been raised. METHODS This narrative review englobes and describes data from in vitro and in vivo animal and human studies with regard to the action of environmental factors, which include EDCs, on female fertility following the questions for narrative reviews of the SANRA (a scale for the quality assessment of narrative review articles). The identification of the studies was done: through the PubMed Central and the PubMed of the MEDLINE, the Google Scholar database and the Cochrane Library database until December 2023 combining appropriate keywords ("specific environmental factors" including "EDCs" AND "specific negative fertility outcomes"); by manual scanning of references from selected articles and reviews focusing on these subjects. It includes references to EDCs-induced transgenerational effects. RESULTS From the reported evidence emerge negative or positive associations between specific environmental factors or EDCs and infertility outcomes such as infertility indices, disrupted maturation of the oocytes, anovulation, deranged transportation of the embryo and failure of implantation. CONCLUSION The revealed adverse outcomes related to female fertility could be attributed to exposure to specific environmental factors such as temperature, climate, radiation, air pollutants, nutrition, toxic substances and EDCs. The recognition of fertility hazards related to the environment will permit the limitation of exposure to them, will improve female fertility and protect the health potential of future generations.
Collapse
Affiliation(s)
- Anastasia-Konstantina Sakali
- Department of Endocrinology and Metabolic Diseases, Larissa University Hospital, School of Medicine, University of Thessaly, Larissa, Greece
| | - Alexandra Bargiota
- Department of Endocrinology and Metabolic Diseases, Larissa University Hospital, School of Medicine, University of Thessaly, Larissa, Greece
| | - Jelica Bjekic-Macut
- Department of Endocrinology, University Medical Center Bežanijska kosa, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Djuro Macut
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - George Mastorakos
- Unit of Endocrinology, Diabetes Mellitus and Metabolism, Aretaieion Hospital, Athens Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Papagianni
- Department of Nutrition and Dietetics, School of Physical Education, Sport Science and Dietetics, University of Thessaly, Trikala, Greece.
- Endocrine Unit, 3rd Department of Pediatrics, Hippokration Hospital of Thessaloniki, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| |
Collapse
|
2
|
Singh S, Goel I, Tripathi S, Ahirwar A, Kumar M, Rana A, Dhar R, Karmakar S. Effect of environmental air pollutants on placental function and pregnancy outcomes: a molecular insight. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:59819-59851. [PMID: 39388084 DOI: 10.1007/s11356-024-35016-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/13/2024] [Indexed: 10/15/2024]
Abstract
Air pollution has become a major health concern, particularly for vulnerable populations such as the elderly, children, and pregnant women. Studies have reported a strong association between prenatal exposure to air pollutants and adverse pregnancy outcomes, including lower birth weight, reduced fetal growth, and an increased frequency of preterm births. This review summarizes the harmful effects of air pollutants, such as particulate matter, on pregnancy and outlines the mechanistic details associated with these adverse outcomes. Particulate pollutant matter may be able to cross the placenta barrier, and alterations in placental functions are central to the detrimental effects of these pollutants. In addition to associations with preeclampsia and gestational hypertension, air pollutants also induce oxidative stress, inflammation, and epigenetic alteration in the placenta. These pollutants can also affect placental homeostasis and endocrine function, contributing to pregnancy complications and possible transgenerational effects. Prenatal air pollution exposure has been linked to reduced cognitive and motor function in infants and newborns, increasing the predisposition to autism spectrum disorders and other neuropsychiatric disorders. This review also summarizes the use of various animal models to study the harmful effects of air pollution on pregnancy and postnatal outcomes. These findings provide valuable insight into the molecular events associated with the process and can aid in risk mitigation and adopting safety measures. Implementing effective environmental protocols and taking appropriate steps may reduce the global disease burden, particularly for developing nations with poor regulatory compliance and large populations of pregnant women.
Collapse
Affiliation(s)
- Sunil Singh
- Department of Biochemistry, All India Institute of Medical Sciences, Room 3020, New Delhi, 110029, India
| | - Isha Goel
- Department of Psychiatry, All India Institute of Medical Sciences, New Delhi, India
| | - Smita Tripathi
- Department of Biochemistry, Lady Harding Medical College, New Delhi, India
| | - Ashok Ahirwar
- Department of Lab Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Megha Kumar
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Habsiguda, Hyderabad, India
| | - Anubhuti Rana
- Department of Obstetrics and Gynaecology, All India Institute of Medical Sciences, New Delhi, India
| | - Ruby Dhar
- Department of Biochemistry, All India Institute of Medical Sciences, Room 3020, New Delhi, 110029, India
| | - Subhradip Karmakar
- Department of Biochemistry, All India Institute of Medical Sciences, Room 3020, New Delhi, 110029, India.
| |
Collapse
|
3
|
Chaichian S, Khodabandehloo F, Haghighi L, Govahi A, Mehdizadeh M, Ajdary M, Varma RS. Toxicological Impact of Bisphenol A on Females' Reproductive System: Review Based on Experimental and Epidemiological Studies. Reprod Sci 2024; 31:1781-1799. [PMID: 38532232 DOI: 10.1007/s43032-024-01521-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/13/2024] [Indexed: 03/28/2024]
Abstract
The study encompassing research papers documented in the last two decades pertaining to the possible influence of bisphenol A (BPA) on the fertility of females are appraised with emphasis on the influence of BPA in reproductive organs (uterus and ovaries) and pregnancy outcomes including discussion on the reproductive process (implantation, estrous cycle, hormone secretion); outcomes reveal a connection amongst BPA and female infertility. Ovary, uterus, and its shape as well as function can alter a person's ability to become pregnant by influencing the hypothalamus-pituitary axis in the ovarian model. Additionally, implantation and the estrous cycle may be affected by BPA. However, more research is warranted to comprehend the underlying action mechanisms and to promptly identify any imminent reproductive harm.
Collapse
Affiliation(s)
- Shahla Chaichian
- Endometriosis Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Khodabandehloo
- Department of Genetics and Advanced Medical Technology, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Ladan Haghighi
- Endometriosis Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Azam Govahi
- Endometriosis Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mehdizadeh
- Reproductive Sciences and Technology Research Center, Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Marziyeh Ajdary
- Endometriosis Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Rajender S Varma
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil.
| |
Collapse
|
4
|
Bracho GS, Acosta MV, Altamirano GA, Alcaraz MR, Montemurro M, Culzoni MJ, Rossetti MF, Kass L, Luque EH, Bosquiazzo VL. Uterine histopathology and steroid metabolism in a polycystic ovary syndrome rat model. Mol Cell Endocrinol 2024; 585:112198. [PMID: 38467370 DOI: 10.1016/j.mce.2024.112198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/23/2024] [Accepted: 03/04/2024] [Indexed: 03/13/2024]
Abstract
The aim of this study was to investigate uterine lesions, uterine endocrine status and expression of genes involved in uterine differentiation in a rat model of polycystic ovary syndrome (PCOS). The possible involvement of the androgen receptor (AR) was also investigated. PCOS rats showed an increased incidence of uterine epithelial and glandular lesions and elevated serum testosterone level, which was not detected in uterine tissue. Uterine 17β-estradiol, estrone and progesterone were detected in 100%, 75% and 50% of the animals, respectively. This was associated with a decrease in Star and an increase in Hsd17b2, Srd5a1 and Cyp19a1, suggesting that uterine steroids are not synthesized de novo in PCOS and that alterations in these enzymes may explain the absence of testosterone and low progesterone. In addition, ESR2 decreased and AR increased, suggesting possible steroid receptor crosstalk. Genes associated with uterine differentiation, PTEN and WNT5a, also showed reduced expression. PCOS rats treated with flutamide, an AR antagonist, were similar to PCOS rats in terms of uterine lesions, serum steroid levels, ESR2, PTEN and WNT5a expression. However, testosterone, AR and aromatase levels were similar to control rats, with decreased expression of ESR1 and HOXA10, suggesting that these expressions are AR dependent. Our results suggest that the primary cause of the observed uterine lesions in the PCOS rat model is the altered endocrine status and consequently changes in genes related to uterine differentiation.
Collapse
Affiliation(s)
- Gisela Soledad Bracho
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Departamento de Química General e Inorgánica, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - María Virginia Acosta
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Gabriela Anahí Altamirano
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Mirta Raquel Alcaraz
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Milagros Montemurro
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - María Julia Culzoni
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - María Florencia Rossetti
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Laura Kass
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Enrique Hugo Luque
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Verónica Lis Bosquiazzo
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| |
Collapse
|
5
|
Wu X, Tian Y, Zhu H, Xu P, Zhang J, Hu Y, Ji X, Yan R, Yue H, Sang N. Invisible Hand behind Female Reproductive Disorders: Bisphenols, Recent Evidence and Future Perspectives. TOXICS 2023; 11:1000. [PMID: 38133401 PMCID: PMC10748066 DOI: 10.3390/toxics11121000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
Reproductive disorders are considered a global health problem influenced by physiological, genetic, environmental, and lifestyle factors. The increased exposure to bisphenols, a chemical used in large quantities for the production of polycarbonate plastics, has raised concerns regarding health risks in humans, particularly their endocrine-disrupting effects on female reproductive health. To provide a basis for future research on environmental interference and reproductive health, we reviewed relevant studies on the exposure patterns and levels of bisphenols in environmental matrices and humans (including susceptible populations such as pregnant women and children). In addition, we focused on in vivo, in vitro, and epidemiological studies evaluating the effects of bisphenols on the female reproductive system (the uterus, ovaries, fallopian tubes, and vagina). The results indicate that bisphenols cause structural and functional damage to the female reproductive system by interfering with hormones; activating receptors; inducing oxidative stress, DNA damage, and carcinogenesis; and triggering epigenetic changes, with the damaging effects being intergenerational. Epidemiological studies support the association between bisphenols and diseases such as cancer of the female reproductive system, reproductive dysfunction, and miscarriage, which may negatively affect the establishment and maintenance of pregnancy. Altogether, this review provides a reference for assessing the adverse effects of bisphenols on female reproductive health.
Collapse
Affiliation(s)
- Xiaoyun Wu
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Yuchai Tian
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Huizhen Zhu
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Pengchong Xu
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Jiyue Zhang
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Yangcheng Hu
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Xiaotong Ji
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China;
| | - Ruifeng Yan
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Huifeng Yue
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Nan Sang
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| |
Collapse
|
6
|
Kaboli Kafshgiri S, Farkhondeh T, Miri-Moghaddam E. Glyphosate effects on the female reproductive systems: a systematic review. REVIEWS ON ENVIRONMENTAL HEALTH 2022; 37:487-500. [PMID: 34265884 DOI: 10.1515/reveh-2021-0029] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Glyphosate-based herbicides (GBHs) are organophosphate pesticides, which interrupt the chemicals involved in the endocrine system and cause lifelong disorders in women's reproductive system. The current study was designed to systematically evaluate the association between GBH exposure and the female reproductive tract. According to PRISMA Guidelines, the systematic review was performed, searching online databases, including Google Scholar, Web of Science, PubMed, and Scopus, throughout April 2020. Studies with Rodent, lamb, and fish or exposed to GBH to affect the female reproductive system were selected. All studies were in the English language. Two investigators independently assessed the articles. The first author's name, publication date, animal model, age, sample size, gender, dose, duration, and route of exposure and outcomes were extracted from each publication. The present review summarizes 14 publications on uterus alterations and oocytes, histological changes ovary, and assessed mRNA expression, protein expression, serum levels progesterone, and estrogen and intracellular Reaction Oxygen Species (ROS) in rodents, fish, and lamb exposed to GHB exposure. Most of the studies reported histological changes in ovarian and uterus tissue, alterations in serum levels, and increased oxidative stress level following exposure to GBH. Additionally, due to alterations in the reproductive systems (e.g., histomorphological changes, reduction of the mature follicles, higher atretic follicles, and interstitial fibrosis), it seems the GBH-induced female these alterations are both dose- and time-dependent. The present findings support an association between GBH exposure and female reproductive system diseases. However, more studies are needed to identify the mechanisms disrupting the effects of GBH and their underlying mechanisms. Considering the current literature, it is recommended that further investigations be focused on the possible effects of various pesticides on the human reproductive system.
Collapse
Affiliation(s)
- Sakineh Kaboli Kafshgiri
- Molecular Medicine Department, Postdoc Position in Developmental Biology, Birjand University of Medical Sciences (BUMS), Birjand, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Science, Birjand, Iran
| | - Ebrahim Miri-Moghaddam
- Cardiovascular Disease Research Center, Razi Hospital, Faculty of Medicine, Binorjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
7
|
Ingaramo PI, Alarcón R, Caglieris ML, Varayoud J, Muñoz-de-Toro M, Luque EH. Altered uterine angiogenesis in rats treated with a glyphosate-based herbicide. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 296:118729. [PMID: 34953950 DOI: 10.1016/j.envpol.2021.118729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/02/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Glyphosate-based herbicides (GBHs) are the agrochemicals most used around the globe. However, they might have adverse effects on human and animal health. Previously, we showed that female rats neonatally exposed to GBHs exhibit altered expression of morphogenetic molecules and biomarkers of uterine development. We also observed a reduction in the size of implantation sites, altered expression of decidualization-related molecules, and increased post-implantation losses. Since decidualization comprises morphogenetic, biochemical and vascular changes, here we investigated the effects of neonatal GBH exposure on uterine angiogenesis in neonatal and pregnant rats. To achieve this, Wistar female rats were exposed to saline solution or GBH (2 mg glyphosate/kg-bw/day) on post-natal days (PND) 1, 3, 5 and 7. On PND8, uterine samples were collected for developmental studies. On PND90, the remaining females were mated and in the morning of gestational day (GD) 9, the implantation sites were collected. Angiogenesis-related molecules and cells involved in this process were identified and/or measured by immunohistochemistry or RT-PCR. On PND8, GBH-treated rats showed increased vascular endothelial growth factor (VEGF) expression and decreased Notch1, inducible nitric oxide synthase (iNOS) and Angiopoietin-2 (Ang2) mRNA levels. Vascular area, vessel diameter, endothelial cell proliferation, VEGF and Nestin protein expression, and VEGF, Notch1, iNOS and cyclooxygenase-2 (Cox-2) genes were downregulated in implantation sites of exposed females, while Ang2, VEGF receptor 1 and interleukin-10 (IL-10) were increased. Mast cells and macrophages were increased on PND8 and GD9 of treated rats. The increased Transforming growth factor-beta expression in the antimesometrial zone and IL-10 mRNA expression suggest that the M2 type is the predominant population of macrophages on implantation sites. In conclusion, neonatal GBH exposure alters the expression of angiogenesis-related molecules at neonatal uterine development and decidual reaction, suggesting altered vascular support. These alterations might contribute to the increased post-implantation losses observed in GBH-treated rats.
Collapse
Affiliation(s)
- Paola I Ingaramo
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe, Argentina.
| | - Ramiro Alarcón
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe, Argentina
| | - María L Caglieris
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe, Argentina
| | - Jorgelina Varayoud
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe, Argentina
| | - Mónica Muñoz-de-Toro
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe, Argentina
| | - Enrique H Luque
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe, Argentina
| |
Collapse
|
8
|
Effects of Endocrine-Disrupting Chemicals on Endometrial Receptivity and Embryo Implantation: A Systematic Review of 34 Mouse Model Studies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18136840. [PMID: 34202247 PMCID: PMC8297133 DOI: 10.3390/ijerph18136840] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 01/23/2023]
Abstract
Several available studies have already analyzed the systemic effects of endocrine-disrupting chemicals (EDCs) on fertile woman and neonatal outcomes, but little is still known in humans about the precise mechanisms of interference of these compounds with the endometrial receptivity. There is consistent evidence that continuous and prolonged exposure to EDCs is a risk factor for reduced fertility and fecundity in women. Preliminary studies on mammalian models provide robust evidence about this issue and could help gynecologists worldwide to prevent long term injury caused by EDCs on human fertility. In this systematic review, we aimed to systematically summarize all available data about EDC effects on blastocyst endometrial implantation. We performed a systematic review using PubMed®/MEDLINE® to summarize all in vivo studies, carried out on mice models, analyzing the molecular consequences of the prolonged exposure of EDC on the implantation process. 34 studies carried out on mouse models were included. Primary effects of EDC were a reduction of the number of implantation sites and pregnancy rates, particularly after BPA and phthalate exposure. Furthermore, the endometrial expression of estrogen (ER) and progesterone receptors (PR), as well as their activation pathways, is compromised after EDC exposure. Finally, the expression of the primary endometrial markers of receptivity (such as MUC1, HOXA10, Inn and E-cadherin) after EDC contact was analyzed. In conclusion EDC deeply affect blastocyst implantation in mouse model. Several players of the implantation mechanism are strongly influenced by the exposure to different categories of EDC.
Collapse
|
9
|
Evaluation of Development of the Rat Uterus as a Toxicity Biomarker. Methods Mol Biol 2021. [PMID: 33423230 DOI: 10.1007/978-1-0716-1091-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The developing uterus is highly sensitive to a brief exposure to different substances, in particular those with endocrine-disrupting activity. Thus, exposure to environmental, nutritional, chemical, and other xenobiotic factors affecting signaling events during critical organizational periods can alter the normal course of uterine development with lasting consequences. In this chapter, we provide an experimental protocol to evaluate the development of the rat uterus as a toxicity biomarker at two different developmental time points: (1) the neonatal period, on postnatal day (PND) 8, and (2) the prepubertal period, on PND21. In this experimental approach, we propose to assess: (1) uterine morphology and cytodifferentiation, (2) uterine cell proliferation, and (3) the expression of proteins involved in uterine organogenetic differentiation. All these morphological and molecular markers are useful tools to determine the consequences of exposure to toxicants with the potential to disrupt the uterine development.
Collapse
|
10
|
Bahelka I, Stupka R, Čítek J, Šprysl M. The impact of bisphenols on reproductive system and on offspring in pigs - A review 2011-2020. CHEMOSPHERE 2021; 263:128203. [PMID: 33297166 DOI: 10.1016/j.chemosphere.2020.128203] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 06/12/2023]
Abstract
This study summarizes the knowledge about effects of bisphenol A (BPA) and its analogues on reproduction of pigs and some parameters of their offspring during period 2011-2020. Bisphenols are known as one of the most harmful environmental toxicants with endocrine-disrupting properties. One study in the reference period related to male reproductive system. Treatment with an antagonist of G-protein coupled estrogen receptor (GPER) - G15, and bisphenol A and its analogues, tetrabromobisphenol A (TBBPA) and tetrachromobisphenol A (TCBPA) diversely disrupted protein molecules controlling the biogenesis and function of microRNA in Leydig cells. Nine studies examined the effect of BPA, bisphenol S (BPS) or fluorene-9-bisphenol (BHPF) on female reproductive system. From the possible protective effect's point of view seems to be perspective the administration of melatonin in BPA-exposed oocytes. Finally, two studies were found to evaluate the maternal exposure to BPA on offspring's meat quality, muscle metabolism and oxidative stress. Administration of methyl donor improved antioxidant enzymes activity and reduced oxidative stress in piglets.
Collapse
Affiliation(s)
- Ivan Bahelka
- Department of Animal Science, Czech University of Life Sciences Prague, Kamýcká 129, 16500, Czech Republic.
| | - Roman Stupka
- Department of Animal Science, Czech University of Life Sciences Prague, Kamýcká 129, 16500, Czech Republic
| | - Jaroslav Čítek
- Department of Animal Science, Czech University of Life Sciences Prague, Kamýcká 129, 16500, Czech Republic
| | - Michal Šprysl
- Department of Animal Science, Czech University of Life Sciences Prague, Kamýcká 129, 16500, Czech Republic
| |
Collapse
|
11
|
Gisela S B, M Virginia A, Gabriela A A, M Virginia T, Enrique H L, Laura K, Véronica L B. Androgen receptor and uterine histoarchitecture in a PCOS rat model. Mol Cell Endocrinol 2020; 518:110973. [PMID: 32781251 DOI: 10.1016/j.mce.2020.110973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 02/07/2023]
Abstract
Polycystic ovary syndrome (PCOS) is associated with hyperandrogenemia and uterine abnormalities. Our aim was to investigate the uterine effects of PCOS that are mediated through the androgen receptor (AR). After weaning, female rats were treated with sesame oil (Control), dehydroepiandrosterone (DHEA), or DHEA + flutamide (FLU, an AR antagonist) for 20 consecutive days. On postnatal day 41, serum, ovarian and uterine tissues were collected. DHEA and DHEA + FLU rats showed increased testosterone levels. DHEA rats showed increased epithelial height, glandular density, subepithelial stroma and myometrial thickness, associated with decreased nuclei density. These rats also showed increased uterine water content, with decreased aquaporin (AQP) 3, 7 and 8 expression in the uterine epithelium and increased AQP8 expression in the myometrium. DHEA rats also showed decreased uterine collagen remodeling, decreased cell proliferation in the subepithelial stroma, and increased apoptosis in the luminal and glandular epithelium and in the myometrium. They also showed an increase in insulin-like growth factor-1 and a decrease in phosphatidylinositol-3,4,5-trisphosphate 3-phosphatase. The uterine stroma of DHEA rats showed no changes in progesterone receptor or estrogen receptor alpha (ERα) and increased AR expression. DHEA + FLU rats showed a smaller increase in the myometrial thickness, an increase in the uterine water content without AQP8 induction and a smaller decrease in collagen remodeling. These rats also showed no apoptosis induction and decreased proliferation in the myometrium, decreased ERα in the subepithelial stroma and myometrium and no modifications in AR. Our results demonstrate that the uterine cell turnover and collagen remodeling in DHEA rats are regulated through AR, directly or indirectly associated with ERα expression.
Collapse
Affiliation(s)
- Bracho Gisela S
- Instituto de Salud y Ambiente del Litoral (ISAL UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Acosta M Virginia
- Instituto de Salud y Ambiente del Litoral (ISAL UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Altamirano Gabriela A
- Instituto de Salud y Ambiente del Litoral (ISAL UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Tschopp M Virginia
- Instituto de Salud y Ambiente del Litoral (ISAL UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Luque Enrique H
- Instituto de Salud y Ambiente del Litoral (ISAL UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Kass Laura
- Instituto de Salud y Ambiente del Litoral (ISAL UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Bosquiazzo Véronica L
- Instituto de Salud y Ambiente del Litoral (ISAL UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| |
Collapse
|
12
|
Alarcón R, Rivera OE, Ingaramo PI, Tschopp MV, Dioguardi GH, Milesi MM, Muñoz-de-Toro M, Luque EH. Neonatal exposure to a glyphosate-based herbicide alters the uterine differentiation of prepubertal ewe lambs. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114874. [PMID: 32599332 DOI: 10.1016/j.envpol.2020.114874] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/30/2020] [Accepted: 05/23/2020] [Indexed: 06/11/2023]
Abstract
The exposure to endocrine-disrupting compounds (EDCs), such as glyphosate-based herbicides (GBHs), during early life might alter female fertility. The aim of the present study was to evaluate the effects of neonatal exposure to a GBH on sheep uterine development. To achieve this, Friesian ewe lambs were exposed to GBH (2 mg/kg of body weight/day; n = 12) or vehicle (controls; n = 10) through s.c. injections, from postnatal day (PND) 1 to PND14; on PND45, the uteri were obtained to evaluate histomorphological and molecular parameters. Morphological parameters were determined by picrosirius-hematoxylin staining. Protein expression of Ki67 (as a cell proliferation marker), p27, and molecules involved in uterine organogenetic differentiation was measured by immunohistochemistry. We also determined the mRNA expression of the IGF molecular pathway by RT-PCR. Although histomorphology was not modified, the uteri of GBH-exposed ewe lambs showed lower cell proliferation, together with higher p27 protein expression. In addition, the uteri of GBH-exposed ewe lambs showed increased gene expression of insulin-like growth factor binding protein 3 (IGFBP-3), decreased expression of ERα in the luminal (LE) and glandular (GE) epithelia and in the subepithelial stroma (SS), and lower PR expression in the LE but higher in the GE and SS. In addition, GBH treatment decreased the uterine expression of Wnt5a in the GE, of Wnt7a in the SS, of β-catenin in the LE and GE, of Hoxa10 in the SS, and of Foxa2 in the GE as compared with controls. In conclusion, neonatal exposure to GBH decreased cell proliferation and altered the expression of molecules that control proliferation and development in the uterus. All these changes might have adverse consequences on uterine differentiation and functionality, affecting the female reproductive health of sheep. GBH may be responsible for uterine subfertility, acting as an EDC.
Collapse
Affiliation(s)
- Ramiro Alarcón
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Oscar E Rivera
- Instituto de Investigación sobre Producción Agropecuaria, Ambiente y Salud (IIPAAS), Facultad de Ciencias Agrarias, Universidad Nacional de Lomas de Zamora, Buenos Aires, Argentina
| | - Paola I Ingaramo
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Litoral, Santa Fe, Argentina
| | - María V Tschopp
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Gisela H Dioguardi
- Instituto de Investigación sobre Producción Agropecuaria, Ambiente y Salud (IIPAAS), Facultad de Ciencias Agrarias, Universidad Nacional de Lomas de Zamora, Buenos Aires, Argentina
| | - Mercedes M Milesi
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Mónica Muñoz-de-Toro
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Enrique H Luque
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Litoral, Santa Fe, Argentina.
| |
Collapse
|
13
|
Milesi MM, Durando M, Lorenz V, Gastiazoro MP, Varayoud J. Postnatal exposure to endosulfan affects uterine development and fertility. Mol Cell Endocrinol 2020; 511:110855. [PMID: 32437785 DOI: 10.1016/j.mce.2020.110855] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 03/30/2020] [Accepted: 04/29/2020] [Indexed: 12/16/2022]
Abstract
Endosulfan is an organochlorine pesticide (OCP) used in large-scale agriculture for controlling a variety of insects and mites that attack food and non-food crops. Although endosulfan has been listed in the Stockholm Convention as a persistent organic pollutant to be worldwide banned, it is still in use in some countries. Like other OCPs, endosulfan is bioaccumulative, toxic and persistent in the environment. Human unintentional exposure may occur through air inhalation, dietary, skin contact, as well as, via transplacental route and breast feeding. Due to its lipophilic nature, endosulfan is rapidly absorbed into the gastrointestinal tract and bioaccumulates in the fatty tissues. Similar to other OCPs, endosulfan has been classified as an endocrine disrupting chemical (EDC). Endocrine action of endosulfan on development and reproductive function of males has been extensively discussed; however, endosulfan effects on the female reproductive tract have received less attention. This review provides an overview of: i) the fate and levels of endosulfan in the environment and human population, ii) the potential estrogenic properties of endosulfan in vitro and in vivo, iii) its effects on uterine development, and iv) the long-term effects on female fertility and uterine functional differentiation during early gestation.
Collapse
Affiliation(s)
- M M Milesi
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Casilla de Correo 242, 3000, Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina.
| | - M Durando
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Casilla de Correo 242, 3000, Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
| | - V Lorenz
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Casilla de Correo 242, 3000, Santa Fe, Argentina
| | - M P Gastiazoro
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Casilla de Correo 242, 3000, Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
| | - J Varayoud
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Casilla de Correo 242, 3000, Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
| |
Collapse
|
14
|
Chen M, Guo J, Ruan J, Yang Z, He C, Zuo Z. Neonatal exposure to environment-relevant levels of tributyltin leads to uterine dysplasia in rats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137615. [PMID: 32325588 DOI: 10.1016/j.scitotenv.2020.137615] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/26/2020] [Accepted: 02/26/2020] [Indexed: 05/12/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) are natural/synthetic compounds that mimic or inhibit the biological actions of endogenous hormones. Studies have revealed that environmental estrogen, such as bisphenol A (BPA), causes developmental defects in the uterus. Tributyltin (TBT) is a typical environmental androgen. In this study, we aimed to explore the effect and mechanism of TBT on uterine development. Neonatal female rats were exposed to TBT (10 and 100 ng/kg bw) from postnatal days 1 to 16. BPA (50 μg/kg bw) was used as a positive control. Neonatal exposure to environmental concentrations of TBT resulted in pathological changes in the uterus, including thickening of the uterine luminal epithelium, a low density of glands, endometrial inflammation and fibrosis. Further, TBT affected the Wnt signaling pathway, which might mediate developmental disorders of the endometrial epithelial cells and glands in the uterus. TBT exposure also activated the NF-κB signaling pathway, which triggered inflammation. Moreover, TBT exposure upregulated the TGF-β/Smads signaling pathway, possibly leading to endometrial fibrosis. In summary, our results demonstrate that neonatal exposure to an environment-relevant level of TBT leads to uterine dysplasia and provide potential molecular mechanisms. Our study is helpful for clarifying the effects of environmental androgens on the female reproduction system.
Collapse
Affiliation(s)
- Mingyue Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Jiaojiao Guo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Jinpeng Ruan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Zhibing Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Chengyong He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China; Key Laboratory of the Coastal and Wetland Ecosystems (Xiamen University), Ministry of Education, China.
| |
Collapse
|
15
|
Pivonello C, Muscogiuri G, Nardone A, Garifalos F, Provvisiero DP, Verde N, de Angelis C, Conforti A, Piscopo M, Auriemma RS, Colao A, Pivonello R. Bisphenol A: an emerging threat to female fertility. Reprod Biol Endocrinol 2020; 18:22. [PMID: 32171313 PMCID: PMC7071611 DOI: 10.1186/s12958-019-0558-8] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 12/19/2019] [Indexed: 02/07/2023] Open
Abstract
Bisphenol-A (BPA) has been reported to be associated to female infertility. Indeed, BPA has been found to be more frequently detected in infertile women thus leading to hypothesize a possible effect of BPA on natural conception and spontaneous fecundity. In addition, in procedures of medically assisted reproduction BPA exposure has been found to be negatively associated with peak serum estradiol levels during gonadotropin stimulation, number of retrieved oocytes, number of normally fertilized oocytes and implantation. BPA deleterious effects are more critical during perinatal exposure, causing dysregulation of hypothalamic-pituitary-ovarian axis in pups and adults, with a precocious maturation of the axis through a damage of GnRH pulsatility, gonadotropin signaling and sex steroid hormone production. Further, BPA exposure during early lifestage may have a transgenerational effect predisposing the subsequent generations to the risk of developing BPA related disease. Experimental studies suggested that prenatal, perinatal and postnatal exposure to BPA can impair several steps of ovarian development, induce ovarian morphology rearrangement and impair ovarian function, particularly folliculogenesis, as well as can impair uterus morphology and function, in female adult animal and offspring. Finally, studies carried out in animal models have been reported the occurrence of endometriosis-like lesions after BPA exposure. Moreover, BPA exposure has been described to encourage the genesis of PCOS-like abnormalities through the impairment of the secretion of sex hormones affecting ovarian morphology and functions, particularly folliculogenesis. The current manuscript summarizes the evidence regarding the association between BPA exposure and female infertility, reviewing both clinical and preclinical studies.
Collapse
Affiliation(s)
- Claudia Pivonello
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università "Federico II" di Napoli, Via Sergio Pansini, 5, Naples, Italy
| | - Giovanna Muscogiuri
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università "Federico II" di Napoli, Via Sergio Pansini, 5, Naples, Italy.
| | - Antonio Nardone
- Dipartimento di Sanità Pubblica, Università "Federico II" di Napoli, Naples, Italy
| | - Francesco Garifalos
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università "Federico II" di Napoli, Via Sergio Pansini, 5, Naples, Italy
- FERTISEXCARES Centro di Andrologia, Medicina della Riproduzione e della Sessualità Maschile e Femminile, Università "Federico II" di Napoli, Naples, Italy
| | - Donatella Paola Provvisiero
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università "Federico II" di Napoli, Via Sergio Pansini, 5, Naples, Italy
- Dipartimento di Sanità Pubblica, Università "Federico II" di Napoli, Naples, Italy
- I.O.S. & COLEMAN Srl, Naples, Italy
| | - Nunzia Verde
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università "Federico II" di Napoli, Via Sergio Pansini, 5, Naples, Italy
- FERTISEXCARES Centro di Andrologia, Medicina della Riproduzione e della Sessualità Maschile e Femminile, Università "Federico II" di Napoli, Naples, Italy
| | - Cristina de Angelis
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università "Federico II" di Napoli, Via Sergio Pansini, 5, Naples, Italy
- Dipartimento di Sanità Pubblica, Università "Federico II" di Napoli, Naples, Italy
- FERTISEXCARES Centro di Andrologia, Medicina della Riproduzione e della Sessualità Maschile e Femminile, Università "Federico II" di Napoli, Naples, Italy
- I.O.S. & COLEMAN Srl, Naples, Italy
| | - Alessandro Conforti
- Dipartimento di Neuroscienze, Scienze Riproduttive ed Odontostomatologiche, Università "Federico II" di Napoli, Naples, Italy
| | - Mariangela Piscopo
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università "Federico II" di Napoli, Via Sergio Pansini, 5, Naples, Italy
- FERTISEXCARES Centro di Andrologia, Medicina della Riproduzione e della Sessualità Maschile e Femminile, Università "Federico II" di Napoli, Naples, Italy
- Laboratory of Seminology-sperm bank "Loredana Gandini", Department of Experimental Medicine, University of Rome "La Sapienza", Rome, Italy
| | - Renata Simona Auriemma
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università "Federico II" di Napoli, Via Sergio Pansini, 5, Naples, Italy
| | - Annamaria Colao
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università "Federico II" di Napoli, Via Sergio Pansini, 5, Naples, Italy
- FERTISEXCARES Centro di Andrologia, Medicina della Riproduzione e della Sessualità Maschile e Femminile, Università "Federico II" di Napoli, Naples, Italy
- Cattedra Unesco "Educazione alla salute e allo sviluppo sostenibile", Università "Federico II" di Napoli, Naples, Italy
| | - Rosario Pivonello
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università "Federico II" di Napoli, Via Sergio Pansini, 5, Naples, Italy
- FERTISEXCARES Centro di Andrologia, Medicina della Riproduzione e della Sessualità Maschile e Femminile, Università "Federico II" di Napoli, Naples, Italy
- Cattedra Unesco "Educazione alla salute e allo sviluppo sostenibile", Università "Federico II" di Napoli, Naples, Italy
| |
Collapse
|
16
|
Ingaramo PI, Guerrero Schimpf M, Milesi MM, Luque EH, Varayoud J. Acute uterine effects and long-term reproductive alterations in postnatally exposed female rats to a mixture of commercial formulations of endosulfan and glyphosate. Food Chem Toxicol 2019; 134:110832. [PMID: 31550491 DOI: 10.1016/j.fct.2019.110832] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/17/2019] [Accepted: 09/20/2019] [Indexed: 01/23/2023]
Abstract
Endosulfan and glyphosate are widely used pesticides and have been associated to reproductive disorders. We examine the acute and long-term effects of postnatal exposure to commercial formulations of endosulfan (EF), glyphosate (glyphosate-based herbicide, GBH) and a mixture of both pesticides (MIX). After birth, female pups of Wistar rats received saline solution (CONTROL), EF (600 μg/kg of b.w/day), GBH (2 mg/kg of b.w/day) or a mixture (at the same doses) from postnatal day (PND) 1 to PND7. The uterine histology and expression of Hoxa10, estrogen (ERα) and progesterone (PR) receptors were evaluated on PND8. Reproductive performance was evaluated on gestational day 19. GBH and MIX rats showed an increment of 1) the incidence of luminal epithelial hyperplasia, 2) PR and Hoxa10 expression. EF modified ERα and Hoxa10 expression. During adulthood, MIX and GBH rats showed higher post-implantation losses while EF alone produced an increase of pre-implantation losses. We showed that the co-administration of both pesticides produced acute uterine effects and long-term deleterious reproductive effects that were similar to those induced by GBH alone. We consider important to highlight the necessity to evaluate the commercial pesticide mixture as a more representative model of human exposure to a high number of pesticides.
Collapse
Affiliation(s)
- Paola I Ingaramo
- Instituto de Salud y Ambiente Del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe, Argentina.
| | - Marlise Guerrero Schimpf
- Instituto de Salud y Ambiente Del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe, Argentina
| | - María M Milesi
- Instituto de Salud y Ambiente Del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe, Argentina
| | - Enrique H Luque
- Instituto de Salud y Ambiente Del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe, Argentina
| | - Jorgelina Varayoud
- Instituto de Salud y Ambiente Del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe, Argentina
| |
Collapse
|
17
|
Methylation-reprogrammed AGTR1 results in increased vasoconstriction by angiotensin II in human umbilical cord vessel following in vitro fertilization-embryo transfer. Life Sci 2019; 234:116792. [PMID: 31465733 DOI: 10.1016/j.lfs.2019.116792] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/23/2019] [Accepted: 08/24/2019] [Indexed: 11/24/2022]
Abstract
AIMS Assisted reproductive technologies (ART) have been widely used to treat infertility, which may impact on fetuses and offspring. This study investigated the effects of in vitro fertilization-embryo transfer (IVF-ET) on angiotensin II (AII)-mediated vasoconstrictions in umbilical cord vein, and explored possible reprogrammed methylation mechanism. MATERIALS AND METHODS Human umbilical cords were randomly divided into ordinary pregnancy and IVF-ET pregnancy. Vascular studies with AII as well as its specific receptor antagonists losartan and PD123,319 were conducted. Real-time quantitative PCR, Western blotting, and methylation analysis by bisulfite sequencing were performed with the cord vessel samples. KEY FINDINGS In IVF-ET group, the maximal response to AII in umbilical vessels was significantly greater than that in the ordinary pregnancy. Using losartan and PD123,319, angiotensin receptor subtype 1 (AT1R) was found mainly responsible for the enhanced contraction in the umbilical vein of IVF-ET pregnancy. Decreased mRNA expression of DNMT3A was found in umbilical vein of IVF-ET group. Hypomethylation of the AGTR1 gene (gene encoding AT1R) in the umbilical veins of the IVF group was found. The data suggested that the IVF-ET treatments altered AII-mediated vasoconstrictions in umbilical veins, which could be partially attributed to the increased expression of AT1R. SIGNIFICANCE The hypo-methylation of the AGTR1 gene caused by IVF-ET might play important roles in altered vasoconstrictions, impacting on cardiovascular systems in the long run.
Collapse
|
18
|
Alarcón R, Varayoud J, Luque EH, Milesi MM. Effect of neonatal exposure to endosulfan on myometrial adaptation during early pregnancy and labor in rats. Mol Cell Endocrinol 2019; 491:110435. [PMID: 31029737 DOI: 10.1016/j.mce.2019.04.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/13/2019] [Accepted: 04/22/2019] [Indexed: 12/28/2022]
Abstract
Proper myometrial adaptation during gestation is crucial for embryo implantation, pregnancy maintenance and parturition. Previously, we reported that neonatal exposure to endosulfan alters uterine development and induces implantation failures. The present work investigates the effects of endosulfan exposure on myometrial differentiation at the pre-implantation period, and myometrial activation during labor. Newborn female rats were s.c. injected with corn oil (vehicle) or 600 μg/kg/day of endosulfan (Endo600) on postnatal days (PND) 1, 3, 5 and 7. On PND90, the rats were mated to evaluate: i) the myometrial differentiation on gestational day 5 (GD5, pre-implantation period), by assessment myometrial histomorphology, smooth muscle cells (SMCs) proliferation, and expression of proteins involved in myometrial adaptation for embryo implantation (steroid receptors, Wnt7a and Hoxa10); ii) the timing of parturition and myometrial activation during labor by determining the uterine expression of contraction-associated genes (oxytocin receptor, OTXR; prostaglandin F2α receptor, PTGFR and connexin-43, Cx-43). Endosulfan decreased the thickness of both myometrial layers, with a concomitant decrease in the collagen remodeling. Blood vessels relative area in the interstitial connective tissue between muscle layers was also decreased. Endo600 group showed lower myometrial proliferation in association with a downregulation of Wnt7a and Hoxa10. Although in all females labor occurred on GD23, the exposure to endosulfan altered the timing of parturition, by inducing advancement in the initiation of labor. This alteration was associated with an increased uterine expression of OTXR, PTGFR and Cx-43. In conclusion, neonatal exposure to endosulfan produced long-term effects affecting myometrial adaptation during early pregnancy and labor. These alterations could be associated with the aberrant effects of endosulfan on the implantation process and the timing of parturition.
Collapse
Affiliation(s)
- Ramiro Alarcón
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Jorgelina Varayoud
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Enrique H Luque
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - María M Milesi
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| |
Collapse
|
19
|
Kassab BM, Hussein HH, Mahmoud OM, Abdel-Alrahman G. Effects of insulin and metformin on fetal kidney development of streptozotocin-induced gestational diabetic albino rats. Anat Cell Biol 2019; 52:161-175. [PMID: 31338233 PMCID: PMC6624335 DOI: 10.5115/acb.2019.52.2.161] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/12/2018] [Accepted: 12/14/2018] [Indexed: 02/06/2023] Open
Abstract
Gestational diabetes mellitus is one of common medical complications of pregnancy. Hyperglycemia in utero impairs renal development and produces renal anomalies. Metformin has antioxidant properties and better glycemic control. Aim: assessment insulin and metformin effects on renal development of streptozotocin-induced gestational diabetic albino rats. Sixty virgin female albino rats were used. Once pregnancy confirmed, animals were randomly assigned into control, metformin, diabetic, diabetic plus insulin, diabetic plus metformin and diabetic plus insulin and metformin treated groups. Rats were sacrificed on the 20th day of gestation; fetuses were extracted and weighted. Fetal kidneys were extracted prepared for light, morphometric and electron microscopic examination. Diabetic followed by diabetic plus metformin treated groups revealed retardation of glomerular development in the cortical and Juxtaglomerular zones with a significant increase in the early immature glomerular stages and immature to mature glomerular ratio compared to other groups. Diabetic group also showed morphometric changes, shrunken and empty glomeruli, vacuolar degeneration and hemorrhage. Diabetic plus metformin group showed minimal improvement while diabetic plus insulin and diabetic plus insulin and metformin groups showed developmental, histopathological and morphometric improvement with best results in the combination group. Gestational diabetes mellitus (GDM) possess deleterious effects on fetal kidney development. Insulin improves the glycemic state and decreases GDM effects on fetal kidneys. Metformin produces mild protection while the combination of insulin and metformin produces the best glycemic control and protect fetal kidneys.
Collapse
Affiliation(s)
- Ban M Kassab
- Department of Anatomy, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Hoda H Hussein
- Department of Anatomy, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Omayma M Mahmoud
- Department of Anatomy, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Gamal Abdel-Alrahman
- Department of Anatomy, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
20
|
Martínez-Peña AA, Peña-Castillo A, Parra-Forero LY, Hernández-Ochoa I, Hernández-Barrientos LR, Morimoto S, Mendoza-Rodríguez CA. Parental perinatal exposure to bisphenol A reduces the threshold to disrupt blastocyst implantation via decreasing talin, occudin and E-cadherin levels. Reprod Toxicol 2019; 86:86-97. [PMID: 31028817 DOI: 10.1016/j.reprotox.2019.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/06/2019] [Accepted: 04/22/2019] [Indexed: 11/29/2022]
Abstract
The aim was to evaluate the effect of perinatal BPA exposure of one or both parents on the implantation index and expression of talin, occludin and E-cadherin in the uterine epithelial cells (UEC) of the offspring. Pregnant Wistar dams (F0) received BPA or vehicle from gestational day (GD) 6 to lactation day 21. F1 animals were mated forming four groups: Control dam-Control sire (C♀-C♂), BPA dam -Control sire (B♀-C♂), Control dam -BPA sire (C♀-B♂), BPA dam -BPA sire (B♀-B♂). F1 dams were sacrificed at GD 6. Significantly decreased number of implantation sites was observed in the B♀-B♂ group as compared to the C♀-C♂ group, which correlated with decreased talin apical/basal expression ratio, occludin apical expression, and E-cadherin apical/lateral expression ratio in the UEC. Furthermore, decreased E-cadherin expression in the blastocyst was observed. Our data suggest that reduced protein expressions in F1 BPA offspring could result from decreased progesterone serum levels.
Collapse
Affiliation(s)
- Annia A Martínez-Peña
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico
| | - Andrea Peña-Castillo
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico
| | - L Yuliana Parra-Forero
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Ciudad de México 07360, Mexico
| | - Isabel Hernández-Ochoa
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Ciudad de México 07360, Mexico
| | - Luis R Hernández-Barrientos
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico
| | - Sumiko Morimoto
- Instituto Nacional de Ciencias Médicas y de la Nutrición Salvador Zubirán, Ciudad de Mexico 14080, Mexico
| | - C Adriana Mendoza-Rodríguez
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico.
| |
Collapse
|
21
|
Siegel M, Krieg S, Shahine L. Endocrine Disruptors and Pregnancy Loss. CURRENT OBSTETRICS AND GYNECOLOGY REPORTS 2019. [DOI: 10.1007/s13669-019-0258-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
22
|
Lorenz V, Milesi MM, Schimpf MG, Luque EH, Varayoud J. Epigenetic disruption of estrogen receptor alpha is induced by a glyphosate-based herbicide in the preimplantation uterus of rats. Mol Cell Endocrinol 2019; 480:133-141. [PMID: 30391669 DOI: 10.1016/j.mce.2018.10.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/29/2018] [Accepted: 10/31/2018] [Indexed: 12/15/2022]
Abstract
Previously, we have shown that perinatal exposure to a glyphosate-based herbicide (GBH) induces implantation failures in rats. Estrogen receptor alpha (ERα) is critical for successful implantation. ERα transcription is under the control of five promoters (E1, OT, O, ON, and OS), which yield different transcripts. Here, we studied whether perinatal exposure to a GBH alters uterine ERα gene expression and prompts epigenetic modifications in its regulatory regions during the preimplantation period. Pregnant rats (F0) were orally treated with 350 mg glyphosate/kg bw/day through food from gestational day (GD) 9 until weaning. F1 females were bred, and uterine samples were collected on GD5 (preimplantation period). ERα mRNA levels and its transcript variants were evaluated by RT-qPCR. Enzyme-specific restriction sites and predicted transcription factors were searched in silico in the ERα promoter regions to assess the methylation status using the methylation-sensitive restriction enzymes-PCR technique. Post-translational modifications of histones were studied by the chromatin immunoprecipitation assay. GBH upregulated the expression of total ERα mRNA by increasing the abundance of the ERα-O transcript variant. In addition, different epigenetic changes were detected in the O promoter. A decrease in DNA methylation was observed in one of the three sites evaluated in the O promoter. Moreover, histone H4 acetylation and histone H3 lysine 9 trimethylation (H3K9me3) were enriched in the O promoter in GBH-exposed rats, whereas H3K27me3 was decreased. All these alterations could account for the increase in ERα gene expression. Our findings show that perinatal exposure to a GBH causes long-term epigenetic disruption of the uterine ERα gene, which could be associated with the GBH-induced implantation failures.
Collapse
Affiliation(s)
- Virginia Lorenz
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - María M Milesi
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - Marlise Guerrero Schimpf
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - Enrique H Luque
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - Jorgelina Varayoud
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina.
| |
Collapse
|
23
|
Effects of BPA on expression of apoptotic genes and migration of ovine trophectoderm (oTr1) cells during the peri-implantation period of pregnancy. Reprod Toxicol 2019; 83:73-79. [DOI: 10.1016/j.reprotox.2018.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 11/30/2018] [Accepted: 12/04/2018] [Indexed: 12/17/2022]
|
24
|
Matuszczak E, Komarowska MD, Debek W, Hermanowicz A. The Impact of Bisphenol A on Fertility, Reproductive System, and Development: A Review of the Literature. Int J Endocrinol 2019; 2019:4068717. [PMID: 31093279 PMCID: PMC6481157 DOI: 10.1155/2019/4068717] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 02/19/2019] [Accepted: 03/26/2019] [Indexed: 11/28/2022] Open
Abstract
Bisphenol A (BPA) has been used since the 1950s, in food packaging, industrial materials, dental sealants, and personal hygiene products. Everyone is exposed to BPA through skin, inhalation, and digestive system. BPA disrupts endocrine pathways, because it has weak estrogenic, antiandrogenic, and antithyroid activities. Despite the rapid metabolism, BPA can accumulate in different tissues. Many researchers proved the impact of BPA on human development, metabolism, and finally reproductive system. There is increasing evidence that BPA has impact on human fertility and is responsible for the reproductive pathologies, e.g., testicular dysgenesis syndrome, cryptorchidism, cancers, and decreased fertility in male and follicle loss in female.
Collapse
Affiliation(s)
- Ewa Matuszczak
- Pediatric Surgery Department, Medical University of Bialystok, Poland
| | | | - Wojciech Debek
- Pediatric Surgery Department, Medical University of Bialystok, Poland
| | - Adam Hermanowicz
- Pediatric Surgery Department, Medical University of Bialystok, Poland
| |
Collapse
|
25
|
Viguié C, Mhaouty-Kodja S, Habert R, Chevrier C, Michel C, Pasquier E. Evidence-based adverse outcome pathway approach for the identification of BPA as en endocrine disruptor in relation to its effect on the estrous cycle. Mol Cell Endocrinol 2018; 475:10-28. [PMID: 29577943 DOI: 10.1016/j.mce.2018.02.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 02/04/2023]
Abstract
Proper cyclicity is essential to reach successful optimal fertility. In rats and mice, BPA exposure is repeatedly and reliably reported to show an adverse effect on the estrous cycle after exposures at different life stages. In humans, a possible association between modifications of menstrual cycle characteristics (e.g. length of the cycle, duration of menstrual bleeding) and sub-fecundity or spontaneous abortion has been observed. Alterations of ovarian cyclicity can therefore be definitely considered as an adverse health outcome. As a prerequisite for the EU REACH regulation to identify a substance as an endocrine disruptor and a SVHC,1 the proof has to be established that the substance can have deleterious health effects resulting from an endocrine mode of action. This review provides an overview of the currently available data allowing to conclude that the adverse effects of BPA exposure on ovarian cyclicity is mediated by an endocrine mode of action.
Collapse
Affiliation(s)
- Catherine Viguié
- Toxalim (Research Centre in Food Toxicology), INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Sakina Mhaouty-Kodja
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris Seine, Institut de Biologie Paris Seine, 75005 Paris, France
| | - René Habert
- Genetic Stability, Stem Cells and Radiations, CEA, INSERM U 967, University Paris-Diderot, CEA Research Center, Fontenay aux Roses, France
| | - Cécile Chevrier
- INSERM, UMR1085, Researche Institute for Environmental and Occupational Health, Rennes, France
| | - Cécile Michel
- ANSES, Risk Assessment Department, Maisons-Alfort, France
| | | |
Collapse
|
26
|
Tran DN, Jung EM, Ahn C, Lee JH, Yoo YM, Jeung EB. Effects of Bisphenol A and 4-tert-Octylphenol on Embryo Implantation Failure in Mouse. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15081614. [PMID: 30061528 PMCID: PMC6121468 DOI: 10.3390/ijerph15081614] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 01/13/2023]
Abstract
Miscarriage due to blastocyst implantation failure occurs in up to two-thirds of all human miscarriage cases. Calcium ion has been shown to be involved in many cellular signal transduction pathways as well as in the regulation of cell adhesion, which is necessary for the embryo implantation process. Exposure to endocrine-disrupting chemicals (EDs) during early gestation results in disruption of intrauterine implantation and uterine reception, leading to implantation failure. In this study, ovarian estrogen (E2), bisphenol A (BPA), or 4-tert-octylphenol (OP), with or without ICI 182,780 (ICI) were injected subcutaneously from gestation day 1 to gestation day 3 post-coitus. The expression levels of the calcium transport genes were assessed in maternal uteri and implantation sites. The number of implantation sites was significantly low in the OP group, and implantation sites were absent in the E2, ICI and EDs + ICI groups. There were different calcium transient transport channel expression levels in uterus and implantation site samples. The levels of TRPV5 and TRPV6 gene expression were significantly increased by EDs with/without ICI treatment in utero. Meanwhile, TRPV5 and TRPV6 gene expression were significantly lower in implantation sites samples. NCX1 and PMCA1 mRNA levels were significantly decreased by OP and BPA in the implantation site samples. Compared to vehicle treatment in the uterus, both the MUC1 mRNA and protein levels were markedly high in all but the BPA group. Taken together, these results suggest that both BPA and OP can impair embryo implantation through alteration of calcium transport gene expressions and by affecting uterine receptivity.
Collapse
Affiliation(s)
- Dinh Nam Tran
- Laboratory of Veterinary Biochemistry and Molecular Biology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea.
| | - Eui-Man Jung
- Laboratory of Veterinary Biochemistry and Molecular Biology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea.
| | - Changhwan Ahn
- Laboratory of Veterinary Biochemistry and Molecular Biology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea.
| | - Jae-Hwan Lee
- Laboratory of Veterinary Biochemistry and Molecular Biology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea.
| | - Yeong-Min Yoo
- Laboratory of Veterinary Biochemistry and Molecular Biology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea.
| | - Eui-Bae Jeung
- Laboratory of Veterinary Biochemistry and Molecular Biology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea.
| |
Collapse
|
27
|
Siracusa JS, Yin L, Measel E, Liang S, Yu X. Effects of bisphenol A and its analogs on reproductive health: A mini review. Reprod Toxicol 2018; 79:96-123. [PMID: 29925041 DOI: 10.1016/j.reprotox.2018.06.005] [Citation(s) in RCA: 205] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 04/24/2018] [Accepted: 06/12/2018] [Indexed: 12/31/2022]
Abstract
Known endocrine disruptor bisphenol A (BPA) has been shown to be a reproductive toxicant in animal models. Its structural analogs: bisphenol S (BPS), bisphenol F (BPF), bisphenol AF (BPAF), and tetrabromobisphenol A (TBBPA) are increasingly being used in consumer products. However, these analogs may exert similar adverse effects on the reproductive system, and their toxicological data are still limited. This mini-review examined studies on both BPA and BPA analog exposure and reproductive toxicity. It outlines the current state of knowledge on human exposure, toxicokinetics, endocrine activities, and reproductive toxicities of BPA and its analogs. BPA analogs showed similar endocrine potencies when compared to BPA, and emerging data suggest they may pose threats as reproductive hazards in animal models. While evidence based on epidemiological studies is still weak, we have utilized current studies to highlight knowledge gaps and research needs for future risk assessments.
Collapse
Affiliation(s)
- Jacob Steven Siracusa
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, United States
| | - Lei Yin
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, United States; ReproTox Biotech LLC, Athens 30602, GA, United States
| | - Emily Measel
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, United States
| | - Shenuxan Liang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, United States
| | - Xiaozhong Yu
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, United States.
| |
Collapse
|
28
|
Müller JE, Meyer N, Santamaria CG, Schumacher A, Luque EH, Zenclussen ML, Rodriguez HA, Zenclussen AC. Bisphenol A exposure during early pregnancy impairs uterine spiral artery remodeling and provokes intrauterine growth restriction in mice. Sci Rep 2018; 8:9196. [PMID: 29907759 PMCID: PMC6003928 DOI: 10.1038/s41598-018-27575-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/05/2018] [Indexed: 01/19/2023] Open
Abstract
Endocrine disrupting chemicals are long suspected to impair reproductive health. Bisphenol A (BPA) has estrogenic activity and therefore the capacity of interfering with endocrine pathways. No studies dissected its short-term effects on pregnancy and possible underlying mechanisms. Here, we studied how BPA exposure around implantation affects pregnancy, particularly concentrating on placentation and uterine remodeling. We exposed pregnant female mice to 50 µg/kg BPA/day or 0.1% ethanol by oral gavage from day 1 to 7 of gestation. High frequency ultrasound was employed to document the presence and size of implantations, placentas and fetuses throughout pregnancy. Blood velocity in the arteria uterina was analyzed by Doppler measurements. The progeny of mothers exposed to BPA was growth-restricted compared to the controls; this was evident in vivo as early as at day 12 as analyzed by ultrasound and confirmed by diminished fetal and placenta weights observed after sacrificing the animals at day 14 of gestation. The remodeling of uterine spiral arteries (SAs) was considerably impaired. We show that short-term exposure to a so-called "safe" BPA dose around implantation has severe consequences. The intrauterine growth restriction observed in more than half of the fetuses from BPA-treated mothers may owe to the direct negative effect of BPA on the remodeling of uterine SAs that limits the blood supply to the fetus. Our work reveals unsuspected short-term effects of BPA on pregnancy and urges to more studies dissecting the mechanisms behind the negative actions of BPA during early pregnancy.
Collapse
Affiliation(s)
- Judith Elisabeth Müller
- Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Nicole Meyer
- Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Clarisa Guillermina Santamaria
- Universidad Nacional del Litoral, Facultad de Bioquímica y Cs. Biológicas, Instituto de Salud y Am biente del Litoral, UNL-CONICET, Santa Fe, Argentina
| | - Anne Schumacher
- Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Enrique Hugo Luque
- Universidad Nacional del Litoral, Facultad de Bioquímica y Cs. Biológicas, Instituto de Salud y Am biente del Litoral, UNL-CONICET, Santa Fe, Argentina
| | - Maria Laura Zenclussen
- Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany.,Universidad Nacional del Litoral, Facultad de Bioquímica y Cs. Biológicas, Instituto de Salud y Am biente del Litoral, UNL-CONICET, Santa Fe, Argentina
| | - Horacio Adolfo Rodriguez
- Universidad Nacional del Litoral, Facultad de Bioquímica y Cs. Biológicas, Instituto de Salud y Am biente del Litoral, UNL-CONICET, Santa Fe, Argentina
| | - Ana Claudia Zenclussen
- Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany.
| |
Collapse
|
29
|
Yuan M, Hu M, Lou Y, Wang Q, Mao L, Zhan Q, Jin F. Environmentally relevant levels of bisphenol A affect uterine decidualization and embryo implantation through the estrogen receptor/serum and glucocorticoid-regulated kinase 1/epithelial sodium ion channel α-subunit pathway in a mouse model. Fertil Steril 2018; 109:735-744.e1. [PMID: 29605410 DOI: 10.1016/j.fertnstert.2017.12.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 12/05/2017] [Accepted: 12/05/2017] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To investigate whether bisphenol A (BPA) exposure is associated with uterine decidualization and embryo implantation failure in mice. DESIGN Experimental animal study and in vitro study. SETTING University-based infertility center. ANIMAL(S) ICR mice. INTERVENTION(S) Mice treated with different doses of BPA; Ishikawa cells cultured in medium of different concentrations of BPA. MAIN OUTCOME MEASURE(S) Embryo implantation sites, uterine weight, quantitative real-time reverse transcriptase-polymerase chain reaction, Western blot analysis, hematoxylin and eosin staining, and immunohistochemical, cell proliferation, and statistical analyses. RESULT(S) In the experiment of mouse model, administration of 1-100 μg/kg/day of BPA by gavage led to reduction of the number of embryo implantation sites in a dose-dependent manner; 100 μg/kg/day of BPA statistically significantly reduced the number of implantation sites compared with the control group. The uterine weight change (the wet weight of the decidualized uterine horn divided by the wet weight of the undecidualized uterine horn of the mouse) in groups exposed to BPA (100-10,000 μg/kg/day) were statistically significantly lower compared with the control group. Immunohistochemical analysis demonstrated that administration of 100, 1,000, or 10,000 μg/kg/day of BPA by gavage statistically significantly down-regulated the expression of epithelial Na+ channel α-subunit (ENaCα) in the luminal epithelial cells and desmin in decidual cells of the oil-induced decidualized uterine horns. Administration of 100 μg/kg/day BPA on embryo days 0.5-3.5 by gavage statistically significantly decreased the level of uterine serum and glucocorticoid-regulated kinase 1 (SGK1) protein expression on embryo days 4 and 6. After treatment with 0.001, 0.01, 0.1, or 1.0 μg/mL of BPA for 48 hours, the SGK1, ENaCα, and phospho-SGK1 protein expression of Ishikawa cells was down-regulated, and the effect of BPA on SGK1 could be abrogated by fulvestrant. CONCLUSION(S) Our study provides the first indication that BPA exposure at levels as low as 100 μg/kg/day can impair embryo implantation in mice and BPA can affect decidualization of the uterus in mouse model. Our results suggest that BPA can down-regulate SGK1 and ENaCα protein expression through estrogen receptors in Ishikawa cells.
Collapse
Affiliation(s)
- Mu Yuan
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Minhao Hu
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Yiyun Lou
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China; Department of Gynaecology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, People's Republic of China
| | - Qijing Wang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Luna Mao
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Qitao Zhan
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Fan Jin
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China; Women's Reproductive Health Laboratory of Zhejiang Province, Key Laboratory of Reproductive Genetics, National Ministry of Education, Zhejiang University, Hangzhou, People's Republic of China.
| |
Collapse
|
30
|
Galoppo GH, Canesini G, Tavalieri YE, Stoker C, Kass L, Luque EH, Muñoz-de-Toro M. Bisphenol A disrupts the temporal pattern of histofunctional changes in the female reproductive tract of Caiman latirostris. Gen Comp Endocrinol 2017; 254:75-85. [PMID: 28947387 DOI: 10.1016/j.ygcen.2017.09.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 09/15/2017] [Accepted: 09/21/2017] [Indexed: 11/18/2022]
Abstract
Recently, we have described the ontogeny of histofunctional differentiation changes in the oviduct of Caiman latirostris. The expression of estrogen receptor alpha and progesterone receptor shows that the caiman oviduct could be a target of the action of xenoestrogens such as the widely environmentally present Bisphenol A (BPA), early in life. The aims of this study were: to complement oviduct characterization by establishing the ontogenetic changes in androgen receptor (AR) expression and assessing the effects of early postnatal exposure to 17-β-estradiol (E2) or BPA on the histofunctional features of the oviduct. AR was expressed in all the stages studied. The spatial pattern of AR immunostaining changed from neonatal to juvenile caimans. In the luminal epithelium, changes were at the subcellular level, from cytoplasmic to nuclear. In the subepithelium, although both cytoplasmic and nuclear AR expression was observed, changes were mainly at tissue level, from the subepithelial compartment to the outer muscular layer. The oviduct was highly sensitive to E2 and BPA at the early postnatal developmental stage. E2- and BPA-exposed caimans showed increased luminal epithelial height and higher proliferative activity. Changes in histomorphological features (measured by a scoring system), steroid hormone receptors, collagen remodeling and muscle-associated proteins suggest a precocious oviduct histofunctional differentiation in E2- and BPA-exposed caimans. The modification of the temporal pattern of oviductal biomarkers suggests that organizational changes could impair C. latirostris reproductive health later in life. The alterations in the caiman female reproductive tract exposed to BPA highlight the importance of preserving aquatic environments from plastic pollution.
Collapse
Affiliation(s)
- Germán H Galoppo
- Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina; Instituto de Salud y Ambiente del Litoral (ISAL), UNL-CONICET, FBCB-UNL, Santa Fe, Argentina
| | - Guillermina Canesini
- Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina; Instituto de Salud y Ambiente del Litoral (ISAL), UNL-CONICET, FBCB-UNL, Santa Fe, Argentina
| | - Yamil E Tavalieri
- Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
| | - Cora Stoker
- Instituto de Salud y Ambiente del Litoral (ISAL), UNL-CONICET, FBCB-UNL, Santa Fe, Argentina
| | - Laura Kass
- Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina; Instituto de Salud y Ambiente del Litoral (ISAL), UNL-CONICET, FBCB-UNL, Santa Fe, Argentina
| | - Enrique H Luque
- Instituto de Salud y Ambiente del Litoral (ISAL), UNL-CONICET, FBCB-UNL, Santa Fe, Argentina
| | - Mónica Muñoz-de-Toro
- Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina; Instituto de Salud y Ambiente del Litoral (ISAL), UNL-CONICET, FBCB-UNL, Santa Fe, Argentina.
| |
Collapse
|
31
|
Lind T, Lejonklou MH, Dunder L, Rasmusson A, Larsson S, Melhus H, Lind PM. Low-dose developmental exposure to bisphenol A induces sex-specific effects in bone of Fischer 344 rat offspring. ENVIRONMENTAL RESEARCH 2017; 159:61-68. [PMID: 28772150 DOI: 10.1016/j.envres.2017.07.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/12/2017] [Accepted: 07/09/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Bisphenol A (BPA) is a component of polycarbonate plastics to which humans are regularly exposed at low levels, and an endocrine disruptor with effects on several hormonal systems. Bone is a sensitive hormone target tissue, and we have recently shown that in utero and lactational exposure to 25µg BPA/kg BW/day alters femoral geometry in rat offspring. OBJECTIVE To investigate bone effects in rat offspring after developmental exposure to a BPA dose in the range of human daily exposure (0.1-1.5µg/kg BW/day) as well as a dose to corroborate previous findings. METHODS Pregnant Fischer 344 rats were exposed to BPA via drinking water corresponding to 0.5µg/kg BW/day: [0.5], (n=21) or 50µg/kg BW/day: [50], (n = 16) from gestational day 3.5 until postnatal day 22, while controls were given only vehicle (n = 25). The offspring was sacrificed at 5 weeks of age. Bone effects were analyzed using peripheral quantitative computed tomography (pQCT), the 3-point bending test, plasma markers of bone turnover, and gene expression in cortical bone and bone marrow. RESULTS Compared to controls, male offspring developmentally exposed to BPA had shorter femurs. pQCT analysis revealed effects in the [0.5] group, but not in the [50] group; BPA reduced both trabecular area (-3.9%, p < 0.01) and total cross sectional area (-4.1%, p < 0.01) of femurs in the [0.5] group, whereas no effects were seen on bone density. Conversely, bone length and size were not affected in female offspring. However, the procollagen type I N-terminal propeptide (P1NP), a peptide formed during type 1 collagen synthesis, was increased in plasma (42%: p < 0.01) in female offspring exposed to [0.5] of BPA, although collagen gene expression was not increased in bone. The biomechanical properties of the bones were not altered in either sex. Bone marrow mRNA expression was only affected in male offspring. CONCLUSIONS Developmental low-dose exposure to BPA resulted in sex-specific bone effects in rat offspring. A dose approximately eight times lower than the current temporary EFSA human tolerable daily intake of 4µg/kg BW/day, reduced bone length and size in male rat offspring. Long-term studies are needed to clarify whether the increased plasma levels of P1NP in female offspring reflect development of fibrosis.
Collapse
Affiliation(s)
- Thomas Lind
- Department of Medical Sciences, Section of Clinical Pharmacology, Sweden.
| | - Margareta H Lejonklou
- Department of Medical Sciences, Occupational and Environmental Medicine, Uppsala, Sweden.
| | - Linda Dunder
- Department of Medical Sciences, Occupational and Environmental Medicine, Uppsala, Sweden.
| | - Annica Rasmusson
- Department of Medical Sciences, Section of Clinical Pharmacology, Sweden.
| | - Sune Larsson
- Department of Surgical Sciences, Uppsala University, S-751 85 Uppsala, Sweden.
| | - Håkan Melhus
- Department of Medical Sciences, Section of Clinical Pharmacology, Sweden.
| | - P Monica Lind
- Department of Medical Sciences, Occupational and Environmental Medicine, Uppsala, Sweden.
| |
Collapse
|
32
|
Ingaramo PI, Varayoud J, Milesi MM, Guerrero Schimpf M, Alarcón R, Muñoz-de-Toro M, Luque EH. Neonatal exposure to a glyphosate-based herbicide alters uterine decidualization in rats. Reprod Toxicol 2017; 73:87-95. [PMID: 28780397 DOI: 10.1016/j.reprotox.2017.07.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 12/20/2022]
Abstract
We investigated whether defective modulation of uterine signaling may cause decidualization failure in rats neonatally exposed to a glyphosate-based herbicide (GBH). Female pups received vehicle or 2mg/kg of GBH from postnatal day (PND) 1 to PND7. On PND8 and PND21, Wnt5a and β-catenin expression was evaluated in uterine samples. On gestational day (GD) 9, Wnt5a, Wnt7a and β-catenin expression and Dkk1 and sFRP4 mRNA were evaluated on implantation sites. On PND8, GBH-exposed rats showed increased Wnt5a and β-catenin expression in luminal epithelium (LE), whereas on PND21, they showed increased Wnt5a and β-catenin expression in subepithelial stroma but decreased β-catenin expression in glandular epithelium. On GD9, GBH-exposed rats showed decreased Wnt5a and Wnt7a expression in the antimesometrial zone and LE respectively, without changes in β-catenin expression, while Dkk1 and sFRP4 were up- and down-regulated respectively. We concluded that neonatal GBH exposure may lead to embryo losses by disturbing uterine signaling.
Collapse
Affiliation(s)
- Paola I Ingaramo
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe, Argentina
| | - Jorgelina Varayoud
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe, Argentina
| | - María M Milesi
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe, Argentina
| | - Marlise Guerrero Schimpf
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe, Argentina
| | - Ramiro Alarcón
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe, Argentina
| | - Mónica Muñoz-de-Toro
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe, Argentina
| | - Enrique H Luque
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe, Argentina.
| |
Collapse
|
33
|
Tomza-Marciniak A, Stępkowska P, Kuba J, Pilarczyk B. Effect of bisphenol A on reproductive processes: A review of in vitro, in vivo and epidemiological studies. J Appl Toxicol 2017; 38:51-80. [PMID: 28608465 DOI: 10.1002/jat.3480] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 03/22/2017] [Accepted: 03/24/2017] [Indexed: 12/23/2022]
Abstract
As bisphenol A (BPA) is characterized by a pronounced influence on human hormonal regulation, particular attention has been aimed at understanding its role in reproductive processes in males and females, as well as on fetal development. Owing to the increasing number of alarming reports on the negative consequences of the presence of BPA in human surroundings, more and more studies are being undertaken to clarify the negative effects of BPA on human reproductive processes. The aim of this work was to collect and summarize data on the influence of BPA exposure on reproductive health. Based on an analysis of selected publications it was stated that there is strong proof confirming that BPA is an ovarian, uterine and prostate toxicant at a level below the lowest observed adverse effect level (50 mg kg-1 bodyweight) as well as a level below the proposed safe level (4 μg kg-1 bodyweight). It seems there is also reliable evidence in relation to the negative effect of BPA on sperm quality and motility. Limited evidence also pertains to the case of the potential of BPA to affect polycystic ovary syndrome occurrence. Although in epidemiological studies this disease was common, in studies on animal models such results were still not confirmed. No unambiguous results of epidemiological studies and with animal models were obtained in relation to the evaluation of associations between BPA and implantation failure in women, evaluation of associations between BPA and sexual dysfunction in men, and impact of BPA on birth rate, birth weight and length of gestation. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Agnieszka Tomza-Marciniak
- Department of Animal Reproduction Biotechnology and Environmental Hygiene, West Pomeranian University of Technology in Szczecin, Janickiego 29, 71-270, Szczecin, Poland
| | - Paulina Stępkowska
- Department of Animal Reproduction Biotechnology and Environmental Hygiene, West Pomeranian University of Technology in Szczecin, Janickiego 29, 71-270, Szczecin, Poland
| | - Jarosław Kuba
- Department of Animal Reproduction Biotechnology and Environmental Hygiene, West Pomeranian University of Technology in Szczecin, Janickiego 29, 71-270, Szczecin, Poland
| | - Bogumiła Pilarczyk
- Department of Animal Reproduction Biotechnology and Environmental Hygiene, West Pomeranian University of Technology in Szczecin, Janickiego 29, 71-270, Szczecin, Poland
| |
Collapse
|
34
|
Patel S, Brehm E, Gao L, Rattan S, Ziv-Gal A, Flaws JA. Bisphenol A Exposure, Ovarian Follicle Numbers, and Female Sex Steroid Hormone Levels: Results From a CLARITY-BPA Study. Endocrinology 2017; 158:1727-1738. [PMID: 28324068 PMCID: PMC5460936 DOI: 10.1210/en.2016-1887] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/08/2017] [Indexed: 12/11/2022]
Abstract
Bisphenol A (BPA) is an industrial chemical found in thermal receipts and food and beverage containers. Previous studies have shown that BPA can affect the numbers and health of ovarian follicles and the production of sex steroid hormones, but they often did not include a wide range of doses of BPA, used a small sample size, focused on relatively short-term exposures to BPA, and/or did not examine the consequences of chronic BPA exposure on the ovaries or steroid levels. Thus, this study was designed to examine the effects of a wide range of doses of BPA on ovarian morphology and sex steroid hormone production. Specifically, this study tested the hypothesis that prenatal and continuous BPA exposure reduces ovarian follicle numbers and sex steroid hormone levels. To test this hypothesis, rats were dosed with vehicle, ethinyl estradiol (0.05 and 0.5 μg/kg body weight/d), or BPA (2.5, 25, 250, 2500, and 25,000 μg/kg body weight/d) from gestation day 6 until 1 year as part of the Consortium Linking Academic and Regulatory Insights on BPA Toxicity (CLARITY-BPA). Ovaries and sera were collected on postnatal days 1, 21, and 90, and at 6 months and 1 year. The ovaries were subjected to histological evaluation of follicle numbers and the sera were subjected to measurements of estradiol and progesterone. Collectively, these data indicate that BPA exposure at some doses and time points affects ovarian follicle numbers and sex steroid levels, but these effects are different than those observed with ethinyl estradiol exposure and some previous studies on BPA.
Collapse
Affiliation(s)
- Shreya Patel
- Department of Comparative Biosciences, University of Illinois at Urbana–Champaign, Urbana, Illinois 61802
| | - Emily Brehm
- Department of Comparative Biosciences, University of Illinois at Urbana–Champaign, Urbana, Illinois 61802
| | - Liying Gao
- Department of Comparative Biosciences, University of Illinois at Urbana–Champaign, Urbana, Illinois 61802
| | - Saniya Rattan
- Department of Comparative Biosciences, University of Illinois at Urbana–Champaign, Urbana, Illinois 61802
| | - Ayelet Ziv-Gal
- School of Food and Nutrition, Massey University, Palmerston North 4442, New Zealand
| | - Jodi A. Flaws
- Department of Comparative Biosciences, University of Illinois at Urbana–Champaign, Urbana, Illinois 61802
| |
Collapse
|
35
|
Lan X, Fu LJ, Zhang J, Liu XQ, Zhang HJ, Zhang X, Ma MF, Chen XM, He JL, Li LB, Wang YX, Ding YB. Bisphenol A exposure promotes HTR-8/SVneo cell migration and impairs mouse placentation involving upregulation of integrin-β1 and MMP-9 and stimulation of MAPK and PI3K signaling pathways. Oncotarget 2017; 8:51507-51521. [PMID: 28881663 PMCID: PMC5584264 DOI: 10.18632/oncotarget.17882] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 04/19/2017] [Indexed: 12/21/2022] Open
Abstract
In this study, we investigated the effect of Bisphenol A (BPA), an endocrine-disrupting chemical, on the migration of human trophoblasts and mouse placentation by using the primary extravillous trophoblast (EVT) and its cell line HTR-8/SVneo, villous explant cultures, and pregnant mice. BPA increased EVT motility and the outgrowth of villous explants in a dose-dependent manner. BPA also increased the protein levels of integrin-β1 and matrix metalloproteinase (MMP)-9 in human EVTs. Low-dose BPA (≤50 mg) increased the protein levels of MMP-9 and MMP-2 as well as integrin-β1 and integrin-α5 in mouse placenta and decreased the proportion of the labyrinth and spongiotrophoblast layers. Inhibitors of mitogen-activated protein kinase (MAPK) U0126 and phosphatidylinositol-3-kinases (PI3K) LY294002 reversed the protein levels of integrin-β1 and MMP-9 as well as the migratory ability induced by BPA. In conclusion, these results indicated that BPA can enhance trophoblast migration and impair placentation in mice by a mechanism involving upregulation of integrin(s) and MMP(s) as well as the stimulation of MAPK and PI3K/Akt (protein kinase B) signaling pathways.
Collapse
Affiliation(s)
- Xi Lan
- Department of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Li-Juan Fu
- Department of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, 400016, P.R. China.,Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Jun Zhang
- Center of Molecular Diagnostic Medicine, Life Science Institute, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Xue-Qing Liu
- Department of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Hui-Jie Zhang
- Ministry of Education Key Laboratory of Diagnostic Medicine, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Xue Zhang
- Department of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Ming-Fu Ma
- The Key Laboratory of Birth Defects and Reproductive Health of the National Health and Family Planning Commission, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing, 401147, P.R. China
| | - Xue-Mei Chen
- Department of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Jun-Lin He
- Department of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Lian-Bing Li
- The Key Laboratory of Birth Defects and Reproductive Health of the National Health and Family Planning Commission, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing, 401147, P.R. China
| | - Ying-Xiong Wang
- Department of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Yu-Bin Ding
- Department of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, 400016, P.R. China
| |
Collapse
|
36
|
Evaluation of sodium arsenite exposure on reproductive competence in pregnant and postlactational dams and their offspring. Reprod Toxicol 2017; 69:1-12. [DOI: 10.1016/j.reprotox.2017.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 12/07/2016] [Accepted: 01/04/2017] [Indexed: 11/18/2022]
|
37
|
Varayoud J, Durando M, Ramos JG, Milesi MM, Ingaramo PI, Muñoz-de-Toro M, Luque EH. Effects of a glyphosate-based herbicide on the uterus of adult ovariectomized rats. ENVIRONMENTAL TOXICOLOGY 2017; 32:1191-1201. [PMID: 27463640 DOI: 10.1002/tox.22316] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 06/21/2016] [Accepted: 07/02/2016] [Indexed: 06/06/2023]
Abstract
Glyphosate is the active ingredient of several herbicide formulations. Different reports suggest that glyphosate-based herbicides (GBHs) may act as endocrine disruptors. We evaluated the potential estrogenic effects of a GBH formulation using the uterotrophic assay. Adult ovariectomized rats were sc injected for 3 consecutive days with: saline solution (vehicle control), 2.10-5 g E2 /kg/day (uterotrophic dose; UE2 ), 2.10-7 g E2 /kg/day (nonuterotrophic dose; NUE2 ), or 0.5, 5, or 50 mg GBH/kg/day of the. Twenty-four hours after the last injection, the uterus was removed and weighed and processed for histopathology and mRNA extraction. Epithelial cell proliferation and height and expression of estrogen-responsive genes were evaluated (estrogen receptors, ERα and ERβ; progesterone receptor, PR; complement 3, C3). Uterine weight and epithelial proliferation were not affected by GBH. However, the luminal epithelial cell height increased at GBH0.5. ERα mRNA was downregulated by all GBH doses and E2 groups, whereas PR and C3 mRNA were diminished by GBH0.5. GBH5-, GBH50-, and UE2 -treated rats showed downregulated ERα protein expression in luminal epithelial cells, while the receptor was upregulated in the stroma. GBH upregulated ERβ (GBH0.5-50) and PR (GBH5) expressions in glandular epithelial cells, similar effect to that of NUE2 group. These results indicate that, although the uterine weight was not affected, GBH modulates the expression of estrogen-sensitive genes. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1191-1201, 2017.
Collapse
Affiliation(s)
- Jorgelina Varayoud
- Instituto de Salud y Ambiente del Litoral (ISAL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Milena Durando
- Instituto de Salud y Ambiente del Litoral (ISAL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Jorge G Ramos
- Instituto de Salud y Ambiente del Litoral (ISAL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - María M Milesi
- Instituto de Salud y Ambiente del Litoral (ISAL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Paola I Ingaramo
- Instituto de Salud y Ambiente del Litoral (ISAL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Mónica Muñoz-de-Toro
- Instituto de Salud y Ambiente del Litoral (ISAL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Enrique H Luque
- Instituto de Salud y Ambiente del Litoral (ISAL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| |
Collapse
|
38
|
Martínez-Peña AA, Rivera-Baños J, Méndez-Carrillo LL, Ramírez-Solano MI, Galindo-Bustamante A, Páez-Franco JC, Morimoto S, González-Mariscal L, Cruz ME, Mendoza-Rodríguez CA. Perinatal administration of bisphenol A alters the expression of tight junction proteins in the uterus and reduces the implantation rate. Reprod Toxicol 2017; 69:106-120. [PMID: 28216266 DOI: 10.1016/j.reprotox.2017.02.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 02/07/2017] [Accepted: 02/13/2017] [Indexed: 11/24/2022]
Abstract
We studied the effect of bisphenol-A (BPA) administration to rats, during the perinatal period, on the fertility of F1 generation and on the expression of tight junction (TJ) proteins in the uterus during early pregnancy. Pregnant Wistar dams (F0) received: BPA-L (0.05mg/kg/day), BPA-H (20mg/kg/day) or vehicle, from gestational day (GD) 6 to lactation day 21. F1 female pups were mated at 3 months of age and sacrificed at GD 1, 3, 6, and 7. Serum hormonal levels, ovulation rate, number of implantation sites and expression of TJ proteins in the uterus of F1 females were evaluated. BPA treatment induced no change in ovulation rate, but induced alterations in progesterone (P4) and estradiol (E2) serum levels, and in implantation rate. With regards to TJ proteins, BPA-H increased claudin-1 during all GDs; eliminated the peaks of claudins -3 and -4 at GD 3 and 6, respectively; and decreased claudin-7 at GD 6, ZO-1 from GD 1-6, and claudin-3 at GD 7 in stromal cells. BPA-L instead, eliminated claudin-3 peak at GD 3, increased claudin-4 and decreased claudin-7 from GD 1-6, decreased claudin-1 at GD 3 and 7 and claudin-4 at GD 7 in stromal cells. BPA-L also decreased ZO-1 at GDs 1 and 3 and increased ZO-1 at GD 6. Thus, BPA treatment during perinatal period perturbed, when the animals reached adulthood and became pregnant, the particular expression of TJ proteins in the uterine epithelium and reduced in consequence the number of implantation sites.
Collapse
Affiliation(s)
- Annia A Martínez-Peña
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de Mexico, Mexico D.F. 04510, Mexico
| | - Jorge Rivera-Baños
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de Mexico, Mexico D.F. 04510, Mexico
| | - Laura L Méndez-Carrillo
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de Mexico, Mexico D.F. 04510, Mexico
| | - Marcos I Ramírez-Solano
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de Mexico, Mexico D.F. 04510, Mexico
| | - Aarón Galindo-Bustamante
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de Mexico, Mexico D.F. 04510, Mexico
| | - J Carlos Páez-Franco
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de Mexico, Mexico D.F. 04510, Mexico
| | - Sumiko Morimoto
- Instituto Nacional de Ciencias Médicas y de la Nutrición Salvador Zubirán, Mexico, D.F. 14080, Mexico
| | - Lorenza González-Mariscal
- Centro de Investigación y Estudios Avanzados (CINVESTAV), Departamento de Fisiología, Biofísica y Neurociencias, Mexico, D.F. 07360, Mexico
| | - M Esther Cruz
- Facultad de Estudios Superiores Zaragoza, Laboratorio de Neuroendocrinología, Universidad Nacional Autónoma de Mexico, Mexico, D.F. 15000, Mexico
| | - C Adriana Mendoza-Rodríguez
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de Mexico, Mexico D.F. 04510, Mexico.
| |
Collapse
|
39
|
Guerrero Schimpf M, Milesi MM, Ingaramo PI, Luque EH, Varayoud J. Neonatal exposure to a glyphosate based herbicide alters the development of the rat uterus. Toxicology 2017; 376:2-14. [PMID: 27287056 DOI: 10.1016/j.tox.2016.06.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 05/26/2016] [Accepted: 06/06/2016] [Indexed: 02/06/2023]
Abstract
Glyphosate-based herbicides (GBHs) are extensively used to control weeds on both cropland and non-cropland areas. No reports are available regarding the effects of GBHs exposure on uterine development. We evaluated if neonatal exposure to a GBH affects uterine morphology, proliferation and expression of proteins that regulate uterine organogenetic differentiation in rats. Female Wistar pups received saline solution (control, C) or a commercial formulation of glyphosate (GBH, 2mg/kg) by sc injection every 48h from postnatal day (PND) 1 to PND7. Rats were sacrificed on PND8 (neonatal period) and PND21 (prepubertal period) to evaluate acute and short-term effects, respectively. The uterine morphology was evaluated in hematoxylin and eosin stained sections. The epithelial and stromal immunophenotypes were established by assessing the expression of luminal epithelial protein (cytokeratin 8; CK8), basal epithelial proteins (p63 and pan cytokeratin CK1, 5, 10 and 14); and vimentin by immunohistochemistry (IHC). To investigate changes on proteins that regulate uterine organogenetic differentiation we evaluated the expression of estrogen receptor alpha (ERα), progesterone receptor (PR), Hoxa10 and Wnt7a by IHC. The GBH-exposed uteri showed morphological changes, characterized by an increase in the incidence of luminal epithelial hyperplasia (LEH) and an increase in the stromal and myometrial thickness. The epithelial cells showed a positive immunostaining for CK8, while the stromal cells for vimentin. GBH treatment increased cell proliferation in the luminal and stromal compartment on PND8, without changes on PND21. GBH treatment also altered the expression of proteins involved in uterine organogenetic differentiation. PR and Hoxa10 were deregulated both immediately and two weeks after the exposure. ERα was induced in the stromal compartment on PND8, and was downregulated in the luminal epithelial cells of gyphosate-exposed animals on PND21. GBH treatment also increased the expression of Wnt7a in the stromal and glandular epithelial cells on PND21. Neonatal exposure to GBH disrupts the postnatal uterine development at the neonatal and prepubertal period. All these changes may alter the functional differentiation of the uterus, affecting the female fertility and/or promoting the development of neoplasias.
Collapse
Affiliation(s)
- Marlise Guerrero Schimpf
- Instituto de Salud y Ambiente del Litoral, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe, Argentina
| | - María M Milesi
- Instituto de Salud y Ambiente del Litoral, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe, Argentina
| | - Paola I Ingaramo
- Instituto de Salud y Ambiente del Litoral, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe, Argentina
| | - Enrique H Luque
- Instituto de Salud y Ambiente del Litoral, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe, Argentina
| | - Jorgelina Varayoud
- Instituto de Salud y Ambiente del Litoral, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe, Argentina.
| |
Collapse
|
40
|
Li S, Winuthayanon W. Oviduct: roles in fertilization and early embryo development. J Endocrinol 2017; 232:R1-R26. [PMID: 27875265 DOI: 10.1530/joe-16-0302] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 10/11/2016] [Indexed: 12/12/2022]
Abstract
Animal oviducts and human Fallopian tubes are a part of the female reproductive tract that hosts fertilization and pre-implantation development of the embryo. With an increasing understanding of roles of the oviduct at the cellular and molecular levels, current research signifies the importance of the oviduct on naturally conceived fertilization and pre-implantation embryo development. This review highlights the physiological conditions within the oviduct during fertilization, environmental regulation, oviductal fluid composition and its role in protecting embryos and supplying nutrients. Finally, the review compares different aspects of naturally occurring fertilization and assisted reproductive technology (ART)-achieved fertilization and embryo development, giving insight into potential areas for improvement in this technology.
Collapse
Affiliation(s)
- Shuai Li
- School of Molecular BiosciencesCollege of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Wipawee Winuthayanon
- School of Molecular BiosciencesCollege of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| |
Collapse
|
41
|
Ingaramo PI, Varayoud J, Milesi MM, Schimpf MG, Muñoz-de-Toro M, Luque EH. Effects of neonatal exposure to a glyphosate-based herbicide on female rat reproduction. Reproduction 2016; 152:403-15. [PMID: 27486271 DOI: 10.1530/rep-16-0171] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 08/01/2016] [Indexed: 12/17/2022]
Abstract
In this study, we investigated whether neonatal exposure to a glyphosate-based herbicide (GBH) alters the reproductive performance and the molecular mechanisms involved in the decidualization process in adult rats. Newborn female rats received vehicle or 2 mg/kg/day of a GBH on postnatal days (PND) 1, 3, 5 and 7. On PND90, the rats were mated to evaluate (i) the reproductive performance on gestational day (GD) 19 and (ii) the ovarian steroid levels, uterine morphology, endometrial cell proliferation, apoptosis and cell cycle regulators, and endocrine pathways that regulate uterine decidualization (steroid receptors/COUP-TFII/Bmp2/Hoxa10) at the implantation sites (IS) on GD9. The GBH-exposed group showed a significant increase in the number of resorption sites on GD19, associated with an altered decidualization response. In fact, on GD9, the GBH-treated rats showed morphological changes at the IS, associated with a decreased expression of estrogen and progesterone receptors, a downregulation of COUP-TFII (Nr2f2) and Bmp2 mRNA and an increased expression of HOXA10 and the proliferation marker Ki67(Mki67) at the IS. We concluded that alterations in endometrial decidualization might be the mechanism of GBH-induced post-implantation embryo loss.
Collapse
Affiliation(s)
- Paola I Ingaramo
- Instituto de Salud y Ambiente del Litoral (ISAL)Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - Jorgelina Varayoud
- Instituto de Salud y Ambiente del Litoral (ISAL)Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - María M Milesi
- Instituto de Salud y Ambiente del Litoral (ISAL)Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - Marlise Guerrero Schimpf
- Instituto de Salud y Ambiente del Litoral (ISAL)Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - Mónica Muñoz-de-Toro
- Instituto de Salud y Ambiente del Litoral (ISAL)Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - Enrique H Luque
- Instituto de Salud y Ambiente del Litoral (ISAL)Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| |
Collapse
|
42
|
Li Q, Davila J, Bagchi MK, Bagchi IC. Chronic exposure to bisphenol a impairs progesterone receptor-mediated signaling in the uterus during early pregnancy. ACTA ACUST UNITED AC 2016; 3. [PMID: 28239613 PMCID: PMC5321573 DOI: 10.14800/rci.1369] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Environmental and occupational exposure to endocrine disrupting chemicals (EDCs) is a major threat to female reproductive health. Bisphenol A (BPA), an environmental toxicant that is commonly found in polycarbonate plastics and epoxy resins, has received much attention due to its estrogenic activity and high risk of chronic exposure in human. Whereas BPA has been linked to infertility and recurrent miscarriage in women, the impact of its exposure on uterine function during early pregnancy remains unclear. In a recent publication in Endocrinology, we demonstrated that prolonged exposure to an environmental relevant dose of BPA disrupts progesterone receptor-regulated uterine functions, thus affecting uterine receptivity for embryo implantation and decidua morphogenesis, two critical events for establishment and maintenance of early pregnancy. In particular we reported a marked impairment of progesterone receptor (PGR) expression and its downstream effector HAND2 in the uterine stromal cells in response to chronic BPA exposure. In an earlier study we have shown that HAND2 controls embryo implantation by repressing fibroblast growth factor (FGF) expression and the MAP kinase signaling pathway, thus inhibiting epithelial proliferation. Interestingly we observed that downregulation of PGR and HAND2 expression in uterine stroma upon BPA exposure was associated with an enhanced activation of FGFR and MAPK signaling, aberrant proliferation, and lack of uterine receptivity in the epithelium. In addition, the proliferation and differentiation of endometrial stromal cells to decidual cells, an event critical for the maintenance of early pregnancy, was severely compromised in response to BPA. This research highlight will provide an overview of our findings and discuss the potential mechanisms by which chronic BPA impairs PGR-HAND2 pathway and adversely affects implantation and the establishment of pregnancy.
Collapse
Affiliation(s)
- Quanxi Li
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, USA
| | - Juanmahel Davila
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, USA
| | - Milan K Bagchi
- Departments of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, USA
| | - Indrani C Bagchi
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, USA
| |
Collapse
|
43
|
Ziv-Gal A, Flaws JA. Evidence for bisphenol A-induced female infertility: a review (2007-2016). Fertil Steril 2016; 106:827-56. [PMID: 27417731 DOI: 10.1016/j.fertnstert.2016.06.027] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 05/25/2016] [Accepted: 06/15/2016] [Indexed: 12/18/2022]
Abstract
We summarized the scientific literature published from 2007 to 2016 on the potential effects of bisphenol A (BPA) on female fertility. We focused on overall fertility outcomes (e.g., ability to become pregnant, number of offspring), organs that are important for female reproduction (i.e., oviduct, uterus, ovary, hypothalamus, and pituitary), and reproductive-related processes (i.e., estrous cyclicity, implantation, and hormonal secretion). The reviewed literature indicates that BPA may be associated with infertility in women. Potential explanations for this association can be generated from experimental studies. Specifically, BPA may alter overall female reproductive capacity by affecting the morphology and function of the oviduct, uterus, ovary, and hypothalamus-pituitary-ovarian axis in animal models. In addition, BPA may disrupt estrous cyclicity and implantation. Nevertheless, further studies are needed to better understand the exact mechanisms of action and to detect potential reproductive toxicity at earlier stages.
Collapse
Affiliation(s)
- Ayelet Ziv-Gal
- School of Food and Nutrition, Massey University, Palmerston North, New Zealand
| | - Jodi A Flaws
- Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois.
| |
Collapse
|
44
|
Ho SM, Cheong A, Adgent MA, Veevers J, Suen AA, Tam NNC, Leung YK, Jefferson WN, Williams CJ. Environmental factors, epigenetics, and developmental origin of reproductive disorders. Reprod Toxicol 2016; 68:85-104. [PMID: 27421580 DOI: 10.1016/j.reprotox.2016.07.011] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/21/2016] [Accepted: 07/09/2016] [Indexed: 12/31/2022]
Abstract
Sex-specific differentiation, development, and function of the reproductive system are largely dependent on steroid hormones. For this reason, developmental exposure to estrogenic and anti-androgenic endocrine disrupting chemicals (EDCs) is associated with reproductive dysfunction in adulthood. Human data in support of "Developmental Origins of Health and Disease" (DOHaD) comes from multigenerational studies on offspring of diethylstilbestrol-exposed mothers/grandmothers. Animal data indicate that ovarian reserve, female cycling, adult uterine abnormalities, sperm quality, prostate disease, and mating behavior are susceptible to DOHaD effects induced by EDCs such as bisphenol A, genistein, diethylstilbestrol, p,p'-dichlorodiphenyl-dichloroethylene, phthalates, and polyaromatic hydrocarbons. Mechanisms underlying these EDC effects include direct mimicry of sex steroids or morphogens and interference with epigenomic sculpting during cell and tissue differentiation. Exposure to EDCs is associated with abnormal DNA methylation and other epigenetic modifications, as well as altered expression of genes important for development and function of reproductive tissues. Here we review the literature exploring the connections between developmental exposure to EDCs and adult reproductive dysfunction, and the mechanisms underlying these effects.
Collapse
Affiliation(s)
- Shuk-Mei Ho
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, United States; Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, OH, United States; Cincinnati Cancer Center, Cincinnati, OH, United States; Cincinnati Veteran Affairs Hospital Medical Center, Cincinnati, OH, United States.
| | - Ana Cheong
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, United States; Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Margaret A Adgent
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jennifer Veevers
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, United States; Cincinnati Cancer Center, Cincinnati, OH, United States
| | - Alisa A Suen
- Reproductive Medicine Group, Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States; Curriculum in Toxicology, UNC Chapel Hill, Chapel Hill, NC, United States
| | - Neville N C Tam
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, United States; Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, OH, United States; Cincinnati Cancer Center, Cincinnati, OH, United States
| | - Yuet-Kin Leung
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, United States; Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, OH, United States; Cincinnati Cancer Center, Cincinnati, OH, United States
| | - Wendy N Jefferson
- Reproductive Medicine Group, Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Carmen J Williams
- Reproductive Medicine Group, Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States.
| |
Collapse
|
45
|
Jo A, Kim H, Chung H, Chang N. Associations between Dietary Intake and Urinary Bisphenol A and Phthalates Levels in Korean Women of Reproductive Age. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13070680. [PMID: 27399734 PMCID: PMC4962221 DOI: 10.3390/ijerph13070680] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/29/2016] [Accepted: 06/30/2016] [Indexed: 11/16/2022]
Abstract
Human exposure to Bisphenol A (BPA) and phthalates is a growing concern due to their association with harmful effects on human health, including a variety of disorders of the female reproductive system. The objective of this study was to investigate the association between food intake and urinary BPA and phthalates in Korean women of reproductive age. A cross-sectional study was conducted with 305 reproductive aged (30-49 years) females in Korea. Dietary intake was assessed using 24 h dietary recall, and urinary BPA and particular phthalates were measured using high performance liquid chromatography tandem mass spectrometry. After adjusting for covariates, beverage intake was positively associated with urinary BPA, and egg and egg product intake was negatively associated with urinary mono-n-butyl phthalate (MnBP) as well as mono (2-ethyl-5-oxohexyl) phthalate (MEOHP). Odds ratio for high BPA level (≥90th percentile) in women with >100 g of beverage consumption was significantly higher than for those who consumed ≤100 g. These results suggest that, in Korean women of reproductive age, some foods such as beverages and egg may be associated with body burdens of BPA, MnBP, MEHHP and MEOHP.
Collapse
Affiliation(s)
- Ara Jo
- Department of Nutritional Science and Food Management, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
| | - Hyesook Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
| | - Hyewon Chung
- Department of Obstetrics and Gynecology, Ewha Womans University School of Medicine, 1071, Anyangcheon-ro, Yangcheon-gu, Seoul 07985, Korea.
| | - Namsoo Chang
- Department of Nutritional Science and Food Management, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
| |
Collapse
|
46
|
Vigezzi L, Ramos JG, Kass L, Tschopp MV, Muñoz-de-Toro M, Luque EH, Bosquiazzo VL. A deregulated expression of estrogen-target genes is associated with an altered response to estradiol in aged rats perinatally exposed to bisphenol A. Mol Cell Endocrinol 2016; 426:33-42. [PMID: 26898831 DOI: 10.1016/j.mce.2016.02.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 02/11/2016] [Accepted: 02/11/2016] [Indexed: 12/13/2022]
Abstract
Here we assessed the effects of perinatal exposure to bisphenol A (BPA) on the uterine response to 17β-estradiol (E2) in aged rats. Pregnant rats were orally exposed to 0.5 or 50 μg BPA/kg/day from gestational day 9 until weaning. On postnatal day (PND) 360, the rats were ovariectomized and treated with E2 for three months. The uterine tissue of BPA50 and BPA0.5 rats showed increased density of glands with squamous metaplasia (GSM) and glands with daughter glands respectively. Wnt7a expression was lower in GSM of BPA50 rats than in controls. The expression of estrogen receptor 1 (ESR1) and its 5'- untranslated exons ESR1-O and ESR1-OT was lower in BPA50 rats. Both doses of BPA modified the expression of coactivator proteins and epigenetic regulatory enzymes. Thus, perinatal BPA-exposed rats showed different glandular abnormalities associated with deregulated expression of E2-target genes. Different mechanisms would be involved depending on the BPA dose administered.
Collapse
Affiliation(s)
- Lucía Vigezzi
- Instituto de Salud y Ambiente del Litoral (ISAL UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Jorge G Ramos
- Instituto de Salud y Ambiente del Litoral (ISAL UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Laura Kass
- Instituto de Salud y Ambiente del Litoral (ISAL UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - María V Tschopp
- Instituto de Salud y Ambiente del Litoral (ISAL UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Mónica Muñoz-de-Toro
- Instituto de Salud y Ambiente del Litoral (ISAL UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Enrique H Luque
- Instituto de Salud y Ambiente del Litoral (ISAL UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Verónica L Bosquiazzo
- Instituto de Salud y Ambiente del Litoral (ISAL UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| |
Collapse
|
47
|
Li Q, Davila J, Kannan A, Flaws JA, Bagchi MK, Bagchi IC. Chronic Exposure to Bisphenol A Affects Uterine Function During Early Pregnancy in Mice. Endocrinology 2016; 157:1764-74. [PMID: 27022677 PMCID: PMC4870880 DOI: 10.1210/en.2015-2031] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Environmental and occupational exposure to bisphenol A (BPA), a chemical widely used in polycarbonate plastics and epoxy resins, has received much attention in female reproductive health due to its widespread toxic effects. Although BPA has been linked to infertility and recurrent miscarriage in women, the impact of its exposure on uterine function during early pregnancy remains unclear. In this study, we addressed the effect of prolonged exposure to an environmental relevant dose of BPA on embryo implantation and establishment of pregnancy. Our studies revealed that treatment of mice with BPA led to improper endometrial epithelial and stromal functions thus affecting embryo implantation and establishment of pregnancy. Upon further analyses, we found that the expression of progesterone receptor (PGR) and its downstream target gene, HAND2 (heart and neural crest derivatives expressed 2), was markedly suppressed in BPA-exposed uterine tissues. Previous studies have shown that HAND2 controls embryo implantation by repressing fibroblast growth factor and the MAPK signaling pathways and inhibiting epithelial proliferation. Interestingly, we observed that down-regulation of PGR and HAND2 expression in uterine stroma upon BPA exposure was associated with enhanced activation of fibroblast growth factor and MAPK signaling in the epithelium, thus contributing to aberrant proliferation and lack of uterine receptivity. Further, the differentiation of endometrial stromal cells to decidual cells, an event critical for the establishment and maintenance of pregnancy, was severely compromised in response to BPA. In summary, our studies revealed that chronic exposure to BPA impairs PGR-HAND2 pathway and adversely affects implantation and the establishment of pregnancy.
Collapse
Affiliation(s)
- Quanxi Li
- Department of Comparative Biosciences (Q.L., J.D., A.K., J.A.F., I.C.B.) and Molecular and Integrative Physiology (M.K.B.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802
| | - Juanmahel Davila
- Department of Comparative Biosciences (Q.L., J.D., A.K., J.A.F., I.C.B.) and Molecular and Integrative Physiology (M.K.B.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802
| | - Athilakshmi Kannan
- Department of Comparative Biosciences (Q.L., J.D., A.K., J.A.F., I.C.B.) and Molecular and Integrative Physiology (M.K.B.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802
| | - Jodi A Flaws
- Department of Comparative Biosciences (Q.L., J.D., A.K., J.A.F., I.C.B.) and Molecular and Integrative Physiology (M.K.B.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802
| | - Milan K Bagchi
- Department of Comparative Biosciences (Q.L., J.D., A.K., J.A.F., I.C.B.) and Molecular and Integrative Physiology (M.K.B.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802
| | - Indrani C Bagchi
- Department of Comparative Biosciences (Q.L., J.D., A.K., J.A.F., I.C.B.) and Molecular and Integrative Physiology (M.K.B.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802
| |
Collapse
|
48
|
Ingaramo PI, Milesi MM, Schimpf MG, Ramos JG, Vigezzi L, Muñoz-de-Toro M, Luque EH, Varayoud J. Endosulfan affects uterine development and functional differentiation by disrupting Wnt7a and β-catenin expression in rats. Mol Cell Endocrinol 2016; 425:37-47. [PMID: 26911934 DOI: 10.1016/j.mce.2016.02.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 02/12/2016] [Accepted: 02/12/2016] [Indexed: 12/23/2022]
Abstract
Neonatal exposure to a low dose of endosulfan may disrupt the expression of Wnt7a and β-catenin during uterine development leading to the failure of uterine functional differentiation during implantation. New-born female Wistar rats were treated with vehicle, endosulfan (600 μg/kg/d, E600) or diethylstilbestrol (0.2 μg/kg/d, DES) on postnatal days (PNDs) 1, 3, 5 and 7. Subsequently, uterine histomorphology and the protein expression of Wnt7a and β-catenin were evaluated on PND8, PND21 and gestational day (GD) 5 (pre-implantation period). In the E600 rats, Wnt7a and β-catenin protein expression was increased in the epithelium on PND8, and Wnt7a expression was decreased in the endometrial glands on PND21. On GD5, the number of uterine glands was decreased in the E600-and DES-treated rats. In addition, Wnt7a expression was decreased in all uterine compartments, and β-catenin expression was increased in the luminal and glandular epithelia of the E600-and DES-treated rats. Disruption of Wnt7a and β-catenin uterine expression in the prepubertal and adult females altered the uterine preparation for embryo implantation, which could be associated with the subfertility triggered by endosulfan.
Collapse
Affiliation(s)
- Paola I Ingaramo
- Instituto de Salud y Ambiente Del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe, Argentina
| | - María M Milesi
- Instituto de Salud y Ambiente Del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe, Argentina
| | - Marlise Guerrero Schimpf
- Instituto de Salud y Ambiente Del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe, Argentina
| | - Jorge G Ramos
- Instituto de Salud y Ambiente Del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe, Argentina
| | - Lucía Vigezzi
- Instituto de Salud y Ambiente Del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe, Argentina
| | - Mónica Muñoz-de-Toro
- Instituto de Salud y Ambiente Del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe, Argentina
| | - Enrique H Luque
- Instituto de Salud y Ambiente Del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe, Argentina
| | - Jorgelina Varayoud
- Instituto de Salud y Ambiente Del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe, Argentina.
| |
Collapse
|
49
|
Santamaría C, Durando M, Muñoz de Toro M, Luque EH, Rodriguez HA. Ovarian dysfunctions in adult female rat offspring born to mothers perinatally exposed to low doses of bisphenol A. J Steroid Biochem Mol Biol 2016; 158:220-230. [PMID: 26658420 DOI: 10.1016/j.jsbmb.2015.11.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 11/17/2015] [Accepted: 11/25/2015] [Indexed: 01/08/2023]
Abstract
The study of oral exposure to the environmental estrogen bisphenol A (BPA) during the perinatal period and its effects on ovarian functionality in adulthood has generated special interest. Thus, our objective was to investigate ovarian folliculogenesis and steroidogenesis in adult female rat offspring born to mothers exposed to low doses of BPA (BPA50: 50μg/kgday; BPA0.5: 0.5μg/kgday) by the oral route during gestation and breastfeeding. Ovaries from both BPA-treated groups showed reduced primordial follicle recruitment and a greater number of corpora lutea, indicating an increased number of ovulated oocytes, coupled with higher levels of mRNA expression of 3β-hydroxysteroid dehydrogenase and serum progesterone. BPA50-treated animals had lower expression of androgen receptor (AR) at different stages of the growing follicle population. BPA0.5-treated rats evidenced an imbalance of AR expression between primordial/primary follicles, with higher mRNA-follicle-stimulating hormone receptor expression. These results add to the growing evidence that folliculogenesis and steroidogenesis are targets of BPA within the ovary.
Collapse
Affiliation(s)
- Clarisa Santamaría
- Instituto de Salud y Ambiente del Litoral (ISAL, CONICET-UNL), Ciudad Universitaria, Paraje El Pozo s/n, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, CP3000 Santa Fe, Argentina
| | - Milena Durando
- Instituto de Salud y Ambiente del Litoral (ISAL, CONICET-UNL), Ciudad Universitaria, Paraje El Pozo s/n, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, CP3000 Santa Fe, Argentina
| | - Mónica Muñoz de Toro
- Instituto de Salud y Ambiente del Litoral (ISAL, CONICET-UNL), Ciudad Universitaria, Paraje El Pozo s/n, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, CP3000 Santa Fe, Argentina
| | - Enrique H Luque
- Instituto de Salud y Ambiente del Litoral (ISAL, CONICET-UNL), Ciudad Universitaria, Paraje El Pozo s/n, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, CP3000 Santa Fe, Argentina
| | - Horacio A Rodriguez
- Instituto de Salud y Ambiente del Litoral (ISAL, CONICET-UNL), Ciudad Universitaria, Paraje El Pozo s/n, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, CP3000 Santa Fe, Argentina.
| |
Collapse
|
50
|
Ventura-Juncá P, Irarrázaval I, Rolle AJ, Gutiérrez JI, Moreno RD, Santos MJ. In vitro fertilization (IVF) in mammals: epigenetic and developmental alterations. Scientific and bioethical implications for IVF in humans. Biol Res 2015; 48:68. [PMID: 26683055 PMCID: PMC4684609 DOI: 10.1186/s40659-015-0059-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/30/2015] [Indexed: 01/06/2023] Open
Abstract
The advent of in vitro fertilization (IVF) in animals and humans implies an extraordinary change in the environment where the beginning of a new organism takes place. In mammals fertilization occurs in the maternal oviduct, where there are unique conditions for guaranteeing the encounter of the gametes and the first stages of development of the embryo and thus its future. During this period a major epigenetic reprogramming takes place that is crucial for the normal fate of the embryo. This epigenetic reprogramming is very vulnerable to changes in environmental conditions such as the ones implied in IVF, including in vitro culture, nutrition, light, temperature, oxygen tension, embryo-maternal signaling, and the general absence of protection against foreign elements that could affect the stability of this process. The objective of this review is to update the impact of the various conditions inherent in the use of IVF on the epigenetic profile and outcomes of mammalian embryos, including superovulation, IVF technique, embryo culture and manipulation and absence of embryo-maternal signaling. It also covers the possible transgenerational inheritance of the epigenetic alterations associated with assisted reproductive technologies (ART), including its phenotypic consequences as is in the case of the large offspring syndrome (LOS). Finally, the important scientific and bioethical implications of the results found in animals are discussed in terms of the ART in humans.
Collapse
Affiliation(s)
- Patricio Ventura-Juncá
- Bioethical Center and Department of Pediatrics, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile. .,Bioethics Center, Universidad Finis Terrae, Pedro de Valdivia 1509, Providencia, Región Metropolitana, 7501015, Santiago, Chile.
| | - Isabel Irarrázaval
- Bioethical Center and Department of Pediatrics, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Augusto J Rolle
- Bioethical Center and Department of Pediatrics, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Juan I Gutiérrez
- Bioethical Center and Department of Pediatrics, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Ricardo D Moreno
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile. .,Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Manuel J Santos
- Bioethical Center and Department of Pediatrics, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile. .,Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|