1
|
Asghar MY, Lassila T, Paatero I, Nguyen VD, Kronqvist P, Zhang J, Slita A, Löf C, Zhou Y, Rosenholm J, Törnquist K. Stromal interaction molecule 1 (STIM1) knock down attenuates invasion and proliferation and enhances the expression of thyroid-specific proteins in human follicular thyroid cancer cells. Cell Mol Life Sci 2021; 78:5827-5846. [PMID: 34155535 PMCID: PMC8316191 DOI: 10.1007/s00018-021-03880-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/27/2021] [Accepted: 06/11/2021] [Indexed: 12/13/2022]
Abstract
Stromal interaction molecule 1 (STIM1) and the ORAI1 calcium channel mediate store-operated calcium entry (SOCE) and regulate a multitude of cellular functions. The identity and function of these proteins in thyroid cancer remain elusive. We show that STIM1 and ORAI1 expression is elevated in thyroid cancer cell lines, compared to primary thyroid cells. Knock-down of STIM1 or ORAI1 attenuated SOCE, reduced invasion, and the expression of promigratory sphingosine 1-phosphate and vascular endothelial growth factor-2 receptors in thyroid cancer ML-1 cells. Cell proliferation was attenuated in these knock-down cells due to increased G1 phase of the cell cycle and enhanced expression of cyclin-dependent kinase inhibitory proteins p21 and p27. STIM1 protein was upregulated in thyroid cancer tissue, compared to normal tissue. Downregulation of STIM1 restored expression of thyroid stimulating hormone receptor, thyroid specific proteins and increased iodine uptake. STIM1 knockdown ML-1 cells were more susceptible to chemotherapeutic drugs, and significantly reduced tumor growth in Zebrafish. Furthermore, STIM1-siRNA-loaded mesoporous polydopamine nanoparticles attenuated invasion and proliferation of ML-1 cells. Taken together, our data suggest that STIM1 is a potential diagnostic and therapeutic target for treatment of thyroid cancer.
Collapse
Affiliation(s)
- Muhammad Yasir Asghar
- Minerva Foundation Institute for Medical Research, Biomedicum Helsinki 2U, Tukholmankatu 8, 00290, Helsinki, Finland.
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Tykistökatu 6A, 20520, Turku, Finland.
| | - Taru Lassila
- Minerva Foundation Institute for Medical Research, Biomedicum Helsinki 2U, Tukholmankatu 8, 00290, Helsinki, Finland
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Tykistökatu 6A, 20520, Turku, Finland
| | - Ilkka Paatero
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland
| | - Van Dien Nguyen
- Division of Infection and Immunity, School of Medicine, Systems Immunity University Research Institute, Cardiff University, Cardiff, UK
| | | | - Jixi Zhang
- College of Bioengineering, Chongqing University, No. 174 Shizheng Road, Chongqing, 400044, China
| | - Anna Slita
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, BioCity, Artillerigatan 6A, 20520, Turku, Finland
| | - Christoffer Löf
- Research Centre for Cancer, Infections and Immunity, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland
| | - You Zhou
- Division of Infection and Immunity, School of Medicine, Systems Immunity University Research Institute, Cardiff University, Cardiff, UK
| | - Jessica Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, BioCity, Artillerigatan 6A, 20520, Turku, Finland
| | - Kid Törnquist
- Minerva Foundation Institute for Medical Research, Biomedicum Helsinki 2U, Tukholmankatu 8, 00290, Helsinki, Finland.
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Tykistökatu 6A, 20520, Turku, Finland.
| |
Collapse
|
2
|
Balaji Ragunathrao VA, Anwar M, Akhter MZ, Chavez A, Mao DY, Natarajan V, Lakshmikanthan S, Chrzanowska-Wodnicka M, Dudek AZ, Claesson-Welsh L, Kitajewski JK, Wary KK, Malik AB, Mehta D. Sphingosine-1-Phosphate Receptor 1 Activity Promotes Tumor Growth by Amplifying VEGF-VEGFR2 Angiogenic Signaling. Cell Rep 2020; 29:3472-3487.e4. [PMID: 31825830 PMCID: PMC6927555 DOI: 10.1016/j.celrep.2019.11.036] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 09/06/2019] [Accepted: 11/07/2019] [Indexed: 12/24/2022] Open
Abstract
The vascular endothelial growth factor-A (VEGF-A)-VEGFR2 pathway drives tumor vascularization by activating proangiogenic signaling in endothelial cells (ECs). Here, we show that EC-sphingosine-1-phosphate receptor 1 (S1PR1) amplifies VEGFR2-mediated angiogenic signaling to enhance tumor growth. We show that cancer cells induce S1PR1 activity in ECs, and thereby, conditional deletion of S1PR1 in ECs (EC-S1pr1−/− mice) impairs tumor vascularization and growth. Mechanistically, we show that S1PR1 engages the heterotrimeric G-protein Gi, which amplifies VEGF-VEGFR2 signaling due to an increase in the activity of the tyrosine kinase c-Abl1. c-Abl1, by phosphorylating VEGFR2 at tyrosine-951, prolongs VEGFR2 retention on the plasmalemma to sustain Rac1 activity and EC migration. Thus, S1PR1 or VEGFR2 antagonists, alone or in combination, reverse the tumor growth in control mice to the level seen in EC-S1pr1−/− mice. Our findings suggest that blocking S1PR1 activity in ECs has the potential to suppress tumor growth by preventing amplification of VEGF-VEGFR2 signaling. Vijay Avin et al. demonstrate an essential role of endothelial cell (EC)-S1PR1 signaling in amplifying VEGFR2-mediated tumor growth. S1PR1 by Gi and c-Abl1 phosphorylates VEGFR2 at Y951, which retains VEGFR2 at EC plasmalemma, thus enabling EC migration, tumor angiogenesis, and growth.
Collapse
Affiliation(s)
- Vijay Avin Balaji Ragunathrao
- Department of Pharmacology and The Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Mumtaz Anwar
- Department of Pharmacology and The Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Md Zahid Akhter
- Department of Pharmacology and The Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Alejandra Chavez
- Department of Pharmacology and The Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - De Yu Mao
- Department of Physiology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Viswanathan Natarajan
- Department of Pharmacology and The Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA; Department of Medicine, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | | | | | - Arkadiusz Z Dudek
- Department of Medicine, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Lena Claesson-Welsh
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Jan K Kitajewski
- Department of Physiology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Kishore K Wary
- Department of Pharmacology and The Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Asrar B Malik
- Department of Pharmacology and The Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Dolly Mehta
- Department of Pharmacology and The Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA.
| |
Collapse
|
3
|
Balaji Ragunathrao VA, Vellingiri V, Anwar M, Akhter MZ, Mehta D. S1PR1 and VEGFR2 - a synergy that promotes tumor angiogenesis? Mol Cell Oncol 2020; 7:1746131. [PMID: 32944615 PMCID: PMC7469464 DOI: 10.1080/23723556.2020.1746131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We have recently uncovered that endothelial cell (EC) S1PR1 controls the effectiveness of VEGFR2 driven tumor angiogenesis. By using tumor ECs, EC-S1PR1-/- mice and S1PR1 antagonist, we showed that VEGF-VEGFR2 pathway requires EC-S1PR1-induced signaling to efficiently drive tumor vascularization and growth, indicating combining S1PR1 antagonist with anti-VEGF/VEGFR2 therapy may eradicate resistant tumors.
Collapse
Affiliation(s)
- Vijay Avin Balaji Ragunathrao
- Department of Pharmacology and the Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL, USA
| | - Vigneshwaran Vellingiri
- Department of Pharmacology and the Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL, USA
| | - Mumtaz Anwar
- Department of Pharmacology and the Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL, USA
| | - Md Zahid Akhter
- Department of Pharmacology and the Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL, USA
| | - Dolly Mehta
- Department of Pharmacology and the Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL, USA
| |
Collapse
|
4
|
Anwar M, Mehta D. Post-translational modifications of S1PR1 and endothelial barrier regulation. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158760. [PMID: 32585303 PMCID: PMC7409382 DOI: 10.1016/j.bbalip.2020.158760] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/09/2020] [Accepted: 06/15/2020] [Indexed: 12/16/2022]
Abstract
Sphingosine-1-phosphate receptor-1 (S1PR1), a G-protein coupled receptor that is expressed in endothelium and activated upon ligation by the bioactive lipid sphingosine-1-phosphate (S1P), is an important vascular-barrier protective mechanism at the level of adherens junctions (AJ). Loss of endothelial barrier function is a central factor in the pathogenesis of various inflammatory conditions characterized by protein-rich lung edema formation, such as acute respiratory distress syndrome (ARDS). While several S1PR1 agonists are available, the challenge of arresting the progression of protein-rich edema formation remains to be met. In this review, we discuss the role of S1PRs, especially S1PR1, in regulating endothelial barrier function. We review recent findings showing that replenishment of the pool of cell-surface S1PR1 may be crucial to the effectiveness of S1P in repairing the endothelial barrier. In this context, we discuss the S1P generating machinery and mechanisms that regulate S1PR1 at the cell surface and their impact on endothelial barrier function.
Collapse
Affiliation(s)
- Mumtaz Anwar
- Department of Pharmacology and Center for Lung and Vascular Biology, University of Illinois at Chicago Chicago, IL 60612, United States of America
| | - Dolly Mehta
- Department of Pharmacology and Center for Lung and Vascular Biology, University of Illinois at Chicago Chicago, IL 60612, United States of America.
| |
Collapse
|
5
|
Abstract
Sphingosine-1-phosphate (S1P) can regulate several physiological and pathological processes. S1P signaling via its cell surface receptor S1PR1 has been shown to enhance tumorigenesis and stimulate growth, expansion, angiogenesis, metastasis, and survival of cancer cells. S1PR1-mediated tumorigenesis is supported and amplified by activation of downstream effectors including STAT3, interleukin-6, and NF-κB networks. S1PR1 signaling can also trigger various other signaling pathways involved in carcinogenesis including activation of PI3K/AKT, MAPK/ERK1/2, Rac, and PKC/Ca, as well as suppression of cyclic adenosine monophosphate (cAMP). It also induces immunological tolerance in the tumor microenvironment, while the immunosuppressive function of S1PR1 can also lead to the generation of pre-metastatic niches. Some tumor cells upregulate S1PR1 signaling pathways, which leads to drug resistant cancer cells, mainly through activation of STAT3. This signaling pathway is also implicated in some inflammatory conditions leading to the instigation of inflammation-driven cancers. Furthermore, it can also increase survival via induction of anti-apoptotic pathways, for instance, in breast cancer cells. Therefore, S1PR1 and its signaling pathways can be considered as potential anti-tumor therapeutic targets, alone or in combination therapies. Given the oncogenic nature of S1PR1 and its distribution in a variety of cancer cell types along with its targeting advantages over other molecules of this family, S1PR1 should be considered a favorable target in therapeutic approaches to cancer. This review describes the role of S1PR1 in cancer development and progression, specifically addressing breast cancer, glioma, and hematopoietic malignancies. We also discuss the potential use of S1P signaling modulators as therapeutic targets in cancer therapy.
Collapse
|
6
|
Lee HJ, Jung YH, Choi GE, Kim JS, Chae CW, Lim JR, Kim SY, Lee JE, Park MC, Yoon JH, Choi MJ, Kim KS, Han HJ. O-cyclic phytosphingosine-1-phosphate stimulates HIF1α-dependent glycolytic reprogramming to enhance the therapeutic potential of mesenchymal stem cells. Cell Death Dis 2019; 10:590. [PMID: 31383843 PMCID: PMC6683124 DOI: 10.1038/s41419-019-1823-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 06/18/2019] [Accepted: 07/22/2019] [Indexed: 12/12/2022]
Abstract
O-cyclic phytosphingosine-1-phosphate (cP1P) is a novel chemically synthesized sphingosine metabolite derived from phytosphingosine-1-phosphate. Although structurally similar to sphingosine-1-phosphate (S1P), its biological properties in stem cells remain to be reported. We investigated the effect of cP1P on the therapeutic potential of mesenchymal stem cells (MSCs) and their regulatory mechanism. We found that, under hypoxia, cP1P suppressed MSC mitochondrial dysfunction and apoptosis. Metabolic data revealed that cP1P stimulated glycolysis via the upregulation of glycolysis-related genes. cP1P-induced hypoxia-inducible factor 1 alpha (HIF1α) plays a key role for MSC glycolytic reprogramming and transplantation efficacy. The intracellular calcium-dependent PKCα/mammalian target of the rapamycin (mTOR) signaling pathway triggered by cP1P regulated HIF1α translation via S6K1, which is critical for HIF1 activation. Furthermore, the cP1P-activated mTOR pathway induced bicaudal D homolog 1 expression, leading to HIF1α nuclear translocation. In conclusion, cP1P enhances the therapeutic potential of MSC through mTOR-dependent HIF1α translation and nuclear translocation.
Collapse
Affiliation(s)
- Hyun Jik Lee
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Young Hyun Jung
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Gee Euhn Choi
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jun Sung Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Chang Woo Chae
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jae Ryong Lim
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seo Yihl Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Joo Eun Lee
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Min Chul Park
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jee Hyeon Yoon
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Myeong Jun Choi
- Axcesobiopharma, 268 Hakuiro, Dongan-gu, Anyang, 14056, Republic of Korea
| | - Kye-Seong Kim
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Ho Jae Han
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
7
|
Kilpatrick LE, Alcobia DC, White CW, Peach CJ, Glenn JR, Zimmerman K, Kondrashov A, Pfleger KDG, Ohana RF, Robers MB, Wood KV, Sloan EK, Woolard J, Hill SJ. Complex Formation between VEGFR2 and the β 2-Adrenoceptor. Cell Chem Biol 2019; 26:830-841.e9. [PMID: 30956148 PMCID: PMC6593180 DOI: 10.1016/j.chembiol.2019.02.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/30/2018] [Accepted: 02/24/2019] [Indexed: 12/26/2022]
Abstract
Vascular endothelial growth factor (VEGF) is an important mediator of endothelial cell proliferation and angiogenesis via its receptor VEGFR2. A common tumor associated with elevated VEGFR2 signaling is infantile hemangioma that is caused by a rapid proliferation of vascular endothelial cells. The current first-line treatment for infantile hemangioma is the β-adrenoceptor antagonist, propranolol, although its mechanism of action is not understood. Here we have used bioluminescence resonance energy transfer and VEGFR2 genetically tagged with NanoLuc luciferase to demonstrate that oligomeric complexes involving VEGFR2 and the β2-adrenoceptor can be generated in both cell membranes and intracellular endosomes. These complexes are induced by agonist treatment and retain their ability to couple to intracellular signaling proteins. Furthermore, coupling of β2-adrenoceptor to β-arrestin2 is prolonged by VEGFR2 activation. These data suggest that protein-protein interactions between VEGFR2, the β2-adrenoceptor, and β-arrestin2 may provide insight into their roles in health and disease.
Collapse
Affiliation(s)
- Laura E Kilpatrick
- Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK
| | - Diana C Alcobia
- Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK; Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Melbourne, VIC 3052, Australia
| | - Carl W White
- Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK; Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, Perth, WA 6009, Australia
| | - Chloe J Peach
- Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK
| | - Jackie R Glenn
- Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK
| | | | - Alexander Kondrashov
- Wolfson Centre for Stem Cells, Tissue Engineering & Modelling (STEM), Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Kevin D G Pfleger
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, Perth, WA 6009, Australia; Dimerix Limited, Nedlands, Perth, WA 6009, Australia
| | | | | | | | - Erica K Sloan
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Melbourne, VIC 3052, Australia; Cousins Center for Neuroimmunology, Semel Institute for Neuroscience and Human Behavior, Jonsson Comprehensive Cancer Center, UCLA AIDS Institute, University of California, Los Angeles, CA 90095, USA; Division of Surgical Oncology, Peter MacCallum Cancer Centre, Victorian Comprehensive Cancer Centre, 305 Grattan Street, Melbourne, VIC 3000, Australia
| | - Jeanette Woolard
- Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK.
| | - Stephen J Hill
- Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK.
| |
Collapse
|
8
|
Perfused 3D angiogenic sprouting in a high-throughput in vitro platform. Angiogenesis 2018; 22:157-165. [PMID: 30171498 PMCID: PMC6510881 DOI: 10.1007/s10456-018-9647-0] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 08/25/2018] [Indexed: 12/12/2022]
Abstract
Angiogenic sprouting, the growth of new blood vessels from pre-existing vessels, is orchestrated by cues from within the cellular microenvironment, such as biochemical gradients and perfusion. However, many of these cues are missing in current in vitro models of angiogenic sprouting. We here describe an in vitro platform that integrates both perfusion and the generation of stable biomolecular gradients and demonstrate its potential to study more physiologically relevant angiogenic sprouting and microvascular stabilization. The platform consists of an array of 40 individually addressable microfluidic units that enable the culture of perfused microvessels against a three-dimensional collagen-1 matrix. Upon the introduction of a gradient of pro-angiogenic factors, the endothelial cells differentiated into tip cells that invaded the matrix. Continuous exposure resulted in continuous migration and the formation of lumen by stalk cells. A combination of vascular endothelial growth factor-165 (VEGF-165), phorbol 12-myristate 13-acetate (PMA), and sphingosine-1-phosphate (S1P) was the most optimal cocktail to trigger robust, directional angiogenesis with S1P being crucial for guidance and repetitive sprout formation. Prolonged exposure forces the angiogenic sprouts to anastomose through the collagen to the other channel. This resulted in remodeling of the angiogenic sprouts within the collagen: angiogenic sprouts that anastomosed with the other perfusion channel remained stable, while those who did not retracted and degraded. Furthermore, perfusion with 150 kDa FITC-Dextran revealed that while the angiogenic sprouts were initially leaky, once they fully crossed the collagen lane they became leak tight. This demonstrates that once anastomosis occurred, the sprouts matured and suggests that perfusion can act as an important survival and stabilization factor for the angiogenic microvessels. The robustness of this platform in combination with the possibility to include a more physiological relevant three-dimensional microenvironment makes our platform uniquely suited to study angiogenesis in vitro.
Collapse
|
9
|
Asghar MY, Kemppainen K, Lassila T, Törnquist K. Sphingosine 1-phosphate attenuates MMP2 and MMP9 in human anaplastic thyroid cancer C643 cells: Importance of S1P2. PLoS One 2018; 13:e0196992. [PMID: 29734379 PMCID: PMC5937745 DOI: 10.1371/journal.pone.0196992] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 04/24/2018] [Indexed: 12/31/2022] Open
Abstract
In anaplastic thyroid cancer C643 cells, sphingosine 1-phosphate (S1P) attenuates migration by activating the S1P2 receptor and the Rho-ROCK pathway. In the present study, we show that stimulating C643 cells with S1P decreases the expression, secretion and activity of matrix metalloproteinase-2 (MMP2), and to a lesser extent MMP9. Using receptor-specific antagonists, and S1P2 siRNA, we showed that the inhibition of expression of MMP2 is mediated through S1P2. Furthermore, S1P inhibited calpain activity, and inhibiting calpain pharmacologically, inhibited the effect of S1P on MMP2 expression and activity, and on MMP9 activity. S1P treatment increased Rho activity, and by incubating cells with the Rho inhibitor C3 transferase or the ROCK inhibitor Y27632, the S1P-induced inhibition of invasion and MMP2 expression and activity was abolished. We conclude that S1P attenuates the invasion of C643 cells by activating S1P2 and the Rho-ROCK pathway, by decreasing calpain activity, and by decreasing the expression, secretion and activity of MMP2 and, to a lesser extent, MMP9. Our results thus unveil a novel function for the S1P2 receptor in attenuating thyroid cancer cell invasion.
Collapse
Affiliation(s)
- Muhammad Yasir Asghar
- Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, BioCity, Artillerigatan, Turku, Finland
- The Minerva Foundation Institute for Medical Research, Biomedicum Helsinki, Helsinki, Finland
| | - Kati Kemppainen
- Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, BioCity, Artillerigatan, Turku, Finland
| | - Taru Lassila
- Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, BioCity, Artillerigatan, Turku, Finland
| | - Kid Törnquist
- Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, BioCity, Artillerigatan, Turku, Finland
- The Minerva Foundation Institute for Medical Research, Biomedicum Helsinki, Helsinki, Finland
- * E-mail:
| |
Collapse
|
10
|
Zhan B, Kong C, Zhang Z, Dong X, Zhang N. Inhibition of PKCα reduces the ability of migration of kidney cancer cells but has no impact on cell apoptosis. Exp Ther Med 2017; 13:2473-2479. [PMID: 28565866 DOI: 10.3892/etm.2017.4258] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 01/20/2017] [Indexed: 12/29/2022] Open
Abstract
Kidney cancer is among the most important causes of cancer-associated mortality worldwide. The present study aimed to evaluate protein kinase C α (PKCα) expression in kidney cancer tissues and cell lines, and its significance in apoptosis and migration. Expression of PKCα was analyzed using quantitative polymerase chain reaction and western blotting. In addition, the inhibitor of PKCα (calphostin C and GO6976) was used to treat kidney cancer cells. The ACHN cell line was generated with PKCα-small-interfering RNA (siRNA) and a stable expression of PKCα, in order to facilitate the analysis of apoptosis and migration of PKCα during knockdown and inactivation. Flow cytometry was used to determine the rates of apoptosis. Immunohistochemical staining was used to identify the localization of PKCα in renal clear cell carcinoma and normal sections. PKCα expression in normal tissues was found to be greater than in cancerous tissues. Furthermore, apoptosis was not promoted with PKCα inhibitors or PKCα-siRNA treatment, and a decrease of the migration ability was observed following transfection with PKCα-dominant negative. The results indicated that inhibition of PKCα might not contribute to apoptosis progression in kidney carcinoma.
Collapse
Affiliation(s)
- Bo Zhan
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Chuize Kong
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Zhe Zhang
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xiao Dong
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Naiwen Zhang
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
11
|
Pyne NJ, Pyne S. Sphingosine 1-Phosphate Receptor 1 Signaling in Mammalian Cells. Molecules 2017; 22:molecules22030344. [PMID: 28241498 PMCID: PMC6155263 DOI: 10.3390/molecules22030344] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 02/15/2017] [Accepted: 02/18/2017] [Indexed: 12/16/2022] Open
Abstract
The bioactive lipid, sphingosine 1-phosphate (S1P) binds to a family of G protein-coupled receptors, termed S1P1-S1P5. These receptors function in, for example, the cardiovascular system to regulate vascular barrier integrity and tone, the nervous system to regulate neuronal differentiation, myelination and oligodendrocyte/glial cell survival and the immune system to regulate T- and B-cell subsets and trafficking. S1P receptors also participate in the pathophysiology of autoimmunity, inflammatory disease, cancer, neurodegeneration and others. In this review, we describe how S1P1 can form a complex with G-protein and β-arrestin, which function together to regulate effector pathways. We also discuss the role of the S1P1-Platelet derived growth factor receptor β functional complex (which deploys G-protein/β-arrestin and receptor tyrosine kinase signaling) in regulating cell migration. Possible mechanisms by which different S1P-chaperones, such as Apolipoprotein M-High-Density Lipoprotein induce biological programmes in cells are also described. Finally, the role of S1P1 in health and disease and as a target for clinical intervention is appraised.
Collapse
Affiliation(s)
- Nigel J Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK.
| | - Susan Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK.
| |
Collapse
|
12
|
Abstract
TRPCs have been demonstrated to be widely expressed in different cancers. In recent years, a number of studies closely investigated the roles of TRPCs in cancer cells. Most of the results show that both mRNA and protein levels of TRPCs significantly increase in cancer tissues compared with healthy controls. TRPCs regulate Ca2+ homeostasis, contribute to cell cycle regulation and the expression/activation of Ca2+-related factors, and thus play critical roles in the proliferation of cancer cells. Therefore, TRPCs could act as potential drug targets for cancer diagnosis and therapy.
Collapse
|
13
|
Nema R, Vishwakarma S, Agarwal R, Panday RK, Kumar A. Emerging role of sphingosine-1-phosphate signaling in head and neck squamous cell carcinoma. Onco Targets Ther 2016; 9:3269-80. [PMID: 27330306 PMCID: PMC4898435 DOI: 10.2147/ott.s99989] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most frequent cancer type, with an annual incidence of approximately half a million people worldwide. It has a high recurrence rate and an extremely low survival rate. This is due to limited availability of effective therapies to reduce the rate of recurrence, resulting in high morbidity and mortality of patients with advanced stages of the disease. HNSCC often develops resistance to chemotherapy and targeted drug therapy. Thus, to overcome the problem of drug resistance, there is a need to explore novel drug targets. Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid involved in inflammation, tumor progression, and angiogenesis. S1P is synthesized intracellularly by two sphingosine kinases (SphKs). It can be exported to the extracellular space, where it can activate a family of G-protein-coupled receptors. Alternatively, S1P can act as an intracellular second messenger. SphK1 regulates tumor progression, invasion, metastasis, and chemoresistance in HNSCC. SphK1 expression is highly elevated in advanced stage HNSCC tumors and correlates with poor survival. In this article, we review current knowledge regarding the role of S1P receptors and enzymes of S1P metabolism in HNSCC carcinogenesis. Furthermore, we summarize the current perspectives on therapeutic approaches for targeting S1P pathway for treating HNSCC.
Collapse
Affiliation(s)
- Rajeev Nema
- Department of Biochemistry, All India Institute of Medical Sciences Bhopal, Bhopal, India
| | - Supriya Vishwakarma
- Department of Biochemistry, All India Institute of Medical Sciences Bhopal, Bhopal, India
| | - Rahul Agarwal
- Jawaharlal Nehru Cancer Hospital & Research Centre, Indrapuri, Bhopal, India
| | | | - Ashok Kumar
- Department of Biochemistry, All India Institute of Medical Sciences Bhopal, Bhopal, India
| |
Collapse
|
14
|
Ku CY, Wang YR, Lin HY, Lu SC, Lin JY. Corosolic Acid Inhibits Hepatocellular Carcinoma Cell Migration by Targeting the VEGFR2/Src/FAK Pathway. PLoS One 2015; 10:e0126725. [PMID: 25978354 PMCID: PMC4433267 DOI: 10.1371/journal.pone.0126725] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 04/07/2015] [Indexed: 01/05/2023] Open
Abstract
Inhibition of VEGFR2 activity has been proposed as an important strategy for the clinical treatment of hepatocellular carcinoma (HCC). In this study, we identified corosolic acid (CA), which exists in the root of Actinidia chinensis, as having a significant anti-cancer effect on HCC cells. We found that CA inhibits VEGFR2 kinase activity by directly interacting with the ATP binding pocket. CA down-regulates the VEGFR2/Src/FAK/cdc42 axis, subsequently decreasing F-actin formation and migratory activity in vitro. In an in vivo model, CA exhibited an effective dose (5 mg/kg/day) on tumor growth. We further demonstrate that CA has a synergistic effect with sorafenib within a wide range of concentrations. In conclusion, this research elucidates the effects and molecular mechanism for CA on HCC cells and suggests that CA could be a therapeutic or adjuvant strategy for patients with aggressive HCC.
Collapse
Affiliation(s)
- Chung-Yu Ku
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Ying-Ren Wang
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Hsuan-Yuan Lin
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
- Department of Life Science, National Taiwan Normal University, Taipei, 116, Taiwan
| | - Shao-Chun Lu
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
- * E-mail: (S-CL); (J-YL)
| | - Jung-Yaw Lin
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
- Department of Life Science, National Taiwan Normal University, Taipei, 116, Taiwan
- * E-mail: (S-CL); (J-YL)
| |
Collapse
|
15
|
Asghar MY, Magnusson M, Kemppainen K, Sukumaran P, Löf C, Pulli I, Kalhori V, Törnquist K. Transient Receptor Potential Canonical 1 (TRPC1) Channels as Regulators of Sphingolipid and VEGF Receptor Expression: IMPLICATIONS FOR THYROID CANCER CELL MIGRATION AND PROLIFERATION. J Biol Chem 2015; 290:16116-31. [PMID: 25971967 DOI: 10.1074/jbc.m115.643668] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Indexed: 01/09/2023] Open
Abstract
The identity of calcium channels in the thyroid is unclear. In human follicular thyroid ML-1 cancer cells, sphingolipid sphingosine 1-phosphate (S1P), through S1P receptors 1 and 3 (S1P1/S1P3), and VEGF receptor 2 (VEGFR2) stimulates migration. We show that human thyroid cells express several forms of transient receptor potential canonical (TRPC) channels, including TRPC1. In TRPC1 knockdown (TRPC1-KD) ML-1 cells, the basal and S1P-evoked invasion and migration was attenuated. Furthermore, the expression of S1P3 and VEGFR2 was significantly down-regulated. Transfecting wild-type ML-1 cells with a nonconducting TRPC1 mutant decreased S1P3 and VEGFR2 expression. In TRPC1-KD cells, receptor-operated calcium entry was decreased. To investigate whether the decreased receptor expression was due to attenuated calcium entry, cells were incubated with the calcium chelator BAPTA-AM (1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid). In these cells, and in cells where calmodulin and calmodulin-dependent kinase were blocked pharmacologically, S1P3 and VEGFR2 expression was decreased. In TRPC1-KD cells, both hypoxia-inducible factor 1α expression and the secretion and activity of MMP2 and MMP9 were attenuated, and proliferation was decreased in TRPC1-KD cells. This was due to a prolonged G1 phase of the cell cycle, a significant increase in the expression of the cyclin-dependent kinase inhibitors p21 and p27, and a decrease in the expression of cyclin D2, cyclin D3, and CDK6. Transfecting TRPC1 to TRPC1-KD cells rescued receptor expression, migration, and proliferation. Thus, the expression of S1P3 and VEGFR2 is mediated by a calcium-dependent mechanism. TRPC1 has a crucial role in this process. This regulation is important for the invasion, migration, and proliferation of thyroid cancer cells.
Collapse
Affiliation(s)
| | - Melissa Magnusson
- From the Department of Biosciences, Åbo Akademi University, 20520 Turku, Finland
| | - Kati Kemppainen
- From the Department of Biosciences, Åbo Akademi University, 20520 Turku, Finland
| | - Pramod Sukumaran
- the Department of Biochemistry and Molecular Biology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota 58201
| | - Christoffer Löf
- Department of Physiology, Institute of Biomedicine, University of Turku, 20520 Turku, Finland, and
| | - Ilari Pulli
- From the Department of Biosciences, Åbo Akademi University, 20520 Turku, Finland
| | - Veronica Kalhori
- From the Department of Biosciences, Åbo Akademi University, 20520 Turku, Finland, the Minerva Foundation Institute for Medical Research, Biomedicum Helsinki, 00270 Helsinki, Finland
| | - Kid Törnquist
- From the Department of Biosciences, Åbo Akademi University, 20520 Turku, Finland, the Minerva Foundation Institute for Medical Research, Biomedicum Helsinki, 00270 Helsinki, Finland
| |
Collapse
|
16
|
Heo MJ, Kim YM, Koo JH, Yang YM, An J, Lee SK, Lee SJ, Kim KM, Park JW, Kim SG. microRNA-148a dysregulation discriminates poor prognosis of hepatocellular carcinoma in association with USP4 overexpression. Oncotarget 2015; 5:2792-806. [PMID: 24798342 PMCID: PMC4058045 DOI: 10.18632/oncotarget.1920] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is classified as a poor prognostic tumor, and becomes frequently aggressive. MicroRNAs emerge as key contributors to tumor progression. This study investigated whether miR-148a dysregulation differentiates poor prognosis of HCC, exploring new targets of miR-148a. miR-148a dysregulation discriminated not only the overall survival and recurrence free survival rates of HCC, but the microvascular invasion. In the human HCC samples, ubiquitin specific protease 4 (USP4) and sphingosine 1-phosphate receptor 1 (S1P1) were up-regulated as the new targets of miR-148a. USP4 and S1P1 were up-regulated in mesenchymal-type liver-tumor cells with miR-148a dysregulation, facilitating migration and proliferation of tumor cells. The inverse relationship between miR-148a and the identified targets was verified in a tumor xenograft model. In the analysis of human samples, the expression of USP4, but not S1P1, correlated with the decrease of miR-148a. In a heterotropic patient-derived HCC xenograft model, USP4 was also overexpressed in G1 and G2 tumors when miR-148a was dysregulated, reflecting the closer link between miR-148a and USP4 for a shift in the expansion phase of tumorgraft. In conclusion, miR-148a dysregulation affects the poor prognosis of HCC. Of the identified targets of miR-148a, USP4 overexpression may contribute to HCC progression towards more aggressive feature.
Collapse
Affiliation(s)
- Mi Jeong Heo
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Shi L, Ko S, Ko ML, Kim AJ, Ko GYP. Peptide Lv augments L-type voltage-gated calcium channels through vascular endothelial growth factor receptor 2 (VEGFR2) signaling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1154-64. [PMID: 25698653 DOI: 10.1016/j.bbamcr.2015.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 02/03/2015] [Accepted: 02/09/2015] [Indexed: 01/22/2023]
Abstract
We previously identified peptide Lv, a novel bioactive peptide that enhances the activity of L-type voltage-gated calcium channels (L-VGCCs) in cone photoreceptors. In this study, we verified that peptide Lv was able to augment L-VGCC currents in cardiomyocytes, as well as promote proliferation of endothelial cells. We used a proteomics approach to determine the specific receptors and binding partners of peptide Lv and found that vascular endothelial growth factor receptor 2 (VEGFR2) interacted with peptide Lv. Peptide Lv treatment in embryonic cardiomyocytes stimulated tyrosine autophosphorylation of VEGFR2 and activated its downstream signaling. Peptide Lv activity was blocked by DMH4, a VEGFR2 specific blocker, but not by SCH202676, an allosteric inhibitor of G protein-coupled receptors, suggesting that the activity of peptide Lv was mediated through VEGFR2 signaling. Inhibition of VEGFR tyrosine kinase or its downstream signaling molecules abolished the augmentation of L-VGCCs elicited by peptide Lv in cardiomyocytes. In addition, peptide Lv promoted cell proliferation of cultured human endothelial cells. Calcium entry through L-VGCCs is essential for excitation-contraction coupling in cardiomyocytes. Since peptide Lv was able to augment L-VGCCs through activation of VEGF signaling in cardiomyocytes and promote proliferation of endothelial cells, peptide Lv may play an important role in regulating the cardiovascular system.
Collapse
Affiliation(s)
- Liheng Shi
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4458, USA
| | - Soyoung Ko
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael L Ko
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4458, USA
| | - Andy Jeesu Kim
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4458, USA
| | - Gladys Y-P Ko
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4458, USA; Texas A&M Institute for Neuroscience, USA.
| |
Collapse
|
18
|
Chavez A, Schmidt TT, Yazbeck P, Rajput C, Desai B, Sukriti S, Giantsos-Adams K, Knezevic N, Malik AB, Mehta D. S1PR1 Tyr143 phosphorylation downregulates endothelial cell surface S1PR1 expression and responsiveness. J Cell Sci 2015; 128:878-87. [PMID: 25588843 DOI: 10.1242/jcs.154476] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Activation of sphingosine-1-phosphate receptor 1 (S1PR1) plays a key role in repairing endothelial barrier function. We addressed the role of phosphorylation of the three intracellular tyrosine residues of S1PR1 in endothelial cells in regulating the receptor responsiveness and endothelial barrier function regulated by sphingosine 1-phosphate (S1P)-mediated activation of S1PR1. We demonstrated that phosphorylation of only Y143 site was required for S1PR1 internalization in response to S1P. Maximal S1PR1 internalization was seen in 20 min but S1PR1 returned to the cell surface within 1 h accompanied by Y143-dephosphorylation. Cell surface S1PR1 loss paralleled defective endothelial barrier enhancement induced by S1P. Expression of phospho-defective (Y143F) or phospho-mimicking (Y143D) mutants, respectively, failed to internalize or showed unusually high receptor internalization, consistent with the requirement of Y143 in regulating cell surface S1PR1 expression. Phosphorylation of the five S1PR1 C-terminal serine residues did not affect the role of Y143 phosphorylation in signaling S1PR1 internalization. Thus, rapid reduction of endothelial cell surface expression of S1PR1 subsequent to Y143 phosphorylation is a crucial mechanism of modulating S1PR1 signaling, and hence the endothelial barrier repair function of S1P.
Collapse
Affiliation(s)
- Alejandra Chavez
- Department of Pharmacology and Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Tracy Thennes Schmidt
- Department of Pharmacology and Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Pascal Yazbeck
- Department of Pharmacology and Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Charu Rajput
- Department of Pharmacology and Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Bhushan Desai
- Department of Pharmacology and Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Sukriti Sukriti
- Department of Pharmacology and Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Kristina Giantsos-Adams
- Department of Pharmacology and Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Nebojsa Knezevic
- Department of Pharmacology and Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Asrar B Malik
- Department of Pharmacology and Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Dolly Mehta
- Department of Pharmacology and Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| |
Collapse
|
19
|
Camaré C, Trayssac M, Garmy-Susini B, Mucher E, Sabbadini R, Salvayre R, Negre-Salvayre A. Oxidized LDL-induced angiogenesis involves sphingosine 1-phosphate: prevention by anti-S1P antibody. Br J Pharmacol 2014; 172:106-18. [PMID: 25176316 DOI: 10.1111/bph.12897] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 08/13/2014] [Accepted: 08/24/2014] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND PURPOSE Neovascularization occurring in atherosclerotic lesions may promote plaque expansion, intraplaque haemorrhage and rupture. Oxidized LDL (oxLDL) are atherogenic, but their angiogenic effect is controversial; both angiogenic and anti-angiogenic effects have been reported. The angiogenic mechanism of oxLDL is partly understood, but the role of the angiogenic sphingolipid, sphingosine 1-phosphate (S1P), in this process is not known. Thus, we investigated whether S1P is involved in the oxLDL-induced angiogenesis and whether an anti-S1P monoclonal antibody can prevent this effect. EXPERIMENTAL APPROACH Angiogenesis was assessed by capillary tube formation by human microvascular endothelial cells (HMEC-1) cultured on Matrigel and in vivo by the Matrigel plug assay in C57BL/6 mice. KEY RESULTS Human oxLDL exhibited a biphasic angiogenic effect on HMEC-1; low concentrations were angiogenic, higher concentrations were cytotoxic. The angiogenic response to oxLDL was blocked by the sphingosine kinase (SPHK) inhibitor, dimethylsphingosine, by SPHK1-siRNA and by an anti-S1P monoclonal antibody. Moreover, inhibition of oxLDL uptake and subsequent redox signalling by anti-CD36 and anti-LOX-1 receptor antibodies and by N-acetylcysteine, respectively, blocked SPHK1 activation and tube formation. In vivo, in the Matrigel plug assay, low concentrations of human oxLDL or murine oxVLDL also triggered angiogenesis, which was prevented by i.p. injection of the anti-S1P antibody. CONCLUSION AND IMPLICATIONS These data highlight the role of S1P in angiogenesis induced by oxLDL both in HMEC-1 cultured on Matrigel and in vivo in the Matrigel plug model in mice, and demonstrate that the anti-S1P antibody effectively blocks the angiogenic effect of oxLDL.
Collapse
Affiliation(s)
- Caroline Camaré
- Inserm UMR-1048, Toulouse, France; Department of Biochemistry, University of Toulouse, France
| | | | | | | | | | | | | |
Collapse
|
20
|
Cattaneo F, Guerra G, Parisi M, De Marinis M, Tafuri D, Cinelli M, Ammendola R. Cell-surface receptors transactivation mediated by g protein-coupled receptors. Int J Mol Sci 2014; 15:19700-28. [PMID: 25356505 PMCID: PMC4264134 DOI: 10.3390/ijms151119700] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/30/2014] [Accepted: 10/13/2014] [Indexed: 12/17/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are seven transmembrane-spanning proteins belonging to a large family of cell-surface receptors involved in many intracellular signaling cascades. Despite GPCRs lack intrinsic tyrosine kinase activity, tyrosine phosphorylation of a tyrosine kinase receptor (RTK) occurs in response to binding of specific agonists of several such receptors, triggering intracellular mitogenic cascades. This suggests that the notion that GPCRs are associated with the regulation of post-mitotic cell functions is no longer believable. Crosstalk between GPCR and RTK may occur by different molecular mechanism such as the activation of metalloproteases, which can induce the metalloprotease-dependent release of RTK ligands, or in a ligand-independent manner involving membrane associated non-receptor tyrosine kinases, such as c-Src. Reactive oxygen species (ROS) are also implicated as signaling intermediates in RTKs transactivation. Intracellular concentration of ROS increases transiently in cells stimulated with GPCR agonists and their deliberated and regulated generation is mainly catalyzed by enzymes that belong to nicotinamide adenine dinucleotide phosphate (NADPH) oxidase family. Oxidation and/or reduction of cysteine sulfhydryl groups of phosphatases tightly controls the activity of RTKs and ROS-mediated inhibition of cellular phosphatases results in an equilibrium shift from the non-phosphorylated to the phosphorylated state of RTKs. Many GPCR agonists activate phospholipase C, which catalyze the hydrolysis of phosphatidylinositol 4,5-bis-phosphate to produce inositol 1,4,5-triphosphate and diacylglicerol. The consequent mobilization of Ca2+ from endoplasmic reticulum leads to the activation of protein kinase C (PKC) isoforms. PKCα mediates feedback inhibition of RTK transactivation during GPCR stimulation. Recent data have expanded the coverage of transactivation to include Serine/Threonine kinase receptors and Toll-like receptors. Herein, we discuss the main mechanisms of GPCR-mediated cell-surface receptors transactivation and the pathways involved in intracellular responses induced by GPCR agonists. These studies may suggest the design of novel strategies for therapeutic interventions.
Collapse
Affiliation(s)
- Fabio Cattaneo
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, Naples 80131, Italy.
| | - Germano Guerra
- Department of Medicine and Health Sciences, University of Molise, Campobasso 86100, Italy.
| | - Melania Parisi
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, Naples 80131, Italy.
| | - Marta De Marinis
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, Naples 80131, Italy.
| | - Domenico Tafuri
- Department of Sport Science and Wellness, University of Naples Parthenope, Naples 80133, Italy.
| | - Mariapia Cinelli
- Department of Public Health, School of Medicine, University of Naples Federico II, Naples 80131, Italy.
| | - Rosario Ammendola
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, Naples 80131, Italy.
| |
Collapse
|
21
|
Sassoli C, Frati A, Tani A, Anderloni G, Pierucci F, Matteini F, Chellini F, Zecchi Orlandini S, Formigli L, Meacci E. Mesenchymal stromal cell secreted sphingosine 1-phosphate (S1P) exerts a stimulatory effect on skeletal myoblast proliferation. PLoS One 2014; 9:e108662. [PMID: 25264785 PMCID: PMC4181304 DOI: 10.1371/journal.pone.0108662] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 08/25/2014] [Indexed: 12/20/2022] Open
Abstract
Bone-marrow-derived mesenchymal stromal cells (MSCs) have the potential to significantly contribute to skeletal muscle healing through the secretion of paracrine factors that support proliferation and enhance participation of the endogenous muscle stem cells in the process of repair/regeneration. However, MSC-derived trophic molecules have been poorly characterized. The aim of this study was to investigate paracrine signaling effects of MSCs on skeletal myoblasts. It was found, using a biochemical and morphological approach that sphingosine 1-phosphate (S1P), a natural bioactive lipid exerting a broad range of muscle cell responses, is secreted by MSCs and represents an important factor by which these cells exert their stimulatory effects on C2C12 myoblast and satellite cell proliferation. Indeed, exposure to conditioned medium obtained from MSCs cultured in the presence of the selective sphingosine kinase inhibitor (iSK), blocked increased cell proliferation caused by the conditioned medium from untreated MSCs, and the addition of exogenous S1P in the conditioned medium from MSCs pre-treated with iSK further increased myoblast proliferation. Finally, we also demonstrated that the myoblast response to MSC-secreted vascular endothelial growth factor (VEGF) involves the release of S1P from C2C12 cells. Our data may have important implications in the optimization of cell-based strategies to promote skeletal muscle regeneration.
Collapse
Affiliation(s)
- Chiara Sassoli
- Department of Experimental and Clinical Medicine - Section of Anatomy and Histology, University of Florence, Florence, Italy
| | - Alessia Frati
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio” - Unit of Biochemical Sciences and Molecular Biology, University of Florence, Florence, Italy
| | - Alessia Tani
- Department of Experimental and Clinical Medicine - Section of Anatomy and Histology, University of Florence, Florence, Italy
| | - Giulia Anderloni
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio” - Unit of Biochemical Sciences and Molecular Biology, University of Florence, Florence, Italy
| | - Federica Pierucci
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio” - Unit of Biochemical Sciences and Molecular Biology, University of Florence, Florence, Italy
| | - Francesca Matteini
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio” - Unit of Biochemical Sciences and Molecular Biology, University of Florence, Florence, Italy
| | - Flaminia Chellini
- Department of Experimental and Clinical Medicine - Section of Anatomy and Histology, University of Florence, Florence, Italy
| | - Sandra Zecchi Orlandini
- Department of Experimental and Clinical Medicine - Section of Anatomy and Histology, University of Florence, Florence, Italy
| | - Lucia Formigli
- Department of Experimental and Clinical Medicine - Section of Anatomy and Histology, University of Florence, Florence, Italy
| | - Elisabetta Meacci
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio” - Unit of Biochemical Sciences and Molecular Biology, University of Florence, Florence, Italy
- * E-mail:
| |
Collapse
|
22
|
The impact of sphingosine kinase-1 in head and neck cancer. Biomolecules 2013; 3:481-513. [PMID: 24970177 PMCID: PMC4030949 DOI: 10.3390/biom3030481] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/02/2013] [Accepted: 08/03/2013] [Indexed: 12/15/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) has a high reoccurrence rate and an extremely low survival rate. There is limited availability of effective therapies to reduce the rate of recurrence, resulting in high morbidity and mortality of advanced cases. Late presentation, delay in detection of lesions, and a high rate of metastasis make HNSCC a devastating disease. This review offers insight into the role of sphingosine kinase-1 (SphK1), a key enzyme in sphingolipid metabolism, in HNSCC. Sphingolipids not only play a structural role in cellular membranes, but also modulate cell signal transduction pathways to influence biological outcomes such as senescence, differentiation, apoptosis, migration, proliferation, and angiogenesis. SphK1 is a critical regulator of the delicate balance between proliferation and apoptosis. The highest expression of SphK1 is found in the advanced stage of disease, and there is a positive correlation between SphK1 expression and recurrent tumors. On the other hand, silencing SphK1 reduces HNSCC tumor growth and sensitizes tumors to radiation-induced death. Thus, SphK1 plays an important and influential role in determining HNSCC proliferation and metastasis. We discuss roles of SphK1 and other sphingolipids in HNSCC development and therapeutic strategies against HNSCC.
Collapse
|
23
|
Kalhori V, Kemppainen K, Asghar MY, Bergelin N, Jaakkola P, Törnquist K. Sphingosine-1-Phosphate as a Regulator of Hypoxia-Induced Factor-1α in Thyroid Follicular Carcinoma Cells. PLoS One 2013; 8:e66189. [PMID: 23824493 PMCID: PMC3688870 DOI: 10.1371/journal.pone.0066189] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 05/05/2013] [Indexed: 01/02/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive lipid, which regulates several cancer-related processes including migration and angiogenesis. We have previously shown S1P to induce migration of follicular ML-1 thyroid cancer cells. Hypoxia-induced factor-1 (HIF-1) is an oxygen-sensitive transcription factor, which adapts cells to hypoxic conditions through increased survival, motility and angiogenesis. Due to these properties and its increased expression in response to intratumoral hypoxia, HIF-1 is considered a significant regulator of tumor biology. We found S1P to increase expression of the regulatory HIF-1α subunit in normoxic ML-1 cells. S1P also increased HIF-1 activity and expression of HIF-1 target genes. Importantly, inhibition or knockdown of HIF-1α attenuated the S1P-induced migration of ML-1 cells. S1P-induced HIF-1α expression was mediated by S1P receptor 3 (S1P3), Gi proteins and their downstream effectors MEK, PI3K, mTOR and PKCβI. Half-life measurements with cycloheximide indicated that S1P treatment stabilized the HIF-1α protein. On the other hand, S1P activated translational regulators eIF-4E and p70S6K, which are known to control HIF-1α synthesis. In conclusion, we have identified S1P as a non-hypoxic regulator of HIF-1 activity in thyroid cancer cells, studied the signaling involved in S1P-induced HIF-1α expression and shown S1P-induced migration to be mediated by HIF-1.
Collapse
Affiliation(s)
- Veronica Kalhori
- Department of Biosciences, Åbo Akademi University, Turku, Finland
- Minerva Foundation Institute, Helsinki, Finland
| | - Kati Kemppainen
- Department of Biosciences, Åbo Akademi University, Turku, Finland
| | | | - Nina Bergelin
- Department of Biosciences, Åbo Akademi University, Turku, Finland
- Minerva Foundation Institute, Helsinki, Finland
| | | | - Kid Törnquist
- Department of Biosciences, Åbo Akademi University, Turku, Finland
- Minerva Foundation Institute, Helsinki, Finland
- * E-mail:
| |
Collapse
|
24
|
Sphingosine 1-phosphate and cancer: lessons from thyroid cancer cells. Biomolecules 2013; 3:303-15. [PMID: 24970169 PMCID: PMC4030848 DOI: 10.3390/biom3020303] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 05/03/2013] [Accepted: 05/06/2013] [Indexed: 02/03/2023] Open
Abstract
Sphingomyelin is found in the cell membrane of all eukaryotic cells, and was for a long time considered merely as a structural component. However, during the last two decades, metabolites of sphingomyelin, especially sphingosine 1-phosphate (S1P), have proven to be physiologically significant regulators of cell function. Through its five different G protein-coupled receptors, S1P regulates a wide array of cellular processes, ranging from stimulating cellular proliferation and migration, to the inhibition of apoptosis and induction of angiogenesis and modulation of cellular calcium homeostasis. Many of the processes regulated by S1P are important for normal cell physiology, but may also induce severe pathological conditions, especially in malignancies like cancer. Thus, understanding S1P signaling mechanisms has been the aim of a multitude of investigations. Great interest has also been shown in understanding the action of sphingosine kinase (SphK), i.e., the kinase phosphorylating sphingosine to S1P, and the interactions between S1P and growth factor signaling. In the present review, we will discuss recent findings regarding the possible importance of S1P and SphK in the etiology of thyroid cancer. Although clinical data is still scarce, our in vitro findings suggest that S1P may function as a “double-edged sword”, as the receptor profile of thyroid cancer cells largely determines whether S1P stimulates or blocks cellular migration. We will also discuss the interactions between S1P- and VEGF-evoked signaling, and the importance of a S1P1-VEGF receptor 2 complex in thyroid cancer cells.
Collapse
|
25
|
Quint P, Ruan M, Pederson L, Kassem M, Westendorf JJ, Khosla S, Oursler MJ. Sphingosine 1-phosphate (S1P) receptors 1 and 2 coordinately induce mesenchymal cell migration through S1P activation of complementary kinase pathways. J Biol Chem 2013; 288:5398-406. [PMID: 23300082 DOI: 10.1074/jbc.m112.413583] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Normal bone turnover requires tight coupling of bone resorption and bone formation to preserve bone quantity and structure. With aging and during several pathological conditions, this coupling breaks down, leading to either net bone loss or excess bone formation. To preserve or restore normal bone metabolism, it is crucial to determine the mechanisms by which osteoclasts and osteoblast precursors interact and contribute to coupling. We showed that osteoclasts produce the chemokine sphingosine 1-phosphate (S1P), which stimulates osteoblast migration. Thus, osteoclast-derived S1P may recruit osteoblasts to sites of bone resorption as an initial step in replacing lost bone. In this study we investigated the mechanisms by which S1P stimulates mesenchymal (skeletal) cell chemotaxis. S1P treatment of mesenchymal (skeletal) cells activated RhoA GTPase, but this small G protein did not contribute to migration. Rather, two S1P receptors, S1PR1 and S1PR2, coordinately promoted migration through activation of the JAK/STAT3 and FAK/PI3K/AKT signaling pathways, respectively. These data demonstrate that the chemokine S1P couples bone formation to bone resorption through activation of kinase signaling pathways.
Collapse
Affiliation(s)
- Patrick Quint
- Endocrine Research Unit and Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota 55905, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Grosse J, Wehland M, Pietsch J, Schulz H, Saar K, Hübner N, Eilles C, Bauer J, Abou-El-Ardat K, Baatout S, Ma X, Infanger M, Hemmersbach R, Grimm D. Gravity-sensitive signaling drives 3-dimensional formation of multicellular thyroid cancer spheroids. FASEB J 2012; 26:5124-40. [PMID: 22964303 DOI: 10.1096/fj.12-215749] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This study focused on the effects induced by a random positioning machine (RPM) on FTC-133 thyroid cancer cells and evaluated signaling elements involved in 3-dimensional multicellular tumor spheroid (MCTS) formation. The cells were cultured on the RPM, a device developed to simulate microgravity, and under static 1-g conditions. After 24 h on the RPM, MCTSs swimming in culture supernatants were found, in addition to growth of adherent (AD) cells. Cells grown on the RPM showed higher levels of NF-κB p65 protein and apoptosis than 1-g controls, a result also found earlier in endothelial cells. Employing microarray analysis, we found 487 significantly regulated transcripts belonging not only to the apoptosis pathway but also to other biological processes. Selected transcripts were analyzed with quantitative real-time PCR using the same samples. Compared with 1-g IL-6, IL-8, CD44, and OPN were significantly up-regulated in AD cells but not in MCTSs, while ERK1/2, CAV2, TLN1, and CTGF were significantly down-regulated in AD cells. Simultaneously, the expression of ERK2, IL-6, CAV2, TLN1, and CTGF was reduced in MCTSs. IL-6 protein expression and secretion mirrored its gene expression. Thus, we concluded that the signaling elements IL-6, IL-8, OPN, TLN1, and CTGF are involved with NF-κB p65 in RPM-dependent thyroid carcinoma cell spheroid formation.
Collapse
Affiliation(s)
- Jirka Grosse
- Department of Nuclear Medicine, University of Regensburg, Regensburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
G-protein-coupled receptors (GPCRs), which represent the largest gene family in the human genome, play a crucial role in multiple physiological functions as well as in tumor growth and metastasis. For instance, various molecules like hormones, lipids, peptides and neurotransmitters exert their biological effects by binding to these seven-transmembrane receptors coupled to heterotrimeric G-proteins, which are highly specialized transducers able to modulate diverse signaling pathways. Furthermore, numerous responses mediated by GPCRs are not dependent on a single biochemical route, but result from the integration of an intricate network of transduction cascades involved in many physiological activities and tumor development. This review highlights the emerging information on the various responses mediated by a selected choice of GPCRs and the molecular mechanisms by which these receptors exert a primary action in cancer progression. These findings provide a broad overview on the biological activity elicited by GPCRs in tumor cells and contribute to the identification of novel pharmacological approaches for cancer patients.
Collapse
|
28
|
Schuchardt M, Tölle M, Prüfer J, van der Giet M. Pharmacological relevance and potential of sphingosine 1-phosphate in the vascular system. Br J Pharmacol 2011; 163:1140-62. [PMID: 21309759 DOI: 10.1111/j.1476-5381.2011.01260.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) was identified as a crucial molecule for regulating immune responses, inflammatory processes as well as influencing the cardiovascular system. S1P mediates differentiation, proliferation and migration during vascular development and homoeostasis. S1P is a naturally occurring lipid metabolite and is present in human blood in nanomolar concentrations. S1P is not only involved in physiological but also in pathophysiological processes. Therefore, this complex signalling system is potentially interesting for pharmacological intervention. Modulation of the system might influence inflammatory, angiogenic or vasoregulatory processes. S1P activates G-protein coupled receptors, namely S1P(1-5) , whereas only S1P(1-3) is present in vascular cells. S1P can also act as an intracellular signalling molecule. This review highlights the pharmacological potential of S1P signalling in the vascular system by giving an overview of S1P-mediated processes in endothelial cells (ECs) and vascular smooth muscle cells (VSMCs). After a short summary of S1P metabolism and signalling pathways, the role of S1P in EC and VSMC proliferation and migration, the cause of relaxation and constriction of arterial blood vessels, the protective functions on endothelial apoptosis, as well as the regulatory function in leukocyte adhesion and inflammatory responses are summarized. This is followed by a detailed description of currently known pharmacological agonists and antagonists as new tools for mediating S1P signalling in the vasculature. The variety of effects influenced by S1P provides plenty of therapeutic targets currently under investigation for potential pharmacological intervention.
Collapse
Affiliation(s)
- Mirjam Schuchardt
- Charité- Universitätsmedizin Berlin, CharitéCentrum 10, Department of Nephrology, Campus Benjamin Franklin, Hindenburgdamm 30, Berlin, Germany
| | | | | | | |
Collapse
|
29
|
Pyne NJ, Pyne S. Receptor tyrosine kinase-G-protein-coupled receptor signalling platforms: out of the shadow? Trends Pharmacol Sci 2011; 32:443-50. [PMID: 21612832 DOI: 10.1016/j.tips.2011.04.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 04/20/2011] [Accepted: 04/26/2011] [Indexed: 12/29/2022]
Abstract
Receptor tyrosine kinases (RTKs) and G-protein-coupled receptors (GPCRs) can form platforms in which protein signalling components specific for each receptor are shared (owing to close proximity) to produce an integrated response upon engagement of ligands. RTK-GPCR signalling platforms respond to growth factors and GPCR agonists to increase gain over and above that which is normally produced by separate receptors. They can also function to change the spatial context of signalling in response to growth factor activation. The function of RTK-GPCR signalling platforms can be modulated with conformational-specific inhibitors that stabilise defined GPCR states to abrogate both GPCR agonist- and growth factor-stimulated cell responses. In this paper, we provide an opinion of the biology and unusual pharmacology of RTK-GPCR signalling platforms and make comparisons with a more traditional model of crosstalk between RTKs and GPCRs.
Collapse
Affiliation(s)
- Nigel J Pyne
- Cell Biology Group, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK.
| | | |
Collapse
|
30
|
Samadi N, Bekele R, Capatos D, Venkatraman G, Sariahmetoglu M, Brindley DN. Regulation of lysophosphatidate signaling by autotaxin and lipid phosphate phosphatases with respect to tumor progression, angiogenesis, metastasis and chemo-resistance. Biochimie 2010; 93:61-70. [PMID: 20709140 DOI: 10.1016/j.biochi.2010.08.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 08/03/2010] [Accepted: 08/04/2010] [Indexed: 12/21/2022]
Abstract
Evidence from clinical, animal and cell culture studies demonstrates that increased autotaxin (ATX) expression is responsible for enhancing tumor progression, cell migration, metastases, angiogenesis and chemo-resistance. These effects depend mainly on the rapid formation of lysophosphatidate (LPA) by ATX. Circulating LPA has a half-life of about 3 min in mice and it is degraded by the ecto-activities of lipid phosphate phosphatases (LPPs). These enzymes also hydrolyze extracellular sphingosine 1-phosphate (S1P), a potent signal for cell division, survival and angiogenesis. Many aggressive tumor cells express high ATX levels and low LPP activities. This favors the formation of locally high LPA and S1P concentrations. Furthermore, LPPs attenuate signaling downstream of the activation of G-protein coupled receptors and receptor tyrosine kinases. Therefore, we propose that the low expression of LPPs in many tumor cells makes them hypersensitive to growth promoting and survival signals that are provided by LPA, S1P, platelet-derived growth factor (PDGF) and epidermal growth factor (EGF). One of the key signaling pathways in this respect appears to be activation of phospholipase D (PLD) and phosphatidate (PA) production. This is required for the transactivations of the EGFR and PDGFR and also for LPA-induced cell migration. PA also increases the activities of ERK, mTOR, myc and sphingosine kinase-1 (SK-1), which provide individual signals for cells division, survival, chemo-resistance and angiogenesis. This review focuses on the balance of signaling by bioactive lipids including LPA, phosphatidylinositol 3,4,5-trisphosphate, PA and S1P versus the action of ceramides. We will discuss how these lipid mediators interact to produce an aggressive neoplastic phenotype.
Collapse
Affiliation(s)
- Nasser Samadi
- Signal Transduction Research Group, Department of Biochemistry, School of Molecular and Systems Medicine, University of Alberta, Edmonton, T6G 2S2 Alberta, Canada
| | | | | | | | | | | |
Collapse
|