1
|
Fox EA, Serlin HK. Gaps in our understanding of how vagal afferents to the small intestinal mucosa detect luminal stimuli. Am J Physiol Regul Integr Comp Physiol 2024; 327:R173-R187. [PMID: 38860288 DOI: 10.1152/ajpregu.00252.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/10/2024] [Accepted: 05/24/2024] [Indexed: 06/12/2024]
Abstract
Vagal afferents to the gastrointestinal tract are crucial for the regulation of food intake, signaling negative feedback that contributes to satiation and positive feedback that produces appetition and reward. Vagal afferents to the small intestinal mucosa contribute to this regulation by sensing luminal stimuli and reporting this information to the brain. These afferents respond to mechanical, chemical, thermal, pH, and osmolar stimuli, as well as to bacterial products and immunogens. Surprisingly, little is known about how these stimuli are transduced by vagal mucosal afferents or how their transduction is organized among these afferents' terminals. Furthermore, the effects of stimulus concentration ranges or physiological stimuli on vagal activity have not been examined for some of these stimuli. Also, detection of luminal stimuli has rarely been examined in rodents, which are most frequently used for studying small intestinal innervation. Here we review what is known about stimulus detection by vagal mucosal afferents and illustrate the complexity of this detection using nutrients as an exemplar. The accepted model proposes that nutrients bind to taste receptors on enteroendocrine cells (EECs), which excite them, causing the release of hormones that stimulate vagal mucosal afferents. However, evidence reviewed here suggests that although this model accounts for many aspects of vagal signaling about nutrients, it cannot account for all aspects. A major goal of this review is therefore to evaluate what is known about nutrient absorption and detection and, based on this evaluation, identify candidate mucosal cells and structures that could cooperate with EECs and vagal mucosal afferents in stimulus detection.
Collapse
Affiliation(s)
- Edward A Fox
- Behavioral Neurogenetics Laboratory, Department of Psychological Sciences, Purdue University, West Lafayette, Indiana, United States
| | - Hannah K Serlin
- Behavioral Neurogenetics Laboratory, Department of Psychological Sciences, Purdue University, West Lafayette, Indiana, United States
| |
Collapse
|
2
|
Cao M, Kuthiala S, Jean KJ, Liu HL, Courchesne M, Nygard K, Burns P, Desrochers A, Fecteau G, Faure C, Frasch MG. The Vagus Nerve Regulates Immunometabolic Homeostasis in the Ovine Fetus near Term: The Impact on Terminal Ileum. BIOLOGY 2024; 13:38. [PMID: 38248469 PMCID: PMC10812930 DOI: 10.3390/biology13010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/23/2024]
Abstract
BACKGROUND Glucosensing elements are widely distributed throughout the body and relay information about circulating glucose levels to the brain via the vagus nerve. However, while anatomical wiring has been established, little is known about the physiological role of the vagus nerve in glucosensing. The contribution of the vagus nerve to inflammation in the fetus is poorly understood. Increased glucose levels and inflammation act synergistically when causing organ injury, but their interplay remains incompletely understood. We hypothesized that vagotomy (Vx) will trigger a rise in systemic glucose levels and this will be enhanced during systemic and organ-specific inflammation. Efferent vagus nerve stimulation (VNS) should reverse this phenotype. METHODS Near-term fetal sheep (n = 57) were surgically prepared using vascular catheters and ECG electrodes as the control and treatment groups (lipopolysaccharide (LPS), Vx + LPS, Vx + LPS + selective efferent VNS). The experiment was started 72 h postoperatively to allow for post-surgical recovery. Inflammation was induced with LPS bolus intravenously (LPS group, 400 ng/fetus/day for 2 days; n = 23). For the Vx + LPS group (n = 11), a bilateral cervical vagotomy was performed during surgery; of these n = 5 received double the LPS dose, LPS800. The Vx + LPS + efferent VNS group (n = 8) received cervical VNS probes bilaterally distal from Vx in eight animals. Efferent VNS was administered for 20 min on days 1 and 2 +/10 min around the LPS bolus. Fetal arterial blood samples were drawn on each postoperative day of recovery (-72 h, -48 h, and -24 h) as well as at the baseline and seven selected time points (3-54 h) to profile inflammation (ELISA IL-6, pg/mL), insulin (ELISA), blood gas, and metabolism (glucose). At 54 h post-LPS, a necropsy was performed, and the terminal ileum macrophages' CD11c (M1 phenotype) immunofluorescence was quantified to detect inflammation. The results are reported for p < 0.05 and for Spearman R2 > 0.1. The results are presented as the median (IQR). RESULTS Across the treatment groups, blood gas and cardiovascular changes indicated mild septicemia. At 3 h in the LPS group, IL-6 peaked. That peak was decreased in the Vx + LPS400 group and doubled in the Vx + LPS800 group. The efferent VNS sped up the reduction in the inflammatory response profile over 54 h. The M1 macrophage activity was increased in the LPS and Vx + LPS800 groups only. The glucose and insulin concentrations in the Vx + LPS group were, respectively, 1.3-fold (throughout the experiment) and 2.3-fold higher vs. control (at 3 h). The efferent VNS normalized the glucose concentrations. CONCLUSIONS The complete withdrawal of vagal innervation resulted in a 72-h delayed onset of a sustained increase in glucose for at least 54 h and intermittent hyperinsulinemia. Under the conditions of moderate fetal inflammation, this was related to higher levels of gut inflammation. The efferent VNS reduced the systemic inflammatory response as well as restored both the concentrations of glucose and the degree of terminal ileum inflammation, but not the insulin concentrations. Supporting our hypothesis, these findings revealed a novel regulatory, hormetic, role of the vagus nerve in the immunometabolic response to endotoxin in near-term fetuses.
Collapse
Affiliation(s)
- Mingju Cao
- Department of Obstetrics and Gynaecology and Department of Neurosciences, CHU Ste-Justine Research Centre, Université de Montréal, Montréal, QC H3T 1C5, Canada; (M.C.)
| | - Shikha Kuthiala
- Department of Obstetrics and Gynaecology and Department of Neurosciences, CHU Ste-Justine Research Centre, Université de Montréal, Montréal, QC H3T 1C5, Canada; (M.C.)
| | - Keven Jason Jean
- Department of Obstetrics and Gynaecology and Department of Neurosciences, CHU Ste-Justine Research Centre, Université de Montréal, Montréal, QC H3T 1C5, Canada; (M.C.)
| | - Hai Lun Liu
- Department of Obstetrics and Gynaecology and Department of Neurosciences, CHU Ste-Justine Research Centre, Université de Montréal, Montréal, QC H3T 1C5, Canada; (M.C.)
| | - Marc Courchesne
- Biotron Microscopy, Western University, London, ON N6A 3K7, Canada
| | - Karen Nygard
- Biotron Microscopy, Western University, London, ON N6A 3K7, Canada
| | - Patrick Burns
- Clinical Sciences, CHUV, Université de Montréal, St-Hyacinthe, QC J2S 2M2, Canada (A.D.)
| | - André Desrochers
- Clinical Sciences, CHUV, Université de Montréal, St-Hyacinthe, QC J2S 2M2, Canada (A.D.)
| | - Gilles Fecteau
- Clinical Sciences, CHUV, Université de Montréal, St-Hyacinthe, QC J2S 2M2, Canada (A.D.)
| | - Christophe Faure
- Department of Pediatrics, CHU Ste-Justine Research Centre, Université de Montréal, Montréal, QC H3T 1C5, Canada
| | - Martin G. Frasch
- Department of Obstetrics and Gynaecology and Department of Neurosciences, CHU Ste-Justine Research Centre, Université de Montréal, Montréal, QC H3T 1C5, Canada; (M.C.)
- Centre de Recherche en Reproduction Animale, l’Université de Montréal, St-Hyacinthe, QC H3T 1J4, Canada
- Department of Obstetrics and Gynecology and Institute on Human Development and Disability, School of Medicine, University of Washington, 1959 NE Pacific St Box 356460, Seattle, WA 98195, USA
| |
Collapse
|
3
|
Hyun U, Sohn JW. Autonomic control of energy balance and glucose homeostasis. Exp Mol Med 2022; 54:370-376. [PMID: 35474336 PMCID: PMC9076646 DOI: 10.1038/s12276-021-00705-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/07/2021] [Indexed: 11/21/2022] Open
Abstract
Neurons in the central nervous system (CNS) communicate with peripheral organs largely via the autonomic nervous system (ANS). Through such communications, the sympathetic and parasympathetic efferent divisions of the ANS may affect thermogenesis and blood glucose levels. In contrast, peripheral organs send feedback to the CNS via hormones and autonomic afferent nerves. These humoral and neural feedbacks, as well as neural commands from higher brain centers directly or indirectly shape the metabolic function of autonomic neurons. Notably, recent developments in mouse genetics have enabled more detailed studies of ANS neurons and circuits, which have helped elucidate autonomic control of metabolism. Here, we will summarize the functional organization of the ANS and discuss recent updates on the roles of neural and humoral factors in the regulation of energy balance and glucose homeostasis by the ANS. Cutting-edge techniques should be harnessed to unravel how metabolism is modulated by a key part of the body’s nervous system. The autonomic nervous system (ANS) regulates many involuntary physiological processes, such as heart rate, breathing, and blood pressure. Scientists now believe that the ANS is involved in regulating metabolism, but its precise roles are unclear. Jong-Woo Sohn and Uisu Hyun at the Korea Advanced Institute of Science and Technology, Daejeon, Korea, reviewed understanding of how the ANS regulates energy balance, appetite, and glucose homeostasis. Recently-developed mouse models have provided insights into how ANS neurons translate neuronal and hormonal signals into commands during feeding, sending instructions to the liver, and mediating blood glucose levels. Several hormones have been identified that may act on a specific part of the ANS to influence appetite and metabolism.
Collapse
Affiliation(s)
- Uisu Hyun
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Jong-Woo Sohn
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea.
| |
Collapse
|
4
|
Watts AG, Kanoski SE, Sanchez-Watts G, Langhans W. The physiological control of eating: signals, neurons, and networks. Physiol Rev 2022; 102:689-813. [PMID: 34486393 PMCID: PMC8759974 DOI: 10.1152/physrev.00028.2020] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/30/2021] [Indexed: 02/07/2023] Open
Abstract
During the past 30 yr, investigating the physiology of eating behaviors has generated a truly vast literature. This is fueled in part by a dramatic increase in obesity and its comorbidities that has coincided with an ever increasing sophistication of genetically based manipulations. These techniques have produced results with a remarkable degree of cell specificity, particularly at the cell signaling level, and have played a lead role in advancing the field. However, putting these findings into a brain-wide context that connects physiological signals and neurons to behavior and somatic physiology requires a thorough consideration of neuronal connections: a field that has also seen an extraordinary technological revolution. Our goal is to present a comprehensive and balanced assessment of how physiological signals associated with energy homeostasis interact at many brain levels to control eating behaviors. A major theme is that these signals engage sets of interacting neural networks throughout the brain that are defined by specific neural connections. We begin by discussing some fundamental concepts, including ones that still engender vigorous debate, that provide the necessary frameworks for understanding how the brain controls meal initiation and termination. These include key word definitions, ATP availability as the pivotal regulated variable in energy homeostasis, neuropeptide signaling, homeostatic and hedonic eating, and meal structure. Within this context, we discuss network models of how key regions in the endbrain (or telencephalon), hypothalamus, hindbrain, medulla, vagus nerve, and spinal cord work together with the gastrointestinal tract to enable the complex motor events that permit animals to eat in diverse situations.
Collapse
Affiliation(s)
- Alan G Watts
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Scott E Kanoski
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Graciela Sanchez-Watts
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Wolfgang Langhans
- Physiology and Behavior Laboratory, Eidgenössische Technische Hochschule-Zürich, Schwerzenbach, Switzerland
| |
Collapse
|
5
|
McDougle M, Quinn D, Diepenbroek C, Singh A, de la Serre C, de Lartigue G. Intact vagal gut-brain signalling prevents hyperphagia and excessive weight gain in response to high-fat high-sugar diet. Acta Physiol (Oxf) 2021; 231:e13530. [PMID: 32603548 PMCID: PMC7772266 DOI: 10.1111/apha.13530] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 01/02/2023]
Abstract
Aim The tools that have been used to assess the function of the vagus nerve lack specificity. This could explain discrepancies about the role of vagal gut‐brain signalling in long‐term control of energy balance. Here we use a validated approach to selectively ablate sensory vagal neurones that innervate the gut to determine the role of vagal gut‐brain signalling in the control of food intake, energy expenditure and glucose homoeostasis in response to different diets. Methods Rat nodose ganglia were injected bilaterally with either the neurotoxin saporin conjugated to the gastrointestinal hormone cholecystokinin (CCK), or unconjugated saporin as a control. Food intake, body weight, glucose tolerance and energy expenditure were measured in both groups in response to chow or high‐fat high‐sugar (HFHS) diet. Willingness to work for fat or sugar was assessed by progressive ratio for orally administered solutions, while post‐ingestive feedback was tested by measuring food intake after an isocaloric lipid or sucrose pre‐load. Results Vagal deafferentation of the gut increases meal number in lean chow‐fed rats. Switching to a HFHS diet exacerbates overeating and body weight gain. The breakpoint for sugar or fat solution did not differ between groups, suggesting that increased palatability may not drive HFHS‐induced hyperphagia. Instead, decreased satiation in response to intra‐gastric infusion of fat, but not sugar, promotes hyperphagia in CCK‐Saporin‐treated rats fed with HFHS diet. Conclusions We conclude that intact sensory vagal neurones prevent hyperphagia and exacerbation of weight gain in response to a HFHS diet by promoting lipid‐mediated satiation.
Collapse
Affiliation(s)
- Molly McDougle
- Department of Pharmacodynamics University of Florida Gainesville FL USA
- Center for Integrative Cardiovascular and Metabolic Disease University of Florida Gainesville FL USA
- The John B. Pierce Laboratory New Haven CT USA
| | | | - Charlene Diepenbroek
- The John B. Pierce Laboratory New Haven CT USA
- Department of Cellular and Molecular Physiology Yale Medical School New Haven CT USA
| | - Arashdeep Singh
- Department of Pharmacodynamics University of Florida Gainesville FL USA
- Center for Integrative Cardiovascular and Metabolic Disease University of Florida Gainesville FL USA
| | | | - Guillaume de Lartigue
- Department of Pharmacodynamics University of Florida Gainesville FL USA
- Center for Integrative Cardiovascular and Metabolic Disease University of Florida Gainesville FL USA
- The John B. Pierce Laboratory New Haven CT USA
- Department of Cellular and Molecular Physiology Yale Medical School New Haven CT USA
| |
Collapse
|
6
|
Grote CW, Wilson NM, Katz NK, Guilford BL, Ryals JM, Novikova L, Stehno-Bittel L, Wright DE. Deletion of the insulin receptor in sensory neurons increases pancreatic insulin levels. Exp Neurol 2018; 305:97-107. [PMID: 29649429 PMCID: PMC5963702 DOI: 10.1016/j.expneurol.2018.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 04/04/2018] [Accepted: 04/06/2018] [Indexed: 11/24/2022]
Abstract
Insulin is known to have neurotrophic properties and loss of insulin support to sensory neurons may contribute to peripheral diabetic neuropathy (PDN). Here, genetically-modified mice were generated in which peripheral sensory neurons lacked the insulin receptor (SNIRKO mice) to determine whether disrupted sensory neuron insulin signaling plays a crucial role in the development of PDN and whether SNIRKO mice develop symptoms of PDN due to reduced insulin neurotrophic support. Our results revealed that SNIRKO mice were euglycemic and never displayed significant changes in a wide range of sensorimotor behaviors, nerve conduction velocity or intraepidermal nerve fiber density. However, SNIRKO mice displayed elevated serum insulin levels, glucose intolerance, and increased insulin content in the islets of Langerhans of the pancreas. These results contribute to the growing idea that sensory innervation of pancreatic islets is key to regulating islet function and that a negative feedback loop of sensory neuron insulin signaling keeps this regulation in balance. Our results suggest that a loss of insulin receptors in sensory neurons does not lead to peripheral nerve dysfunction. The SNIRKO mice will be a powerful tool to investigate sensory neuron insulin signaling and may give a unique insight into the role that sensory neurons play in modifying islet physiology.
Collapse
Affiliation(s)
- Caleb W Grote
- Department of Orthopedic Surgery, University of Kansas Medical Center, United States
| | - Natalie M Wilson
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, United States
| | - Natalie K Katz
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, United States
| | - Brianne L Guilford
- Department of Applied Health, Southern Illinois University Edwardsville, United States
| | - Janelle M Ryals
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, United States
| | - Lesya Novikova
- Physical Therapy & Rehabilitation Science, University of Kansas Medical Center, Southern Illinois University Edwardsville, United States
| | - Lisa Stehno-Bittel
- Physical Therapy & Rehabilitation Science, University of Kansas Medical Center, Southern Illinois University Edwardsville, United States
| | - Douglas E Wright
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, United States.
| |
Collapse
|
7
|
Trancikova A, Kovacova E, Ru F, Varga K, Brozmanova M, Tatar M, Kollarik M. Distinct Expression of Phenotypic Markers in Placodes- and Neural Crest-Derived Afferent Neurons Innervating the Rat Stomach. Dig Dis Sci 2018; 63:383-394. [PMID: 29275446 DOI: 10.1007/s10620-017-4883-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 12/12/2017] [Indexed: 01/10/2023]
Abstract
BACKGROUND Visceral pain is initiated by activation of primary afferent neurons among which the capsaicin-sensitive (TRPV1-positive) neurons play an important role. The stomach is a common source of visceral pain. Similar to other organs, the stomach receives dual spinal and vagal afferent innervation. Developmentally, spinal dorsal root ganglia (DRG) and vagal jugular neurons originate from embryonic neural crest and vagal nodose neurons originate from placodes. In thoracic organs the neural crest- and placodes-derived TRPV1-positive neurons have distinct phenotypes differing in activation profile, neurotrophic regulation and reflex responses. It is unknown to whether such distinction exists in the stomach. AIMS We hypothesized that gastric neural crest- and placodes-derived TRPV1-positive neurons express phenotypic markers indicative of placodes and neural crest phenotypes. METHODS Gastric DRG and vagal neurons were retrogradely traced by DiI injected into the rat stomach wall. Single-cell RT-PCR was performed on traced gastric neurons. RESULTS Retrograde tracing demonstrated that vagal gastric neurons locate exclusively into the nodose portion of the rat jugular/petrosal/nodose complex. Gastric DRG TRPV1-positive neurons preferentially expressed markers PPT-A, TrkA and GFRα3 typical for neural crest-derived TRPV1-positive visceral neurons. In contrast, gastric nodose TRPV1-positive neurons preferentially expressed markers P2X2 and TrkB typical for placodes-derived TRPV1-positive visceral neurons. Differential expression of neural crest and placodes markers was less pronounced in TRPV1-negative DRG and nodose populations. CONCLUSIONS There are phenotypic distinctions between the neural crest-derived DRG and placodes-derived vagal nodose TRPV1-positive neurons innervating the rat stomach that are similar to those described in thoracic organs.
Collapse
Affiliation(s)
- Alzbeta Trancikova
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin (JFM CU), Biomedical Center Martin JFM CU, Malá Hora 4C, 036 01, Martin, Slovakia
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin (JFM CU), Department of Pathophysiology JFM CU, Malá Hora 4C, 036 01, Martin, Slovakia
| | - Eva Kovacova
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin (JFM CU), Biomedical Center Martin JFM CU, Malá Hora 4C, 036 01, Martin, Slovakia
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin (JFM CU), Department of Pathophysiology JFM CU, Malá Hora 4C, 036 01, Martin, Slovakia
| | - Fei Ru
- Department of Medicine, The Johns Hopkins University School of Medicine, Johns Hopkins Asthma Center, RM 1A.2, 5501 Hopkins Bayview Circle, Baltimore, MD, 21224, USA
| | - Kristian Varga
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin (JFM CU), Biomedical Center Martin JFM CU, Malá Hora 4C, 036 01, Martin, Slovakia
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin (JFM CU), Department of Pathophysiology JFM CU, Malá Hora 4C, 036 01, Martin, Slovakia
| | - Mariana Brozmanova
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin (JFM CU), Biomedical Center Martin JFM CU, Malá Hora 4C, 036 01, Martin, Slovakia
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin (JFM CU), Department of Pathophysiology JFM CU, Malá Hora 4C, 036 01, Martin, Slovakia
| | - Milos Tatar
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin (JFM CU), Biomedical Center Martin JFM CU, Malá Hora 4C, 036 01, Martin, Slovakia
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin (JFM CU), Department of Pathophysiology JFM CU, Malá Hora 4C, 036 01, Martin, Slovakia
| | - Marian Kollarik
- Department of Medicine, The Johns Hopkins University School of Medicine, Johns Hopkins Asthma Center, RM 1A.2, 5501 Hopkins Bayview Circle, Baltimore, MD, 21224, USA.
| |
Collapse
|
8
|
Roberts BL, Zhu M, Zhao H, Dillon C, Appleyard SM. High glucose increases action potential firing of catecholamine neurons in the nucleus of the solitary tract by increasing spontaneous glutamate inputs. Am J Physiol Regul Integr Comp Physiol 2017; 313:R229-R239. [PMID: 28615161 DOI: 10.1152/ajpregu.00413.2016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 06/12/2017] [Accepted: 06/12/2017] [Indexed: 02/07/2023]
Abstract
Glucose is a crucial substrate essential for cell survival and function. Changes in glucose levels impact neuronal activity and glucose deprivation increases feeding. Several brain regions have been shown to respond to glucoprivation, including the nucleus of the solitary tract (NTS) in the brain stem. The NTS is the primary site in the brain that receives visceral afferent information from the gastrointestinal tract. The catecholaminergic (CA) subpopulation within the NTS modulates many homeostatic functions including cardiovascular reflexes, respiration, food intake, arousal, and stress. However, it is not known if they respond to changes in glucose. Here we determined whether NTS-CA neurons respond to changes in glucose concentration and the mechanism involved. We found that decreasing glucose concentrations from 5 mM to 2 mM to 1 mM, significantly decreased action potential firing in a cell-attached preparation, whereas increasing it back to 5 mM increased the firing rate. This effect was dependent on glutamate release from afferent terminals and required presynaptic 5-HT3Rs. Decreasing the glucose concentration also decreased both basal and 5-HT3R agonist-induced increase in the frequency of spontaneous glutamate inputs onto NTS-CA neurons. Low glucose also blunted 5-HT-induced inward currents in nodose ganglia neurons, which are the cell bodies of vagal afferents. The effect of low glucose in both nodose ganglia cells and in NTS slices was mimicked by the glucokinase inhibitor glucosamine. This study suggests that NTS-CA neurons are glucosensing through a presynaptic mechanism that is dependent on vagal glutamate release, 5-HT3R activity, and glucokinase.
Collapse
Affiliation(s)
- Brandon L Roberts
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Mingyan Zhu
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Huan Zhao
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Crystal Dillon
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Suzanne M Appleyard
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| |
Collapse
|
9
|
Grabauskas G, Owyang C. Plasticity of vagal afferent signaling in the gut. MEDICINA-LITHUANIA 2017; 53:73-84. [PMID: 28454890 PMCID: PMC6318799 DOI: 10.1016/j.medici.2017.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 03/21/2017] [Indexed: 12/13/2022]
Abstract
Vagal sensory neurons mediate the vago-vagal reflex which, in turn, regulates a wide array of gastrointestinal functions including esophageal motility, gastric accommodation and pancreatic enzyme secretion. These neurons also transmit sensory information from the gut to the central nervous system, which then mediates the sensations of nausea, fullness and satiety. Recent research indicates that vagal afferent neurons process non-uniform properties and a significant degree of plasticity. These properties are important to ensure that vagally regulated gastrointestinal functions respond rapidly and appropriately to various intrinsic and extrinsic factors. Similar plastic changes in the vagus also occur in pathophysiological conditions, such as obesity and diabetes, resulting in abnormal gastrointestinal functions. A clear understanding of the mechanisms which mediate these events may provide novel therapeutic targets for the treatment of gastrointestinal disorders due to vago-vagal pathway malfunctions.
Collapse
Affiliation(s)
- Gintautas Grabauskas
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48019, USA.
| | - Chung Owyang
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48019, USA
| |
Collapse
|
10
|
Lehmann A, Hornby PJ. Intestinal SGLT1 in metabolic health and disease. Am J Physiol Gastrointest Liver Physiol 2016; 310:G887-98. [PMID: 27012770 DOI: 10.1152/ajpgi.00068.2016] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 03/21/2016] [Indexed: 01/31/2023]
Abstract
The Na(+)-glucose cotransporter 1 (SGLT1/SLC5A1) is predominantly expressed in the small intestine. It transports glucose and galactose across the apical membrane in a process driven by a Na(+) gradient created by Na(+)-K(+)-ATPase. SGLT2 is the major form found in the kidney, and SGLT2-selective inhibitors are a new class of treatment for type 2 diabetes mellitus (T2DM). Recent data from patients treated with dual SGLT1/2 inhibitors or SGLT2-selective drugs such as canagliflozin (SGLT1 IC50 = 663 nM) warrant evaluation of SGLT1 inhibition for T2DM. SGLT1 activity is highly dynamic, with modulation by multiple mechanisms to ensure maximal uptake of carbohydrates (CHOs). Intestinal SGLT1 inhibition lowers and delays the glucose excursion following CHO ingestion and augments glucagon-like peptide-1 (GLP-1) and peptide YY (PYY) secretion. The latter is likely due to increased glucose exposure of the colonic microbiota and formation of metabolites such as L cell secretagogues. GLP-1 and PYY secretion suppresses food intake, enhances the ileal brake, and has an incretin effect. An increase in colonic microbial production of propionate could contribute to intestinal gluconeogenesis and mediate positive metabolic effects. On the other hand, a threshold of SGLT1 inhibition that could lead to gastrointestinal intolerability is unclear. Altered Na(+) homeostasis and increased colonic CHO may result in diarrhea and adverse gastrointestinal effects. This review considers the potential mechanisms contributing to positive metabolic and negative intestinal effects. Compounds that inhibit SGLT1 must balance the modulation of these mechanisms to achieve therapeutic efficacy for metabolic diseases.
Collapse
Affiliation(s)
- Anders Lehmann
- Division of Endocrinology, Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; and
| | - Pamela J Hornby
- Cardiovascular and Metabolic Disease, Janssen Research and Development, LLC, Spring House, Pennsylvania
| |
Collapse
|
11
|
Grabauskas G, Wu X, Lu Y, Heldsinger A, Song I, Zhou SY, Owyang C. KATP channels in the nodose ganglia mediate the orexigenic actions of ghrelin. J Physiol 2015; 593:3973-89. [PMID: 26174421 PMCID: PMC4575581 DOI: 10.1113/jp270788] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/26/2015] [Indexed: 12/21/2022] Open
Abstract
Ghrelin, a hunger signalling peptide derived from the peripheral tissues, overcomes the satiety signals evoked by anorexigenic molecules, such as cholecystokinin (CCK) and leptin, to stimulate feeding. Using in vivo and in vitro electrophysiological techniques, we show that ghrelin hyperpolarizes neurons and inhibits currents evoked by leptin and CCK-8. Administering a KATP channel antagonist or silencing Kir6.2, a major subunit of the KATP channel, abolished ghrelin inhibition. The inhibitory actions of ghrelin were also abolished by treating the vagal ganglia neurons with pertussis toxin, as well as phosphatidylinositol 3-kinase (PI3K) or extracellular signal-regulated kinase 1 and 2 (Erk1/2) small interfering RNA. Feeding experiments showed that silencing Kir6.2 in the vagal ganglia abolished the orexigenic actions of ghrelin. These data indicate that ghrelin modulates vagal ganglia neuron excitability by activating KATP conductance via the growth hormone secretagogue receptor subtype 1a-Gαi -PI3K-Erk1/2-KATP pathway. This provides a mechanism to explain the actions of ghrelin with respect to overcoming anorexigenic signals that act via the vagal afferent pathways. Ghrelin is the only known hunger signal derived from the peripheral tissues. Ghrelin overcomes the satiety signals evoked by anorexigenic molecules, such as cholecystokinin (CCK) and leptin, to stimulate feeding. The mechanisms by which ghrelin reduces the sensory signals evoked by anorexigenic hormones, which act via the vagus nerve to stimulate feeding, are unknown. Patch clamp recordings of isolated rat vagal neurons show that ghrelin hyperpolarizes neurons by activating K(+) conductance. Administering a KATP channel antagonist or silencing Kir6.2, a major subunit of the KATP channel, abolished ghrelin inhibition in vitro and in vivo. Patch clamp studies show that ghrelin inhibits currents evoked by leptin and CCK-8, which operate through independent ionic channels. The inhibitory actions of ghrelin were abolished by treating the vagal ganglia neurons with pertussis toxin, as well as phosphatidylinositol 3-kinase (PI3K) or extracellular signal-regulated kinase 1 and 2 (Erk1/2) small interfering RNA. In vivo gene silencing of PI3K and Erk1/2 in the nodose ganglia prevented ghrelin inhibition of leptin- or CCK-8-evoked vagal firing. Feeding experiments showed that silencing Kir6.2 in the vagal ganglia abolished the orexigenic actions of ghrelin. These data indicate that ghrelin modulates vagal ganglia neuron excitability by activating KATP conductance via the growth hormone secretagogue receptor subtype 1a-Gαi -PI3K-Erk1/2-KATP pathway. The resulting hyperpolarization renders the neurons less responsive to signals evoked by anorexigenic hormones. This provides a mechanism to explain the actions of ghrelin with respect to overcoming anorexigenic signals that act via the vagal afferent pathways.
Collapse
Affiliation(s)
- Gintautas Grabauskas
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Health SystemAnn Arbor, MI, USA
| | - Xiaoyin Wu
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Health SystemAnn Arbor, MI, USA
| | - Yuanxu Lu
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Health SystemAnn Arbor, MI, USA
| | - Andrea Heldsinger
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Health SystemAnn Arbor, MI, USA
| | - Il Song
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Health SystemAnn Arbor, MI, USA
| | - Shi-Yi Zhou
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Health SystemAnn Arbor, MI, USA
| | - Chung Owyang
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Health SystemAnn Arbor, MI, USA
- Corresponding author C. Owyang: 3912 Taubman Center, SPC 5362, 1500 East Medical Center Drive, University of Michigan Health System, Ann Arbor, MI 48109, USA.
| |
Collapse
|
12
|
Veedfald S, Plamboeck A, Hartmann B, Svendsen LB, Vilsbøll T, Knop FK, Holst JJ. Pancreatic polypeptide responses to isoglycemic oral and intravenous glucose in humans with and without intact vagal innervation. Peptides 2015. [PMID: 26218807 DOI: 10.1016/j.peptides.2015.07.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Secretion of pancreatic polypeptide (PP) from the pancreatic PP cells is controlled partly by vagal mechanisms. Release is stimulated by cephalic stimulation and enteral but not parenteral nutrients. Ambient glucose levels modulate circulating PP levels as hypoglycemia stimulates while hyperglycemia inhibits secretion. The glucose sensing mechanism has yet to be determined but may involve a vagal pathway. To investigate the role of enteral stimuli with or without intact vagal innervation, while controlling for the glucose excursion caused by the OGTT, we measured PP plasma levels by an in-house radioimmunoassay in truncally vagotomized (n=15) and control individuals (n=10). All participants were studied by a 50-g oral glucose tolerance test (OGTT) with or without dipeptidyl peptidase 4 (DPP-4) inhibition (DPP-4i) and a subsequent isoglycemic intravenous glucose infusion (IGII). We included measurements from the DPP-4i day to determine the potential effect of DPP-4-cleaved peptides on PP secretion. In both vagotomized and controls, oral glucose elicited PP secretion. In controls, but not in the vagotomized participants, intravenous glucose significantly inhibited PP secretion suggesting a vagal glucose sensing mechanism dependent on intact vagal innervation. DPP-4i did not alter PP secretion in either group.
Collapse
Affiliation(s)
- Simon Veedfald
- Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Denmark; The NNF Center for Basic Metabolic Research and The Department of Biomedical Sciences, University of Copenhagen, Denmark; Department of Surgical Gastroenterology C, Rigshospitalet, University of Copenhagen, Denmark
| | - Astrid Plamboeck
- Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Denmark; The NNF Center for Basic Metabolic Research and The Department of Biomedical Sciences, University of Copenhagen, Denmark
| | - Bolette Hartmann
- The NNF Center for Basic Metabolic Research and The Department of Biomedical Sciences, University of Copenhagen, Denmark
| | - Lars B Svendsen
- Department of Surgical Gastroenterology C, Rigshospitalet, University of Copenhagen, Denmark
| | - Tina Vilsbøll
- Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Denmark
| | - Filip K Knop
- Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Denmark; The NNF Center for Basic Metabolic Research and The Department of Biomedical Sciences, University of Copenhagen, Denmark
| | - Jens J Holst
- The NNF Center for Basic Metabolic Research and The Department of Biomedical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
13
|
Ripken D, van der Wielen N, van der Meulen J, Schuurman T, Witkamp R, Hendriks H, Koopmans S. Cholecystokinin regulates satiation independently of the abdominal vagal nerve in a pig model of total subdiaphragmatic vagotomy. Physiol Behav 2015; 139:167-76. [DOI: 10.1016/j.physbeh.2014.11.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 09/16/2014] [Accepted: 11/10/2014] [Indexed: 11/25/2022]
|
14
|
Plasticity of gastro-intestinal vagal afferent endings. Physiol Behav 2014; 136:170-8. [PMID: 24657740 DOI: 10.1016/j.physbeh.2014.03.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 02/06/2014] [Accepted: 03/10/2014] [Indexed: 12/15/2022]
Abstract
Vagal afferents are a vital link between the peripheral tissue and central nervous system (CNS). There is an abundance of vagal afferents present within the proximal gastrointestinal tract which are responsible for monitoring and controlling gastrointestinal function. Whilst essential for maintaining homeostasis there is a vast amount of literature emerging which describes remarkable plasticity of vagal afferents in response to endogenous as well as exogenous stimuli. This plasticity for the most part is vital in maintaining healthy processes; however, there are increased reports of vagal plasticity being disrupted in pathological states, such as obesity. Many of the disruptions, observed in obesity, have the potential to reduce vagal afferent satiety signalling which could ultimately perpetuate the obese state. Understanding how plasticity occurs within vagal afferents will open a whole new understanding of gut function as well as identify new treatment options for obesity.
Collapse
|