1
|
Chen X, Bell NA, Coffman BL, Rabino AA, Garcia-Mata R, Kammermeier PJ, Yule DI, Axelrod D, Smrcka AV, Giovannucci DR, Anantharam A. A PACAP-activated network for secretion requires coordination of Ca 2+ influx and Ca 2+ mobilization. Mol Biol Cell 2024; 35:ar92. [PMID: 38758660 PMCID: PMC11244167 DOI: 10.1091/mbc.e24-02-0083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/26/2024] [Accepted: 05/07/2024] [Indexed: 05/19/2024] Open
Abstract
Chromaffin cells of the adrenal medulla transduce sympathetic nerve activity into stress hormone secretion. The two neurotransmitters principally responsible for coupling cell stimulation to secretion are acetylcholine and pituitary adenylate activating polypeptide (PACAP). In contrast to acetylcholine, PACAP evokes a persistent secretory response from chromaffin cells. However, the mechanisms by which PACAP acts are poorly understood. Here, it is shown that PACAP induces sustained increases in cytosolic Ca2+ which are disrupted when Ca2+ influx through L-type channels is blocked or internal Ca2+ stores are depleted. PACAP liberates stored Ca2+ via inositol trisphosphate receptors (IP3Rs) on the endoplasmic reticulum (ER), thereby functionally coupling Ca2+ mobilization to Ca2+ influx and supporting Ca2+-induced Ca2+-release. These Ca2+ influx and mobilization pathways are unified by an absolute dependence on phospholipase C epsilon (PLCε) activity. Thus, the persistent secretory response that is a defining feature of PACAP activity, in situ, is regulated by a signaling network that promotes sustained elevations in intracellular Ca2+ through multiple pathways.
Collapse
Affiliation(s)
- Xiaohuan Chen
- Department of Neurosciences, University of Toledo, Toledo, OH 43614
| | - Nicole A. Bell
- Department of Neurosciences, University of Toledo, Toledo, OH 43614
| | | | | | | | - Paul J. Kammermeier
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14627
| | - David I. Yule
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14627
| | | | - Alan V. Smrcka
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109
| | | | - Arun Anantharam
- Department of Neurosciences, University of Toledo, Toledo, OH 43614
| |
Collapse
|
2
|
Chen X, Bell NA, Coffman BL, Rabino AA, Garcia-Mata R, Kammermeier PJ, Yule DI, Axelrod D, Smrcka AV, Giovannucci DR, Anantharam A. A PACAP-activated network for secretion requires coordination of Ca 2+ influx and Ca 2+ mobilization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.03.574069. [PMID: 38260572 PMCID: PMC10802325 DOI: 10.1101/2024.01.03.574069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Chromaffin cells of the adrenal medulla transduce sympathetic nerve activity into stress hormone secretion. The two neurotransmitters principally responsible for coupling cell stimulation to secretion are acetylcholine and pituitary adenylate activating polypeptide (PACAP). In contrast to acetylcholine, PACAP evokes a persistent secretory response from chromaffin cells. However, the mechanisms by which PACAP acts are poorly understood. Here, it is shown that PACAP induces sustained increases in cytosolic Ca 2+ which are disrupted when Ca 2+ influx through L-type channels is blocked or internal Ca 2+ stores are depleted. PACAP liberates stored Ca 2+ via inositol trisphosphate receptors (IP3Rs) on the endoplasmic reticulum (ER), thereby functionally coupling Ca 2+ mobilization to Ca 2+ influx and supporting Ca 2+ -induced Ca 2+ -release. These Ca 2+ influx and mobilization pathways are unified by an absolute dependence on phospholipase C epsilon (PLCε) activity. Thus, the persistent secretory response that is a defining feature of PACAP activity, in situ , is regulated by a signaling network that promotes sustained elevations in intracellular Ca 2+ through multiple pathways.
Collapse
|
3
|
Bakalar D, Gavrilova O, Jiang SZ, Zhang HY, Roy S, Williams SK, Liu N, Wisser S, Usdin TB, Eiden LE. Constitutive and conditional deletion reveals distinct phenotypes driven by developmental versus neurotransmitter actions of the neuropeptide PACAP. J Neuroendocrinol 2023; 35:e13286. [PMID: 37309259 PMCID: PMC10620107 DOI: 10.1111/jne.13286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/11/2023] [Accepted: 04/25/2023] [Indexed: 06/14/2023]
Abstract
Neuropeptides may exert trophic effects during development, and then neurotransmitter roles in the developed nervous system. One way to associate peptide-deficiency phenotypes with either role is first to assess potential phenotypes in so-called constitutive knockout mice, and then proceed to specify, regionally and temporally, where and when neuropeptide expression is required to prevent these phenotypes. We have previously demonstrated that the well-known constellation of behavioral and metabolic phenotypes associated with constitutive pituitary adenylate cyclase-activating peptide (PACAP) knockout mice are accompanied by transcriptomic alterations of two types: those that distinguish the PACAP-null phenotype from wild-type (WT) in otherwise quiescent mice (cPRGs), and gene induction that occurs in response to acute environmental perturbation in WT mice that do not occur in knockout mice (aPRGs). Comparing constitutive PACAP knockout mice to a variety of temporally and regionally specific PACAP knockouts, we show that the prominent hyperlocomotor phenotype is a consequence of early loss of PACAP expression, is associated with Fos overexpression in hippocampus and basal ganglia, and that a thermoregulatory effect previously shown to be mediated by PACAP-expressing neurons of medial preoptic hypothalamus is independent of PACAP expression in those neurons in adult mice. In contrast, PACAP dependence of weight loss/hypophagia triggered by restraint stress, seen in constitutive PACAP knockout mice, is phenocopied in mice in which PACAP is deleted after neuronal differentiation. Our results imply that PACAP has a prominent role as a trophic factor early in development determining global central nervous system characteristics, and in addition a second, discrete set of functions as a neurotransmitter in the fully developed nervous system that support physiological and psychological responses to stress.
Collapse
Affiliation(s)
- Dana Bakalar
- Section on Molecular Neuroscience, National Institute of Mental Heath - Intramural Research Program, Bethesda, Maryland, USA
| | - Oksana Gavrilova
- Mouse Metabolism Core Laboratory, National Institute of Diabetes and Kidney Disease- Intramural Research Program, Bethesda, Maryland, USA
| | - Sunny Z Jiang
- Section on Molecular Neuroscience, National Institute of Mental Heath - Intramural Research Program, Bethesda, Maryland, USA
| | - Hai-Ying Zhang
- Section on Molecular Neuroscience, National Institute of Mental Heath - Intramural Research Program, Bethesda, Maryland, USA
| | - Snehashis Roy
- Systems Neuroscience Imaging Resource, National Institute of Mental Heath - Intramural Research Program, Bethesda, Maryland, USA
| | - Sarah K Williams
- Systems Neuroscience Imaging Resource, National Institute of Mental Heath - Intramural Research Program, Bethesda, Maryland, USA
| | - Naili Liu
- Mouse Metabolism Core Laboratory, National Institute of Diabetes and Kidney Disease- Intramural Research Program, Bethesda, Maryland, USA
| | - Stephen Wisser
- Systems Neuroscience Imaging Resource, National Institute of Mental Heath - Intramural Research Program, Bethesda, Maryland, USA
| | - Ted B Usdin
- Systems Neuroscience Imaging Resource, National Institute of Mental Heath - Intramural Research Program, Bethesda, Maryland, USA
| | - Lee E Eiden
- Section on Molecular Neuroscience, National Institute of Mental Heath - Intramural Research Program, Bethesda, Maryland, USA
| |
Collapse
|
4
|
Pandher PK, Rahim Y, Timms KP, Filatov E, Short LI, Gray SL. Reference gene recommendations and PACAP receptor expression in murine sympathetic ganglia of the autonomic nervous system that innervate adipose tissues after chronic cold exposure. J Neuroendocrinol 2023; 35:e13313. [PMID: 37404042 DOI: 10.1111/jne.13313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 06/01/2023] [Accepted: 06/04/2023] [Indexed: 07/06/2023]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is an important regulator of the stress response in mammals, influencing both the hypothalamic-pituitary-adrenal (HPA) axis and the sympathetic nervous system (SNS). PACAP has been reported to influence energy homeostasis, including adaptive thermogenesis, an energy burning process in adipose tissue regulated by the SNS in response to cold stress and overfeeding. While research suggests PACAP acts centrally at the level of the hypothalamus, knowledge of PACAP's role within the sympathetic nerves innervating adipose tissues in response to metabolic stressors is limited. This work shows, for the first time, gene expression of PACAP receptors in stellate ganglia and highlights some differential expression with housing temperature. Additionally, we present our dissection protocol, analysis of tyrosine hydroxylase gene expression as a molecular biomarker for catecholamine producing tissue and recommend three stable reference genes for the normalization of quantitative real time-polymerase chain reaction (qRT-PCR) data when working with this tissue. This study adds to information about neuropeptide receptor expression in peripheral ganglia of the sympathetic nervous system innervating adipose tissue and provides insight into PACAP's role in the regulation of energy metabolism.
Collapse
Affiliation(s)
- Parleen K Pandher
- Northern Medical Program, Division of Medical Sciences, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Yamna Rahim
- Northern Medical Program, Division of Medical Sciences, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Katherine P Timms
- Northern Medical Program, Division of Medical Sciences, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Ekaterina Filatov
- Northern Medical Program, Division of Medical Sciences, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Landon I Short
- Northern Medical Program, Division of Medical Sciences, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Sarah L Gray
- Northern Medical Program, Division of Medical Sciences, University of Northern British Columbia, Prince George, British Columbia, Canada
| |
Collapse
|
5
|
Bauer MB, Currie KPM. Serotonin and the serotonin transporter in the adrenal gland. VITAMINS AND HORMONES 2023; 124:39-78. [PMID: 38408804 PMCID: PMC11217909 DOI: 10.1016/bs.vh.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The adrenal glands are key components of the mammalian endocrine system, helping maintain physiological homeostasis and the coordinated response to stress. Each adrenal gland has two morphologically and functionally distinct regions, the outer cortex and inner medulla. The cortex is organized into three concentric zones which secrete steroid hormones, including aldosterone and cortisol. Neural crest-derived chromaffin cells in the medulla are innervated by preganglionic sympathetic neurons and secrete catecholamines (epinephrine, norepinephrine) and neuropeptides into the bloodstream, thereby functioning as the neuroendocrine arm of the sympathetic nervous system. In this article we review serotonin (5-HT) and the serotonin transporter (SERT; SLC6A4) in the adrenal gland. In the adrenal cortex, 5-HT, primarily sourced from resident mast cells, acts as a paracrine signal to stimulate aldosterone and cortisol secretion through 5-HT4/5-HT7 receptors. Medullary chromaffin cells contain a small amount of 5-HT due to SERT-mediated uptake and express 5-HT1A receptors which inhibit secretion. The atypical mechanism of the 5-HT1A receptors and interaction with SERT fine tune this autocrine pathway to control stress-evoked catecholamine secretion. Receptor-independent signaling by SERT/intracellular 5-HT modulates the amount and kinetics of transmitter release from single vesicle fusion events. SERT might also influence stress-evoked upregulation of tyrosine hydroxylase transcription. Transient signaling via 5-HT3 receptors during embryonic development can limit the number of chromaffin cells found in the mature adrenal gland. Together, this emerging evidence suggests that the adrenal medulla is a peripheral hub for serotonergic control of the sympathoadrenal stress response.
Collapse
Affiliation(s)
- Mary Beth Bauer
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, South Broadway, Camden, NJ, United States
| | - Kevin P M Currie
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, South Broadway, Camden, NJ, United States.
| |
Collapse
|
6
|
Guérineau NC. Adaptive remodeling of the stimulus-secretion coupling: Lessons from the 'stressed' adrenal medulla. VITAMINS AND HORMONES 2023; 124:221-295. [PMID: 38408800 DOI: 10.1016/bs.vh.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Stress is part of our daily lives and good health in the modern world is offset by unhealthy lifestyle factors, including the deleterious consequences of stress and associated pathologies. Repeated and/or prolonged stress may disrupt the body homeostasis and thus threatens our lives. Adaptive processes that allow the organism to adapt to new environmental conditions and maintain its homeostasis are therefore crucial. The adrenal glands are major endocrine/neuroendocrine organs involved in the adaptive response of the body facing stressful situations. Upon stress episodes and in response to activation of the sympathetic nervous system, the first adrenal cells to be activated are the neuroendocrine chromaffin cells located in the medullary tissue of the adrenal gland. By releasing catecholamines (mainly epinephrine and to a lesser extent norepinephrine), adrenal chromaffin cells actively contribute to the development of adaptive mechanisms, in particular targeting the cardiovascular system and leading to appropriate adjustments of blood pressure and heart rate, as well as energy metabolism. Specifically, this chapter covers the current knowledge as to how the adrenal medullary tissue remodels in response to stress episodes, with special attention paid to chromaffin cell stimulus-secretion coupling. Adrenal stimulus-secretion coupling encompasses various elements taking place at both the molecular/cellular and tissular levels. Here, I focus on stress-driven changes in catecholamine biosynthesis, chromaffin cell excitability, synaptic neurotransmission and gap junctional communication. These signaling pathways undergo a collective and finely-tuned remodeling, contributing to appropriate catecholamine secretion and maintenance of body homeostasis in response to stress.
Collapse
Affiliation(s)
- Nathalie C Guérineau
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France.
| |
Collapse
|
7
|
Morales A, Mohan R, Chen X, Coffman BL, Bendahmane M, Watch L, West JL, Bakshi S, Traynor JR, Giovannucci DR, Kammermeier PJ, Axelrod D, Currie KP, Smrcka AV, Anantharam A. PACAP and acetylcholine cause distinct Ca2+ signals and secretory responses in chromaffin cells. J Gen Physiol 2023; 155:e202213180. [PMID: 36538657 PMCID: PMC9770323 DOI: 10.1085/jgp.202213180] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/22/2022] [Accepted: 11/18/2022] [Indexed: 12/24/2022] Open
Abstract
The adrenomedullary chromaffin cell transduces chemical messages into outputs that regulate end organ function throughout the periphery. At least two important neurotransmitters are released by innervating preganglionic neurons to stimulate exocytosis in the chromaffin cell-acetylcholine (ACh) and pituitary adenylate cyclase activating polypeptide (PACAP). Although PACAP is widely acknowledged as an important secretagogue in this system, the pathway coupling PACAP stimulation to chromaffin cell secretion is poorly understood. The goal of this study is to address this knowledge gap. Here, it is shown that PACAP activates a Gαs-coupled pathway that must signal through phospholipase C ε (PLCε) to drive Ca2+ entry and exocytosis. PACAP stimulation causes a complex pattern of Ca2+ signals in chromaffin cells, leading to a sustained secretory response that is kinetically distinct from the form stimulated by ACh. Exocytosis caused by PACAP is associated with slower release of peptide cargo than exocytosis stimulated by ACh. Importantly, only the secretory response to PACAP, not ACh, is eliminated in cells lacking PLCε expression. The data show that ACh and PACAP, acting through distinct signaling pathways, enable nuanced and variable secretory outputs from chromaffin cells.
Collapse
Affiliation(s)
- Alina Morales
- Department of Neurosciences, University of Toledo, Toledo, OH, USA
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Ramkumar Mohan
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Xiaohuan Chen
- Department of Neurosciences, University of Toledo, Toledo, OH, USA
| | | | | | - Lester Watch
- Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, NC, USA
| | - Joshua L. West
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Shreeya Bakshi
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - John R. Traynor
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | | | - Paul J. Kammermeier
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, USA
| | - Daniel Axelrod
- Department of Physics and LSA Biophysics, University of Michigan, Ann Arbor, MI, USA
| | - Kevin P.M. Currie
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Alan V. Smrcka
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Arun Anantharam
- Department of Neurosciences, University of Toledo, Toledo, OH, USA
| |
Collapse
|
8
|
Eiden LE, Hernández VS, Jiang SZ, Zhang L. Neuropeptides and small-molecule amine transmitters: cooperative signaling in the nervous system. Cell Mol Life Sci 2022; 79:492. [PMID: 35997826 PMCID: PMC11072502 DOI: 10.1007/s00018-022-04451-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/15/2022] [Accepted: 06/23/2022] [Indexed: 12/17/2022]
Abstract
Neuropeptides are expressed in cell-specific patterns throughout mammalian brain. Neuropeptide gene expression has been useful for clustering neurons by phenotype, based on single-cell transcriptomics, and for defining specific functional circuits throughout the brain. How neuropeptides function as first messengers in inter-neuronal communication, in cooperation with classical small-molecule amine transmitters (SMATs) is a current topic of systems neurobiology. Questions include how neuropeptides and SMATs cooperate in neurotransmission at the molecular, cellular and circuit levels; whether neuropeptides and SMATs always co-exist in neurons; where neuropeptides and SMATs are stored in the neuron, released from the neuron and acting, and at which receptors, after release; and how neuropeptides affect 'classical' transmitter function, both directly upon co-release, and indirectly, via long-term regulation of gene transcription and neuronal plasticity. Here, we review an extensive body of data about the distribution of neuropeptides and their receptors, their actions after neuronal release, and their function based on pharmacological and genetic loss- and gain-of-function experiments, that addresses these questions, fundamental to understanding brain function, and development of neuropeptide-based, and potentially combinatorial peptide/SMAT-based, neurotherapeutics.
Collapse
Affiliation(s)
- Lee E Eiden
- Section On Molecular Neuroscience, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, 49 Convent Drive, Room 5A38, Bethesda, MD, 20892, USA.
| | - Vito S Hernández
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Sunny Z Jiang
- Section On Molecular Neuroscience, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, 49 Convent Drive, Room 5A38, Bethesda, MD, 20892, USA
| | - Limei Zhang
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico.
| |
Collapse
|
9
|
Puri S, Kenyon BM, Hamrah P. Immunomodulatory Role of Neuropeptides in the Cornea. Biomedicines 2022; 10:1985. [PMID: 36009532 PMCID: PMC9406019 DOI: 10.3390/biomedicines10081985] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 12/21/2022] Open
Abstract
The transparency of the cornea along with its dense sensory innervation and resident leukocyte populations make it an ideal tissue to study interactions between the nervous and immune systems. The cornea is the most densely innervated tissue of the body and possesses both immune and vascular privilege, in part due to its unique repertoire of resident immune cells. Corneal nerves produce various neuropeptides that have a wide range of functions on immune cells. As research in this area expands, further insights are made into the role of neuropeptides and their immunomodulatory functions in the healthy and diseased cornea. Much remains to be known regarding the details of neuropeptide signaling and how it contributes to pathophysiology, which is likely due to complex interactions among neuropeptides, receptor isoform-specific signaling events, and the inflammatory microenvironment in disease. However, progress in this area has led to an increase in studies that have begun modulating neuropeptide activity for the treatment of corneal diseases with promising results, necessitating the need for a comprehensive review of the literature. This review focuses on the role of neuropeptides in maintaining the homeostasis of the ocular surface, alterations in disease settings, and the possible therapeutic potential of targeting these systems.
Collapse
Affiliation(s)
- Sudan Puri
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
- Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Brendan M. Kenyon
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
- Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Pedram Hamrah
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
- Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
- Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
- Departments of Immunology and Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
- Cornea Service, Tufts New England Eye Center, Boston, MA 02111, USA
| |
Collapse
|
10
|
Bakalar D, Sweat S, Drossel G, Jiang SZ, Samal BS, Stroth N, Xu W, Zhang L, Zhang H, Eiden LE. Relationships between constitutive and acute gene regulation, and physiological and behavioral responses, mediated by the neuropeptide PACAP. Psychoneuroendocrinology 2022; 135:105447. [PMID: 34741979 PMCID: PMC8900973 DOI: 10.1016/j.psyneuen.2021.105447] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/10/2021] [Accepted: 10/08/2021] [Indexed: 01/03/2023]
Abstract
Since the advent of gene knock-out technology in 1987, insight into the role(s) of neuropeptides in centrally- and peripherally-mediated physiological regulation has been gleaned by examining altered physiological functioning in mammals, predominantly mice, after genetic editing to produce animals deficient in neuropeptides or their cognate G-protein coupled receptors (GPCRs). These results have complemented experiments involving infusion of neuropeptide agonists or antagonists systemically or into specific brain regions. Effects of gene loss are often interpreted as indicating that the peptide and its receptor(s) are required for the physiological or behavioral responses elicited in wild-type mice at the time of experimental examination. These interpretations presume that peptide/peptide receptor gene deletion affects only the expression of the peptide/receptor itself, and therefore impacts physiological events only at the time at which the experiment is conducted. A way to support 'real-time' interpretations of neuropeptide gene knock-out is to demonstrate that the wild-type transcriptome, except for the deliberately deleted gene(s), in tissues of interest, is preserved in the knock-out mouse. Here, we show that there is a cohort of genes (constitutively PACAP-Regulated Genes, or cPRGs) whose basal expression is affected by constitutive knock-out of the Adcyap1 gene in C57Bl6/N mice, and additional genes whose expression in response to physiological challenge, in adults, is altered or impaired in the absence of PACAP expression (acutely PACAP-Regulated Genes, or aPRGs). Distinguishing constitutive and acute transcriptomic effects of neuropeptide deficiency on physiological function and behavior in mice reveals alternative mechanisms of action, and changing functions of neuropeptides, throughout the lifespan.
Collapse
Affiliation(s)
- Dana Bakalar
- Section on Molecular Neuroscience, National Institute of Mental Heath - Intramural Research Program, Bethesda, MD. NIH, USA
| | - Sean Sweat
- Section on Molecular Neuroscience, National Institute of Mental Heath - Intramural Research Program, Bethesda, MD. NIH, USA
| | - Gunner Drossel
- Section on Molecular Neuroscience, National Institute of Mental Heath - Intramural Research Program, Bethesda, MD. NIH, USA
| | - Sunny Z. Jiang
- Section on Molecular Neuroscience, National Institute of Mental Heath - Intramural Research Program, Bethesda, MD. NIH, USA
| | - Babru S. Samal
- Section on Molecular Neuroscience, National Institute of Mental Heath - Intramural Research Program, Bethesda, MD. NIH, USA
| | - Nikolas Stroth
- Section on Molecular Neuroscience, National Institute of Mental Heath - Intramural Research Program, Bethesda, MD. NIH, USA
| | - Wenqin Xu
- Section on Molecular Neuroscience, National Institute of Mental Heath - Intramural Research Program, Bethesda, MD. NIH, USA
| | - Limei Zhang
- Section on Molecular Neuroscience, National Institute of Mental Heath - Intramural Research Program, Bethesda, MD. NIH, USA,Department of Physiology, Autonomous National University of Mexico (UNAM) Medical School, Mexico City, Mexico
| | - Haiying Zhang
- Section on Molecular Neuroscience, National Institute of Mental Heath - Intramural Research Program, Bethesda, MD. NIH, USA
| | - Lee E. Eiden
- Section on Molecular Neuroscience, National Institute of Mental Heath - Intramural Research Program, Bethesda, MD. NIH, USA,Correspondence Lee E. Eiden, Ph.D., Section on Molecular Neuroscience, National Institute of Mental Heath – Intramural Research Program, Bethesda, MD. NIH, USA, Phone: +13014964110,
| |
Collapse
|
11
|
Lopez Ruiz JR, Ernst SA, Holz RW, Stuenkel EL. Basal and Stress-Induced Network Activity in the Adrenal Medulla In Vivo. Front Endocrinol (Lausanne) 2022; 13:875865. [PMID: 35795145 PMCID: PMC9250985 DOI: 10.3389/fendo.2022.875865] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/12/2022] [Indexed: 11/23/2022] Open
Abstract
The adrenal medulla plays a critical role in mammalian homeostasis and the stress response. It is populated by clustered chromaffin cells that secrete epinephrine or norepinephrine along with peptides into the bloodstream affecting distant target organs. Despite been heavily studied, the central control of adrenal medulla and in-situ spatiotemporal responsiveness remains poorly understood. For this work, we continuously monitored the electrical activity of individual adrenomedullary chromaffin cells in the living anesthetized rat using multielectrode arrays. We measured the chromaffin cell activity under basal and physiological stress conditions and characterized the functional micro-architecture of the adrenal medulla. Under basal conditions, chromaffin cells fired action potentials with frequencies between ~0.2 and 4 Hz. Activity was almost completely driven by sympathetic inputs coming through the splanchnic nerve. Chromaffin cells were organized into independent local networks in which cells fired in a specific order, with latencies from hundreds of microseconds to a few milliseconds. Electrical stimulation of the splanchnic nerve evoked almost exactly the same spatiotemporal firing patterns that occurred spontaneously. Hypoglycemic stress, induced by insulin administration resulted in increased activity of a subset of the chromaffin cells. In contrast, respiratory arrest induced by lethal anesthesia resulted in an increase in the activity of virtually all chromaffin cells before cessation of all activity. These results suggest a stressor-specific activation of adrenomedullary chromaffin cell networks and revealed a surprisingly complex electrical organization that likely reflects the dynamic nature of the adrenal medulla's neuroendocrine output during basal conditions and during different types of physiological stress.
Collapse
Affiliation(s)
- Jose R Lopez Ruiz
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Stephen A Ernst
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Ronald W Holz
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Edward L Stuenkel
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, United States
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
12
|
Zuccaro E, Piol D, Basso M, Pennuto M. Motor Neuron Diseases and Neuroprotective Peptides: A Closer Look to Neurons. Front Aging Neurosci 2021; 13:723871. [PMID: 34603008 PMCID: PMC8484953 DOI: 10.3389/fnagi.2021.723871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/26/2021] [Indexed: 12/02/2022] Open
Abstract
Motor neurons (MNs) are specialized neurons responsible for muscle contraction that specifically degenerate in motor neuron diseases (MNDs), such as amyotrophic lateral sclerosis (ALS), spinal and bulbar muscular atrophy (SBMA), and spinal muscular atrophy (SMA). Distinct classes of MNs degenerate at different rates in disease, with a particular class named fast-fatigable MNs (FF-MNs) degenerating first. The etiology behind the selective vulnerability of FF-MNs is still largely under investigation. Among the different strategies to target MNs, the administration of protective neuropeptides is one of the potential therapeutic interventions. Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide with beneficial effects in many neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and more recently SBMA. Another neuropeptide that has a neurotrophic effect on MNs is insulin-like growth factor 1 (IGF-1), also known as somatomedin C. These two peptides are implicated in the activation of neuroprotective pathways exploitable in the amelioration of pathological outcomes related to MNDs.
Collapse
Affiliation(s)
- Emanuela Zuccaro
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Veneto Institute of Molecular Medicine, Padua, Italy
- Padova Neuroscience Center, Padua, Italy
| | - Diana Piol
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Manuela Basso
- Department of Cellular, Computational and Integrative Biology – CIBIO, University of Trento, Trento, Italy
| | - Maria Pennuto
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Veneto Institute of Molecular Medicine, Padua, Italy
- Padova Neuroscience Center, Padua, Italy
| |
Collapse
|
13
|
Boucher MN, May V, Braas KM, Hammack SE. PACAP orchestration of stress-related responses in neural circuits. Peptides 2021; 142:170554. [PMID: 33865930 PMCID: PMC8592028 DOI: 10.1016/j.peptides.2021.170554] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/31/2021] [Accepted: 04/09/2021] [Indexed: 02/06/2023]
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is a pleiotropic polypeptide that can activate G protein-coupled PAC1, VPAC1, and VPAC2 receptors, and has been implicated in stress signaling. PACAP and its receptors are widely distributed throughout the nervous system and other tissues and can have a multitude of effects. Human and animal studies suggest that PACAP plays a role responding to a variety of threats and stressors. Here we review the roles of PACAP in several regions of the central nervous system (CNS) as they relate to several behavioral functions. For example, in the bed nucleus of the stria terminalis (BNST), PACAP is upregulated following chronic stress and may drive anxiety-like behavior. PACAP can also influence both the consolidation and expression of fear memories, as demonstrated by studies in several fear-related areas, such as the amygdala, hippocampus, and prefrontal cortex. PACAP can also mediate the emotional component of pain, as PACAP in the central nucleus of the amygdala (CeA) is able to decrease pain sensitivity thresholds. Outside of the central nervous system, PACAP may drive glucocorticoid release via enhanced hypothalamic-pituitary-adrenal axis activity and may participate in infection-induced stress responses. Together, this suggests that PACAP exerts effects on many stress-related systems and may be an important driver of emotional behavior.
Collapse
Affiliation(s)
- Melissa N Boucher
- Department of Psychological Science, University of Vermont, 2 Colchester Avenue, Burlington, VT, 05405, United States
| | - Victor May
- Department of Neurological Sciences, University of Vermont Larner College of Medicine, 149 Beaumont Avenue, Burlington, VT, 05405, United States.
| | - Karen M Braas
- Department of Neurological Sciences, University of Vermont Larner College of Medicine, 149 Beaumont Avenue, Burlington, VT, 05405, United States
| | - Sayamwong E Hammack
- Department of Psychological Science, University of Vermont, 2 Colchester Avenue, Burlington, VT, 05405, United States
| |
Collapse
|
14
|
May V, Johnson GC, Hammack SE, Braas KM, Parsons RL. PAC1 Receptor Internalization and Endosomal MEK/ERK Activation Is Essential for PACAP-Mediated Neuronal Excitability. J Mol Neurosci 2021; 71:1536-1542. [PMID: 33675454 PMCID: PMC8450765 DOI: 10.1007/s12031-021-01821-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/22/2021] [Indexed: 12/15/2022]
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP, Adcyap1) activation of PAC1 receptors (Adcyap1r1) can significantly increase the excitability of diverse neurons through differential mechanisms. For guinea pig cardiac neurons, the modulation of excitability can be mediated in part by PAC1 receptor plasma membrane G protein-dependent activation of adenylyl cyclase and downstream signaling cascades. By contrast, PAC1 receptor-mediated excitability of hippocampal dentate gyrus granule cells appears independent of membrane-delimited AC/cAMP/PKA and PLC/PKC signaling. For both neuronal types, there is mechanistic convergence demonstrating that endosomal PAC1 receptor signaling has prominent roles. In these models, neuronal exposure to Pitstop2 to inhibit β-arrestin/clathrin-mediated PAC1 receptor internalization eliminates PACAP modulation of excitability. β-arrestin is a scaffold for a number of effectors especially MEK/ERK and notably, paradigms that inhibit PAC1 receptor endosome formation and ERK signaling also blunt the PACAP-induced increase in excitability. Detailed PAC1 receptor internalization and endosomal ERK signaling mechanisms have been confirmed in HEK PAC1R-EGFP cells and shown to be long lasting which appear to recapitulate the sustained electrophysiological responses. Thus, PAC1 receptor internalization/endosomal recruitment efficiently and efficaciously activates MEK/ERK signaling and appears to represent a singular and critical common denominator in regulating neuronal excitability by PACAP.
Collapse
Affiliation(s)
- Victor May
- Departmental of Neurological Sciences, University of Vermont College of Medicine, Burlington, VT, USA.
| | - Gregory C Johnson
- Department of Psychological Science, University of Vermont, Burlington, VT, USA
| | - Sayamwong E Hammack
- Department of Psychological Science, University of Vermont, Burlington, VT, USA
| | - Karen M Braas
- Departmental of Neurological Sciences, University of Vermont College of Medicine, Burlington, VT, USA
| | - Rodney L Parsons
- Departmental of Neurological Sciences, University of Vermont College of Medicine, Burlington, VT, USA
| |
Collapse
|
15
|
Russell AL, Miller L, Yi H, Keil R, Handa RJ, Wu TJ. Knockout of the circadian gene, Per2, disrupts corticosterone secretion and results in depressive-like behaviors and deficits in startle responses. BMC Neurosci 2021; 22:5. [PMID: 33509094 PMCID: PMC7841886 DOI: 10.1186/s12868-020-00607-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 12/30/2020] [Indexed: 12/13/2022] Open
Abstract
Background The Period Circadian Regulator 2 (Per2) gene is important for the modulation of circadian rhythms that influence biological processes. Circadian control of the hypothalamus-pituitary-adrenal (HPA) axis is critical for regulation of hormones involved in the stress response. Dysregulation of the HPA axis is associated with neuropsychiatric disorders. Therefore, it is important to understand how disruption of the circadian rhythm alters the HPA axis. One way to address this question is to delete a gene involved in regulating a central circadian gene such as Per2 in an animal model and to determine how this deletion may affect the HPA axis and behaviors that are altered when the HPA axis is dysregulated. To study this, corticosterone (CORT) levels were measured through the transition from light (inactive phase) to dark (active phase). Additionally, CORT levels as well as pituitary and adrenal mRNA expression were measured following a mild restraint stress. Mice were tested for depressive-like behaviors (forced swim test (FST)), acoustic startle response (ASR), and pre-pulse inhibition (PPI). Results The present results showed that Per2 knockout impacted CORT levels, mRNA expression, depressive-like behaviors, ASR and PPI. Unlike wild-type (WT) mice, Per2 knockout (Per2) mice showed no diurnal rise in CORT levels at the onset of the dark cycle. Per2−/− mice had enhanced CORT levels and adrenal melanocortin receptor 2 (Mc2R) mRNA expression following restraint. There were no changes in expression of any other pituitary or adrenal gene. In the FST, Per2−/− mice spent more time floating (less time struggling) than WT mice, suggesting increased depressive-like behaviors. Per2−/− mice had deficits in ASR and PPI startle responses compared to WT mice. Conclusions In summary, these findings showed that disruption of the circadian system via Per2 gene deletion dysregulated the HPA stress axis and is subsequently correlated with increased depressive-like behaviors and deficits in startle response.
Collapse
Affiliation(s)
- Ashley L Russell
- Program in Neuroscience, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Lauren Miller
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Hannah Yi
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Rita Keil
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Robert J Handa
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - T John Wu
- Program in Neuroscience, Uniformed Services University of the Health Sciences, Bethesda, MD, USA. .,Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA. .,Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
| |
Collapse
|
16
|
Barloese M, Chitgar M, Hannibal J, Møller S. Pituitary adenylate cyclase-activating peptide: Potential roles in the pathophysiology and complications of cirrhosis. Liver Int 2020; 40:2578-2589. [PMID: 32654367 DOI: 10.1111/liv.14602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 06/29/2020] [Accepted: 07/05/2020] [Indexed: 12/20/2022]
Abstract
Pituitary adenylate cyclase-activating peptide (PACAP) is a ubiquitous neuropeptide with diverse functions throughout the organism. Most abundantly investigated for its role in several neurological disorders as well as in circadian rhythms, other fields of medicine, including cardiology, have recently shown interest in the role of PACAP and its potential as a biomarker. Timely diagnosis and treatment of cirrhosis and its complications is a considerable challenge for health services world-wide and development of new areas of research is warranted. Direct and indirect evidence exists of PACAP involvement in the cascade of pathological events and processes ultimately leading to cirrhosis and its complications, but its exact role remains to be determined. Studies have documented PACAP involvement in immune function, metabolism, local vasoconstriction and dilatation and systemic vascular decompensation and there is ongoing research of a possible role in liver reperfusion injury. Considering these reports, PACAP could theoretically exude influence on the disease course of cirrhosis through the hypothalamus-pituitary-adrenal axis, chronic inflammation, fibrogenesis, vasodilation and reduced vascular resistance. The paucity of literature on the specific topic of PACAP and cirrhosis reflects complex mechanisms and difficulty in accurate measurements and sample taking. This does not detract from the need to further characterize and elucidate the role PACAP plays in the underdiagnosed and undertreated condition of cirrhosis.
Collapse
Affiliation(s)
- Mads Barloese
- Department of Clinical Physiology and Nuclear Medicine, Center for Functional and Diagnostic Imaging and Research, Faculty of Health Sciences Hvidovre Hospital, University of Copenhagen, Hvidovre, Denmark
| | - Mohammadnavid Chitgar
- Department of Clinical Physiology and Nuclear Medicine, Center for Functional and Diagnostic Imaging and Research, Faculty of Health Sciences Hvidovre Hospital, University of Copenhagen, Hvidovre, Denmark
| | - Jens Hannibal
- Department of Clinical Biochemistry, Bispebjerg Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Søren Møller
- Department of Clinical Physiology and Nuclear Medicine, Center for Functional and Diagnostic Imaging and Research, Faculty of Health Sciences Hvidovre Hospital, University of Copenhagen, Hvidovre, Denmark
| |
Collapse
|
17
|
Inoue M, Harada K, Matsuoka H. Mechanisms for pituitary adenylate cyclase-activating polypeptide-induced increase in excitability in guinea-pig and mouse adrenal medullary cells. Eur J Pharmacol 2020; 872:172956. [DOI: 10.1016/j.ejphar.2020.172956] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/18/2020] [Accepted: 01/24/2020] [Indexed: 10/25/2022]
|
18
|
Johnson GC, Parsons RL, May V, Hammack SE. Pituitary adenylate cyclase-activating polypeptide-induced PAC1 receptor internalization and recruitment of MEK/ERK signaling enhance excitability of dentate gyrus granule cells. Am J Physiol Cell Physiol 2020; 318:C870-C878. [PMID: 32186931 DOI: 10.1152/ajpcell.00065.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP; ADCYAP1) is a pleiotropic neuropeptide widely distributed in both the peripheral and central nervous systems. PACAP and its specific cognate PAC1 receptor (ADCYAP1R1) play critical roles in the homeostatic maintenance of multiple physiological and behavioral systems. Notably, maladaptations in the PACAPergic system have been associated with several psychopathologies related to fear and anxiety. PAC1 receptor transcripts are highly expressed in granule cells of the dentate gyrus (DG). Here, we examined the direct effects of PACAP on DG granule cells in brain slices using whole cell patch recordings in current clamp mode. PACAP significantly increased the intrinsic excitability of DG granule cells via PAC1 receptor activation. This increased excitability was not mediated by adenylyl cyclase/cAMP or phospholipase C/PKC activation, but instead via activation of an extracellular signal-regulated kinase (ERK) signaling pathway initiated through PAC1 receptor endocytosis/endosomal signaling. PACAP failed to increase excitability in DG granule cells pretreated with the persistent sodium current blocker riluzole, suggesting that the observed PACAP effects required this component of the inward sodium current.
Collapse
Affiliation(s)
- Gregory C Johnson
- Department of Psychological Science, University of Vermont, Burlington, Vermont
| | - Rodney L Parsons
- Department of Neurological Sciences, University of Vermont, Burlington, Vermont
| | - Victor May
- Department of Neurological Sciences, University of Vermont, Burlington, Vermont
| | - Sayamwong E Hammack
- Department of Psychological Science, University of Vermont, Burlington, Vermont
| |
Collapse
|
19
|
Hone AJ, Rueda-Ruzafa L, Gordon TJ, Gajewiak J, Christensen S, Dyhring T, Albillos A, McIntosh JM. Expression of α3β2β4 nicotinic acetylcholine receptors by rat adrenal chromaffin cells determined using novel conopeptide antagonists. J Neurochem 2020; 154:158-176. [PMID: 31967330 DOI: 10.1111/jnc.14966] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/17/2019] [Accepted: 01/13/2020] [Indexed: 01/07/2023]
Abstract
Adrenal chromaffin cells release neurotransmitters in response to stress and may be involved in conditions such as post-traumatic stress and anxiety disorders. Neurotransmitter release is triggered, in part, by activation of nicotinic acetylcholine receptors (nAChRs). However, despite decades of use as a model system for studying exocytosis, the nAChR subtypes involved have not been pharmacologically identified. Quantitative real-time PCR of rat adrenal medulla revealed an abundance of mRNAs for α3, α7, β2, and β4 subunits. Whole-cell patch-clamp electrophysiology of chromaffin cells and subtype-selective ligands were used to probe for nAChRs derived from the mRNAs found in adrenal medulla. A novel conopeptide antagonist, PeIA-5469, was created that is highly selective for α3β2 over other nAChR subtypes heterologously expressed in Xenopus laevis oocytes. Experiments using PeIA-5469 and the α3β4-selective α-conotoxin TxID revealed that rat adrenal medulla contain two populations of chromaffin cells that express either α3β4 nAChRs alone or α3β4 together with the α3β2β4 subtype. Conclusions were derived from observations that acetylcholine-gated currents in some cells were sensitive to inhibition by PeIA-5469 and TxID, while in other cells, currents were sensitive only to TxID. Expression of functional α7 nAChRs was determined using three α7-selective ligands: the agonist PNU282987, the positive allosteric modulator PNU120596, and the antagonist α-conotoxin [V11L,V16D]ArIB. The results of these studies identify for the first time the expression of α3β2β4 nAChRs as well as functional α7 nAChRs by rat adrenal chromaffin cells.
Collapse
Affiliation(s)
- Arik J Hone
- George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah, USA.,School of Biological Sciences and University of Utah, Salt Lake City, Utah, USA.,Departament of Pharmacology and Therapeutics, Universidad Autónoma de Madrid, Madrid, Spain
| | - Lola Rueda-Ruzafa
- Departament of Pharmacology and Therapeutics, Universidad Autónoma de Madrid, Madrid, Spain.,Biomedical Research Center (CINBIO), University of Vigo, Vigo, Spain
| | - Thomas J Gordon
- School of Biological Sciences and University of Utah, Salt Lake City, Utah, USA
| | - Joanna Gajewiak
- School of Biological Sciences and University of Utah, Salt Lake City, Utah, USA
| | - Sean Christensen
- School of Biological Sciences and University of Utah, Salt Lake City, Utah, USA
| | | | - Almudena Albillos
- Departament of Pharmacology and Therapeutics, Universidad Autónoma de Madrid, Madrid, Spain
| | - J Michael McIntosh
- George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah, USA.,School of Biological Sciences and University of Utah, Salt Lake City, Utah, USA.,Department of Psychiatry, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
20
|
Rizzi A, Saccia M, Benagiano V. Is the Cerebellum Involved in the Nervous Control of the Immune System Function? Endocr Metab Immune Disord Drug Targets 2019; 20:546-557. [PMID: 31729296 DOI: 10.2174/1871530319666191115144105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/30/2019] [Accepted: 10/10/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND According to the views of psychoneuroendocrinoimmunology, many interactions exist between nervous, endocrine and immune system the purpose of which is to achieve adaptive measures restoring an internal equilibrium (homeostasis) following stress conditions. The center where these interactions converge is the hypothalamus. This is a center of the autonomic nervous system that controls the visceral systems, including the immune system, through both the nervous and neuroendocrine mechanisms. The nervous mechanisms are based on nervous circuits that bidirectionally connect hypothalamic neurons and neurons of the sympathetic and parasympathetic system; the neuroendocrine mechanisms are based on the release by neurosecretory hypothalamic neurons of hormones that target the endocrine cells and on the feedback effects of the hormones secreted by these endocrine cells on the same hypothalamic neurons. Moreover, the hypothalamus is an important subcortical center of the limbic system that controls through nervous and neuroendocrine mechanisms the areas of the cerebral cortex where the psychic functions controlling mood, emotions, anxiety and instinctive behaviors take place. Accordingly, various studies conducted in the last decades have indicated that hypothalamic diseases may be associated with immune and/or psychic disorders. OBJECTIVE Various researches have reported that the hypothalamus is controlled by the cerebellum through a feedback nervous circuit, namely the hypothalamocerebellar circuit, which bi-directionally connects regions of the hypothalamus, including the immunoregulatory ones, and related regions of the cerebellum. An objective of the present review was to analyze the anatomical bases of the nervous and neuroendocrine mechanisms for the control of the immune system and, in particular, of the interaction between hypothalamus and cerebellum to achieve the immunoregulatory function. CONCLUSION Since the hypothalamus represents the link through which the immune functions may influence the psychic functions and vice versa, the cerebellum, controlling several regions of the hypothalamus, could be considered as a primary player in the regulation of the multiple functional interactions postulated by psychoneuroendocrinoimmunology.
Collapse
Affiliation(s)
- Anna Rizzi
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari, Policlinico, Piazza Giulio Cesare, 70124 Bari, Italy
| | - Matteo Saccia
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari, Policlinico, Piazza Giulio Cesare, 70124 Bari, Italy
| | - Vincenzo Benagiano
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari, Policlinico, Piazza Giulio Cesare, 70124 Bari, Italy
| |
Collapse
|
21
|
Carbone E, Borges R, Eiden LE, García AG, Hernández‐Cruz A. Chromaffin Cells of the Adrenal Medulla: Physiology, Pharmacology, and Disease. Compr Physiol 2019; 9:1443-1502. [DOI: 10.1002/cphy.c190003] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
22
|
Varodayan FP, Minnig MA, Steinman MQ, Oleata CS, Riley MW, Sabino V, Roberto M. PACAP regulation of central amygdala GABAergic synapses is altered by restraint stress. Neuropharmacology 2019; 168:107752. [PMID: 31476352 DOI: 10.1016/j.neuropharm.2019.107752] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 08/27/2019] [Accepted: 08/29/2019] [Indexed: 12/25/2022]
Abstract
The pituitary adenylate cyclase-activating polypeptide (PACAP) system plays a central role in the brain's emotional response to psychological stress by activating cellular processes and circuits associated with threat exposure. The neuropeptide PACAP and its main receptor PAC1 are expressed in the rodent central amygdala (CeA), a brain region critical in negative emotional processing, and CeA PACAPergic signaling drives anxiogenic and stress coping behaviors. Despite this behavioral evidence, PACAP's effects on neuronal activity within the medial subdivision of the CeA (CeM, the major output nucleus for the entire amygdala complex) during basal conditions and after psychological stress remain unknown. Therefore, in the present study, male Wistar rats were subjected to either restraint stress or control conditions, and PACAPergic regulation of CeM cellular function was assessed using immunohistochemistry and whole-cell patch-clamp electrophysiology. Our results demonstrate that PACAP-38 potentiates GABA release in the CeM of naïve rats, via its actions at presynaptic PAC1. Basal PAC1 activity also enhances GABA release in an action potential-dependent manner. Notably, PACAP-38's facilitation of CeM GABA release was attenuated after a single restraint stress session, but after repeated sessions returned to the level observed in naïve animals. A single restraint session also significantly decreased PAC1 levels in the CeM, with repeated restraint sessions producing a slight recovery. Collectively our data reveal that PACAP/PAC1 signaling enhances inhibitory control of the CeM and that psychological stress can modulate this influence to potentially disinhibit downstream effector regions that mediate anxiety and stress-related behaviors. This article is part of the special issue on 'Neuropeptides'.
Collapse
Affiliation(s)
- F P Varodayan
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| | - M A Minnig
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University, School of Medicine, Boston, MA, 02118, USA
| | - M Q Steinman
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - C S Oleata
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - M W Riley
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University, School of Medicine, Boston, MA, 02118, USA
| | - V Sabino
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University, School of Medicine, Boston, MA, 02118, USA
| | - M Roberto
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| |
Collapse
|
23
|
Farnham MMJ, Tallapragada VJ, O'Connor ET, Nedoboy PE, Dempsey B, Mohammed S, Fong AY, Lung MSY, Derakhshan F, Wilson RJA, Pilowsky PM. PACAP-PAC1 Receptor Activation Is Necessary for the Sympathetic Response to Acute Intermittent Hypoxia. Front Neurosci 2019; 13:881. [PMID: 31496933 PMCID: PMC6712064 DOI: 10.3389/fnins.2019.00881] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/05/2019] [Indexed: 01/29/2023] Open
Abstract
Repetitive hypoxia is a key feature of obstructive sleep apnoea (OSA), a condition characterized by intermittent airways obstruction. Patients with OSA present with persistent increases in sympathetic activity and commonly develop hypertension. The objectives of this study were to determine if the persistent increases in sympathetic nerve activity, known to be induced by acute intermittent hypoxia (AIH), are mediated through activation of the pituitary adenylate cyclase activating polypeptide (PACAP) signaling system. Here, we show that the excitatory neuropeptide PACAP, acting in the spinal cord, is important for generating the sympathetic response seen following AIH. Using PACAP receptor knockout mice, and pharmacological agents in Sprague Dawley rats, we measured blood pressure, heart rate, pH, PaCO2, and splanchnic sympathetic nerve activity, under anaesthesia, to demonstrate that the sympathetic response to AIH is mediated via the PAC1 receptor, in a cAMP-dependent manner. We also report that both intermittent microinjection of glutamate into the rostroventrolateral medulla (RVLM) and intermittent infusion of a sub-threshold dose of PACAP into the subarachnoid space can mimic the sympathetic response to AIH. All the sympathetic responses are independent of blood pressure, pH or PaCO2 changes. Our results show that in AIH, PACAP signaling in the spinal cord helps drive persistent increases in sympathetic nerve activity. This mechanism may be a precursor to the development of hypertension in conditions of chronic intermittent hypoxia, such as OSA.
Collapse
Affiliation(s)
- Melissa M J Farnham
- The Heart Research Institute, Newtown, NSW, Australia.,Faculty of Medicine, Macquarie University, North Ryde, NSW, Australia.,Department of Physiology, Faculty of Medicine, University of Sydney, Sydney, NSW, Australia
| | | | - Edward T O'Connor
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Polina E Nedoboy
- The Heart Research Institute, Newtown, NSW, Australia.,Department of Physiology, Faculty of Medicine, University of Sydney, Sydney, NSW, Australia
| | - Bowen Dempsey
- Faculty of Medicine, Macquarie University, North Ryde, NSW, Australia
| | - Suja Mohammed
- The Heart Research Institute, Newtown, NSW, Australia.,Faculty of Medicine, Macquarie University, North Ryde, NSW, Australia.,Department of Physiology, Faculty of Medicine, University of Sydney, Sydney, NSW, Australia
| | - Angelina Y Fong
- Faculty of Medicine, Macquarie University, North Ryde, NSW, Australia.,Department of Physiology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Mandy S Y Lung
- Faculty of Medicine, Macquarie University, North Ryde, NSW, Australia
| | - Fatemeh Derakhshan
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Richard J A Wilson
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Paul M Pilowsky
- The Heart Research Institute, Newtown, NSW, Australia.,Department of Physiology, Faculty of Medicine, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
24
|
Guérineau NC. Cholinergic and peptidergic neurotransmission in the adrenal medulla: A dynamic control of stimulus‐secretion coupling. IUBMB Life 2019; 72:553-567. [DOI: 10.1002/iub.2117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/18/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Nathalie C. Guérineau
- IGFUniv. Montpellier, CNRS, INSERM Montpellier France
- LabEx “Ion Channel Science and Therapeutics” Montpellier France
| |
Collapse
|
25
|
Parsons RL, May V. PACAP-Induced PAC1 Receptor Internalization and Recruitment of Endosomal Signaling Regulate Cardiac Neuron Excitability. J Mol Neurosci 2019; 68:340-347. [PMID: 30054797 PMCID: PMC6348136 DOI: 10.1007/s12031-018-1127-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 07/18/2018] [Indexed: 11/27/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP, Adcyap1) activation of PAC1 receptors (Adcyap1r1) significantly increases excitability of guinea pig cardiac neurons. This modulation of excitability is mediated in part by plasma membrane G protein-dependent activation of adenylyl cyclase and downstream signaling cascades, as well as by endosomal signaling mechanisms. PACAP/PAC1 receptor-mediated activation of plasma membrane adenylyl cyclase (AC) and the resulting increase in cellular cAMP enhances a hyperpolarization-induced nonselective cationic current Ih, which contributes to the PACAP-induced increase in cardiac neuron excitability. Further, PACAP-mediated AC/cAMP/PKA downstream signaling also appears to enhance cardiac neuron IT to facilitate the excitatory responses. PACAP activation of PAC1 receptors rapidly stimulates receptor internalization, and reducing ambient temperature or treatments with the clathrin inhibitor Pitstop2 or the dynamin I/II inhibitor dynasore to block endocytic events can suppress PACAP-enhanced neuronal excitability. Thus, endocytosis inhibitors essentially eliminate PACAP-enhanced excitability suggesting that endosomal platforms represent a primary signaling mechanism. Endosomal signaling is associated canonically with ERK activation and in accord, PACAP-enhanced cardiac neuron excitability is reduced by MEK inhibitor pretreatments. PACAP activation of MEK/ERK signaling can enhance currents through voltage-dependent Nav1.7 channels. Hence, PACAP-induced PAC1 receptor internalization/endosomal signaling, recruitment of MEK/ERK signaling, and modulation of Nav1.7 are implicated as key mechanisms contributing to the PACAP-enhanced neuronal excitability. PACAP/PAC1 receptor-mediated endosomal ERK signaling in central circuits can play key roles in development of chronic pain and anxiety-related responses; thus, PAC1 endosomal signaling likely participates in a variety of homeostatic responses within neuronal circuits in the CNS.
Collapse
Affiliation(s)
- Rodney L Parsons
- Departmental of Neurological Sciences, Robert Larner College of Medicine, University of Vermont, Burlington, VT, USA.
| | - Victor May
- Departmental of Neurological Sciences, Robert Larner College of Medicine, University of Vermont, Burlington, VT, USA
| |
Collapse
|
26
|
Miles OW, Maren S. Role of the Bed Nucleus of the Stria Terminalis in PTSD: Insights From Preclinical Models. Front Behav Neurosci 2019; 13:68. [PMID: 31024271 PMCID: PMC6461014 DOI: 10.3389/fnbeh.2019.00068] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/18/2019] [Indexed: 12/18/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) afflicts approximately 8% of the United States population and represents a significant public health burden, but the underlying neural mechanisms of this and other anxiety- and stressor-related disorders are largely unknown. Within the last few decades, several preclinical models of PSTD have been developed to help elucidate the mechanisms underlying dysregulated fear states. One brain area that has emerged as a critical mediator of stress-related behavioral processing in both clinical and laboratory settings is the bed nucleus of the stria terminalis (BNST). The BNST is interconnected with essential emotional processing regions, including prefrontal cortex, hippocampus and amygdala. It is activated by stressor exposure and undergoes neurochemical and morphological alterations as a result of stressor exposure. Stress-related neuro-peptides including corticotropin-releasing factor (CRF) and pituitary adenylate cyclase activating peptide (PACAP) are also abundant in the BNST, further implicating an involvement of BNST in stress responses. Behaviorally, the BNST is critical for acquisition and expression of fear and is well positioned to regulate fear relapse after periods of extinction. Here, we consider the role of the BNST in stress and memory processes in the context of preclinical models of PTSD.
Collapse
Affiliation(s)
- Olivia W. Miles
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, College Station, TX, United States
| | | |
Collapse
|
27
|
Emerging evidence for the role of pituitary adenylate cyclase-activating peptide in neuropsychiatric disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 167:143-157. [DOI: 10.1016/bs.pmbts.2019.06.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
28
|
Two ancient neuropeptides, PACAP and AVP, modulate motivated behavior at synapses in the extrahypothalamic brain: a study in contrast. Cell Tissue Res 2018; 375:103-122. [DOI: 10.1007/s00441-018-2958-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 11/05/2018] [Indexed: 01/24/2023]
|
29
|
Sahu BS, Mahata S, Bandyopadhyay K, Mahata M, Avolio E, Pasqua T, Sahu C, Bandyopadhyay GK, Bartolomucci A, Webster NJG, Van Den Bogaart G, Fischer-Colbrie R, Corti A, Eiden LE, Mahata SK. Catestatin regulates vesicular quanta through modulation of cholinergic and peptidergic (PACAPergic) stimulation in PC12 cells. Cell Tissue Res 2018; 376:51-70. [PMID: 30467710 DOI: 10.1007/s00441-018-2956-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/30/2018] [Indexed: 12/23/2022]
Abstract
We have previously shown that the chromogranin A (CgA)-derived peptide catestatin (CST: hCgA352-372) inhibits nicotine-induced secretion of catecholamines from the adrenal medulla and chromaffin cells. In the present study, we seek to determine whether CST regulates dense core (DC) vesicle (DCV) quanta (catecholamine and chromogranin/secretogranin proteins) during acute (0.5-h treatment) or chronic (24-h treatment) cholinergic (nicotine) or peptidergic (PACAP, pituitary adenylyl cyclase activating polypeptide) stimulation of PC12 cells. In acute experiments, we found that both nicotine (60 μM) and PACAP (0.1 μM) decreased intracellular norepinephrine (NE) content and increased 3H-NE secretion, with both effects markedly inhibited by co-treatment with CST (2 μM). In chronic experiments, we found that nicotine and PACAP both reduced DCV and DC diameters and that this effect was likewise prevented by CST. Nicotine or CST alone increased expression of CgA protein and together elicited an additional increase in CgA protein, implying that nicotine and CST utilize separate signaling pathways to activate CgA expression. In contrast, PACAP increased expression of CgB and SgII proteins, with a further potentiation by CST. CST augmented the expression of tyrosine hydroxylase (TH) but did not increase intracellular NE levels, presumably due to its inability to cause post-translational activation of TH through serine phosphorylation. Co-treatment of CST with nicotine or PACAP increased quantal size, plausibly due to increased synthesis of CgA, CgB and SgII by CST. We conclude that CST regulates DCV quanta by acutely inhibiting catecholamine secretion and chronically increasing expression of CgA after nicotinic stimulation and CgB and SgII after PACAPergic stimulation.
Collapse
Affiliation(s)
- Bhavani Shankar Sahu
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA. .,Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0732, USA.
| | - Sumana Mahata
- California Institute of Technology, Pasadena, CA, USA
| | - Keya Bandyopadhyay
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0732, USA
| | - Manjula Mahata
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0732, USA
| | | | | | - Chinmayi Sahu
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Gautam K Bandyopadhyay
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0732, USA
| | - Alessandro Bartolomucci
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Nicholas J G Webster
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0732, USA.,VA San Diego Healthcare System, San Diego, CA, USA
| | | | | | - Angelo Corti
- IRCCS San Raffaele Scientific Institute, San Raffaele Vita-Salute University, Milan, Italy
| | - Lee E Eiden
- Section on Molecular Neuroscience, NIMH-IRP, Bethesda, MD, USA
| | - Sushil K Mahata
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0732, USA. .,VA San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
30
|
Pituitary Adenylate Cyclase-Activating Peptide (PACAP) Signaling and the Dark Side of Addiction. J Mol Neurosci 2018; 68:453-464. [PMID: 30074172 DOI: 10.1007/s12031-018-1147-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/27/2018] [Indexed: 12/15/2022]
Abstract
While addiction to drugs of abuse represents a significant health problem worldwide, the behavioral and neural mechanisms that underlie addiction and relapse are largely unclear. The concept of the dark side of addiction, developed and explored by George Koob and colleagues, describes a systematic decrease in reward-related processing following drug self-administration and subsequent recruitment of anti-reward (i.e., stress) systems. Indeed, the activation of central nervous system (CNS) stress-response systems by drugs of abuse is contributory not only to mood and anxiety-related disorders but critical to both the maintenance of addiction and relapse following abstinence. In both human and animal studies, compounds that activate the bed nucleus of the stria terminalis (BNST) have roles in stress-related behaviors and addiction processes. The activation of pituitary adenylate cyclase-activating peptide (PACAP) systems in the BNST mediates many consequences of chronic stressor exposure that may engage in part downstream corticotropin-releasing hormone (CRH) signaling. Similar to footshock stress, the BNST administration of PACAP or the PAC1 receptor-specific agonist maxadilan can facilitate relapse following extinction of cocaine-seeking behavior. Further, in the same paradigm, the footshock-induced relapse could be attenuated following BNST pretreatment with PAC1 receptor antagonist PACAP6-38, implicating PACAP systems as critical components underlying stress-induced reinstatement. In congruence with previous work, the PAC1 receptor internalization and endosomal MEK/ERK signaling appear contributory mechanisms to the addiction processes. The studies offer new insights and approaches to addiction and relapse therapeutics.
Collapse
|
31
|
Byrne CJ, Khurana S, Kumar A, Tai TC. Inflammatory Signaling in Hypertension: Regulation of Adrenal Catecholamine Biosynthesis. Front Endocrinol (Lausanne) 2018; 9:343. [PMID: 30013513 PMCID: PMC6036303 DOI: 10.3389/fendo.2018.00343] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/07/2018] [Indexed: 12/24/2022] Open
Abstract
The immune system is increasingly recognized for its role in the genesis and progression of hypertension. The adrenal gland is a major site that coordinates the stress response via the hypothalamic-pituitary-adrenal axis and the sympathetic-adrenal system. Catecholamines released from the adrenal medulla function in the neuro-hormonal regulation of blood pressure and have a well-established link to hypertension. The immune system has an active role in the progression of hypertension and cytokines are powerful modulators of adrenal cell function. Adrenal medullary cells integrate neural, hormonal, and immune signals. Changes in adrenal cytokines during the progression of hypertension may promote blood pressure elevation by influencing catecholamine biosynthesis. This review highlights the potential interactions of cytokine signaling networks with those of catecholamine biosynthesis within the adrenal, and discusses the role of cytokines in the coordination of blood pressure regulation and the stress response.
Collapse
Affiliation(s)
- Collin J. Byrne
- Department of Biology, Laurentian University, Sudbury, ON, Canada
| | - Sandhya Khurana
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON, Canada
| | - Aseem Kumar
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, Canada
- Biomolecular Sciences Program, Laurentian University, Sudbury, ON, Canada
| | - T. C. Tai
- Department of Biology, Laurentian University, Sudbury, ON, Canada
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON, Canada
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, Canada
- Biomolecular Sciences Program, Laurentian University, Sudbury, ON, Canada
| |
Collapse
|
32
|
Do Neuroendocrine Peptides and Their Receptors Qualify as Novel Therapeutic Targets in Osteoarthritis? Int J Mol Sci 2018; 19:ijms19020367. [PMID: 29373492 PMCID: PMC5855589 DOI: 10.3390/ijms19020367] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 01/15/2023] Open
Abstract
Joint tissues like synovium, articular cartilage, meniscus and subchondral bone, are targets for neuropeptides. Resident cells of these tissues express receptors for various neuroendocrine-derived peptides including proopiomelanocortin (POMC)-derived peptides, i.e., α-melanocyte-stimulating hormone (α-MSH), adrenocorticotropin (ACTH) and β-endorphin (β-ED), and sympathetic neuropeptides like vasoactive intestinal peptide (VIP) and neuropeptide y (NPY). Melanocortins attained particular attention due to their immunomodulatory and anti-inflammatory effects in several tissues and organs. In particular, α-MSH, ACTH and specific melanocortin-receptor (MCR) agonists appear to have promising anti-inflammatory actions demonstrated in animal models of experimentally induced arthritis and osteoarthritis (OA). Sympathetic neuropeptides have obtained increasing attention as they have crucial trophic effects that are critical for joint tissue and bone homeostasis. VIP and NPY are implicated in direct and indirect activation of several anabolic signaling pathways in bone and synovial cells. Additionally, pituitary adenylate cyclase-activating polypeptide (PACAP) proved to be chondroprotective and, thus, might be a novel target in OA. Taken together, it appears more and more likely that the anabolic effects of these neuroendocrine peptides or their respective receptor agonists/antagonists may be exploited for the treatment of patients with inflammatory and degenerative joint diseases in the future.
Collapse
|
33
|
Eiden LE, Jiang SZ. What's New in Endocrinology: The Chromaffin Cell. Front Endocrinol (Lausanne) 2018; 9:711. [PMID: 30564193 PMCID: PMC6288183 DOI: 10.3389/fendo.2018.00711] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/12/2018] [Indexed: 01/08/2023] Open
Abstract
Recent advances in understanding the intracellular and intercellular features of adrenal chromatin cells as stress transducers are reviewed here, along with their implications for endocrine function in other tissues and organs participating in endocrine regulation in the mammalian organism.
Collapse
|
34
|
PACAP signaling in stress: insights from the chromaffin cell. Pflugers Arch 2017; 470:79-88. [PMID: 28965274 DOI: 10.1007/s00424-017-2062-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 10/18/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) was first identified in hypothalamus, based on its ability to elevate cyclic AMP in the anterior pituitary. PACAP has been identified as the adrenomedullary neurotransmitter in stress through a combination of ex vivo, in vivo, and in cellula experiments over the past two decades. PACAP causes catecholamine secretion, and activation of catecholamine biosynthetic enzymes, during episodes of stress in mammals. Features of PACAP signaling allowing stress transduction at the splanchnicoadrenomedullary synapse have yielded insights into the contrasting roles of acetylcholine's and PACAP's actions as first messengers at the chromaffin cell, via differential release at low and high rates of splanchnic nerve firing, and differential signaling pathway engagement leading to catecholamine secretion and chromaffin cell gene transcription. Secretion stimulated by PACAP, via calcium influx independent of action potential generation, is under active investigation in several laboratories both at the chromaffin cell and within autonomic ganglia of both the parasympathetic and sympathetic nervous systems. PACAP is a neurotransmitter important in stress transduction in the central nervous system as well, and is found at stress-transduction nuclei in brain including the paraventricular nucleus of hypothalamus, the amygdala and extended amygdalar nuclei, and the prefrontal cortex. The current status of PACAP as a master regulator of stress signaling in the nervous system derives fundamentally from the establishment of its role as the splanchnicoadrenomedullary transmitter in stress. Experimental elucidation of PACAP action at this synapse remains at the forefront of understanding PACAP's role in stress signaling throughout the nervous system.
Collapse
|
35
|
Abstract
Stressor exposure is associated with the onset and severity of many psychopathologies that are more common in women than men. Moreover, the maladaptive expression and function of stress-related hormones have been implicated in these disorders. Evidence suggests that PACAP has a critical role in the stress circuits mediating stress-responding, and PACAP may interact with sex hormones to contribute to sex differences in stress-related disease. In this review, we describe the role of the PACAP/PAC1 system in stress biology, focusing on the role of stress-induced alterations in PACAP expression and signaling in the development of stress-induced behavioral change. Additionally, we present more recent data suggesting potential interactions between stress, PACAP, and circulating estradiol in pathological states, including PTSD. These studies suggest that the level of stress and circulating gonadal hormones may differentially regulate the PACAPergic system in males and females to influence anxiety-like behavior and may be one mechanism underlying the discrepancies in human psychiatric disorders.
Collapse
Affiliation(s)
- S Bradley King
- a Department of Psychological Science , University of Vermont , Burlington , VT , USA
| | - Donna J Toufexis
- a Department of Psychological Science , University of Vermont , Burlington , VT , USA
| | - Sayamwong E Hammack
- a Department of Psychological Science , University of Vermont , Burlington , VT , USA
| |
Collapse
|
36
|
Artalejo AR, Olivos-Oré LA. Alpha2-adrenoceptors in adrenomedullary chromaffin cells: functional role and pathophysiological implications. Pflugers Arch 2017; 470:61-66. [PMID: 28836008 DOI: 10.1007/s00424-017-2059-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 08/12/2017] [Accepted: 08/15/2017] [Indexed: 12/20/2022]
Abstract
Chromaffin cells from the adrenal medulla participate in stress responses by releasing catecholamines into the bloodstream. Main control of adrenal catecholamine secretion is exerted both neurally (by the splanchnic nerve fibers) and humorally (by corticosteroids, circulating noradrenaline, etc.). It should be noted, however, that secretory products themselves (catecholamines, ATP, opioids, ascorbic acid, chromogranins) could also influence the secretory response in an autocrine/paracrine manner. This form of control is activity-dependent and can be either inhibitory or excitatory. Among the inhibitory influences, it stands out the one mediated by α2-adrenergic autoreceptors activated by released catecholamines. α2-adrenoceptors are G protein-coupled receptors capable to inhibit exocytotic secretion through a direct interaction of Gβγ subunits with voltage-gated Ca2+ channels. Interestingly, upon intense and/or prolonged stimulation, α2-adrenergic receptors become desensitized by the intervention of G protein-coupled receptor kinase 2 (GRK2). In several experimental models of heart failure, there has been reported the up-regulation of GRK2 and the loss of functioning of inhibitory α2-adrenoceptors resulting in enhanced release of adrenomedullary catecholamines. Given the importance of circulating catecholamines in the pathophysiology of heart failure, the recovery of α2-adrenergic modulation of the secretory response from chromaffin cells appears as a novel strategy for a better control of the patients with this cardiac disease.
Collapse
Affiliation(s)
- Antonio R Artalejo
- Institute for Research in Neurochemistry & Department of Toxicology and Pharmacology, Faculty of Veterinary, Universidad Complutense de Madrid, Avda. Puerta de Hierro s/n, 28029, Madrid, Spain.
| | - Luis Alcides Olivos-Oré
- Institute for Research in Neurochemistry & Department of Toxicology and Pharmacology, Faculty of Veterinary, Universidad Complutense de Madrid, Avda. Puerta de Hierro s/n, 28029, Madrid, Spain
| |
Collapse
|
37
|
Gap junction communication between chromaffin cells: the hidden face of adrenal stimulus-secretion coupling. Pflugers Arch 2017; 470:89-96. [PMID: 28735418 DOI: 10.1007/s00424-017-2032-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/07/2017] [Accepted: 07/10/2017] [Indexed: 10/19/2022]
Abstract
From birth to death, catecholamine secretion undergoes continuous adjustments, allowing the organism to adapt to homeostasis changes. To cope with these stressful conditions, the neuroendocrine cells of the adrenal medulla play an immediate and crucial role. Chromaffin cell-driven catecholamine release is chiefly controlled by a neurogenic command that arises from the sympathetic nervous system, which releases acetylcholine at the splanchnic nerve terminal-chromaffin cell synapses. In addition to receiving several synaptic inputs individually, chromaffin cells are coupled by gap junctions. This raises interesting questions about the usefulness and the role of the gap junctional coupling within the chromaffin tissue, considering that secretory function is efficiently completed by the neurogenic pathway. The findings that gap junctions contribute to catecholamine secretion, both ex vivo and in vivo, provide some early answers, but their involvement in other cellular functions still remains unexplored. This review summarizes the molecular and physiological evidence that gap junctions can act either as an accelerator or a brake of stimulus-secretion coupling and discusses this functional plasticity in the context of specific needs in circulating catecholamine levels. It introduces the concept of gap junctions as sympathetic activity sensors and guardians of the functional integrity of the chromaffin tissue.
Collapse
|
38
|
Differential Pharmacophore Definition of the cAMP Binding Sites of Neuritogenic cAMP Sensor-Rapgef2, Protein Kinase A, and Exchange Protein Activated by cAMP in Neuroendocrine Cells Using an Adenine-Based Scaffold. ACS Chem Neurosci 2017; 8:1500-1509. [PMID: 28290664 DOI: 10.1021/acschemneuro.6b00462] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We recently reported that the adenylate cyclase (AC) inhibitor SQ22,536 (9-tetrahydrofuranyl-adenine) also has inhibitory activity against the neuroendocrine-specific neuritogenic cAMP sensor-Rapgef2 (NCS-Rapgef2), a guanine nucleotide exchanger and activator for the small effector GTPase Rap1. Cell-based assays that distinguish signaling through the three intracellular cAMP sensors NCS-Rapgef2, exchange protein activated by cAMP (Epac), and protein kinase A (PKA), as well as AC, were used. These, collectively, assess the activities of adenine (6-amino-purine) derivatives modified at several positions to enhance selectivity for NCS-Rapgef2 by decreasing affinity for adenylate cyclase (AC), without increasing affinity for PKA or Epac. Testing of each adenine derivative in whole-cell assays incorporates features of cell permeability, target selectivity, and intrinsic potency into a single EC50 or IC50, making robust extrapolation to compound activity in vivo more likely. N6-MBC-cAMP is a selective PKA activator (EC50 = 265 μM) with low efficacy at NCS-Rapgef2. 8-CPT-2'-O-Me-cAMP and ESI-09 are confirmed as Epac-selective, for stimulation and inhibition, respectively, versus both PKA and NCS-Rapgef2. The compound N6-Phe-cAMP is a full agonist of NCS-Rapgef2 (EC50 = 256 μM). It has little or no activity against Epac or PKA. The compound N6-phenyl-9-tetrahydrofuranyladenine is a novel and potent NCS-Rapgef2 inhibitor without activity at PKA, Epac, or ACs, as assayed in the neuroendocrine NS-1 cell line. This line has been engineered to allow high-content screening for activation and inhibition of AC, PKA, Epac, and NCS-Rapgef2 and the cellular activities initiated by these signaling pathway protein components.
Collapse
|
39
|
Wollam J, Mahata S, Riopel M, Hernandez-Carretero A, Biswas A, Bandyopadhyay GK, Chi NW, Eiden LE, Mahapatra NR, Corti A, Webster NJG, Mahata SK. Chromogranin A regulates vesicle storage and mitochondrial dynamics to influence insulin secretion. Cell Tissue Res 2017; 368:487-501. [PMID: 28220294 PMCID: PMC10843982 DOI: 10.1007/s00441-017-2580-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 01/16/2017] [Indexed: 01/01/2023]
Abstract
Chromogranin A (CgA) is a prohormone and a granulogenic factor that regulates secretory pathways in neuroendocrine tissues. In β-cells of the endocrine pancreas, CgA is a major cargo in insulin secretory vesicles. The impact of CgA deficiency on the formation and exocytosis of insulin vesicles is yet to be investigated. In addition, no literature exists on the impact of CgA on mitochondrial function in β-cells. Using three different antibodies, we demonstrate that CgA is processed to vasostatin- and catestatin-containing fragments in pancreatic islet cells. CgA deficiency in Chga-KO islets leads to compensatory overexpression of chromogranin B, secretogranin II, SNARE proteins and insulin genes, as well as increased insulin protein content. Ultrastructural studies of pancreatic islets revealed that Chga-KO β-cells contain fewer immature secretory granules than wild-type (WT) control but increased numbers of mature secretory granules and plasma membrane-docked vesicles. Compared to WT control, CgA-deficient β-cells exhibited increases in mitochondrial volume, numerical densities and fusion, as well as increased expression of nuclear encoded genes (Ndufa9, Ndufs8, Cyc1 and Atp5o). These changes in secretory vesicles and the mitochondria likely contribute to the increased glucose-stimulated insulin secretion observed in Chga-KO mice. We conclude that CgA is an important regulator for coordination of mitochondrial dynamics, secretory vesicular quanta and GSIS for optimal secretory functioning of β-cells, suggesting a strong, CgA-dependent positive link between mitochondrial fusion and GSIS.
Collapse
Affiliation(s)
- Joshua Wollam
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Sumana Mahata
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Matthew Riopel
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | | | - Angshuman Biswas
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | | | - Nai-Wen Chi
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- VA San Diego Healthcare System, San Diego, CA, USA
| | - Lee E Eiden
- Section on Molecular Neuroscience, NIMH-IRP, Bethesda, MD, USA
| | - Nitish R Mahapatra
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Angelo Corti
- IRCCS San Raffaele Scientific Institute, San Raffaele Vita-Salute University, Milan, Italy
| | - Nicholas J G Webster
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- VA San Diego Healthcare System, San Diego, CA, USA
| | - Sushil K Mahata
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA.
- VA San Diego Healthcare System, San Diego, CA, USA.
- Metabolic Physiology & Ultrastructural Biology Laboratory, Department of Medicine, University of California, San Diego (0732), 9500 Gilman Drive, La Jolla, CA, 92093-0732, USA.
| |
Collapse
|
40
|
Brindley RL, Bauer MB, Blakely RD, Currie KP. Serotonin and Serotonin Transporters in the Adrenal Medulla: A Potential Hub for Modulation of the Sympathetic Stress Response. ACS Chem Neurosci 2017; 8:943-954. [PMID: 28406285 PMCID: PMC5541362 DOI: 10.1021/acschemneuro.7b00026] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Serotonin (5-HT) is an important neurotransmitter in the central nervous system where it modulates circuits involved in mood, cognition, movement, arousal, and autonomic function. The 5-HT transporter (SERT; SLC6A4) is a key regulator of 5-HT signaling, and genetic variations in SERT are associated with various disorders including depression, anxiety, and autism. This review focuses on the role of SERT in the sympathetic nervous system. Autonomic/sympathetic dysfunction is evident in patients with depression, anxiety, and other diseases linked to serotonergic signaling. Experimentally, loss of SERT function (SERT knockout mice or chronic pharmacological block) has been reported to augment the sympathetic stress response. Alterations to serotonergic signaling in the CNS and thus central drive to the peripheral sympathetic nervous system are presumed to underlie this augmentation. Although less widely recognized, SERT is robustly expressed in chromaffin cells of the adrenal medulla, the neuroendocrine arm of the sympathetic nervous system. Adrenal chromaffin cells do not synthesize 5-HT but accumulate small amounts by SERT-mediated uptake. Recent evidence demonstrated that 5-HT1A receptors inhibit catecholamine secretion from adrenal chromaffin cells via an atypical mechanism that does not involve modulation of cellular excitability or voltage-gated Ca2+ channels. This raises the possibility that the adrenal medulla is a previously unrecognized peripheral hub for serotonergic control of the sympathetic stress response. As a framework for future investigation, a model is proposed in which stress-evoked adrenal catecholamine secretion is fine-tuned by SERT-modulated autocrine 5-HT signaling.
Collapse
Affiliation(s)
- Rebecca L. Brindley
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mary Beth Bauer
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Randy D. Blakely
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, and Florida Atlantic University Brain Institute, Jupiter, FL, USA
| | - Kevin P.M. Currie
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
41
|
Jenkins DE, Sreenivasan D, Carman F, Samal B, Eiden LE, Bunn SJ. Interleukin-6-mediated signaling in adrenal medullary chromaffin cells. J Neurochem 2016; 139:1138-1150. [PMID: 27770433 DOI: 10.1111/jnc.13870] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/13/2016] [Accepted: 10/14/2016] [Indexed: 12/13/2022]
Abstract
The pro-inflammatory cytokines, tumor necrosis factor-α, and interleukin-1β/α modulate catecholamine secretion, and long-term gene regulation, in chromaffin cells of the adrenal medulla. Since interleukin-6 (IL6) also plays a key integrative role during inflammation, we have examined its ability to affect both tyrosine hydroxylase activity and adrenomedullary gene transcription in cultured bovine chromaffin cells. IL6 caused acute tyrosine/threonine phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), and serine/tyrosine phosphorylation of signal transducer and activator of transcription 3 (STAT3). Consistent with ERK1/2 activation, IL6 rapidly increased tyrosine hydroxylase phosphorylation (serine-31) and activity, as well as up-regulated genes, encoding secreted proteins including galanin, vasoactive intestinal peptide, gastrin-releasing peptide, and parathyroid hormone-like hormone. The effects of IL6 on the entire bovine chromaffin cell transcriptome were compared to those generated by G-protein-coupled receptor (GPCR) agonists (histamine and pituitary adenylate cyclase-activating polypeptide) and the cytokine receptor agonists (interferon-α and tumor necrosis factor-α). Of 90 genes up-regulated by IL6, only 16 are known targets of IL6 in the immune system. Those remaining likely represent a combination of novel IL6/STAT3 targets, ERK1/2 targets and, potentially, IL6-dependent genes activated by IL6-induced transcription factors, such as hypoxia-inducible factor 1α. Notably, genes induced by IL6 include both neuroendocrine-specific genes activated by GPCR agonists, and transcripts also activated by the cytokines. These results suggest an integrative role for IL6 in the fine-tuning of the chromaffin cell response to a wide range of physiological and paraphysiological stressors, particularly when immune and endocrine stimuli converge.
Collapse
Affiliation(s)
- Danielle E Jenkins
- Department of Anatomy, Centre for Neuroendocrinology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | | | - Fiona Carman
- Department of Anatomy, Centre for Neuroendocrinology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - Babru Samal
- Section on Molecular Neuroscience, Laboratory of Cellular and Molecular Regulation, National Institute of Mental Health, Bethesda, MD, USA
| | - Lee E Eiden
- Section on Molecular Neuroscience, Laboratory of Cellular and Molecular Regulation, National Institute of Mental Health, Bethesda, MD, USA
| | - Stephen J Bunn
- Department of Anatomy, Centre for Neuroendocrinology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
42
|
Mahata SK, Zheng H, Mahata S, Liu X, Patel KP. Effect of heart failure on catecholamine granule morphology and storage in chromaffin cells. J Endocrinol 2016; 230:309-23. [PMID: 27402067 PMCID: PMC4980258 DOI: 10.1530/joe-16-0146] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 06/24/2016] [Indexed: 12/16/2022]
Abstract
One of the key mechanisms involved in sympathoexcitation in chronic heart failure (HF) is the activation of the adrenal glands. Impact of the elevated catecholamines on the hemodynamic parameters has been previously demonstrated. However, studies linking the structural effects of such overactivation with secretory performance and cell metabolism in the adrenomedullary chromaffin cells in vivo have not been previously reported. In this study, HF was induced in male Sprague-Dawley rats by ligation of the left coronary artery. Five weeks after surgery, cardiac function was assessed by ventricular hemodynamics. HF rats showed increased adrenal weight and adrenal catecholamine levels (norepinephrine, epinephrine and dopamine) compared with sham-operated rats. Rats with HF demonstrated increased small synaptic and dense core vesicle in splanchnic-adrenal synapses indicating trans-synaptic activation of catecholamine biosynthetic enzymes, increased endoplasmic reticulum and Golgi lumen width to meet the demand of increased catecholamine synthesis and release, and more mitochondria with dilated cristae and glycogen to accommodate for the increased energy demand for the increased biogenesis and exocytosis of catecholamines from the adrenal medulla. These findings suggest that increased trans-synaptic activation of the chromaffin cells within the adrenal medulla may lead to increased catecholamines in the circulation which in turn contributes to the enhanced neurohumoral drive, providing a unique mechanistic insight for enhanced catecholamine levels in plasma commonly observed in chronic HF condition.
Collapse
Affiliation(s)
- Sushil K Mahata
- VA San Diego Healthcare System Metabolic Physiology & Ultrastructural Biology Lab.Department of Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Hong Zheng
- Department of Cellular and Integrative PhysiologyUniversity of Nebraska Medical Center, Omaha, NE, USA
| | - Sumana Mahata
- Caltech Division of BiologyCalifornia Institute of Technology, Pasadena, CA, USA
| | - Xuefei Liu
- Department of Cellular and Integrative PhysiologyUniversity of Nebraska Medical Center, Omaha, NE, USA
| | - Kaushik P Patel
- Department of Cellular and Integrative PhysiologyUniversity of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
43
|
Tompkins JD, Clason TA, Hardwick JC, Girard BM, Merriam LA, May V, Parsons RL. Activation of MEK/ERK signaling contributes to the PACAP-induced increase in guinea pig cardiac neuron excitability. Am J Physiol Cell Physiol 2016; 311:C643-C651. [PMID: 27488668 DOI: 10.1152/ajpcell.00164.2016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/01/2016] [Indexed: 01/12/2023]
Abstract
Pituitary adenylate cyclase (PAC)-activating polypeptide (PACAP) peptides (Adcyap1) signaling at the selective PAC1 receptor (Adcyap1r1) participate in multiple homeostatic and stress-related responses, yet the cellular mechanisms underlying PACAP actions remain to be completely elucidated. PACAP/PAC1 receptor signaling increases excitability of neurons within the guinea pig cardiac ganglia, and as these neurons are readily accessible, this neuronal system is particularly amenable to study of PACAP modulation of ionic conductances. The present study investigated how PACAP activation of MEK/ERK signaling contributed to the peptide-induced increase in cardiac neuron excitability. Treatment with the MEK inhibitor PD 98059 blocked PACAP-stimulated phosphorylated ERK and, in parallel, suppressed the increase in cardiac neuron excitability. However, PD 98059 did not blunt the ability of PACAP to enhance two inward ionic currents, one flowing through hyperpolarization-activated nonselective cationic channels (Ih) and another flowing through low-voltage-activated calcium channels (IT), which support the peptide-induced increase in excitability. Thus a PACAP- and MEK/ERK-sensitive, voltage-dependent conductance(s), in addition to Ih and IT, modulates neuronal excitability. Despite prior work implicating PACAP downregulation of the KV4.2 potassium channel in modulation of excitability in other cells, treatment with the KV4.2 current blocker 4-aminopyridine did not replicate the PACAP-induced increase in excitability in cardiac neurons. However, cardiac neurons express the ERK target, the NaV1.7 sodium channel, and treatment with the selective NaV1.7 channel inhibitor PF-04856264 decreased the PACAP modulation of excitability. From these results, PACAP/PAC1 activation of MEK/ERK signaling may phosphorylate the NaV1.7 channel, enhancing sodium currents near the threshold, an action contributing to repetitive firing of the cardiac neurons exposed to PACAP.
Collapse
Affiliation(s)
- John D Tompkins
- Department of Medicine (Cardiology), David Geffen School of Medicine, University of California, Los Angeles, California
| | - Todd A Clason
- Department of Neurological Sciences, College of Medicine, University of Vermont, Burlington, Vermont; and
| | | | - Beatrice M Girard
- Department of Neurological Sciences, College of Medicine, University of Vermont, Burlington, Vermont; and
| | - Laura A Merriam
- Department of Neurological Sciences, College of Medicine, University of Vermont, Burlington, Vermont; and
| | - Victor May
- Department of Neurological Sciences, College of Medicine, University of Vermont, Burlington, Vermont; and
| | - Rodney L Parsons
- Department of Neurological Sciences, College of Medicine, University of Vermont, Burlington, Vermont; and
| |
Collapse
|
44
|
Jiang SZ, Eiden LE. Activation of the HPA axis and depression of feeding behavior induced by restraint stress are separately regulated by PACAPergic neurotransmission in the mouse. Stress 2016; 19:374-82. [PMID: 27228140 PMCID: PMC5564370 DOI: 10.1080/10253890.2016.1174851] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We measured serum CORT elevation in wild-type and PACAP-deficient C57BL/6N male mice after acute (1 h) or prolonged (2-3 h) daily restraint stress for 7 d. The PACAP dependence of CORT elevation was compared to that of stress-induced hypophagia. Daily restraint induced unhabituated peak CORT elevation, and hypophagia/weight loss, of similar magnitude for 1, 2, and 3 h of daily restraint, in wild-type mice. Peak CORT elevation, and hypophagia, were both attenuated in PACAP-deficient mice for 2 and 3 h daily restraint. Hypophagia induced by 1-h daily restraint was also greatly reduced in PACAP-deficient mice, however CORT elevation, both peak and during recovery from stress, was unaffected. Thus, hypothalamic PACAPergic neurotransmission appears to affect CRH gene transcription and peptide production, but not CRH release, in response to psychogenic stress. A single exposure to restraint sufficed to trigger hypophagia over the following 24 h. PACAP deficiency attenuated HPA axis response (CORT elevation) to prolonged (3 h) but not acute (1 h) single-exposure restraint stress, while hypophagia induced by either a single 1 h or a single 3 h restraint were both abolished in PACAP-deficient mice. These results suggest that PACAP's actions to promote suppression of food intake following an episode of psychogenic stress is unrelated to the release of CRH into the portal circulation to activate the pituitary-adrenal axis. Furthermore, demonstration of suppressed food intake after a single 1-h restraint stress provides a convenient assay for investigating the location of the synapses and circuits mediating the effects of PACAP on the behavioral sequelae of psychogenic stress.
Collapse
Affiliation(s)
- Sunny Zhihong Jiang
- a Section on Molecular Neuroscience , National Institute of Mental Health , Bethesda , MD , USA
| | - Lee E Eiden
- a Section on Molecular Neuroscience , National Institute of Mental Health , Bethesda , MD , USA
| |
Collapse
|
45
|
Jiang SZ, Eiden LE. PACAPergic Synaptic Signaling and Circuitry Mediating Mammalian Responses to Psychogenic and Systemic Stressors. CURRENT TOPICS IN NEUROTOXICITY 2016. [DOI: 10.1007/978-3-319-35135-3_41] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
46
|
Hammack SE, May V. Pituitary adenylate cyclase activating polypeptide in stress-related disorders: data convergence from animal and human studies. Biol Psychiatry 2015; 78:167-77. [PMID: 25636177 PMCID: PMC4461555 DOI: 10.1016/j.biopsych.2014.12.003] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 11/13/2014] [Accepted: 12/01/2014] [Indexed: 12/21/2022]
Abstract
The maladaptive expression and function of several stress-associated hormones have been implicated in pathological stress and anxiety-related disorders. Among these, recent evidence has suggested that pituitary adenylate cyclase activating polypeptide (PACAP) has critical roles in central neurocircuits mediating stress-related emotional behaviors. We describe the PACAPergic systems, the data implicating PACAP in stress biology, and how altered PACAP expression and signaling may result in psychopathologies. We include our work implicating PACAP signaling within the bed nucleus of the stria terminalis in mediating the consequences of stressor exposure and relatedly, describe more recent studies suggesting that PACAP in the central nucleus of the amygdala may impact the emotional aspects of chronic pain states. In aggregate, these results are consistent with data suggesting that PACAP dysregulation is associated with posttraumatic stress disorder in humans.
Collapse
Affiliation(s)
- Sayamwong E. Hammack
- Department of Psychological Science, University of Vermont, John Dewey Hall, 2 Colchester Avenue, Burlington, Vermont 05405-0134, Phone: 802.656.1041, Fax: 802.656.8783
| | - Victor May
- Department of Neurological Sciences, University of Vermont College of Medicine, 149 Beaumont Avenue, HSRF 428, Burlington, VT 05405, Phone: 802.656.4579
| |
Collapse
|
47
|
Hodson DJ, Legros C, Desarménien MG, Guérineau NC. Roles of connexins and pannexins in (neuro)endocrine physiology. Cell Mol Life Sci 2015; 72:2911-28. [PMID: 26084873 DOI: 10.1007/s00018-015-1967-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 06/11/2015] [Indexed: 12/12/2022]
Abstract
To ensure appropriate secretion in response to demand, (neuro)endocrine tissues liberate massive quantities of hormones, which act to coordinate and synchronize biological signals in distant secretory and nonsecretory cell populations. Intercellular communication plays a central role in this control. With regard to molecular identity, junctional cell-cell communication is supported by connexin-based gap junctions. In addition, connexin hemichannels, the structural precursors of gap junctions, as well as pannexin channels have recently emerged as possible modulators of the secretory process. This review focuses on the expression of connexins and pannexins in various (neuro)endocrine tissues, including the adrenal cortex and medulla, the anterior pituitary, the endocrine hypothalamus and the pineal, thyroid and parathyroid glands. Upon a physiological or pathological stimulus, junctional intercellular coupling can be acutely modulated or persistently remodeled, thus offering multiple regulatory possibilities. The functional roles of gap junction-mediated intercellular communication in endocrine physiology as well as the involvement of connexin/pannexin-related hemichannels are also discussed.
Collapse
Affiliation(s)
- David J Hodson
- Section of Cell Biology and Functional Genomics, Department of Medicine, Imperial College London, London, W12 0NN, UK
| | | | | | | |
Collapse
|
48
|
Podvin S, Bundey R, Toneff T, Ziegler M, Hook V. Profiles of secreted neuropeptides and catecholamines illustrate similarities and differences in response to stimulation by distinct secretagogues. Mol Cell Neurosci 2015; 68:177-85. [PMID: 26092702 DOI: 10.1016/j.mcn.2015.06.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 05/12/2015] [Accepted: 06/01/2015] [Indexed: 12/20/2022] Open
Abstract
The goal of this study was to define profiles of secreted neuropeptide and catecholamine neurotransmitters that undergo co-release from sympathoadrenal chromaffin cells upon stimulation by distinct secretagogues. Chromaffin cells of the adrenal medulla participate in the dynamic responses to stress, especially that of 'fight and flight', and, thus, analyses of the co-release of multiple neurotransmitters is necessary to gain knowledge of how the stress response regulates cell-cell communication among physiological systems. Results of this study demonstrated that six different secretagogues stimulated the co-release of the neuropeptides Met-enkephalin, galanin, NPY, and VIP with the catecholamines dopamine, norepinephrine, and epinephrine. Importantly, the quantitative profiles of the secreted neurotransmitters showed similarities and differences upon stimulation by the different secretagogues evaluated, composed of KCl depolarization, nicotine, carbachol, PACAP, bradykinin, and histamine. The rank-orders of the secreted profiles of the neurotransmitters were generally similar among these secretagogues, but differences in the secreted amounts of each neurotransmitter occurred with different secretagogues. Epinephrine among the catecholamines showed the highest level of secretion. (Met)enkephalin showed the largest levels of secretion compared to the other neuropeptides examined. Levels of secreted catecholamines were greater than that of the neuropeptides. These data support the hypothesis that profiles of secreted neuropeptide and catecholamine neurotransmitters show similarities and differences upon stimulation by distinct secretagogues. These results illustrate the co-release of concerted neurotransmitter profiles that participate in the stress response of the sympathoadrenal nervous system.
Collapse
Affiliation(s)
- Sonia Podvin
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Univ. of Calif.-San Diego, La Jolla, CA 92093, United States
| | - Richard Bundey
- Dept. of Medicine, Univ. of Calif.-San Diego, La Jolla, CA 92093, United States
| | - Thomas Toneff
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Univ. of Calif.-San Diego, La Jolla, CA 92093, United States
| | - Michael Ziegler
- Dept. of Medicine, Univ. of Calif.-San Diego, La Jolla, CA 92093, United States
| | - Vivian Hook
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Univ. of Calif.-San Diego, La Jolla, CA 92093, United States; Dept. of Neuroscience and Dept. of Pharmacology, School of Medicine, Univ. of Calif.-San Diego, La Jolla, CA 92093, United States.
| |
Collapse
|
49
|
Tompkins JD, Merriam LA, Girard BM, May V, Parsons RL. Nickel suppresses the PACAP-induced increase in guinea pig cardiac neuron excitability. Am J Physiol Cell Physiol 2015; 308:C857-66. [PMID: 25810261 DOI: 10.1152/ajpcell.00403.2014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 03/18/2015] [Indexed: 10/23/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a potent intercellular signaling molecule involved in multiple homeostatic functions. PACAP/PAC1 receptor signaling increases excitability of neurons within the guinea pig cardiac ganglia, making them a unique system to establish mechanisms underlying PACAP modulation of neuronal function. Calcium influx is required for the PACAP-increased cardiac neuron excitability, although the pathway is unknown. This study tested whether PACAP enhancement of calcium influx through either T-type or R-type channels contributed to the modulation of excitability. Real-time quantitative polymerase chain reaction analyses indicated transcripts for Cav3.1, Cav3.2, and Cav3.3 T-type isoforms and R-type Cav2.3 in cardiac neurons. These neurons often exhibit a hyperpolarization-induced rebound depolarization that remains when cesium is present to block hyperpolarization-activated nonselective cationic currents (Ih). The T-type calcium channel inhibitors, nickel (Ni(2+)) or mibefradil, suppressed the rebound depolarization, and treatment with both drugs hyperpolarized cardiac neurons by 2-4 mV. Together, these results are consistent with the presence of functional T-type channels, potentially along with R-type channels, in these cardiac neurons. Fifty micromolar Ni(2+), a concentration that suppresses currents in both T-type and R-type channels, blunted the PACAP-initiated increase in excitability. Ni(2+) also blunted PACAP enhancement of the hyperpolarization-induced rebound depolarization and reversed the PACAP-mediated increase in excitability, after being initiated, in a subset of cells. Lastly, low voltage-activated currents, measured under perforated patch whole cell recording conditions and potentially flowing through T-type or R-type channels, were enhanced by PACAP. Together, our results suggest that a PACAP-enhanced, Ni(2+)-sensitive current contributes to PACAP-induced modulation of neuronal excitability.
Collapse
Affiliation(s)
- John D Tompkins
- Department of Neurological Sciences, College of Medicine, University of Vermont, Burlington, Vermont
| | - Laura A Merriam
- Department of Neurological Sciences, College of Medicine, University of Vermont, Burlington, Vermont
| | - Beatrice M Girard
- Department of Neurological Sciences, College of Medicine, University of Vermont, Burlington, Vermont
| | - Victor May
- Department of Neurological Sciences, College of Medicine, University of Vermont, Burlington, Vermont
| | - Rodney L Parsons
- Department of Neurological Sciences, College of Medicine, University of Vermont, Burlington, Vermont
| |
Collapse
|
50
|
Mosca EV, Rousseau JP, Gulemetova R, Kinkead R, Wilson RJA. The effects of sex and neonatal stress on pituitary adenylate cyclase-activating peptide expression. Exp Physiol 2015; 100:203-15. [PMID: 25398710 DOI: 10.1113/expphysiol.2014.082180] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 11/03/2014] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Does sex or neonatal stress affect the expression of pituitary adenylate cyclase-activating peptide or its receptors? What is the main finding and its importance? Neonatal-maternal separation stress has little long-lasting effect on the expression of pituitary adenylate cyclase-activating peptide or its receptors, but sex differences exist in these genes between males and females at baseline. Sex differences in classic stress hormones have been studied in depth, but pituitary adenylate cyclase-activating peptide (PACAP), recently identified as playing a critical role in the stress axes, has not. Here we studied whether baseline levels of PACAP differ between sexes in various stress-related tissues and whether neonatal-maternal separation stress has a sex-dependent effect on PACAP gene expression in stress pathways. Using quantitative RT-PCR, we found sex differences in PACAP and PACAP receptor gene expression in several respiratory and/or stress-related tissues, while neonatal-maternal separation stress did little to affect PACAP signalling in adult animals. We propose that sex differences in PACAP expression are likely to contribute to differences between males and females in responses to stress.
Collapse
Affiliation(s)
- E V Mosca
- Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | |
Collapse
|