1
|
Prasad K, Bhattacharya D, Shams SGE, Izarraras K, Hart T, Mayfield B, Blaszczyk MB, Zhou Z, Pajvani UB, Friedman SL, Bhattacharya M. Kisspeptin Alleviates Human Hepatic Fibrogenesis by Inhibiting TGFβ Signaling in Hepatic Stellate Cells. Cells 2024; 13:1651. [PMID: 39404414 PMCID: PMC11476267 DOI: 10.3390/cells13191651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024] Open
Abstract
The peptide hormone kisspeptin attenuates liver steatosis, metabolic dysfunction-associated steatohepatitis (MASH), and fibrosis in mouse models by signaling via the kisspeptin 1 receptor (KISS1R). However, whether kisspeptin impacts fibrogenesis in the human liver is not known. We investigated the impact of a potent kisspeptin analog (KPA) on fibrogenesis using human precision-cut liver slices (hPCLS) from fibrotic livers from male patients, in human hepatic stellate cells (HSCs), LX-2, and in primary mouse HSCs. In hPCLS, 48 h and 72 h of KPA (3 nM, 100 nM) treatment decreased collagen secretion and lowered the expression of fibrogenic and inflammatory markers. Immunohistochemical studies revealed that KISS1R is expressed and localized to HSCs in MASH/fibrotic livers. In HSCs, KPA treatment reduced transforming growth factor b (TGFβ)-the induced expression of fibrogenic and inflammatory markers, in addition to decreasing TGFβ-induced collagen secretion, cell migration, proliferation, and colony formation. Mechanistically, KISS1R signaling downregulated TGFβ signaling by decreasing SMAD2/3 phosphorylation via the activation of protein phosphatases, PP2A, which dephosphorylates SMAD 2/3. This study revealed for the first time that kisspeptin reverses human hepatic fibrogenesis, thus identifying it as a new therapeutic target to treat hepatic fibrosis.
Collapse
Affiliation(s)
- Kavita Prasad
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA; (K.P.); (S.G.E.S.); (K.I.); (T.H.)
| | - Dipankar Bhattacharya
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (D.B.); (S.L.F.)
| | - Shams Gamal Eldin Shams
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA; (K.P.); (S.G.E.S.); (K.I.); (T.H.)
| | - Kimberly Izarraras
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA; (K.P.); (S.G.E.S.); (K.I.); (T.H.)
| | - Tia Hart
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA; (K.P.); (S.G.E.S.); (K.I.); (T.H.)
| | - Brent Mayfield
- Department of Medicine, Columbia University, New York, NY 10032, USA; (B.M.); (U.B.P.)
| | - Maryjka B. Blaszczyk
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA; (M.B.B.); (Z.Z.)
| | - Zhongren Zhou
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA; (M.B.B.); (Z.Z.)
| | - Utpal B. Pajvani
- Department of Medicine, Columbia University, New York, NY 10032, USA; (B.M.); (U.B.P.)
| | - Scott L. Friedman
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (D.B.); (S.L.F.)
| | - Moshmi Bhattacharya
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA; (K.P.); (S.G.E.S.); (K.I.); (T.H.)
| |
Collapse
|
2
|
Israel I, Riehl G, Butt E, Buck AK, Samnick S. Gallium-68-Labeled KISS1-54 Peptide for Mapping KISS1 Receptor via PET: Initial Evaluation in Human Tumor Cell Lines and in Tumor-Bearing Mice. Pharmaceuticals (Basel) 2023; 17:44. [PMID: 38256878 PMCID: PMC10821118 DOI: 10.3390/ph17010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/11/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Kisspeptins (KPs, KISS1) and their receptor (KISS1R) play a pivotal role as metastasis suppressor for many cancers. Low or lost KP expression is associated with higher tumor grade, increased metastatic potential, and poor prognosis. Therefore, KP expression has prognostic relevance and correlates with invasiveness in cancers. Furthermore, KISS1R represents a very promising target for molecular imaging and therapy for KISS1R-expressing tumors. The goal of this study was to evaluate the developed KISS1-54 derivative, [68Ga]KISS1-54, as a PET-imaging probe for KISS1R-expressing tumors. The NODAGA-KISS1-54 peptide was labeled by Gallium-68, and the stability of the resulting [68Ga]KISS1-54 evaluated in injection solution and human serum, followed by an examination in different KISS1R-expressing tumor cell lines, including HepG2, HeLa, MDA-MB-231, MCF7, LNCap, SK-BR-3, and HCT116. Finally, [68Ga]KISS1-54 was tested in LNCap- and MDA-MB-231-bearing mice, using µ-PET, assessing its potential as an imaging probe for PET. [68Ga]KISS1-54 was obtained in a 77 ± 7% radiochemical yield and at a >99% purity. The [68Ga]KISS1-54 cell uptake amounted to 0.6-4.4% per 100,000 cells. Moreover, the accumulation of [68Ga]KISS1-54 was effectively inhibited by nonradioactive KISS1-54. In [68Ga]KISS1-54-PET, KISS1R-positive LNCap-tumors were clearly visualized as compared to MDA-MB-231-tumor implant with predominantly intracellular KISS1R expression. Our first results suggest that [68Ga]KISS1-54 is a promising candidate for a radiotracer for targeting KISS1R-expressing tumors via PET.
Collapse
Affiliation(s)
- Ina Israel
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany; (I.I.); (G.R.); (A.K.B.)
| | - Gabriele Riehl
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany; (I.I.); (G.R.); (A.K.B.)
| | - Elke Butt
- Institute of Experimental Biomedicine II, University Hospital Würzburg, Josef-Schneider-Straße 2, 97080 Würzburg, Germany;
| | - Andreas K. Buck
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany; (I.I.); (G.R.); (A.K.B.)
| | - Samuel Samnick
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany; (I.I.); (G.R.); (A.K.B.)
| |
Collapse
|
3
|
Dinh H, Kovács ZZA, Márványkövi F, Kis M, Kupecz K, Szűcs G, Freiwan M, Lauber GY, Acar E, Siska A, Ibos KE, Bodnár É, Kriston A, Kovács F, Horváth P, Földesi I, Cserni G, Podesser BK, Pokreisz P, Kiss A, Dux L, Csabafi K, Sárközy M. The kisspeptin-1 receptor antagonist peptide-234 aggravates uremic cardiomyopathy in a rat model. Sci Rep 2023; 13:14046. [PMID: 37640761 PMCID: PMC10462750 DOI: 10.1038/s41598-023-41037-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023] Open
Abstract
Uremic cardiomyopathy is characterized by diastolic dysfunction, left ventricular hypertrophy (LVH), and fibrosis. Dysregulation of the kisspeptin receptor (KISS1R)-mediated pathways are associated with the development of fibrosis in cancerous diseases. Here, we investigated the effects of the KISS1R antagonist peptide-234 (P234) on the development of uremic cardiomyopathy. Male Wistar rats (300-350 g) were randomized into four groups: (i) Sham, (ii) chronic kidney disease (CKD) induced by 5/6 nephrectomy, (iii) CKD treated with a lower dose of P234 (ip. 13 µg/day), (iv) CKD treated with a higher dose of P234 (ip. 26 µg/day). Treatments were administered daily from week 3 for 10 days. At week 13, the P234 administration did not influence the creatinine clearance and urinary protein excretion. However, the higher dose of P234 led to reduced anterior and posterior wall thicknesses, more severe interstitial fibrosis, and overexpression of genes associated with left ventricular remodeling (Ctgf, Tgfb, Col3a1, Mmp9), stretch (Nppa), and apoptosis (Bax, Bcl2, Casp7) compared to the CKD group. In contrast, no significant differences were found in the expressions of apoptosis-associated proteins between the groups. Our results suggest that the higher dose of P234 hastens the development and pathophysiology of uremic cardiomyopathy by activating the fibrotic TGF-β-mediated pathways.
Collapse
Affiliation(s)
- Hoa Dinh
- Department of Biochemistry and Interdisciplinary Centre of Excellence, Albert Szent-Györgyi Medical School, University of Szeged, 6720, Szeged, Hungary
- Department of Biochemistry, Bach Mai Hospital, Hanoi, 100000, Vietnam
| | - Zsuzsanna Z A Kovács
- Department of Biochemistry and Interdisciplinary Centre of Excellence, Albert Szent-Györgyi Medical School, University of Szeged, 6720, Szeged, Hungary
| | - Fanni Márványkövi
- Department of Biochemistry and Interdisciplinary Centre of Excellence, Albert Szent-Györgyi Medical School, University of Szeged, 6720, Szeged, Hungary
| | - Merse Kis
- Department of Biochemistry and Interdisciplinary Centre of Excellence, Albert Szent-Györgyi Medical School, University of Szeged, 6720, Szeged, Hungary
| | - Klaudia Kupecz
- Department of Biochemistry and Interdisciplinary Centre of Excellence, Albert Szent-Györgyi Medical School, University of Szeged, 6720, Szeged, Hungary
| | - Gergő Szűcs
- Department of Biochemistry and Interdisciplinary Centre of Excellence, Albert Szent-Györgyi Medical School, University of Szeged, 6720, Szeged, Hungary
| | - Marah Freiwan
- Department of Biochemistry and Interdisciplinary Centre of Excellence, Albert Szent-Györgyi Medical School, University of Szeged, 6720, Szeged, Hungary
| | - Gülsüm Yilmaz Lauber
- Ludwig Boltzmann Institute for Cardiovascular Research at Center for Biomedical Research and Translational Surgery, Medical University of Vienna, A1090, Vienna, Austria
| | - Eylem Acar
- Ludwig Boltzmann Institute for Cardiovascular Research at Center for Biomedical Research and Translational Surgery, Medical University of Vienna, A1090, Vienna, Austria
| | - Andrea Siska
- Department of Laboratory Medicine, Albert Szent-Györgyi Medical School, University of Szeged, 6720, Szeged, Hungary
| | - Katalin Eszter Ibos
- Department of Pathophysiology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, 6720, Hungary
| | - Éva Bodnár
- Department of Pathophysiology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, 6720, Hungary
| | - András Kriston
- Synthetic and Systems Biology Unit, Biological Research Centre, Eötvös Loránd Research Network, 6726, Szeged, Hungary
- Single-Cell Technologies Ltd, Szeged, 6726, Hungary
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00014, Helsinki, Finland
| | - Ferenc Kovács
- Synthetic and Systems Biology Unit, Biological Research Centre, Eötvös Loránd Research Network, 6726, Szeged, Hungary
- Single-Cell Technologies Ltd, Szeged, 6726, Hungary
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00014, Helsinki, Finland
| | - Péter Horváth
- Synthetic and Systems Biology Unit, Biological Research Centre, Eötvös Loránd Research Network, 6726, Szeged, Hungary
- Single-Cell Technologies Ltd, Szeged, 6726, Hungary
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00014, Helsinki, Finland
| | - Imre Földesi
- Department of Laboratory Medicine, Albert Szent-Györgyi Medical School, University of Szeged, 6720, Szeged, Hungary
| | - Gábor Cserni
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, 6720, Hungary
| | - Bruno K Podesser
- Ludwig Boltzmann Institute for Cardiovascular Research at Center for Biomedical Research and Translational Surgery, Medical University of Vienna, A1090, Vienna, Austria
| | - Peter Pokreisz
- Ludwig Boltzmann Institute for Cardiovascular Research at Center for Biomedical Research and Translational Surgery, Medical University of Vienna, A1090, Vienna, Austria
| | - Attila Kiss
- Ludwig Boltzmann Institute for Cardiovascular Research at Center for Biomedical Research and Translational Surgery, Medical University of Vienna, A1090, Vienna, Austria
| | - László Dux
- Department of Biochemistry and Interdisciplinary Centre of Excellence, Albert Szent-Györgyi Medical School, University of Szeged, 6720, Szeged, Hungary.
| | - Krisztina Csabafi
- Department of Pathophysiology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, 6720, Hungary
| | - Márta Sárközy
- Department of Biochemistry and Interdisciplinary Centre of Excellence, Albert Szent-Györgyi Medical School, University of Szeged, 6720, Szeged, Hungary.
- Department of Pathophysiology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, 6720, Hungary.
| |
Collapse
|
4
|
Butler K, Brinker CJ, Leong HS. Bridging the In Vitro to In Vivo gap: Using the Chick Embryo Model to Accelerate Nanoparticle Validation and Qualification for In Vivo studies. ACS NANO 2022; 16:19626-19650. [PMID: 36453753 PMCID: PMC9799072 DOI: 10.1021/acsnano.2c03990] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 10/17/2022] [Indexed: 06/17/2023]
Abstract
We postulate that nanoparticles (NPs) for use in therapeutic applications have largely not realized their clinical potential due to an overall inability to use in vitro results to predict NP performance in vivo. The avian embryo and associated chorioallantoic membrane (CAM) has emerged as an in vivo preclinical model that bridges the gap between in vitro and in vivo, enabling rapid screening of NP behavior under physiologically relevant conditions and providing a rapid, accessible, economical, and more ethical means of qualifying nanoparticles for in vivo use. The CAM is highly vascularized and mimics the diverging/converging vasculature of the liver, spleen, and lungs that serve as nanoparticle traps. Intravital imaging of fluorescently labeled NPs injected into the CAM vasculature enables immediate assessment and quantification of nano-bio interactions at the individual NP scale in any tissue of interest that is perfused with a microvasculature. In this review, we highlight how utilization of the avian embryo and its CAM as a preclinical model can be used to understand NP stability in blood and tissues, extravasation, biocompatibility, and NP distribution over time, thereby serving to identify a subset of NPs with the requisite stability and performance to introduce into rodent models and enabling the development of structure-property relationships and NP optimization without the sacrifice of large populations of mice or other rodents. We then review how the chicken embryo and CAM model systems have been used to accelerate the development of NP delivery and imaging agents by allowing direct visualization of targeted (active) and nontargeted (passive) NP binding, internalization, and cargo delivery to individual cells (of relevance for the treatment of leukemia and metastatic cancer) and cellular ensembles (e.g., cancer xenografts of interest for treatment or imaging of cancer tumors). We conclude by showcasing emerging techniques for the utilization of the CAM in future nano-bio studies.
Collapse
Affiliation(s)
- Kimberly
S. Butler
- Molecular
and Microbiology, Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
| | - C. Jeffrey Brinker
- Department
of Chemical and Biological Engineering and the Comprehensive Cancer
Center, The University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Hon Sing Leong
- Department
of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto M5G 1L7, Canada
- Biological
Sciences Platform, Sunnybrook Hospital, Toronto M4N 3M5, Canada
| |
Collapse
|
5
|
Mohapatra T, Dixit M. IQ Motif Containing GTPase Activating Proteins (IQGAPs), A-Kinase Anchoring Proteins (AKAPs) and Kinase Suppressor of Ras Proteins (KSRs) in Scaffolding Oncogenic Pathways and Their Therapeutic Potential. ACS OMEGA 2022; 7:45837-45848. [PMID: 36570181 PMCID: PMC9773950 DOI: 10.1021/acsomega.2c05505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
Scaffolding proteins colocalize interacting partners on their surface and facilitate complex formation. They have multiple domains and motifs, which provide binding sites for various molecules. This property of scaffolding proteins helps in the orderly transduction of signals. Abnormal signal transduction is frequently observed in cancers, which can also be attributed to the altered functionality of scaffolding proteins. IQ motif containing GTPase activating proteins (IQGAPs), kinase suppressor of Ras (KSR), and A-kinase anchoring proteins (AKAPs) tether oncogenic pathways RAS/RAF/MEK/ERK, PI3K/AKT, Hippo, Wnt, and CDC42/RAC to them. Scaffolding proteins are attractive drug targets as they are the controlling hub for multiple pathways and regulate crosstalk between them. The first part of this review describes the human scaffolding proteins known to play a role in oncogenesis, pathways altered by them, and the impact on oncogenic processes. The second part provides information on the therapeutic potential of scaffolding proteins and future possibilities. The information on the explored and unexplored areas of the therapeutic potential of scaffolding proteins will be equally helpful for biologists and chemists.
Collapse
Affiliation(s)
- Talina Mohapatra
- National
Institute of Science Education and Research, School of Biological Sciences, Bhubaneswar, Odisha 752050, India
- Homi
Bhabha National Institute, Training School
Complex, Anushaktinagar, Mumbai 400094, India
| | - Manjusha Dixit
- National
Institute of Science Education and Research, School of Biological Sciences, Bhubaneswar, Odisha 752050, India
- Homi
Bhabha National Institute, Training School
Complex, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
6
|
Qasim M, Ricks-Santi LJ, Naab TJ, Rajack F, Beyene D, Abbas M, Kassim OO, Copeland RL, Kanaan Y. Inverse Correlation of KISS1 and KISS1R Expression in Triple-negative Breast Carcinomas from African American Women. Cancer Genomics Proteomics 2022; 19:673-682. [PMID: 36316037 PMCID: PMC9620443 DOI: 10.21873/cgp.20350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/29/2022] [Accepted: 07/21/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND/AIM The kisspeptin 1 (KISS1) gene encodes a precursor polypeptide which after proteolysis forms the kisspeptin-10 (KISS1) protein. KISS1, retains maximum physiological activity when it binds to its receptor (KISS1R), allowing KISS1 to effectively function as a suppressor of metastasis in melanomas and other types of cancer. The goal of this study was to evaluate the expression of KISS1 and KISS1R in breast carcinomas from African American (AA) women and correlate their association with clinicopathological features, including breast cancer subtypes, and outcomes. MATERIALS AND METHODS Tissue microarrays were constructed from formalin-fixed, paraffin-embedded surgical blocks from 216 AA patients. KISS1 and KISS1R expression was assessed using immunohistochemistry. Univariate analysis was used to determine the association between the expression of KISS1 and KISS1R, and clinicopathological characteristics. Pearson correlation was also determined between immunohistochemical H-scores, tumor size, and the number of positive lymph nodes. Kaplan-Meier estimates of overall and disease-free survival were plotted, and log-rank tests were performed to compare estimates among groups. RESULTS KISS1 protein expression was found to be higher in receptor-negative and triple-negative breast cancer (TNBC) compared to other subtypes (p<0.001). However, KISS1R expression was higher in non-TNBC tumors compared to other subtypes (p<0.001). Higher KISS1R expression was marginally negatively correlated with tumor size (p=0.077), and positively correlated with lymph-node positivity (p=0.056), and disease-free survival (p=0.092). CONCLUSION Our study showed a significant inverse correlation between KISS1 and KISS1R in TNBC. This investigation implicates a role for KISS1 and KISS1R in the pathogenesis of TNBCs in AA women.
Collapse
Affiliation(s)
- Mustafa Qasim
- Department of Microbiology, Howard University College of Medicine, Washington, DC, U.S.A
| | - Luisel J Ricks-Santi
- Department of Pharmacotherapy and Translational Research, College of Medicine, University of Florida, Gainesville, FL, U.S.A
| | - Tammey J Naab
- Department of Pathology, Howard University Hospital, Washington, DC, U.S.A
| | - Fareed Rajack
- Department of Pathology, Howard University Hospital, Washington, DC, U.S.A
| | - Desta Beyene
- Howard University Cancer Center, Washington, DC, U.S.A
| | - Muneer Abbas
- Department of Microbiology, Howard University College of Medicine, Washington, DC, U.S.A
| | - Olakunle O Kassim
- Department of Microbiology, Howard University College of Medicine, Washington, DC, U.S.A
| | - Robert L Copeland
- Howard University Cancer Center, Washington, DC, U.S.A
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, U.S.A
| | - Yasmine Kanaan
- Department of Microbiology, Howard University College of Medicine, Washington, DC, U.S.A.;
- Howard University Cancer Center, Washington, DC, U.S.A
| |
Collapse
|
7
|
Lack of Oestrogen Receptor Expression in Breast Cancer Cells Does Not Correlate with Kisspeptin Signalling and Migration. Int J Mol Sci 2022; 23:ijms23158744. [PMID: 35955878 PMCID: PMC9368979 DOI: 10.3390/ijms23158744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 12/03/2022] Open
Abstract
Kisspeptin is an anti-metastatic mediator in many cancer types, acting through its receptor, KISS1R. However, controversy remains regarding its role in breast cancer since both pro- and anti-metastatic roles have been ascribed to it. In KISS1R overexpressing triple-negative breast cancer (TNBC) cells, stimulation has been associated with increased invasion and MMP-9 expression, leading to the suggestion that hormone receptor status determines the metastatic effects of kisspeptin. To assess the veracity of this claim, we compared endogenous KISS1R signalling and physiological output in the hormone receptor-negative MDA-MB-231 and BT-20 cell lines after KP-10 (shortest active kisspeptin peptide) stimulation. MDA-MB-231 cells are metastatic when implanted in mice while BT-20 are not and remain epithelial-like. We show that both cell lines express KISS1R mRNA and respond to KP-10 by elevating calcium mobilisation. However, KP-10 stimulation induced migration of MDA-MB-231, but not BT-20 cells, in a calcium-dependent manner. Moreover, only BT-20 cells responded to KP-10 by increasing ERK phosphorylation in a β-arrestin-dependent manner. Interestingly, both cell lines displayed different complements of β-arrestin 1 and 2 expression. Overall, our data shows that, in TNBC, it is not universally true that kisspeptin/KISS1R stimulate migration or pro-metastatic behaviour, as divergent responses were observed in the two TNBC lines tested. Whether this divergence is related to the observed differences in β-arrestin complements warrants further investigation and may enable further stratification of the ability of kisspeptin to influence breast tumour behaviour.
Collapse
|
8
|
Guzman S, Dragan M, Kwon H, de Oliveira V, Rao S, Bhatt V, Kalemba KM, Shah A, Rustgi VK, Wang H, Bech PR, Abbara A, Izzi-Engbeaya C, Manousou P, Guo JY, Guo GL, Radovick S, Dhillo WS, Wondisford FE, Babwah AV, Bhattacharya M. Targeting hepatic kisspeptin receptor ameliorates nonalcoholic fatty liver disease in a mouse model. J Clin Invest 2022; 132:145889. [PMID: 35349482 PMCID: PMC9106350 DOI: 10.1172/jci145889] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/23/2022] [Indexed: 01/27/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), the most common liver disease, has become a silent worldwide pandemic. The incidence of NAFLD correlates with the rise in obesity, type 2 diabetes, and metabolic syndrome. A hallmark featureof NAFLD is excessive hepatic fat accumulation or steatosis, due to dysregulated hepatic fat metabolism, which can progress to nonalcoholic steatohepatitis (NASH), fibrosis, and cirrhosis. Currently, there are no approved pharmacotherapies to treat this disease. Here, we have found that activation of the kisspeptin 1 receptor (KISS1R) signaling pathway has therapeutic effects in NAFLD. Using high-fat diet-fed mice, we demonstrated that a deletion of hepatic Kiss1r exacerbated hepatic steatosis. In contrast, enhanced stimulation of KISS1R protected against steatosis in wild-type C57BL/6J mice and decreased fibrosis using a diet-induced mouse model of NASH. Mechanistically, we found that hepatic KISS1R signaling activates the master energy regulator, AMPK, to thereby decrease lipogenesis and progression to NASH. In patients with NAFLD and in high-fat diet-fed mice, hepatic KISS1/KISS1R expression and plasma kisspeptin levels were elevated, suggesting a compensatory mechanism to reduce triglyceride synthesis. These findings establish KISS1R as a therapeutic target to treat NASH.
Collapse
Affiliation(s)
- Stephania Guzman
- Department of Medicine, Robert Wood Johnson Medical School, and,Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey, USA
| | | | - Hyokjoon Kwon
- Department of Medicine, Robert Wood Johnson Medical School, and
| | | | - Shivani Rao
- Department of Medicine, Robert Wood Johnson Medical School, and
| | - Vrushank Bhatt
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | | | - Ankit Shah
- Department of Medicine, Robert Wood Johnson Medical School, and
| | - Vinod K. Rustgi
- Department of Medicine, Robert Wood Johnson Medical School, and
| | - He Wang
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA
| | - Paul R. Bech
- Section of Endocrinology and Investigative Medicine and
| | - Ali Abbara
- Section of Endocrinology and Investigative Medicine and
| | | | - Pinelopi Manousou
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Jessie Y. Guo
- Department of Medicine, Robert Wood Johnson Medical School, and,Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Grace L. Guo
- Department of Pharmacology and Toxicology, School of Pharmacy, and
| | - Sally Radovick
- Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA
| | | | | | - Andy V. Babwah
- Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA.,Child Health Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Moshmi Bhattacharya
- Department of Medicine, Robert Wood Johnson Medical School, and,Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA.,Child Health Institute of New Jersey, New Brunswick, New Jersey, USA
| |
Collapse
|
9
|
Li Z, Liu J, Inuzuka H, Wei W. Functional analysis of the emerging roles for the KISS1/KISS1R signaling pathway in cancer metastasis. J Genet Genomics 2021; 49:181-184. [PMID: 34767970 DOI: 10.1016/j.jgg.2021.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 02/07/2023]
Abstract
Cancer metastasis, a process that primary tumor cells disseminate to secondary organs, is the most lethal and least effectively treated characteristic of human cancers. Kisspeptins are proteins encoded by the KISS1 gene that was originally described as a melanoma metastasis suppressor gene. Then, Kisspeptins were discovered as the natural ligands of the G-protein-coupled receptor 54 (GPR54) that is also called KISS1R. The KISS1/KISS1R signaling is essential to control GnRH secretion during puberty and to establish mammalian reproductive function through the hypothalamic-pituitary-gonadal (HPG) axis. Although KISS1 primarily plays a suppressive role in the metastasis progression in several cancer types, emerging evidence indicates that the physiological effect of KISS1/KISS1R in cancer metastasis is tissue context-dependent and still controversial. Here, we will discuss the epigenetic mechanism regulation of KISS1 gene expression, the context-dependent role of KISS1/KISS1R, pro-/anti-metastasis signaling pathways of KISS1/KISS1R, and the perspective anti-cancer therapeutics via targeting KISS1/KISS1R.
Collapse
Affiliation(s)
- Zhenxi Li
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Jing Liu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
10
|
Wei T, Lambert PF. Role of IQGAP1 in Carcinogenesis. Cancers (Basel) 2021; 13:3940. [PMID: 34439095 PMCID: PMC8391515 DOI: 10.3390/cancers13163940] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 12/31/2022] Open
Abstract
Scaffolding proteins can play important roles in cell signaling transduction. IQ motif-containing GTPase-activating protein 1 (IQGAP1) influences many cellular activities by scaffolding multiple key signaling pathways, including ones involved in carcinogenesis. Two decades of studies provide evidence that IQGAP1 plays an essential role in promoting cancer development. IQGAP1 is overexpressed in many types of cancer, and its overexpression in cancer is associated with lower survival of the cancer patient. Here, we provide a comprehensive review of the literature regarding the oncogenic roles of IQGAP1. We start by describing the major cancer-related signaling pathways scaffolded by IQGAP1 and their associated cellular activities. We then describe clinical and molecular evidence for the contribution of IQGAP1 in different types of cancers. In the end, we review recent evidence implicating IQGAP1 in tumor-related immune responses. Given the critical role of IQGAP1 in carcinoma development, anti-tumor therapies targeting IQGAP1 or its associated signaling pathways could be beneficial for patients with many types of cancer.
Collapse
Affiliation(s)
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA;
| |
Collapse
|
11
|
Harihar S, Ray S, Narayanan S, Santhoshkumar A, Ly T, Welch DR. Role of the tumor microenvironment in regulating the anti-metastatic effect of KISS1. Clin Exp Metastasis 2020; 37:209-223. [PMID: 32088827 PMCID: PMC7339126 DOI: 10.1007/s10585-020-10030-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 02/19/2020] [Indexed: 12/29/2022]
Abstract
KISS1, a metastasis suppressor gene, has been shown to block metastasis without affecting primary tumor formation. Loss of KISS1 leads to invasion and metastasis in multiple cancers, which is the leading cause of cancer morbidity and mortality. The discovery of KISS1 has provided a ray of hope for early clinical diagnosis and for designing effective treatments targeting metastatic cancer. However, this goal requires greater holistic understanding of its mechanism of action. In this review, we go back into history and highlight some key developments, from the discovery of KISS1 to its role in regulating multiple physiological processes including cancer. We discuss key emerging roles for KISS1, specifically interactions with tissue microenvironment to promote dormancy and regulation of tumor cell metabolism, acknowledged as some of the key players in tumor progression and metastasis. We finally discuss strategies whereby KISS1 might be exploited clinically to treat metastasis.
Collapse
Affiliation(s)
- Sitaram Harihar
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India.
| | - Srijit Ray
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Samyukta Narayanan
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Anirudh Santhoshkumar
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Thuc Ly
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS, 66160, USA
- The University Kansas Cancer Center, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS, 66160, USA
| | - Danny R Welch
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS, 66160, USA
- The University Kansas Cancer Center, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS, 66160, USA
| |
Collapse
|
12
|
Dragan M, Nguyen MU, Guzman S, Goertzen C, Brackstone M, Dhillo WS, Bech PR, Clarke S, Abbara A, Tuck AB, Hess DA, Pine SR, Zong WX, Wondisford FE, Su X, Babwah AV, Bhattacharya M. G protein-coupled kisspeptin receptor induces metabolic reprograming and tumorigenesis in estrogen receptor-negative breast cancer. Cell Death Dis 2020; 11:106. [PMID: 32034133 PMCID: PMC7005685 DOI: 10.1038/s41419-020-2305-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 01/27/2020] [Indexed: 12/23/2022]
Abstract
Triple-negative breast cancer (TNBC) is a highly metastatic and deadly disease. TNBC tumors lack estrogen receptor (ERα), progesterone receptor (PR), and HER2 (ErbB2) and exhibit increased glutamine metabolism, a requirement for tumor growth. The G protein-coupled kisspeptin receptor (KISS1R) is highly expressed in patient TNBC tumors and promotes malignant transformation of breast epithelial cells. This study found that TNBC patients displayed elevated plasma kisspeptin levels compared with healthy subjects. It also provides the first evidence that in addition to promoting tumor growth and metastasis in vivo, KISS1R-induced glutamine dependence of tumors. In addition, tracer-based metabolomics analyses revealed that KISS1R promoted glutaminolysis and nucleotide biosynthesis by increasing c-Myc and glutaminase levels, key regulators of glutamine metabolism. Overall, this study establishes KISS1R as a novel regulator of TNBC metabolism and metastasis, suggesting that targeting KISS1R could have therapeutic potential in the treatment of TNBC.
Collapse
Affiliation(s)
- Magdalena Dragan
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Mai-Uyen Nguyen
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Stephania Guzman
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Cameron Goertzen
- Cancer Invasion and Metastasis Laboratory, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Muriel Brackstone
- Department of Surgery, London Health Sciences Centre, London, ON, Canada
| | - Waljit S Dhillo
- Section of Investigative Medicine, Imperial College London, London, UK
| | - Paul R Bech
- Section of Investigative Medicine, Imperial College London, London, UK
| | - Sophie Clarke
- Section of Investigative Medicine, Imperial College London, London, UK
| | - Ali Abbara
- Section of Investigative Medicine, Imperial College London, London, UK
| | - Alan B Tuck
- Department of Pathology, The University of Western Ontario, London, ON, Canada
| | - David A Hess
- Department of Physiology and Pharmacology, The University of Western Ontario, London, ON, Canada
| | - Sharon R Pine
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA.,Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Wei-Xing Zong
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA.,Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, New Brunswick, NJ, USA
| | - Frederic E Wondisford
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA.,Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA.,Child Health Institute of New Jersey, New Brunswick, NJ, USA
| | - Xiaoyang Su
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA.,Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Andy V Babwah
- Child Health Institute of New Jersey, New Brunswick, NJ, USA.,Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Moshmi Bhattacharya
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA. .,Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA. .,Child Health Institute of New Jersey, New Brunswick, NJ, USA.
| |
Collapse
|
13
|
Ke R, Ma X, Lee LTO. Understanding the functions of kisspeptin and kisspeptin receptor (Kiss1R) from clinical case studies. Peptides 2019; 120:170019. [PMID: 30339828 DOI: 10.1016/j.peptides.2018.09.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/21/2018] [Accepted: 09/21/2018] [Indexed: 10/28/2022]
Abstract
It is widely acknowledged that kisspeptin and its receptor Kiss1R play central regulatory roles in the hypothalamus-pituitary-gonad (HPG) axis and reproduction. Mutations of KISS1 and KISS1R lead to disorders associated with pubertal development, such as central precocious puberty (CPP) and idiopathic hypogonadotropic hypogonadism (IHH). This review focuses on KISS1 and KISS1R mutations found in CPP and IHH and its purposes are twofold: Firstly, based on the mutations found in KISS1 and KISS1R, this review provides insights into the precise mechanism of kisspeptin and the kisspeptin/Kiss1R pathway in the reproductive axis and in puberty. Secondly, G protein-coupled receptors (GPCRs) are known to share highly conserved structural motifs; therefore, knowledge of mutations found at different structural domains of Kiss1R in the diseased state, and how they affect Kiss1R function can be used to decipher GPCR domain function.
Collapse
Affiliation(s)
- Ran Ke
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Xin Ma
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Leo T O Lee
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau, China.
| |
Collapse
|
14
|
Weinman MA, Fischer JA, Jacobs DC, Goodall CP, Bracha S, Chappell PE. Autocrine production of reproductive axis neuropeptides affects proliferation of canine osteosarcoma in vitro. BMC Cancer 2019; 19:158. [PMID: 30777054 PMCID: PMC6379937 DOI: 10.1186/s12885-019-5363-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 02/11/2019] [Indexed: 01/19/2023] Open
Abstract
Background Osteosarcoma strikes hundreds of people each year, of both advanced and younger ages, and is often terminal. Like many tumor types, these bone tumors will frequently undergo a neuroendocrine transition, utilizing autocrine and/or paracrine hormones as growth factors and/or promoters of angiogenesis to facilitate progression and metastasis. While many of these factors and their actions on tumor growth are characterized, some tumor-derived neuropeptides remain unexplored. Methods Using validated canine osteosarcoma cell lines in vitro, as well as cells derived from spontaneous tumors in dogs, we explored the autocrine production of two neuropeptides typically found in the hypothalamus, and most closely associated with reproduction: gonadotropin-releasing hormone (GnRH) and kisspeptin (Kiss-1). We evaluated gene expression and protein secretion of these hormones using quantitative RT-PCR and a sensitive radioimmunoassay, and explored changes in cell proliferation determined by MTS cell viability assays. Results Our current studies reveal that several canine osteosarcoma cell lines (COS, POS, HMPOS, D17, C4) synthesize and secrete GnRH and express the GnRH receptor, while COS and POS also express kiss1 and its cognate receptor. We have further found that GnRH and kisspeptin, exogenously applied to these tumor cells, exert significant effects on both gene expression and proliferation. Of particular interest, kisspeptin exposure stimulated GnRH secretion from COS, similarly to the functional relationship observed within the neuroendocrine reproductive axis. Additionally, GnRH and kisspeptin treatment both increased COS proliferation, which additionally manifested in increased expression of the bone remodeling ligand rankl within these cells. These effects were blocked by treatment with a specific GnRH receptor inhibitor. Both neuropeptides were found to increase expression of the specific serotonin (5HT) receptor htr2a, the activation of which has previously been associated with cellular proliferation, suggesting that production of these factors by osteosarcoma cells may act to sensitize tumors to circulating 5HT of local and/or enteric origin. Conclusions Here we report that kisspeptin and GnRH act as autocrine growth factors in canine osteosarcoma cells in vitro, modulating RANKL and serotonin receptor expression in a manner consistent with pro-proliferative effects. Pharmacological targeting of these hormones may represent new avenues of osteosarcoma treatment. Electronic supplementary material The online version of this article (10.1186/s12885-019-5363-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marcus A Weinman
- Department of Clinical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, 97331, USA
| | - Jacob A Fischer
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, 97331, USA
| | - Dakota C Jacobs
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, 97331, USA
| | - Cheri P Goodall
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, 97331, USA
| | - Shay Bracha
- Department of Clinical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, 97331, USA
| | - Patrick E Chappell
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, 97331, USA.
| |
Collapse
|
15
|
KiSS1 in regulation of metastasis and response to antitumor drugs. Drug Resist Updat 2019; 42:12-21. [DOI: 10.1016/j.drup.2019.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/03/2019] [Accepted: 02/06/2019] [Indexed: 12/15/2022]
|
16
|
Noonan MM, Dragan M, Mehta MM, Hess DA, Brackstone M, Tuck AB, Viswakarma N, Rana A, Babwah AV, Wondisford FE, Bhattacharya M. The matrix protein Fibulin-3 promotes KISS1R induced triple negative breast cancer cell invasion. Oncotarget 2018; 9:30034-30052. [PMID: 30046386 PMCID: PMC6059025 DOI: 10.18632/oncotarget.25682] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 06/13/2018] [Indexed: 12/18/2022] Open
Abstract
Breast cancer is a leading cause of cancer mortality. In particular, triple negative breast cancer (TNBC) comprise a heterogeneous group of basal-like tumors lacking estrogen receptor (ERα), progesterone receptor (PR) and HER2 (ErbB2). TNBC represents 15-20% of all breast cancers and occurs frequently in women under 50 years of age. Unfortunately, these patients lack targeted therapy, are typically high grade and metastatic at time of diagnosis. The mechanisms regulating metastasis remain poorly understood. We have previously shown that the kisspeptin receptor, KISS1R stimulates invasiveness of TNBC cells. In this report, we demonstrate that KISS1R signals via the secreted extracellular matrix protein, fibulin-3, to regulate TNBC invasion. We found that the fibulin-3 gene is amplified in TNBC primary tumors and that plasma fibulin-3 levels are elevated in TNBC patients compared to healthy subjects. In this study, we show that KISS1R activation increases fibulin-3 expression and secretion. We show that fibulin-3 regulates TNBC metastasis in a mouse experimental metastasis xenograft model and signals downstream of KISS1R to stimulate TNBC invasion, by activating matrix metalloproteinase 9 (MMP-9) and the MAPK pathway. These results identify fibulin-3 as a new downstream mediator of KISS1R signaling and as a potential biomarker for TNBC progression and metastasis, thus revealing KISS1R and fibulin-3 as novel drug targets in TNBC.
Collapse
Affiliation(s)
- Michelle M Noonan
- Department of Physiology and Pharmacology, The University of Western Ontario, London, ON, Canada
| | - Magdalena Dragan
- Department of Physiology and Pharmacology, The University of Western Ontario, London, ON, Canada
| | - Michael M Mehta
- Department of Physiology and Pharmacology, The University of Western Ontario, London, ON, Canada
| | - David A Hess
- Department of Physiology and Pharmacology, The University of Western Ontario, London, ON, Canada.,Krembil Centre for Stem Cell Biology, Molecular Medicine Research Group, Robarts Research Institute, London, ON, Canada
| | - Muriel Brackstone
- Department of Oncology, The University of Western Ontario, London, ON, Canada.,Lawson Health Research Institute, The University of Western Ontario, London, ON, Canada.,Division of Surgical Oncology, The University of Western Ontario, London, ON, Canada
| | - Alan B Tuck
- Department of Oncology, The University of Western Ontario, London, ON, Canada.,Department of Pathology, The University of Western Ontario, London, ON, Canada.,The Pamela Greenaway-Kohlmeier Translational Breast Cancer Research Unit, London Regional Cancer Program, London, ON, Canada
| | - Navin Viswakarma
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL, USA
| | - Ajay Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL, USA
| | - Andy V Babwah
- Department of Pediatrics, Child Health Institute of NJ, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Frederic E Wondisford
- Department of Medicine, Child Health Institute of NJ, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Moshmi Bhattacharya
- Department of Physiology and Pharmacology, The University of Western Ontario, London, ON, Canada.,Department of Oncology, The University of Western Ontario, London, ON, Canada.,Lawson Health Research Institute, The University of Western Ontario, London, ON, Canada.,Department of Medicine, Child Health Institute of NJ, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| |
Collapse
|
17
|
Guzman S, Brackstone M, Radovick S, Babwah AV, Bhattacharya MM. KISS1/KISS1R in Cancer: Friend or Foe? Front Endocrinol (Lausanne) 2018; 9:437. [PMID: 30123188 PMCID: PMC6085450 DOI: 10.3389/fendo.2018.00437] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/16/2018] [Indexed: 12/19/2022] Open
Abstract
The KISS1 gene encodes KISS1, a protein that is rapidly processed in serum into smaller but biologically active peptides called kisspeptins (KPs). KISS1 and the KPs signal via the G-protein coupled receptor KISS1R. While KISS1 and KPs are recognized as potent positive regulators of the reproductive neuroendocrine axis in mammals, the first reported role for KISS1 was that of metastasis suppression in melanoma. Since then, it has become apparent that KISS1, KPs, and KISS1R regulate the development and progression of several cancers but interestingly, while these molecules act as suppressors of tumorigenesis and metastasis in many cancers, in breast and liver cancer they function as promoters. Thus, they join a small but growing number of molecules that exhibit dual roles in cancer highlighting the importance of studying cancer in context. Given their roles, KISS1, KPs and KISS1R represent important molecules in the development of novel therapies and/or as prognostic markers in treating cancer. However, getting to that point requires a detailed understanding of the relationship between these molecules and different cancers. The purpose of this review is therefore to highlight and discuss the clinical studies that have begun describing this relationship in varying cancer types including breast, liver, pancreatic, colorectal, bladder, and ovarian. An emerging theme from the reviewed studies is that the relationship between these molecules and a given cancer is complex and affected by many factors such as the micro-environment and steroid receptor status of the cancer cell. Our review and discussion of these important clinical studies should serve as a valuable resource in the successful development of future clinical studies.
Collapse
Affiliation(s)
- Stephania Guzman
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
- Child Health Institute of New Jersey, New Brunswick, NJ, United States
| | - Muriel Brackstone
- Division of Surgical Oncology, The University of Western Ontario, London, ON, Canada
| | - Sally Radovick
- Child Health Institute of New Jersey, New Brunswick, NJ, United States
- Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers University, The State University of New Jersey, New Brunswick, NJ, United States
| | - Andy V. Babwah
- Child Health Institute of New Jersey, New Brunswick, NJ, United States
- Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers University, The State University of New Jersey, New Brunswick, NJ, United States
| | - Moshmi M. Bhattacharya
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
- Child Health Institute of New Jersey, New Brunswick, NJ, United States
- Cancer Institute of New Jersey, New Brunswick, NJ, United States
- *Correspondence: Moshmi M. Bhattacharya
| |
Collapse
|
18
|
Khakshour S, Labrecque MP, Esmaeilsabzali H, Lee FJS, Cox ME, Park EJ, Beischlag TV. Retinoblastoma protein (Rb) links hypoxia to altered mechanical properties in cancer cells as measured by an optical tweezer. Sci Rep 2017; 7:7833. [PMID: 28798482 PMCID: PMC5552853 DOI: 10.1038/s41598-017-07947-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 07/06/2017] [Indexed: 12/18/2022] Open
Abstract
Hypoxia modulates actin organization via multiple pathways. Analyzing the effect of hypoxia on the biophysical properties of cancer cells is beneficial for studying modulatory signalling pathways by quantifying cytoskeleton rearrangements. We have characterized the biophysical properties of human LNCaP prostate cancer cells that occur in response to loss of the retinoblastoma protein (Rb) under hypoxic stress using an oscillating optical tweezer. Hypoxia and Rb-loss increased cell stiffness in a fashion that was dependent on activation of the extracellular signal-regulated kinase (ERK) and the protein kinase B (AKT)- mammalian target of rapamycin (MTOR) pathways. Pharmacological inhibition of MEK1/2, AKT or MTOR impeded hypoxia-inducible changes in the actin cytoskeleton and inhibited cell migration in Rb-deficient cells conditioned with hypoxia. These results suggest that loss of Rb in transformed hypoxic cancer cells affects MEK1/2-ERK/AKT-MTOR signalling and promotes motility. Thus, the mechanical characterization of cancer cells using an optical tweezer provides an additional technique for cancer diagnosis/prognosis and evaluating therapeutic performance.
Collapse
Affiliation(s)
- S Khakshour
- School of Mechatronic Systems Engineering, Faculty of Applied Sciences, Simon Fraser University, Surrey, BC, Canada
| | - M P Labrecque
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - H Esmaeilsabzali
- School of Mechatronic Systems Engineering, Faculty of Applied Sciences, Simon Fraser University, Surrey, BC, Canada
| | - F J S Lee
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - M E Cox
- Department of Urologic Sciences, The Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - E J Park
- School of Mechatronic Systems Engineering, Faculty of Applied Sciences, Simon Fraser University, Surrey, BC, Canada. .,Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada.
| | - T V Beischlag
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada.
| |
Collapse
|
19
|
G protein-coupled KISS1 receptor is overexpressed in triple negative breast cancer and promotes drug resistance. Sci Rep 2017; 7:46525. [PMID: 28422142 PMCID: PMC5395950 DOI: 10.1038/srep46525] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 03/22/2017] [Indexed: 12/17/2022] Open
Abstract
Triple-negative breast cancer (TNBC) lacks the expression of estrogen receptor α, progesterone receptor and human epidermal growth factor receptor 2 (HER2). TNBC patients lack targeted therapies, as they fail to respond to endocrine and anti-HER2 therapy. Prognosis for this aggressive cancer subtype is poor and survival is limited due to the development of resistance to available chemotherapies and resultant metastases. The mechanisms regulating tumor resistance are poorly understood. Here we demonstrate that the G protein-coupled kisspeptin receptor (KISS1R) promotes drug resistance in TNBC cells. KISS1R binds kisspeptins, peptide products of the KISS1 gene and in numerous cancers, this signaling pathway plays anti-metastatic roles. However, in TNBC, KISS1R promotes tumor invasion. We show that KISS1 and KISS1R mRNA and KISS1R protein are upregulated in TNBC tumors, compared to normal breast tissue. KISS1R signaling promotes drug resistance by increasing the expression of efflux drug transporter, breast cancer resistance protein (BCRP) and by inducing the activity and transcription of the receptor tyrosine kinase, AXL. BCRP and AXL transcripts are elevated in TNBC tumors, compared to normal breast, and TNBC tumors expressing KISS1R also express AXL and BCRP. Thus, KISS1R represents a potentially novel therapeutic target to restore drug sensitivity in TNBC patients.
Collapse
|
20
|
Wang H, Schaefer T, Konantz M, Braun M, Varga Z, Paczulla AM, Reich S, Jacob F, Perner S, Moch H, Fehm TN, Kanz L, Schulze-Osthoff K, Lengerke C. Prominent Oncogenic Roles of EVI1 in Breast Carcinoma. Cancer Res 2017; 77:2148-2160. [DOI: 10.1158/0008-5472.can-16-0593] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 11/29/2016] [Accepted: 01/08/2017] [Indexed: 11/16/2022]
|
21
|
Gahete MD, Vázquez-Borrego MC, Martínez-Fuentes AJ, Tena-Sempere M, Castaño JP, Luque RM. Role of the Kiss1/Kiss1r system in the regulation of pituitary cell function. Mol Cell Endocrinol 2016; 438:100-106. [PMID: 27477782 DOI: 10.1016/j.mce.2016.07.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 07/27/2016] [Accepted: 07/27/2016] [Indexed: 12/13/2022]
Abstract
Kisspeptin (Kiss1) is an amidated neurohormone that belongs to the RF-amide peptide family, which has a key role in the control of reproduction. Specifically, kisspeptin regulates reproductive events, including puberty and ovulation, primarily by activating the surface receptor Kiss1r (aka GPR54), at hypothalamic gonadotropin-releasing hormone (GnRH) neurons. More recently, it has been found that kisspeptin peptide is present in the hypophyseal portal circulation and that the Kiss1/Kiss1r system is expressed in pituitary cells, which suggest that kisspeptin could exert an endocrine, paracrine or even autocrine role at the pituitary gland level. Indeed, mounting evidence is pointing towards a direct role of kisspeptin in the control of not only gonadotropins but also other pituitary secretions such as growth hormone or prolactin. In this review, we summarize the most recent advances in the study of the role that the Kiss/Kiss1r system plays in the control of pituitary gland function, paying special attention to the direct role of this neuropeptide on pituitary cells and its interactions with other relevant regulators.
Collapse
Affiliation(s)
- Manuel D Gahete
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), 14004 Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain; Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain; Agrifood Campus of International Excellence (ceiA3), 14004 Cordoba, Spain
| | - Mari C Vázquez-Borrego
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), 14004 Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain; Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain; Agrifood Campus of International Excellence (ceiA3), 14004 Cordoba, Spain
| | - Antonio J Martínez-Fuentes
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), 14004 Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain; Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain; Agrifood Campus of International Excellence (ceiA3), 14004 Cordoba, Spain
| | - Manuel Tena-Sempere
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), 14004 Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain; Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain
| | - Justo P Castaño
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), 14004 Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain; Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain; Agrifood Campus of International Excellence (ceiA3), 14004 Cordoba, Spain
| | - Raúl M Luque
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), 14004 Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain; Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain; Agrifood Campus of International Excellence (ceiA3), 14004 Cordoba, Spain.
| |
Collapse
|
22
|
The KISS1 Receptor as an In Vivo Microenvironment Imaging Biomarker of Multiple Myeloma Bone Disease. PLoS One 2016; 11:e0155087. [PMID: 27158817 PMCID: PMC4861277 DOI: 10.1371/journal.pone.0155087] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/22/2016] [Indexed: 11/19/2022] Open
Abstract
Multiple myeloma is one of the most common hematological diseases and is characterized by an aberrant proliferation of plasma cells within the bone marrow. As a result of crosstalk between cancer cells and the bone microenvironment, bone homeostasis is disrupted leading to osteolytic lesions and poor prognosis. Current diagnostic strategies for myeloma typically rely on detection of excess monoclonal immunoglobulins or light chains in the urine or serum. However, these strategies fail to localize the sites of malignancies. In this study we sought to identify novel biomarkers of myeloma bone disease which could target the malignant cells and/or the surrounding cells of the tumor microenvironment. From these studies, the KISS1 receptor (KISS1R), a G-protein-coupled receptor known to play a role in the regulation of endocrine functions, was identified as a target gene that was upregulated on mesenchymal stem cells (MSCs) and osteoprogenitor cells (OPCs) when co-cultured with myeloma cells. To determine the potential of this receptor as a biomarker, in vitro and in vivo studies were performed with the KISS1R ligand, kisspeptin, conjugated with a fluorescent dye. In vitro microscopy showed binding of fluorescently-labeled kisspeptin to both myeloma cells as well as MSCs under direct co-culture conditions. Next, conjugated kisspeptin was injected into immune-competent mice containing myeloma bone lesions. Tumor-burdened limbs showed increased peak fluorescence compared to contralateral controls. These data suggest the utility of the KISS1R as a novel biomarker for multiple myeloma, capable of targeting both tumor cells and host cells of the tumor microenvironment.
Collapse
|
23
|
Rasoulzadeh Z, Ghods R, Kazemi T, Mirzadegan E, Ghaffari-Tabrizi-Wizsy N, Rezania S, Kazemnejad S, Arefi S, Ghasemi J, Vafaei S, Mahmoudi AR, Zarnani AH. Placental Kisspeptins Differentially Modulate Vital Parameters of Estrogen Receptor-Positive and -Negative Breast Cancer Cells. PLoS One 2016; 11:e0153684. [PMID: 27101408 PMCID: PMC4839747 DOI: 10.1371/journal.pone.0153684] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 04/01/2016] [Indexed: 11/28/2022] Open
Abstract
Kisspeptins (KPs) are major regulators of trophoblast and cancer invasion. Thus far, limited and conflicting data are available on KP-mediated modulation of breast cancer (BC) metastasis; mostly based on synthetic KP-10, the most active fragment of KP. Here, we report for the first time comprehensive functional effects of term placental KPs on proliferation, adhesion, Matrigel invasion, motility, MMP activity and pro-inflammatory cytokine production in MDA-MB-231 (estrogen receptor-negative) and MCF-7 (estrogen receptor-positive). KPs were expressed at high level by term placental syncytiotrophoblasts and released in soluble form. Placental explant conditioned medium containing KPs (CM) significantly reduced proliferation of both cell types compared to CM without (w/o) KP (CM-w/o KP) in a dose- and time-dependent manner. In MDA-MB-231 cells, placental KPs significantly reduced adhesive properties, while increased MMP9 and MMP2 activity and stimulated invasion. Increased invasiveness of MDA-MB-231 cells after CM treatment was inhibited by KP receptor antagonist, P-234. CM significantly reduced motility of MCF-7 cells at all time points (2–30 hr), while it stimulated motility of MDA-MB-231 cells. These effects were reversed by P-234. Co-treatment with selective ER modulators, Tamoxifen and Raloxifene, inhibited the effect of CM on motility of MCF-7 cells. The level of IL-6 in supernatant of MCF-7 cells treated with CM was higher compared to those treated with CM-w/o KP. Both cell types produced more IL-8 after treatment with CM compared to those treated with CM-w/o KP. Taken together, our observations suggest that placental KPs differentially modulate vital parameters of estrogen receptor-positive and -negative BC cells possibly through modulation of pro-inflammatory cytokine production.
Collapse
Affiliation(s)
- Zahra Rasoulzadeh
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz, 5165683146, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5165683146, Iran
| | - Roya Ghods
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, IUMS, Tehran, 1449614535, Iran
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Tohid Kazemi
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz, 5165683146, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5165683146, Iran
- * E-mail: (AHZ); (TK)
| | - Ebrahim Mirzadegan
- Immunobiology Research Center, Avicenna Research Institute, ACECR, Tehran, 1177–19615, Iran
| | | | - Simin Rezania
- Institute of Biophysics, Medical University of Graz, Graz, 8010, Austria
| | - Somaieh Kazemnejad
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, 1177–19615, Iran
| | - Soheila Arefi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, 1177–19615, Iran
| | - Jamileh Ghasemi
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, 1177–19615, Iran
| | - Sedigheh Vafaei
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, 1177–19615, Iran
| | - Ahmad-Reza Mahmoudi
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, 1177–19615, Iran
| | - Amir-Hassan Zarnani
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, 1177–19615, Iran
- Immunology Research Center, Iran University of Medical Sciences, Tehran, 81746–73461, Iran
- * E-mail: (AHZ); (TK)
| |
Collapse
|
24
|
Kim Y, Williams KC, Gavin CT, Jardine E, Chambers AF, Leong HS. Quantification of cancer cell extravasation in vivo. Nat Protoc 2016; 11:937-48. [PMID: 27101515 DOI: 10.1038/nprot.2016.050] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cancer cell 'invasiveness' is one of the main driving forces in cancer metastasis, and assays that quantify this key attribute of cancer cells are crucial in cancer metastasis research. The research goal of many laboratories is to elucidate the signaling pathways and effectors that are responsible for cancer cell invasion, but many of these experiments rely on in vitro methods that do not specifically simulate individual steps of the metastatic cascade. Cancer cell extravasation is arguably the most important example of invasion in the metastatic cascade, whereby a single cancer cell undergoes transendothelial migration, forming invasive processes known as invadopodia to mediate translocation of the tumor cell from the vessel lumen into tissue in vivo. We have developed a rapid, reproducible and economical technique to evaluate cancer cell invasiveness by quantifying in vivo rates of cancer cell extravasation in the chorioallantoic membrane (CAM) of chicken embryos. This technique enables the investigator to perform well-powered loss-of-function studies of cancer cell extravasation within 24 h, and it can be used to identify and validate drugs with potential antimetastatic effects that specifically target cancer cell extravasation. A key advantage of this technique over similar assays is that intravascular cancer cells within the capillary bed of the CAM are clearly distinct from extravasated cells, which makes cancer cell extravasation easy to detect. An intermediate level of experience in injections of the chorioallantoic membrane of avian embryos and cell culture techniques is required to carry out the protocol.
Collapse
Affiliation(s)
- Yohan Kim
- Department of Surgery, Schulich School of Medicine, Western University, London, Ontario, Canada.,Translational Prostate Cancer Research Laboratory, Lawson Health Research Institute, London, Ontario, Canada
| | - Karla C Williams
- Department of Surgery, Schulich School of Medicine, Western University, London, Ontario, Canada.,Translational Breast Cancer Research Unit, London Health Sciences Centre, London, Ontario, Canada
| | - Carson T Gavin
- Department of Surgery, Schulich School of Medicine, Western University, London, Ontario, Canada.,Translational Prostate Cancer Research Laboratory, Lawson Health Research Institute, London, Ontario, Canada
| | - Emily Jardine
- Department of Surgery, Schulich School of Medicine, Western University, London, Ontario, Canada.,Translational Prostate Cancer Research Laboratory, Lawson Health Research Institute, London, Ontario, Canada
| | - Ann F Chambers
- Translational Breast Cancer Research Unit, London Health Sciences Centre, London, Ontario, Canada.,Department of Oncology, Schulich School of Medicine, Western University, London, Ontario, Canada
| | - Hon S Leong
- Department of Surgery, Schulich School of Medicine, Western University, London, Ontario, Canada.,Translational Prostate Cancer Research Laboratory, Lawson Health Research Institute, London, Ontario, Canada
| |
Collapse
|
25
|
KISS1R signaling promotes invadopodia formation in human breast cancer cell via β-arrestin2/ERK. Cell Signal 2015; 28:165-176. [PMID: 26721186 DOI: 10.1016/j.cellsig.2015.12.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 11/20/2015] [Accepted: 12/20/2015] [Indexed: 01/14/2023]
Abstract
Kisspeptins (KPs), peptide products of the KISS1 gene are endogenous ligands for the kisspeptin receptor (KISS1R), a G protein-coupled receptor. In numerous cancers, KISS1R signaling plays anti-metastatic roles. However, we have previously shown that in breast cancer cells lacking the estrogen receptor (ERα), kisspeptin-10 stimulates cell migration and invasion by cross-talking with the epidermal growth factor receptor (EGFR), via a β-arrestin-2-dependent mechanism. To further define the mechanisms by which KISS1R stimulates invasion, we determined the effect of down-regulating KISS1R expression in triple negative breast cancer cells. We found that depletion of KISS1R reduced their mesenchymal phenotype and invasiveness. We show for the first time that KISS1R signaling induces invadopodia formation and activation of key invadopodia proteins, cortactin, cofilin and membrane type I matrix metalloproteases (MT1-MMP). Moreover, KISS1R stimulated invadopodia formation occurs via a new pathway involving a β-arrestin2 and ERK1/2-dependent mechanism, independent of Src. Taken together, our findings suggest that targeting the KISS1R signaling axis might be a promising strategy to inhibit invasiveness and metastasis.
Collapse
|
26
|
Wahab F, Atika B, Shahab M, Behr R. Kisspeptin signalling in the physiology and pathophysiology of the urogenital system. Nat Rev Urol 2015; 13:21-32. [DOI: 10.1038/nrurol.2015.277] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
27
|
Hedman AC, Smith JM, Sacks DB. The biology of IQGAP proteins: beyond the cytoskeleton. EMBO Rep 2015; 16:427-46. [PMID: 25722290 DOI: 10.15252/embr.201439834] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 01/07/2015] [Indexed: 01/02/2023] Open
Abstract
IQGAP scaffold proteins are evolutionarily conserved in eukaryotes and facilitate the formation of complexes that regulate cytoskeletal dynamics, intracellular signaling, and intercellular interactions. Fungal and mammalian IQGAPs are implicated in cytokinesis. IQGAP1, IQGAP2, and IQGAP3 have diverse roles in vertebrate physiology, operating in the kidney, nervous system, cardio-vascular system, pancreas, and lung. The functions of IQGAPs can be corrupted during oncogenesis and are usurped by microbial pathogens. Therefore, IQGAPs represent intriguing candidates for novel therapeutic agents. While modulation of the cytoskeletal architecture was initially thought to be the primary function of IQGAPs, it is now clear that they have roles beyond the cytoskeleton. This review describes contributions of IQGAPs to physiology at the organism level.
Collapse
Affiliation(s)
- Andrew C Hedman
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Jessica M Smith
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD, USA
| | - David B Sacks
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
28
|
Rytelewski M, Buensuceso A, Leong HS, Deroo BJ, Chambers AF, Koropatnick J. Evaluating the effectiveness of cancer drug sensitization in vitro and in vivo. J Vis Exp 2015. [PMID: 25741641 DOI: 10.3791/52388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Due to the high level of heterogeneity and mutations inherent in human cancers, single agent therapies, or combination regimens which target the same pathway, are likely to fail. Emphasis must be placed upon the inhibition of pathways that are responsible for intrinsic and/or adaptive resistance to therapy. An active field of investigation is the development and testing of DNA repair inhibitors that promote the action of, and prevent resistance to, commonly used chemotherapy and radiotherapy. We used a novel protocol to evaluate the effectiveness of BRCA2 inhibition as a means to sensitize tumor cells to the DNA damaging drug cisplatin. Tumor cell metabolism (acidification and respiration) was monitored in real-time for a period of 72 hr to delineate treatment effectiveness on a minute by minute basis. In combination, we performed an assessment of metastatic frequency using a chicken embryo chorioallantoic membrane (CAM) model of extravasation and invasion. This protocol addresses some of the weaknesses of commonly used in vitro and in vivo methods to evaluate novel cancer therapy regimens. It can be used in addition to common methods such as cell proliferation assays, cell death assays, and in vivo murine xenograft studies, to more closely discriminate amongst candidate targets and agents, and select only the most promising candidates for further development.
Collapse
|
29
|
IQGAPs choreograph cellular signaling from the membrane to the nucleus. Trends Cell Biol 2015; 25:171-84. [PMID: 25618329 DOI: 10.1016/j.tcb.2014.12.005] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 12/02/2014] [Accepted: 12/03/2014] [Indexed: 12/18/2022]
Abstract
Since its discovery in 1994, recognized cellular functions for the scaffold protein IQGAP1 have expanded immensely. Over 100 unique IQGAP1-interacting proteins have been identified, implicating IQGAP1 as a critical integrator of cellular signaling pathways. Initial research established functions for IQGAP1 in cell-cell adhesion, cell migration, and cell signaling. Recent studies have revealed additional IQGAP1 binding partners, expanding the biological roles of IQGAP1. These include crosstalk between signaling cascades, regulation of nuclear function, and Wnt pathway potentiation. Investigation of the IQGAP2 and IQGAP3 homologs demonstrates unique functions, some of which differ from those of IQGAP1. Summarized here are recent observations that enhance our understanding of IQGAP proteins in the integration of diverse signaling pathways.
Collapse
|
30
|
Ahow M, Min L, Pampillo M, Nash C, Wen J, Soltis K, Carroll RS, Glidewell-Kenney CA, Mellon PL, Bhattacharya M, Tobet SA, Kaiser UB, Babwah AV. KISS1R signals independently of Gαq/11 and triggers LH secretion via the β-arrestin pathway in the male mouse. Endocrinology 2014; 155:4433-46. [PMID: 25147978 PMCID: PMC4197989 DOI: 10.1210/en.2014-1304] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hypothalamic GnRH is the master regulator of the neuroendocrine reproductive axis, and its secretion is regulated by many factors. Among these is kisspeptin (Kp), a potent trigger of GnRH secretion. Kp signals via the Kp receptor (KISS1R), a Gαq/11-coupled 7-transmembrane-spanning receptor. Until this study, it was understood that KISS1R mediates GnRH secretion via the Gαq/11-coupled pathway in an ERK1/2-dependent manner. We recently demonstrated that KISS1R also signals independently of Gαq/11 via β-arrestin and that this pathway also mediates ERK1/2 activation. Because GnRH secretion is ERK1/2-dependent, we hypothesized that KISS1R regulates GnRH secretion via both the Gαq/11- and β-arrestin-coupled pathways. To test this hypothesis, we measured LH secretion, a surrogate marker of GnRH secretion, in mice lacking either β-arrestin-1 or β-arrestin-2. Results revealed that Kp-dependent LH secretion was significantly diminished relative to wild-type mice (P < .001), thus supporting that β-arrestin mediates Kp-induced GnRH secretion. Based on this, we hypothesized that Gαq/11-uncoupled KISS1R mutants, like L148S, will display Gαq/11-independent signaling. To test this hypothesis, L148S was expressed in HEK 293 cells. and results confirmed that, although strongly uncoupled from Gαq/11, L148S retained the ability to trigger significant Kp-dependent ERK1/2 phosphorylation (P < .05). Furthermore, using mouse embryonic fibroblasts lacking β-arrestin-1 and -2, we demonstrated that L148S-mediated ERK1/2 phosphorylation is β-arrestin-dependent. Overall, we conclude that KISS1R signals via Gαq/11 and β-arrestin to regulate GnRH secretion. This novel and important finding could explain why patients bearing some types of Gαq/11-uncoupled KISS1R mutants display partial gonadotropic deficiency and even a reversal of the condition, idiopathic hypogonadotropic hypogonadism.
Collapse
|
31
|
MacMillan CD, Leong HS, Dales DW, Robertson AE, Lewis JD, Chambers AF, Tuck AB. Stage of breast cancer progression influences cellular response to activation of the WNT/planar cell polarity pathway. Sci Rep 2014; 4:6315. [PMID: 25204426 PMCID: PMC4159636 DOI: 10.1038/srep06315] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 08/11/2014] [Indexed: 12/20/2022] Open
Abstract
Planar cell polarity (PCP) signaling has been shown in different studies to either promote or inhibit the malignancy of breast cancer. Using the 21T cell lines, which were derived from an individual patient and represent distinct stages of progression, we show that the prototypical PCP ligand, WNT5A, is expressed highest in 21MT-1 cells (invasive mammary carcinoma) and lowest in 21PT (atypical ductal hyperplasia) and 21NT (ductal carcinoma in situ) cells. Overexpression of WNT5A decreased spherical colony formation and increased invasion and in vivo extravasation only in 21NT cells; whereas overexpression increased migration of both 21PT and 21NT cells. WNT5A overexpression also increased RHOA expression of both cell lines and subsequent RHOA knockdown blocked WNT5A-induced migration, but only partially blocked WNT5A-induced invasion of 21NT cells. PCP can signal through VANGL1 to modulate AP-1 target genes (e.g. MMP3) and induce invasion. VANGL1 knockdown inhibited WNT5A-induced invasion of 21NT cells, but had no effect on WNT5A-induced migration of either 21PT or 21NT cells. WNT5A-induced MMP3 expression was seen only in 21NT cells, an effect that was VANGL1 dependent, but independent of AP-1. We thus provide evidence that PCP signaling can act in a context dependent manner to promote breast cancer progression.
Collapse
Affiliation(s)
- Connor D MacMillan
- 1] Department of Pathology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON [2] London Regional Cancer Program, London Health Sciences Centre, London, ON [3] Department of Surgery, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON
| | - Hon S Leong
- 1] London Regional Cancer Program, London Health Sciences Centre, London, ON [2] Department of Surgery, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON
| | - David W Dales
- London Regional Cancer Program, London Health Sciences Centre, London, ON
| | - Amy E Robertson
- 1] London Regional Cancer Program, London Health Sciences Centre, London, ON [2] Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON
| | - John D Lewis
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB
| | - Ann F Chambers
- 1] Department of Pathology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON [2] London Regional Cancer Program, London Health Sciences Centre, London, ON [3] Department of Oncology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON [4] Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON
| | - Alan B Tuck
- 1] Department of Pathology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON [2] London Regional Cancer Program, London Health Sciences Centre, London, ON [3] Department of Oncology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON
| |
Collapse
|
32
|
Rytelewski M, Tong JG, Buensuceso A, Leong HS, Maleki Vareki S, Figueredo R, Di Cresce C, Wu SY, Herbrich SM, Baggerly KA, Romanow L, Shepherd T, Deroo BJ, Sood AK, Chambers AF, Vincent M, Ferguson PJ, Koropatnick J. BRCA2 inhibition enhances cisplatin-mediated alterations in tumor cell proliferation, metabolism, and metastasis. Mol Oncol 2014. [PMID: 24974076 DOI: 10.1016/j.molonc.2014.05.017]+[] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Tumor cells have unstable genomes relative to non-tumor cells. Decreased DNA integrity resulting from tumor cell instability is important in generating favorable therapeutic indices, and intact DNA repair mediates resistance to therapy. Targeting DNA repair to promote the action of anti-cancer agents is therefore an attractive therapeutic strategy. BRCA2 is involved in homologous recombination repair. BRCA2 defects increase cancer risk but, paradoxically, cancer patients with BRCA2 mutations have better survival rates. We queried TCGA data and found that BRCA2 alterations led to increased survival in patients with ovarian and endometrial cancer. We developed a BRCA2-targeting second-generation antisense oligonucleotide (ASO), which sensitized human lung, ovarian, and breast cancer cells to cisplatin by as much as 60%. BRCA2 ASO treatment overcame acquired cisplatin resistance in head and neck cancer cells, but induced minimal cisplatin sensitivity in non-tumor cells. BRCA2 ASO plus cisplatin reduced respiration as an early event preceding cell death, concurrent with increased glucose uptake without a difference in glycolysis. BRCA2 ASO and cisplatin decreased metastatic frequency in vivo by 77%. These results implicate BRCA2 as a regulator of metastatic frequency and cellular metabolic response following cisplatin treatment. BRCA2 ASO, in combination with cisplatin, is a potential therapeutic anti-cancer agent.
Collapse
Affiliation(s)
- Mateusz Rytelewski
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Jessica G Tong
- Department of Anatomy and Cell Biology, Western University, London, Ontario, Canada
| | - Adrian Buensuceso
- Department of Biochemistry, Western University, London, Ontario, Canada
| | - Hon S Leong
- Department of Surgery, Western University, London, Ontario, Canada
| | - Saman Maleki Vareki
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Rene Figueredo
- Department of Oncology, Western University, London, Ontario, Canada
| | - Christine Di Cresce
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Sherry Y Wu
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shelley M Herbrich
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Keith A Baggerly
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Larissa Romanow
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Trevor Shepherd
- Department of Anatomy and Cell Biology, Western University, London, Ontario, Canada
| | - Bonnie J Deroo
- Department of Biochemistry, Western University, London, Ontario, Canada
| | - Anil K Sood
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Center for RNAi and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ann F Chambers
- Department of Oncology, Western University, London, Ontario, Canada
| | - Mark Vincent
- Department of Oncology, Western University, London, Ontario, Canada; Department of Pathology, Western University, London, Ontario, Canada
| | - Peter J Ferguson
- Department of Oncology, Western University, London, Ontario, Canada; Lawson Health Research Institute, London Health Sciences Centre, London, Ontario, Canada
| | - James Koropatnick
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada; Department of Oncology, Western University, London, Ontario, Canada; Department of Pathology, Western University, London, Ontario, Canada; Department of Physiology and Pharmacology, Western University, London, Ontario, Canada; Lawson Health Research Institute, London Health Sciences Centre, London, Ontario, Canada.
| |
Collapse
|
33
|
BRCA2 inhibition enhances cisplatin-mediated alterations in tumor cell proliferation, metabolism, and metastasis. Mol Oncol 2014. [PMID: 24974076 DOI: 10.1016/j.molonc.2014.05.017] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Tumor cells have unstable genomes relative to non-tumor cells. Decreased DNA integrity resulting from tumor cell instability is important in generating favorable therapeutic indices, and intact DNA repair mediates resistance to therapy. Targeting DNA repair to promote the action of anti-cancer agents is therefore an attractive therapeutic strategy. BRCA2 is involved in homologous recombination repair. BRCA2 defects increase cancer risk but, paradoxically, cancer patients with BRCA2 mutations have better survival rates. We queried TCGA data and found that BRCA2 alterations led to increased survival in patients with ovarian and endometrial cancer. We developed a BRCA2-targeting second-generation antisense oligonucleotide (ASO), which sensitized human lung, ovarian, and breast cancer cells to cisplatin by as much as 60%. BRCA2 ASO treatment overcame acquired cisplatin resistance in head and neck cancer cells, but induced minimal cisplatin sensitivity in non-tumor cells. BRCA2 ASO plus cisplatin reduced respiration as an early event preceding cell death, concurrent with increased glucose uptake without a difference in glycolysis. BRCA2 ASO and cisplatin decreased metastatic frequency in vivo by 77%. These results implicate BRCA2 as a regulator of metastatic frequency and cellular metabolic response following cisplatin treatment. BRCA2 ASO, in combination with cisplatin, is a potential therapeutic anti-cancer agent.
Collapse
|
34
|
Cvetković D, Goertzen CGF, Bhattacharya M. Quantification of breast cancer cell invasiveness using a three-dimensional (3D) model. J Vis Exp 2014. [PMID: 24961804 DOI: 10.3791/51341] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
It is now well known that the cellular and tissue microenvironment are critical regulators influencing tumor initiation and progression. Moreover, the extracellular matrix (ECM) has been demonstrated to be a critical regulator of cell behavior in culture and homeostasis in vivo. The current approach of culturing cells on two-dimensional (2D), plastic surfaces results in the disturbance and loss of complex interactions between cells and their microenvironment. Through the use of three-dimensional (3D) culture assays, the conditions for cell-microenvironment interaction are established resembling the in vivo microenvironment. This article provides a detailed methodology to grow breast cancer cells in a 3D basement membrane protein matrix, exemplifying the potential of 3D culture in the assessment of cell invasion into the surrounding environment. In addition, we discuss how these 3D assays have the potential to examine the loss of signaling molecules that regulate epithelial morphology by immunostaining procedures. These studies aid to identify important mechanistic details into the processes regulating invasion, required for the spread of breast cancer.
Collapse
Affiliation(s)
- Donna Cvetković
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario
| | | | - Moshmi Bhattacharya
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario; Department of Oncology, Schulich School of Medicine and Dentistry, University of Western Ontario; Lawson Health Research Institute;
| |
Collapse
|
35
|
BRCA2 inhibition enhances cisplatin-mediated alterations in tumor cell proliferation, metabolism, and metastasis. Mol Oncol 2014; 8:1429-40. [PMID: 24974076 DOI: 10.1016/j.molonc.2014.05.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 05/28/2014] [Indexed: 12/14/2022] Open
Abstract
Tumor cells have unstable genomes relative to non-tumor cells. Decreased DNA integrity resulting from tumor cell instability is important in generating favorable therapeutic indices, and intact DNA repair mediates resistance to therapy. Targeting DNA repair to promote the action of anti-cancer agents is therefore an attractive therapeutic strategy. BRCA2 is involved in homologous recombination repair. BRCA2 defects increase cancer risk but, paradoxically, cancer patients with BRCA2 mutations have better survival rates. We queried TCGA data and found that BRCA2 alterations led to increased survival in patients with ovarian and endometrial cancer. We developed a BRCA2-targeting second-generation antisense oligonucleotide (ASO), which sensitized human lung, ovarian, and breast cancer cells to cisplatin by as much as 60%. BRCA2 ASO treatment overcame acquired cisplatin resistance in head and neck cancer cells, but induced minimal cisplatin sensitivity in non-tumor cells. BRCA2 ASO plus cisplatin reduced respiration as an early event preceding cell death, concurrent with increased glucose uptake without a difference in glycolysis. BRCA2 ASO and cisplatin decreased metastatic frequency in vivo by 77%. These results implicate BRCA2 as a regulator of metastatic frequency and cellular metabolic response following cisplatin treatment. BRCA2 ASO, in combination with cisplatin, is a potential therapeutic anti-cancer agent.
Collapse
|
36
|
Nodal signals via β-arrestins and RalGTPases to regulate trophoblast invasion. Cell Signal 2014; 26:1935-42. [PMID: 24863882 DOI: 10.1016/j.cellsig.2014.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 05/15/2014] [Indexed: 01/05/2023]
Abstract
Placentation is critical for establishing a healthy pregnancy. Trophoblasts mediate implantation and placentation and certain subtypes, most notably extravillous cytotrophoblast, are highly invasive. Trophoblast invasion is tightly regulated by microenvironmental cues that dictate placental morphology and depth. In choriocarcinomas, malignant trophoblast cells become hyperinvasive, breaching the myometrium and leading to major complications. Nodal, a member of the TGF-β superfamily, is expressed throughout the endometrium during the peri-implantation period and in invasive trophoblast cells. Nodal promotes the invasion of numerous types of cancer cells. However, Nodal's role in trophoblast and choriocarcinoma cell invasion is unclear. Here we show that Nodal stimulates the invasion of both the non-malignant HTR-8SV/neo trophoblast and JAR choriocarcinoma cells in a dose-dependent manner. We found that endogenous β-arrestins and Ral GTPases, key regulators of the cell cytoskeleton, are constitutively associated with Nodal receptors (ALK4 and ALK7) in trophoblast cells and that RalA is colocalized with ALK4 in endocytic vesicles. Nodal stimulates endogenous β-arrestin2 to associate with phospho-ERK1/2, and knockdown of β-arrestin or Ral proteins impairs Nodal-induced trophoblast and choriocarcinoma cell invasion. These results demonstrate, for the first time, that β-arrestins and RalGTPases are important regulators of Nodal-induced invasion.
Collapse
|
37
|
Taylor J, Pampillo M, Bhattacharya M, Babwah AV. Kisspeptin/KISS1R signaling potentiates extravillous trophoblast adhesion to type-I collagen in a PKC- and ERK1/2-dependent manner. Mol Reprod Dev 2013; 81:42-54. [PMID: 24273038 DOI: 10.1002/mrd.22279] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 11/01/2013] [Indexed: 12/16/2022]
Abstract
During the first trimester of human pregnancy, cytotrophoblasts proliferate within the tips of the chorionic villi to form cell columns that anchor the placenta to the uterus. This migration coincides with a widespread change in the adhesion molecule repertoire of these trophoblasts. Kisspeptin and its receptor, KISS1R, are best known as potent triggers of gonadotropin-releasing hormone secretion. The kisspeptin/KISS1R signaling system is also highly expressed in the human placenta, where it was demonstrated to inhibit extra-villous trophoblast (EVT) migration and invasion in vitro. Here we show that kisspeptin, in a dose- and time-dependent manner, induces increased adhesion of human EVTs to type-I collagen, a major component of the human placenta. This increased adhesion was both rapid and transient, suggesting that it likely occurred through the activation of KISS1R secondary effectors such as PKC and ERK, which underwent rapid and transient kisspeptin-dependent activation in EVTs. We then showed that inhibition of both PKC and ERK1/2 attenuated the kisspeptin-dependent increase in EVT adhesion, suggesting that these molecules are key positive regulators of trophoblast adhesion. We therefore propose that kisspeptin/KISS1R signaling potentiates EVT adhesion to type-I collagen via "inside-out signaling." Furthermore, kisspeptin treatment increased mouse blastocyst adhesion to collagen I, suggesting that kisspeptin signaling is a key regulator of trophoblast function during implantation as well as early placentation.
Collapse
Affiliation(s)
- Jay Taylor
- The Children's Health Research Institute, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada; Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada
| | | | | | | |
Collapse
|
38
|
Cvetković D, Babwah AV, Bhattacharya M. Kisspeptin/KISS1R System in Breast Cancer. J Cancer 2013; 4:653-61. [PMID: 24155777 PMCID: PMC3805993 DOI: 10.7150/jca.7626] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 09/22/2013] [Indexed: 01/18/2023] Open
Abstract
Kisspeptins (KP), peptide products of the kisspeptin-1 (KISS1) gene are the endogenous ligands for a G protein-coupled receptor (GPCR) - KP receptor (KISS1R). KISS1R couples to the Gαq/11 signaling pathway. KISS1 is a metastasis suppressor gene and the KP/KISS1R signaling has anti-metastatic and tumor-suppressant effects in numerous human cancers. On the other hand, recent studies indicate that KP/KISS1R pathway plays detrimental roles in breast cancer. In this review, we summarize recent developments in the understanding of the mechanisms regulating KP/KISS1R signaling in breast cancer metastasis.
Collapse
Affiliation(s)
- Donna Cvetković
- 1. Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada, N6A 5C1
| | | | | |
Collapse
|