1
|
Mou K, Chan SMH, Vlahos R. Musculoskeletal crosstalk in chronic obstructive pulmonary disease and comorbidities: Emerging roles and therapeutic potentials. Pharmacol Ther 2024; 257:108635. [PMID: 38508342 DOI: 10.1016/j.pharmthera.2024.108635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/13/2024] [Accepted: 03/11/2024] [Indexed: 03/22/2024]
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a multifaceted respiratory disorder characterized by progressive airflow limitation and systemic implications. It has become increasingly apparent that COPD exerts its influence far beyond the respiratory system, extending its impact to various organ systems. Among these, the musculoskeletal system emerges as a central player in both the pathogenesis and management of COPD and its associated comorbidities. Muscle dysfunction and osteoporosis are prevalent musculoskeletal disorders in COPD patients, leading to a substantial decline in exercise capacity and overall health. These manifestations are influenced by systemic inflammation, oxidative stress, and hormonal imbalances, all hallmarks of COPD. Recent research has uncovered an intricate interplay between COPD and musculoskeletal comorbidities, suggesting that muscle and bone tissues may cross-communicate through the release of signalling molecules, known as "myokines" and "osteokines". We explored this dynamic relationship, with a particular focus on the role of the immune system in mediating the cross-communication between muscle and bone in COPD. Moreover, we delved into existing and emerging therapeutic strategies for managing musculoskeletal disorders in COPD. It underscores the development of personalized treatment approaches that target both the respiratory and musculoskeletal aspects of COPD, offering the promise of improved well-being and quality of life for individuals grappling with this complex condition. This comprehensive review underscores the significance of recognizing the profound impact of COPD on the musculoskeletal system and its comorbidities. By unravelling the intricate connections between these systems and exploring innovative treatment avenues, we can aspire to enhance the overall care and outcomes for COPD patients, ultimately offering hope for improved health and well-being.
Collapse
Affiliation(s)
- Kevin Mou
- Centre for Respiratory Science and Health, School of Health & Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Stanley M H Chan
- Centre for Respiratory Science and Health, School of Health & Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Ross Vlahos
- Centre for Respiratory Science and Health, School of Health & Biomedical Sciences, RMIT University, Melbourne, VIC, Australia.
| |
Collapse
|
2
|
Andreone L, Fuertes F, Sétula C, Barcala Tabarrozzi AE, Orellano MS, Dewey RA, Bottino R, De Bosscher K, Perone MJ. Compound A attenuates proinflammatory cytokine-induced endoplasmic reticulum stress in beta cells and displays beneficial therapeutic effects in a mouse model of autoimmune diabetes. Cell Mol Life Sci 2022; 79:587. [PMID: 36370223 DOI: 10.1007/s00018-022-04615-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/15/2022]
Abstract
Type 1 diabetes (T1D) is characterized by an immune-mediated progressive destruction of the insulin-producing β-cells. Proinflammatory cytokines trigger endoplasmic reticulum (ER) stress and subsequent insulin secretory deficiency in cultured β-cells, mimicking the islet microenvironment in T1D. β-cells undergo physiologic ER stress due to the high rate of insulin production and secretion under stimulated conditions. Severe and uncompensated ER stress in β-cells is induced by several pathological mechanisms before onset and during T1D. We previously described that the small drug Compound A (CpdA), a selective glucocorticoid receptor (GR/NR3C1, nuclear receptor subfamily 3, group C, member 1) ligand with demonstrated inflammation-suppressive activity in vivo, is an effective modulator of effector T and dendritic cells and of macrophages, yet, in a GR-independent manner. Here, we focus on CpdA's therapeutic potential in T1D cellular and animal models. We demonstrate that CpdA improves the unfolded protein response (UPR) by attenuating ER stress and favoring the survival and function of β-cells exposed to an environment of proinflammatory cytokines. CpdA administration to NODscid mice adoptively transferred with diabetogenic splenocytes (from diabetic NOD mice) led to a delay of disease onset and reduction of diabetes incidence. Histological analysis of the pancreas showed a reduction in islet leukocyte infiltration (insulitis) and preservation of insulin expression in CpdA-treated normoglycemic mice in comparison with control group. These new findings together with our previous reports justify further studies on the administration of this small molecule as a novel therapeutic strategy with dual targets (effector immune and β-cells) during autoimmune diabetes.
Collapse
Affiliation(s)
- Luz Andreone
- Laboratory of Immuno-Endocrinology, Diabetes and Metabolism, Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Av. Pte. Perón 1500 (B1629AHJ), Pilar, Buenos Aires, Argentina
| | - Florencia Fuertes
- Laboratory of Immuno-Endocrinology, Diabetes and Metabolism, Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Av. Pte. Perón 1500 (B1629AHJ), Pilar, Buenos Aires, Argentina
| | - Carolina Sétula
- Laboratory of Immuno-Endocrinology, Diabetes and Metabolism, Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Av. Pte. Perón 1500 (B1629AHJ), Pilar, Buenos Aires, Argentina
| | - Andres E Barcala Tabarrozzi
- Laboratory of Immuno-Endocrinology, Diabetes and Metabolism, Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Av. Pte. Perón 1500 (B1629AHJ), Pilar, Buenos Aires, Argentina
| | - Miranda S Orellano
- Laboratory of Immuno-Endocrinology, Diabetes and Metabolism, Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Av. Pte. Perón 1500 (B1629AHJ), Pilar, Buenos Aires, Argentina
| | - Ricardo A Dewey
- Laboratorio de Terapia Génica Y Células Madre, Instituto Tecnológico de Chascomús (INTECH), CONICET-UNSAM, Buenos Aires, Argentina
| | - Rita Bottino
- Imagine Pharma, Pittsburgh, Pennsylvania, PA and Allegheny Health Network, Pittsburgh, PA, USA
| | - Karolien De Bosscher
- Receptor Research Laboratories, Nuclear Receptor Lab, VIB-Department of Medical Protein Research, VIB, Ghent University, Ghent, Belgium
| | - Marcelo J Perone
- Laboratory of Immuno-Endocrinology, Diabetes and Metabolism, Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Av. Pte. Perón 1500 (B1629AHJ), Pilar, Buenos Aires, Argentina.
| |
Collapse
|
3
|
Schündeln MM, Höppner J, Meyer FL, Schmuck W, Kauther MD, Hilken G, Levkau B, Rauner M, Grasemann C. Prednisone prevents particle induced bone loss in the calvaria mouse model. Heliyon 2021; 7:e07828. [PMID: 34471710 PMCID: PMC8387912 DOI: 10.1016/j.heliyon.2021.e07828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/03/2021] [Accepted: 08/16/2021] [Indexed: 11/24/2022] Open
Abstract
INTRODUCTION Glucocorticoids are essential in the treatment of many chronic inflammatory and malignant diseases but are known to have detrimental effects on bone. This study aimed to investigate the effects of prednisone on osteoclast functioning in vivo in the calvaria particle-induced bone loss mouse model. METHODS 12-week-old male C57BL6/J mice received subcutaneously implanted prednisone (2.5 mg/d, 60 day release (n = 14)) or placebo pellets (n = 10). Osteolysis of the calvaria bone was induced two weeks later by application of ultra-high-molecular-weight polyethylene- (UHMWPE) particles to the dome (vs sham operation). The extent of osteolysis was determined histologically and by micro-computer tomography. RESULTS Prednisone significantly inhibited particle-induced osteolysis in the skull. No significant difference in osteoclast numbers was seen in mice with prednisone vs placebo treatment. Prednisone treatment alone without particle application did not reduce bone mineral density or deterioration in bone microarchitecture parameters. CONCLUSIONS The calvaria particle-induced bone loss mouse model can be adapted to investigate osteoclast activity in vivo and the effect of prednisone on osteoclasts. In this preventive experimental design, the application of short-term low-dose prednisone has osteoprotective effects without measurable systemic side effects on bone parameters.
Collapse
Affiliation(s)
- Michael M. Schündeln
- Division of Pediatric Hematology and Oncology, Department of Pediatrics III, University Hospital Essen, University of Duisburg-Essen, Germany
| | - Jakob Höppner
- Department of Pediatrics and CeSER, Katholisches Klinikum Bochum, Ruhr-University Bochum, Bochum, Germany
| | - Felix L. Meyer
- Department of Pediatrics II, University Hospital Essen, University of Duisburg-Essen, Germany
| | - Wiebke Schmuck
- Department of Pediatrics II, University Hospital Essen, University of Duisburg-Essen, Germany
| | - Max D. Kauther
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Essen, Germany
- Department for Orthopedics, Agaplesion Diakonieklinikum, Rotenburg Wümme, Germany
| | - Gero Hilken
- Central Animal Laboratory, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Bodo Levkau
- Institute for Molecular Medicine III, University Hospital Düsseldorf and Heinrich-Heine-University Düsseldorf, Germany
| | - Martina Rauner
- Department of Medicine III, Dresden Technical University Medical Center, Dresden, Germany
| | - Corinna Grasemann
- Department of Pediatrics and CeSER, Katholisches Klinikum Bochum, Ruhr-University Bochum, Bochum, Germany
- Department of Pediatrics II, University Hospital Essen, University of Duisburg-Essen, Germany
| |
Collapse
|
4
|
Bouazzaoui A, Abdellatif AAH, Al-Allaf FA, Bogari NM, Taher MM, Athar M, Schubert T, Habeebullah TM, Qari SH. Compound A Increases Cell Infiltration in Target Organs of Acute Graft-versus-Host Disease (aGVHD) in a Mouse Model. Molecules 2021; 26:molecules26144237. [PMID: 34299512 PMCID: PMC8303851 DOI: 10.3390/molecules26144237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 11/22/2022] Open
Abstract
Systemic steroids are used to treat acute graft-versus-host disease (aGVHD) caused by allogenic bone marrow transplantation (allo-BMT); however, their prolonged use results in complications. Hence, new agents for treating aGVHD are required. Recently, a new compound A (CpdA), with anti-inflammatory activity and reduced side effects compared to steroids, has been identified. Here, we aimed to determine whether CpdA can improve the outcome of aGVHD when administered after transplantation in a mouse model (C57BL/6 in B6D2F1). After conditioning with 9Gy total body irradiation, mice were infused with bone marrow (BM) cells and splenocytes from either syngeneic (B6D2F1) or allogeneic (C57BL/6) donors. The animals were subsequently treated (3 days/week) with 7.5 mg/kg CpdA from day +15 to day +28; the controls received 0.9% NaCl. Thereafter, the incidence and severity of aGVHD in aGVHD target organs were analyzed. Survival and clinical scores did not differ significantly; however, CpdA-treated animals showed high cell infiltration in the target organs. In bulk mixed lymphocyte reactions, CpdA treatment reduced the cell proliferation and expression of inflammatory cytokines and chemokines compared to controls, whereas levels of TNF, IL-23, chemokines, and chemokine receptors increased. CpdA significantly reduced proliferation in vitro but increased T cell infiltration in target organs.
Collapse
Affiliation(s)
- Abdellatif Bouazzaoui
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (F.A.A.-A.); (N.M.B.); (M.M.T.); (M.A.)
- Science and Technology Unit, Umm Al-Qura University, Makkah 21955, Saudi Arabia
- Medical Clinic 3–Hematology/Oncology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
- Correspondence: or ; Tel.: +966-571297636
| | - Ahmed A. H. Abdellatif
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia;
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Faisal A. Al-Allaf
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (F.A.A.-A.); (N.M.B.); (M.M.T.); (M.A.)
| | - Neda M. Bogari
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (F.A.A.-A.); (N.M.B.); (M.M.T.); (M.A.)
| | - Mohiuddin M. Taher
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (F.A.A.-A.); (N.M.B.); (M.M.T.); (M.A.)
- Science and Technology Unit, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Mohammad Athar
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (F.A.A.-A.); (N.M.B.); (M.M.T.); (M.A.)
- Science and Technology Unit, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Thomas Schubert
- Institut für Angewandte Pathologie Speyer, Alter Postweg 1, 67346 Speyer, Germany;
| | - Turki M. Habeebullah
- Environment and Health Research Department, The Custodian of the Two Holy Mosques Institute for Hajj and Umrah Research, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Sameer H. Qari
- Biology Department, Aljumum University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| |
Collapse
|
5
|
Lehmann J, Thiele S, Baschant U, Rachner TD, Niehrs C, Hofbauer LC, Rauner M. Mice lacking DKK1 in T cells exhibit high bone mass and are protected from estrogen-deficiency-induced bone loss. iScience 2021; 24:102224. [PMID: 33748710 PMCID: PMC7961106 DOI: 10.1016/j.isci.2021.102224] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 01/16/2021] [Accepted: 02/19/2021] [Indexed: 12/17/2022] Open
Abstract
The Wnt inhibitor Dickkopf-1 (DKK1) is a negative regulator of bone formation and bone mass and is dysregulated in various bone diseases. How DKK1 contributes to postmenopausal osteoporosis, however, remains poorly understood. Here, we show that mice lacking DKK1 in T cells are protected from ovariectomy-induced bone loss. Ovariectomy activated CD4+ and CD8+ T cells and increased their production of DKK1. Co-culture of activated T cells with osteoblasts inhibited Wnt signaling in osteoblasts, leading to impaired differentiation. Importantly, DKK1 expression in T cells also controlled physiological bone remodeling. T-cell-deficient Dkk1 knock-out mice had a higher bone mass with an increased bone formation rate and decreased numbers of osteoclasts compared with controls, a phenotype that was rescued by adoptive transfer of wild-type T cells. Thus, these findings highlight that T cells control bone remodeling in health and disease via their expression of DKK1.
Collapse
Affiliation(s)
- Juliane Lehmann
- Department of Medicine III, Division of Endocrinology, Diabetes and Bone Diseases, Technische Universität Dresden, Dresden 01307, Germany.,Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Sylvia Thiele
- Department of Medicine III, Division of Endocrinology, Diabetes and Bone Diseases, Technische Universität Dresden, Dresden 01307, Germany.,Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Ulrike Baschant
- Department of Medicine III, Division of Endocrinology, Diabetes and Bone Diseases, Technische Universität Dresden, Dresden 01307, Germany.,Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Tilman D Rachner
- Department of Medicine III, Division of Endocrinology, Diabetes and Bone Diseases, Technische Universität Dresden, Dresden 01307, Germany.,Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Christof Niehrs
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Heidelberg, Germany.,Institute of Molecular Biology, Mainz, Germany
| | - Lorenz C Hofbauer
- Department of Medicine III, Division of Endocrinology, Diabetes and Bone Diseases, Technische Universität Dresden, Dresden 01307, Germany.,Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Martina Rauner
- Department of Medicine III, Division of Endocrinology, Diabetes and Bone Diseases, Technische Universität Dresden, Dresden 01307, Germany.,Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
6
|
Poutoglidou F, Pourzitaki C, Dardalas I, Manthou ΜE, Samoladas E, Kouvelas D. The Use of Collagen-Induced Arthritis Animal Model on Studying Bone Metabolism. Calcif Tissue Int 2020; 107:109-120. [PMID: 32356018 DOI: 10.1007/s00223-020-00697-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 04/17/2020] [Indexed: 10/24/2022]
Abstract
CIA is a well-studied animal model of autoimmune arthritis. It resembles rheumatoid arthritis as far as histopathological changes and molecular pathogenesis are concerned. CIA is induced by immunization with collagen type II in susceptible strains. The purpose of this review is to assess the use of CIA animal model on bone metabolism and the potential therapeutic agents that could reverse this effect. A database search from their inception to 2019 was conducted to identify experimental animal studies pertinent to CIA model and bone examination. Studies including ovariectomy or without a direct comparison between control and CIA groups were excluded. Forty-eight articles were considered suitable for inclusion. Imaging techniques, biomechanical analysis, histopathological studies, and molecular biology techniques were employed. A decrease in bone mineral density in CII arthritic animals was established. Bone loss was either periarticular, generalized or both. Although trabecular bone loss was clear, the effect on cortical bone is yet to be determined. The proposed mechanism is an imbalance between bone formation and resorption as a result of osteoclast activation. The signal pathways implicated appear to be the RANKL/RANK/OPG and the Wnt pathway. Many therapeutic targets were investigated with promising results.
Collapse
Affiliation(s)
- Frideriki Poutoglidou
- Department of Clinical Pharmacology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Chryssa Pourzitaki
- Department of Clinical Pharmacology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| | - Ioannis Dardalas
- Department of Clinical Pharmacology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Μaria-Eleni Manthou
- Laboratory of Histology and Embryology, Medical School, Aristotle University of Thessaloniki, University Campus, 54124, Thessaloniki, Greece
| | - Efthimios Samoladas
- Faculty of Medicine, Orthopeadics Division of Genimatas Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitrios Kouvelas
- Department of Clinical Pharmacology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| |
Collapse
|
7
|
Kawao N, Morita H, Iemura S, Ishida M, Kaji H. Roles of Dkk2 in the Linkage from Muscle to Bone during Mechanical Unloading in Mice. Int J Mol Sci 2020; 21:ijms21072547. [PMID: 32268570 PMCID: PMC7177709 DOI: 10.3390/ijms21072547] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/03/2020] [Accepted: 04/03/2020] [Indexed: 12/17/2022] Open
Abstract
Mechanical unloading simultaneously induces muscle and bone loss, but its mechanisms are not fully understood. The interactions between skeletal muscle and bone have been recently noted. Although canonical wingless-related integration site (Wnt)/β-catenin signaling is crucial for bone metabolism, its roles in the muscle and bone interactions have remained unknown. Here, we performed comprehensive DNA microarray analyses to clarify humoral factors linking muscle to bone in response to mechanical unloading and hypergravity with 3 g in mice. We identified Dickkopf (Dkk) 2, a Wnt/β-catenin signaling inhibitor, as a gene whose expression was increased by hindlimb unloading (HU) and reduced by hypergravity in the soleus muscle of mice. HU significantly elevated serum Dkk2 levels and Dkk2 mRNA levels in the soleus muscle of mice whereas hypergravity significantly decreased those Dkk2 levels. In the simple regression analyses, serum Dkk2 levels were negatively and positively related to trabecular bone mineral density and mRNA levels of receptor activator of nuclear factor-kappa B ligand (RANKL) in the tibia of mice, respectively. Moreover, shear stress significantly suppressed Dkk2 mRNA levels in C2C12 cells, and cyclooxygenase inhibitors significantly antagonized the effects of shear stress on Dkk2 expression. On the other hand, Dkk2 suppressed the mRNA levels of osteogenic genes, alkaline phosphatase activity and mineralization, and it increased RANKL mRNA levels in mouse osteoblasts. In conclusion, we showed that muscle and serum Dkk2 levels are positively and negatively regulated during mechanical unloading and hypergravity in mice, respectively. An increase in Dkk2 expression in the skeletal muscle might contribute to disuse- and microgravity-induced bone and muscle loss.
Collapse
Affiliation(s)
- Naoyuki Kawao
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osakasayama 589-8511, Japan; (N.K.); (S.I.); (M.I.)
| | - Hironobu Morita
- Department of Physiology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan;
| | - Shunki Iemura
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osakasayama 589-8511, Japan; (N.K.); (S.I.); (M.I.)
| | - Masayoshi Ishida
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osakasayama 589-8511, Japan; (N.K.); (S.I.); (M.I.)
| | - Hiroshi Kaji
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osakasayama 589-8511, Japan; (N.K.); (S.I.); (M.I.)
- Correspondence: ; Tel.: +81-72-366-0221
| |
Collapse
|
8
|
Mausset-Bonnefont AL, Cren M, Vicente R, Quentin J, Jorgensen C, Apparailly F, Louis-Plence P. Arthritis sensory and motor scale: predicting functional deficits from the clinical score in collagen-induced arthritis. Arthritis Res Ther 2019; 21:264. [PMID: 31801618 PMCID: PMC6894222 DOI: 10.1186/s13075-019-2047-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/31/2019] [Indexed: 01/08/2023] Open
Abstract
Background In the collagen-induced arthritis (CIA) mouse model, inflammation readouts are usually quantified using operator-dependent clinical scoring systems, and no systematic relationship with functional deficits has been detected. In this study, we extensively quantified sensory and motor deficits in CIA mice during natural disease progression and therapeutic treatment. Then, we used these data to build a scale to predict functional deficits on the basis of the classical clinical score. Methods Using the CIA mouse model, we longitudinally screened multiple approaches to assess locomotion (open field test, Catwalk™), sensitivity (Von Frey, Hargreaves, static weight-bearing tests), and inflammation (skin temperature), and identified the most accurate tests to correlate sensory and motor deficits with disease severity, measured by clinical score. We then used these tests to characterize functional deficits in control (naïve and mice injected with complete Freund’s adjuvant) and CIA mice, either untreated or treated with methotrexate to prevent functional deficits. By mathematical approaches, we finally investigated the relationship between functional deficits and clinical score. Results We found that the functional disability scores obtained with the open field, Catwalk™, Hargreaves, and skin temperature tests significantly correlated with the clinical score in CIA mice, either untreated or treated with methotrexate. Mathematical correlation showed that motor deficits, robustly characterized by two different tests, were twice more responsive than thermal sensitivity deficits. Conclusion We propose the arthritis sensory and motor (ArthriSM) scale as a new theranostic tool to predict motor and sensory deficit based on the clinical score, in the experimental mouse model of CIA. This ArthriSM scale may facilitate the transfer of knowledge between preclinical and clinical studies.
Collapse
Affiliation(s)
| | - Maïlys Cren
- IRMB, University of Montpellier, INSERM, Montpellier, France
| | - Rita Vicente
- IRMB, University of Montpellier, INSERM, Montpellier, France
| | - Julie Quentin
- IRMB, University of Montpellier, INSERM, Montpellier, France
| | | | | | | |
Collapse
|
9
|
Louw A. GR Dimerization and the Impact of GR Dimerization on GR Protein Stability and Half-Life. Front Immunol 2019; 10:1693. [PMID: 31379877 PMCID: PMC6653659 DOI: 10.3389/fimmu.2019.01693] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/08/2019] [Indexed: 12/14/2022] Open
Abstract
Pharmacologically, glucocorticoids, which mediate their effects via the glucocorticoid receptor (GR), are a most effective therapy for inflammatory diseases despite the fact that chronic use causes side-effects and acquired GC resistance. The design of drugs with fewer side-effects and less potential for the development of resistance is therefore considered crucial for improved therapy. Dimerization of the GR is an integral step in glucocorticoid signaling and has been identified as a possible molecular site to target for drug development of anti-inflammatory drugs with an improved therapeutic index. Most of the current understanding regarding the role of GR dimerization in GC signaling derives for dimerization deficient mutants, although the role of ligands biased toward monomerization has also been described. Even though designing for loss of dimerization has mostly been applied for reduction of side-effect profile, designing for loss of dimerization may also be a fruitful strategy for the development of GC drugs with less potential to develop GC resistance. GC-induced resistance affects up to 30% of users and is due to a reduction in the GR functional pool. Several molecular mechanisms of GC-mediated reductions in GR pool have been described, one of which is the autologous down-regulation of GR density by the ubiquitin-proteasome-system (UPS). Loss of GR dimerization prevents autologous down-regulation of the receptor through modulation of interactions with components of the UPS and post-translational modifications (PTMs), such as phosphorylation, which prime the GR for degradation. Rational design of conformationally biased ligands that select for a monomeric GR conformation, which increases GC sensitivity through improving GR protein stability and increasing half-life, may be a productive avenue to explore. However, potential drawbacks to this approach should be considered as well as the advantages and disadvantages in chronic vs. acute treatment regimes.
Collapse
Affiliation(s)
- Ann Louw
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
10
|
Colditz J, Thiele S, Baschant U, Garbe AI, Niehrs C, Hofbauer LC, Rauner M. Osteogenic Dkk1 Mediates Glucocorticoid-Induced but Not Arthritis-Induced Bone Loss. J Bone Miner Res 2019; 34:1314-1323. [PMID: 30779862 DOI: 10.1002/jbmr.3702] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/01/2019] [Accepted: 02/05/2019] [Indexed: 12/17/2022]
Abstract
Dickkopf-1 (Dkk1) is a negative regulator of bone formation and bone mass and is deregulated in bone loss induced by arthritis and glucocorticoid (GC) exposure. However, the role of Dkk1 in these pathological processes is still unknown. Here, we used conditional Dkk1 knock-out mice to determine the role of Dkk1 produced by osteolineage cells in the development of arthritis and GC-induced bone loss. Osteoprogenitor (Osx-Cre)- and osteocyte (Dmp1-Cre)-specific knock-out mice and their Cre-negative controls were subjected to two arthritis models, K/BxN and antigen-induced arthritis. Disease induction and progression were assessed. GC-induced bone loss was induced in 25-week-old female mice by implanting prednisolone (7.5 mg) slow-release pellets for 4 weeks. Dkk1fl/fl ;Osx-Cre mice subjected to K/BxN arthritis showed mildly reduced disease severity with reduced infiltration of neutrophils and T cells into affected joints and reduced bone erosions compared with Cre-negative controls. Osteocyte-specific Dkk1 deletion did not affect disease severity or local bone erosions. However, systemic bone loss at the spine was less severe in both mouse lines. In contrast to arthritis, both lines were protected from GC-induced bone loss. Although the Cre-negative controls lost about 26% and 31% bone volume potentially caused by decreased bone formation, Cre-positive mice did not exhibit such alterations. Dkk-1 deficiency in osteolineage cells protects against GC-induced bone loss, whereas it had only minor effects in arthritis. Therefore, Dkk1 may be a promising therapeutic target especially for bone diseases in which inhibition of bone formation represents the predominant mechanism. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Juliane Colditz
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany.,Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Sylvia Thiele
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany.,Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Ulrike Baschant
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany.,Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Annette I Garbe
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Christof Niehrs
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Heidelberg, Germany.,Institute of Molecular Biology, Mainz, Germany
| | - Lorenz C Hofbauer
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany.,Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany.,Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Martina Rauner
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany.,Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
11
|
Wilkinson L, Verhoog NJD, Louw A. Disease- and treatment-associated acquired glucocorticoid resistance. Endocr Connect 2018; 7:R328-R349. [PMID: 30352419 PMCID: PMC6280593 DOI: 10.1530/ec-18-0421] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 10/11/2018] [Indexed: 12/16/2022]
Abstract
The development of resistance to glucocorticoids (GCs) in therapeutic regimens poses a major threat. Generally, GC resistance is congenital or acquired over time as a result of disease progression, prolonged GC treatment or, in some cases, both. Essentially, disruptions in the function and/or pool of the glucocorticoid receptor α (GRα) underlie this resistance. Many studies have detailed how alterations in GRα function lead to diminished GC sensitivity; however, the current review highlights the wealth of data concerning reductions in the GRα pool, mediated by disease-associated and treatment-associated effects, which contribute to a significant decrease in GC sensitivity. Additionally, the current understanding of the molecular mechanisms involved in driving reductions in the GRα pool is discussed. After highlighting the importance of maintaining the level of the GRα pool to combat GC resistance, we present current strategies and argue that future strategies to prevent GC resistance should involve biased ligands with a predisposition for reduced GR dimerization, a strategy originally proposed as the SEMOGRAM-SEDIGRAM concept to reduce the side-effect profile of GCs.
Collapse
Affiliation(s)
- Legh Wilkinson
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | | | - Ann Louw
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
- Correspondence should be addressed to A Louw:
| |
Collapse
|
12
|
Novel role for receptor dimerization in post-translational processing and turnover of the GRα. Sci Rep 2018; 8:14266. [PMID: 30250038 PMCID: PMC6155283 DOI: 10.1038/s41598-018-32440-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 09/07/2018] [Indexed: 01/06/2023] Open
Abstract
Glucocorticoids (GCs), acting via the glucocorticoid receptor (GRα), remain the mainstay therapeutic choice for the treatment of inflammation. However, chronic GC use, aside from generating undesirable side-effects, results in GRα down-regulation, often coupled to a decrease in GC-responsiveness, which may culminate in acquired GC resistance. The current study presents evidence for a novel role of the dimerization state of the GRα in mediating GC-mediated GRα turnover. Through comparing the effects of dimerization promoting GCs on down-regulation of a transfected human wild type GRα (hGRwt) or a dimerization deficient GRα mutant (hGRdim), we established that a loss of receptor dimerization restricts GRα turnover, which was supported by the use of the dimerization abrogating Compound A (CpdA), in cells containing endogenous GRα. Moreover, we showed that the dimerization state of the GRα influenced the post-translational processing of the receptor, specifically hyper-phosphorylation at Ser404, which influenced the interaction of GRα with the E3 ligase, FBXW7α, thus hampering receptor turnover via the proteasome. Lastly, the restorative effects of CpdA on the GRα pool, in the presence of Dex, were demonstrated in a combinatorial treatment protocol. These results expand our understanding of factors that contribute to GC-resistance and may be exploited clinically.
Collapse
|
13
|
Colditz J, Thiele S, Baschant U, Niehrs C, Bonewald LF, Hofbauer LC, Rauner M. Postnatal Skeletal Deletion of Dickkopf-1 Increases Bone Formation and Bone Volume in Male and Female Mice, Despite Increased Sclerostin Expression. J Bone Miner Res 2018; 33:1698-1707. [PMID: 29734465 DOI: 10.1002/jbmr.3463] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/16/2018] [Accepted: 04/28/2018] [Indexed: 12/14/2022]
Abstract
The Wnt antagonist Dickkopf-1 (Dkk1) is a negative regulator of osteoblast function and bone mass. However, because of the lack of appropriate models, many aspects of its role in the regulation of postnatal bone turnover and its cellular source have remained unknown. In this study, we deleted Dkk1 postnatally and in different cell types using various Cre-drivers (Rosa26-ERT2-Cre, Osx-cre, Dmp1-Cre) and assessed to which extent cells of the osteoblastic lineage contribute to the effects of Dkk1 on bone turnover and homeostasis. Female and male mice were examined at 12 weeks of age. Mice with a global or cell type-specific deletion of Dkk1 showed a two- to threefold higher bone volume compared with their Cre-negative littermates. The mineral apposition rate and the bone formation rate were increased two- to fourfold in all three mouse lines, despite a significant increase in systemic and skeletal levels of sclerostin. Dkk1 deletion further reduced the number of osteoclasts about twofold, which was accompanied by a strong decrease in the receptor activator of nuclear factor-κB ligand/osteoprotegerin mRNA ratio in femoral bone. Despite similar increases in bone mass, the deletion of Dkk1 in osterix-expressing cells reduced circulating Dkk1 significantly (males, -79%; females, -77%), whereas they were not changed in Dkk1fl/fl ;Dmp1-Cre mice. However, both lines showed significantly reduced Dkk1 mRNA levels in bone. In summary, we show that lack of Dkk1 in cells of the osteoblastic lineage leads to high bone mass with increased bone formation, despite increased levels of sclerostin. Moreover, the majority of systemic Dkk1 appears to originate from osteoprogenitors but not from mature osteoblasts or osteocytes. Nevertheless, the amount of Dkk1 produced locally by more mature osteogenic cells is sufficient to modulate bone mass. Thus, this study highlights the importance of local Wnt signaling on postnatal bone homeostasis. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Juliane Colditz
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany.,Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Sylvia Thiele
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany.,Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Ulrike Baschant
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany.,Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Christof Niehrs
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Heidelberg, Germany.,Institute of Molecular Biology, Mainz, Germany
| | - Lynda F Bonewald
- Indiana Center for Musculoskeletal Health, Departments of Anatomy and Cell Biology and Orthopaedic Surgery, School of Medicine, Indianapolis, IN, USA
| | - Lorenz C Hofbauer
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany.,Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany.,Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Martina Rauner
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany.,Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
14
|
|
15
|
Safy M, de Hair MJH, Jacobs JWG, Buttgereit F, Kraan MC, van Laar JM. Efficacy and safety of selective glucocorticoid receptor modulators in comparison to glucocorticoids in arthritis, a systematic review. PLoS One 2017; 12:e0188810. [PMID: 29267302 PMCID: PMC5739390 DOI: 10.1371/journal.pone.0188810] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 10/23/2017] [Indexed: 12/20/2022] Open
Abstract
Background Long-term treatment with glucocorticoids (GCs) plays an important role in the management of arthritis patients, although the efficacy/safety balance is unfavorable. Alternatives with less (severe) adverse effects but with good efficacy are needed. Selective GC receptor modulators (SGRMs) are designed to engage the GC receptor with dissociative characteristics: transactivation of genes, which is mainly responsible for unwanted effects, is less strong while trans-repression of genes, reducing inflammation, is maintained. It is expected that SGRMs thus have a better efficacy/safety balance than GCs. A systematic review providing an overview of the evidence in arthritis is lacking. Objective To systematically review the current literature on efficacy and safety of oral SGRMs in comparison to GCs in arthritis. Methods A search was performed in Medline, Embase and the Cochrane Library, from inception dates of databases until May 2017. Experimental studies involving animal arthritis models or human material of arthritis patients, as well as clinical studies in arthritis patients were included, provided they reported original data. All types of arthritis were included. Data was extracted on the SGRM studied and on the GC used as reference standard; the design or setting of the study was extracted as well as the efficacy and safety results. Results A total of 207 articles was retrieved of which 17 articles were eligible for our analysis. Two studies concerned randomized controlled trials (RCT), five studies were pre-clinical studies using human material, and 10 studies involved pre-clinical animal models (acute and/or chronic arthritis induced in mice or rats). PF-04171327, the only compound investigated in a clinical trial setting, had a better efficacy/safety balance compared to GCs: better clinical anti-inflammatory efficacy and similar safety. Conclusion Studies assessing both efficacy and safety of SGRMs are scarce. There is limited evidence for dissociation of anti-inflammatory and metabolic effects of the SGRMs studied. Development of many SGRMs is haltered in a preclinical phase. One SGRM showed a better clinical efficacy/safety balance.
Collapse
Affiliation(s)
- M Safy
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - M J H de Hair
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - J W G Jacobs
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - F Buttgereit
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - M C Kraan
- Department of Rheumatology and Inflammation Research at Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - J M van Laar
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
16
|
Bartko J, Derhaschnig U, Neels T, Nabozny GH, Harcken C, Leuschner J, De Vries F, Jilma B. Selective glucocorticoid receptor modulation inhibits cytokine responses in a canine model of mild endotoxemia. Pharmacol Res 2017; 125:215-223. [PMID: 28923543 DOI: 10.1016/j.phrs.2017.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/07/2017] [Accepted: 09/12/2017] [Indexed: 12/24/2022]
Abstract
Selective glucocorticoid receptor modulators (GRMs) promise to reduce adverse events of glucocorticoids while maintaining anti-inflammatory potency. The present study tested the anti-inflammatory activity of two novel non-steroidal GRMs (GRM1: BI 607812 BS, GRM2: BI 653048 BS*H3PO4) in comparison to prednisolone in a canine model of low dose endotoxemia. This study compared the anti-inflammatory and pharmacokinetic profile of escalating daily oral doses of GRM1 (1, 2.5, 5 and 10mg/kg) and GRM2 (0.1, 0.25 and 1mg/kg) with prednisolone (0.25 and 0.5mg/kg) and placebo after intravenous infusion of endotoxin (0.1μg/kg) to Beagle dogs. This was followed by a 14-day evaluation study of safety and pharmacokinetics. Endotoxin challenge increased TNF-α ∼2000-fold and interleukin-6 (IL-6) 100-fold. Prednisolone and both GRMs suppressed peak TNF-α and IL-6 by 71-82% as compared with placebo. The highest doses of GRM1 and GRM2 reduced the mean body temperature increase by ∼30%. The endotoxin-induced rise in plasma cortisol was strongly suppressed in all treatment groups. Pharmacokinetics of both GRMs were non-linear. Adverse effects of endotoxemia such as vomiting were mitigated by GRM2 and prednisolone, indicating an antiemetic effect. During the 14-day treatment period, the adverse event profile of both GRMs appeared to be similar to prednisolone. Both GRMs had anti-inflammatory effects comparable to prednisolone and showed good safety profiles. Compounds targeting the glucocorticoid receptor selectively may provide an alternative to traditional glucocorticoids in the treatment of inflammatory disease.
Collapse
Affiliation(s)
- Johann Bartko
- Department of Clinical Pharmacology, Medical University of Vienna, Austria; Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Ulla Derhaschnig
- Department of Clinical Pharmacology, Medical University of Vienna, Austria; Department of Emergency Medicine, Medical University of Vienna, Austria
| | - Tania Neels
- Department of Clinical Pharmacology, Medical University of Vienna, Austria
| | | | | | - Jost Leuschner
- LPT Laboratory of Pharmacology and Toxicology GmbH & Co. KG, Germany
| | | | - Bernd Jilma
- Department of Clinical Pharmacology, Medical University of Vienna, Austria.
| |
Collapse
|
17
|
Compound A influences gene regulation of the Dexamethasone-activated glucocorticoid receptor by alternative cofactor recruitment. Sci Rep 2017; 7:8063. [PMID: 28808239 PMCID: PMC5556032 DOI: 10.1038/s41598-017-07941-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 07/03/2017] [Indexed: 01/12/2023] Open
Abstract
The glucocorticoid receptor (GR) is a transcription factor of which the underlying gene regulatory mechanisms are complex and incompletely understood. The non-steroidal anti-inflammatory Compound A (CpdA), a selective GR modulating compound in various cell models, has been shown to favour GR-mediated gene repression but not GR-mediated gene activation. Shifting balances towards only a particular subset of GR gene regulatory events may be of benefit in the treatment of inflammatory diseases. We present evidence to support that the combination of CpdA with Dexamethasone (DEX), a classic steroidal GR ligand, can shape GR function towards a unique gene regulatory profile in a cell type-dependent manner. The molecular basis hereof is a changed GR phosphorylation status concomitant with a change in the GR cofactor recruitment profile. We subsequently identified and confirmed the orphan nuclear receptor SHP as a coregulator that is specifically enriched at GR when CpdA and DEX are combined. Combining CpdA with DEX not only leads to stronger suppression of pro-inflammatory gene expression, but also enhanced anti-inflammatory GR target gene expression in epithelial cells, making ligand combination strategies in future a potentially attractive alternative manner of skewing and fine-tuning GR effects towards an improved therapeutic benefit.
Collapse
|
18
|
Abstract
Glucocorticoids (GCs; referred to clinically as corticosteroids) are steroid hormones with potent anti-inflammatory and immune modulatory profiles. Depending on the context, these hormones can also mediate pro-inflammatory activities, thereby serving as primers of the immune system. Their target receptor, the GC receptor (GR), is a multi-tasking transcription factor, changing its role and function depending on cellular and organismal needs. To get a clearer idea of how to improve the safety profile of GCs, recent studies have investigated the complex mechanisms underlying GR functions. One of the key findings includes both pro- and anti-inflammatory roles of GR, and a future challenge will be to understand how such paradoxical findings can be reconciled and how GR ultimately shifts the balance to a net anti-inflammatory profile. As such, there is consensus that GR deserves a second life as a drug target, with either refined classic GCs or a novel generation of nonsteroidal GR-targeting molecules, to meet the increasing clinical needs of today to treat inflammation and cancer.
Collapse
|
19
|
Dean M, Murphy BT, Burdette JE. Phytosteroids beyond estrogens: Regulators of reproductive and endocrine function in natural products. Mol Cell Endocrinol 2017; 442:98-105. [PMID: 27986590 PMCID: PMC5276729 DOI: 10.1016/j.mce.2016.12.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 11/29/2016] [Accepted: 12/12/2016] [Indexed: 12/18/2022]
Abstract
Foods and botanical supplements can interfere with the endocrine system through the presence of phytosteroids - chemicals that interact with steroids receptors. Phytoestrogens are well studied, but compounds such as kaempferol, apigenin, genistein, ginsenoside Rf, and glycyrrhetinic acid have been shown to interact with non-estrogen nuclear receptors. These compounds can have agonist, antagonist, or mixed agonist/antagonist activity depending on compound, receptor, cell line or tissue, and concentration. Some phytosteroids have also been shown to inhibit steroid metabolizing enzymes, resulting in biological effects through altered endogenous steroid concentrations. An interesting example, compound A (4-[1-chloro-2-(methylamino)ethyl]phenyl acetate hydrochloride (1:1)) is a promising selective glucocorticoid receptor modulator (SGRM) based on a phytosteroid isolated from Salsola tuberculatiformis Botschantzev. Given that $6.9 billion of herbal supplements are sold each year, is clear that further identification and characterization of phytosteroids is needed to ensure the safe and effective use of botanical supplements.
Collapse
Affiliation(s)
- Matthew Dean
- Department of Medicinal Chemistry and Pharmacognosy, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Brian T Murphy
- Department of Medicinal Chemistry and Pharmacognosy, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Joanna E Burdette
- Department of Medicinal Chemistry and Pharmacognosy, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
20
|
Location and gene-specific effects of methylprednisolone acetate on mitigating IL1β-induced inflammation in mature ovine explant knee tissue. Inflamm Res 2016; 66:239-248. [DOI: 10.1007/s00011-016-1009-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 11/07/2016] [Accepted: 11/09/2016] [Indexed: 12/19/2022] Open
|
21
|
Rauner M, Franke K, Murray M, Singh RP, Hiram-Bab S, Platzbecker U, Gassmann M, Socolovsky M, Neumann D, Gabet Y, Chavakis T, Hofbauer LC, Wielockx B. Increased EPO Levels Are Associated With Bone Loss in Mice Lacking PHD2 in EPO-Producing Cells. J Bone Miner Res 2016; 31:1877-1887. [PMID: 27082941 DOI: 10.1002/jbmr.2857] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 03/28/2016] [Accepted: 04/12/2016] [Indexed: 12/25/2022]
Abstract
The main oxygen sensor hypoxia inducible factor (HIF) prolyl hydroxylase 2 (PHD2) is a critical regulator of tissue homeostasis during erythropoiesis, hematopoietic stem cell maintenance, and wound healing. Recent studies point toward a role for the PHD2-erythropoietin (EPO) axis in the modulation of bone remodeling, even though the studies produced conflicting results. Here, we used a number of mouse strains deficient of PHD2 in different cell types to address the role of PHD2 and its downstream targets HIF-1α and HIF-2α in bone remodeling. Mice deficient for PHD2 in several cell lineages, including EPO-producing cells, osteoblasts, and hematopoietic cells (CD68:cre-PHD2f/f ) displayed a severe reduction of bone density at the distal femur as well as the vertebral body due to impaired bone formation but not bone resorption. Importantly, using osteoblast-specific (Osx:cre-PHD2f/f ) and osteoclast-specific PHD2 knock-out mice (Vav:cre- PHD2f/f ), we show that this effect is independent of the loss of PHD2 in osteoblast and osteoclasts. Using different in vivo and in vitro approaches, we show here that this bone phenotype, including the suppression of bone formation, is directly linked to the stabilization of the α-subunit of HIF-2, and possibly to the subsequent moderate induction of serum EPO, which directly influenced the differentiation and mineralization of osteoblast progenitors resulting in lower bone density. Taken together, our data identify the PHD2:HIF-2α:EPO axis as a so far unknown regulator of osteohematology by controlling bone homeostasis. Further, these data suggest that patients treated with PHD inhibitors or EPO should be monitored with respect to their bone status. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Martina Rauner
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Kristin Franke
- Department of Clinical Pathobiochemistry, Technische Universität Dresden, Dresden, Germany.,Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
| | - Marta Murray
- Department of Clinical Pathobiochemistry, Technische Universität Dresden, Dresden, Germany.,Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
| | - Rashim Pal Singh
- Department of Clinical Pathobiochemistry, Technische Universität Dresden, Dresden, Germany.,Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
| | - Sahar Hiram-Bab
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Uwe Platzbecker
- Department of Medicine I, Technische Universität Dresden, Dresden, Germany
| | - Max Gassmann
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zürich, Zürich, Switzerland.,Universidad Peruana Cayetano Heredia (UPCH), Lima, Peru
| | - Merav Socolovsky
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA.,Department of Pediatrics, University of Massachusetts Medical School, Worcester, MA
| | - Drorit Neumann
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Yankel Gabet
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Triantafyllos Chavakis
- Department of Clinical Pathobiochemistry, Technische Universität Dresden, Dresden, Germany.,Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany.,Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Lorenz C Hofbauer
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany.,Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Ben Wielockx
- Department of Clinical Pathobiochemistry, Technische Universität Dresden, Dresden, Germany. .,Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany. .,Center for Regenerative Therapies Dresden, Dresden, Germany.
| |
Collapse
|
22
|
Lesovaya E, Yemelyanov A, Swart AC, Swart P, Haegeman G, Budunova I. Discovery of Compound A--a selective activator of the glucocorticoid receptor with anti-inflammatory and anti-cancer activity. Oncotarget 2016; 6:30730-44. [PMID: 26436695 PMCID: PMC4741564 DOI: 10.18632/oncotarget.5078] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 09/19/2015] [Indexed: 12/19/2022] Open
Abstract
Glucocorticoids are among the most effective anti-inflammatory drugs, and are widely used for cancer therapy. Unfortunately, chronic treatment with glucocorticoids results in multiple side effects. Thus, there was an intensive search for selective glucocorticoid receptor (GR) activators (SEGRA), which retain therapeutic potential of glucocorticoids, but with fewer adverse effects. GR regulates gene expression by transactivation (TA), by binding as homodimer to gene promoters, or transrepression (TR), via diverse mechanisms including negative interaction between monomeric GR and other transcription factors. It is well accepted that metabolic and atrophogenic effects of glucocorticoids are mediated by GR TA. Here we summarized the results of extensive international collaboration that led to discovery and characterization of Compound A (CpdA), a unique SEGRA with a proven “dissociating” GR ligand profile, preventing GR dimerization and shifting GR activity towards TR both in vitro and in vivo. We outlined here the unusual story of compound's discovery, and presented a comprehensive overview of CpdA ligand properties, its anti-inflammatory effects in numerous animal models of inflammation and autoimmune diseases, as well as its anti-cancer effects. Finally, we presented mechanistic analysis of CpdA and glucocorticoid effects in skin, muscle, bone, and regulation of glucose and fat metabolism to explain decreased CpdA side effects compared to glucocorticoids. Overall, the results obtained by our and other laboratories underline translational potential of CpdA and its derivatives for treatment of inflammation, autoimmune diseases and cancer.
Collapse
Affiliation(s)
- Ekaterina Lesovaya
- Department of Chemical Carcinogenesis, N.N. Blokhin Russian Cancer Research Center, Moscow, Russia
| | - Alexander Yemelyanov
- Pulmonary Division, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Amanda C Swart
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - Pieter Swart
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | | | - Irina Budunova
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
23
|
Hartmann K, Koenen M, Schauer S, Wittig-Blaich S, Ahmad M, Baschant U, Tuckermann JP. Molecular Actions of Glucocorticoids in Cartilage and Bone During Health, Disease, and Steroid Therapy. Physiol Rev 2016; 96:409-47. [PMID: 26842265 DOI: 10.1152/physrev.00011.2015] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cartilage and bone are severely affected by glucocorticoids (GCs), steroid hormones that are frequently used to treat inflammatory diseases. Major complications associated with long-term steroid therapy include impairment of cartilaginous bone growth and GC-induced osteoporosis. Particularly in arthritis, GC application can increase joint and bone damage. Contrarily, endogenous GC release supports cartilage and bone integrity. In the last decade, substantial progress in the understanding of the molecular mechanisms of GC action has been gained through genome-wide binding studies of the GC receptor. These genomic approaches have revolutionized our understanding of gene regulation by ligand-induced transcription factors in general. Furthermore, specific inactivation of GC signaling and the GC receptor in bone and cartilage cells of rodent models has enabled the cell-specific effects of GCs in normal tissue homeostasis, inflammatory bone diseases, and GC-induced osteoporosis to be dissected. In this review, we summarize the current view of GC action in cartilage and bone. We further discuss future research directions in the context of new concepts for optimized steroid therapies with less detrimental effects on bone.
Collapse
Affiliation(s)
- Kerstin Hartmann
- Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany; and Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Mascha Koenen
- Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany; and Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Sebastian Schauer
- Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany; and Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Stephanie Wittig-Blaich
- Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany; and Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Mubashir Ahmad
- Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany; and Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Ulrike Baschant
- Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany; and Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Jan P Tuckermann
- Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany; and Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
24
|
Landegger LD, Honeder C, Zhu C, Schöpper H, Engleder E, Gabor F, Gstoettner W, Arnoldner C. Noise trauma and systemic application of the selective glucocorticoid receptor modulator compound A. J Negat Results Biomed 2016; 15:10. [PMID: 27164957 PMCID: PMC4863352 DOI: 10.1186/s12952-016-0053-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/13/2016] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Selective glucocorticoid receptor modulators (SEGRMs) comprise a novel class of drugs promising both reduced side effects and similar pharmacological potency relative to glucocorticoids, which presently serve as the only clinical treatment for many otologic disorders. In the first otologic SEGRM experiment in an animal model of noise trauma, we compare the effects of Compound A (a SEGRM) and dexamethasone (potent glucocorticoid). METHODS Forty adult guinea pigs received experimental treatment once daily for ten days. The animals were divided into four cohorts based on the treatment received: Compound A (1 mg/kg or 3 mg/kg), dexamethasone (1 mg/kg) as gold standard, or water as negative control. After five applications, animals were exposed to broadband noise (8-16 kHz) at 115 dB for three hours. Hearing thresholds were determined by recording auditory brainstem responses to clicks and noise bursts (1-32 kHz) and were assessed a week prior to and immediately after exposure, as well as on days 1, 3, 7, 14, 21, and 28. Cochleae were prepared as whole-mounts or embedded and sectioned for histological analysis. RESULTS Relative to the control treatments, Compound A failed to preserve auditory thresholds post-noise exposure with statistical significance. Histological analyses confirm the physiological result. CONCLUSION The present findings suggest that Compound A does not have substantial otoprotective capacities in a noise trauma model.
Collapse
Affiliation(s)
- Lukas D Landegger
- Department of Otorhinolaryngology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Clemens Honeder
- Department of Otorhinolaryngology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| | - Chengjing Zhu
- Department of Otorhinolaryngology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Hanna Schöpper
- Department of Pathobiology, Institute of Anatomy, Histology and Embryology, University of Veterinary Medicine, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Elisabeth Engleder
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Franz Gabor
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Wolfgang Gstoettner
- Department of Otorhinolaryngology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Christoph Arnoldner
- Department of Otorhinolaryngology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| |
Collapse
|
25
|
Albus E, Sinningen K, Winzer M, Thiele S, Baschant U, Hannemann A, Fantana J, Tausche AK, Wallaschofski H, Nauck M, Völzke H, Grossklaus S, Chavakis T, Udey MC, Hofbauer LC, Rauner M. Milk Fat Globule-Epidermal Growth Factor 8 (MFG-E8) Is a Novel Anti-inflammatory Factor in Rheumatoid Arthritis in Mice and Humans. J Bone Miner Res 2016; 31:596-605. [PMID: 26391522 PMCID: PMC6999704 DOI: 10.1002/jbmr.2721] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 09/15/2015] [Accepted: 09/21/2015] [Indexed: 12/31/2022]
Abstract
Milk fat globule-epidermal growth factor 8 (MFG-E8) is an anti-inflammatory glycoprotein that mediates the clearance of apoptotic cells and is implicated in the pathogenesis of autoimmune and inflammatory diseases. Because MFG-E8 also controls bone metabolism, we investigated its role in rheumatoid arthritis (RA), focusing on inflammation and joint destruction. The regulation of MFG-E8 by inflammation was assessed in vitro using osteoblasts, in arthritic mice and in patients with RA. K/BxN serum transfer arthritis (STA) was applied to MFG-E8 knock-out mice to assess its role in the pathogenesis of arthritis. Stimulation of osteoblasts with lipopolysaccharide (LPS) and tumor necrosis factor (TNF)-α downregulated the expression of MFG-E8 by 30% to 35%. MFG-E8-deficient osteoblasts responded to LPS with a stronger production of pro-inflammatory cytokines. In vivo, MFG-E8 mRNA levels were 52% lower in the paws of collagen-induced arthritic (CIA) mice and 24% to 42% lower in the serum of arthritic mice using two different arthritis models (CIA and STA). Similarly, patients with RA (n = 93) had lower serum concentrations of MFG-E8 (-17%) compared with healthy controls (n = 140). In a subgroup of patients who had a moderate to high disease activity (n = 21), serum concentrations of MFG-E8 rose after complete or partial remission had been achieved (+67%). Finally, MFG-E8-deficient mice subjected to STA exhibited a stronger disease burden, an increased number of neutrophils in the joints, and a more extensive local and systemic bone loss. This was accompanied by an increased activation of osteoclasts and a suppression of osteoblast function in MFG-E8-deficient mice. Thus, MFG-E8 is a protective factor in the pathogenesis of RA and subsequent bone loss. Whether MFG-E8 qualifies as a novel biomarker or therapeutic target for the treatment of RA is worth addressing in further studies.
Collapse
Affiliation(s)
- Elise Albus
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Kathrin Sinningen
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany.,Department of Obstetrics and Gynecology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Maria Winzer
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Sylvia Thiele
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Ulrike Baschant
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Anke Hannemann
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Julia Fantana
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany
| | | | - Henri Wallaschofski
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Matthias Nauck
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Sylvia Grossklaus
- Department of Clinical Pathobiochemistry and Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
| | - Triantafyllos Chavakis
- Department of Clinical Pathobiochemistry and Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany.,DFG Research Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Mark C Udey
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Lorenz C Hofbauer
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany.,DFG Research Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Martina Rauner
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
26
|
Abstract
Glucocorticoids are the most effective treatment for asthma. However, their clinical applications are limited by low efficacy in severe asthma and by undesired side effects associated with high dose or prolonged use. The most successful approach to overcome these limitations has been the development of highly potent glucocorticoids that can be delivered to the lungs by inhalation to achieve local efficacy with minimal systemic effects. On the basis of our previous structural studies, we designed and developed a highly potent glucocorticoid, VSGC12, which showed an improved anti-inflammation activity in both cell-based reporter assays and cytokine inhibition experiments, as well as in a gene expression profiling of mouse macrophage RAW264.7 cells. In a mouse asthma model, VSGC12 delivered a higher efficacy than fluticasone furoate, a leading clinical compound, in many categories including histology and the number of differentiated immune cells. VSGC12 also showed a higher potency than fluticasone furoate in repressing most asthma symptoms. Finally, VSGC12 showed a better side effect profile than fluticasone furoate at their respective effective doses, including better insulin response and less bone loss in an animal model. The excellent therapeutic and side effect properties of VSGC12 provide a promising perspective for developing this potent glucocorticoid as a new effective drug for asthma.
Collapse
|
27
|
Frenkel B, White W, Tuckermann J. Glucocorticoid-Induced Osteoporosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015. [PMID: 26215995 DOI: 10.1007/978-1-4939-2895-8_8] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Osteoporosis is among the most devastating side effects of glucocorticoid (GC) therapy for the management of inflammatory and auto-immune diseases. Evidence from both humans and mice indicate deleterious skeletal effects within weeks of pharmacological GC administration, both related and unrelated to a decrease in bone mineral density (BMD). Osteoclast numbers and bone resorption are also rapidly increased, and together with osteoblast inactivation and decreased bone formation, these changes lead the fastest loss in BMD during the initial disease phase. Bone resorption then decreases to sub-physiological levels, but persistent and severe inhibition of bone formation leads to further bone loss and progressively increased fracture risk, up to an order of magnitude higher than that observed in untreated individuals. Bone forming osteoblasts are thus considered the main culprits in GC-induced osteoporosis (GIO). Accordingly, we focus this review primarily on deleterious effects on osteoblasts: inhibition of cell replication and function and acceleration of apoptosis. Mediating these adverse effects, GCs target pivotal regulatory mechanisms that govern osteoblast growth, differentiation and survival. Specifically, GCs inhibit growth factor pathways, including Insulin Growth Factors, Growth Hormone, Hepatocyte Growth/Scatter Factor and IL6-type cytokines. They also inhibit downstream kinases, including PI3-kinase and the MAP kinase ERK, the latter attributable in part to direct transcriptional stimulation of MAP kinase phosphatase 1. Most importantly, however, GCs inhibit the Wnt signaling pathway, which plays a pivotal role in osteoblast replication, function and survival. They transcriptionally stimulate expression of Wnt inhibitors of both the Dkk and Sfrp families, and they induce reactive oxygen species (ROS), which result in loss of ß-catenin to ROS-activated FoxO transcription factors. Identification of dissociated GCs, which would suppress the immune system without causing osteoporosis, is proving more challenging than initially thought, and GIO is currently managed by co-treatment with bisphosphonates or PTH. These drugs, however, are not ideally suited for GIO. Future therapeutic approaches may aim at GC targets such as those mentioned above, or newly identified targets including the Notch pathway, the AP-1/Il11 axis and the osteoblast master regulator RUNX2.
Collapse
Affiliation(s)
- Baruch Frenkel
- Department of Orthopaedic Surgery, Keck School of Medicine, Institute for Genetic Medicine, University of Southern California, 2250 Alcazar Street, CSC-240, Los Angeles, CA, 90033, USA,
| | | | | |
Collapse
|
28
|
Mossiat C, Laroche D, Prati C, Pozzo T, Demougeot C, Marie C. Association between arthritis score at the onset of the disease and long-term locomotor outcome in adjuvant-induced arthritis in rats. Arthritis Res Ther 2015; 17:184. [PMID: 26183428 PMCID: PMC4506462 DOI: 10.1186/s13075-015-0700-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 06/26/2015] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION To investigate the connection between the intensity of initial symptoms of inflammation and locomotor outcome in rheumatoid arthritis, we examined the relationship between long-term locomotor abnormalities and signs of inflammation at the onset of the disease in adjuvant-induced arthritis (AIA) in rats. METHODS The arthritis score and hind-paw diameter were followed from immunization to day 195 (~7 months). At this time, locomotion was recorded during forced treadmill walking using 3D motion technology before radiographic scoring of hind limb joint damage. Many locomotor parameters were analyzed including time and length parameters, limbs kinematics, lateral paw position at toe off, maximal hind-paw elevation and posture. Ankle mobility was assessed from range of motion (ROM) of the joint during locomotion. Experiments were run in AIA (n = 18) and age-matched non-AIA rats (n = 8). RESULTS All AIA rats exhibited signs of inflammation at day 14 with a peak of inflammatory symptoms at day 22 post-immunization. After the first episode of inflammation, 83 % of AIA rats demonstrated recurrent disease (from week 6 to week 23). The frequency of inflammatory episodes (1 to 5) was not linked to the arthritis score at day 22. At day 195 post-immunization, AIA rats showed significantly impaired locomotion and radiographic lesions as compared to control rats. Significant relationships were observed between most locomotion-related parameters and concurrent ROM of ankle, which correlated negatively with the radiographic score. ROM of ankle at day 195 correlated negatively with both the arthritis score and hind-paw diameter measured at day 14, 22 and 30 post-immunization. CONCLUSION Decreased ankle mobility can be considered a driver of locomotion impairment in AIA. In this model, the severity of the initial inflammatory symptoms had a good prognostic value for long-term locomotor outcome.
Collapse
Affiliation(s)
- Claude Mossiat
- INSERM U1093, University Bourgogne Franche-Comté, F-21000, Dijon, France.
| | - Davy Laroche
- INSERM U1093, University Bourgogne Franche-Comté, F-21000, Dijon, France. .,CHRU, Dijon, France.
| | - Clément Prati
- EA4267, FHU INCREASE, University Bourgogne Franche-Comté, F-25000, Besançon, France. .,CHRU, Besançon, France.
| | - Thierry Pozzo
- INSERM U1093, University Bourgogne Franche-Comté, F-21000, Dijon, France.
| | - Céline Demougeot
- EA4267, FHU INCREASE, University Bourgogne Franche-Comté, F-25000, Besançon, France.
| | - Christine Marie
- INSERM U1093, University Bourgogne Franche-Comté, F-21000, Dijon, France. .,INSERM U 1093 Cognition, Action et Plasticité Sensorimotrice, 7 boulevard Jeanne d'Arc, BP 87900, 21000, Dijon, France.
| |
Collapse
|
29
|
Sinningen K, Albus E, Thiele S, Grossklaus S, Kurth T, Udey MC, Chavakis T, Hofbauer LC, Rauner M. Loss of milk fat globule-epidermal growth factor 8 (MFG-E8) in mice leads to low bone mass and accelerates ovariectomy-associated bone loss by increasing osteoclastogenesis. Bone 2015; 76:107-14. [PMID: 25868798 DOI: 10.1016/j.bone.2015.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 02/13/2015] [Accepted: 04/02/2015] [Indexed: 11/16/2022]
Abstract
Milk fat globule-epidermal growth factor 8 (MFG-E8) is a glycoprotein that controls the engulfment of apoptotic cells and exerts inflammation-modulatory effects. Recently, it has been implicated in osteoclastogenesis and the pathogenesis of inflammatory periodontal bone loss, but its role in physiological bone homeostasis is still not well defined. Here, we evaluated the influence of MFG-E8 on osteoblasts and osteoclasts and its impact on bone remodeling in healthy and ovariectomized mice as a model for post-menopausal osteoporosis. Total and trabecular bone mineral densities at the lumbar spine in 6-week-old MFG-E8 KO mice were reduced by 11% (p < 0.05) and 17% (p < 0.01), respectively, as compared to wild-type (WT) mice. Accordingly, serum levels of the bone formation marker P1NP were decreased by 37% (p < 0.01) in MFG-E8 KO mice as were the ex vivo mineralization capacity and expression of osteoblast genes (Runx2, alkaline phosphatase, osteocalcin) in MFG-E8 KO osteoblasts. In contrast, serum bone resorption markers CTX1 and TRAP5b were increased by 30% and 60% (p < 0.05), respectively, in MFG-E8 KO mice. Furthermore, bone marrow macrophages from MFG-E8-KO mice differentiated more effectively into osteoclasts, as compared to WT cells. MFG-E8-deficient osteoclasts displayed increased bone resorption ex vivo, which could be reversed by the presence of recombinant MFG-E8. To determine the significance of the enhanced osteoclastogenesis in MFG-E8 KO mice, we performed an ovariectomy, which is associated with bone loss due to increased osteoclast activity. Indeed, MFG-E8 KO mice lost 12% more trabecular bone density than WT mice after ovariectomy. Together, these data indicate that MFG-E8 controls steady-state and pathological bone turnover and may therefore represent a new target gene in the treatment of bone diseases.
Collapse
Affiliation(s)
- Kathrin Sinningen
- Division of Endocrinology and Metabolic Bone Diseases, Department of Medicine III, Technische Universität Dresden, Germany
| | - Elise Albus
- Division of Endocrinology and Metabolic Bone Diseases, Department of Medicine III, Technische Universität Dresden, Germany
| | - Sylvia Thiele
- Division of Endocrinology and Metabolic Bone Diseases, Department of Medicine III, Technische Universität Dresden, Germany
| | - Sylvia Grossklaus
- Department of Clinical Pathobiochemistry, Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Germany
| | - Thomas Kurth
- Electron Microscopy Facility, Center for Regenerative Therapies Dresden, Germany
| | - Mark C Udey
- Dermatology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Triantafyllos Chavakis
- Department of Clinical Pathobiochemistry, Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Germany; DFG Research Center for Regenerative Therapies Dresden, Germany
| | - Lorenz C Hofbauer
- Division of Endocrinology and Metabolic Bone Diseases, Department of Medicine III, Technische Universität Dresden, Germany; DFG Research Center for Regenerative Therapies Dresden, Germany
| | - Martina Rauner
- Division of Endocrinology and Metabolic Bone Diseases, Department of Medicine III, Technische Universität Dresden, Germany.
| |
Collapse
|
30
|
Sundahl N, Bridelance J, Libert C, De Bosscher K, Beck IM. Selective glucocorticoid receptor modulation: New directions with non-steroidal scaffolds. Pharmacol Ther 2015; 152:28-41. [PMID: 25958032 DOI: 10.1016/j.pharmthera.2015.05.001] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 04/23/2015] [Indexed: 12/22/2022]
Abstract
Glucocorticoids remain the frontline treatment for inflammatory disorders, yet represent a double-edged sword with beneficial therapeutic actions alongside adverse effects, mainly in metabolic regulation. Considerable efforts were made to improve this balance by attempting to amplify therapeutic beneficial anti-inflammatory actions and to minimize adverse metabolic actions. Most attention has focused on the development of novel compounds favoring the transrepressing actions of the glucocorticoid receptor, assumed to be important for anti-inflammatory actions, over the transactivating actions, assumed to underpin the undesirable actions. These compounds are classified as selective glucocorticoid receptor agonists (SEGRAs) or selective glucocorticoid receptor modulators (SEGRMs). The latter class is able to modulate the activity of a GR agonist and/or may not classically bind the glucocorticoid receptor ligand-binding pocket. SEGRAs and SEGRMs are collectively denominated SEGRAMs (selective glucocorticoid receptor agonists and modulators). Although this transrepression vs transactivation concept proved to be too simplistic, the developed SEGRAMs were helpful in elucidating various molecular actions of the glucocorticoid receptor, but have also raised many novel questions. We discuss lessons learned from recent mechanistic studies of selective glucocorticoid receptor modulators. This is approached by analyzing recent experimental insights in comparison with knowledge obtained using mutant GR research, thus clarifying the current view on the SEGRAM field. These insights also contribute to our understanding of the processes controlling glucocorticoid-mediated side effects as well as glucocorticoid resistance. Our perspective on non-steroidal SEGRAs and SEGRMs considers remaining opportunities to address research gaps in order to harness the potential for more safe and effective glucocorticoid receptor therapies.
Collapse
Affiliation(s)
- Nora Sundahl
- Laboratory of Experimental Cancer Research (LECR), Department of Radiation Oncology & Experimental Cancer Research, Ghent University, Gent, Belgium
| | - Jolien Bridelance
- Laboratory of Experimental Cancer Research (LECR), Department of Radiation Oncology & Experimental Cancer Research, Ghent University, Gent, Belgium
| | - Claude Libert
- Department for Molecular Biomedical Research, VIB, Gent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Gent, Belgium
| | - Karolien De Bosscher
- Receptor Research Laboratories, Nuclear Receptor Lab (NRL), VIB Department of Medical Protein Research, Ghent University, Gent, Belgium.
| | - Ilse M Beck
- Laboratory of Experimental Cancer Research (LECR), Department of Radiation Oncology & Experimental Cancer Research, Ghent University, Gent, Belgium
| |
Collapse
|
31
|
Beck IM, Van Crombruggen K, Holtappels G, Daubeuf F, Frossard N, Bachert C, De Bosscher K. Differential cytokine profiles upon comparing selective versus classic glucocorticoid receptor modulation in human peripheral blood mononuclear cells and inferior turbinate tissue. PLoS One 2015; 10:e0123068. [PMID: 25875480 PMCID: PMC4395417 DOI: 10.1371/journal.pone.0123068] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 02/27/2015] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Glucocorticoid Receptor agonists, particularly classic glucocorticoids, are the mainstay among treatment protocols for various chronic inflammatory disorders, including nasal disease. To steer away from steroid-induced side effects, novel GR modulators exhibiting a more favorable therapeutic profile remain actively sought after. Currently, the impact of 2-(4-acetoxyphenyl)-2-chloro-N-methylethylammonium chloride a plant-derived selective glucocorticoid receptor modulator named compound A, on cytokine production in ex vivo human immune cells and tissue has scarcely been evaluated. METHODS AND RESULTS The current study aimed to investigate the effect of a classic glucocorticoid versus compound A on cytokine and inflammatory mediator production after stimulation with Staphylococcus aureus-derived enterotoxin B protein in peripheral blood mononuclear cells (PBMCs) as well as in inferior nasal turbinate tissue. To this end, tissue fragments were stimulated with RPMI (negative control) or Staphylococcus aureus-derived enterotoxin B protein for 24 hours, in presence of solvent, or the glucocorticoid methylprednisolone or compound A at various concentrations. Supernatants were measured via multiplex for pro-inflammatory cytokines (IL-1β, TNFα) and T-cell- and subset-related cytokines (IFN-γ, IL-2, IL-5, IL-6, IL-10, and IL-17). In concordance with the previously described stimulatory role of superantigens in the development of nasal polyposis, a 24h Staphylococcus aureus-derived enterotoxin B protein stimulation induced a significant increase of IL-2, IL-1β, TNF-α, and IL-17 in PBMCs and in inferior turbinates and of IL-5 and IFN-γ in PBMCs. CONCLUSION Notwithstanding some differences in amplitude, the overall cytokine responses to methylprednisolone and compound A were relatively similar, pointing to a conserved and common mechanism in cytokine transrepression and anti-inflammatory actions of these GR modulators. Furthermore, these results provide evidence that selective glucocorticoid receptor modulator-mediated manipulation of the glucocorticoid receptor in human tissues, supports its anti-inflammatory potential.
Collapse
Affiliation(s)
- Ilse M. Beck
- Laboratory of Experimental Cancer Research (LECR), Department of Radiation Oncology & Experimental Cancer Research, Ghent University, Gent, Belgium
| | - Koen Van Crombruggen
- Upper Airway Research Laboratory (URL), Ghent University Hospital, Ghent, Belgium
| | - Gabriele Holtappels
- Upper Airway Research Laboratory (URL), Ghent University Hospital, Ghent, Belgium
| | - François Daubeuf
- Laboratoire d'Innovation Thérapeutique, Unité Mixte de Recherche 7200, Centre National de la Recherche Scientifique-Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Nelly Frossard
- Laboratoire d'Innovation Thérapeutique, Unité Mixte de Recherche 7200, Centre National de la Recherche Scientifique-Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Claus Bachert
- Upper Airway Research Laboratory (URL), Ghent University Hospital, Ghent, Belgium
- Division of ENT Diseases, Clintec, Karolinska Institute, Stockholm, Sweden
| | - Karolien De Bosscher
- Receptor Research Laboratories, Nuclear Receptor Lab (NRL), VIB Department of Medical Protein Research, Ghent University, Gent, Belgium
- * E-mail:
| |
Collapse
|
32
|
Saksida T, Vujicic M, Nikolic I, Stojanovic I, Haegeman G, Stosic-Grujicic S. Compound A, a selective glucocorticoid receptor agonist, inhibits immunoinflammatory diabetes, induced by multiple low doses of streptozotocin in mice. Br J Pharmacol 2014; 171:5898-909. [PMID: 25158597 DOI: 10.1111/bph.12892] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 07/24/2014] [Accepted: 08/22/2014] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND PURPOSE Type 1 diabetes is a multifactorial inflammatory disease that develops as a result of deregulated immune responses, causing progressive autoimmune destruction of insulin-producing beta cells of pancreas. 2-((4-acetoxyphenyl)-2-chloro-N-methyl) ethylammonium chloride, compound A (CpdA), is a selective glucocorticoid receptor (GR) agonist that displays strong anti-inflammatory and immunomodulatory activities. We investigated the therapeutic effectiveness of CpdA in a pharmacological model of type 1 diabetes in mice. EXPERIMENTAL APPROACH The utility of CpdA in diabetes prevention was evaluated in vivo through its prophylactic administration to male C57BL/6 mice that received multiple low doses of streptozotocin for immunoinflammatory diabetes induction. The effect of CpdA on disease development was studied by measuring blood glucose and insulin level, histopathological examination, determination of the nature of infiltrating cells, pro- and anti-inflammatory cytokine production, and signalling pathways. KEY RESULTS Prophylactic in vivo therapy with CpdA conferred protection against development of immunoinflammatory diabetes in mice by dampening the M1/Th1/Th17 immune response and switching it towards an anti-inflammatory M2/Th2/Treg profile, thus preserving beta cell function. CONCLUSIONS AND IMPLICATIONS Anti-diabetic properties of CpdA are mediated through modulation of immune cell-mediated pathways, but without triggering adverse events. These findings provide basic information for the therapeutic use of selective GR agonists in the amelioration of islet-directed autoimmunity.
Collapse
Affiliation(s)
- T Saksida
- Department of Immunology, Institute for Biological Research 'Sinisa Stankovic', University of Belgrade, Belgrade, Serbia
| | | | | | | | | | | |
Collapse
|
33
|
Honeder C, Engleder E, Schöpper H, Krause M, Landegger LD, Plasenzotti R, Gabor F, Gstoettner W, Arnoldner C. Evaluation of the selective glucocorticoid receptor agonist compound A for ototoxic effects. Laryngoscope 2014; 125:E149-55. [PMID: 25382757 DOI: 10.1002/lary.25011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 09/23/2014] [Accepted: 10/08/2014] [Indexed: 01/11/2023]
Abstract
OBJECTIVES/HYPOTHESIS To evaluate the selective glucocorticoid receptor agonist (SEGRA) compound A, a potential novel therapeutic for inner ear disorders, for ototoxic effects. STUDY DESIGN Laboratory animal study. METHODS Experimental guinea pigs were grouped as follows: Systemic application of compound A (1.5 mg/kg and 4.5 mg/kg; n = 6/group) and intratympanic application of compound A (1 mM and 10 mM; n = 6/group). Contralateral ears in topically treated animals served as controls. Hearing thresholds were determined by auditory brainstem response before and directly after the application of compound A, as well as on days 3, 7, 14, 21, and 28. At the end of the experiments, temporal bones were harvested for histological evaluation. RESULTS Systemic administration of compound A (1.5 mg/kg and 4.5 mg/kg) did not cause hearing threshold shifts, whereas the intratympanic injection (1 mM and 10 mM) resulted in a hearing loss. Histological analysis of the middle and inner ears after topical compound A application showed alterations in the tympanic membranes, the auditory ossicles, and the round window membranes, whereas spiral ganglion cells and hair cells were not affected. CONCLUSION SEGRAs such as compound A could provide novel therapeutic options for the treatment of inner ear disorders and reduce metabolic side effects. Whereas the intratympanic application of compound A resulted in a hearing loss, the systemic application of compound A merits evaluation for otoprotective effects in trauma models.
Collapse
Affiliation(s)
- Clemens Honeder
- Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Rauner M, Föger-Samwald U, Kurz MF, Brünner-Kubath C, Schamall D, Kapfenberger A, Varga P, Kudlacek S, Wutzl A, Höger H, Zysset PK, Shi GP, Hofbauer LC, Sipos W, Pietschmann P. Cathepsin S controls adipocytic and osteoblastic differentiation, bone turnover, and bone microarchitecture. Bone 2014; 64:281-7. [PMID: 24780878 DOI: 10.1016/j.bone.2014.04.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 04/19/2014] [Accepted: 04/20/2014] [Indexed: 11/17/2022]
Abstract
Cathepsin S is a cysteine protease that controls adipocyte differentiation and has been implicated in vascular and metabolic complications of obesity. Considering the inverse relation of osteoblasts and adipocytes and their mutual precursor cell, we hypothesized that cathepsin S may also affect osteoblast differentiation and bone remodeling. Thus, the fat and bone phenotypes of young (3 months old) and aged (12 or 18 months old) cathepsin S knock-out (KO) and wild-type (WT) mice were determined. Cathepsin S KO mice had a normal body weight at both ages investigated, even though the amount of subscapular and gonadal fat pads was reduced by 20%. Further, cathepsin S deficiency impaired adipocyte formation (-38%, p<0.001), which was accompanied by a lower expression of adipocyte-related genes and a reduction in serum leptin, IL-6 and CCL2 (p<0.001). Micro-CT analysis revealed an unchanged trabecular bone volume fraction and density, while tissue mineral density was significantly lower in cathepsin S KO mice at both ages. Aged KO mice further had a lower cortical bone mass (-2.3%, p<0.05). At the microarchitectural level, cathepsin S KO mice had thinner trabeculae (-8.3%), but a better connected trabecular network (+24%). Serum levels of the bone formation marker type 1 procollagen amino-terminal-propeptide and osteocalcin were both 2-3-fold higher in cathepsin S KO mice as was the mineralized surface. Consistently, osteogenic differentiation was increased 2-fold along with an increased expression of osteoblast-specific genes. Interestingly, serum levels of C-terminal telopeptide of type I collagen were also higher (+43%) in cathepsin S KO mice as were histological osteoclast parameters and ex vivo osteoclast differentiation. Thus, cathepsin S deficiency alters the balance between adipocyte and osteoblast differentiation, increases bone turnover, and changes bone microarchitecture. Therefore, bone and fat metabolisms should be monitored when using cathepsin S inhibitors clinically.
Collapse
Affiliation(s)
- M Rauner
- Division of Endocrinology, Diabetes and Metabolic Bone Diseases, Department of Medicine III, Dresden Technical University Medical Center, Germany
| | - U Föger-Samwald
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Austria
| | - M F Kurz
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Austria
| | - C Brünner-Kubath
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Austria
| | - D Schamall
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Austria
| | - A Kapfenberger
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Austria
| | - P Varga
- Vienna University of Technology, Austria
| | - S Kudlacek
- Krankenhaus der Barmherzigen Brüder, Vienna, Austria
| | - A Wutzl
- Medical University of Vienna, Vienna, Austria
| | - H Höger
- Medical University of Vienna, Vienna, Austria
| | - P K Zysset
- Vienna University of Technology, Austria
| | - G P Shi
- Harvard Medical School, Boston, USA
| | - L C Hofbauer
- Division of Endocrinology, Diabetes and Metabolic Bone Diseases, Department of Medicine III, Dresden Technical University Medical Center, Germany; Center for Regenerative Therapies Dresden, Germany
| | - W Sipos
- University of Veterinary Medicine Vienna, Austria
| | - P Pietschmann
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Austria.
| |
Collapse
|
35
|
Henneicke H, Gasparini SJ, Brennan-Speranza TC, Zhou H, Seibel MJ. Glucocorticoids and bone: local effects and systemic implications. Trends Endocrinol Metab 2014; 25:197-211. [PMID: 24418120 DOI: 10.1016/j.tem.2013.12.006] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 12/11/2013] [Accepted: 12/11/2013] [Indexed: 01/19/2023]
Abstract
Glucocorticoids (GCs) are highly effective in the treatment of inflammatory and autoimmune conditions but their therapeutic use is limited by numerous adverse effects. Recent insights into the mechanisms of action of both endogenous and exogenous GCs on bone cells have unlocked new approaches to the development of effective strategies for the prevention and treatment of GC-induced osteoporosis. Furthermore, topical studies in rodents indicate that the osteoblast-derived peptide, osteocalcin, plays a central role in the pathogenesis of GC-induced diabetes and obesity. These exciting findings mechanistically link the detrimental effects of GCs on bone and energy metabolism. In this article we review the physiology and pathophysiology of GC action on bone cells, and discuss current and emerging concepts regarding the molecular mechanisms underlying adverse effects of GCs such as osteoporosis and diabetes.
Collapse
Affiliation(s)
- Holger Henneicke
- Bone Research Program, The Australian and New Zealand Army Corps (ANZAC) Research Institute, The University of Sydney, Sydney, Australia
| | - Sylvia J Gasparini
- Bone Research Program, The Australian and New Zealand Army Corps (ANZAC) Research Institute, The University of Sydney, Sydney, Australia
| | - Tara C Brennan-Speranza
- Bone Research Program, The Australian and New Zealand Army Corps (ANZAC) Research Institute, The University of Sydney, Sydney, Australia
| | - Hong Zhou
- Bone Research Program, The Australian and New Zealand Army Corps (ANZAC) Research Institute, The University of Sydney, Sydney, Australia
| | - Markus J Seibel
- Bone Research Program, The Australian and New Zealand Army Corps (ANZAC) Research Institute, The University of Sydney, Sydney, Australia; Department of Endocrinology and Metabolism, Concord Hospital, The University of Sydney, Sydney, Australia.
| |
Collapse
|