1
|
Semaan SJ, Kauffman AS. Developmental sex differences in the peri-pubertal pattern of hypothalamic reproductive gene expression, including Kiss1 and Tac2, may contribute to sex differences in puberty onset. Mol Cell Endocrinol 2022; 551:111654. [PMID: 35469849 PMCID: PMC9889105 DOI: 10.1016/j.mce.2022.111654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 02/03/2023]
Abstract
The mechanisms regulating puberty still remain elusive, as do the underlying causes for sex differences in puberty onset (girls before boys) and pubertal disorders. Neuroendocrine puberty onset is signified by increased pulsatile GnRH secretion, yet how and when various upstream reproductive neural circuits change developmentally to govern this process is poorly understood. We previously reported day-by-day peri-pubertal increases (Kiss1, Tac2) or decreases (Rfrp) in hypothalamic gene expression of female mice, with several brain mRNA changes preceding external pubertal markers. However, similar pubertal measures in males were not previously reported. Here, to identify possible neural sex differences underlying sex differences in puberty onset, we analyzed peri-pubertal males and directly compared them with female littermates. Kiss1 expression in male mice increased over the peri-pubertal period in both the AVPV and ARC nuclei but with lower levels than in females at several ages. Likewise, Tac2 expression in the male ARC increased between juvenile and older peri-pubertal stages but with levels lower than females at most ages. By contrast, both DMN Rfrp expressionand Rfrp neuronal activation strongly decreased in males between juvenile and peri-pubertal stages, but with similar levels as females. Neither ARC KNDy neuronal activation nor Kiss1r expression in GnRH neurons differed between males and females or changed with age. These findings delineate several peri-pubertal changes in neural populations in developing males, with notable sex differences in kisspeptin and NKB neuron developmental patterns. Whether these peri-pubertal hypothalamic sex differences underlie sex differences in puberty onset deserves future investigation.
Collapse
Affiliation(s)
- Sheila J Semaan
- Department of OBGYN and Reproductive Sciences, University of California San Diego, La Jolla, CA, USA
| | - Alexander S Kauffman
- Department of OBGYN and Reproductive Sciences, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
2
|
Effects of Selective Deletion of Tyrosine Hydroxylase from Kisspeptin Cells on Puberty and Reproduction in Male and Female Mice. eNeuro 2017; 4:eN-NRS-0150-17. [PMID: 28660243 PMCID: PMC5480141 DOI: 10.1523/eneuro.0150-17.2017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/08/2017] [Accepted: 06/09/2017] [Indexed: 12/14/2022] Open
Abstract
The neuropeptide kisspeptin, encoded by Kiss1, regulates reproduction by stimulating GnRH secretion. Kiss1-syntheizing neurons reside primarily in the hypothalamic anteroventral periventricular (AVPV/PeN) and arcuate (ARC) nuclei. AVPV/PeN Kiss1 neurons are sexually dimorphic, with females expressing more Kiss1 than males, and participate in estradiol (E2)-induced positive feedback control of GnRH secretion. In mice, most AVPV/PeN Kiss1 cells coexpress tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine synthesis (in this case, dopamine). Dopamine treatment can inhibit GnRH neurons, but the function of dopamine signaling arising specifically from AVPV/PeN Kiss1 cells is unknown. We generated a novel TH flox mouse and used Cre-Lox technology to selectively ablate TH specifically from Kiss1 cells. We then examined the effects of selective TH knock-out on puberty and reproduction in both sexes. In control mice, 90% of AVPV/PeN Kiss1 neurons coexpressed TH, whereas in mice lacking TH exclusively in Kiss1 cells (termed Kiss THKOs), TH was successfully absent from virtually all Kiss1 cells. Despite this absence of TH, both female and male Kiss THKOs displayed normal body weights, puberty onset, and basal gonadotropin levels in adulthood, although testosterone (T) was significantly elevated in adult male Kiss THKOs. The E2-induced LH surge was unaffected in Kiss THKO females, and neuronal activation status of kisspeptin and GnRH cells was also normal. Supporting this, fertility and fecundity were normal in Kiss THKOs of both sexes. Thus, despite high colocalization of TH and Kiss1 in the AVPV/PeN, dopamine produced in these cells is not required for puberty or reproduction, and its function remains unknown.
Collapse
|
3
|
Stephens SBZ, Chahal N, Munaganuru N, Parra RA, Kauffman AS. Estrogen Stimulation of Kiss1 Expression in the Medial Amygdala Involves Estrogen Receptor-α But Not Estrogen Receptor-β. Endocrinology 2016; 157:4021-4031. [PMID: 27564649 PMCID: PMC5045512 DOI: 10.1210/en.2016-1431] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The neuropeptide kisspeptin, encoded by Kiss1, regulates reproduction by stimulating GnRH secretion. Neurons synthesizing kisspeptin are predominantly located in the hypothalamic anteroventral periventricular (AVPV) and arcuate nuclei, but smaller kisspeptin neuronal populations also reside in extrahypothalamic brain regions, such as the medial amygdala (MeA). In adult rodents, estradiol (E2) increases Kiss1 expression in the MeA, as in the AVPV. However, unlike AVPV and arcuate nuclei kisspeptin neurons, little else is currently known about the development, regulation, and function of MeA Kiss1 neurons. We first assessed the developmental onset of MeA Kiss1 expression in males and found that MeA Kiss1 expression is absent at juvenile ages but significantly increases during the late pubertal period, around postnatal day 35, coincident with increases in circulating sex steroids. We next tested whether developmental MeA Kiss1 expression could be induced early by E2 exposure prior to puberty. We found that juvenile mice given short-term E2 had greatly increased MeA Kiss1 expression at postnatal day 18. Although MeA Kiss1 neurons are known to be E2 up-regulated, the specific estrogen receptor (ER) pathway(s) mediating this stimulation are unknown. Using adult ERα knockout and ERβ knockout mice, we next determined that ERα, but not ERβ, is required for maximal E2-induced MeA Kiss1 expression in both sexes. These results delineate both the developmental time course of MeA Kiss1 expression and the specific ER signaling pathway required for E2-induced up-regulation of Kiss1 in this extrahypothalamic brain region. These findings will help drive future studies ascertaining the potential functions of this understudied kisspeptin population.
Collapse
Affiliation(s)
- Shannon B Z Stephens
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, California 92093
| | - Navdeep Chahal
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, California 92093
| | - Nagambika Munaganuru
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, California 92093
| | - Ruby A Parra
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, California 92093
| | - Alexander S Kauffman
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, California 92093
| |
Collapse
|
4
|
Nakamura S, Uenoyama Y, Ikegami K, Dai M, Watanabe Y, Takahashi C, Hirabayashi M, Tsukamura H, Maeda KI. Neonatal Kisspeptin is Steroid-Independently Required for Defeminisation and Peripubertal Kisspeptin-Induced Testosterone is Required for Masculinisation of the Brain: A Behavioural Study Using Kiss1 Knockout Rats. J Neuroendocrinol 2016; 28. [PMID: 27344056 DOI: 10.1111/jne.12409] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 05/23/2016] [Accepted: 06/24/2016] [Indexed: 11/30/2022]
Abstract
Rodents show apparent sex differences in their sexual behaviours. The present study used Kiss1 knockout (KO) rats to evaluate the role of kisspeptin in the defeminisation/masculinisation of the brain mechanism that controls sexual behaviours. Castrated adult Kiss1 KO males treated with testosterone showed no male sexual behaviours but demonstrated the oestrogen-induced lordosis behaviours found in wild-type females. The sizes of some of the sexual dimorphic nuclei of Kiss1 KO male rats are similar to those of females. Plasma testosterone levels at embryonic day 18 and postnatal day 0 (PND0) in Kiss1 KO males were high, similar to wild-type males, indicating that perinatal testosterone is secreted in a kisspeptin-independent manner. Long-term exposure to testosterone from peripubertal to adult periods restored mounts and intromissions in KO males, suggesting that kisspeptin-dependent peripubertal testosterone secretion is required to masculinise the brain mechanism. This long-term testosterone treatment failed to abolish lordosis behaviours in KO males, whereas kisspeptin replacement at PND0 reduced lordosis quotients in Kiss1 KO males but not in KO females. These results suggest that kisspeptin itself is required to defeminise behaviour in the perinatal period, in cooperation with testosterone. Oestradiol benzoate treatment at PND0 suppressed lordosis quotients in Kiss1 KO rats, indicating that the mechanisms downstream of oestradiol work properly in the absence of kisspeptin. There was no significant difference in aromatase gene expression in the whole hypothalamus between Kiss1 KO and wild-type male rats at PND0. Taken together, the present study demonstrates that both perinatal kisspeptin and kisspeptin-independent testosterone are required for defeminisation of the brain, whereas kisspeptin-dependent testosterone during peripuberty to adulthood is needed for masculinisation of the brain in male rats.
Collapse
Affiliation(s)
- S Nakamura
- Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo, Japan
| | - Y Uenoyama
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - K Ikegami
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - M Dai
- Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo, Japan
| | - Y Watanabe
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - C Takahashi
- Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo, Japan
| | - M Hirabayashi
- Center for Genetic Analysis of Behaviour, National Institute for Physiological Sciences, Okazaki, Japan
| | - H Tsukamura
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - K-I Maeda
- Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
5
|
Deletion of Vax1 from Gonadotropin-Releasing Hormone (GnRH) Neurons Abolishes GnRH Expression and Leads to Hypogonadism and Infertility. J Neurosci 2016; 36:3506-18. [PMID: 27013679 DOI: 10.1523/jneurosci.2723-15.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 02/01/2016] [Indexed: 12/27/2022] Open
Abstract
UNLABELLED Hypothalamic gonadotropin-releasing hormone (GnRH) neurons are at the apex of the hypothalamic-pituitary-gonadal axis that regulates mammalian fertility. Herein we demonstrate a critical role for the homeodomain transcription factor ventral anterior homeobox 1 (VAX1) in GnRH neuron maturation and show that Vax1 deletion from GnRH neurons leads to complete infertility in males and females. Specifically, global Vax1 knock-out embryos had normal numbers of GnRH neurons at 13 d of gestation, but no GnRH staining was detected by embryonic day 17. To identify the role of VAX1 specifically in GnRH neuron development,Vax1(flox)mice were generated and lineage tracing performed in Vax1(flox/flox):GnRH(cre):RosaLacZ mice. This identified VAX1 as essential for maintaining expression of Gnrh1 The absence of GnRH staining in adult Vax1(flox/flox):GnRH(cre)mice led to delayed puberty, hypogonadism, and infertility. To address the mechanism by which VAX1 maintains Gnrh1 transcription, the capacity of VAX1 to regulate Gnrh1 transcription was evaluated in the GnRH cell lines GN11 and GT1-7. As determined by luciferase and electrophoretic mobility shift assays, we found VAX1 to be a direct activator of the GnRH promoter through binding to four ATTA sites in the GnRH enhancer (E1) and proximal promoter (P), and able to compete with the homeoprotein SIX6 for occupation of the identified ATTA sites in the GnRH promoter. We conclude that VAX1 is expressed in GnRH neurons where it is required for GnRH neuron expression of GnRH and maintenance of fertility in mice. SIGNIFICANCE STATEMENT Infertility classified as idiopathic hypogonadotropic hypogonadism (IHH) is characterized by delayed or absent sexual maturation and low sex steroid levels due to alterations in neuroendocrine control of the hypothalamic-pituitary-gonadal axis. The incidence of IHH is 1-10 cases per 100,000 births. Although extensive efforts have been invested in identifying genes giving rise to IHH, >50% of cases have unknown genetic origins. We recently showed that haploinsufficiency of ventral anterior homeobox 1 (Vax1) leads to subfertility, making it a candidate in polygenic IHH. In this study, we investigate the mechanism by which VAX1 controls fertility finding that VAX1 is required for maintenance of Gnrh1 gene expression and deletion of Vax1 from GnRH neurons leads to complete infertility.
Collapse
|
6
|
Luo E, Stephens SBZ, Chaing S, Munaganuru N, Kauffman AS, Breen KM. Corticosterone Blocks Ovarian Cyclicity and the LH Surge via Decreased Kisspeptin Neuron Activation in Female Mice. Endocrinology 2016; 157:1187-99. [PMID: 26697722 PMCID: PMC4769373 DOI: 10.1210/en.2015-1711] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Stress elicits activation of the hypothalamic-pituitary-adrenal axis, which leads to enhanced circulating glucocorticoids, as well as impaired gonadotropin secretion and ovarian cyclicity. Here, we tested the hypothesis that elevated, stress-levels of glucocorticoids disrupt ovarian cyclicity by interfering with the preovulatory sequence of endocrine events necessary for the LH surge. Ovarian cyclicity was monitored in female mice implanted with a cholesterol or corticosterone (Cort) pellet. Cort, but not cholesterol, arrested cyclicity in diestrus. Subsequent studies focused on the mechanism whereby Cort stalled the preovulatory sequence by assessing responsiveness to the positive feedback estradiol signal. Ovariectomized mice were treated with an LH surge-inducing estradiol implant, as well as Cort or cholesterol, and assessed several days later for LH levels on the evening of the anticipated surge. All cholesterol females showed a clear LH surge. At the time of the anticipated surge, LH levels were undetectable in Cort-treated females. In situ hybridization analyses the anteroventral periventricular nucleus revealed that Cort robustly suppressed the percentage of Kiss1 cells coexpressing cfos, as well as reduced the number of Kiss1 cells and amount of Kiss1 mRNA per cell, compared with expression in control brains. In addition, Cort blunted pituitary expression of the genes encoding the GnRH receptor and LHβ, indicating inhibition of gonadotropes during the blockage of the LH surge. Collectively, our findings support the hypothesis that physiological stress-levels of Cort disrupts ovarian cyclicity, in part, through disruption of positive feedback mechanisms at both the hypothalamic and pituitary levels which are necessary for generation of the preovulatory LH surge.
Collapse
Affiliation(s)
- Elena Luo
- Department of Reproductive Medicine and Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, California 92093-0674
| | - Shannon B Z Stephens
- Department of Reproductive Medicine and Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, California 92093-0674
| | - Sharon Chaing
- Department of Reproductive Medicine and Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, California 92093-0674
| | - Nagambika Munaganuru
- Department of Reproductive Medicine and Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, California 92093-0674
| | - Alexander S Kauffman
- Department of Reproductive Medicine and Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, California 92093-0674
| | - Kellie M Breen
- Department of Reproductive Medicine and Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, California 92093-0674
| |
Collapse
|
7
|
Clarkson J, Herbison AE. Hypothalamic control of the male neonatal testosterone surge. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150115. [PMID: 26833836 PMCID: PMC4785901 DOI: 10.1098/rstb.2015.0115] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2015] [Indexed: 11/12/2022] Open
Abstract
Sex differences in brain neuroanatomy and neurophysiology underpin considerable physiological and behavioural differences between females and males. Sexual differentiation of the brain is regulated by testosterone secreted by the testes predominantly during embryogenesis in humans and the neonatal period in rodents. Despite huge advances in understanding how testosterone, and its metabolite oestradiol, sexually differentiate the brain, little is known about the mechanism that actually generates the male-specific neonatal testosterone surge. This review examines the evidence for the role of the hypothalamus, and particularly the gonadotropin-releasing hormone (GnRH) neurons, in generating the neonatal testosterone surge in rodents and primates. Kisspeptin-GPR54 signalling is well established as a potent and critical regulator of GnRH neuron activity during puberty and adulthood, and we argue here for an equally important role at birth in driving the male-specific neonatal testosterone surge in rodents. The presence of a male-specific population of preoptic area kisspeptin neurons that appear transiently in the perinatal period provide one possible source of kisspeptin drive to neonatal GnRH neurons in the mouse.
Collapse
Affiliation(s)
- Jenny Clarkson
- Centre for Neuroendocrinology and Department of Physiology, School of Medical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Allan E Herbison
- Centre for Neuroendocrinology and Department of Physiology, School of Medical Sciences, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
8
|
Büdefeld T, Tobet S, Majdic G. The Influence of Gonadal Steroid Hormones on Immunoreactive Kisspeptin in the Preoptic Area and Arcuate Nucleus of Developing Agonadal Mice with a Genetic Disruption of Steroidogenic Factor 1. Neuroendocrinology 2016; 103:248-58. [PMID: 26138474 PMCID: PMC4696913 DOI: 10.1159/000437166] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 06/22/2015] [Indexed: 11/19/2022]
Abstract
Kisspeptin, a regulator of reproductive function and puberty in mammals, is expressed in the rostral (anteroventral) periventricular nucleus (AVPV) and arcuate nucleus (Arc), and its expression is at least partially regulated by estradiol in rodents. The aim of the present study was to determine contributions of genetic factors and gonadal steroid hormones to the sexual differentiation of kisspeptin-immunoreactive (kisspeptin-ir) cell populations in the AVPV and Arc during postnatal development using agonadal steroidogenic factor 1 (SF-1) knockout (KO) mice. To examine the effects of gonadal hormones on pubertal development of kisspeptin neurons, SF-1 KO mice were treated with estradiol benzoate (EB) from postnatal day (P)25 to P36, and their brains were examined at P36. No sex differences were observed in the SF-1 KO mice during postnatal development and after treatment with EB - which failed to increase the number of kisspeptin-ir cells at P36 to the levels found in wild-type (WT) control females. This suggests that specific time periods of estradiol actions or other factors are needed for sexual differentiation of the pattern of immunoreactive kisspeptin in the AVPV. Kisspeptin immunoreactivity in the Arc was significantly higher in gonadally intact WT and SF-1 KO females than in male mice at P36 during puberty. Further, in WT and SF-1 KO females, but not in males, adult levels were reached at P36. This suggests that maturation of the kisspeptin system in the Arc differs between sexes and is regulated by gonad-independent mechanisms.
Collapse
Affiliation(s)
- Tomaz Büdefeld
- Centre for Animal Genomics, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Stuart Tobet
- Department of Biomedical Sciences and School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Gregor Majdic
- Centre for Animal Genomics, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
- Institute of Physiology, Medical School, University of Maribor, Maribor, Slovenia
- Corresponding author and person to whom proofs and reprint requests should be addressed: Gregor Majdic; Center for Animal Genomics, Veterinary Faculty, University of Ljubljana, Slovenia-1000 Ljubljana; Phone: 0038614779210, Fax: 0038612832243,
| |
Collapse
|
9
|
Stephens SBZ, Tolson KP, Rouse ML, Poling MC, Hashimoto-Partyka MK, Mellon PL, Kauffman AS. Absent Progesterone Signaling in Kisspeptin Neurons Disrupts the LH Surge and Impairs Fertility in Female Mice. Endocrinology 2015; 156:3091-7. [PMID: 26076042 PMCID: PMC4541622 DOI: 10.1210/en.2015-1300] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Kisspeptin, encoded by Kiss1, stimulates GnRH neurons to govern reproduction. In rodents, estrogen-sensitive kisspeptin neurons in the anterior ventral periventricular nucleus and neighboring periventricular nucleus are thought to mediate sex steroid-induced positive feedback induction of the preovulatory LH surge. These kisspeptin neurons coexpress estrogen and progesterone receptors and display enhanced neuronal activation during the LH surge. However, although estrogen regulation of kisspeptin neurons has been well studied, the role of progesterone signaling in regulating kisspeptin neurons is unknown. Here we tested whether progesterone action specifically in kisspeptin cells is essential for proper LH surge and fertility. We used Cre-lox technology to generate transgenic mice lacking progesterone receptors exclusively in kisspeptin cells (termed KissPRKOs). Male KissPRKOs displayed normal fertility and gonadotropin levels. In stark contrast, female KissPRKOs displayed earlier puberty onset and significant impairments in fertility, evidenced by fewer births and substantially reduced litter size. KissPRKOs also had fewer ovarian corpora lutea, suggesting impaired ovulation. To ascertain whether this reflects a defect in the ability to generate sex steroid-induced LH surges, females were exposed to an estradiol-positive feedback paradigm. Unlike control females, which displayed robust LH surges, KissPRKO females did not generate notable LH surges and expressed significantly blunted cfos induction in anterior ventral periventricular nucleus kisspeptin neurons, indicating that progesterone receptor signaling in kisspeptin neurons is required for normal kisspeptin neuronal activation and LH surges during positive feedback. Our novel findings demonstrate that progesterone signaling specifically in kisspeptin cells is essential for the positive feedback induction of normal LH surges, ovulation, and normal fertility in females.
Collapse
Affiliation(s)
- Shannon B Z Stephens
- Department of Reproductive Medicine (S.B.Z.S., K.P.T., M.L.R., M.C.P., P.L.M., A.S.K.), University of California, San Diego, La Jolla, California 92093; and Department of Molecular, Cellular, and Developmental Biology (M.K.H.-P.), University of California, Los Angeles, Los Angeles, California 90095
| | - Kristen P Tolson
- Department of Reproductive Medicine (S.B.Z.S., K.P.T., M.L.R., M.C.P., P.L.M., A.S.K.), University of California, San Diego, La Jolla, California 92093; and Department of Molecular, Cellular, and Developmental Biology (M.K.H.-P.), University of California, Los Angeles, Los Angeles, California 90095
| | - Melvin L Rouse
- Department of Reproductive Medicine (S.B.Z.S., K.P.T., M.L.R., M.C.P., P.L.M., A.S.K.), University of California, San Diego, La Jolla, California 92093; and Department of Molecular, Cellular, and Developmental Biology (M.K.H.-P.), University of California, Los Angeles, Los Angeles, California 90095
| | - Matthew C Poling
- Department of Reproductive Medicine (S.B.Z.S., K.P.T., M.L.R., M.C.P., P.L.M., A.S.K.), University of California, San Diego, La Jolla, California 92093; and Department of Molecular, Cellular, and Developmental Biology (M.K.H.-P.), University of California, Los Angeles, Los Angeles, California 90095
| | - Minako K Hashimoto-Partyka
- Department of Reproductive Medicine (S.B.Z.S., K.P.T., M.L.R., M.C.P., P.L.M., A.S.K.), University of California, San Diego, La Jolla, California 92093; and Department of Molecular, Cellular, and Developmental Biology (M.K.H.-P.), University of California, Los Angeles, Los Angeles, California 90095
| | - Pamela L Mellon
- Department of Reproductive Medicine (S.B.Z.S., K.P.T., M.L.R., M.C.P., P.L.M., A.S.K.), University of California, San Diego, La Jolla, California 92093; and Department of Molecular, Cellular, and Developmental Biology (M.K.H.-P.), University of California, Los Angeles, Los Angeles, California 90095
| | - Alexander S Kauffman
- Department of Reproductive Medicine (S.B.Z.S., K.P.T., M.L.R., M.C.P., P.L.M., A.S.K.), University of California, San Diego, La Jolla, California 92093; and Department of Molecular, Cellular, and Developmental Biology (M.K.H.-P.), University of California, Los Angeles, Los Angeles, California 90095
| |
Collapse
|
10
|
Dubois SL, Acosta-Martínez M, DeJoseph MR, Wolfe A, Radovick S, Boehm U, Urban JH, Levine JE. Positive, but not negative feedback actions of estradiol in adult female mice require estrogen receptor α in kisspeptin neurons. Endocrinology 2015; 156:1111-20. [PMID: 25545386 PMCID: PMC4330313 DOI: 10.1210/en.2014-1851] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Hypothalamic kisspeptin (Kiss1) neurons express estrogen receptor α (ERα) and exert control over GnRH/LH secretion in female rodents. It has been proposed that estradiol (E2) activation of ERα in kisspeptin neurons in the arcuate nucleus (ARC) suppresses GnRH/LH secretion (negative feedback), whereas E2 activation of ERα in kisspeptin neurons in the anteroventral periventricular nucleus (AVPV) mediates the release of preovulatory GnRH/LH surges (positive feedback). To test these hypotheses, we generated mice bearing kisspeptin cell-specific deletion of ERα (KERαKO) and treated them with E2 regimens that evoke either negative or positive feedback actions on GnRH/LH secretion. Using negative feedback regimens, as expected, E2 effectively suppressed LH levels in ovariectomized (OVX) wild-type (WT) mice to the levels seen in ovary-intact mice. Surprisingly, however, despite the fact that E2 regulation of Kiss1 mRNA expression was abrogated in both the ARC and AVPV of KERαKO mice, E2 also effectively decreased LH levels in OVX KERαKO mice to the levels seen in ovary-intact mice. Conversely, using a positive feedback regimen, E2 stimulated LH surges in WT mice, but had no effect in KERαKO mice. These experiments clearly demonstrate that ERα in kisspeptin neurons is required for the positive, but not negative feedback actions of E2 on GnRH/LH secretion in adult female mice. It remains to be determined whether the failure of KERαKO mice to exhibit GnRH/LH surges reflects the role of ERα in the development of kisspeptin neurons, in the active signaling processes leading to the release of GnRH/LH surges, or both.
Collapse
Affiliation(s)
- Sharon L Dubois
- Neuroscience Training Program (S.L.D.), Department of Neuroscience (S.L.D., J.E.L.), University of Wisconsin-Madison, Madison, Wisconsin 53715; Department of Physiology and Biophysics (M.A.-M.), Stony Brook University, Stony Brook, New York 11794; Department of Physiology and Biophysics (M.R.D., J.H.U.), Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064; Department of Pediatrics (A.W., S.R.), Johns Hopkins University School of Medicine, Baltimore, Maryland 21287; Department of Pharmacology and Toxicology (U.B.), University of Saarland School of Medicine, Homburg, Germany D-66421; and Wisconsin National Primate Research Center (J.E.L.), Madison, Wisconsin 53715
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Semaan SJ, Kauffman AS. Daily successive changes in reproductive gene expression and neuronal activation in the brains of pubertal female mice. Mol Cell Endocrinol 2015; 401:84-97. [PMID: 25498961 PMCID: PMC4312730 DOI: 10.1016/j.mce.2014.11.025] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 10/22/2014] [Accepted: 11/18/2014] [Indexed: 01/01/2023]
Abstract
Puberty is governed by the secretion of gonadotropin releasing hormone (GnRH), but the roles and identities of upstream neuropeptides that control and time puberty remain poorly understood. Indeed, how various reproductive neural gene systems change before and during puberty, and in relation to one another, is not well-characterized. We detailed the daily pubertal profile (from postnatal day [PND] 15 to PND 30) of neural Kiss1 (encoding kisspeptin), Kiss1r (kisspeptin receptor), Tac2 (neurokinin B), and Rfrp (RFRP-3, mammalian GnIH) gene expression and day-to-day c-fos induction in each of these cell types in developing female mice. Kiss1 expression in the AVPV/PeN increased substantially over the pubertal transition, reaching adult levels around vaginal opening (PND 27.5), a pubertal marker. However, AVPV/PeN Kiss1 neurons were not highly activated, as measured by c-fos co-expression, at any pubertal age. In the ARC, Kiss1 and Tac2 cell numbers showed moderate increases across the pubertal period, and neuronal activation of Tac2/Kiss1 cells was moderately elevated at all pubertal ages. Additionally, Kiss1r expression specifically in GnRH neurons was already maximal by PND 15 and did not change with puberty. Conversely, both Rfrp expression and Rfrp/c-fos co-expression in the DMN decreased markedly in the early pre-pubertal stage. This robust decrease of the inhibitory RFRP-3 population may diminish inhibition of GnRH neurons during early puberty. Collectively, our data identify the precise timing of important developmental changes - and in some cases, lack thereof - in gene expression and neuronal activation of key reproductive neuropeptides during puberty, with several changes occurring well before vaginal opening.
Collapse
Affiliation(s)
- Sheila J Semaan
- Department of Reproductive Medicine, University of California San Diego, La Jolla, CA, USA
| | - Alexander S Kauffman
- Department of Reproductive Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
12
|
Kauffman AS, Sun Y, Kim J, Khan AR, Shu J, Neal-Perry G. Vasoactive intestinal peptide modulation of the steroid-induced LH surge involves kisspeptin signaling in young but not in middle-aged female rats. Endocrinology 2014; 155:2222-32. [PMID: 24654782 PMCID: PMC4020928 DOI: 10.1210/en.2013-1793] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Age-related LH surge dysfunction in middle-aged rats is characterized, in part, by reduced responsiveness to estradiol (E2)-positive feedback and reduced hypothalamic kisspeptin neurotransmission. Vasoactive intestinal peptide (VIP) neurons in the suprachiasmatic nucleus project to hypothalamic regions that house kisspeptin neurons. Additionally, middle-age females express less VIP mRNA in the suprachiasmatic nucleus on the day of the LH surge and intracerebroventricular (icv) VIP infusion restores LH surges. We tested the hypothesis that icv infusion of VIP modulates the LH surge through effects on the kisspeptin and RFamide-related peptide-3 (RFRP-3; an estradiol-regulated inhibitor of GnRH neurons) neurotransmitter systems. Brains were collected for in situ hybridization analyses from ovariectomized and ovarian hormone-primed young and middle-aged females infused with VIP or saline. The percentage of GnRH and Kiss1 cells coexpressing cfos and total Kiss1 mRNA were reduced in saline-infused middle-aged compared with young females. In young females, VIP reduced the percentage of GnRH and Kiss1 cells coexpressing cfos, suggesting that increased VIP signaling in young females adversely affected the function of Kiss1 and GnRH neurons. In middle-aged females, VIP increased the percentage of GnRH but not Kiss1 neurons coexpressing cfos, suggesting VIP affects LH release in middle-aged females through kisspeptin-independent effects on GnRH neurons. Neither reproductive age nor VIP affected Rfrp cell number, Rfrp mRNA levels per cell, or coexpression of cfos in Rfrp cells. These data suggest that VIP differentially affects activation of GnRH and kisspeptin neurons of female rats in an age-dependent manner.
Collapse
Affiliation(s)
- Alexander S Kauffman
- Department of Reproductive Medicine (A.S.K., J.K., A.R.K.), University of California, San Diego, La Jolla, California; Department of Obstetrics/Gynecology and Women's Health (Y.S., J.S., G.N.-P., Albert Einstein College of Medicine, Bronx, New York; and Dominick P. Purpura Department of Neuroscience (G.N.-P.), Albert Einstein College of Medicine, Bronx, New York
| | | | | | | | | | | |
Collapse
|